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II ... . . .

The flow of fluid around obstacles in two dimensions is

described by the compressible Navier Stokes equations

(u + E + F _
(-)t - + y 1

where

pu pu 2 - aOxx

PV; L [puv - C xy

-pe 1  
pue - u0 - vx - q[xxx

F =-pv

Puv -

Pv 2 1
• pve -Vcyyy - U xy - q y.

=-p - (2/3) m . + 2mu x  q kTx

= n(u Y+v X)

a xy = - p (2/3) mi + 2mu = kT 2Oyy x y Y 2 2

p = PRT m =m(T) e =cvT + u + v
2

where the four variables p, u, v e represent the physical

quantities of density, x- and y- components of velocity, and

internal energy. AIR FORCE OFFICE . SCIENTIFIC RESEARCH (APSC)

NOTI CE OF T7' ANS'I TTAL TO DTI CThis te'.hnic.1 ,"'o:-t h' been revlew,.d and is
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This nonlinear system of mixed parabolic-hyperbolic type in

two space dimensions and time with four independent variables

must be solved in an exterior region in R2 . The geometry will

depend on the particular physical situation that one is

attempting to model.

The situation we shall be interested in occurs in modelling

flight conditions, in which the conditions at infinity are pre-

scribed with a large u-velocity and v-velocity zero and pre-

scibed p. and e . Fluid flows around an obstacle in x-y space.

Usually, this equation is solved numerically using a finite

difference scheme of the Lax-Weudroff type, such as the

MacCormack ADE mettrod. Since these calculations can only be

made on a finite grid of points in xy space, an artificial far-

field boundary is created. This boundary ought be sufficiently

far away from.the object around which the fluid is flowing so

-that local phenomena are not omitted by omitting part of the

region of fluid flow. On the other hand, the farther away the

region is, the more grid-points need to be included and thus the

more expensive time-consuming the computations become.

One then has the problem of deciding what effect this new

boundary has on the solution of the problem. Because of the

viscosity terms in (1) and the additional artificial viscosity

introduced by the finite difference schemes, some boundary condi-

tions must be imposed.

As we shall show in this report on numerical experiments,

cosiderable care must be exercised in the choice of the boundary

% 91 2!
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conditions. If one is interested in steady state flow, then one

starts off with a bad approximation, and hopes that the errors in

the numerical solution propagate out of the region as transitory

disturbances in the physical variables. one then expects to

converge to the steady state flow.

We shall show in this paper that the incorrect choice of

boundary conditions can give rise to some of the following

phenomena: i) reflecting boundary conditions, in which the

disturbances in the physical variables represented by the dif-

ference between the steady state flow and the initial conditions

are not allowed to exit through the far-field boundary but

instead continue echoing up and down the grid, and giving rite to

spurious oscillatory solutions; ii) under-specified boundary

conditions, in which the converged steady state solution may

depend on the initial conditions; iii) overspecified boundary

.conditions in which large errors are introduced before conver-

gence takes place.

In this paper, we first discuss the theory for simple linear

hyperbolic systems in one space dimension. We then analyse

several computational experiments in the light of this theory in

one space dimension. This show up the phenomena which we wish to

discuss in their simplest setting. Finally we discuss the more

complicated setting of two space dimensions and point out how the

phenomena of one space dimension can be recognized in this more

complicated setting.



A REVIEW OF THE LINEAR CASE

The method used in the calculations which are the subject of

this paper is the MacCormack alternating direction explicit

scheme. [6) [151. This is a multistep efficient scheme which

reduces in the linear case to the Lax-Wendroff scheme. For a

diagonal N x N matrix A, this scheme approximates the equation

Ut + AUX = 0 by.

n+l n At n n
(2) uj = uj - Al-(uj+l-Uj_l) "

display

+ A 2 t 2 n n n

LAx j+l J j-l1( -) (U ~-2U.+U._I

As usual, {Jl~jij represents the space step and n

represents the time steps. If we are considering the equation

U + AU =0t x

on the region {(xt), 04xl, t>01 then the analytic solution is

determined by the initial conditions and boundary conditions at

x = 0 and x = 1. If the first k eigenvalues are positive and the

remaining N - k are negative than the quantities ul---uk must be

prescribed at x = 0 and uk+l---uN must be prescribed at x = 1.

Thus if WI = (u, u 2,---uk, 0 0---0) and Wii =

(0, 0,---0, Uk+l---uN) then for well-posedness, the boundary

conditions must be

WI = f(t) + B0 WII at x = 0

W = g(t) + B1 W I  at x = 1.

This gives a total of N boundary conditions. If either

kx(n-k) matrix B1 and the (n-k)xk matrix B0 are non-zero, then

the boundaries are reflecting, that is a wave in WI travelling

left to right will be reflected as a wave in WII running right to
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.... left.

