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1.

1. General Remarks.

During the Deriod November 1, 1981 to October 31, 1982, the

Principal Investigator, in cooperation with several research

assistants, carried out a orogram of mathematical research in

the general area of control theory of partial differential eaua-

tions. The program involved two distinct phases: an effort aimed

specifically at the develoDment and improvement of control stra-

egies in connection with the wing flutter problem and a more

general program in the area of distributed parameter control prob-

lems of hyperbolic type.

This work resulted in two scientific papers which form the

greater part of this report.. The first of these, "Some Remarks

on the Current Status of the Control Theory of Single Soace Dim-

ension Hyperbolic Systems" was presented at the NASA JPL Symposium

on C-ontrol'and Stabilization of Large Space Structures, Pasadena,

CA, July, 1982. The second, "Admissible Input Elements for Systems

in Hilbert Space and a Carleson Measure Criterion", by L. P. Ho

and the Principal Investigator, is a paper which largely resulted

from Dr. Ho's thesis work, also supported by this grant, in part.

In addition to Dr. Ho, who is now with the University of Iowa,

the Principal Investigator was assisted by R.. G. Teglas, H. M.

Baron, and R. Rebarber..

AIR 7oRcr oFFIcs 0Fr SC'IENTUpTC RESIARf- (AYSCjNOTICE OF ThM3S',,1TTAL TO DTIC
This technjij' , 1'1co:'t has boen reviewed aad is
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2. .

Supported by the Grant.

~gtfunds were used to support travel by the Principal

dtar and one Research Assistant, H. M. Baron.

Principal Investigator travelled to Pasadena, Cb~lifornia,

aand pre sent a paver at the NASA Jet Propulsion Laboratory

lur on Control and Stabilization of Large Space Structures.

or presented concerned the current status of the control

of hyperbolic partial differential equations with Darticular

a on observers and canonical structure.

te Principal Investigator also took part in the 30th Arini-

Smeeting of the Society for Industrial and Applied Mathe-

(SIANM) in Palo Alto, California, July, 1982. A paper out-

the treatment of control problems associated with infinite . .

onal linear systems by means of methods from the theory of . .*-

c functions was pDresented at this meeting by invitation of

anizing committee.. Ms.. Baron also attended this meeting

sented a paper on control canonical forms for systems gov-

Yvarious types of partial differential equations.



3.

3.. Technical Appendix.

This appendix consists of two- papers whose predaration was

suDorted in Dart by the grant. These Dapers are:

"Some Remarks on the Current Status of the Control Theory
of Single Space Dimension Hyperbolic Systems"

and

"Admissible Input Elements for Systems in Hilbert Space
and a Carleson Measure Criterion",

the latter paper being jointly authored by L. F. Ho and the

Principal Investigator.

I
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SOME REMARKS ON THE CURRENT STATUS OF THE CONTROL THEORY

OF SINGLE SPACE DIMENSION HYPERBOLIC SYSTEMS

D. L. Russell''

University of Wisconsin Mathematics Department

ABSTRACT

We review various aspects of the control theory of hyperbolic systems,

including controllability, stabilization, control canonical form theory, etc. To

allow a unified and not excessively technical treatment, we restrict attention

to the case of a single space variable; the multi-dimensional case is treated in

our more extensive review ( 36]. The paper concludes with a short discussion

of the newly developed procedure of canonical augmentation.

SOME ASPECTS OF THE CONTROL THEORY OF THE WAVE EQUATION

AND RELATED SYSTEMS

The systematic study of control systems governed by partial differential

equations, a special, but exceptionally important, subcategory of distributed

parameter systems began in the early 19 60' s with the work of the Soviet

scientists A. G. Butkovskii [3] , [4] ,Yu. V. Egorov [IU] and others. These

works were primarily concerned with the extension of Pontyagin' s Maximum

Principle [26] to certain classes of processes which could not be satisfactorily

modelled by finite dimensional mathematical systems. Controllability questions

were raised but were usually subsidiary to questions of optimality. One of the

first systematic controllability studies, in connection with the heat equation,

was presented by Gal' chuk in [ 14 ] . One of the most important of the early

American contributions to the subject was the 1963 thesis of Fattorini (13],

which also treated parabolic systems and was one of the first works to

recognize the strong relationship between distributed parameter control studies

Supported in part by the Air Force Office of Scientific Research under Grant
AFOSR 79-0018.
**Dept. of Mathematics, University of Wisconsin, Madison, WI 53706. Also

Associated with Mathematics Research Center, University of Wisconsin, Madison.

,LA''



and classical results in analytic function theory.

The author' s own interest in distributed parameter control theory arose

out of consulting experience with Honeywell, Inc., and NASA, starting around

1965 or 1966. In developing the Saturn launch vehicle for the Apollo program,

NASA has encountered the problem of transverse vibrations of the booster

structure and interaction of those vibrations with liquid sloshing modes in the

immense Saturn fuel tanks. While the eventual treatment of that problem was

based on finite modal approximations, the problem stimulated a great deal of

research aimed at an understanding of the control of vibrations in various

distributed parameter settings.

First looking at this problem, under Honeywell-NASA auspices, we

thought of modelling the booster structure as an "Euler" beam, the displacement

w (x, t), which we may take to be scalar here, satisfying
2 2

at Ox: ax

along with appropriate boundary conditions Including the control inputs, at the

longitudinal extremities x = 0, x = L. We got nowhere with our study of

this problem Initially because the equation (1. 1) is not particularly well

understood from the mathematical standpoint. There seemed to be no "handles"

to grasp. It would not be until the 1969 thesis of Quinn [ 27] that we would

understand how this system works and that it is, in fact, controllable in a

rather strong sense.

We knew about the control theory of ordinary differential equations from

various papers and from notes and lectures which would later be incorporated

into the 1967 treatise on control theory by Lee and Markus [20] . We also

knew that hyperbolic partial differential equations in two independent variables

reduce to ordinary differential equations satisfied along the characteristics. It

was natural, therefore, to look for hyperbolic models which might fit our purpose.

Such was provided by the Timoshenko beam equations

(X) (k 2 - ) - (EI(x) )0 12
I 4 - ax ax ax(12

= X j-I-( k 1 0 , (1.3)
at a

which may be viewed as two coupled wave equations. By "wave equations"

here, we mean the equation

: ' '' .4 . , -'* . - '* -:J-*,4 -. ,'.;" '-.* , "..".. ..",. ** * ","**." "•" " " ',.".- ". ,".". .,"."." - - . " " ' '



r 2(x) ax (s (X ) = 0 (1.4)at) - sx ax

All coefficient functions shown in (1. 2), (1. 3), (1.4) are positive on 0 Osx L.

I may be verified that (1. 2), (1. 3) and (1.4) are hyperbolic in the sense

described In [ 8], [ 25] , e. g.. Since (1.4) is conceptually simpler, it was

studied first, with accompanying boundary conditions

z(O,t) = 0 (1.5)
- (,t) = u(t), (1.6)ax

the latter ncorporating the control force u (t).
While the practical goal in mind was appropriate form of stabilization,

we knew that In the case of finite dimensional systems

x= Ax +Bu

an affirmative resolution of the controllability problem, steering from a given

x(O) = x 0 to a given x(T) = x1 , implied the property of stabilization; hence

we felt Justified in first looking at the state to state controllability problem for

(1. 4), (1. 5), (1. 6). The "energy" form for (1. 4) is

zA) 1 f0L  z 2e(at jr(x) ( -(x,t)) +s(x)(-z--(x,t)) dx. (1.7)

Given initial and terminal states

Sz
z (x, o) = Zo(x), - (x, 0) = yo(X) (1.8)

0 z (xT =at(x I.

z(x,T) = zi(x), 11-(xT = (x (1.9)

of finite energy, i.e. e(z 0 , v 0 )< ., e(zi, v,) <4, we asked if there

exists u C L[O,T] for which the solution of (1.4), (1.5), (1. 6) correspond-

ing to the Initial state (. 8) assumes the desired terminal state (1.9) at time

t = T . The answer, a qualified "yes", came from two different approaches to

the problem. The relationship between these two approaches has, over the

years, grown ever more fundamental and has led to a great many very interesting

developments. See [34] and [45] in particular.

The first method explored was, as we have already indicated, the method

of characteristics. If we let

c(x) = 4r (x)10)

and consider families X+ X" of "characteristic" curves satisfying



dx +
-at- +c (x) 0, -t c(x) 0,'1.1

* Srespectively, and then set

+ 8z

v (x, t) (X ~-xt) - c (X) L- (X.t)
ata

we see readily that on X + (x +(t), t)} X- =(x - (t), t)}, respectively,
- we have

d + t)=v (x +(t), t) - (x +(t), t) (1)
-et (x +(t), )c' (x +()+2 -

d. v-(x -(t), t) c (x -(0)) v +(x -(t).t) - (x - t), t)

t = t > 2T1

t T = X x(LT

x 0

t T <2T & X-(ILT)

A, AX-X(L, T)1

n n 

X (L 0)

t=0 x=L t 0 x L t 0 x= L

V.. Fig. 1.1: The Method of Characteristics



Because these differential equations are satisfied on different families of

characteristics, the coupling between them is more complicated than for the

. usual system of ordinary differential equations. Nevertheless there is a method

of successive approximations, described in ( 30 ] , [ 36 ], which enables solution

of these equations in certain regions .provided with appropriate boundary data.

Such a region is the roughly triangular domain 4 0  shown in Fig. 1. 1, bounded

by t = 0, x = 0 and the characteristic X+(L, 0), of the first family

described by (1. 11), passing through the point (L, 0). Together with the

boundary data provided by (1.5) and (1. 8), it may be seen that the differential

equations (1.12). (1. 13) determine v + and v-, and hence z (x,t), through-

. out the domain a. . Similarly, these equations together with the data

provided by (1.5) and (1.9) determine z(x,t) in the domain A1 bounded

by x = O, t = T and the characteristic curve X'(L,T), described by the

second equation in (1. U) and passing through the point (L, T). Thus the

initial and terminal states, described by (1. 8), (1. 9), together with the

boundary condition (1.5) determine z (x,t) in both A 0 and a .

Whether A 0 and &I are disjoint, or have a region, no, of over-

lap, depends on the time T allotted for control. The time required for the

curve X(0,L) to pass from X= L to x = 0 is

L x (1.14)

and this is also the time required for X-(L,T) to pass from x = 0 to x = L.

We summarize the control situation, depending on the relationship between T

and T 1 .

Case T < ZT. Here a 0 and A 1 overlap and the determinations of

z(x,t) in the overlap region n 0=& 0 UA 1 providedby (1.8) and (1.9) need

not and, in general, will not agree. There can, in such cases of disagreement,

",* be no solution of (. 4), equivalently (. 12), (1. 13), in the region

RT = (xt)1 0 S x S L, 0 _ t GT}. The control function u(t), shown in

* (. 6)," never enters the picture because it cannot affect the solution of (1. 4) in

60 or AI if (1.8), (1. 9) are satisfied at t = 0, t = T, respectively.

Case T = 2T. Here the two "domains of determinacy"', a and
0

Just fail to overlap; their boundaries have exactly one point in common, t = TI ,

. x = 0 . The initial and terminal conditions (1. 8) and (. 9) determine z (x, t)

in a 0 and Al, respectively. Another process of integration of the coupled



differential equations (1.12) and (1. 13) permits unique extension of z(x, t),

equivalently v +(x, t), v-(x, t), into the domain f . The control steering

(1. 8) to (1. 9) is then uniquely determined from this extension and (1. 6).

