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l. General Remarks.

During the veriod November 1, 1981 to October 31, 1982, the
Principal Investigator, in cooperation with several research
assistants, carried out a nrogfam of mathematical research in
the general area of control theory of partial differential eaua-
tions. The program involved two distinct phases: an effort aimed
specifically at the develoovment and improvement of control stra-
egies in connection with the wing flutter problem and a more
general program in the area of distributed parameter control prob-
lems of hyperbolic type.

This work resulted in two scientific papers which form the
greater part of this report. The first of these, "Some Remarks
on the Current Status of the Control Theory of Single Svace Dim-
ension Hypgrbo;ic*Systemp"'was presented at the NASA JPL Symposium
on CDntrol'aﬂd étabilization of Large Space Structures, Pasadensa,
CA, Jﬁly, 1982. The second, "Admissible Input Elements for Systems
in Hilbert Space and a Carleson Measure Criterion", by L. F. Ho
and'the Principal Investigator, is a paper which largely resulted
from Dr. Ho's thesis work, also supported by this grant, in part.

In addition to Dr. Ho, who is now with the University of Iowa,
the Principal Investigator was assisted by R. G. Teglas, H. M.

Baron, and R. Rebarber..
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Suvported by the Grant.

grant funds were used to support travel by the Principal

igator and one Research Assistant, H. M. Baron.

Principal Investigator travelled to Pasadena, California,
and present a paver at the NASA Jet Prooulsion Laboratory
jum on Control and Stabilization of Large Space Structures.
2r presented concerned the current status of the control
of hyverbolic partial differential equations with particular

8 on observers and canonical structure.

he Principal Investigator also took part in the 30th Anni-
meeting of the Society for Industrial and Applied Mathe-
(SIAM) in Palo Alto, California, July, 1982. A paper out-
the treatment of control problems associated with infinite
onal linear systems by means of methods from the theory of
¢ functions was presented at this meeting by invitation of
anizing committee.. Ms. Baron also attended this meeting
sented a paper on control canonical forms for systems gov-

various types of partial differential equations.
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3.. Technical Apvendix.

This apvendix consists of two papers whose prevaration was
suvported in nart by the grant. These napers are:

*Some Remarks on the Current Status of the Control Theory
of Single Svace Dimension Hyperbolic Systems”

"Admissible Input Elements for Systems in Hilbert Space
and a Carleson Measure Criterion”,

the latter paper being jointly authored by L. F; Ho and the

Principal Investigator.
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SOME REMARKS ON THE CURRENT STATUS OF THE CONIROL THEORY
OF SINGLE SPACE DIMENSION HYPERBOLIC SYSTEMS

D. L. Russell**

University of Wisconsin Mathematics Department

ABSTRACT

; We review various aspects of the control theory of hyperbolic systems,
< including contrcllability, stabjlization, control canonical form theory, etc. To
N allow a unified and not excessively technical treatment, we restrict attention

,q to the case of a single space variable; the multi-dimensional case is treated in
" our more extensive review [36]. The paper concludes with a short discussion
':- of the newly developed procedure of canonical augmentation,

N SOME ASPECTS OF THE CONTROL THEORY OF THE WAVE EQUATION

) AND REIATED SYSTEMS

N The systematic study of control systems govemed by partial differential
equations, a special, but exceptionally important, subcategory of distributed
parameter systems began in the early 1960's with the work of the Soviet
scientists A. G. Butkovskii [3], [4], Yu. V. Egorov [1l] and others. These
works were primarily concerned with the extension of Pontyagin's Maximum

» Prnciple [26] to certain classes of processes which could not be satisfactorily
-, modelled by finite dimensional mathematical systems. Controllability questions
were raised but were usually subsidiary to questions of optimality., One of the
first systematic controllability studies, in connection with the heat equation,
was presented by Gal'chuk in [14] . One of the most important of the early
American contributions to the subject was the 1963 thesis of Fattorini [13],
which also treated parabolic systems and was one of the first works to

}? recognize the strong relationship between distributed parameter control studies

AL L% b “.l.'

*
;,. Supported in part by the Air Force Office of Scientific Research under Grant
AFOSR 79-0018,

*
*Dept. of Mathematics, University of Wisconsin, Madison, WI 53706, Also
Associated with Mathematics Research Center, University of Wisconsin, Madison.
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and classical results in analytic function theory.

The author's own interest in distributed parameter control theory arose
out of consulting experience with Honeywell, Inc., and NASA, starting around
1965 or 1966. In developing the Satum launch vehicle for the Apollo program,
NASA has encountered the problem of transverse vibrations of the booster
structure and interaction of those vibrations with liquid sloshing modes in the
immense Satum fuel tanks, While the eventual treatment of that problem was
based on finite modal approximations, the problem stimulated a great deal of
research aimed at an understanding of the control of vibrations in various
distributed parameter settings.

First looking at this problem, under Honeywell-NASA auspices, we
thought of modelling the booster structure as an ""Euler'' beam, the displacement

w(x,t), which we may take to be scalar here, satisfying
azw 82 azw
+—2= (E1x) 2% )= 0 (L.1)
x x

p (x)

along with ap'proﬁriate boundary conditions including the control inputs, at the
longitudinal extremities x=0, x= L. We got nowhere with our study of
this problem initially because the equation (l.1) is not particularly well
understood from the mathematical standpoint. There seemed to be no “handles"
to grasp. It would not be until the 1969 thesis of Quinn [27] that we would
understand how this system works and that it i{s, in fact, controllable in a
rather strong sense.

We knew about the control theory of ordinary differential equations from
various papers and from notes and lectures which would later be incorporated
into the 1967 treatise on control theory by Lee and Markus [20] . We also
knew that hyperbolic partial differential equations m two independent variables
reduce to ordinary differential equations satisfied along the characteristics. It
was natural, therefore, to look for hyperbolic models which might fit our purpose.
Such was provided by the Timoshenko beam equations

1 (x)——}'— k) (2L -¢) - = (EI(x) 32) = 0 (L.2)

P (x) —f - 2 (k) (2L - 4 = o0, (L. 3)

which may be viewed as two coupled wave equations., By ''wave equations'
here, we mean the equation B




2
r(X)%Z-- sy =o. (L 4)

All coefficient functions shown in (1.2), (l.3), (1.4) are positiveon 0=sx=L.
It may be verified that (1.2), (1.3) and (l.4) are hyperbolic in the sense
described in [8], [25], e.g.. Since (1.4) is conceptually simpler, it was
studied first, with accompanying boundary conditions

z(o,t) = 0 (1.5)

Z(Lt) = u(), (L 6)

the latter incorporating the control force u(t) .
While the practical goal in mind was appropriate form of stabilization,
we knew that in the case of finite dimensional systems
x = Ax + Bu

an affirmative resolution of the controllability problem, steering from a given
x(0) = Xg toa given x(T) = X implied the property of stabilization; hence
we felt justified in first looking at the state to state controllability problem for
(1. 4), (1.5), (1.6). The "energy" form for (l.4) is

c(z.;—z)=‘3£Lr(x)(%%(x.t»2+s(x)(%§-—(x.t))zdx. (L7

Given initial and terminal states
2(x,0) = z,00), 22 (x,0) = yy(x) - o)
2(x,T) = z(x), 32 (x,T) =y, (x) (L.9)

of finite energy, fi.e. e(zo. Vo)< =, e(zl, vl) <o, we asked if there
exists ue L2[0,T] for which the solution of (1.4), (1.5), (L. 6) correspond-
ing to the initial state (1.8) assumes the desired terminal state (1.9) at time
t=T. The answer, a qualified "yes', came from two different approaches to
the problem. The relationship between these two approaches has, over the

years, grown ever more fundamental and has led to a great many very interesting
developments, See [34] and [45] in particular.

The first method explored was, as we have already indicated, the method
of characteristics, If we let

ctn = [T 10

and consider families X+, X~  of '"characteristic" curves satisfying
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%’: tex =0, - _cx)= (1. 11)
respectively, and then set
v+(x,t)‘—(x t) +c(x) 32 (x,t),
V-(x,t)-- (x t)-C(X) (xnt)p
we see readily that on xts {(x (t), t)}. = {(x- (t), t)}, respectively,
we have
+ -
S+ vix+m, 1) = ¢ (x+(tn X ‘x"(")*tzl =V (x4 (1,8 .12
' + =
gt vix- (), 1) = o'(x- ) TEBLB -V 0. 8) g5
x=0 a) X“(L,T)
x=0
=T < ZTl
Al X (LT 1
+
Q, X (L,0)
Q .
0 x*(L, o)
ol
- - ~ \ AO
~ 8 \
\\ \
=0 x=L t=0 x= L
Fig. 1.1: The Method of Characteristics
e T T e T T Y T e e T N R AL T T T
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Because these differential equations are satisfied on different families of
characteristics, the coupling between them is more complicated than for the
usual system of ordinary differential equations. Nevertheless there is a method
of successive approximations, described in [30], [36], which enables solution
of these equations in certain regions .provided with appropriate boundary data.
Such a region is the roughly triangular domain & shown in Fig, 1.1, bounded
by t=0, x=0 andthe characteristic X'(L,0), of the first family
described by (l.11), passing through the point (L, 0). Together with the
boundary data provided by (1.5) and (l1.8), it may be seen that the differential
equations (1.12), (1.13) determine v’ and v~, and hence z(x,t), through-
out the domain 4 - Similarly, these equations together with the data
provided by (1.5) and (1.9) determine z(x,t) in the domain a, bounded
by x=0, t=T andthe characteristic curve X (L,T), described by the
second equation in (1.11) and passing through the point (L,T). Thus the
initial and terminal states, described by (1.8), (1.9), together with the
boundary condition (1.5) determine 2z (x,t) in both A and ay.

Whether Ay and Ay are disjoint, or have a region, {20, of over-
lap, depends on the time T allotted for control. The time required for the
curve X+(0.L) topassfrom X=L to x=0 |is

- dx
Tl-{ 5 (1, 14)

and this is also the time required for X (L,T) topassfrom x=0 to x= L.
We summarize the control situation, depending on the relationship between T
and '1‘1 .

CaseT < 2T. Here Ao and a, overlap and the determinations of
z(x,t) inthe overlap region Q= aq Ua provided by (1.8) ard (1.9) need
not and, in general, will not agree. There can, in such cases of disagreement,
be no solution of (1.4), equivalently (1.12), (1.13), in the region
Ry = {(x,t)]0sx=sL 0=t=T}, The control function u(t), shown in
(1. 6), never enters the picture because it cannot affect the solution of (l.4) in

Ag or Ay if (1.8), (L.9) are satisfiedat t =0, t=T, respectively.

Case T = 2T, Here the two '"domains of determinacy', Ag and Ay
just fail to overlap; their boundaries have exactly one point in common, t = '1‘1,
x =0, The initial and terminal conditions (1.8) and (1.9) detemine z(x,t)
in A

0 and Al . respectively. Another process of integration of the coupled

«" v
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differential equations (l.12) and (l.13) permits unique extension of z(x,t),
equivalently v+(x,t). v (x,t), into the domain ¢ . The control steering
(1. 8) to (1.9) is then uniquely determined from this extension and (1. 6).

The determinations of z(x,t) in a, and 4, may fail to match
smoothly at the point p: x=0, t= Tl . This results in discontinuities of
vt along X+(L, 0) andof v along X (L,T) in general.

Case T > 2T. The only difference between this case and the case
'r=zr1 lies in the line segment t: x =0, '1‘1<t<'1‘-'1'1,
the point p ofthecase T = 2’1‘1 . Extension of z(x,t) from &y
into Q cannot be carmried out until the boundary condition (1.5), which
vields 9z/5t (0,t) = 0, is augmented by arbitrary data

which replaces
U e

32(0,t) = £(t), (0,t) e L. .

Once this is done, extensionof z(x,t) into  proceeds much as before.
(See [30], [36] fordetalls of the extension process.) The arbitrary
function ¢ (t) can be designed so as to eliminate discontinuities of the
solution along X+( L,0) and X (L,T), to satisfy some criterion of
optimality (see [30] e.g. ) or to fulfill any other appropriate design objective.

If the partial differential equation (l.4) is combined with bound=2ry
conditions different from (l1.5), (l.6), but still admissible for (l.4), the
cases T < ZTI' T > 2']?1 remain as above. The rather delicate situation
at T = 2‘1‘1 depends on the specific form of the boundary conditions. For
example, the boundary conditions

z(0,t)=0, z(L,t)=u(t)
lead, incase T = 2'1'1, to a situation where the desired control is not unique;
it has the form
u(t) = 0(t) + ya(t)

where ﬁ'( t) 1is a non-zero control steering the zero initial state into the zero
final state and vy {s an arbitrary constant, By contrast, the boundary
conditions

-g%(o,t)=o, -g-xz—(l.t)=u(t) (1. 16)

lead, incase T = 2'1‘1, to a situation where the desired control u(t) does
not, in general, exist, (See [31], [37] for more details.)
The analysis of more complicated systems of hyperbolic equations, such
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as the Timoshenko system (1.2), (1.3), is in general rather complicated but
there are some special cases, including appropriate boundary conditions, for
which the analysis is fairly simple. In [M] a discussion is given pemitting
analysis of the free boundary case

Y - 3 =
£ (0,t) =0, ¢(0,t)- 2L (0,t)=0, (1.17)
B Lty = ut), w(Le) - (L) = ur). (1.18)

It may be shown that all cross-coupling is of low order and the problem is
essentially equivalent to two problems (l.4) with boundary conditions (l.16).
Two critical times are involved. With (cf. (l.14))

El 3 _ L dx
cy(x) = (Tp%()y) » Iy = f(; m , (1. 19)
1 L
- s k(x) 2 _ dx
oplx) = (B . = [ o (L 20)

it may be shown that finite energy states are controllable if and only if
T = 2 max{T,, Tz} .