If a boundary is supposed to be non-physical, then it should

not be reflecting, since the reflections would depend on the

location of the artificial or numerical boundary.

Now let us consider the difference scheme of (2). If the

grid points are given by with x = 0 and xj 1, then it is

clear from (2) that 2N boundary conditions are required. Thus we

must prescribe boundary conditions in such a way as to least

affect the closeness of the numerical to the analytic solution.

This situation has been the subject of several papers. In

131, Gustaffson and Kreiss point out the danger of over-

specification. By this is meant that all u i are specified at

both endpoints. This might be tempting because one might argue

that if the boundary conditions u i--- .k are given constants at x

= 0, then eventually these same values will be assumed by these

-variables at x = 1. However, in [41 it is pointed out that

convergence may or may not occur, depending on whether the numher

of grid points is odd or even.

A method which works well as pointed out in [31 is to impose
au.
- (1t) =0 1 4 i 4 k.

-.e au .
1 (o,t) = 0 k+l 4 i < n.

or in the numerical scheme

u. =u. 1 ' i 4 k.

U. 1  k+l 4 i 4 n.,. i- u ,

*'

5%



This introduces small errors at the outflow but these errors

do not propogate upstream. This is proved analytically by Parter

1101.

In [121, many different numerical boundary conditions are

given. The conclusion is that upwind differencing at the point

of outflow

n+l n At
u = u + Ai(-)(U -u

J &x J-1 J

is most accurate, although it converges with the same speed as

the previously discussed ux = 0.

The most serious error which one could make would be to

prescribe conditions at the wrong end. In other words, since u,

is right running, this would involve prescribing uI at x = 1 and

imposing ulx = 1 at x = 0. This would result in convergence to a

steady state which depends on the initial conditions.

THE NAVIER-STOKES EOUATIONS AND CHARACTERISTIC VARIABLES:

We now begin our discussion of the equations of gas

dynamics. We will neglect viscosity for the puposes of this

analysis. We will assume that the flow is one-dimensional and

subsonic and that the deviations from free-stream solutions are

small. This will allow us to neglect second order terms.

There are many forms of this equation, but the one most

suitable for the present discussion is

au aua + = - 0

where
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* A =02 0

!2

(-311 (3-y) u

y- 3  eu ye 3 (Y l 2
P P 2

and

or in terms of physical variable
BU 3U

+ A- =0
at ax

where

A = M- 1 AM

and

M 10 0

-u/p 1/p U

(yL ) u2  (l-y)u (y-l)

freeHere we make the key assumption that deviations from the

free stream are going to be sufficiently small that we can treat

the entries in the matrix A as being approximately constant (at

least locally). Denote these frozen variables by 0-subscript.
.

We then make the substitution

(4) (wy /1 0 -1/c0  (
W 0 I/Po~ c

W) ( -1 i/Poo c P)00)

and when this is substituted into (6) we obtain

obai
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awl aw W( 5 ) 2 + U o - =  0 W =  + I

0 aw 2  1

aW3  aW3 1
- + (Uo-Co) - 0 W= -u + p

Notice now how this breaks down into two separate cases. On the

one hand, if flow is supersonic then all wave motion is in the

left to right direction. In this case all analytic bound 1

condition sought be prescribed at the left hand side and ( ly

numerical boundary conditions prescribed at the right han o e.

Since the substitution (4) is equivalent to

p = K 1 + (o /2c)(K2+K3)

u = 1/2(K 2 -K 3 )

p = p0 C0 /2(K 2+K 3)

-it follows that prescribing all physical variables at the inflow

and prescribing ap/ax = au/ax = ap/ax = 0 at the outflow is

legitimate in terms of analytical and numerical requirements in

the supersonic case.

However, we must now consider the case of subsonic flow. In

this case the situation is completely different. Here, two of

the variables W1 and W 2 go left to right with velocities u and

u+c respectively, whereas one of the variables runs right to left

with velocity co-U0 . While the variables w2 and W 3 have no clear

physical significance, yet it is only be considering these vari-

ables that the full wave structure of the equations (5) or (6)

can be understood. Thus, one would be led to predict, for small

.. . . . . .. .. . . -
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deviations from free stream conditions, that the best boundary

conditions would be for an interval (o,L)
dW

W (o,t) = 1d (L,t) = 0

W (o,t) K dx (L,t) = 0 (6)

dW33 (o,t) = 0 W (L,t) = K3

Note the curious aspect of these boundary conditions. In

order to prescribe the numerical values K1 and K2 , we need to

know accurately all three physical variables at some distance to

the left. However, only the two combinations K1 and K2 are pre-

scribed. This can be summarized by saying that while we have

used all three pieces of information upstream, we have done so in

such a way that one degree of freedom remains, thus allowing the

waves in W3 to exit without reflections.

On the basis of the linearized model, various other combi-

nations would be well-posed. For example, it is possible to

prescribe K3 in terms of either K1 or K2 at the outflow x= L.

