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where

where the four variables p,

The flow of fluid around obstacles in two dimensions is

ibed by the compressible Navier Stokes equations
du oE oF _
sttty -0
u =« p E=pu2
2 _

pu pu Oy x

pVv puv. -— ny

pe pue - uoxx - chy - qx
F =. pv

puv - ny

2 -

v-

P vy

ve - v - -

P %yy T Yixy T 9y
o = - p - (2/3) mV ﬁ + 2mu q. = kT

XX * X X X

ny = m(uy+vx)

= - - (2/3 mﬁ.ﬁ + 2mu = kT
Sy p - (2/3) < a, ,
p = PRT m = m(T) e = cvT + E~—; M

u, v e represent the physical

quantities of density, x- and y- components of velocity, and

internal energy.
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This nonlinear system of mixed parabolic~hyperbolic type in
two space dimensions and time with four independent variables
must be solved in an exterior region in R2. The geometry will
depend on the particular physical situation that one is
attempting to model.

The situation we shall be interested in occurs in modelling
flight conditions, in which the conditions at infinity are pre-
scribed with a large u-velocity and v-velocity zero and pre-
scibed p_ and e_. Fluid flows around an obstacle in x-y space.

Usually, this equation is solved numerically using a finite
difference scheme of the Lax-Weudroff type, such as the
MacCormack ADE mettrod. Since these calculations can only be
made on a finite grid of points in xy space, an artificial far-
field boundary is created. This boundary ought be sufficiently
far away from.the object arou;d which the fluid is flowing so

«that local phenomena are not omittéd by omitting part of the
region of fluid flow. On the other hand, the farther away the
region is, the more grid-points need to be included and thus the
more expensive time-consuming the computations become.

One then has the problem of deciding what effect this new

boundary has on the solution of the problem. Because of the

viscosity terms in (1) and the additional artificial viscosity
introduced by the finite difference schemes, some boundary condi-
tions must be imposed.

As we shall show in this report on numerical experiments,

cosiderable care must be exercised in the choice of the boundary
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conditions. If one is interested in steady state flow, then one
starts off with a bad approximation, and hopes that the errors in
the numerical solution propagate out of the region as transitory
disturbances in the physical variables. One then expects to
converge to the steady state flow.

We shall show in this paper that the incorrect choice of
boundary conditions can give rise to some of the following
phenomena: 1i) reflecting boundary conditions, in which the
disturbances in the physical variables represented by the dif-
ference between the steady state flow and the initial conditions
are not allowed to exit through the far-field boundary but
instead continue echoing up and down the grid, and giving rise to
spurious oscillatory solutions; 1ii) under-specified boundary
conditions, in which the converged steady state solution may

~

depend on the initial conditions; 1iii) overspecified boundary

L]

conditions in which large errors are introduced before conver-
gence takes place.

In this paper, we first discuss the theory for simple linear
hyperbolic systems in one space dimension. We then analyse
several computational experiments in the light of this theory in
one space dimension. This show up the phenomena which we wish to
discuss in their simplest setting. Finally we discuss the more
complicated setting of two space dimensions and point out how the
phenomena of one space dimension can be recognized in this more

complicated setting.
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A REVIEW OF THE LINEAR CASE

this paper is the MacCormack alternating direction explicit

}

|

' .

' The method used in the calculations which are the subject of

scheme. [6) [15). This is a multistep efficient scheme which
reduces in the linear case to the Lax-Wendroff scheme. For a

diagonal N x N matrix A, this scheme approximates the equation

: U, + AU, = 0 by.
n+l n At n n
(2) uy = uy - AAx(uj+1-uj_1)_
g display ,
b
b 2,40t n _,n_n
+ AT () (uj+1 2uj+uj_1)

As usual, } represents the space step and n

{j1<j<J

represents the time steps. If we are considering the equation

u, + AU, = 0
on the region {(x,t), 0<x<l, t>0} then the analytic solution is
determined by the initial conditions and boundary conditions at
‘x = 0 and x = 1. If the first k eigenvalues are positive and the
remaining N - k are negative than the quantities u;---u, must be
prescribed at x = 0 and Uy 1---uy must be prescribed at x = 1.
Thus if WI = (ul' U2,"""uk' 0 0-_"'0) and wII =

(0, 0,---0, up,y---uy) then for well-posedness, the boundary

conditions must be

"

f(t) + B wI at x =0

0'II

g{t) + B at x = 1.

wII lwI
This gives a total of N boundary conditions. If either
kx(n-k) matrix B1 and the (n-k)xk matrix By are non-zero, then

the boundaries are reflecting, that is a wave in W; travelling

left to right will be reflected as a wave in W;; running right to

. T W
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If a boundary is supposed to be non-physical, then it should
not be reflecting, since the reflections would depend on the
location of the artificial or numerical boundary.