The essential details of the analysis are given in [30] and are quite similar
to what we have briefly outlined here for (l.4), (1.5), (1.6).

It is immediately clear that the method of characteristics is speciully
adapted to controls u(t) acting at a point, as in (l1.6). This is true
because the control determination occurs at the very last stage of the analysis,
after the controlled solution has been computed. If the control u(t), itself
scalar, acts on the system through a ''control distribution function" g (x), as
in (cf. (1.4))

2
r 25 - 4 (se)3Z2) = guw, (1. 21)
t
homogeneous boundary conditions (cf. (1.5), (l.6))
z(0,t) = 0, 2Z(Lt) = 0 (L. 22)

applying at the boundaries, we face what appears at first glance to be a rather
different situation than what obtains in (1. 4), (1.5), (l.6), for even the

. equations comresponding to (1.12), (1.13) will involve the unknown control u(t)

in this situation; one cannot proceed by fillingout 2z (x,t) in successive
domains as before; a completely different approach is required. Such an
approach can be found in the study of moment problems - a technique developed

............................
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by several authors (see [3], [12], [15], [14], [23]). The technique has

the advantage, from the point of view of approximation of being intimately

connected with the modal representation of the system based on the natural

modes of vibration, or eigenfunctions of the operator -r(x)'l(a/ ax)(s(x)(3z/8x)).
It is known (see [1], [7]) that the operator

Lz = -r(x)'1 _aa_x_ (s(x)-g% ) (L. 23)

with boundary conditions conformable with (l.22) has eigenvalues
2k-1 2 12
X.k=( ) +&. , k=123, .- (1. 24)

2 T 2 k

1

where the ek are uniformly bounded and ’l.‘1 is related to c(x) by (l.14).
The corresponding eigenfunctions, qvk(x) , k=12,3,¢.., form an ortho-
normal basis for Li [o,L] (which consists of the same functions as

LZ[ o,L] but has the inner product
L

(e, ¥), ={) r(x) e (x)¥ (x)dx) . (L. 25)

Every finite energy solution 2z(x,t) of (1. 21), (1.22), i.e. every solution
for which the integral (1.7) is bounded for all t, can be expanded in the form
L)

Z2(x,t) = ), z,(t) ¢ (x)
‘ k=1
where, if we assume the control distribution function £(x) has the expression

gx) = ), 9 ¢ (x)

k=1
convergent in Li[o, L], the zk(t) satisfy
zk+)\kzk=gku(t), k=14,2,-.., (1. 26)

Letting N

'Uk‘:kkzp k=1)203p.-.

and using the transformation

Zk 1/1uk - l/iwk T]k
. = (.27
Z, 1 1 ¢
one arrives at the system
My Loy 0 T\ [9/2
. = + u(t) . (1. 28)
Ex 0 “luy Ex 9, /2
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It may be seen that finite energy states are those for which

- . 2 2
T U207 +0(2)°] < =
k=1

and this becomes, in terms of le, ck’

T (Inklz+lck|z) <=, (1. 29)
k=1
Integrating (1.28), we have, for T > 0,
T]k(T)-e le(O)= - e u(t)dt
10, T g, T -1 (T-t)
L@ -e © £ (0 = 7“_{ e £ u(t)d.

Assuming the controllability condition
gkf 0, k=1’z’3v"'

we see that the problem of steering between the given states at times 0 and T
reduces to the moment problem

T i s a
[ ®g(syas = =K, k=1123,-.-, (1. 30)
() I
T «1w,.S B
“k f(s)ds=-§k£. k=1 2 3, -, (1.31)

o™
o

where s=T-t, f(s)=u(T-s), and
lukT -1 kT
@y = 2(M, @) -e n, (0)), Bk = 2(g (T -e G (00) (1.32)
are square summable,

To solve the moment problem we resort to the theory of nonharmonic
Fourier series as developed by Paley and Wiener [24], Levinson[21],
Schwartz [42] and many others. (An excellent expository treatment [49] by
R. Young has recently appeared.) The following is known; the three cases

. being divided in a manner conformable with the three cases discussed earlier,

Case T <2T). The functions e , e , k=12,3,--+, are

linearly dependent in LZ[O,T] in a rather strong sense. Any one of these
functions, indeed, any finite number of them, lie in the closed span of the

remaining functions (which, in fact, 1s equal to the whole space LZ[ 0,T]).
As a result the moment problem (1.30), (1.31) cannot, in general, be solved,
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Suppose, e.g., all but finitely many of the ., Sk, say k= K+l, K+2,-.-,
were equal to zero, while some of the Ly 5k' k=1,2,---,K, are non-zero
The linear dependence just referred to shows that such a problem can have no
solution; the equations
T 1..,ks T 1uk5

Je * f(s)ds = [ e © f(s)ds=0, k>K

0 0
imply that the same equations must hold for k = K,

CaseT =T). Here the functions e , e , k=1,2,3,+¢.

form a Riesz basis for LZ[O, Z.l‘l] . Every function h e [0, 2‘1‘1] has the
unique convergent expansion
-]

1w, S -iw, S
his)= T [he X +he X1 (1.33)
k=1 :
and there are positive numbers ¢, C, such that
-2y, 2 - 2 2 _ 2y 2
c” 4| h| = ¥ (|h |“+|h ,|* s C%|h]| (L. 34)
Lo, 2T) k§1 P -k 120, 21]

Further, there is a unique dual basis of biorthogonal elements Py, P_p €
Lz[ 0,2T;] such that

R k
4

e pl(S)ds=6k,,. L -

5k - 1, k=1
L 0, k#¢
which engenders expansions similar to (l,33), the rolesof ¢, C in the

inequalities parallelling (1. 34) being reversed. The formal solution of (1. 30),
(1. 31) is then uniquely given by ‘
-]

n
i+

1, &

2, L)
z’ s

)
I+

1,

i+

(1. 35)

£(s)= %, 5 [agp(s) + B p ()] . (1.36)
k=1 K
If we have
Um g, | =0, (1.37)

as would be the case, e.g., if ge Lz[o, L], then the conditions for
convergence of (1. 36) are more stringent than just the square summability of
the a,,B given by (1.32). We need

% 2 k 2
Z(l—g;|+|?-l)<o.
k=1 k

......................................
--------------------------




{ | As a consequence we can steer (l.2l) from any finite energy initial state to a
dense (in the energy norm) subspace of final states, or vice versa, but we
cannot steer between arbitrary finite energy states during [0, 2.1‘1] if (1.37) is
true. The case of boundary control (l.6), already treated by the method of
characteristics, will be discussed more extensively below. In that case the
coefficients I in (1. 26) are bounded and bounded below. The resuilt is,
in that situation, that we obtain the same result this way as by the method of
characteristics - given finite energy initial and terminal states, there is a
unique control u ¢ Lz[o, 2'1‘1] steering the one to the other.

Saihy tady Oy
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X Case T > 2Ty . The mia:nsdifferei:ce between this case and the preced-
ing is that here the functions e k , © , k=12,3,+..., forma

i Riesz basis for a proper subspace, E, of L2 [0,T]. The biorthogonal
functions Pp, Py exist, but are unique only if we require that they lie in
E — or we impose some comparable condition. If we agree that ;k' B'_k
belong to E, then any elements

) Pk=3k+“k' P = Py tay
with q,, q_, € EctL [0 T] still form a biorthogonal set relative to the
iuk -iuks

. The convergence properties of series involving the pk
A p x are much the same as in the preceding case. As a result we have the

. same control capabllity asinthecase T = Z'I.‘1 but controls are not unique.
: Indeed, if U is a control steering between two given states, the family of
controls 1 +'\;, G € El, all realize the same control objective, Again,
5 this non-uniqueness should be compared with the similar property observed for
: T > 2'1‘1 in applying the method of characteristics.

L Using the theory of distributions and related material, boundary value
* control situations such as (1, 6) can be included in the same framework as

(1. 26) but with g in a larger space than Lz[ 0,L]); g should be a linear

: functional (in general unbounded on Lz[o, L] ) whose domain includes the

‘ _ domain, #(L), of the self adjoint operator L, given by (l.23), with the
R given homogeneous boundary conditions., The gy are the values which g
assumes at the eigenfunctions Py € 8(L). A detailed study of these
N vadmissible input elements" is provided in [17] . In this way a unification
of the boundary and distributed control cases may be achieved. One consequence
of this is that the biorthogonal functions py, P_.x Which play such an

e de A

L 4
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important role in the method based on the moment problem (1.30), (l.31) can
actually be obtained through the more constructive method of characteristics as
controls steering from a zero initial state (say) to final states constructed
using a single eigenfunction Py of L.

We began our discussion here with the Euler beam equation (1.1) . For
definiteness, let us add a distributed control term (scalar input) and specific

boundary conditions so that we have
2 2

2
"w 9 o w
(x)7 + —5 (EI(x) —= ) = gx)u(t) 1, 38)
P ot axz ax2 (
2%w 33w
?(O.t) = -a;y (o,t) = 0, (1. 39)
3
-i—:"i(r.,t) = iaxi" (Lt) = 0. (L. 40)

In 1969 J.P. Quinn, in his doctoral thesis [27], studied the controllability
properties of a class of systems including this one, Here the operator
2 2

o Aws Fl(i)' :—xz(ar(x):—x‘g’-)
on the domain in H4[ 0,L] consisting of functions obeying boundary
conditions conformable with (1. 39), (1. 40) has eigenfunctions ¢k(x) forming
an orthonormal basis for L2 [o,L] and the corresponding eigenvalues )‘k
grow like k‘1r as k—-wo, With wy = )‘k we obtain a system similar
to (128), wusing a transformation like (I.27) applied to the second order
differential equations resulting from the eigenfunction decomposition:

.“.rk'l'kak = gku(t)p k=0, 1: ZD 3."'

(a slight modification of (l.27), (l.28) is necessary for )‘0 =0; see [34]).
Again there results

. g‘k
'lk iwk 0 le —2"‘
= + u (t) (1. 41)
. Ik
Cx 0 -luy Cx 2,

and the energy expression for (1. 38) is, equivalently,

L 2 2.2
%{)[p(x)(-g%-) +ELG) (25)" ] dx
X

or
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k=0
or

- 2

3 Z qul +|Ckl

=0

all < e« for '"finite energy'' states. 1w 5 -lw. S
Quinn was able to show in this case that the functisons e k ,e k .

k=0,1,2,3,¢-- (for k = teplacee k,emk by 1,s) are

linearly independent in LZ[O,T] forevery T > 0 (this result by itself
had already been obtained much earlier by Ingham [18] who shows, in effect,
that these functions form a Riesz basis for a closed subspace of LZ[O,T] for
every T > 0) and, additionally, that there is a positive number, M(T),
such that if the (non-unique) biorthogonal functions pk(s), p k(s) are
appropriately selected in L [0 T], these functions are continuous and
satisfy the pointwise bounds

lpk(sz)l1 = M(T), |p k(S)I = M), sel[0,T]. (1. 42)

Wy S ~iwy 8

The fact thatthe e k , © k form a Riesz basis for a closed subspace
of L [0 T], T > 0, implies that initial states and terminal states with
(in terms of (1, 41)) expansion coefficients le’ 0° (k 0 ang T]k P Ck 1
can be steered, one to the other, during [0,T] with ue L0, Tj
provided that ‘

® 1] 2 L 2
(ke ® 4B %) ol Z‘,(l-—-‘—l tigt<e.
k=0 ¥ k=0
The boundedness pnoperty (1. 42) shows we can also control states for which

My, 0 Cx, 0
+' < =,
kZO(lg,k |+ =D

L Ck, 1
=2 + )<¢s
Z(lg | +] kl

k
k=0
this being possible with a control function wu(t) uniformly bounded ana

continuous on [0,T] .

We have noted in connection with the Timoshenko beam system (1, 2), (1. 13)




(1.17), (1.18), that an adequate control theory, based on the method of character-

istics, exists when we have two separate control functions, ul(t) and uz(t),
with which to control the lateral deflection and shear deformation separately.