* Thus at the outflow one may prescribe

W2  (L,t) = F3  (t) + c1W 1  (L,t) + c2W2  (L,t)

For example if c1 = 0, c2 = 1, then this amounts to putting

u (L,t) = 1/2 F3  (7)

i.e., we prescribe velocity at the outflow.

Alternatively, we might take c, = 0, c 2 = -1 and we would get

p (L,t) = ((poCo)/2)F 3  (8)

i.e. we prescribe pressure at the outflow. Many other combi
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nations are possible, but as remarked in section II, all these

will cause errors in the initial data to be reflected back into

the medium as waves running from right to left. For example, we

would predict that an error in W3 would be reflected back as an

error in W1 if we use boundary condition (8). As we shall see,

this is exactly what happens.

At the inflow end, we may prescribe WI and W2 in terms of

W3 . Thus the following boundary conditions are well posed;

W, (o,t) = F, + cIW 3 (o,t) (9)

W2 (o,t) = F2 + c2 W3 (o,t)

For example, choosing c2 = +1 in (lib) corresponds to

u(o,t) = (1/2)F 2

(i.e. prescribing u at the inflow) and c2 = -1 corresponds to

p(o,t)= (P Co/2)F

(i.e. prescribing p). One can prescribe the combination (u,p) by

'first choosing c2 = 1 (thereby prescribing u) and then choosing

i = p /c , thereby prescribing p in terms of a given F, and a
0 0

- prescribed u(o,t). Since (lla) and (llb) reduce to

,u(1c2 ) + p (1-c 2 ) = F2

p P (Po/C c + Clu = F

about the only condition we cannot prescribe is u(o,t), p(o,t),

. since there is no choice of c1 , c2 to eliminate p from these

equations.

Again, we emphasize that each of these boundary conditions

is reflecting, i.e. deviations from the free stream in the

initial data get reflected back as waves in W1 and W2 and then

.4,
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travel back downstream. About the worst thing that can be done

is to prescribe reflecting boundary conditions at the inflow

x = 0 and the outflow x = L. In this case errors can keep being

reflected up and down the region, never being allowed to exit.

This prevents convergence to a steady state and may even give

rise to fictitious periodic oscillations.

We conclude this section with a review of the conclusions on

boundary conditions. Based on the linear model, boundary

conditions (8) seem optimal. Any other prescription of the

*physical variables, although well posed, casues reflections of

the deviation from the true solution. If for example, only the

physical variable p. is known at the outflow then it is poss'ible

to prescribe p at the outflow, in such a manner that the problem

remains well posed. We emphasize that this will cause errors to

propagate upstream, thereby slowing the process of convergence to

steady state. This may not be too bad, so long as the upstream

boundary conditions are not also reflecting. On the other hand,

if they are, then convergence to free stream may never occur.

VI. DISCUSSION OF NUMERICAL RESULTS - NONLINEAR COUPLING:

The one dimensional Navier-Stokes equations were solved with

an alternating direction explicit MacCormack scheme, on a one-

dimensional net with forty grid points. The code was an exact

one-dimensional version of a three-dimensionsal code which had

proved successful in many supersonic studies [61, [111. There

were two questions to answer. The first was, given that equation

(7) is correct for infinitesimally small deviations from a

.
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pconstant free steam, how correct is it when deviations of an

intermediate (of the order of 10%) magnitude are present

instead? It would be too much to hope that the variables W I , W2 ,

and W 3 , remain uncoupled, but we should be able to get an idea of

the order of magnitudes of the coupling involved. The second

problem of course, is to assess the influence of the various

types of boundary conditions commonly employed. we will deal

with the latter problem in section VII.

To do this, we considered a uniform free stream situation,

with pressure equal to 2000 lbs/ft2 , velocity equal to 548 ft/sec

and density equal to 0.0023 slugs/ft 3 . We created a deviation

from the steady state condition in a variety of ways as in [91,

[10], and then watched the progress (or lack of it) to a steady

state. A variety different wrong initial conditions were used.

One type was to impose a 10% deviation in one of the variables

.K l, K2, K 3 at the points {xj, j=18,19,20,21,22}. We should then

watch the disturbance, graphically as it propagated up or down

*: stream. Another possiblity was to put in uniformly wrong initial

conditions where some of all of the characteristic variables i ,

W2, W3 are perturbed throughout by a percentage error of 10%.

Each plot then showed the percentage error, with the different

curves representing the progress of time as one ascends the plot.

The curves are plotted every twenty five time steps

when At = (.9)(Ax)/(u+c). We also point out the percentage

errors in W1 , W2, W3 at the end of the run, so as to obtain

S-, .-. . .. . .
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information on relative accuracy and speed of convergence of the

various methods.