Now let us consider the difference scheme of (2). If the
grid points are given by {xj}g with x = 0 and Xy = 1, then it is
clear from (2) that 2N boundary conditions are required. Thus we
must prescribe boundary conditions in such a way as to least
affect the cioseness of the numerical to the analytic solution.

This situation has been the subject of several papers. In
{3}, Custaffson and Kreiss point out the danger of over-
specification. By this is meant that all u; are specified at

i
both endpoints. This might be tempting because one might argue
that if the boundary conditions uj-~-'l; are given constants at x
= 0, then eventually these same values will be assumed by these
variables at x = 1. However, in [4] it is pointed out that
convergence may or may not occur, depending on whether the numher

of grid points is odd or even.

A method which works well as pointed out in [3] is to impose
du,

i _ .
T (1,t) = 0 1 <1 < k.
aui
T (o,t) =0 k+l < i < n.

or in the numerical scheme

u, = u

. < i < k.
i,J i,J-1 1 <1<k

k+41 < 1 < n.
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This introduces small errors at the outflow bhut these errors

do not propogate upstream. This is proved analytically by Parter

(10].

P
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In [12], many different numerical boundary conditions are

given. The conclusion is that upwind differencing at the point

% |
3 of outflow |
i n+l n At |
3 ujy = uj + A1(z;)(uJ_1-uJ)
is most accurate, although it converges with the same speed as
ﬁ
2 the previously discussed u, = 0.
Y . .
b The most serious error which one could make would be to
. prescribe conditions at the wrong end. 1In other words, since uy
N
N is right running, this would involve prescribing u; at x =1 and

imposing ujx = 1 at x = 0. This would result in convergence to a

steady state which depends on the initial conditions.
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‘THE NAVIER-STOKES EQUATIONS AND CHARACTERISTIC VARIABLES:

We now begin our discussion of the equations of gas
dynamics. We will neglect viscosity for the puposes of this

analysis. We will assume that the flow is one-dimensional and

4 LAt e

. subsonic and that the deviations from free-stream solutions are
,: ; small. This will allow us to neglect second order terms.
There are many forms of this equation, but the one most
suitable for the present discussion is
Jdu du

3t t A =0

vt "L

o iL‘

where

3
2]
b~
3
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y - 1

(y=1)u Yu

e

or in terms of physical variable
U 34U

3t A =0
where
A =M1 aM
and
Ml o= 1 0 0
-u/p 1/p Y
(B u? (1-y)u (y-1)

Here we make the key assumption that deviations from the
“free stream are going to be sufficiently small that we can treat
the entries in the matrix A as being approximately constant (at
least locally). Denote these frozen variables by O-subscript.

We then make the substitution

2
(4) w1 1 0 -l/co p
Wz 0 1 l/poc0 u
W 0 -1 l/pocO P

and when this is substituted into (6) we obtain

A e . PR o T .
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1 ) - 1
! (5) 3t Uax = 0 Wp = 2P
W aw
2 2 _ _ 1
3t + (uteg) — = 0 Wp = u+ =P
O O
3W3 3W3
38 * (Ug-cg) —3x = 0 Wy = -u + ———p
O O

Notice now how this breaks down into two separate cases. On the
one hand, if flow is supersonic then all wave motion is in the
left to right direction. 1In this case all analytic bound v
condition sought be prescribed at the left hand side and ¢ 'y
numerical boundary conditions prescribed at the right han - e.

Since the substitution (4) is equivalent to

p = Kl + (po/zco)(K2+K3)
u = 1/2(K2-K3) §
p = pOcO/Z(K2+K3)

.it follows that prescribing all physical variables at the inflow

and prescribing 3p/3x = 3u/3x = 3p/3x = 0 at the outflow is
legitimate in terms of analytical and numerical requirements in
the supersonic case.

However, we must now consider the case of subsonic flow. In
this case the situation is completely different. Here, two of
the variables W; and W, go left to right with velocities u and
u+c respectively, whereas one of the variables runs right to left
with velocity c,-u,. While the variables W, and Wy have no clear
physical significance, yet it is only be considering these vari-

ables that the full wave structure of the eguations (5) or (6)

can be understood. Thus, one would be led to predict, for small

.............




deviations from free stream conditions, that the best boundary

conditions would be for an interval (o, L)

dwl
W, (o,t) = Ky 55 (L/t) =0
dW2
W2 (o,t) = Kz ~ax (L,t) =0 (6)
dw3
'Tx (O't) =0 W3 (L,t) = K3

Note the curious aspect of these boundary conditions. 1In
order to prescribe the numerical values K, and K,, we need to
know accurately all three physical variables at some distance to
the left. However, only the two combinations K; and K, are bre—
scribed. This can be summarized by saying that while we have
used all three pieces of infogmation upstream, we have done so in
such a way that one degree of freedom remains, thus allowing the
waves in W3 to exit without reflections.