An open question is the adequacy of control using a single control input, so
that (1.17), @.18) becomes, e.g.,

2Ly aum, (Lo - I (Le)=Bu)

with az + BZ £ 0. This problem is a special case of the more general
question of the controllability of linear hyperbolic systems of dimension n = 2m,
involving m  pairs of characteristics, each pair describing a given wave mode
propagating in two opposite directions, by means of fewer than m control
inputs, Some work has been done in this direction by R. G, Teglas in his
thesis [45] and by N. Wick [47], but it is safe to say that no very general
criteria for this problem have yet appeared. Particularly valuable, it seems

to this author, would be a study of the Timoshenko beam system from the
singular perturbation standpoint, elucidating the behavior of solutions and
controllability properties as the modulus of elasticity in shear, k(x) in (l.2),
(1.'3), tends to infinity.

STABILIZATION, CANONICAL FORMS, EIGENVALUE
PIACEMENT, etc.

As all practicing engineers will know, controllability in itself is rarely
the prime goal of control system design., Stability, and related criteria such as
robustness, insensitivity to particular input frequency bands, etc., are more
commonly uppermost in mind. Additionally, there is the question of state
estimation from lower dimensional, noisy observations in order to implement
linear feedback control policies. These subjects have been pursued almost ad
nauseum for linear, finite dimensional systems. In the case of distributed
parameter systems, and hyperbolic systems in particular, the literature on this
subject remains rather sparse and spotty in its coverage.

As In the case of linear finite dimensional systems, stability and stabili-
zation studies for linear partial differential equations have tended to cluster
around two dominant approaches: the Liapounov approach, primarily carried out
in connection with systems involving some form of '""conservation of energy' law,
and the spectral approach, detemining if, or making certain that, the

------
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eigenvalues of the system lie in an appropriate subset of the left half plane. The
spectral approach suffers from the disadvantages of greater intricacy of
computation and the need to show that the spectrum location does, in fact,
determine the asymptotic behavior of the system. The latter brings in questions
of completeness and linear independence of the eigenvectors of the system,

- We will begin with a short discussion of what has been done with
Liapounov methods. On the theoretical side one can start with a system

x = Cx, (2.1)
C generating 3 strongly continuous semigr-\p S(t) in the Hilbert space X
(we may have started with a control system x = Ax +Bu, set u = Kx, then
C=A+BK). Wae set up a quadratic functional
V(x) = (x,Qx),

where Q is a bounded, positive, self adjoint operatoron X with Q = ql
for some q > 0, to serve as a Liapounov function., One may then show that
for t, >t and x(t)= S(t)x, a "solution" of (2.1), that

(x(t;), Qx(t,)) - (x(t;), Qx(t)))
t

=-f 2 (x(s), Wx (s))ds
t

1
for some positive self adjoint operator W so that, in some sense which one

needs to make precise in individual cases, :

c*Q+QCc +wW = o, (2.2)
the Liapounov onerator equation, is satisfied. An important result, due to
Datko [10], states that if

fo.(x(t). Qx@)dt < = (2. 3)

for every initial state X, € X, then the semigroup S(t) is exponentially
damped, 1i.e.
(swj < Me ¥, t=o0,
for positive numbers M, vy . The condition (2.3) is satisfied if W = wl
for some w > 0, as may easily be verified.
Consider the linear symmetric hyperbolic system in Li[ 0,L] =

(£%(0,1] )"

EG) 3 = A LE +Bx)w +1(x,t) (2. 4)

where E(x), A(x), B(x) are continuously differentiable mXm matrices
defined for x ¢ [0,L], E(x) symmetric and positive definite, A (x)
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symmetric. The wave and Timoshenko equations can be written in this form.
The "energy'’ usually is expressed as

L
eft) = é{) (w(x,t), E(x)w(x,t))dx .

With appropriately ''conservative' or 'dissipative'' boundary conditions at
x=0, x=1L, oneﬂndsthatfor t, > t,

L .
elt,) - eft)) = f e f (w(x, t), [B&) + B(x)" - A(x)] wix, t))dx
1

L
+ [ (w(x,t), £(x,t))dx}dt.
0

If B(x)+B (x)* - l.\(x) is uniformly negative definite or if the n dimensional
control function f(x,t) may be arbitrarily specified as a functionof x and
t, one may use feedback
f(x,t) = K(x)w(x,t) (2.5)
in such a way that .tz L
eft,) - e(t)) = - { {) (wx,t), W)w(x,t))dxdt (2. 6)
with W(x) uniformly po:itive definite and symmetric on [0,L]. Then one

can apply Datko's result, or more simple arguments, to show that solutions of
(2.3), (2.4) are uniformly exponentially damped in Lz [0,L] nomm.

Note, however, that if B(x) +B (x) -A(x) = or for some other

reason fails to be positive definite, and if

f(x,t) = D(x)u(x,t) or f(x,t)= D(x)u(t)
with dimu(x,t) = r <R in the first instance, u a function of t only in
the second instance, then we cannot, in general, achieve (2.5) with W(x)
uniformly positive definite, Comparable difficulties arise when boundary
control is employed. In such cases it is a form of the La Salle "invariance
principle” (see, e.g. [19]) which must be appealed to, rather than the basic
Liapounov theory, for an analysis of presumed asymptotic stabllity properties of
the system. This has been discussed in some detail in [36] and [33] and
we give only the briefest outline here.

The "invariance principle', as it applies to finite dimensional systems,
relies heavily on the compactness of the ' w-limit set'" of the system in order to
reach the final conclusion of asymptotic stability., Comparable compactness
properties associated with the solutions of an infinite dimensional system are
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generally difficult to realize but the initial attempts to extend the theory nonethe-
less relied on establishing some sort of compactness property. One of the first
contrbutions in this direction was due to Dafermos [9] who studied weak
damping of the wave equation, relying on the almost periodic nature of the
system solutions to provide the required compactness. Slemrod [43] studied
the boundary damped wave equation by introducing suitably weakened topologies
— as compared with the usual topology associated with the energy norm — and
was able to conclude a correspondingly weakened form of asymptotic stability.
Knowing that controllability implies stabilizability in the case of autono-
mous finite dimensional linear systems, we are not surprised to find control-
lability playing a role in the study of asymptotic stability and stabilization
properties of autonomous infinite dimensional linear systems., This is discussed
in some detail in the paper [28] by J. P. Quinn and the author and also in
[33] . Systems of the form (2.3), but with the control appearing in the bound-
ary conditions, are studied in [28] prior to the main discussion on the boundary
damped, higher dimensional wave equation. We can give an idea of the flavor
of the arguments employed using a simple example based on the wave equation
(1. 4) with control appearing in the boundary conditions (1.5), (1.6). If in this
system one employs the feedback law

u(t) = -y ZL (Lt), (2.7

the closed loop system is (1.4), (1.5) together with the ''closed-loop' Robin
type boundary condition

ow ow

% (Lt)+y5p(Lt) =0, (2.8)
Here a short computation shows that with the energy ¢(t) defined by the
expression (1,7) we have, for t, >t

t2
etty) - ety = -yp@ [ FE(Lt)Pe. (2.9)

It 1s not feasible to fit this situation into the general pattem based on the
Liapounov operator equation (2, 2) but, since we expect (correctly) that, along
with (1.4), (L5), (2.8)

2 (Lt) =0 => wixt)= o0,
an "invariance principle'' type of argument appears to be in order., But we

will use a variation on this procedure which makes use of the controllability
already established in Section 1, let v(x,t) be a controlled solution of

VI 7TV TR e T T




R i & S taee i St A e B B St SR I AL A S A A i e e e IR R A A S -1

(1.4), (1.5), (1.6), u(t) being selected so as to steer the initial state

v(x,0) = w(x,0), 3 (x,0)= 2% (x,0), (2.10)
agreeing with the initial state of the solution w(x,t) of (l.4), (1.5), (2.8),
to the zero final state

vix,T) = 0, 3L(x,T)) = o, (2.11)

1'1 as described earlier., Defining the ''‘energy inner prcduct"

L
(w(-,t),v(-,t)) = {) [p(X)%wt—(X.t) 3t &, t) +pix) 32 ax = (x, t)g(x,t)] dx
it is found, using (1.5), (2.8), (2.10), (2.1l1), that
(w(+,0), v(+,0)) ~(w(+,2T)), v(-, 2T)) = [w(-, 0)]2 =

2T
1
-p(L){.[ YLt (L) + 32 (Lt) T (L, t)] at

2'1‘
=p(L)f S ve (L) + (L)) at

law

=pm [ B L0 ly B (Lo +u(e]d.

Here |[w(-, 0)|]e, the energynormat t=0, 1is 2¢e(0). Applying the
Schwartz inequality
te@? s pm [ ) (L) at
o (2.12)
1 av 2
- [ Py SE(Lt) #u(e)®at,
0
A slightly more detailed study of the control problem for (1.4), (1.5), (1.6) in
thecase T = ZTl (or T > 21‘1) shows that control from an initial state
w(x,0), 3 (x,00 to 0,0 attime 2T, is realized with a control uft)
which satisfies ZTI
[ umiat =k e
0
and, for the resulting controlled solution we have

Tl av
[ P& @nie = xe©

0
for certain positive constants Ko and KI . Then (2.12) easily vields
2T
1 2
vo [ 2 (Lt)a = e(0) = Ke(0)
0 2 (kg +Y7K}) €(0)
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and, setting \‘.1 =0, 1:2 = 2T

in (2.9), we have

1
# C(Zl'l) =< g(0)-Ke(0) = (1-K)e(0) . (2.13)

Since 5(2'1‘1) is, from (2.9), (2.13), positive and less than or equal to ¢(0)
we conclude 0<1-K<1,
Repeating the above argument on successive intervals [0, ZT].] ) [2’1‘1,

' a1} +»- [2kT}, 2(k#)T;],...  and using the monotonicity of eg(t), as
implied by (2.9), we conclude that g(t) decays exponentiallyto 0 as t—ae,
The same general argument can be used with a fairly wide class of boundary

damped linear symmetric hyperbolic systems (2.4) and with many other systems
“ which are energy conserving in the uncontrolled situation and suitably strong
controllability properties. The Timoshenko system (l.2), (1.3), with appropriate
boundary conditions, is in this class. As far as the author is aware, the Euler
beam model (1.1) has not yet been studied from this point of view,
. The spectral approach, as we have already indicated, involves a direct
analysis of the eigenvalues and eigenfunctions or, more generally, the spectrum
and invariant subspaces, of the generating operator C for a given system

lnear feedback u =Kx sothat C = A +BK. A fairly common case, which
can be treated with minimal difficulty, arises when all but finitely many of the
eigenvalues of C have negative real parts. Under generically valid control-

i x = Cx, possibly derived from a control system % = Ax + Bu by the use of

lability-type conditions it is then possible to move the unstable eigenvalues

! into the left half plane while either keeping the stable eigenvalues fixed or else
maintaining a certain margin of stability. Work of this sort has been carried out
by Triggiani [46] , Sakawa [40], [41] and others.

A somewhat more challenging task arises when one starts with a system
having infinitely many eigenvalues in the closed right half plane (usually one
considers a conservative system wherein all of the eigenvalues of C are purely
imaginary) and one attempts to devise a feedback law to move all of these
eigenvalues over into the open left half plane. A number of procedures have been
examined in this connection,

In [32] a second order system with scalar control

X+Ax=bu, x,beX, (2.14)
is studied, X being a real Hilbert space and A an unbounded positive self
adjoint operatoron X . Assumingthat A has a Riesz basis of eigenvect s
"k' k=12,3,..., in X and corresponding positive eigenvalues V'k
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increasingwith k, k=1,2,3,-.-, x and b may be expanded as

(-] - )
x= ), by, b=} bd, (2.15)
k=1 k=1
convergent in X, with square summable coefficients. We assume the
minimal condition for approximate controllabilily

by #0, k=123,

The energy form is [ (:.c,;c) + (x,Ax)] = ¢ and elementary computations
show that for (2.14) and forany T > 0

T .
e(T) - e(0) = {) (x(t),b)u(t)dt . (2.16)

It follows that with .

u(t) = -y(x(t),b) (2.17
the energy £&(t) is non-increasing with increasing t. So far this is
basically a Liapounov approach employing what is known in the engineering
literature as an ILAF (Identical Location of Accelerometer and Forces)
approach, The resulting closed loop system is, still in second order form,

X +Bx +Ax = 0 (2.18)
with B defined by

Bx = y(X,b)b. (2.19)
With Y= 5:, one may consider the equivalent first order system in XXX,

x b4 o I
17 <y ,c-= A Bl - (2. 20)

and ask: what are the éigenvaiue’s and eigenvectors of C? It is here that
one leaves the second method of Liapounov and retums to his first, In [32]
a perturbation analysis is camied out, valid for small values of y in (2.17),
(2.19). It is shown that, under the separation assumption

Wiy - W, =d >0, w = VX, _ (2.21)

the eigenvalues of C, whichfor y =0 are 4_-iwk, k=123,..., all

have negative real parts for y > 0 and, moreover, designating the perturbed
eigenvalues by ck(y), k==%14+2, £3,---, ck(O) = iw, , C_k(O) = -iwk,
we have (cf. (2.21)) !

Ge(Y) = tw - 3 lbklz+o(y2T—1—lz— ) k—a 2.22) |




‘g_k(y)=-iwk-%|bkl2+s(vz 12), K=o, (2.22)
wW.