The determinations of z(x,t) in a0 and a1 may fail to match

smoothly at the point p : x = 0, t = T 1 . This results in discontinuities of

S + along X+(L, 0) and of v" along X-(L,T) in general.

Case T > 2T. The only difference between this case and the case

N T = ZT1  lies in the line segment 1: x = 0, T1 <t <T-T 1 , which replaces
the point p of the case T = 2T1 . Extension of z (x,t) from aU -

into f1 cannot be carried out until the boundary condition (1. 5), which
yields z/ht (O, t) = 0, is augmented by arbitrary data

!::r (lt) M 1() (0, t) C f.(l

Once this is done, extension of z (x, t ) into 0 proceeds much as before.

(See [ 30], [ 36 ] for details of the extension process.) The arbitrary

function (t) can be designed so as to eliminate discontinuities of the

solution along X+(L, 0) and X-( L,T), to satisfy some criterion of

optimality (see [ 30] e. g. ) or to fulfill any other appropriate design objective.

If the partial differential equation (1. 4) is combined with bourary

conditions different from (. 5), (. 6), but still admissible for (1. 4), the

cases T < ZTI, T > ZT 1  remain as above. The rather delicate situation

at T = 2T1  depends on the specific form of the boundary conditions. For

example, the boundary conditions

z (0, t) = 0, z(L,t) = u(t)

lead, In case T = 2T1, to a situation where the desired control is not unique;

it has the form

u(t) = u(t) + yu(t)

where u (t) is a non-zero control steering the zero initial state into the zero
final state and y is an arbitrary constant. By contrast, the boundary

conditions 8z 8z

azxa-' O't)= O ---x (, t)=u t)(,6

lead, in case T = 2T1 , to a situation where the desired control u (t) does
not, in general, exist. (See [31], (37] for more details.)

The analysis of more complicated systems of hyperbolic equations, such

%4
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as the Timoshenko system (1. 2), (L 3), is in general rather complicated but

there are some special cases, including appropriate boundary conditions, for

which the analysis is fairly simple. In [M] a discussion is given permitting

analysis of the free boundary case
':".-Ilk 22S (~)=0 (~)-a (O, t) = 0 , (.

ax 8 (L, t) ,4 0t)3x
a*

'- (L.t) ul(t) i (L, t) - y2x (L, t) = u 2 (t) . (1.18)

It may be shown that all cross-coupling is of low order and the problem is

essentially equivalent to two problems (1. 4) with boundary conditions (. 16).

Two critical times are involved. With (cf. (1. 14))
-" EI (x) L dx

, ::Cl(X) I t p(x) T ' I fJ cl(x ) ,(1. 19)
L

c"(x) W (x) T f (1. 20)

.c2 x) ='p(x) ' =~ c() ' (1.20

.5 it may be shown that finite energy states are controllable if and only if

T _ 2 max {T I, T?}

The essential details of the analysis are given in [30] and are quite similar

to what we have briefly outlined here for (1. 4), (1. 5), (1. 6) .

It Is immediately clear that the method of characteristics Is specillly

adapted to controls u (t) acting at a point, as in (1. 6). This is true

because the control determination occurs at the very last stage of the analysis,

after the controlled solution has been computed. If the control u (t), itself

scalar, acts on the system through a "control distribution function" g (x), as

in (cf. (1.4))
2

r(x) z  a 8zr x)t z - Tx ( s Wx -6- 9 W x u Mt,(I l

homogeneous boundary conditions (cf. (1. 5), (1. 6))

az
z(O,t) = 0, -(Lt) = 0 (1.22)

applying at the boundaries, we face what appears at first glance to be a rather

different situation than what obtains in (1. 4), (. 5), (1. 6), for even the

equations corresponding to (1. 12), (1. 13) will involve the unknown control u(t)

in this situation; one cannot proceed by filling out z (x, t) in successive

domains as before; a completely different approach is required. Such an

approach can be found in the study of moment problems - a technique developed

S., . • - - . - - . - . . ° - . ° . .- .o . . .- . . ..



by several authors (see [3], [12], [15], (14] (23]). The technique has

the advantage, from the point of view of approximation of being intimately

connected with the modal representation of the system based on the natural

modes of vibration, or eigenfunctions of the operator -r(x) I(a/ax)(s(x)(az/ax)).

It is known (see [1], [7]) that the operator

LZ )r(x) 2 - ) (1. 23)

with boundary conditions conformable with (1. 22) has eigenvalues

,2k1 2 

I12

2  + ek k = l z3,..- (.. 24)

where the e are uniformly bounded and T is related to c(x) by (1. 14).

The corresponding eigenfunctions, Vk(x), k = 1, 2,3, • , form an ortho-

* normal basis for L2 (0, L] (which consists of the same functions as
2 r

L [ O, L] but has the inner product

(.P, O = f r(x)v(x)(x)dx). (1.25)
0

Every finite energy solution z (x, t) of (1. 21), (1. 22), i. e. every solution

for which the integral (1. 7) is bounded for all t, can be expanded in the form

:'. (x, t) = zk(t) Vk ( x )

k=l

where, if we assume the control distribution function f (x) has the expression
a

g(x) = g

k=l

convergent in L2[0, L] , the zk(t) satisfy

Zk +Kk Zk gk u(t), k= 1,2,... (1.26)

Letting 1

wk =X k =1, 2, 3,...

and using the transformation

, one arrives at the system"I ki 'wk0 I gk/ 2
= + u(t). (1. 28)kk

4.



It may be seen that finite energy states are those for which

k c = I[ - 2

and this become:, in terms of qk' k2

k=1

Integrating (L Z8), we have, for T > 0,!ii eik T  gk oTeiw (T 't)

T = 8 u(t)dt

0
": k{T - k(0 =e u (t) dt.

Assuming the controllability condition

gk 0, k=l,z,3,...

we see that the problem of steering between the given states at times 0 and T

reduces to the moment problem

e f(s)ds = gk k = 1, 2, 3,... (1.30)
*0 ;k

f Te'iwkS f(s)ds =13k k = 1, 2, 3,..., (1.31)
0 -

where s = T-t, f(s) = u (T- s), andSi~kT 
"d~kT(1 )

a k = 2(7k T) - e i1k(0)), 1k = 2(Ck(T) - e J (1.32)

are square summable.

To solve the moment problem we resort to the theory of nonharmonic

1 Fourier series as developed by Paley and Wiener [24], Levinson [21],

Schwartz [42]. and many others. (An excellent expository treatment [49] by

R. Young has recently appeared.) The following is known; the three cases

, being divided in a manner conformable with the three cases discussed earlier.

Case T <2T1 . The functions ekt , e , k = 1,2,3,-, are

linearly dependent in L2[O,T] in a rather strong sense. Any one of these

functions, indeed, any finite number of them, lie in the closed span of the

remaining functions (which, in fact, is equal to the whole space L2[ 0, T]).

As a result the moment problem (1. 30), (1. 31) cannot, in general, be solved.

"It 

.



Suppose, e.g., all but finitely many of the ak- k' say k = K+1, K+2,..-,

were equal to zero, while some of the a k k# k = 1,2,. -, K, are non-zero

The linear dependence just referred to shows that such a problem can have no

solution; the equationsfTl~sks =0Tei s

j s fs)ds f e f(s)ds = 0, k > K
0 0

imply that the same equations must hold for k s K.

4 Case T = Ti . Here the functions e , e , k= I, 2,3,..•

form a Riesz basis for L2 [0, T ] . Every function h e [0, 2TI has the

unique convergent expansion

h(s) = E [hke + h-ke ] (1.33)

k=I
and there are positive numbers c, C, such that

c-2 0 hol LS (IhkI +ih.k 'SC 2Ihol 2 (1.34)
2 k=l [0, 2T]

I
Further, there Is a unique dual basis of biorthogonal elements PkI P-k c

2
L2[ 0, 2T1 ]2T such that

f e ptksl ()ds = 6k, I I
0 f + 1, ±2,

f e Pkfd 1, 6 k f = ± , ± , 1
0, k=

which engenders expansions similar to (1. 33), the roles of c, C in the

inequalities parallelling (1. 34) being reversed. The formal solution of (1. 30),
(1. 31) is then uniquely given by

f s.2 1[ kPk(s) + kPk (s) (1.36)

k=l k

If we have

UM I gk 1 = , (1.37)
'1 k ..e 4

as would be the case, e.g., if g 4 L2 [0 , L] , then the conditions for

convergence of (1. 36) are more stringent than just the square summability of

the k k given by (1. 32). We need
ak' 2 k12 a

k=I

--e~~~.



As a consequence we can steer (1. 21) from any finite energy initial state to a

dense (in the energy norm) subspace of final states, or vice versa, but we

cannot steer between arbitrary finite energy states during [0, 2Tl] if (L 37) is

true. The case of boundary control (1. 6), already treated by the method of

characteristics, will be discussed more extensively below. In that case the

coefficients 9 k In (1. 26) are bounded and bounded below. The result is,

* in that situation, that we obtain the same result this way as by the method of

characteristics - given finite energy initial and terminal states, there is a

unique control u e L (0, ZT 1 ] steering the one to the other.

Case T > 2ZT1 . The main difference between this case and the preced-

ing is that here the functions e , w , k = l,2,3,• ., forma

Riesz basis for a proper subspace, E, of L2 (0, T ] . The biorthogonal

functions Pk' P-k exist, but are unique only if we require that they lie in

E - or we impose some comparable condition. If we agree that k P-k

belong to E, then any elements

. Pk z Pk +qk"I P-k m Pk + q -k

with q , q e EL C L2[ 0, T] still form a biorthogonal set relative to the
iwkS a -iks * The convergence properties of series involving the Pk"

* -k are much the same as in the preceding case. As a result we have theZT1k

same control capability as in the case T = 2T but controls are not unique.
Indeed, if u is a control steering between two given states, the family of

controls u + u, u e E , all realize the same control objective. Again,

this non-uniqueness should be compared with the similar property observed for

T > 2T1 in applying the method of characteristics.

Using the theory of distributions and related material, boundary value

control situations such as (1. 6) can be included in the same framework as
2- (. 26) but with g in a larger space than L (0, L]; g should be a linear

. functional (in general unbounded on L2 (0, L] ) whose domain includes the

domain, 8(L), of the self adjoint operator L, given by (1. 23), with the
given homogeneous boundary conditions. The gk are the values which g

* assumes at the eigenfunctions qk e I (L) . A detailed study of these

• "admissible Input elements" is provided in [ 17] . In this way a unification

*. of the boundary and distributed control cases may be achieved. One consequence

of this is that the biorthogonal functions Pk, P-k which play such an



. important role in the method based on the moment problem (1. 30), (1. 31) can

actually be obtained through the more constructive method of characteristics as

controls steering from a zero initial state (say) to final states constructed
using a single elgenfunction Pk of L.