Oon the basis of the linearized model, various other coumbi-
nations would be well-posed. For example, it is possible to
prescribe K in terms of either K, or K, at the outflow x = L.

Thus at the outflow one may prescribe

For example if ¢y = 0, ¢, =1, then this amounts to putting
u (L,t) = 1/2 Fy (7)

i.e., we prescribe velocity at the outflow.
Alternatively, we might take ¢y =0, ¢, = -1 and we would get
p (L,t) = ((pycy)/2)Fy (8)

i.e. we prescribe pressure at the outflow. Many other combi
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nations are possible, but as remarked in section II, all these
will cause errors in the injitial data to be reflected back into

the medium as waves running from right to left. For example, we

would predict that an error in Wy would be reflected back as an

error in W, if we use boundary condition (8). As we shall see,

this is exactly what happens.

At the inflow end, we may prescribe W, and W, in terms of

Thus the following boundary conditions are well posed;

w3.
(9)

w1 (o,t)

w2 (O't) F2 + CZWB (O't)

For example, choosing c, = +1 in (11b) corresponds to
u(o,t) = (1/2)F,

(i.e. prescribing u at the inflow) and ¢, = -1 corresponds to

p(o,t) = (poco/z)F‘2

One can prescribe the combination (u,p) by

(i.e. prescribing p).
1 (thereby prescribing u) and then choosing

L]

first choosing c,

cy = po/co, thereby prescribing p in terms of a given F, and a

prescribed u(o,t). Since (1la) and (11b) reduce to

u(1+c2) + . (l-c,) = F2
o o
P~ % ¢ (po/co - cp) 4+ cu = F

o o
about the only condition we cannot prescribe is u(o,t), pl(o,t).,

since there is no choice of Cys C, to eliminate p from these
equations.
Again, we emphasize that each of these boundary conditions

is reflecting, i.e. deviations from the free stream in the

initial data get reflected back as waves in W, and W, and then
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travel back downstream. About the worst thing that can be done

is to prescribe reflecting boundary conditions at the inflow

x = 0 and the outflow x = L. 1In this case errors can keep being
reflected up and down the region, rnever being allowed to exit.
This prevents convergence to a steady state and may even give
rise to fictitious periodic oscillations.

We conclude this section with a review of the conclusions on
boundary conditions. Based on the linear model, boundary
conditions (8) seem optimal. Any other prescription of the
ph&sical variables, although well posed, casues reflections of
the deviation from the true solution. If for example, only the
physical variable p_ is known at ﬁhe outflow then it is possible
to prescribe p at the outflow, in such a manner that the problem
remains well posed. We emphasize that this will cause errors to
propagate upstream, thereby §lowing the process of convergence to
steady state. This may not be too bad, so long as the upstream
boundary conditions are not also reflecting. On the other hand,

if they are, then convergence to free stream may never occur.

VIi. DISCUSSION OF NUMERICAL RESULTS - NONLINEAR COUPLING:

The one dimensional Navier-Stokes equations were solved with
an alternating direction explicit MacCormack scheme, on a one-
dimensional net with forty grid points. The code was an exact
one-dimensional version of a three-dimensionsal code which had
proved successful in many supersonic studies [6], [11]. There
were two questions to answer. The first was, given that eqguation

(7) is correct for infinitesimally small deviations from a

g e R et N N e T e T L T T e T T e




constant free steam, how correct is it when deviations of an
intermediate (of the order of 10%) magnitude are present
3 instead? It would be too much to hope that the variables Wyo Wy,
% and W3, remain uncoupled, but we should be able to get an idea of
1 the order of magnitudes of the coupling involved. The second
: problem of course, is to assess the influence of the various

types of boundary conditions commonly employed. We will deal

= 0% £
sl AL

with the latter problem in section VII.

To do this, we considered a uniform free stream situation,

Ky

S with pressure equal to 2000 lbs/ftz, velocity equal to 548 ft/sec
y and density equal to 0.0023 slugs/ft3. We created a deviation

: from the steady state condition in a variety of ways as in [9],
é {10}, and then watched the progress (or lack of it) to a steady
) state. A variety different wrong initial conditions were used.

y One type was to impose a 10% deviation in one of the variables

5 .Kyr» Ky, K3 at the points {xj, j=18,19,20,21,22}. We should then
' watch the disturbance, graphically as it propagated up or down

; stream. Another possiblity was to put in uniformly wrong initial
i conditions where some of all of the characteristic variables Wy,
-

Wos W3 are perturbed throughout by a percentage error of 10%.
Each plot then showed the percentage error, with the different

curves representing the progress of time as one ascends the plot.

| # AL Ll

The curves are plotted every twenty five time steps

when At = (.9)(Ax)/(u+c). We also point out the percentage

errors in wl' wz, w3 at the end of the run, so as to obtain
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information on relative accuracy and speed of convergence of the
various methods.