It is also possible to show that the perturbed eigenvelfztors continue to form a
Riesz basis for the space XX X . From this it follows that all solutions of
(2.18) tend strongly to zero in the energy norm, though not at a uniform expon-
ential rate.

Following Wonham's initial results [48] on the finite dimensional case
there has been considerable interest displayed in the question of spectral
determination via linear feedback for distributed parameter systems. In terms
of the system (2.14), equivalently,

X @) I x 0
. + u, (2.23)
Y _ ~A (@) Y/ b '

!

i
!

!
i
!
|

{

with initial (u=0) eigenvalues +iw,, k =1,2,3,---, the question may|

be phrased as follows: we suppose use of a linear feedback functional

1 :
u = (Azxr kl) + (Y)kz): k kz € X’ (2~ 24)

1’
1 1
bounded relative to the energy norm  (x,Ax) + (y,y) = (A%2x, A2x) + (y,y) in
XXX, With :

1
Kx = (A%x, kl)b’ Ky = (y,k2 )b (2. 25)
the closed loop system is
x O I X
= . (2. 26)
)4 ~A + Kl Kl Y

One can now ask: What eigenvalues can be achieved for the closed loop
system (2.24) by .appropriate selection of kl’ k2 in (2.25)? For some
time the author was under the impression that his approach via canonical forms
[35] (more on this below) was the first treatment of this question but, in
fact, it appears that this credit must go to Prof. Sun S.-H. of Szechuan
University who treated this problem by a more sophisticated application of the
perturbation technique used by the authorin [32] to obtain the result.
Sun was able to show, w1th an assumption similar to (2. 2l1) and the Riesz
basis assumption on the open loop eigenvectors, that the totality of spectra,
achievable by use of (2.25) coincides with sequences ks Coyo k =
1,2,3,--- for which, assuming the by # 0 as before,
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¢, = iw, 2 ¢ +iw, 2
Rt Sy P A R
k k
k=1 .
His very important paper has been translated by Ho L.-F. in [44]. Some !
comparable, but necessarily weaker, results have been obtained by Reid in his |
thesis [29] for the equation of linear surface waves where (2.21) is not
satisfied and, in fact, Lim (wk+1 - wk) =0. Other results in this

k—-w=

direction, for hyperbolic systems of various types, have been obtained by Clark|
[5]., [6] and by Ho in his thesis [16]. :

Much of the initial impetus for the study of control canonical forms, 1
both for finite and infinite dimensional systems, came from the spectral ‘
determination question discussed above, but the subject is interesting in its
own right and shows some promise of being adaptable for ''real world" control
implementation. The reader will recall that a finite dimensional controllable
system

x = Ax + bu, xe¢ Rn,

with scalar control u 1is equivalent, via a state space similarity transform-
ation (see [20], [35] ) to a system in rational canonical form comresponding
to the n-th order scalar equation

vy aly(“"l) +eee + an_ly' tay-=u, (2.27)
where i
p(k)=det(XI-A)=Xn+alkn'l+---an_lh +a {
is the characteristic polynomial of the matrix A, Comparable, but somewhat |
more intricate, results are available for systems with higher control dimension !

[20], [2]. In [38] we note that if one employs a scalar linear observation

|
vy=h%% = (xh), (2.28) |
there is exactly one observation vector h € R" for which (2. 28) satisfies l
(2.27); for general h the right hand side will involve the derivatives of u :
oforder =u-1, Systems (2.27) are particularly easy to deal with,
Closed loop eigenvalues G+ Cor "0 Cn may be realized simply by forming
the polynomial

N =TT ( = AP 4 a0l A
q( )=k=|1( -ck)- +cl +ee +Cn-1 +cn

and determining u by linear feedback on the observation y and its
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derivatives,
(n-k) |

n
u= ) (3 -¢ )Y . ’
k=1 [
Apparently less well known, but quite obvious, is that the control problem for '
(2. 27) is, in a sense, trivial. let us suppose the initial instant is taken to
be t =0 andcontrol is to be effectedduring 0 =t = T. Let the initiali

state be specified by

!
i
|

y®% oy =y .. k=L2--,n (2. 29)
and the terminal state by i
y(n-k) @ = Y4 k=12, +--,n. (2.30) i
I y() satisfies (2.29) and :
y™(t) = v(t), ost=T (2. 31)
then we see readily thatfor k=12, --.., n
Y(n-k) (t) = Z Yro14l %1—)7 + fot (t-s )k'1 v(s) ds

t=1

and (2.30) 1is achieved just in case
k-1t
T

T k-t 3 F—
](; (t-s)” " v(s)ds =Y , ;- Z Ynog-1 ®-1)¢ °
1=1
k = l, Z, cee,nn,

This is easily solved for v in various function classes, e.g. polynomials of
degree =<n -1, etc. and, it should be noted, the solution has nothing to do |
with the coefficients in (2. 27) so the calculation can be carried out once for

any gilven T and recorded-for use ever after, Then in a given canonical

system (2.27) we need only set : ‘

n
um) =ve - Y a v ) (2.32) :

k=1
to realize the desired control objective,

Since, in a given control context, it is not likely that the available
observation (2.28) will be the particular one for which (2.27) obtains, the
above result might seems to be a generally useless curiosity. It tums out,
however, that in canonical form theory there is a counterpart to the more widely
known observer theory. If C is any nXn matrix whose minimal and
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characteristic polynomials coincide, it is possible to select (non-uniquely) r,
d and § such that the augmented system

x = Ax +bu (2-33)§

zZ = ry+Cz+du (= th'x +Cz +du  since y=h*x) (2. 34) .

with augmented observation |

w=y+iz=hx+{z (2. 35) -

is in canonical form, so that for some coefficients @y, a,, tc, e, '
wl?®) 4 alw(zn-l) e ba, w o+ @, W= u.

The adjoined system (2.34) can be realized electronically, just as an observer:
system is, and the considerable freedom in choiceof C, r, d and j '
provides much design flexibility. In some cases the dimension of (2.34) can :
be reduced. The proof that (2.33), (2.34), (2.35) can be made a canonical |
system appears in [38].

A parallel control canonical form theory has been developed for certain
hyperbolic distributed parameter systems, involvir{g neutral functional equations
in place of the n-th order scalar equation (2.27). The theory is quite complex,
especially as it applies to partial differential equations with variable
coefficients (see [35], [16], [38], [39] e.g.). To give an idea how the
theory is developed we will consider the constant coefficient case of (1, 4)
which, without loss of generality, we can take to be

2 2
a“;-ag=o, t=0, 0sxs]l, (2. 36)
ot ox
= aw =
W‘O,t)-— 0, -a-x_ (lvt) - u(t)' (2037)
The normalized eigenfunctions of the corresponding homogeneous system are
$,.00= ~vZ sin bl wx, k=123 - (2. 38)
Setting Wy = 3—‘—‘-2'—1- T and forming the expansions
@«
w(x,t) = ) w (t) B (x), (2. 39)
k=1 :
Iw < :
St (at)= ) vt 4 (x), (2. 40) |
k=1 '

followed by the transformation

U GRIRN
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iw 1w, .
= k k (2.41) |
Vi 1 1 tx

we have, for k=1,2,3, -

i k-1 i k-1 |
N, o=dw,n, + S uw), fo=atwn + E—wy . (2.42)
k k 'k Nen & kok N |

Consider now the neutral delay equation f
y(t42) +y(t) = u(t+2). (2.43) |

The characteristic function of the homogeneous equation is
p(N) = 2

and the zeros of p(\) are precisely the eigenvalues +iw, appearing in

+1 = Zek cosh A !

k
(2.42) . The transfer functiin for (2.43) is
: 2
- _€ - 1 sinh A\ 1
TO(X) = —x-—ez . = 3 Gosh X + 5 (2. 44)
which can be rewritten as
o«
‘ - A\ 1 _ 2k-1
TO(X)— Z 2 2 + ?, mk- 2 we. (2.44)
k=1 Mty

If we'define an observation y (t) on (2.42) by

y(t)= T [h N (t) +g 6 (t)] + Fu(t)

k=1
the transfer function for y 1is, formally,

- k-1 1_ k-1 L
(D B, &Y TF

Y

: +s
k= M- deyg o My

which may be seen to agree with (2.44) just in case
k
hk = gk = _hlL. .
NZ ;
Using (2.38), (2.39), (2.4l), (2.42) it may be seen that thischoiceof h, g,
corresponds to '

yir=3 Zan+rium=5(Fao+ 3. @)

This observation on (2,42), and no other, satisfies the scalar equation (2. 43)
which serves as the control canonical form for (2.42). The details of the above

.........................................
.........................
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calculations and some idea of the form of a general theory appear in [38] and
[39].

If the canonical observation (2.45) were actually available, so that
we have (2.43), its usefulness is quite clear, For, with the causal feedback

law 2
u(t+2) = (1-y)y(t) - [ c(s)y t+s)ds (2. 46)
0
(2.43) transforms to
- 2
; y(t+2) +yy(t) + [ c(s)y(t+s)ds = 0 (2. 47)
0 gt Et
and it is known from [35], [44] that the exponential solution e k , e -k
h of (2.47) can be made such that
¥ b = logtatg, fp=logFate,,
N where a 1is a complex number (ordinarily negative) determined by y and

Epr E_x are arbitrary complex numbers, determined by c € LZ[O, 2], such
that ®

Yol P +leg D <.

k=1
It may be shown that these are the eigenvalues of the closed loop system (2.36)
(2.37), (2.45), (2.46).

In a given application, however, it is entirely likely that the particular
"canonical" observation (2.46) will not be available. Indeed, in the example
indicated, since this observation is taken at the same pcint where control is
applied and might, therefore, be subject to a certain amount of noise
disturbance, it might not be desirable to use this observation in practice. To |
illustrate the use of the technique of canonical augmentation (or '"canonical s
compensation', perhaps) let us consider the same system (2.36), (2.37),
but suppose the available observation is

y(t) = 2% (o,¢t). (2. 48)

Ve mm s pamse @ n - Riee e

It is not hard to show in this case that y(t) satisfies
y(t+2) +y(t) = u(t+l) (2. 49) -

rather than (2.43). This '"central" control canonical form is not asusable as
the "backward! form (2.43) because, unlike (2.46),

2
u(t+l) = (1-y)y(t) - [ c(s) y(t+s)ds
0

......
P
.....




is not a causal feedback law and cannot be implemented. But now couple (2.49)
with

z(t+2)+ pz(t) = au(t+2) +bu(t+l)
+cy(t+l) +dy(t) (2.50)
and let
w(t) = y(t) +z(t).

One ordinarily will take |p| < 1 so that the homogeneous part of (2.50) is .

asymptotically stable, thus avoiding the growth of parasitic solutions in the
compensator. Since

[y(t+4) +y(t+2) - u(t+3)] + p[y(t+2) +y(t) - u(t+l)] =0
while

[z(t+4)+pz(t+2) - au(t+4) - bu(t+3)-cuft+1)-cy(t+3)-dy(t +2)]

+[z(t+2)+ pz (t)-au(t+2)-bu(t+l) -cy(t +1)-dy(t)] = o
we find that

w(t+4)+(l+ p)w(t+2)+ pw(t) = au(t+4) +[1+b] u(t+3)
+au(t+2) +[p+blu(t+l) +cly(t+3) +y(t+1)]
+dy(+2) +y®] = (using (2.49) i
au(t+4) +[1+b] u(t+3) +[{a+c] u(t+2) +[p+b+d] u(t+l).
Then it i{s easy to see that with

a=]l, l+b=a+c=p+b+d=0,
f.e. with : ‘
a=1 b=-1, c=-1, d=1-p, '
we arrive at the ''backward" canonical form satisfied by w(t) : |
w(t+4) +(1+p) w(t+2) + pw(t) = u(t +4) '

for which causal feedback laws

u(t+4) = -yw(t+3) + [1+p ’Yz] w(t+2) - Y3 w(t+l)
4
+[p-y4] w(t)-j(; c(s) w(t+s)ds

may be implemented, yielding overall closed loop systems

(2.51)
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w(t+4) +y1w£t+3) +yzw (t+2) +Y3w(t +1) +~{4w (t) (2.52)
+ [ c(s)w(t+s)ds = 0, '
It is necessary to chgck separately that the system (2.49), (2.50), (2.51) is |
observable in any given case. ‘
The exponential solutions of (2.52), and hence the eigenvalues of
(2.36), (2.37, (2.48), (2.50), (2.51) may be determined with the same
flexibility as already noted for (2.47). This is discussed in some detail in the
thesis of R. G. Teglas [45] . A complete theory of canonical compensation

I
;
!

for hyperbolic systems remains to be developed but, we hope, the example
given here gives reason to believe that the method is a promising one. It is
clear that there are some connections with observer theory as developed in

[ZZ] and elsewhere; these connections remain to be worked out,
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Admissible Input Elements
for Systems in Hilbert Space
and a Carleson Measure Criterion”

by L.F. Ho+ and D, L. Russe11++

Abstract

We study the control system
x=Ax+bu, xe X, u scalar

where A generates a semigroup on the Hilbert space X but, in general,
the control input element b{ X, Many boundary value control systems,
point control force situations, etc.. , can be studied in this context . We
define and analyze "admissible'' input elements b and develop sufficient
conditions for b to be admissible in terms of the Carleson measure theorem

of Hp-theory .
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1. Introduction . One commonly studies linear, time invariant control
systems in a Banach space X in the form
x=Ax+Bu, xeX, uelU, (1.1)

where A is the generator of a strongly continuous semigroup of bounded
operators {s (t)| t =0} on X and B is a bounded operator from the
control space, U, into X. If u:[0,x)~-TU is locally (Béchner)
integrable, generalized (or ‘''mild") solutions of (l.1) corresponding to
an initial state

x(0) = X, € X

can be represented by the ''variation of parameters" formula (see, e.g. [3],
[(nj) .
X(t) = S(t)xy + [ S(t-s)Bu(s)ds (L2)
0

and a number of properties of x(t) thereby deduced .