We began our discussion here with the Euler beam equation (1. 1) . For

definiteness, let us add a distributed control term (scalar input) and specific

boundary conditions so that we have
a2 a (Ix a~w

(X) - + -L (EI(x)-- ) -- g(x)u(t) (1.38)
at ax ax

82w 83w
(139

i ~-a (o,t) = -8x (o,t) = 0, (~g
ax ax

8w (L,t) = a3w&X2 (Lt) = 0. (1.40)ax a

In 1969 J. P. Quinn, in his doctoral thesis [ 271, studied the controllability

properties of a class of systems including this one. Here the operator
Aw I a2 a 2 w

Aw PrXT--7(EI () 2 w
ax) ax

on the domain in H4[ 0, L] consisting of functions obeying boundary

conditions conformable with (1. 39), (1. 40) has eigenfunctions Nk(x) forming

an orthonormal basis for L [ 0, L] and the corresponding eigenvalues
grow like k4 as k - o.. With .k = we obtain a system similar
to (128), using a transformation like (I. 27) applied to the second order

differential equations resulting from the eigenfunction decomposition:
0k +. kWk = g ut), k = 0, 1, 2, 3,

(a slight modification of (1.27), (1. 28) is necessary for X,0 = 0; see [ 34]).
Again there results

ik iwk k k

Su (t) (1. 41)

and the energy expression for (1. 38) is, equivalently,
Law 2. azw 2z

f L[ P(x) w - + vEI(k) a ]wdx
0 ax 2

or

% I ~-J* e- . . + ' , % % % , , . ,. - - . . , + , . ' . . . + - . - . " " . • • ".
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~ + c% y€wk)]

OF=

(i +

ok=O

all < , for "finite energy" states. iwkS IW ks

Quinn was able to show in this case that the functions e e• wXkS -ikS
k = 0,1,2,3,..- (for k = 0 replace e , e by l,s) are

linearly independent in L2 [O,T] for every T > 0 (this result by itself

had already been obtained much earlier by Ingham ( 18 ] who shows, in effect,

that these functions form a Rtesz basis for a closed subspace of L 2[0,T] for
every T > 0 ) and, additionally, that there is a positive number, M(T),

such that if the (non-unique) biorthogonal functions pk(s), pk(S) are

appropriately selected In L2 (O,T], these functions are continuous and

satisfy the pointwise bounds

pks) T IP( , (s) M(T), s e [O,T] . (1.42)

The fact that the ek, e form a RIesz basis for a closed subspace

of L(O,T] , T > 0, implies that initial states and terminal states with

(in terms of (. 41)) exansion coefficients Ik, 0 Ck. 0 and T I ok 1
can be steered, one to the other, during 0, T] with u e L2 0, Tj ,
provided that

Z ~ i2 kkO 2 " ng~ 2 Ck 1 2.': ~~~~ )ik, I+<- a C+ Ik- l )<a-.
9- k +Ig # (I k +Igk

k= 0 k=O k

The boundedness property (1. 42) shows we can also control states for which

.i +k k  i< =,

k=o k g,

k=0
this being possible with a control function u (t) uniformly bounded ana

continuous on CO. T ] .

We have noted in connection with the Timoshenko beam system (1. 2), (1. 13)

%:.-"7-
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K; (I. 17), (1. 18), that an adequate control theory, based on the method of character-

istics, exists when we have two separate control functions, ul(t) and U,(t),

with which to control the lateral deflection and shear deformation separately.

An open question is the adequacy of control using a single control input, so

that (1. 17), (1. 18) becomes, e. g.,

a (L, t) = au (t), -p (4-t (L, t) = 13u(t)
ax ax

with a2 + 37 A 0. This problem is a special case of the more general

question of the controllability of linear hyperbolic systems of dimension n = 2m,
involving m pairs of characteristics, each pair describing a given wave mode

propagating in two opposite directions, by means of fewer than m control
inputs. Some work has been done in this direction by R. G. Teglas in his

thesis (45] and by N. Wick [47] , but it is safe to say that no very general

criteria for this problem have yet appeared. Particularly valuable, it seems

to this author, would be a study of the Timoshenko beam system from the

singular perturbation standpoint, elucidating the behavior of solutions and

controllability properties as the modulus of elasticity in shear, k (x) in (1. 2),

(1.3), tends to infinity.

STABILIZATION, CANONICAL FORMS, EIGENVALUE

PLACEMENT, etc.

As all practicing engineers will know, controllability in itself is rarely

the prime goal of control system design. Stability, and related criteria such as

robustness, insensitivity to particular input frequency bands, etc., are more

commonly uppermost in mind. Additionally, there is the question of state
estimation from lower dimensional, noisy observations in order to implement

linear feedback control policies. These subjects have been pursued almost ad

nauseum for linear, finite dimensional systems. In the case of distributed

parameter systems, and hyperbolic systems in particular, the literature on this

subject remains rather sparse and spotty in its coverage.

As in the case of linear finite dimensional systems, stability and stabili-

zation studies for linear partial differential equations have tended to cluster

around two dominant approaches: the Liapounov approach, primarily carried out

in connection with systems involving some form of "conservation of energy" law,

and the spectral approach, determining if, or making certain that, the

- -. **. -

• .



eigenvalues of the system lie in an appropriate subset of the left half plane. The

spectral approach suffers from the disadvantages of greater intricacy of

computation and the need to show that the spectrum location does, in fact,

* determine the asymptotic behavior of the system. The latter brings in questions

of completeness and linear independence of the elgenvectors of the system.

We will begin with a short discussion of what has been done with

Liapounov methods. On the theoretical side one can start with a system

k = Cx, (2.1)

C generating a strongly continuous semigr- -p S(t) in the Hlbert space X

(we may have started with a control system k = Ax + Bu, set u = Kx, then

C = A + BK). We set up a quadratic functional
V(x) = (x, Qx),

where Q is a bounded, positive, self adjoint operator on X with Q 2 qI

for some q > 0, to serve as a Ltapounov function. One may then show that

for tz > tj and x(t) = S(t)x 0  a "solution" of (2.1), that

(x(t 2 ), Qx(t 2 )) - (x (t, Qx(tl))
tz

= -f (x(s), Wx(s))ds
tI

for some positive self adjoint operator W so that, in some sense which one

needs to make precise in individual cases,

C*Q+QC+W = 0, (2.2)

the Liapounov onerator equation, is satisfied. An important result, due to

Datko [ 10] states that If

f (x(t). Qx(t))dt < - (2.3)

for every Initial state x 0 6 X, then the semigroup S (t) is exponentially

damped, i. e.
,S U (t)[[ "  Me "Y t , t 2t O

for positive numbers M, y . The condition (2. 3) is satisfied if W _ wl

for some w > 0 , as may easily be verified.

Consider the linear symmetric hyperbolic system in L2[ 0, L] =

S(LZ[,L] 
)n

E Z(k) -- = A (x)!w + B(x) w+ f(x, t) (2. 4)
at ax

*where E (x), A (x), B (x) are continuously differentiable mXm matrices

defined for x e [0, L], E (x) symmetric and positive definite, A (x)
.1%
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symmetric. The wave and Timoshenko equations can be written in this form.
The "energy" usually Is expressed as

L
e (t) = f (w(x,t), E (x)w(x,t))dx.

0
-' With appropriately "conservative" or "dissipative" boundary conditions at

x = 0, x = L, one finds that for t 2 > t
t2  L •

e (t?) - e (t1 ) =f { f (w(x, t), ( B(x) + B (x) -A(x) ] w(x, t)) dx
ti 0

L
+ f (w(x, t), f(x, t))dx }dt

0

If B (x) + B (x) - A (x) is uniformly negative definite or if the n dimensional
* control function f (x, t) may be arbitrarily specified as a function of x and

t, one may use feedback
f(xt) = K(x)w(x,t) (2.5)

in such a way thattL
e(t) - ect1 ) = -f f (w (x, t), W (x) w (x, t ))dx dt (2.6)

with W(x) uniformly positive definite and symmetric on [ 0, L] Then one
can apply Datko' s result, or more simple arguments, to show that solutions of
(2. 3), (2.4) are uniformly exponentially damped in L2 [0, L] norm.

n
Note, however, that if B (x) + B (x)* - A (x) = 0 or for some other

reason fails to be positive definite, and if
f(x,t) = D(x)u(x,t) or f(x,t) = D(x)u(t)

with dimu(x,t) = r < R in the first instance, u a function of t only in
the second instance, then we cannot, in general, achieve (2.5) with W(x)
uniformly positive definite. Comparable difficulties arise when boundary
control is employed. In such cases it is a form of the La Salle "invariance
principle" ( see, e. g. [ 19 ] ) which must be appealed to, rather than the basic
Liapounov theory, for an analysis of presumed asymptotic stability properties of
the system. This has been discussed in some detail in [36] and [33 ] and
we give only the briefest outline here.

The "Invariance principle", as it applies to finite dimensional systems,
relies heavily on the compactness of the "w-limit set" of the system in order to
reach the final conclusion of asymptotic stability. Comparable compactness
properties associated with the solutions of an infinite dimensional system are



generally difficult to realize but the initial attempts to extend the theory nonethe-

less relied on establishing some sort of compactness property. One of the first

contributions in this direction was due to Dafermos [ 9 ] who studied weak

damping of the wave equation, relying on the almost periodic nature of the

system solutions to provide the required compactness. Slemrod [ 43] studied

the boundary damped wave equation by introducing suitably weakened topologies

as compared with the usual topology associated with the energy norm - and

was able to conclude a correspondingly weakened form of asymptotic stability.

Knowing that controllability implies stabilizability in the case of autono-

mous finite dimensional linear systems, we are not surprised to find control-

lability playing a role in the study of asymptotic stability and stabilization

properties of autonomous infinite dimensional linear systems. This is discussed

in some detail in the paper [ 28] by I. P. Quinn and the author and also in

[ 33] . Systems of the form (2.3), but with the control appearing in the bound-

ary conditions, are studied in [ 28] prior to the main discussion on the boundary

damped, higher dimensional wave equation. We can give an idea of the flavor

of the arguments employed using a simple example based on the wave equation

(1. 4) with control appearing in the boundary conditions (1. 5), (1. 6). If in this

system one employs the feedback law
8wu(t) = -Y L- eL, t), (2.7)

the closed loop system is (1. 4), (1. 5) together with the "closed-loop" Robin

type boundary condition
aww

(L, t) + y--(l,t) = 0. (2.8)

Here a short computation shows that with the energy e t) defined by the

expression (1.7) we have, for t 2 > t i ,
t2w

e t2)- e(t) = -yp L)f at (Lt) 2 dt . (2.9)

It is not feasible to fit this situation into the general pattern based on the

Liapounov operator equation (2. 2) but, since we expect (correctly) that, along

with (1. 4), (L 5), (2. 8)

aw
- - (L, t) = 0!= w(x,t) = 0

an "invariance principle" type of argument appears to be in order. But we

will use a variation on this procedure which makes use of the controllability

already established in Section 1. Let v (x, t) be a controlled solution of

, " ."--* " . - " " . " " " . . . -". . .. i . . . . ' -
'"

. . .
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(1.4), (1. 5), (1. 6), u (t) being selected so as to steer the initial state
av aw

v(x,0) = w(x,0), .(x,0) = "2--(x,O), (2.10)

agreeing with the initial state of the solution w (x, t ) of (1. 4), (1. 5), (2. 8),

to the zero final state

v(xT) = 0, av (xT) = 0 (2.11)

T1 as described earlier. Defining the "energy inner product"
L ava x a.xL. a xt]d

(w (.t . , t)) = [p(x)a (x.t) v- (x,t) + p(x) v
0

it is found, using (1. 5), (2. 8), (2.10), (2. 11), that

(w(. 0). v(-,0)) -(w(-,2T 1 ), v (, 2TI)) = 0 w(-, o)112

2w- (p(L) [ -WL, t) -v L, t) + 21 (L, t) -- (L,t)] dt

2T1 aw av a

=p(L)f a- yS- (L, t) + C (L,t) dt

.Zl1aw 8',""P Pj W (L, t)l[yW (L, t) +ul(t)] dr.