Figure 1 gives the results of an experiment, which is ideal
in terms of the linear theory. An initial disturbance in W3 the
left-running characteristic variable is given and we observe
deflections in the variables W,, W,, Wy. As one can readily see
from the pictures, the disturbance propagates upstream rapidly
until convergence is reached (.1% agreement with physical
variables), which takes place within 130 time steps. This gives
us six curves. Note that although a good deal of undershoot and
overshoot in Wi becomes apparent, there is no significant
interaction with W; or W,. The same situation appears with
initial disturbances in W;, the slow-moving right running wave.
From this experiment it appears that deviations in either W, or
W3 will not effect either of the other two variables. However,

as shown in Figures 2 and 3, when initial disturbances are in Wy
a different situation e*ists. Figure 2 shows a uniform initial
disturbance in W, of minus ten percent, while Wy and Wy are left
undisturbed. Initially the wave in W,, propagates rapidly out of
the medium. 1Indeed, after fifty time steps it is essentially
gone from the picture. However, this does no happen without
affecting the of the two variables. Notice how, in the top
graph, a large disturbance is left in W, after fifty time steps
and in W3, we have that W3 values one almost constant at minus
eight percent. However, once the W, wave has made its exit, the
other two variables uncouple and resume their normal wave motion,

and the error can be seen propagating out of the solution in the

‘. - ..- .. . K - . ". .~~'q - - -.' -.- .- e
D ) 3 et
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usual way convergence is attained within three hundred
interations. These particular results illustrate what became
increasingly clear throughout the series; perturbations in W, had
a large effect on wl and w3 whereas if W, was not perturbed, w1
and Wy behaved as if uncoupled. Perturbations in Wy and W4 had
little effect on W,. No qualitative explanation of the
phenomenon is know at this time. Figure 3 shows the same
phenomenon. Here an error of -10% is made in W, whereas errors
of +10% are made in Wy and Ww3. Again, we see that until the Wy
wave exits, there are massive disturbances in the wave structive
of Wy and W,. As soon as W, exits, (after 75 interations) the
regular wave structive reasserts itself and errors propagate'out
in predictable wave-

like manner. Again, convergence takes approximately three
hundred and .twenty five iterations. It seems clear that this is
optimal given the limited wave velocity, so we can deduce that
these affects are due to the nonlinear coupling. Thus, even
after the W, wave exists it will take at least a maximum time

of {L/(u—c), L/u} seconds for the resulting errors to propagate

out of the system.
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Nonlinear coupling: wuntil the disturbance
in the second variable exits, it disturbs the other two.
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VII. DISCUSSION OF NUMERICAL RESULTS - BOUNDARY CONDITIONS:

The linear "small deflection” theory predicts that the best
boundary conditions would be the prescription of the character-
istic variables at their point of entry with some form of
(stable) numerical boundary condition for the point of exit.

Here are two such schemes

INFLOW OUT FLOW
: dWl
w]. (Olt) = Kl _d'; (L't) = 0
dW2
dw3
—dx fo,t) =0 W3 (L,t) = K3

Here K, and K, are numbers calculated from the known values
of u, p, p at the inflow.and K3 is calculated from the known
values of u and p at the outflow. Notice, however, the one

'"degree of freedom" is left at the inflow point. This allows the
variables to adjust but in compensating ways. The boundary
conditions in the code are usually in terms of the physical
variables so we translate (12) to physical variables.

INFLOW

PoCo

Pl = —5 iKZ uZ - (l/poco)pzl

u, 1/2 [K2 +u, - (l/poco)pzl

CH Kl + (po/2co)[K2 - u, + (l/poco)pzl

OUT FLOW

[~
]

N 1/2[un_1 + (l/poco) Pn-1 * K3

)
|

N T (p,Co72) Ky + uy o + (1/p c ) Py 4] |

2
(p/2c ) [Ky + uy 1 - [1/(2c )] Py + oy

"o . .,1
ad
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This set of boundary conditions is predicted to work well in the

linear studies of one equation, occurring in (2] and {3].