It is well known, however, that most of the '"interesting' infinite
dimensional control systems do not arise this way because the degree of
controllability of a system (1.1) with B bounded is rather restricted if, as
is usually the case, U is finite dimensional or for some other reason the
operator B 1is compact, Indeed, most of the mathematically intriguing
examples arise in the context of partial differential equations with boundary
value control inputs, control forces exerted at isolated points, etc., and in
the context of functional equations which involve values of the control of
discrete instants , viz.; u(t), u(t =T een s u(t-T ). Ineach of these

cases the formulation (l.1) is inadequate and one must consider input

a® 2t ™ o ot o DU . 2 2




operators - B whose range is not restricted to the space X.

A number of authors have addressed the problem of interpretation of (1, 1)
for operators B of rather general type . We particularly cite the contributions
of Curtain and Pritchard [3], Zabczyk [22], Fattorini [6], and Washbum [20] .
It seems fair to say that, as brought out m' (3] ‘, the theory is more extensive
and generally applicable in the case of systems of "diffusion type', ordinarily
involving holomorphic semigroups, than in systems of ''wave'" or hyperbolic
character .

In the present article we shall restrict our attention to spaces X which
a;re separable Hilbert spaces and to finite dimensional control spaces U.
Taking U to be R™ . (1.1) becomes

m
% = Ax+ ) bjuj | (L 2)

j=1
where bj is the ontrol input element associated with the j-th control
component uJ . Since every solution of (l.2) is a linear combination of
solutions of x = Ax and theindividual systems x = Ax + bj ul ,

i=12,...,m, we may, without loss of generality, confine our discussion

to systems

x = Ax +bu (1 3)

wherein the control u 1is scalar valued. Much of our theory can be
extended to cases wherein U is infinite dimensional but we will not do
that here .

What distinguishes the present study from earlier contributions is the
attention which we pay not only to the relationship between the operator, A,
and the input element b, but also to the relationship between b and

the semigroup S(t) generated by A. In cases where A has discrete
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spectrum {Lk |k € K}, K being a countable index set, this amounts

to a study encompassing the input element b, the eigenvectors {¢k[ k € K}
of A, t*.e corresponding eigenvectors of the dual operator, A' as
defined in Section 2, and the exponential functions exp( )‘k t), ke K.

It is in particular reference to the latter that what is probably the most
important idea of this paper is developed . We show that a sufficient
condition for b to be an "admissible input element' (definition in Section 2)
can be given in terms of a measure on Borel subsets of the complex plane
whose support is {-Lkl k € K} . When that measure tums out to be a

Carleson measure the input element b is admissible . This result brings

out yet again the intimate relationship between the control theory of infinite

dimensional linear systems and parallel developments in yP theory
({51, [8]. [12]) ‘and the related theory of completeness and independence

of sets of complex axponentials. " |

- . . N . et . " N . . " ~"Q..~.
I AR G, PR e R CTe TN T L o e L e i »
e .."_,_y‘. ——ay -_hk- RPN R IR N - o S S




LS
L)
* 2.

g

') "-

—n i , Y -'-"
R PR i3
wn

frd
1]

RS

’
a.’

»

A !

R

t‘:-‘ 2. AdmissiHe Input Elements.

AAN

<l

' Let X be a separable Hilbert space and let A be a closed operator
’~ on X with domain, 8 (A), dense in X, generating & strongly continuous
.¢.

D
.

semigroup of bounded operators S(t) on X for t =2 0, For be X

a
x A
—

the (generalized, or '"mild") solution of

'.}f“ x=Ax+bu, ue leoc[o,w), (2.1)
"‘ x(0) = X, € X, (2. 2)
:::. is given by the ''variation of parameters'" formula
x(t):S(t)xo+j‘;t8(t-s)bu(s)ds (:.3)
._. and may be seen to be a continuous function x:[0,x) =X, Whether
‘-: x(t) 1is defined foreach t = 0 and (2.1) holds is more complicated:
7 sufficient conditions are that b € §(A) orthat u is differentiable as
afunctionof t ([3], [11]).
In this paper we wish tc consider (2,1), (2.2) in certain cases where

b does not liein X and to provide, for such b, a formula parallel to
- (2.3) . Our approach is similar to that used.in [14].
‘ Identifying X with its dual X', we denote the duality relationship
‘ by (x,v), xeX, vye X, lnearinboth x and y. Where X |is l
. the complexification of a real Hilbert space Xo the conjugate element 'y
is well defined foreach y e X and, with ( , ) denoting the inner
l"; product in X,
. (x,¥)=(xy), (x,y) =(x¥).

» The bilinear form ( , )  is symmetric, l.e., (x,y) = (y,x), x,y € X,




and, forall xe¢ X,

[ {x,v)|

o X vl
VA b4
Y#O X

Ixllyx = (2. 4)
The symbol A' will be used to denote the dual of A relative to the bilinear
foom ( , ), thatis

(Ax, y) = {x,A'y), xe 8(A), ye SQA").

The operator A' is closed with domain §(A') densein X. Itis known
that if A generates a semigroup S(t), then S(t)' is also a semigroup,
generated by A'., See [4] fordetails.

Let Y be a dense subspace of X which is a Hilbert space in its
own right with norm i "Y stronger than || ﬂx so that the injection
map

j =Y - X
jly)=y, veX,

is one-to-one and continuous with dense range Y CX. We further suppose
that Y is invariant under the action of S(t)' ty e Y= S(t)' veY,
and that this map is continuous with respect to [|S(t)'y|]Y » lvlly andthe
usual topology of [0, =).

let Y bethe dualof Y withrespectto X as described, e.g. in
[1, [14], [15] . This means that Y is the closure of X with

respect to the norm

I [{x,v)| : 2.5)
x|l = sup — .
b Yo vl
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It is known that Y, so defined, is a realization of the dual space of Y

and it is easily verified that the bilinear form (x,y) may be defined, by
continuity, for x ¢ Y , veY as

(x,y) = lim uww

k—- o
where {xk} is a sequence in X convergingto x in | ]]Yc . So
defined, (x,vy) generates, as x ranges over Y , all continuous

linear functionalson Y. We have

Xcxcy.
Definition 2,1. In the system (2.1), |i.e.,

2
x = Ax+bu, uce Lloc[°'°)’

b is an admissible input element if there exist Y. Y, s above, with

be Y, suchthatforevery T > 0 the continuous map

Lpy:Y - C(o,T]
defined by

(Ly)(t) = (b,S(t)'y), yeY, te[0,T], (2. 6)

has a continuous extension to

Lp:X —~ L%[0,T] .

Remark . It is clear that this amounts to the statement that in the dual observed

system

' i
Ay !
|
(b,y), |
\

t<0
]
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b is an admissible observation element; thatis, for ye Y,

z(+)=(b,S(-)y) € Cl[0,T],
this relationship extending continuously to 2z (+) € LZ[ 0,T] for yeX.

To verify that Definition 2,1 enables consistent definition, at least
in a generalized sense, of solutions of (2.1), (2.2) when b 1is an

admissible input element and to establish some of the properties of the resulting

solution, we present

Theorem 2,2 . If b is an admissible input element, the formula

t !
(x(t),y) = {xg S(1)'y) + {) (b,S(t-s)y) u(s)ds, ye¥, (2.7)

defines, for each t =z 0, aunique element x(t)e X. Given T > 0

and ue LZ[O,T]
x(t) = S(t)x, +B(t)u, te [0,T], (2. 8)

where B(t) is the strongly continuous family of bounded operators

B(t):Lz[O,T] — X given by

t
(B(t)u,y) =fo(b.S(t -s)'y)u(s)ds, yeY. (2.9)

Proof. From (2.8) and the factthat Y 1is dense in X itis clear that

x(t)-S(t)x0 = g (t) = B(t)u
where, for ye Y,
t L
(e(t),y) = fo(b.S(t-s)y)u(s)ds.

Let xe X andlet {yk} be a sequence in Y convergingto x with

respect to | ° IX . Since b is an admissible input element the




corresponding functions h defined by

k
h(t-s)= (b,S(t-s)y ) (2. 10)

converge in LZ[O,T] to a function h e Lz[ 0,T] . Defining
t
(¢@®,x) = [ h(t-s)u(s)ds,
0

we see that for te [0,T]

(et),x)|= |]|n u
I<e), x| = || IIL?_ I IILZ

[0,T] [0,T]

= Lol =l IIUIIL?_[0 r]

since (cf. (2.6), (2.10)) h=Ly,x. |Hence ¢(t) € X =X. This

also gives

e ®llx = ILpdl IIUIILZ[O’T] '

showing that for t ¢ [0,T], B(t) is bounded with

Bl = [Tl .

To establish that ¢ (t) 1is continuous in t for each fixed
ue LZ[O,T] (and, hence, that B(t) is strongly continuous in t), let

N
0st=<t=<T andform, for y e Y
N

t | ]
(¢ (D-ewm,y) ={) (b, S(t-s)y) u(s)ds

t ‘
-fo (b,S(t-s)y) u(s)ds = (with <t=s - (t-t))

t
= {’t(b.s(t- Dy)ul(t+(t-1) dr - (b, s(t-s)'y) u(s)ds
0

T-t
+f/  (b,S(t-s)'y) u(s)ds =
0
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t t-t
= fo(b, S(t-s)'y) (u(s+(t-t)) - u(s))ds + [ (b,S(t-s)y)u(s)ds
0

ULyl +E- -l o+l g oo 0

Since Y isdensein X and since for fixed u ¢ LZ[ 0,T] we have

lim u = 0,
A-t_.o\ll I 2[04-t]
1 u(s +(t-t))-u Alm  fu(. +(t t) -u =0 .
e 1R I uLz[O,t] T tﬂ IlL"‘[o t]

We conclude that for fixed u € LZ[0,T], and t,%® as described,

i, Je(0)- e(t)g=im [ef)-¢ )y =0
tt t t 4t

and thus ¢ (t) 1is continuousin X. This completes the proof of the
theorem .

let H be a separable Hilbert space and let { pkl ke K} bea
sequence in H, K being a countable ordered index set . The p, are

strongly independent if no lies in the closed span of {p ' |2t £ k}.

p
k
If, in addition, there is a positive number ¢ such that whenever
P =), agP. (2. 1)
Ko

the « being complex and Ko an arbitrary finite subset of K, we

k
have

2 2, n2
L leyl® =cSlIrly (2.12)
K

we say that the Py are uniformly ﬁ -independent, since (2.12) implies

2 2, 42
Ll s “lelyg (2.13)
K

B RN
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2 whenever {ak} €2 and p= é @, P is convergent in H .,

" If there is a positive number C such that

{

2 2 2
Iplg = C° ) eyl
Ko

e O A
'ﬁ :-n :‘- ;

p asin (2.11), we say that the sequence {pk} is uniformly l_% -convergen|

DN

; since this property implies that if {ak} e 12 the series Z a, p, s

X K
e convergent in H and

- 2 2 2
_‘:: "P"H =C }]-E‘, lakl . (2.14)
¥

Zj:‘g Recall that a sequence {pk} in H forms a Schauder basis for

' H 1ifforevery pe H there are unique coefficients oy such that the
_ series E @y Py converges to p in H ([21]). A Schauder basis
A
:::J, which is, at the same time, both uniformly lz-independent and uniformly
!z-convergent is a Riesz basis . For evident reasons we shall also use,
:2 synonymously, the term uniform lz-basis . If {pk} is a uniform #2-basis
N _—
5‘- for H ‘:henevery p in H has a unique convergent representation
P=) R

™ K

("v

& with  (cf. (2.13), (2.14))

\ ]
- -2 2 2 2 2

’ e Y lal = Il = C° Loyl

For the remainder of this section we suppose that
?‘ (1) the operator A with dense domain §(A) € X generates the strongly
b«
continuous semigroup of bounded operators S(t), t=0;
MY

'
>
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(ii) o@), the spectrum of A, consists of discrete, simple

3 eigenvalues xk, ke K, and the corresponding normalized eigen-
R

¢ vectors ¢k , ke K, form a strongly independent, uniformly ¢°~-

convergent Schauder basis for X,

Sincethe g , ke K, are strongly independent and have closed
,, span equal to X there exist unique biorthogonal elements ¢k, ke kK,
. such that

, k=12

(4y» B,) = o gl SreE
As is well known, the "‘k are eigenvectors of the dual operator A'
corresponding to the eigenvalues Xk’ keK. We further assume

(iii) the eigenvectors 4 of A'  have the property
q:k eYCX,.