0
Here Ow(- , 0)HI, the energy norm at t = 0, is 28(0) • Applying the

Schwartz inequality

48(0)2 S p(Lf I % L~t) 2 dt

.0 
2.12)

f I 1 v-(Lt) +u(t)) dt.
0 a

A slightly more detailed study of the control problem for (1. 4), (1. 5), (1. 6) in

- i  the case T = Z'rl (or T > ZT1 ) shows that control from an initial state

w (x, 0 ) t (x, 0) to 0, 0 at time ZT is realized with a control u(t)

which satisfies 2T1

f u(t)2 dt s K0 8(0)
00

and, for the resulting controlled solution we have2T1  v )2

f j - (L,t) dt -- K1 8(0)

for certain positive constants K and K1 . Then (2.12) easily yields
o-. w (L t2d _ ___ ___ ___(0)

yp(L) - t 2 K0 +y%) 8 (0) K8(0)

0. 4 . . - . . . - .. ." . . . . 4- - " . . . . . ' .



and, setting t1 - 0, t2 - ZT1  in (2.9), we have

e(ZTI) e e(0) - K (0) = (I-K) e(o) . (2.13)

FSince e(T 1 ) is, from (2.9), (2.13), positive and less than or equal to e()

we conclude 0< l-K<l.

Repeating the above argument on successive intervals [ 0, ZT 1], [ZTI,

4T] --- [2kT1 , 2(k+)T] ,... and using the monotonicityof e(t), as

implied by (2.9), we conclude that e(t) decays exponentially to 0 as t --.

The same general argument can be used with a fairly wide class of boundary

damped linear symmetric hyperbolic systems (2. 4) and with many other systems

which are energy conserving in the uncontrolled situation and suitably strong

controllability properties. The Timoshenko system (1. 2), (1. 3), with appropriate

boundary conditions, is in this class. As far as the author is aware, the Euler

beam model (1. I) has not yet been studied from this point of view.

The spectral approach, as we have already indicated, involves a direct

analysis of the eigenvalues and eigenfunctions or, more generally, the spectrum

and invariant subspaces, of the generating operator C for a given system

x = Cx, possibly derived from a control system x = Ax + Bu by the use of

linear feedback u = Kx so that C = A + BK . A fairly common case, which

can be treated with minimal difficulty, arises when all but finitely many of the

eigenvalues of C have negative real parts. Under generically valid control-

lability-type conditions it is then possible to move the unstable eigenvalues

into the left half plane while either keeping the stable eigenvalues fixed or else

maintaining a certain margin of stability. Work of this sort has been carried out

byTriggiani [46], Sakawa [40], [41] and others.

A somewhat more challenging task arises when one starts with a system

having infinitely many eigenvalues in the closed right half plane (usually one

considers a conservative system wherein all of the eigenvalues of C are purely

imaginary) and one attempts to devise a feedback law to move all of these

eigenvalues over into the open left half plane. A number of procedures have been

examined in this connection.

In [32] a second order system with scalar control

x +Ax = bu, x, b E X, (2.14)

is studied, X being a real Hilbert space and A an unbounded positive self

adjoint operator on X. Assuming that A has a Riesz basis of eigenvect rs

Ok, k = 1, 2,3,..•, in X, and corresponding positive eigenvalues -k
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increasing with k, k =l, 2, 3,., x and b may be expanded as

X xk$j, b= k, .15)

k=1 k= 1

convergent in X, with square summable coefficients. We assume the

minimal condition for approximate controllabiliy

Obk A 0, k = 1,2,3,---

The energy form is f [(x,x) + (x,Ax)] = e and elementary computations

*{ show that for (2.14) and for any T > 0
T

e(T) - eOO) =f (x(t), b)u(t)dt. (2.16)- 0

It follows that with

u (t) = -y (x (t), b) (2.17)

the energy e(t) is non-increasing with increasing t . So far this is

basically a Liapounov approach employing what is known in the engineering

literature as an ILAF (Identical Location of Accelerometer and Forces)

approach. The resulting closed loop system is, still in second order form,
x + Bx + Ax = 0 (2.18)

* with B defined by

B;c = y (k,b)b. (2.19)

With y = x, one may consider the equivalent first order system in XX X,

and ask:(- -B) ,(2. 20)

and ask: are the eigenvalues and eigenvectors of C? It is here that

one leaves the second method of Liapounov and returns to his first. In [ 32]

a perturbation analysis Is carried out, valid for small values of y in (2.17),

(2.19). It is shown that, under the separation assumption

4 Wk+l - w k - d >. 0, wk = , (2.21)

. the eigenvalues of C, which for y = 0 are ±iwk, k = ,Z, 3,-.-, all
have negative real parts for y > 0 and, moreover, designating the perturbed

eigenvalues by ky k = +1, 2, ±3,-.-, ) = iwk, Ck(0) =-iwk

we have (cf. (2. 21))

'i
C k(y) wk Y lb k 1 + S(Y' 1 2) k- (2.22)1

.I

, ,,,: , . * .. ,"..,,-.. ............... .. ..... ..... .. . . -.... ...... . .. ,.,.,".-_."." ,_ "



_ = 1Wk b ), k-c. (2.22)
I wkI

It is also possible to show that the perturbed eigenvectors continue to form a

Riesz basis for the space XX X. From this it follows that all solutions of
(2.18) tend strongly to zero in the energy norm, though not at a uniform expon-

ential rate.
Following Wonham's initial results [48 ] on the finite dimensional case,I

there has been considerable interest displayed in the question of spectral
determination via linear feedback for distributed parameter systems. In terms I
of the system (2.14), equivalently,

S)+ u, (2.23)
(-Ab

with initial (u= 0) eigenvalues +iw k= ,2,3,•--, the question may!
be phrased as follows: we suppose use of a linear feedback functional

u = (A2x, kl) + (y,k2), kI, k2 E X, (2.24)
bounded relative to the energy norm (x, Ax) + (y,y) = (A2 x, A2 x) + (y,y) in

XXX. With

Klx (A2x, k1)b, Kzy= (y,k2 )b (2.25)

the closed loop system is

= .(2.26)y A + K 1  K 1

One can now ask: What eigenvalues can be achieved for the closed loop
system (2. 24) byappropriate selection of kl, k in (2.25)? For some
time the author was under the impression that his approach via canonical forms
[35] (more on this below) was the first treatment of this question but, in
fact, it appears that this credit must go to Prof. Sun S. -H. of Szechuan
University who treated this problem by a more sophisticated application of the
perturbation technique used by the author in [32] to obtain the result.
Sun was able to show, with an assumption similar to (2.21) and the Riesz
basis assumption on the open loop eigenvectors, that the totality of spectra ,
achievable by use of (2. 25) coincides with sequences k' c-k' k=

1, 2,3,--- for which, assuming the bk 0 as before,

'.

y
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k=l k k

His very important paper has been translated by Ho L. -F. in [44]. Some
comparable, but necessarily weaker, results have been obtained by Reid in his

thesis [ Z9 ] for the equation of linear surface waves where (2. 21) is not
satisfied and, in fact, lm (Wk+ I - Wk) = 0. Other results in this

;k k-e- a

direction, for hyperbolic systems of various types, have been obtained by Clarki

[5], [6] and by Ho in his thesis [16].
Much of the initial impetus for the study of control canonical forms,

both for finite and infinite dimensional systems, came from the spectral

determination question discussed above, but the subject is interesting in its
own right and shows some promise of being adaptable for "real world" control

implementation. The reader will recall that a finite dimensional controllable

system
Ax+bu, xeR n

with scalar control u is equivalent, via a state space similarity transform-

ation (see [20], [35] ) to a system in rational canonical form corresponding

to the n-th order scalar equation

y(n) + aly(n-l) +... +an-ly +anY = u, (2. 27);

where
p, p(k) = det (X I-A) = X n + a Xn-l +... an iX +anI

is the characteristic polynomial of the matrix A. Comparable, but somewhat I
more intricate, results are available for systems with higher control dimension

[20] , [2] . In (38] we note that if one employs a scalar linear observation

: = h x = (x,h), (2.28)
nthere is exactly one observation vector h c R for which (2. 28) satisfies

(2. 27); for general h the right hand side will involve the derivatives of u

of order s u - I . Systems (2. 27) are particularly easy to deal with.

Closed loop eigenvalues C.Z' " " n may be realized simply by forming

the polynomial

. q(K) =T-I- (X- _ k ) =-- + c I - + ... + cn l +k +c
k=l

and determining u by linear feedback on the observation y and its

I I --------.. . " -S -
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derivatives,
* n

U= (ak-ck)yfk e-k

k=l
Apparently less well known, but quite obvious, is that the control problem for

, (2. 27) is, in a sense, trivial. Let us suppose the initial instant is taken to I

be t = 0 and control is to be effected during 0 : t S T . Let the initiali

state be specified by

y(n-kI(0) = Yn-k+l , k = 1,2, .- , n (2.29)

*and the terminal state by

y(n-k)T) = Yn-k+l' k = , 2,. -, n. (2.30)

If y (t) satisfies (2. 29) and
(n)

y (t) = v(t), 0StsT (Z. 31)

then we see readily that for k = 1, 2, ... , n
k tk-, k-i

y(n-k) (t) = Y n-l+l (k-l-. + f (t-s) v(s) ds
1-1 0

and (2. 30) is achieved just in case kk-i k Tk-t

Jof (t-s) k- (s)ds = Tnk-Z Yn-i-l (

0~ f=1
k = ,, 2P .-. , n .

This is easily solved for v in various function classes, e.g. polynomials of
degree s n - 1, etc. and, it should be noted, the solution has nothing to do

* with the coefficients in (2. 27) so the calculation can be carried out once for

* any given T and recorded -for use ever after. Then in a given canonical
system (2.27) we need only set

n
u(t) = v(t) - , ay(n-kl(t) (2. 32)

k Y%, k= 1

to realize the desired control objective.