Figure 1 gives the results of an experiment, which is ideal

in terms of the linear theory. An initial disturbance in W3the

left-running characteristic variable is given and we observe

deflections in the variables W1, W2, W3. As one can readily see

from the pictures, the disturbance propagates upstream rapidly

until convergence is reached (.1% agreement with physical

variables), which takes place within 130 time steps. This gives

us six curves. Note that although a good deal of undershoot and

overshoot in W3 becomes apparent, there is no significant

interaction with W, or W2 . The same situation appears with

initial disturbances in W1, the slow-moving right running wave.

From this experiment it appears-that deviations in either W, or

Wwill not effect either of the other two variables. However,

as shown in Figures 2 and 3, when initial disturbances are inW2

a different situation exists. Figure 2 shows a uniform initial

disturbance in W2of minus ten percent, while W, and W3 are left

undisturbed. Initially the wave in W2 1 propagates rapidly out of

the medium. Indeed, after fifty time steps it is essentially

gone from the picture. However, this does no happen without

affecting the of the two variables. Notice how, in the top

graph, a large disturbance is left in W, after fifty time steps

and in W3, we have that W3 values one almost constant at minus

eight percent. However, once the W2 wave has made its exit, the

other two variables uncouple and resume their normal wave motion,

and the error can be seen propagating out of the solution in the
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usual way convergence is attained within three hundred

interations. These particular results illustrate what became

increasingly clear throughout the series; perturbations in W 2 had

a large effect on W, and W3 whereas if W2 was not perturbed, W1

and W behaved as if uncoupled. Perturbations in W, and W3 had

little effect on W2 . No qualitative explanation of the

phenomenon is know at this time. Figure 3 shows the same

phenomenon. Here an error of -10% is made in W2 whereas errors

of +10% are made in W, and W3 . Again, we see that until the "2

wave exits, there are massive disturbances in the wave structive

of W, and W2 . As soon as W2 exits, (after 75 interations) the

regular wave structive reasserts itself and errors propagate out

in predictable wave-

like manner. Again, convergence takes approximately three

hundred and -twenty five iterations. It seems clear that this is

optimal given the limited wave velocity, so we can deduce that

these affects are due to the nonlinear coupling. Thus, even

after the W2 wave exists it will take at least a maximum time

of {L/(u-c), L/ul seconds for the resulting errors to propagate

out of the system.

.'S

'4
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VII DISCUSSION OF NUMERICAL RESULTS - BOUNDARY CONDITIONS:

The linear "small deflection" theory predicts that the best

boundary conditions would be the prescription of the character-

istic variables at their point of entry with some form of

(stable) numerical boundary condition for the point of exit.

Here are two such schemes

INFLOW OUT FLOW
W (ot)=KdW 1

W1 (o t) = K -- 1 (L,t) = 0

dW 2
W (o,t) = K2 - (L,t) = 0 (12)

dW 
3d-- (o,t) =  0 W3  (L,t) = K3

Here K1 and K2 are numbers calculated from the known values

of u, p, p at the inflow and K 3 is calculated from the known

values of u and p at the outflow. Notice, however, the one

*"degree of freedom" is left at the inflow point. This allows the

variables to adjust but in compensating ways. The boundary

conditions in the code are usually in terms of the physical

variables so we translate (12) to physical variables.

INFLOW

P = 2 1K2 u2 - (1/poco)P 2 ]

u I = 1/2 [K2 + u 2 - (i/p 0 C0 )p 2]
1 = K1 + (P /2c 0 )[K 2 - u 2 + (1/pco)P2]

OUT FLOW

UN = 1/2[u n- + (1/p0c0) PN-I + K3

PN = (P0 c0 /2) [K3 + uN-1 + (1/p 0 c0 ) PN- 1

PN = (P0 /2c 0 ) [K 3 + uN-] - [I/(2co)] PN-I + PN-1

-. -. .. . ... ... -•.. ... ...-. .. .. ...-. .........-. . . . . .... -.. . - .-
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This set of boundary conditions is predicted to work well in the

linear studies of one equation, occurring in [21 and (31. We

shall call these boundary conditions the "no-change character-

.* istic boundary conditions". Another possiblity, suggested by

one-D analogues in [2], is the following:

* INFLOW OUT FLOW

W (o,t) = K at + uw aw = 0
1 1 atUN ax~

W (o,t) = K at + (u-c)N ax 0 (13)

W3  2W 3
a3+ (u-c) aW = 0 W3 (L,t) = K
at I (x 3 x3

where derivaties in the x-variable are downwind at the inflow and

upwind at the outflow and forward in time. The numbers K1 , K2,

K3 are prescribed as before. In terms of the physical variables

these translate into

INFLOW

-n+l 1/2[K + Un _ (1/n c )p n + (u -c )(At)[fl n + (l/c)(n +n),,

1 ' 2 1 0 01 0 0 Ax 1 2 0 0O 2 1

p n~l= (P I /2)K +(l/Pc)P +u (u -c )(At/Ax) [unu+ (/p c)(P +p)11n+1 nntn n (n n 

p 1 +l= K +(P /2c )[K +(l/P c lUl o-Co) 21(At/Ax)o[u2-ul+(i/PoCo
1 0 00 11011 o

OUTFLOW
* + 1 ,1/2 ) [n+

- --L1  n n r
= (/2)N Po PN-K3 +(At/Ax)(u +c o ) u n_ -Un+(/PoC HPnI+PN)]