We

shall call these boundary conditions the "no-change character-

istic boundary conditions". Another possiblity, suggested by

one-D analogues in (2], is the following:

INFLOW OUT FLOW
3W1 awl
My lort) =Ky 5t YN Tax T O
3W2 aw2
W, lost) = K, e P ey 5 =0
3W3 aw3
—t * (u—c)1 —5x - 0 Wy (L,t) = Kg

where derivaties in the x-variable are downwind at the inflow and

(13)

upwind at the outflow and forward in time. The numbers Kyr Ky,

K3 are prescribed as before. In terms of the physical variables

these translate into

+ oo - (l/cg)pg + (At/bx)uo[pg_l—pg+(1/cg)(pg -

We shall call these the "windward difference characteristic

boundary conditions". Note: c

";O'

Py_1))

INFLOW
n+l_ n _ n _ At n_n n n
u, = 1/2[K2 + uy (l/poco)pl + (uO Co)(KY)[ul u, + (l/poco)(p2 + pl)ll
n+l
py’ = (poco/Z)[K2+(1/p°c°)pT-u?(uo-co)(At/Ax)[ugu2+ (1/p,cy) (p1+py) 1]
n+l_ n_.n _ n_n n__n,,
Py = K1+(po/2co)[K2+(1/poco)p1 u1+(uo co)(At/Ax)[uz u1+(1/poco)(pl pz)]
OUTFLOW
+1 _ n 1 n_ n _n n n
Ut o= (1/2)[”N+$;E; Py K3 +(At/Ax)(u0+co)[uN_1 uN+(1/poco)(pN_1+pN)]]
n _ n n n _n n _ n,.
Py = (9000/2)[K3+uN+(l/poco)pN+(At/Ax)(uo+co)[uN_1 uN+(1/ooCO)(pN_1 PNI
n+l_ n n n n n n
PN T (p°/2co)[K3+uN+(1/poco)pN+(At/Ax)(u°+co)uN_l—uN+1/pocopN_1-pN]]

o €an be different values at

1

!




B W T T T s TR TR
B e L T T

-20-

inflow and outflow. The performance of the code with either of
these was analyzed by posing initial conditions in which there
was a disturbance in one or more of the characteristic variables
either locally at the center of the grid or uniformly throughout
the grid, of the order of 10%.

Thus figure 1 shows what happens if the disturbance in only
in the third characteristics variable locally using the windward
characteristic variables.

Figure 3 shows the effect of a plus +10% error in the
initial conditions W), and W3 and a -10% error in W,. (The first
curve from the bottom is the initial state of th variable, and
the others are the states at intervals of 25 interations). In
figure 2, we have an initial disturbance in W, of -10% with no
initial disturbance in' W} or W3. The pictures look essentiallly
the same as figure 1. There is considerable nonlinear
interaction until the W, wave exists, and then uncoupled wave
motion to the right in the first variable (W;) and fo the left in
the third variable (W3) . There are no reflections when the W;
and W3 waves exit and convergence is reached in 300 iterations.

These computations were made using the windward differencing
characteristic boundary conditions, although the same results
were obtained with the no change characteristic boundary
conditions.

In Figure 4, we show the effect of a local disturbance at
the center of the grid in the W, variable with the second set of
B.C.'s and in figure 5 we show a speeded up version (every 50

iterations) of the same disturbance with the first set of B.C.'s.
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‘t The third and fifth graphs on figure 4 are almost exactly the
i Y]
. same as the second and fourth on figure 5. Figure 5 shows con-
)
; vergence being reached in 300 iterations.
% We conclude that either of the first two sets of boundary
conditions give optimal convergence since convergence cannot take
ﬁ place until the wave in Wy exists (very quickly) and the residual
Fa?
£ (nonlinear) effects of W, on W5 can exit upstream. 1If they can
' do this without any reflections, then the convergence is essen-
b tially optimal.
"
f% Sometimes, it is objected that in a wind tunnel experiment,
- the only variable known downstream is pressure and that we are
‘
%l requiring too much information in prescribing K3, which demands a
Y knowledge of p and u at the outflow. Suppose, then, we just pre-
scribe p_ at the outflow using the otherwise successful
= awl v, ~
:? conditions of 5% = 3% = 0 as complementary numerical boundary
.J
X! * conditions. Then we could have, for example
" INFLOW OUTFLOW
‘{ _
f3 W1 (o,t) = K1 P = Py
N,
&
- dw1
" wz(o,t) = K2 —ax (L,t) =0 (14)
4
e:j . dw3 dw2
::,,‘ —d—i = (o,t) =0 —ax = (L,t) =0
The inflow boundary conditions are precisely those of (12). The
" outflow boundary conditions (used by Steger [12]) are
ol
RV
2
N
A
)
1
.

; ta\a™ p Rt
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e Py 7 Po
G 2
py = (1/c ) (p, = py_y) + Py
b, = _
7N uy = (1/poCo) (Py_y = Po) + Unoy
;E The predictions of section VI are clear. The fact that p is

prescribed means that when a wave in W, comes downstream, it

[
P

" exits by adjusting the u values &ac x = xy. This in turn causes
'£§ disturbances in W3 = -u + (l/poco)pw which cause a reflected wave
> upstream. This wave can be seen by comparing figure (6) with
:f figure (4). Since the upstream B.C. is non-reflecting, this
i? means that the left running wave will exit without incidence.