(this is true, for example, if Y D §((A' )r) for some positive integer r) .

If x e X, the fact that the ySk form a Schauder basis in X
implies the existence of unique €x> keK, such that

x= ) &Py (2.15)
K
the series converging in X, From this it is evident that
. g = (¥, x), keK.

We are not assured, in general, that the gk are square summable but the
uniform lz-convergence property of the ¢k shows the square summability

of the sequence {gk} to be a sufficient condition for convergence of (2.15).

...........................
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Since we assume the "‘k llein Y, given any element b e Y'
(and this includes b e X) we may define
bk=(¢|k,b) (2. 16)

and obtain a set of coefficients hk , ke K, associated with b, In
general it is not possible to recover b from the coefficients bk . (An exampJ
is X =1[0,2r], Y-=HYo,2n], 4 () = @er)ylel®™ x=0,1,2 ....
The (= ySk) here form an orthonormal basis for X and belongto Y

but there is a non-zero element, namely 6(0) - 5(21r) . in Y for which

all of the bk are zero, This arises, of course, because the closed span

of the ""k in Y 1isnotequalto Y,.) As aconsequence itis not

generally meaningful to write b = Z b, gfk .
K

Nevertheless it may be meaningful to consider the initial value problem
(2.1), (2.2), i.e.,

x = Ax + bu
- 2
x(O)-xoeX, ue Lloc[o'a)’

for certain be Y , namely, those that we have already characterized as
admissible input elements , We wish now to show that the class of such
admissible input elements can be characterized in termms of the coefficients bk
and the eigenvalues X\, . If x(t) is the solution of (2.1), (2.2)
established by Theorem 2,2 for an ;dmissible input element b then,

in particular, for t =0,

(x(t), 4 ) = (x,, S(t) ¢ )
t t
+ [ (b, S(t-s) ) u(s)ds
t t (t-s)
= ekk 0. k +f ehk u(s)ds

.................

.......
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i
where
X0 = ) *0, k By -
K Nt
We do not know that the numbers e xO Kk are square summable
X but the series

At
k
%e %0,k P

must converge to  S(t) X by virtue of the (assumed) Schauder basis property

of the ’Sk . It follows that a sufficient condition for x(t) to belongto X
A is that the numbers

N t Lk(t"'s)
-. £ = By [ o

should be square summable foreach t=0. Equivalently, making a trivial

u(s)ds ‘ (2.17)

change of independent variable,

£x® = bkj(;

: The necessity of considering an infinite number of values of t can be obviated

t\ks

f(s)ds, f(s) = u(t-s).

by taking f to be an element of Lz[o,l‘] », T >0 fixed, and defining
f(s) =0 in [t,T] for t<T. The map

L = by j;Tex“s f(s)ds, f e L%[0,T], (2.18)

so defined may be designated as
Ly : L%[0,T] — X, (2.19)
Lo(D = x = é Zy By s (2. 20)

and it is easy to see that Ly,  isthedualof Ly :X—1?[0,T] as

defined by (2.6). Thus the boundedness of I‘T . as required in
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Y
'i
35
P
A
': Definition 2,1, may be obtained as an immediate corollary if it is shown that
, L'.r , defined by (2.18) - (2.19), 1is bounded. For our present purpose
2 this is the route of choice ,
~* Extending f further via f(t)y=0, t > T, the Laplace transform
., of f is the entire function
® T

4 $(2)= [ ePtemat= [ e Hemat.
£ 0 0
o Interms of @ we clearly have
“ §k=bk¢(-7\k),kel(,
g
‘3 and the following proposition is evident .
N
X Proposition 2,3 . The operator LT ( equivalently L'T ) is bounded
f just in case, forevery fe¢ LZ[O,T] the Laplace transform of f, ¢ has
A the property
, 2
\ ESIENTERS .2
q K
;‘ We are fortunate that the inequality can often be established with the
- use of the concept of a Carleson measure and the comresponding Carleson measure
1 ‘theorem as it applies to the space .
1 .

Hza = Hz{z | Re(z) > o}, o real ., (2.22)
N The space HZ{ z| Re(z) > a} consists of those complex functions @#(z),
l"
b ]

analytic in Re(z)> a, bounded in each half plane Re(z)= a +6, §> 0,
" and satisfying

f |¢(g+m)|zdn = M,s. e > a, (2. 23)
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where M ,‘ is a positive number depending only on ¢ (and not, in
particular, on ¢). Itis known (see, e.g. [l0]) thateach such

function has a limiting '"boundary'" function

g,(M) = Um g(g +in) (2. 24)
£ o

defined almost everywhere in -= < 7 S and ySa(ﬂ) is mzasurable

with

J l#a(ﬂ)lz dn = My .

2

Each p e Hi is the Laplace transform of a unique function fe I.1 oc

[0,=)
such that

[ le®twm|Pat < =.
0

let W be a (non-negative valued) measure defined on the Borel
subsets of {z|z>a}. Then @ is a Carleson measure if for every real

v andevery h >0
H({z|rt-h=Im(z) < t+h, @ <Re(z) s o +h}) <Ah (2. 25)

for some positive A depending onlyon (noton h).

For a Carleson measure we have

Theorem 2,4. I u is aCarleson measureon {2z | Re(z) > a} with A

2
asin (2.25), if gde Ha' and "a is given by (2.24), then

f{zme(lz')‘izi du(z) = 10002 f I, )% an . (2. 26)

..........
..............................
-------
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A proof of this theorem is offered, for the sake of completeness, in
Section 4 of this paper . The relevance of this theorem for our present studies
is exhibited in the selection of a particular measure p . For beY anda

given discrete spectrum {xk} for A, let

B = Fp, (0}
be defined by
m(-A) = [b®,  keK, (2.27)
m({z|Re(z) > a} - {\, |k e K} = 0. (2. 28)

In this case the left hand side of (2.26) becomes
2 N
LA B2 1% ° (et (2.21).
K
The PlancherelTheorem, on the other hand, gives
« [--}
/ l#a(ﬂ)lz dn = 2n [ |e®te))? at
- 0
2|a|T T 2
= 2e“ v [ |f@)]°at
0
when the support of f 1is restrictedto [0,T]. Thus
T
Y Iy $(-2 )%= 2000e2121T 2 [71g2 ar
K 0

and, in view of our earlier discussion, we have

Corollary 2, 5. A sufficient condition in orderthat b e Y  should be an

admissible input element for the system (2.1), wherein o(A) = {)\.k |k € K}

and the comresponding eigenvectors ySk, k € K, form a strongly independent ,

uniformly lz-sp.msggm Schauder basis for X, {is thatthe measure
defined by (2.27), (2.28) should be a Carleson measure in_
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{z|Re(z)> a} for some real «a.

We remark that the assumption (i) above together with the Hille-Yoshida
Theorem ([4], [11]) implies that the complex numbers -\, , k € K, are,
indeed, confined to some right half plane Re(z) > . The fact that the
support of f is restricted to [0,T] implies that the corresponding Laplace
transform ¢ is entire and satisfies an inequality (2.23) for every real a

(M¢= M¢,a here) .

-

e 4 e, ettt A A L A e
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3. Identification of Admissible and Inadmissible Input Elements; Examples .

bty b Y

Our first task in this section will be to develop a method whereby input
" elements b not in the state space X may be identified as particular elements
of a larger space Y' . The assumptions made will be somewhat more

restrictive than thos introduced in Section 2 . They are by no means necessary

PO

o oy D

conditions .,

Yot

;% Let us suppose that the operator A, generating a strongly continuous
semigroup S(t)} on the Hilbert space X, has (dense) domain §(A) and
that A possesses discrete eigenvalues )\.k, ke K, with

' lim N ] = =,

pk)=a = K

S Here P (k) denotes the number of elements fe K such that t <k with
, respect to the assumed order relation on K. The corresponding normalized

~

g eigenvectors ¢k are assumed to form a uniform basis for X. We denote

i the dual operator by A', It has the same eigenvalues )‘k and the correspondin#
1' eigenvectors q..k , k ek, will be assumed normalized so that

1
- ( # ) 1 » k=1¢

b Py? =

N 0, k#u1r.
]

< The g also form a uniform basis for X, as is well known. Then it is
Y
- easy to see that

) ) R

8(A) -{Y—%‘,xkﬂfkl%ﬂk"kl <=}

i

“ and that

v. ' _ 2

‘; 8(A) = {Y= %qu’klél)‘kykl <"°}.

For the work of this section we take Y = §(A') with the graph norm

A
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2 2 2
Ivly = 5 @ +[% ]9 In |,
K

in X, Then Y C X and the injection mapping is continuous . It will
often be possible to identify a Hilbert space 2 C X with continuous injection
map such that | Il isafamiliar (e.g. Sobolev) normand Y fsa

closed subspace of Z on whichthenoms | |, and | [y, are
equivalent .

We will be concermned with two different extensions of the operator A,
We suppose first of all that there is an element /:; e X notin P(A) and

that L {s an operatoron X such that
' N
8(L) = {¢ +ux| ¢ e 8(A), u scalar},
Ix = Ax, xe B(A).

We willreferto L as an ''operational extension" of A . Its significance
arises from the fact that many of the inhomogeneous boundary value problems

arising in applications can be expressed in the form

dx _
at— - Ix » (3- 1)
with the restriction
x = g+u§e S(L) . (3. 2)

The second extension of A, whichis a map
ﬁ: X-Y,
is a standard one, often used, e.qg. in [14]. If y,N1 € 8(4), s(A') ,

respectively, we have

‘e e a LT P P Y e I i O A A N T Y
I N N et s A S ORI . AR I YR VI TR SN T e
N '.-"L‘.\'\k\ Rty a3 et et el it i et A =
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(Ay,n) = (y,A'n).
Since A':Y= 8(A') - X is continuous, the form (y,A'n) extends
to (x A'n), xeX, by continuity and density of 8(A) in X and,
so extended, (%, A'n ) c_lefines, for each fixed xe€¢ X, a continuous

linear functionalon Y, i.e., anelementof Y . We define

A:X =Y = (8(A)

(B, ) =(x,A'N), xeX, NeY=s@".

Our first goal, with reference to the system (3.1), (3.2), is to replace

it by an infinite set of scalar ordinary differential equations

dx
ot = M tbu, kek, (3.3)

where

x(t) = 2, x4,
kekK

convergent in X, In order to do this we recognize first of all that

z = ) NX By
K
represents not Lx, but rather /I\\x , since

R, i) = o ) = (N ) = Nex
We rewrite (3.1) in the form

& = Rx +1x-Bx, (3.4)

an equation in Y . Then, since x is to have the form (3,2) with
¢ € §(A), and since

T YA, Tt et e T T I I e e P L T S T TP S R R
- LR o N R L o R R S AP SR UL « e . . « " e R . . . LRV T S o
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A Rk

1t =A¢ = Ag, ¢ € 8(A),

(3.4) becomes

%"t— = A + (IX-2%)u.
We define be Y, a continuous linear functionalon Y = g(A'),

(b,n) =(Ix-A%n) = (X n) - (X A'n)
for M € 8(A')= Y.  We then have
b= )by #y
K
where the '"'control input coefficients", bk , are given by

b

(b,4) = (IX, 4) - (X AW)
(I, 4 - 0%, 4 ) .

k

In most examples we shall have 132 = 0. Then, if
A Pal
x =) X Py
K
convergent in X, we obtain, in place of (3.6),
el
bk = -Xk X » k e K,

Also, in this case, the equation (3.5) becomes
(b’ Tl ) = -(x, A' T‘) .

The equation (3.5) (or (3.8)) will generally be used to identify the

22

(3.5)

(3.6)

(3.7

(3. 8)

functional formof b while (3.6) (or (3.7)) will be used to identify its

expansion coefficients in terms of the eigenvectors ’Sk of the operator A,

While not all admissible input elements can be treated this way the class is

large enough, we believe to warrant the detailed description we have given here.
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: Example 1: Heat Equation. Let x{s,t) satisfy

’

s 2

® =%, o0<s<1, o, (3.9)

.',. S

g with boundary conditions

'.:3: | ax

_ x(0,t) =0, ax(l,t)+B—as—(l,t)=u(t), (3. 10)
: where a,B are real numbers, not both equal to zero. In this case
j we take
% 2
= X=1L"[o,1]

& 8%x 2

z Ax=;—2, xe 8(A) = {xe H[0,1]]| x(0) =0,

> S .

i? ax (l)-l-ﬁx (l)=o}o

) 62x 2

" Lx=a—z-.xe 8(L) = {x e H"[0,1] | x(0) = 0},

o) S
a, [T GO

j X(s) = S[ZC;S]’ @+B =0, (3.11)
¥ With
>, 1 .
(x,v) = [ x(s)y(s)ds

3 0

p we see that if X,y € 8(A)

1

- (A%, y) - (x,Ay) =j; (x"'(s)y(s) - x(s) y'(s)) ds

1 1 d '

5 = @5 (X(8)7(s) - x(s)y'(s)) ds = (since x(0) = y(0) = 0)
5 = (Dy() - x(1)y' (1)

‘.‘:

: _JXmgxanym - x Gy +van, B £ o

LW+ Eym - (xw+E2 ¥y, afo

n
o

. ® oo




24

and we conclude A =A'. In the first case of (3.11), <« +B £ o,
LQ =0 and we have, for N e s(A') = 8(A)

N 1 1 1"
(b,n) = -(x,A'n) = -goz [ sn'(s)ds
0
) . 1 =N + ()
1
~nq), B
5 ) £ 0

-(17"]'(1). @ # 0 .