Since, in a given control context, it is not likely that the available

observation (2. 28) will be the particular one for which (2. 27) obtains, the

above result might seems to be a generally useless curiosity. It turns out,

however, that in canonical form theory there is a counterpart to the more widely

*known observer theory. If C is any nX n matrix whose minimal and

4



characteristic polynomials coincide. it is possible to select (non-uniquely) r,

d and J such that the augmented system

"c = Ax + bu (2.33)1

= ry + Cz + du (= rh'x + Cz + du since y= hx) (2. 34)

I'.' with augmented observation

w = y +J z = h-x +J'z (2.35)

is in canonical form, so that for some coefficients a,, a., a Zm
' l(Zn) +)2nm

w. w(1n) + + +Z w+aZm w = u

The adjoined system (2. 34) can be realized electronically, just as an observer;

system is, and the considerable freedom in choice of C , r, d and j

provides much design flexibility. In some cases the dimension of (2. 34) can

be reduced. The proof that (2. 33), (2. 34), (2. 35) can be made a canonical

system appears in [38]

A parallel control canonical form theory has been developed for certain

hyperbolic distributed parameter systems, involving neutral functional equations

in place of the n-th order scalar equation (2. 27). The theory is quite complex

especially as it applies to partial differential equations with variable

coefficients (see [35], [16] , [38] , (39] e.g.). To give an idea how the

theory is developed we will consider the constant coefficient case of (1. 4)

which, without loss of generality, we can take to be
.:.- aw -

2 w
8 = 0, t - 0, 0 Sx S 1, (2.36)

Z - -at ax

w(0,t) = 0, (l,t) = u(t) (2.37)

The normalized eigenfunctions of the corresponding homogeneous system are

-127 sin Zk-l 1rx, k = l, 2, 3, -- (2.38)

Setting wk= 2k-I and forming the expansions

w(x, t) = Z wk(t)$k(x), (2.39)

k= 1
awaat ( vk(t) k(x), (2.40)

k=l

followed by the transformation

- . - .c ;
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Consder z~= iwk T~) (::)(z.4l)~
v k) (-k

we have, for k= 1, 2, 3,.-.

(-I) k1 .1) k-Ik iWkk + (t), Wkk + -uwt). (2.42)

Consider now the neutral delay equation

y(t+2)+y(t) = u(t+2). (2.43)

The characteristic function of the homogeneous equation is

p( ) = e2x +1 = 2e coshX

and the zeros of p (X) are precisely the elgenvalues iwk  appearing in

(2.42) . The transfer function for (2.43) is

Tom = e 2k I sinh X + (2.44)T 0 .. = k-- = cosh) ;

e +1

which can be rewritten as

T + 12k- (2.44)
z= X2 +2 2' Pwk 2"

- If we define an observation y (t) on (2. 42) by

,:yltM [h k 1k~t) + gkW~t) I + .u (t)
.4 k-1

:' the transfer function for y is, formally,

h (-l.) k4 ...L g(-I) k-lq..
k 42- +,

kI X - 'wk X +jW k

which may be seen to agree with (2. 44) just in case
* k

hk = gk = - ( 'l)  I

Using (2. 38), (Z. 39), (2.41), (2. 42) it may be seen that this choice of hk, g

corresponds to

l aw I a awy~t M (1-- , t) + _fu tM = _L (1 ( {, t} + 2- (1, t)) ( 2.45)

This observation on (2. 42), and no other, satisfies the scalar equation (2. 43)

which serves as the control canonical form for (2.42). The details of the above

. .
..



calculations and some idea of the form of a general theory appear in [38] and

[391
If the canonical observation (2. 45) were actually available, so that

we have (2. 43), its usefulness is quite clear. For, with the causal feedback

law

u(t+2) = (1- V)y(t)- c(s)y(t+s)ds (2.46)
0

(2. 43) transforms to
2

y(t+2) +yyt) + f c(s)y(t+s)ds = 0 (2.47)
0kt _kt

and it is known from [3 S 44] that the exponential solution e , e

of (2. 47) can be made such that

-k= iwk + a + 8k' C-k = ic°k + a + E-k

where a is a complex number (ordinarily negative) determined by y and

e k# E-k are arbitrary complex numbers, determined by c E L2 [ 0, 2], such

that C
" ( 12+ 1 ek1 2 < "

k-= I
It may be shown that these are the eigenvalues of the closed loop system (2.36),

(2.37), (2.45), (2.46) .

In a given application, however, it is entirely likely that the particular

"canonical" observation (2. 46) will not be available. Indeed, in the exampli

indicated, since this observation is taken at the same pcint where control is

applied and might, therefore, be subject to a certain amount of noise

disturbance, it might not be desirable to use this observation in practice. To

illustrate the use of the technique of canonical augmentation (or "canonical

* compensation", perhaps) let us consider the same system (2.36), (2. 37),

but suppose the available observation is

aw
y(t) = w-~ (Ot) (2.48)

It is not hard to show in this case that y(t) satisfies

y(t+Z) +y(t) = u(t+l) (2.49)

rather than (2. 43). This "central" control canonical form is not as usable as

the "backward" form (2.43) because, unlike (2.46),

u(t+l) = (l-y)Y(t) - c(s) y(t+s)ds
* •0

V°,

.. . . . ... . .-°_-, o. . .. . ... . .. . ..-

" °"°°- °" "'° '
°
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is not a causal feedback law and cannot be implemented. But now couple (2. 49)

with

z(t+2) + Pz(t) = au(t+2) +bu(t+l)

+ cy(t+1) + dy (t) (2.50)

and let

w(t) = y(t) +z(t).

One ordinarily will take p j < I so that the homogeneous part of (2. 50) is

asymptotically stable, thus avoiding the growth of parasitic solutions in the

compensator. Since

[y(t+4) +y(t+2) - u(t+3)] + p[y(t+2) +y(t) - u(t+l)] = 0

while

[z(t+4)+pz(t+Z) - au(t+4)- bu(t+3)-cu(t+l)-cy(t+3)-dy(t+2)]

+[z(t+2)+pz(t)-au(t+2)-bu(t+l)-cy(t+l)- dy(t)] = 0

we find that

w(t+4)+(l+ p)w(t+2)+ pw(t) = au(t+4) + [l+b] u(t+3)

+au(t +2) +[p+b] u(t+l) +c[y(t+3) +y(t+l)]

+ d[y(t+2) +y(t)] = (using (2.49))

au(t+4) +[l+b] u(t+3) +[a+c] u(t+2) +[p+b+d] u(t+l).

Then it is easy to see that with

a=1, l+b=a+c=p+b+d=O,

i.e. with

a = 1, b=-l, c= -1, d= I- p, 

we arrive at the "backward" canonical form satisfied by w (t):

w(t+4) +(l+p) w(t+2) + pw(t) = u(t + 4)

for which causal feedback laws

u(t+4) = -y 1w(t+3) +(1+p-y 2 ] w(t2)-y 3 w(t+l)(
4 (2.51)

+Ip-y 4 ] w(t) - f c(s) w(t+s) ds
0

may be implemented, yielding overall closed loop systems



w(t+4) +yfW(t+3) +yzw(t+2) +Y 3 w(t+l) +Y 4 w(t)4 (2.52)
+ f c(s)w(t+s)ds = 0.

0
It is necessary to check separately that the system (2. 49), (2. 50), (2. 51) is

observable in any given case.

The exponential solutions of (2. 52), and hence the eigenvalues of

(2.36), (2. 37), (2.48), (Z. 50), (2. 51) may be determined with the same

flexibility as already noted for (2. 47). This is discussed in some detail in the

thesis of R. G. Teglas (45]. A complete theory of canonical compensation

for hyperbolic systems remains to be developed but, we hope, the example

given here gives reason to believe that the method is a promising one. It is

clear that there are some connections with observer theory as developed in

[ ZZ] and elsewhere; these connections remain to be worked out.
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Admissible Input Elements

for Systems in Hilbert Space

and a Carleson Measure Criterion*

by L.F. Ho+ and D. L. Russell++

Abstract

We study the control system

k=Ax+bu, X C X, u scalar,

where A generates a semigroup on the Hilbert space X but, in general,

the control input element b / X. Many boundary value control systems,

point control force situations, etc., can be studied in this context. We

define and analyze "admissible" input elements b and develop sufficient

conditions for b to be admissible in terms of the Carleson measure theorem

of HP-theory.

Supported in part by the Air Force Office of Scientific Research under Grant
AFOSR 79-0018.

+Department of Mathematics, University of Oklahoma, Norman, Oklahoma.

++Department of Mathematics, University of Wisconsin, Madison,
Wisconsin 53706.

5 %' '. " -" .... " """ "" ... "' " / "" ."" " """ " " ' "'"-""" " " "3" -"" '"" -"'" " " " -



2

N.

1. Introduction. One commonly studies linear, time invariant control

systems in a Banach space X in the form

k = Ax+Bu, X E X, uE U, (1.1)

where A is the generator of a strongly continuous semigroup of bounded

operators (S (t)l t - 0} on X and B is a bounded operator from the

S. control space, U, into X If u: [0, ) -- U is locally (Bochner)

integrable, generalized (or "mild") solutions of (1. 1) corresponding to

an initial state

x(o) = o0E X

can be represented by the "variation of parameters" formula (see, e. g. [ 3],

[1] (t) = S(t) x 0 + f 8(t(-s) Bu(s)ds (L.2)

and a number of properties of x (t) thereby deduced .

It is well known, however, that most of the "interesting" infinite

dimensional control systems do not arise this way because the degree of

controllability of a system (L 1) with B bounded is rather restricted if, as

is usually the case, U is finite dimensional or for some other reason the

operator B is compact. Indeed, most of the mathematically intriguing

examples arise in the context of partial differential equations with boundary

value control inputs, control forces exerted at isolated points, etc., and in

the context of functional equations which involve values of the control of

discrete instants , viz. ; u(t), u(t-T1),... , u(t-T n ) . In each of these

cases the formulation (1. 1) is inadequate and one must consider input

.
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operators - B whose range is not restricted to the space X.

A number of authors have addressed the problem of interpretation of (1. 1)

for operators B of rather general type. We particularly cite the contributions

of Curtain and Pritchard ( 3], Zabczyk (22], Fattorini [ 6], and Washburn [ 20].

It seems fair to say that, as brought out in [3] the theory is more extensive

and generally applicable in the case of systems of "diffusion type" ordinarily

involving holomorphic semigroups, than in systems of "wave" or hyperbolic

character.

In the present article we shall restrict our attention to spaces X which

are separable Hilbert spaces and to finite dimensional control spaces U.

Taking U to be Rm, (.1) becomes

m
k = Ax+ j b uj  (. 2)

j

where b is the ontrol input element associated with the J-th control

component u . Since every solution of (1. 2) is a linear combination of

solutions of x = Ax and the individual systems x = Ax + bj u

j = 1, .,..., m, we may, without loss of generality, confine our discussion

to systems

= Ax+bu (1.3)

wherein the control u is scalar valued. Much of our theory can be

extended to cases wherein U is infinite dimensional but we will not do

that here.

What distinguishes the present study from earlier contributions is the

attention which we pay not only to the relationship between the operator, A,

and the input element b, but also to the relationship between b and

the semigroup S(t) generated by A. In cases where A has discrete

,4
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spectrum (k J k c K), K being a countable index set, this amounts

to a study encompassing the input element b, the eigenvectors {Oki k E K}

of A t-.e corresponding eigenvectors of the dual operator, A as

defined in Section 2, and the exponential functions exp (Kk t), k e K.

It is in particular reference to the latter that what is probably the most

important idea of this paper is developed. We show that a sufficient

condition for b to be an "admissible input element" (definition in Section 2)

can be given in terms of a measure on Borel subsets of the complex plane

whose support is {-kkl k c K}. When that measure turns out to be a

Carleson measure the input element b is admissible. This result brings

out yet again the intimate relationship between the control theory of infinite

dimensional linear systems and parallel developments in H p  theory

(r51, [8J, 12]) and the related theory of completeness and independence

of sets of complex exponentials.

V
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2. Admissible Input Elements.