0 0

PN n= (P c /2)[K3+unN+(l/P )(U+Co)fuNUn+(I/PoCo)Pn-Pn
N 3 N c 0 N (A/x)u 0  u N)N 0 0 N 1N

*, N = (P0/2Co)(K 3 +uN+(I/P )pn+(At/Ax)(Uo+c n n+n- n

4N =nP0/c0)K3+ +lpc No0 )u N_ --u N+1/ OPN_ -N]2nn n 2 n n
+Pn-_ (1/C2)Pn + (At/AX)Uo pN--PN+ ( l/c )(PN Pn-I ) ]

We shall call these the "windward difference characteristic

boundary conditions". Note: uo , co can be different values at

i.j~
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*9 inflow and Outflow. The performance of the code with either nf

these was analyzed by posing initial conditions in which there

was a disturbance in one or more of the characteristic variables

either locally at the center of the grid or uniformly throughout

the grid, of the order of 10%.

Thus figure 1 shows what happens if the disturbance in only

in the third characteristics variable locally using the windward

characteristic variables.

* Figure 3 shows the effect of a plus +10% error in the

*initial conditions Wand W3and a -10% error in W2. (The first

curve from the bottom is the initial state of th variable, and

the others are the states at intervals of 25 interations) .In

*figure 2, we have an initial disturbance in of -10% with no

initial disturbance in Wor W3 . The pictures look essentiallly

*the same as figure 1. There is considerable nonlinear

* interaction until the W2wave exists, and then uncoupled wave

motion to the right in the first variable (W1 ) and to the left in

* the third variable (W3 ) . There are no reflections when the W

and W3waves exit and convergence is reached in 300 iterations.

These computations were made using the windward differencing

characteristic boundary conditions, although the same results

* were obtained with the no change characteristic boundary

conditions.

In Figure 4, we show the effect of a local disturbance at

*the center of the grid in the W2variable with the second set of

* B.C.'s and in figure 5 we show a speeded up version (every 50

* iterations) of the same disturbance with the first set of B.C.'s.
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The third and fifth graphs on figure 4 are almost exactly the

same as the second and fourth on figure 5. Figure 5 shows con-

vergence being reached in 300 iterations.

We conclude that either of the first two sets of boundary

conditions give optimal convergence since convergence cannot take

place until the wave in W 2 exists (very quickly) and the residual

(nonlinear) effects of W 2 on W 3 can exit upstream. If they can

do this without any reflections, then the convergence is essen-

tially optimal.

Sometimes, it is objected that in a wind tunnel experiment,

the only variable known downstream is pressure and that we are

requiring too much information in prescribing K3 , which dema'nds a

knowledge of p and u at the outflow. Suppose, then, we just pre-

scribe p, at the outflow using the otherwise successful

conditions of ax = -x = 0 as complementary numerical boundaryax ax
* conditions. Then we could have, for example

INFLOW O UT FLOW

W I (o,t) = K p =p

~dW I

W2 (ot) =K 2  (L,t) = 0 (14)

dW3  dW2
= (ot) = 0 = (L,t) = 0dx 'dx

The inflow boundary conditions are precisely those of (12). The

outflow boundary conditions (used by Steger [12]) are
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P P .

~N

oN 1/ )P N-I) + PN-l

UN 1/p0 c 0)(N-1 - P.)+ uN-

The predictions of section VI are clear. The fact that p is

prescribed means that when a wave in W2 comes downstream, it

exits by adjusting the u values ac x = xN. This in turn causes

disturbances in W 3 = -U + (l/P 0 c0 )p, which cause a reflected wave

upstream. This wave can be seen by comparing figure (6) with

figure (4). Since the upstream B.C. is non-reflecting, this

means that the left running wave will exit without incidence.

When composed with boundary conditions (12) or (13) it is

obviously less desirable because of the magnitude of the

reflection in W3 ' However it does converge in approximately 300

iterations, which is again almost optimal. The effect of these

* large oscillations in more complicated geometries may prove

*undesirable, however.