-;’ When composed with boundary conditions (12) or (13) it is
t; obviously less desirable because of the magnitude of the
%ﬁ reflection in Wy. However it does converge in approximately 300

i iterations, which is again almost optimal. The effect of these
;g large oscillations in more coﬁplicated gecmetries may prove
?é . undesirable, however.

We briefly review our progress so far. Two sets of non-

; reflecting boundary conditions have been produced, ooth of which
. give optimal convergence but which rely on a great deal of infor-
L mation at both ends. The information however is used in such a
? way as to allow additional degrees of freedom for the waves to
2 exit without repeated reflections. One reflecting and non-

?’ reflecting boundary condition can be combined to obtain almost
EE optimal convergence at the cost of some large left running
zii reflections, whose effect in more complicated geometries remains
% uncertain. While B.C. (12) was expected to be less accurate than
R B.C. (13), little evidence for this has been uncovered, except at

y
?;




the boundaries. Time dependent periodic flows (e.g. self excited

oscillations) may prefer B.C. (13) however. We now consider some

CEERR
’ 3 .
iz SRR

of the other boundary conditions which have been tried previously

ot

s in the literature.

First we consider the case of reflecting boundary

conditions. These occur in several places in the literature, for

example in [10] and [(12] and have been discussed in section VI.
As we have seen, these arise from prescibing combinations of
characteristic variables such as pressure downstream, and other
combinations (perhaps to density and velocity upstream). 1In [10]
Rudy and Strikwerda considered (among many others) the boundary

conditions

INFLOW ' OUT FLOW
- du _
u = Um 'd—i = 0
T =T, g2 <o (15)
dw X
_._3 - 0 =
* dX p pua
and in [12] Steger uses
dW1
u = Um -—d-—x = (0 .
dwl
P = o —= =0 (16)
dw, dx
—d; - O p = pm

Figure 7 show the effects of an initial local disturbance in Wq
on both of these sets of boundary conditions, (13) on the left

and (14) on the right. Note that first there is only a distur-
bance in the bottom picture. By iteration 75 (fourth curve up

from the bottum) we can see reflections in both W, and W,

although the W,y deiration is a little harder to see. By
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iteration 125 it can be seen that the W, wave has travelled down-
stream and is reflected back upstream in W3. These reflections
continued (somewhere smeared out) for a least 2000 iterations.
Perhaps most startling is (at least at the beginning) how similar
they are. A conclusion may be drawn from B.C.'s (14), (15), and

(16). Prescribing physical values instead of characteristic

values gives rise to reflections. 1If the reflections can occur

only at one end, this does not impede convergence. However,
reflecting conditions at both ends can be disastrous. This
accounts for the "spurious pressure waves" mentioned by Moretti
i71.

The case of prescription at the wrong end is now considered.

In this case, the variables u, p, p, are prescribed at the inflow

and the conditious

Q:&:@:o
dx dx dx

are prescribed at the outflow. In this case, square wave distur-
bances which effected only the interiors of the domain exited as
in figure 1, with some minor oscillations. However, when a uni-
formly wrong initial condition was imposed, convergence was very

slow with large oscillations, and the solution converged to the

wrong values, with errors of as much as 27%. The converged value

was a function of the initial condition at the outflow end, as
predicted in Gustafson and Kreiss [3]. The resulting graphs are
given in figure 8.

Related to the above problem is the methcd of over

prescription of boundaries. This method is mentioned in [9] as

giving good results although the authors caution against it on
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the grounds of small oscillations being present. 1In fact the
situation is much more serious. If initial waves in the interior
of the domain are used with the initial conditions correct near
the outflow, then the solution converges rapidly as the travel-
ling waves exit without reflections and with minor oscillations.
However, if the initial data is uniformaly wrong with an error
initially at the outflow point, the W; and W, converge rapidly
but W3 accumulates huge errors of the order of 70%. Eventually
when Wi and W, are converged, the correct value is propagated
upwind in W3 but takiny large amounts of time to converge because
of the large errors near the inflow point. Indeed, as W, becomes
more accurate downstream the inaccuracies become much larger
(140%) upstream. Particularly in a time dependent problem or in
a problem with more complicated geometries, this could be truly
disastrous. It points to another fact: 1if a new boundary
condition is being tested, it is not sufficient to consider
initial value perturbations from free stream which are non-zero
in the interior only. 1In this case, we might have drawn totally
wrong conclusions from the time taken for convergence.

In [10), a separate non-reflecting boundary conditrion is
proposed. This boundary conditon alters the value of K3,
increasing it if the computed value of p is less than p,r and
decreasing it if the computed value of p is greater than P, -

Some thought shows that this cannot be optimal. 1Indeed, we can
choose a variation from the initial conditional in which p is
less than p_r but because u is smaller than u_, the computed Wg

is actually larger than w3 o In this case, the proposed ron-
14
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' L
reflecting boundary condition of [10] could introduce more errors
into the system, by increasing W3 at the outflow point.
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See figure (6) if outflow B.C. is reflecting.
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TWO DIMENSIONAL RESULTS

Having now understood the phenomena which can occur when
calculations are made with one space dimension, we now consider
the vastly more complicated situation of two space dimensions.