Let X be a separable Hilbert space and let A be a closed operator

on X with domain, 0 (A) , dense in X, generating a strongly continuous

semigroup of bounded operators S(t) on X for t - 0 . For b e X

the (generalized, or "mild") solution of

=Ax + bu, u (2.1)

x(0) = x (2.2)

is given by the "variation of parameters" formula
" .? t

x(t) = S(t) x0 +f S(t-sbu(s)ds ('..3)
0

and may be seen to be a continuous function x: 10, c) -- X Whether

x (t) is defined for each t - 0 and (2. 1) holds is more complicated:

sufficient conditions are that b e a(A) or that u is differentiable as

a function of t ([3], [11]).

In this paper we wish to consider (2. 1), (2. 2) in certain cases where

b does not lie in X and to provide, for such b, a formula parallel to

(2.3). Our approach is similar to that used-in [14].

Identifying X with its dual X, we denote the duality relationship

by (x,y), x e X, y e X, linear in both x and y. Where X is

the complexification of a real Hilbert space X the conjugate element -y0
is well defined for each y c X and, with ( , ) denoting the inner4..U

product in X ,

*(X, y) (X.) , y) (X,y

The bilinear form ( , ) is symmetric, i.e., (x,y) = (y,x), x, y C X

.' 'h ' '"":f :" " ': "" : ", o :' ' : "
-

" :
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and, for all x eX, ~

lxI1x= sup (2.4)
ye X II YIOx

The symbol A' will be used to denote the dual of A relative to the bilinear

form ( ,that is

(Ax, y) = x, A y) x c a (A) y c a(A

*The operator A' is closed with domain M(A) dense in X . It is known

that if A generates a semigroup, S(t), then S(t)' is also a semigroup,

*generated by A' . See ( 4] for details .

Let Y be a dense subspace of X which is a Hilbert space in its

own right with norm I l stronger than I OiX so that the injection

map

J (Y) =Y, Y CY,

Is one-to-one and continuous with dense range Y C X . We further suppose

that Y is invariant under the action of S (t), :y YC Y == S(t) y C Y ,

and that this map is continuous with respect to H S(t)lyUy. , Uyll and the

usual topology of (0, i)

Let Y' be the dual of Y with respect to X as described, e. g. in

P1] [ 14] , (15] *This means that Y' is the closure of X with

respect to the norm

=xly sup) (2. 5)

y 0

. . . . .
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It is known that Y', so defined, is a realization of the dual space of Y

and it is easily verified that the bilinear form (x, y) may be defined, by

continuity, for x Y', y c Y as

(x,y) = lim (x k ,y). , k - a

where {xk j is a sequence in X converging to x in y , So

defined, (x, y) generates, as x ranges over Y', all continuous

linear functionals on Y. We have

Definition 2.1. nthe system (2. 1), i.e.,

x = Ax +bu, u e L [oc[ O,,

b is an admissible input element if there exist Y. Y', as above with

be Y, such that for ever T > 0 the continuous map

defined b_

(Ly)(t) = (b, S (t)'y) , y e Y, t E '0, T (2.6)

has a continuous extension to

:.L z T= X -- 2 [0,T]

Remark. It is clear that this amounts to the statement that in the dual observed

system

j'=Ay

z = (b,y),

. . ,,, ., .: . .. , . ,.: : , :;-. .,. . ...;: / :- ...;'," , _ . 4;: . -::''
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b is an admissible observation element; that is, for y c Y,
..

z(- )-- (b,S(- )'y c C[O,T],

this relationship extending continuously to z (- ) c L02, T0] for y E Xo

To verify that Definition 2. 1 enables consistent definition, at least

in a generalized sense, of solutions of (2.1), (2. 2) when b is an

admissible input element and to establish some of the properties of the resulting

solution, we present

Theorem 2. 2. If b is an admissible input element the formula

t
(x(t),y) = (x O, S(t)'y) + f (b,S(t-s)'y) u(s)ds , YE Y, (2.7)

0

defines, for each t 0 0, a unique element x (t) c X. Given T > 0

and u e L [O,T]

x(t) = S(t)x0 +B(t)u, t c (O,T] , (2.8)

4.4 where B(t) is the strongly continuous family of bounded operators

2
* B(t) : L (o,T] -X given_

t,

(1(t)u, y) =f(b, S(t -s)'y) u(s)ds, y e Y. (2.9)
0

Proof. From (2. 8) and the fact that Y is dense in X it is clear that

x(t) - S(t) x 0 = (t) M B(t) u

where, for y C Y,

I (F(t),y) = fo(b,S(t-s)'y) u(s) ds.
0

Let x e X and let (yk be a sequence in Y converging to x with

respect to I IX" Since b is an admissible input element the

........ ... ........... -.... ,..... . . --. ,--'-i
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corresponding functions hk defined by

hk(t-s) = (b,S(t-s)'yk) (2.10)

-L2 L2
converge in L 0, T] to a function h e [0,T] Defining

0
we see that for t C [0,T]

cL o,,T... ;:i.~ ll.() x I"  IL[ 0, T] II u I1 L [ 0, T]

S I 0 l 1 11 x II 1 u 1I L 2[ 0, T ]

since (cf. (2.6), (2. 10)) h = Lx. Hence e (t) E = X. This

also gives
-- M Su

L [0,T]

showing that for t c [O,T], B (t) is bounded with

11 B (t)i 11 il1 L TO II

To establish that (t) is continuous in t for each fixed

u e L 2 [O,T] (and, hence, that B(t) is strongly continuous in t) , let

0 s:tSt:T and form, for y e Y
.o.%

Q (t) - e(t),y) =o(b, S(t -s)'y) u(s) ds

t

00
"; -f(bS(t-s'y) u(s)ds = (with r = s - (t- t))

t tft(b.S (t -T)Y ) U( T+ (^t0) dr- (b, S(t - s)'y) u (s) ds
0 0

+f (b,S(t-s)'y) u(s)ds =
0



I..
I. i
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t t-t
f ( bS(t- s'y)(u(s+(tt)) -u(s))ds + f (b,S(t- s)'y)u(s)ds

0 0

S I ULrl HI C I l u €" +(t t)) - ullL [  , 
+  HU HUL[ 0, -] )

Since Y is dense in X and since for fixed u E L [0,T] we have

r lir u 2 = 0,t -t --0. L?-[ O't -t]I

lin Qu(. +(t-t)) -uU 2 =t trn Iju(. + (t-t)) - URL2 = 0

We conclude that for fixed u e L [O, T] , and t, t as described,

t n tt ) t(t) X = ^  tm e (t) - E (tlUx = 0
ttt t~t

and thus (t) is continuous in X This completes the proof of the

theorem.

Let H be a separable Hilbert space and let [Pk ke K} be a

sequence in H, K being a countable ordered index set. The Pk are

strongly independent if no Pk lies in the closed span of {p, I I / k}.

If, In addition, there is a positive number c such that whenever

p = 0 akPkl (2.11)
KO

the ak being complex and K0  an arbitrary finite subset of K, we

have

2 2  (2.12)

KO
we say that the are uniformly I2-independent, since (2.12) implies

Iakl1 s C2 P 2  (2.13)
K

-A .



whenever (ak' c f and P = P k is convergent in H
K

If there is a positive number C such that

K0

p as in (2. 11), we say that the sequence (Pk} is uniformly 2-converqen

since this property implies that if { k } ft2  the series 71 Ok Pk is
K

convergent in H and

,P U p c Z Ik• (2.14)
K

Recall that a sequence {pk} in H forms a Schauder basis for

H if for every p E H there are unique coefficients ak such that the

series Z a k Pk  converges to p in H ([21]) . A Schauder basis

which is, at the same time, both uniformly t 2-independent and uniformly

. 2 -convergent is a Riesz basis . For evident reasons we shall also use,

synonymously, the term uniform f2-basts. If (pk) is a uniform f -basis

for H then every p in H has a unique convergent representation

Sp = c Pk
K

with (cf. (2. 13), (2. 14))

cZI akI sil IIs P12 : C2  fiakl 2 .
K K

:* For the remainder of this section we suppose that

(1) the operator A with dense domain (A) .X generates the strongly

continuous semigroup of bounded operators S(t), t at 0;

a .,
o

• * " - .** . ..- a.,.-, * , ' ' ,' '. ' ',. ., ." -'.** . . ": ',.- - '..'..-,.,"- -'."."" .-'- -' --. """ ,' .' '. . ;
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(i) a (A), the spectrum of A, consists of discrete, simple

eigenvalues Xk , k e K, and the corresponding normalized eigen-

vectors Ok' k e K , form a strongly independent, uniformly f 2_

convergent Schauder basis for X.

Since the Ok ' k c K, are strongly independent and have closed

span equal to X there exist unique biorthogonal elements P k' k e K,

such that

= , k, I K.0, k l f ,

As is well known, the *k are eigenvectors of the dual operator A'

corresponding to the eigenvalues Xk , k c K . We further assume

(III) the eigenvectors tk of A' have the property

'PkCYCX.

(this is true, for example, if Y D a((A')r) for some positive integer r)

If x e X, the fact that the O6k form a Schauder basis in X

implies the existence of unique tk, k E K, such that

X = Ek~k ,  (2.15)

K

the series converging in X. From this it is evident that

tk = (k x ) , ke K.

We are not assured, in general, that the i k are square summable but the

uniform I -convergence property of the Ok shows the square summability

of the sequence QZ k1 to be a sufficient condition for convergence of (2.15).

12
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Since we assume the 4jk lie in Y, given any element b c Y

(and this includes b e X) we may define

bk = < , b) (2.16

and obtain a set of coefficients bk , k c K, associated with b . In

general it is not possible to recover b from the coefficients bk . (An exam
2 1 1 -ikx

is X = L[0, r] Y = H [O,27] % jkx) = (2w)- e , k = 0, 1, 2,

The 4k ( = Ok )  here form an orthonormal basis for X and belong to Y

but there is a non-zero element, namely 6(0) - 6 (2w ) I in Y' for which

all of the bk are zero. This arises, of course, because the closed span

of the 4k in Y is not equal to Y. ) As a consequence it is not

generally meaningful to write b = Z bk k"
K

Nevertheless it may be meaningful to consider the initial value problem

(2.1), (2. 2), I.e.,

= Ax + bu

x() = x C X, u L c[OV0)P0 c

for certain b e , namely, those that we have already characterized as

admissible input elements . We wish now to show that the class Of such

admissible input elements can be characterized in terms of the coefficients bk

and the eigenvalues x k . If x (t) is the solution of (2.1), (2. 2)

established by Theorem 2. 2 for an admissible input element b then,

In particular, for t a 0,

(x(t)," k ) = (x 0 , S(t)' uk)

+...(b, S(t- s) I' k) u(s)ds
X kt 0 J kk(t- s )

= e Xo, k + f e u (s)ds

-". . .. . .. . . -. . . , -.- -. .- . .---. -.- .. -. -. . .. , ,. -. - .- .. -.
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where

x 0 Z xO, kk-K Xkt

We do not know that the numbers e x0 , k are square summable

but the series X kt

e X0, k Ok
K

must converge to S(t) x 0  by virtue of the (assumed) Schauder basis property

of the Ok . It follows that a sufficient condition for x (t) to belong to X

is that the numbers

k(t) = bku (s) ds (. 17)0

should be square summable for each t at 0. Equivalently, making a trivial

change of independent variable,
t ek s

k(t) = bkfe f(s)ds , f(s) = u(t- s)

0
The necessity of considering an infinite number of values of t can be obviated

2by taking f to be an element of L [0 T], T > 0 fixed, and defining

f(s) - 0 in [t,T] for t < T. The map

k = bk fTeXks f(s) ds, f e L 2 [O,T], (2.18)
0

so defined may be designated as

L : L (0,T] - X, (2.19)

LT(f) = x = Z Ck k' (2.20)

K

and it is easy to see that LT  is the dual of LT :X -- L2 [0,T] as

defined by (2. 6). Thus the boundedness of LT, as required in

i I - i i ,.. -i I
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Definition 2. 1, may be obtained as an immediate corollary if it is shown that

L'T , defined by (2. 18) - (2.19), is bounded. For our present purpose

this is the route of choice .