Thus we have

1
56(1)’ Bto

1, (3.12)
g &M, afo .

The two agree if neither @ nor B are zero because the linear functional
1 Lo Loy
B 6(1)"' g 6() 1iszeroin (8(A)) =Y in this case .

The eigenvalues of A are )‘k = -mi where, for k=1, 2, 3, ...

@ sin (w,) +Bmk cos(w,) =0 . (3.13)
Let
= = sin 6,
J az+l32mi
Bw
k = cos O

k
[ 2 a2 2
a®+B Wy
and (3,.13) becomes '

cos (mk— ek) = 0

so that
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w, = (2X=1) 1 4 sin7! < .
k 2 5 >
Ja +B mkz
It is easy to see that . = s(%) as K=o so
@y
2k -1 1
“’k: ("2'_)" +Q(E): B # o, (3014)
uk=(——2kz-l)1r+%= kv, B=o0. (3.15)
Defining
1

sz = _I‘; si.n(mks)2 ds
it is easily seen that in all cases the vy are nonzero and
Hm Vi = A
K=o NZ~
Then the eigenfunctions

1
ysk(s) = —v-; sin(mks)
form an orthonormal basis for Lz[ 0,1] . It follows then that the coefficients

of the input distribution elements (3.12) are given by

1
By Sbﬂ(wk), B # o,
b = k ) (3.16)
w, cos (w
X Qv k ’ a,é 0.

k
We consider here the case B #Z 0, saving the analysis for B = 0

until later in this section. If P # 0, formula (3.16) showsthe b

k
to be uniformly bounded .  The complex numbers - )‘k = mi have the
property (from (3.14))
-1.2
-x.k=(—z-’-‘z——l-) nz+e(1). (3.17)

N
ooy
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..“.?_'.':F'

Thus the number of such -\,  inany set - |Im(z) - 7] =h,

as=Re(z) s a+h 1is 6 hl/ Z) and it follows that the measure p with

! B=N\) = Ibklz , p({Re(z) = a} -kU ) {-Xk}) = 0 {1s a Carleson measure,

OF dm e e wm £ >

Hence if B # 0 the boundary input (3.10) is admissible .

In this case the result is easily obtained without the Carleson measure

theorem; for, if the coefficients Sy are square summable and T> 0,
; ) v -
® T 2A\t
12 beoge ", = s (bl 3 lo / o2k
k=1 10, T] R P k§1 * k{:l { at

. { } @ 2 ® Qez)kt - su «® 2 f“ - | <
= o ™ fglw jkz___;I{) a kp{lbkl}jkgllckl L

(3.18)
g since sup {lbk[} <=, and we conclude that the function sequence
‘ k
-th
{bye "1}

in such a way that a simple argument of this type does not apply and the Carleson

is lz-convergent in Lz [0,T]. Our next example is chosen

theorem is actually needed .

Example 2, Ancther Heat Conduction System ., As a further example

we ask the reader to consider the system shown in Figure 3.1.

- PR - " « e T e . A
™ LW "_-- - '.‘ s '-. J-:-. .-_'.._‘. - .‘:.' ._._, ~‘-l LY AN . '-_. .'_ .'-... I .-. PR Y
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Figure 3.1

LN LR,

The shaded horizontal bar, B, represents a layer of material, whose depth

&

' will be assumed negligible, and whose heat conductivity, k, 1s smallin
2 comparison to its specific heat R while the reglon @ consisting of the
half strip

e Q :0=sxs=s1], z=<0,

:E is assumed filled with a material whose specific heat, r, 1s small by

k comparison with its conductivity, K. The heat flow equations are thus

:

:

.
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- aT 3 a1 ‘
4 Rz =k — - K+, (3.19)
ot axZ 9z
Fy
2 2
Al at 3T T
| r= = K{ + ) (3. 20)
. ot ax2 az2
| together with boundary conditions
]
i ]
, Boty=0, FLar=o (3. 21)
|
2 0,zt)=0, L@zt=g@um, (3. 22)
N -aa-;-(x,z,t)= lim T(x,2,t)=0 (3.23)
lim Z —--
Z —» =0
T(x,0,t) = T(x,t), O0=x=1, (3. 24)
‘» The inhomogeneous boundary condition along x=1 z=0, represents
¢ the input heat flux . In (3.19), (3.21), T(x,t) 1s the temperature in
|
the bar, t(x,2,t) the temperature in Q . ‘
If we assume k,r vely 3:adll hy comparison with R, K, we may, |
as an idealization, feplacz 73,19, and ¢J.20) by
. 3T _ &
A R at - K a9z (3.25)
' . 2 2 '
L 81‘+ar=°' (3. 26)
ax 9z

retaining the boundary conditions (3.21) - (3.24) . We take as our basic
state space
={T=T®]|T e L*[0,1]}.
We define an operator A on J with domain
s = Ho01]

e e e e e e I TR, - et e L AT R T T "
b e r -R.". IO, R ~,'_\\ d -_:_\. S RN e N :'\ e ‘-.‘r R N IO
Vg : y V.o LIRS - . , 5 + Lt ) . 4P
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asfollows, Given T e 8(A), welet T = 17(x,2) satisfy (3.26)
in Q together with

T(x,0)=T(x), O0=x=1, (3.27)
and
3% (0,z)=0, 3T (L,2)=0 (3.28)
um 32X(.,z)=0 m 1*[o,1]. (3.29)
2L~
Hm (-,z)=0 in HYJ0,1]. (3. 30)

Z - -
From [l14], for T e H'l[o,l] we have <TE¢€ H3/2(ﬂ) . The trace
theorem ([1], [14]) then gives

21 (., 0)e 1%[0,1],
and we define |

= - K 3t .,
AT = -3 37 (-, 0). (3.31)

So doing, (3.25) becomes

T

AT (3. 32)

and (3,31) is subsumed in the definitionof A.

|
|
i
N

The operator -A is the positive square root of the Sturm-Liouville .

d?T

ST K2
T TR &l

.....................................................................
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(1) = (e H2[0,1]| L (0= &L (1) = 0} .

We compute (-A)z'l‘ for Te §(T). PForsuch T the solution

of (3.27) - (3.30) € HY2(Q). If we let

then

and

since

and T

?(x,z): % —aa;;- (x, z)

T(-,0)= -AT

2 2
2 A K 9T
(-A)"T = -At(-,0)= —5 —5 (+,0)
R azz
R o & el

TE HS/ 2(S‘)) together with (3,26) implies that

9% 92 2
=%(-,0) + =5 (-,00=0 in L°[0,1]
ax 9z

=1(-,0).

The positivity of -A follows from the divergence theorem ., If

T ¢ #§(A)

and T = t(xX,2z) 1s constructed as above, we have

y[(%}(x.z))z + (22 (x,2)?%] daxaz

= ffﬂv'r(x.z)llzdxdz (V = gradient)
Q

= y[div(r(x.z)v-r(x.zn - T(x,z)a%T(x,y)] dx dz

(a2

= Laplaciap) = (from (3.26))
= [fdiv(v(x,2) VT(x,2)) dxdz = (using (3.27) - (3. 30))
a

1
T
= ,0) 2L (x,0)dx = (T, -AT) .
{T(x Vo (0 = %[0, 1]
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This completes the proof .
Accordingly, A is self adjoint with eigenfunctions

o) = 1, F 0= NT cos(knx), k=123,...

and eigenvalues

= = _K =
RO—O, kk--Rokﬂ', k-1,2,3,....

Let w(x,z) be the solution of the following inhomogeneous

boundary value problem:

"w 9w
+ =0 in Q
X (0,z)=0, 2¥(L,z)=g(2)
lim -%-zvl-(x,z)= Um w(x,z)=0.
L~ =@ Z — =®

w(x,0) =0, 0=sx=s1l,

We will assume that g (z) is such that the resulting w(x,z) € Hz(ﬂ) .

In this case the inhomogeneous equation can be interpreted as

T = AT +bu
where b= b(x) 1is givenby

K
b(x) = -} ao-(x,0).
To compute the coefficients of the expansion
bx)=) b 4 &,
k=0

we note that since A is self adjoint, W (x) = ’Sk(x) , and

fl (x) b (x) dx
= ' R
b, oﬁk )

3l

(3.33) |

(3. 34)

(3. 35)

N R B N e e e R e L T
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Let ok(x, z) be the solution of

2 2
i T
_T+-—Z =0 in Q

ax 9z

L]
PR AV

»
e ]

with

PHRE

O (%,0) = 0, (¢

and homogeneous boundary conditions of the type (3.27) - (3.30) otherwise.
2 2
Then, with A2= a—z- +—%— ,

9x 0z

., IS ‘C
.)‘.J.'.‘t L7

o SRR,
3 )
Q
i

1

L [tbk(x,z)Azw(x, z) - w(x, z) Az¢k(x, z)] dxdz h

]‘; d:lv[q>k(x,z) grad w(x,z) - w(x,z) grad q;k(x,z)] dx dz

oS T,

R 0 ‘
= -3 j; F ) b)dx + [ @ (1,2) g(z) dz

gt el
RN, AL

N giving (cf. (3.35))
0
e be=RJ o (Lz)g(z)dz.

. Now it is easily checked thatfor k =1,2,3,...

¥ & (%, 2) = (NZ cos krx) (exp (kwz))
f. so that :

- ok(l.z) = (—l)k’fz_exp (krz)

and thus

k 0
bk"-' =1)" N2 K f exp(kwz)

-
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The Carleson measure theorem.can be used in a slightly different way
than that set forth in Corollary 2.5 to showthat if g e L®(-=,0] then the
bk are square summable and b 1s, consequently an element of LZ[O, 1] .

Writing ¢= -2, g(-¢t) = E(c), we see that

by = ('ﬁ%“'rz_x {:exp(-knc) §te)de .

Since the measure p assigning the value 1 to each of the points kw,
k=0,}2,..., is clearly a Carleson measure, and since _(;llkT\f_z__l_(_
changes only in sign, {bk} € 22 .

I g(z) 1is just bounded and measurable on -» <z =<0 we can
1lmost trivially obtain

b, = (L)

and the hk will be square summable ,

It is obviously possible to replace g (z) by distributions of various
types. Taking g(z) = 5(0) comresponds to a point heat source at the

comer x=1, 2z=0 andleadsto

k
by = (-1)" N2 K Rﬁ K (3. 36)

In our present example X = L70,1] , Y= g(A)= H[0,1] and

Y = H'l[ 0,1] . The coefficients (3.36) may be reccgnized as those |
corresponding to § ) (referring now to distributions along the x-axis) . |
Any measure p assigning to the points ")‘k = % krw values
Ibklz which are bounded evidently yields a Carleson measure and we conclude
that all of the above cases correspond to édmlssible input elements ., In this

case the argument repreiented by the inequalities (3.18) will not work

because the series Y, (-—5%1—‘- )  is not summable in this example .
1
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Example 3. Hyperbolic and Neutral Systems .

A wide variety of systems involving linear hyperbolic partial differential
equations in two independent va;lables x, t, or neutral functional equations
lead to systems of the form described at the beginning of this section, the
elgenvectors, "k R of A forming a uniform lz-basis for the state
space X and the eigenvalues Lk confined to a vertical strip
a < Re(A)< B inthe complex plane. It also usually tumns out in these
cases that the number of )'k in any rectangle

a < Re(A)< B, y<Im(A)<$
is less than or equal to M(6 -~ y), where M is a fixed positive nurer,
It is evident that the measure (2.27), (2.28) is a Carleson measure in thse
cases whenever the control input coefficients bk constitute a bounded set .

Example 4 . Linear Surface Waves . If the operator A is defined as

in (3,31) but, instead of the first order system (3.32) we consider the second
order counterpart
E+Ar=0 (3.3

we obtain the linearized equations for small amplitude waves on the surface

of an incompressible fluid . The theory is more fully developed in [16], [17],
. 1
[19]. With n=1¢, (3.37) 1is equivalent to the first order system |

(i) =_(-: ;)(g)’é “(rcn) - (3. 38)

To obtain a topology corresponding to the energy of the system one defines
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H(C>|]Z= bei?, + (1,87 (3. 39)
) n Jle Lolo,1] Lolo,1]
where
2 2 1
L500,1] = {¢ € L9o0,1] |{’ t(x)dx =0} . (3. 40)
The restriction to Lg[o, 1] corresponds to conservation of fluid volume.
On the domain
8,(A)={¢ € H'l[O,l] l_{;l tx)dx =0}
the operator A is invertible . BRs eigenvalues are (cf. (3. 34))
xk=-§ku, k=123,... (3. 41)

with the same eigenfunctions ¢k(x) , k=12,3,..., asshownin

(3.33) ., Correspondingly, the operator G has eigenvalues

1/2
_ K= 172 - _.1/2
iwk, -:lmk, ©x = R k = yk'/7,

k=12,3....