In this situation, we shall solve the Navier Stokes equation
(1), again by the standard MacCormack A.D.E. scheme on a 20 x 20
grid, which is a very simplified model of a wind tunnel. We
shall continue to consider flow close to the free stream flow
previously studied in the one dimensional case. The physical
values are given earlier. Figure 8 shows the geometry of the
situation. The fluid is flowing in at the top right corner of
the grid and flowing out at the bottom left.

We have three distinct types of boundaries to consider. We
have the inflow and outflow boundaries (as before) and in
addition, two sidewall boundaries, where the fluid is flowing
parallel to the boundary.

We shall continue to impose one dimensional boundary
conditions of the type given in the first section on the inflow
and outflow, along with the additional condition v = 0. This
says the fluid flow is one dimensional at the inflow and outflow,
and seems physically reasonable.

When we come to the artificial sidewall conditions we must
undertake another one-dimensional analysis. Thus, we assume all
variables are constant in the x-direction and variation only
takes place in the y~direction.

This leads to the set of equations

(6) Ve + AVy =0
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where
>
vV = A =r0 0 1 0
u 0 0 u 0
u2
v L(y=1) -u(y-1) 0 Y - 1J
: 2
e
e 0 0 Sy - S(y-1) 0
Freezing the coefficients of A in (6), we substitue
T, = p + -
1 col
(7) T, = v + —1 p
2 c
oo

3 p_C

T4 = u

Equation (6) is then transformed to

1¢ =0 -

(8)

2t ¥ S5 Toy =0

3t o T3y
=0

2 3 3 -
|

4t

Thus, if we only consider deviations transverse to the free
stream flow, we have on the basis of the linearized model, four
non-physical variable Tye Ty, T3, Ty, two of which u and entrophy
T, move with zero velocity in the y direction, one of which, Ty,
moves with speed c, in the positive x direction, and one of which
moves with speed ¢, in the negative x direction. Thus one

dimensional theory predicts that at the sidewall, we should

impose
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T
‘!‘é Yy = 0 y = L
] le = const le =0
': T3y = 0 T3 = const
i Tgy = 0 Tay = 0

This, together with the inflow and outlfow conditions gives the

following set of boundary conditions

g
s

Inflow
v, =V,
- 1 -
Py =5 [p2 + poColky-uy)]
p
1 2
u, =35 [k, - + u,]
1 3 P56 2
p p
o 2
Py = ki + 5— [—— + k, - u,]
1 1 2co PoSo 3 2

where the free stream values are specified in the characteristic

~

. - _ 2 _ 3
variables k1 = g pw/co ' k3 = u, + p/pocO and where the zero

* subscript refers to frozen variables

Outflow
Va = Vn-1
=4
Un T2 [un-l * P, 1/(poco) k4
Po%0

Py = 7 [ky Un-1 * Ppoq1/(pyc) ]
p P p
n-1 (@) n-1

p. = p . - + 50— [k + u__. + ]

n n-1 C2 2co u n-1 5%

o)
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Top wall
p_C Ps_
py = 252 lv;_) + s Il S

j 2 bty 3]
vj = 1/2k3 + 1/2(vj_1 + pj_l/poco)
p P.
= o j-1 1
Py = 3— (V. . + - Ky} + p. . - —> P._
b ] ZCO j-1 I 3 j-1 C2 j=1
Bottom wall

uy = Uy
v, = 1/§[v2 + ky, = py/ (o )]

Py = —25= [-v, + k, + D,/(p_c)]

| Py = Py +‘(po/200) -V, + k, - py/p,c,]
where the free stream values are used to specify the
characteristic combinations

Pe -
W, = v_+ ky, =v_-p_/p.Cc_.
2 ® poco 3 lolle)

* DISCUSSION OF TWO-DIMENSIONAL COMPUTATIONS

We now discuss a series of computations which illustrate the
applications of the boundary conditions we have developed, as
well as their short comings. To illustrate varying boundary
conditions, we shall consider the experiment where initial
conditions are imposed to create a 10% error in Ty, (the left-
ward moving variable), whereas Ty, T3, T4 are at the correct free
stream constants. The ten percent error is imposed for all x at
five central y grid values. Thus, if the linear model was
exactly accurate, the square wave would exit in the positive y-

direction with velocity cg.
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In figure 9, this is shown happening. Figure 9 has Ncuman
boundary conditions imposed at the inflow and outflow, to
illustrate the case of flow in an infinite region. Thus, there
is no contribution to the deviation from free-stream from the
inflow and outflow. The picture looks almost identical to the
one-dimensional plots where the y-variable was ignored. There is
some overshoot visible but the wave motion is as predicted and

the disturbance in the variable u +

p exits uneventfully,

o o
leaving some trailing disturbances which exit in their turn. We
now impose boundary conditions at the inflow and outlfow. These
boundary conditions correspond to the one-dimensional conditions
developed in the earlier sections, plus, in addition, the .
condition v = 0 at the inflow, and v, = 0 at the outflow.