Extending f further via f (t) = 0, t > T, the Laplace transform

of f is the entire function

-(z) = f e - z t f(t)dt = fTe-zt f(t)dt
0 0

In terms of $ we clearly have

Ck = bk 0 (-Xk), k c K,

IIand the following proposition is evident .

Proposition 2., 3 . The operator LT (equivalently LT ) is bounded

Just in case, for every f e L 2 [ 0, T] the Laplace transform of f, tP has

the property

YIbk (-X>)I 2 < (2. 21)
K

We are fortunate that the inequality can often be establishied with the

use of the concept of a Carleson measure and the corresponding Carleson measure

theorem as it applies to the space

H a Fz zRez) I Re M >x real. (2.22)
2

The space H2 {z I Re (z) > a) consists of those complex functions O(z),

analytic in Re (z) > , bounded in each half plane Re(z) a- x + 6, 6 > 0,

and satisfying

.f I (e + il)I dT) s MO >cx, (2.23)

.4

V .- 1



16

where M is a positive number depending only on (and not, in

particular, on It is known (see, e.g. [10]) that each such

function has a limiting "boundary" function

Oa) = rm Q +i ) (2. 24)

defined almost everywhere in -D < TI < and $ (TI) is meaasurable

with

f 
2O 

2

Each E is the Laplace transform of a unique function f e L oc[ 0, cm)

such that

f ie - at f(t) iZ dt <
0

Let . be a (non-negative valued) measure defined on the Borel

subsets of {z z > a} . Then iL is a Carleson measure if for every real

i and every h > 0

P ({z -- hSIm(z) S T+h, a <Re(z) S a+h) -5Ah (2.25)

for some positive A depending only on g (not on h)

For a Carleson measure we have

Theorem 2.4. If . is a Carleson measure on fz I Re(z) > a} with A

2
'as in (2. 25) , if e6 Ha " and a _is given by (2.24), then

2 1000A (7)1
lo dtL(z)s Sa- f I~~lIdyI (2.26)

zI Re(z) >T -a

. . + ,. .+ -% - ++. • % "% + + " . . -. . " .% , + " . % " - % . . ' . % " . . . •. • . . ._
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A proof of this theorem is offered, for the sake of completeness, in

Section 4 of this paper. The relevance of this theorem for our present studies

is exhibited in the selection of a particular measure F . For b E Y and a

given discrete spectrum {Xk} for A, let

L= Lb, {Xk}

be defined by

L( -k) =Ibki 2 , k e K, (2.27)

IL({zIRe(z) > a) - {) k kk E K)) = 0. (2.28)

In this case the left hand side of (2. 26) becomes

Z Ibk$O(-Xk 2  (cf. (2. Z1))
K

The PlancherelTheorem, on the other hand, gives

f $(TI ~j f 2r e c f(t) dt
0

whe the supr f 2  aIT w f T 2f()1'd

when the support of f is restricted to [0, T] . Thus

Z k(-) s 2Oooe 2 alT A f If (t)a dt
K V0

and, in view of our earlier discussion, we have

Corollary ?. 5. A sufficient condition in order that b e Y should be an

admissible input element for the system (2. 1) , wherein a(A) = {) k I k L K)

and the corresponding eigenvectors ,k' k c K, form a strongly independent,
2

uniformlh f -convercent Schauder basis or X, U that Ith measure

'b, (k defined y (2.27), (2. 28) should be a Carleson measure in
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{z jRe(z)> a} forsome real a.

We remark that the assumption (1) above together with the Hille-Yoshida

Theorem ((41 , (11] ) implies that the complex numbers -Lk , k E K, are,

indeed, confined to some right half plane Re(z) > a. The fact that the

support of f is restricted to CO, T ] implies that the corresponding Laplace

transform $ is entire and satisfies an inequality (2. 23) for every real a

M$= M here).

.4

Sq%

"*, *

°4

'Q°- , Y ~ :~cZ:(~-~N- i .~.
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3. Identification of Admissible and Inadmissible Input'Elements; Examples

Our first task in this section will be to develop a method whereby input

. elements b not in the state space X may be identified as particular elements

of a larger space Y' . The assumptions made will be somewhat more

restrictive than thos introduced in Section 2. They are by no means necessary

conditions .

Let us suppose that the operator A, generating a strongly continuous

semigroup S(t) on the Hilbert space X, has (dense) domain D(A) and

that A possesses discrete eigenvalues k, k c K, with

lim x>'k I =

p (k) --

Here p (k) denotes the number of elements I c K such that I < k with

respect to the assumed order relation on K. The corresponding normalized

eigenvectors Ak are assumed to form a uniform basis for X. We denote

. the dual operator by A It has the same eigenvalues k and the correspondin

., eigenvectors 'Pk k c K, will be assumed normalized so that

(= { O fk =,& .0, kA,

The *k also form a uniform basis for X, as is well known . Then it is

easy to see that

" ~ ~ ~ j (A) = {y= 2~~l,~~l < "
8(A) (YXk AkIZEI XkI 2 <I:'iK K

:1' and that

A(A') = {y = Zy k IkZ IkXkYkI 2 <}
K K

For the work of this section we take Y = 8(A') with the graph norm

- . -.q' % ' ' - 4 ' .
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- 2Y

H"ly = L (1+ IXkI) lYk
K

where

yif'::y =  Yk *k
k= 1

in X. Then Y C X and the injection mapping is continuous. It will

often be possible to identify a Hilbert space Z C X with continuous injection

I map such that U UZ is a familiar (e.g. Sobolev) norm and Y is a

closed subspace of Z on which the norms 0 J Z and I Uy are

. equivalent.

We wll be concerned with two different extensions of the operator A.

We suppose first of all that there is an element x c X not in g(A) and

that L is an operator on X such that

-(L) = ( +u[ e a (A), u scalar}

Lx = Ax, xE (A).

We will refer to L as an "operational extension" of A. Its significance

arises from the fact that many of the inhomogeneous boundary value problems

arising In applications can be expressed in the form

d = X ,(3.1)

with %.e restriction

X +ux e () (3.2)
43

The second extension of A, which is a map

4;.- is a standard one, often used, e.g. in [14]. If y, TI E a(A), a(A'),

respectively, we have

4-..

A' : -.../ .',€ <' .",". . ...."'__'' . . .." .'L .. . "." . . . . " " ." '",



.4

21

(Ay, T) - (y,A') .

Since A Y = -(A') X is continuous, the form (y, A!11 ) extends

to (x, A'T) , x X, by continuity and density of £(A) in X and,

so extended, (x, A'TI ) defines, for each fixed x c X, a continuous

linear functional on Y, i.e., an element of Y' . We define

A: X - Y' (A!))'

by

('AxT) = (x,A'r), xE X, Ti Y= A(A').

Our first goal, with reference to the system (3.1), (3. 2), is to replace

it by an infinite set of scalar ordinary differential equations

dxk X + b k c K, (3.3)
=7 Xk1+ku, kK

where

x(t) = L xk(t) Ok'
k cK

convergent in X. In order to do this we recognize first of all that

Z = .
K

represents not Lx, but rather Ax, since

(Ax qk) =(xA'4q = (xk *k = Xknk

We rewrite (3. 1) in the form

dx: =x +Lx - %C (3.4)
dt

an equation in l. Then, since x is to have the form (3. 2) with

e 8(A), and since

. . . . . . . . . . . . . ...... -.... .. .'. -.. '.-.".,J ,. . .. 'v .-.. , ,. , '- .
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.:Le At At • j S (A)•

(3.4) becomes

dxd Ax+(Lx -Ax)u.

We define b e Y', a continuous linear functional on Y = o(A'), by

(b,-A ) = (<, 71 - - (x, A TI) (3.5)

for I c A(A') -Y. We then have

b = Zbk Ok
K

where the "control input coefficients", bk9 are given by

b, %Pb•k) = (LX V *) -<^,')
^ (3.6)

= (L Ik) k(x• ,> (3.6)

In most examples we shall have L = 0 . Then, if

. E ^Xk"k
K

convergent in X, we obtain, in place of (3.6),

bk - k Xk, k c K. (3.7)

Also, in this case, the equation (3. 5) becomes

(b,TI ) = (x,A'l) . (3.8)

The equation (3.5) (or (3. 8)) will generally be used to identify the

* functional form of b while (3.6) (or (3. 7)) will be used to identify its

expansion coefficients in terms of the eigenvectors 5k of the operator A.

While not all admissible input elements can be treated this way the class is

large enough, we believe to warrant the detailed description we have given here.

,t5*i~ ~ , .* S-*5SS
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Example 1: Heat Equation. Let x(s,t) satisfy

ax 82xa - s 2 0 < s <l, t>0, (3.9)

with boundary conditions

x(O,t) = 0, a x (1, t)+ 3 8x (1, t) = u(t), (3.10)

where a, 1 are real numbers, not both equal to zero . In this case

• .we take

X= L2[0, ]

Ax =- 2x  xc (A) = [x c H 20,1] I x(0) = 0

ofx (l)+AX( )= 0),

2 2
LX = = . xe S(L) = {x e H2 0.]Ix() =0

.4 f S
x(s) s(2 -s) (3.11)

With I
(x,y) =f x(s) y(s)ds

0
we see that if x, y c 8(A)

(Ax, y) - (x, Ay) =f (x'(s)y(s) - x(s) y"(s)) ds
* 0

f s (x'(s) y(s) - x(s)y'(s)) ds = (since x(O) = y(O) = 0)

x'M)y(l - x(1)y' (I)
f(x'(l) + x(l)) y(l)- x(l,( y(1).+ y'()),. o

( ( ) + x M (1)) -x(l) +y ( l y) , j 0

= 0

. . .. . . . . *. *I ° .- . . .
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and we conclude A= . In the first case of (3.11), a +1 O

L= 0 and we have, for 1 c j8(A')= A(A)
(b, nl) = -cxA'") = - 's"(s) ds

11 1 -.TI'(1) + TI 1)
, (-s1'(s) 0 + TIMsa +p

TI(1), 13 0+ o
a 4

Thus we have
fl 13 Ao

b= (3.12)6'(1)1, a Ao 0

": The two agree if neither a nor P are zero because the linqar functional
; + 1 '' Y' i.11 + . '(11 is zero in (8(A))' = Y in this case .