We briefly review our progress so far. Two sets of non-

* reflecting boundary conditions have been produced, both of which

give optimal convergence but which rely on a great deal of infor-

mation at both ends. The information however is used in such a

way as to allow additional degrees of freedom for the waves to

exit without repeated reflections. One reflecting and non-

reflecting boundary condition can be combined to obtain almost

optimal convergence at the cost of some large left running

* reflections, whose effect in more complicated geometries remains

uncertain. While B.C. (12) was expected to be less accurate than

B.C. (13), little evidence for this has been uncovered, except at
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the boundaries. Time dependent periodic flows (e.g. self excited

oscillations) may prefer B.C. (13) however. We now consider some

of the other boundary conditions which have been tried previously

in the literature.

* First we consider the case of reflecting boundary

conditions. These occur in several places in the literature, for

example in [101 and [121 and have been discussed in section VI.

As we have seen, these arise from prescibing combinations of

characteristic variables such as pressure downstream, and other

S..combinations (perhaps to density and velocity upstream) . In (101

Rudy and Strikwerda considered (among many others) the boundary

conditions

INFLOW OUTFLOW

. u du 0u 0u dx

T T q-p 0 (15)
S3co dxdW3

dx 0 p p.

and in [121 Steger uses
dW1

J Ua =Udx

"" dW1
P= dx 0 (16)
dW

3dx 0p = p-

. Figure 7 show the effects of an initial local disturbance in W3

on both of these sets of boundary conditions, (13) on the left

4. and (14) on the right. Note that first there is only a distur-

bance in the bottom picture. By iteration 75 (fourth curve up

from the bottom) we can see reflections in both W2 and W,

although the W deiration is a little harder to see. By

.42
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iteration 125 it can be seen that the W2 wave has travelled down-

stream and is reflected back upstream in W3 . These reflections

continued (somewhere smeared out) for a least 2000 iterations.

Perhaps most startling is (at least at the beginning) how similar

they are. A conclusion may be drawn from B.C.'s (14), (15), and

(16). Prescribing physical values instead of characteristic

* values gives rise to reflections. If the reflections can occur

only at one end, this does not impede convergence. However,

reflecting conditions at both ends can be disastrous. This

accounts for the "spurious pressure waves" mentioned by Moretti

j The case of prescription at the wrong end is now considered.

In this case, the variables u, p, p, are prescribed at the inflow

and the conditious
du dp = 2-=0
ddx dx-

are prescribed at the outflow. In this case, square wave distur-

bances which effected only the interiors of the domain exited as

in figure 1, with some minor oscillations. However, when a uni-

formly wrong initial condition was imposed, convergence was very

* slow with large oscillations, and the solution converged to the

wrong values, with errors of as much as 27%. The converged value

was a function of the initial condition at the outflow end, as

predicted in Gustafson and Kreiss [31 . The resulting graphs are

given in figure 8.

Related to the above problem is the method of over

prescription of boundaries. This method is mentioned in [91 as

giving good results although the authors caution against it on
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A the grounds of small oscillations being present. In fact the

situation is much more serious. If initial waves in the interior

A of the domain are used with the initial conditions correct near

the outflow, then the solution converges rapidly as the travel-

ling waves exit without reflections and with minor oscillations.

* However, if the initial data is uniformaly wrong with an error

initially at the outflow point, the Wand W2 converge rapidly

but W3accumulates huge errors of the order of 70%. Eventually

*when Wand W2are converged, the correct value is propagated

upwind in W3but taking large amounts of time to converge because

of the large errors near the inflow point. Indeed, as W2becomes

more accurate downstream the inaccuracies become much larger

(140%) upstream. Particularly in a time dependent problem or in

a problem with more complicated geometries, this could be truly

* disastrous. It points to another fact: if a new boundary

condition is being tested, it is not sufficient to consider

initial value perturbations from free stream which are non-zero

in the interior only. In this case, we might have drawn totally

wrong conclusions from the time taken for convergence.

In [101 , a separate non-reflecting boundary conditrion is

proposed. This boundary conditon alters the value of K3,

increasing it if the computed value of p is less than p., and

decreasing it if the computed value of p is greater than p..

* Some thought shows that this cannot be optimal. indeed, we can

choose a variation from the initial conditional in which p is

less than p., but because u is smaller than uc, the computed W 3

*is actually larger than W In this case, the proposed non-
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reflecting boundary condition of [10] could irntroduce more errors

into the system, by increasing W3 at the outflow point.
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FIGURE 4
*A square wave in W2 exits, leaving trailing disturbances

but no reflection. See figure (6) if outflow B.C. is reflecting.
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A speeded up version of figure 4.
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overspecification gives rise to sharp spikes

at the boundary, in this case at the inflOw.
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TWO DIMENSIONAL RESULTS

Having now understood the phenomena which can occur when

calculations are made with one space dimension, we now consider

the vastly more complicated situation of two space dimensions.

In this situation, we shall solve the Navier Stokes equation

(1), again by the standard MacCormack A.D.E. scheme on a 20 x 20

-* grid, which is a very simplified model of a wind tunnel. We

shall continue to consider flow close to the free stream flow

previously studied in the one dimensional case. The physical

values are given earlier. Figure 8 shows the geometry of the

situation. The fluid is flowing in at the top right corner of

* the grid and flowing out at the bottom left.