(3.42)

and the eigenvectors, orthonormalized with respectto | || e and the

corresponding inner product are

e = ¢k)’ Yoy = ), k=123, .
j""’k¢k : -1wk¢k

To discuss admissible input elements in this case we let Bk ,

be non-negative numbers, k=12,3..., anddefine

u' {iuk} = Bk ’ p’ {-luk} = B_k’ k= l’ 2’ 3. see

K ({Re(z) =a} - kLzl ({(io)} U (-1} = 0.

B-k
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let B(w), -»< w < o, be defined as the plecewise linear function

such that in the interval [1mk. 1°’k+1]

Bla) = Plagy -0) + By ylo -wy)

bl 8 e

. (3. 44]

Since
B ml/z +B wl/z
f“’k+1m1/zs( ©)do = —K K : kH © k4 Loy - 0]

1
=~ TP Py, ke

we conclude that U 1is a Carleson measure just in case there is a constant

C such that

mel/_zﬁ(m)dw = C|v - o] (3. 45)
ag

whenever 0 < 0 < 1, together with a comparable condition involving the

ﬂ_k and negative values of w . But (3,45) 1s true just in case
1/2 g -
wy .ksC, k=12273,...

and the comparable condition for negative k is

w/28, = C, x=123,....
Thus for the inhomogeneous system

()= <)) *

the input element (b )
2
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,‘ . Py by

:E » = B k
N 1oy Ay b2

2 <bl .

ﬂ = -k
;3 - iwk ¢

is admissible, from this criterion, if

o
N

kl/z(lﬂklz +1B_ %) < ¢ (3. 46)

for some fixed positive number C . It will be noted that this is (slightly)
less restrictive than the requirement

< - -

e

L4 .

g Example 5. . Negative Results. For any system similar to the one in

4 Example 4 but with l"’k-!-l - “’kl = @ (l/k]‘/2 4+ g) the Carleson measure
i; condition will be stronger than requiring b € X, Hence failure of the
Carleson measure condition cannot be used to show that an element b is

3 not admissible, forany b e X 1is admissible.

-
7 To illustrate what can be done in a negative direction, we retum to

.f'z Examplel with B = 0. This situation has been studied, using a different
' approach, in [13] . We present here an argument more in the spirlt of the

£} present work. As shown in (3.15),

E ).k= -wi = -kztrz (3.47)
and (cf. (3.16) and, w.l.0.g. taking a«a =1)
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"b =NZ kn cos(kr) = (-1*NZ kn . (3. 48)
Stnce B, = |b|?= 2% n®  while (k+1)®w?-%%n? = 2ka? 447,
_ 2
it is not hard to see that the measwre p = “b'“k} , R (-Kk) = lbk] is

not a Carleson measure in this case . As we have remarked, this by itself
is not enough to show that the input element with coefficients (3.48) is not
admissible . To show this, we ask the reader to consider the function

y (z)=(z +1)7"

analytic in the complex plane minus the cut consisting of {z|zreal, z =< -1} .

K r > %,:, "pr is square integrable on any vertical line {z| Re(z) =

g, & = 0} with uniformly bounded 1% norm and p (z) is bounded for
Re(z) =20 . It follows that r(z) is the Laplace transform of a function

- 2
f = fr(t) with f. e L [0,=1}. Then

2

@ 2
b [ eF T ey
0 r
X 2 2 (-)*NZ kx
= (1) NZ kw P (k%) = S5
(k“n "™ +1)
= o(|x[*F), k—w. (3. 49)
This expression is not square summable if r satisfies the inequalities
1
l1-2r = --i »
80 we require
1 3
3 <r = Z°
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:; kzu'zt
\ let E be the closed subspace spanned by the functions e~ in
g Lz[o,o) and le¢ E,, T>0, be the subspace of Lz[o,’l‘]

consisting of restrictionsto [0,T] of functionsin E. If ?; is

the orthogonal projection of fr onto E we clearly have
b @ 2 2 ) 2 _2
‘ ~k“n"t o - ~k"w~t
L‘ {, e £(t)dt = {) e £ (t)dt.
& It is shownin [7], [18] that the natural restricionmap R:E — Eq
i't is onto, (obviously) bounded and (not so obviously) boundedly invertible
! with respect to the induced I.z[o, ®), LZ[O,T] topologies of E, ET ,
\ 2 _2 .
: respectively .  Thus, with p (t)=eX " °,

k" ZI: o o
e £ (t)at = (f ,p, )
% -1 -l xn
: = (. ,rRp ) = (R'H*E, rp)
3 r 1210, «) r 1%[0,T]
: T 2_2

‘., -k ot
= e @ _(t) dt
)
;: where
i 9,.= (RY*E e £, c ?[0,1].
b It follows that P is an element of L2 [0,T] such that the numbers
b ' T .2 2
» (-0*NZkn [ e* T o mat, k=123---
. 0
' are not square summable ., From earlier developments, the input element b
;' with coefficients (3,12) comesponding to the boundary condition (3.10),
with B=0, a=1:
¢ x(l,t) =u(),

is not an admissible input element ,

¢
4
A
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outside the circle of mathematicians working in HP theory and because the
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4., A Proof of Theorem 2.4. It is clear that the Carleson measure theorem

in Hi , Theorem 2,4, is centralto our work in this paper, This result,
in one form or another has been known for somewhat more than a decade., A
proof for HZ(D) , where D is the unit disc in the complex plane,
appears in Duren [5] . A proof for functions in HL is given, by

Koosis in his recent book [12] . The reader is also referred to the recent

book [8] by J. Garnett. Because the result is not particularly well known

results are rather scattered and not readily available in precisely the form we
require, we offer here a proof of Theorem 2.4 which is a direct adaptation
to the half plane of the result for the unit disc appearing in Duren's book .
The proof given .here originally formed part of the first author's doctoral
dissei-tation [9]. Asin Duren's work, the proof makes use of a relatively
simple case of the Marcinkiewicz interpolation theorem ([23], Chapter XI)
and, again following Duren, we do not quote the general Marcinkiewicz
theorem but, rather, give a direct proof for the simple special case required

here .

We begin with a covering lemma of "Vitali type''.

lemma 4.1, let {I,[AeA}= 3 bea family of intervals in R'.

Suppose there is a positive number K such that for any finite collection

(I,t M SUPIRALIR % } of disjoint intervals in J
1 2 : n

Y, |5, | < K. (4.
. Y
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Then we can choose a sequence (I, | k= 1,2,3,...} of disjoint intervals
k

from 3 with the property: forevery X e A there exists

ke {1,2,3,..«} such that

where J,  is the interval having the same centeras I,  but five times

k
the length of ka.

Proof. From (4.1) it follows, in particular, that the length, IIXI’ of
I,t is uniformly bounded (take n =1, )‘1 = N). Define the sequence

{1, } inductively as follows . lLet I be such that
My M

1
|1 =5 sup |I,| .
)‘ll zkeA A
For k=2,3,4,.-. let I)\ be disjoint from I)\ , 1=12 ¢ee,n-1,
k i
and such that

II\kI 2% sup{llxl A€ A, I)\ nI)\ = ¢: 1= 1,2,'°°,k-1}. (4.2

1
Since the ka are disjoint it follows from (4.1) that

Jn 15|

Let I). € Jd. Then there exists k such that
I, ’”xki‘ p. (4. 4)

Otherwise (4.2) and (4.3) could not bothbetrue. let k be the

smallest integer such that (4.4) is true, Then
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Proof. From the Poisson integral formula in the half plane we have

42

I, = zllxk I
0
and, together with the fact that I, n 'ka # ¢, this implies that

I)‘C Ik R completing the proof . 0

We subdivide the rest of the proof of Theorem 2.4 into several propositioé
for clarity ., The proof is given for the half plane Re(z)> 0, without
loss of generality, and we designate Hg simply by H2 .

Propogition 4,2. let g € H2 and let ;60( f.) Dbethe corresponding
boundary function in Lz(-a,n). For z= otir, c>0, let

I, be the interval

I = [v- 0, T+ 0] (4. 5)
and let ,
1
(z) = sup TIT (it)|dt, (4. 6)
; Ie s, |zl JI'M0 !

where J§, is the set of all finite intervals containing I,. Then

18(2)] = & gz). (4.7
_ ™

so that

*® (it)dt
l¢(z)l=%[2'f | gyit) .

2 2

+f o|¢°(1t)|dt]

] r3
jt-t| <o o +(v-t)

Ry

Y Lal
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Let p beaCarleson measure and; for s=0 let E  be the Borel

43 -
[ $.(it)]dt |d,(1t)] dt
R N I SR
LN=0 |¢_<| =2 He &0 t-t|s o ¢
‘%LZ ; 8(z)+zz(z)]
N=0
=30 22 .
Proposition 4,3. let Ve L(-oo) and, for z=o0+irT,
c>0, let I, begivenby (4.5) while (cf. (4.6))
1
J(z)= sup 'l—Il-{lqa(t)ldt. (4.8

Ie "z

measurable subset of {z | Re(z) > 0} given by

= {z |Re(z)>0, $(z)>s}.
Then, with A as in Definition 2,3,

k(E.) . (4.9

Proof. Let $ be the family of all finite intervals in Rl such that

Ti'l'-{ g |dt > . (4. 1
¥ L.,I, - 'I €Jd are disjoint, then (4.10) gives, forevery n,
n ;
T oInl=3 Z ,{klwmldt = tlvl ey (4.1
k= -0, ®

Thus J satisfies the hypotheses of Lemma 4.1 and we can find a disjoint

sequence {Inl n=12,3...}c3 suchthat, J_ having the same

n

-.‘.s}\ ‘L -.ﬁ.-.\ }

Y b R T u e e
\\ A
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center as In but five times the length, each I € 4 1is contained in

some ]’n .

It ze Es’ then Iz CI forsome Ie J andwe have, for

some n,

Then clearly,

' I
zeS8 ={o+ir|0< cs-l—%l » Tell}.

This being true forall z ¢ Es ,

Since p  1is a Carleson measure and (4.11) holds,

PIE) = ) m(S)s=a ) R
n=1 n=1
SA v 5A
== ) 1Ll = 55 ||'~|‘"L1 .
: n=1 -, @)

Broposition 4.4. Let ge H-> with boundary function Bo(1+) € L¥(-a, )

Let g(z) bedefined by (4.6). Then, if p is a Carleson measure on
{z|Re(z) >0},

{B (F(z))* dp () =<10af 18412 at . (4.12)
(z) >0 ~e

Proof, Foreach r > 0 .let
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golit) i [F(it)] > r
b (1) =
0 otherwise .

From ¢O (1<) € I.2 (~=, =), we conclude that the support of q’r is a
subset Zr of (-=,®) of finite (Lebesgue) measure. Then

\I:r € Lz( Zr’ oy Ll( Zr) and we conclude, since q;r vanishes outside
Zr , that "’r € Ll( -®, @), Moreover

{’ ol dr = { érlﬁo(lt)ldtdr

Ll( ~, °)

o |Bolt)] ® )
=f_,-{, dr|g, (it)|dt = _[°|¢0(1t)| dt

2
= 1. ) .
TN

»®)

Let af(s)= p.(Bs) . Then we can see that
{e (3(2))zdl-l (z) = -faszda(s) = Zfasa(s)ds .
(z)>0 (] (]

From the definition (4.8) of it 1s clear that for any two such
functions, q;l, \pz » we have

(b + ¥5)(2) = §y(2) + §,(2) .

Hence

B(z) = (4, + (Fh(1+) -4 N (2)

= $(2) + (B (ITT=9) (2).

= (2) + 1
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(4.13)

(4.14)

(4. 15)
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3
3 since |8 (it) - $. (t)]| is eitherequalto 0 oris =r, Iet
4

Fo= {z]|§.(2)>s}.
§ Suppose Z € EZr‘ Then z(z) > 2r and (4.15) gives
b
k! ~
3 b (2) = g(z)-r>r
g and we conclude 2z ¢ I-‘r « Thus

EZr C Pr .
i Hence, from (4.9) of Proposition 4. 3,
£
7 5A )
g B(E) = "(Frlz) = 4 Iltllrll 1
[ L (“": °)
so that
" f ra(r)dr = f re(E ) dr
; ; o
g =<saf ful , dr = (using (4.13))
‘ 0 L(-=, =)
3
. 2
E ) 0 Lz("“s ’)
. Then (4.14) gives the inequality (4.12).
The proof of Theorem 2.4 is completed by combining (4.7) of
' Proposition 4,2 with (4.12) above to give
’ 2 100 2
{e BN det) = 25 [ ()’ dee
(z)>0 ™ (z)>0

Lo LT W e

= 1008 (g ()2 at
T -

a ]
» i
N |
; \
1

- M |
, ]
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: ._3 as claimed in (2.26), except for the trivial detail of replacing
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