Figure 10 shows the influence of the conditions at the
inflow and outflow. The wave does not continue as a one-
dimensional wave but becomes smaller near the inflow and outflow
as the correct values being imposed at these boundaries makes
itself felt. Nonetheless, the picture sharply resembles the pure
one-dimensional flow picture of figure 9. There is a small
amount of non-linear coupling with the other variables, but it is
not significant enough to show up on the plots.

The sidewall boundary conditions used in these plots were
the non-reflecting characteristic bounda.y conditions of the last

section.

EFFECT OF REFLECTING BOUNDARY CONDITIONS

We now consider the effects of other sidewall boundary

conditions. Figure 11 and 12 show the effects on T3 if

— hd e W
LS il gttt ol /A ind anil it e~ St e c iR A ORI




i - =37-
‘;g reflecting boundary conditions are imposed on the right
sidewall. We impose the conditions u = u.,e=e_,p=p_ =20

and vy = 0. In terms of the variable T, this imposes the
condition T, + T3 = const. which ought cause a reflected wave in
Ty as the T, wave exits. Figure 10 corresponds to figure 8. One
can see that all variations are in the y-direction and just as in
figure 8, we had the T, wave exit at iterations 50-80 so figure
10 shows a corresponding T3 wave entering and propogating into
the medium.

Figure 11 shows the corresponding picuture for figure 9,
when the characteristic boundary conditions are applied at the
inflow and outflow. The motion shows the influence of the ihflow
and outflow boundaries, so that at some stage in the future one
would expect convergence to the free stream values, but this
process is substantially showed.

EFFECTS OF OVERSPECIFIED BOUNDARY CONDITIONS

Figure 13 shows the interaction of the transverse wave with
the boundary when all physical variables are specified at their
free-stream values. Note the presence of the jagged spikes as
socn as the wave reaches the boundary. This is strikingly
similar to the situation of figure (8) in the one-dimensional
calculation.

In Figure 14, the situation is almost exactly the same, the
principle difference being that the overspecified variables are
slightly different on the two sidewalls. This corresponds to the
situation where the free-stream values are not known exactly but

only approximately. Notice that in the overspecified case of
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figure 14, much larger errors are introduced. These errors only
seem to be present near the boundary but in more complicated
geometries might well propagate back into the region.

As an example of more serious problems with
overspecification figure 14 shows what ahappens if an initial
disturbance of 10% is made in T, only. On the left is shown the
wave beginning to exit, uneventfully in the case of our
recommended boundary conditions. On the right is shown the large
errors occurring when the boundary is overspecified. Note the
presence of the large spikes, similar to the one-dimensional
setting of figure 7.

We conclude with a stiking example of how one-dimensional
the flow can be in the entropy variable Ty

Figure 16 shows the effect of square wave deflection of 10%
imposed uniformly in the x-direction. Note how there is
absolutely no movement in the y-direction whatsoever, although as

the wave exits, there is predictably overshoot visible at the end

of the wave.
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A left running wave exits through an
overspecified boundary-compare with figure 8
(overspecified 1-D) and figure 10.
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CONCLUSIONS

The results of these numerical experiments show that there
are four distinct artificial non-reflecting boundaries which
contain free-stream information. These are the inflow, outflow,
top-sidewall and bottom-sidewall. Each of these boundaries must
be treated differently, or errors are introduced into the
system. The worst errors are those associated with over-
specification and reflection.

Other more complicated phenomena are present when different
types of initial disturbances are present. All confirm the basic
lessons of this section, although introducing some complications
of their own. At the moment, these other results are not fuily
understood and call for more experimentation.

RECOMMENDATIONS

~

This report raises many interesting questions. The most
obvious is that we have investigated flow either perpendicular
to, or parallel to an artificial boundary, and the boundary
conditions required. However, in many applications, to conserve
the number of grid points, the boundaries can be at other angles
to the expected free-stream flow. It would be desirable to
deduce boundary conditions where the flow is at an angle a to the
artificial boundary, either entering or exiting the region. Tt
is clear that the conditions, including, as they would have to,
all conditions discussed here, would be quite complicated.

Possible improvements to be made in the existing boundary

conditions involve the improvement at the corners. There is some
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evidence of overspecification in the larger errors that occur
there.
It would be interesting to compare these boundary conditions

with more complicated problems and possible oscillatory

situations.
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