We have three distinct types of boundaries to consider. We

have the inflow and outflow boundaries (as before) and in

addition, two sidewall boundaries, where the fluid is flowing

parallel to the boundary.

We shall continue to impose one dimensional boundary

conditions of the type given in the first section on the inflow

and outflow, along with the additional condition v = 0. This

says the fluid flow is one dimensional at the inflow and outflow,

and seems physically reasonable.

When we come to the artificial sidewall conditions we must

undertake another one-dimensional analysis. Thus, we assume all

variables are constant in the x-direction and variation only

takes place in the y-direction.

This leads to the set of equations

(6) Vt + AVy =0

..- ~ ~ . ..- .. . .. ..- 22.:~ -. . . .: ..- - ~
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where

V P A= 0 0 1

S0 0 u 0

(y-1) -u(y-1) 0

0e 0 ey -2(Y-l) 0

Freezing the coefficients of A in (6), we substitue

T1  P + --P--
co 2

(7) T2 =v + pI p

~11

T =-v + 1 p3 p C0

T =u
4

Equation (6) is then transformed to

T it 0

(8) T2 t + co T2y =0

T -cT =03t o 3y

T4 t =0

Thus, if we only consider deviations transverse to the free

stream flow, we have on the basis of the linearized model, four

non-physical variable T1 , T2 , T3 , T 4, two of which u and entrophy

T, move with zero velocity in the y direction, one of which, T2,

moves with speed co in the positive x direction, and one of which

moves with speed co in the negative x direction. Thus one
4

dimensional theory predicts that at the sidewall, we should

Impose

. ...... ~ ~ 2
§ ~ * L
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"4.

', y = 0 y = L

Tly const Tly = 0

3y T= const

.'T4y 0 T4y=0

This, together with the inflow and outlfow conditions gives the

following set of boundary conditions

Inflow

V V=

I
Pi = 2 [P2 + P C (k3-u2)]

1 P2ul= k [ 3 -po0co0 + u 2 ]

k Po [ P2

S2c 0 PC +  3 - u 2 ]
where the free stream values are specified in the characteristic

variables kP = pM- p /Co2, k3 = P. + p/PoCo and where the zero-

subscript refers to frozen variables

Outflow

Vn =Vn-

= . [u + Pn/( ) - k,, n  2 [Uln-I  0 0CO

,-n 2 4 [k4 + u + Pn i/(PoCo)H
n-I~n-

P- " Pn-l + Po [
Pn n-l c 2c ku + Un-1 +

00
:_0

-4,,

! - . *
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Top wajl

P3 2oc IV1 +Po-7o - k 3]

V. = 1/2k 3 + 1/2(v_ + Pj_/Poc
3 -C - j-1 0

P O ( + P o - 3 ) + P j - _

0 0 0 C

Suj = ujl.

Bottom wall

Ul = U2
Vl = /2[v+k - P/(Pc)]

C/2(2  2 P2 0 0

p1 = -2 [-v2 + k2 + P2 /(PoCo)]

Pl = P 2 + (P0 /2Co) [-V2 + k2 - P 2/P 0 C]

where the free stream values are used to specify the

characteristic combinations

pW2 =v + k-= 00c

DISCUSSION OF TWO-DIMENSIONAL COMPUTATIONS

We now discuss a series of computations which illustrate the

applications of the boundary conditions we have developed, as

well as their short comings. To illustrate varying boundary

conditions, we shall consider the experiment where initial

conditions are imposed to create a 10% error in T 2, (the left-
ward moving variable), whereas T1 , T3 , T4 are at the correct free

stream constants. The ten percent error is imposed for all x at

five central y grid values. Thus, if the linear model was

exactly accurate, the square wave would exit in the positive y-

direction with velocity co .

-%w

,",A ' ' '. -.. - .' o- " " """ "
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In figure 9, this is shown happening. Figure 9 has Neuman

boundary conditions imposed at the inflow and outflow, to

illustrate the case of flow in an infinite region. Thus, there

is no contribution to the deviation from free-stream from the

inflow and outflow. The picture looks almost identical to the

one-dimensional plots where the y-variable was ignored. There is

some overshoot visible but the wave motion is as predicted and

the disturbance in the variable u + p exits uneventfully,
p0 0

leaving some trailing disturbances which exit in their turn. We

.2 now impose boundary conditions at the inflow and outlfow. These

boundary conditions correspond to the one-dimensional conditions
4.

developed in the earlier sections, plus, in addition, the

condition v = 0 at the inflow, and vx = 0 at the outflow.

Figure 10 shows the infljuence of the conditions at the

,.;. inflow and outflow. The wave does not continue as a one-

dimensional wave but becomes smaller near the inflow and outflow

* as the correct values being imposed at these boundaries makes

itself felt. Nonetheless, t:"e picture sharply resembles the pure

• . one-dimensional flow picture of figure 9. There is a small

amount of non-linear coupling with the other variables, but it is

not significant enough to show up on the plots.

The sidewall boundary conditions use-d in these plots were

the non-reflecting characteristic boundc.y conditions of the last

section.

EFFECT OF REFLECTING BOUNDARY CONDITIONS

We now consider the effects of other sidewall boundary

conditions. Figure 11 and 12 show the effects on T3 if

.. ,.. . . .. ,..... v~..k. .k. .. . : :.. .. < .- -. -.- - . .- -... ..-.--* - .-- .---- . ... . 5 -5. -. .-.. "
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reflecting boundary conditions are imposed on the right

sidewall. We impose the conditions u = u., e = e., p=p = 0

and vy = 0. In terms of the variable Ti, this imposes the

condition T2 + T3 = const. which ought cause a reflected wave in

T3 as the T 2 wave exits. Figure 10 corresponds to figure 8. One

can see that all variations are in the y-direction and just as in

figure 8, we had the T 2 wave exit at iterations 50-80 so figure

10 shows a corresponding T3 wave entering and propogating into

the medium.

Figure 11 shows the corresponding picuture for figure 9,

when the characteristic boundary conditions are applied at the

inflow and outflow. The motion shows the influence of the inflow

and outflow boundaries, so that at some stage in the future one

would expect convergence to the free stream values, but this

process is substantially showed.

EFFECTS OF OVERSPECIFIED BOUNDARY CONDITIONS

Figure 13 shows the interaction of the transverse wave with

the boundary when all physical variables are specified at their

free-stream values. Note the presence of the jagged spikes as

socn as the wave reaches the boundary. This is strikingly

similar to the situation of figure (8) in the one-dimensional

calculation.

In Figure 14, the situation is almost exactly the same, the

principle difference being that the overspecified variables are

slightly different on the two sidewalls. This corresponds to the

situation where the free-stream values are not known exactly but

only approximately. Notice that in the overspecified case of

til I ..?. .-.. - - -i . . . .- , .. ... : .-<,- i . - . . : .. :; , -..- - ?< -. ;
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figure 14, much larger errors are introduced. These errors only

seem to be present near the boundary but in more complicated

geometries might well propagate back into the region.

As an example of more serious problems with

overspecification figure 14 shows what ahappens if an initial

disturbance of 10% is made in T2 only. On the left is shown the

wave beginning to exit, uneventfully in the case of our

recommended boundary conditions. On the right is shown the large

errors occurring when the boundary is overspecified. Note the

presence of the large spikes, similar to the one-dimensional

setting of figure 7.

We conclude with a stiking example of how one-dimensional

*the flow can be in the entropy variable T 1 ,

Figure 16 shows the effect of square wave deflection of 10%

imposed uniformly in the x-direction. Note how there is

.absolutely no movement in the y-direction whatsoever, although as

the wave exits, there is predictably overshoot visible at the end

of the wave.

-' W' '2-'9. " " ' ."Z -. -" -. .. " .. ". ""'' "' ' '" "'-'" " "" " " ' ' "', " " ' ""
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ITERATION NUmVBER =ITERATION NUMBSER LD

ITERiATION N~UMBER =ITERATION NUMBER=

FIGURE 15

Showing a uniformly wrong disturbance injT exiting

b) on the righrt, with overspecified B.C.s.
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FIGURE 16Showing the surprising lack of transv. ,e
movement in the eutropy variable T1 .
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CONCLUSIONS

The results of these numerical experiments show that there

are four distinct artificial non-reflecting boundaries which

contain free-stream information. These are the inflow, outflow,

top-sidewall and bottom-sidewall. Each of these boundaries must

be treated differently, or errors are introduced into the

system. The worst errors are those associated with over-

specification and reflection.

Other more complicated phenomena are present when different

types of initial disturbances are present. All confirm the basic

lessons of this section, although introducing some complications

of their own. At the moment, these other results are not fully
.4

understood and call for more experimentation.

RECOMMENDATIONS

This report raises many interesting questions. The most

obvious is that we have investigated flow eithpr perpendicular

- to, or parallel to an artificial boundary, and thc boundary

conditions required. However, in many applications, to conserve

the number of grid points, the boundaeies can be at other angles

to the expected free-stream flow. It would be desirable to

deduce boundary conditions where the flow is at an angle a to the

artificial boundary, either entering or exiting the region. It

is clear that the conditions, including, as they would have to,

all conditions discussed here, would be quite complicated.

Possible improvements to be made in the existing boundary

conditions involve the improvement at the corners. There is some

. . . . .. .. ...
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evidence of overspecification in the larger errors that occur

there.

It would be interesting to compare these boundary conditions

with more complicated problems and possible oscillatory

situations.

.
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