The eigenvalues of A are Xk = - Wk where, for k = i, 2, 3,...

az sin Q +13*wk Cos()k) = 0 * (3.13)

Let

= sin

wk

and (3.13) becomes

cos (wek) = 0

so that

W ek = k-i k= 1,2,3,...,

giving
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k 2 +sn_2- 2_ 2 "

311

It is easy to see that 1 as k -. so

2k-- IW k= (T= ) + ( 1& (V 0, (3.14)

2k-I )w = kir=,-f= 0. (3.15)
w lit + =

Defining
:V 2 sin 1ck2

k f sin(ws ds
0

it is easily seen that in all cases the vk are nonzero and

lim V I
k

Then the eigenfunctions

k(s = - sin (cak s)

form an orthonormal basis for L2 0,11. It follows then that the coefficients

of the input distribution elements (3.12) are given by
{11

bk 7 sin(wk), Pj€ 0,

b k k (3.16)
W k cos (w k)

axvk

We consider here the case 1 3 0 , saving the analysis for = 0

until later in this section. If 3 A 0, formula (3.16) shows the bk

to be uniformly bounded. The complex numbers - = rk have the

property (from (3.14))
X.k.ir + (l). (3.17)
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Thus the number of such -Ak Inany set i ra(z) - rj sh,

a s Re (z) : a + h is * (hl/2) and it follows that the measure IL with

2 2D
'Ib-k lb. lk({Re (z) -> al -kU (-k } ) = 0 is a Carleson measure.

k=1

Hence If 3 0 the boundary Input (3.10) is admissible .

In this case the result Is easily obtained without the Carleson measure

theorem; for, if the coefficients Ck  are square summable and T > 0 ,

2" 2-Is.' sup {jbkI) fTI Z e t
bkcke l 2 e dt

k=1 kT] k 0

--- 1

, sup(lbk1) I2" e dt =supibki} < kL
=l = 0 k k=1 =1 2)k

(3.18)

since sup {I b k1) <a, and we conclude that the function sequence

k

{bke }ktl is 12 -convergent in L2 [0,T] . Our next example is chosen

in such a way that a simple argument of this type does not apply and the Carleson

theorem is actually needed.

Example 2. Another Heat Conduction System. As a further example

we ask the reader to consider the system shown in Figure 3.1.

"11• •. m .- • J~m
•

•" •" * * " "I + ' C."- '
•

.
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z= 0

1x=x=O =

Figure 3. 1

The shaded horizontal bar, B, represents a layer of material, whose depth

will be assumed negligible, and whose heat conductivity, k, is small in

comparison to its specific heat R while the region 17 consisting of the

half strip

a :0 SxS 1, z -S 0,

is assumed filled with a material whose specific heat, r, is small by

comparison with its conductivity, K. The heat flow equations are thus

*1 €
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R k -Z - a (3.19)ax 2  O

r-- = K ( + a (3.20)8x az

together with boundary conditions

- (0,t)=o, x(lt)=0 (3. 21)

(o z, t) = 0 a - (1, Z. t) = g (z)u(t), (3.22)

Ur a (x, z,t)= Um r (xz,t) =0 (3. 23)

z -" -t
T (x. 0, t) = T (x, t), 0 -Sx 1 S (3.24)

The inhomogeneous boundary condition along x = 1, z S 0, represents

the input heat flux. In (3.19), (3. 21), T (x, t) is the temperature in

the bar, r (x, z, t) the temperature In 0

If we assume k, r vel s;.W1 by comparison with R, K, we may,

as an idealization, replaca f 3. 19; and (J. 20? by

R OT =_K 8z

a 2. T a2 T
72+ ---T- =o, (3.26)

retaining the boundary conditions (3. 21) - (3. 24) . We take as our basic

state space

;r= (T=T(x)I T c L[0,1]}.

We define an operator A on ;r with domain

*(A) = l(o,1]
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as follbws o Given T e A (A) we let r = T(x,z) satisfy (3.26)

in 03 together with

-r(x,0) =T (x), 0-x-l, (3.27)

and

8'x (1O z)o, - (l,z)=O (3.28)

im -- ( ., z) =0 in [O,l] . (3.29)
Z - C.b 4D

11M T(-, z) = 0 in H I[0,1] (3.30)
Z .. -C

From [14], for T e HI[0,1] wehave T-c H3/2(a). Thetrace

theorem ([1], [14]) then gives

8 L2
,-. C-, 0) e [0,1],

and we define

K ( 0) (3. 31)

So doing, (3. 25) becomes

T=AT (3. 32)

and (3. 31) is subsumed in the definition of A.

1&Mma 3. 1. The operator -A is the positive square root of the Sturm-Liouville

operator

K2 d2 T

with

*T .. ..--T -*. .....-....................----.-..... ,..... .-. ,.".........---.-...."...'".........-""" -.". "-
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A(T) = (TE H 2 [0,1] I (0) = T

Proof. We compute (-A) 2 T for T c a (T). For such T the solution

of (3.2-7) - (3. 30) E H5/2(12). If we let

r r(x z '-r (x,z)(xz)-R 8z

then

r(-,0) -AT

and

(-A) T = -A(.,0) = --T , 0)
22 R 8z

K 2a 2- T K0) 2 d2 T
R ex R dx

since r e H5/2( ) together with (3. 26) implies that

8 82T 2
-. ,O) + -- ( ",0) = 0 in L [0,1]
ax 8z

and T = T(- ,0).

The positivity of -A follows from the divergence theorem . If

T e *(A) and -r = T(x, z) is constructed as above, we have

ff- ((.( z)) 2 + (2T(x, z))2] dxdz

= ffiv T(X, Z)h2 dxdz (V= gradient)
°0

= I[div(T(x z)VT(x, z)) - T(x z)2(xy)] dx dz

(A2 f Laplacian) = (from (3.26))

Sff div(T(x, z)v (x.z)) dxdz = (using (3. 27) - (3. 30))

f 1 T (X, o SZT x ) dx (T , -AT )L 1]0= i(x, 0)jjx0d=(T . )
0 o0,1]
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This completes the proof.

Accordingly, A is self adjoint with eigenfunctions

So(x) S I, Ok(x) = 4 cos (kwx), k= 1, 2, 3,... (3.33)

and eigenvalue s

Let 0 -) k  = he k, k= 1,2,3,.... (3.34)

lat w (x, z ) be the solution of the following inhomogeneous

boundary value problem:
a82w  a2 w

2 + --- = 0 in

OW w8w 8w"(0. Z) = 0, 1 l 0.Z)=g (Z)

8w11M sz (x. Z ) = im w (X, Z) =0

Z - -Z

w(x, 0) = 0 , 0 :Sx .

We will assume that g (z) is such that the resulting w (x, z) c H2(U)

In this case the inhomogeneous equation can be interpreted as

= AT +bu

where b = b (x) is given by

b(x) - 1-(x. 0).

To compute the coefficients of the expansion

b(x) b"k Ok(X)
k=O

we note that since A is self adjoint, 4k (x) = p k(X), and
1

bk= f , k (x) b Cx) dx. (3. 35)
40
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Let k ( x, z) be the solution of

a -b-- = 0 in G
aihx2 z 2

Ok(x, 0 ) = 0 1

and homogeneous boundary conditions of the type (3. 27) - (3. 30) otherwise.

!;hen. with A2 = - +82

8X-2 8z

O = [Ok(X, z) w(x, z) - w (x, z) A 2k (x, z)] dxdz

= f div[ok(x , z) grad w (x, z) - w (x, z) grad ok(x, z)] dx dz

R 0$~~~x ~ -

fkxbxd +f ck(l,z)g(z)dz

giving (cf. (3. 35))

bk= f
bk= ER ' k "' z ) g ( z ) dz.

Now it is easily checked that for k = 1, 2, 3,...

•Ok(x, z) = (2 cos kw x) (exp(krz)
" . so that

Ok(l,z) = (-l)k rZ exp (kwz)

and thus

bk W) k 42-K J eWP (k wz)
k- R
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'

The Carleson measure theorem-can be used in a slightly different way

than that set forth in Corollary 2.5 to show that If g c L2 (-=, 0] then the

b k  are square summable and b is, consequently an element of L (0, 1].

Writing = -z, g(- ) = 9(q), we see that

bk = (-l) K f exp (-kw C) g(Q)d.
k R 0

Since the measure i assigning the value 1 to each of the points ku,

k= 0,1I,2, is clearly a Carleson measure, and since (-I)k-- KR
o ,,2.. isa masre snc R

changes only in sign, {bkl C .

If g (z) is just bounded and measurable on -< z S 0 we can

-ilmost trivially obtain

bk = k(1

and the bk  will be square summable.

It is obviously possible to replace g (z) by distributions of various

types. Taking g (z) = 6(0) corresponds to a point heat source at the

comer x= 1, z = 0 and leadsto

b (-) 42 K(3. 36)k R
2Inour present example X= L [0,1] , Y= 8(A) = HI[0,1] and

= -1 [0,1] . The coefficients (3.36) may be reccgnized as those

corresponding to 6(1) (referring now to distributions along the x-axis).

Any measure V. essigning to the points -X k = K kir values

Ibk]j which are bounded evidently yields a Carleson measure and we conclude

that all of the above cases correspond to admissible input elements . In this

case the argument represented by the inequalities (3.18) will not work

because the series is not summable in this example
k=l

.- .,.- .. . .... . .-... . . ...... .--... ,-.. .. ... ... ...-.-... .-.. . ,-. . -. *' : .' ,- .,-,,,. , '.,-Y .:-:':.-,:'
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Example 3. Hyperbolic and Neutral Systems.

A wide variety of systems involving linear hyperbolic partial differential

equations in two independent variables x, t, or neutral functional equations
-

lead to systems of the form described at the beginning of this section, the

eigenvectors, Ok' of A forming a uniform t 2 -basis for the state

space X and the eigenvalues Xk confined to a vertical strip

(I < Re () < 1 in the complex plane. It also usually turns out in these

cases that the number of kk  in any rectangle

a < Re(k)< , y<Im(x)<6

Is less than or equal to M(6 - y), where M is a fixed positive nur Jer,

It Is evident that the measure (2. 27), (2. 28) is a Carleson measure in tt ,;se

cases. whenever the control input coefficients b k  constitute a bounded set.

Example 4. Linear Surface Waves * If the operator A is defined as

in (3. 31) but, instead of the first order system (3. 32) we consider the second

order counterpart

Z +At= 0 (3. 37)

we obtain the linearized equations for small amplitude waves on the surface

of an incompressible fluid . The theory Is more fully developed in [ 16], [17] ,

[19]. With T = j , (3.37) is equivalent to the first order system

- =(3. 38)

To obtain a topology corresponding to the energy of the system one defines

4.

,* ." t. ,..,. , c- _ . ." .," ' . .%
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2 = 2 + TA- I (3.39)

*~ ~ ~ ~ T ei~i: 1 4 L0(,]' ~[ 0, 1] 039
where

2 1
LZ[0,] c c 0.[0,1] if l(x)-dx 0}. (3.40)

0 0
2The restriction to LO (0,1] corresponds to conservation of fluid volume.

On the domain

So(A) = E E[0,1] I f (x) dx = 0}
0

the operator A is invertible . Is eigenvalues are (cf. (3. 34))

k= -Kir, k, = 2, 3,... (3.41)

with the same eigenfunctions $k(x), k = 1, 2, 3,... , as shown in

(3. 33). Correspondingly, the operator a has elgenvalues

Kw 1/2 // k= l,, 3,....
i'wk' k k R k =

(3.42)
and the eigenvectors, orthonormalIzed with respect to ! e and the

corresponding inner product are

/k S k / kk 1iCk=  ,k .k= K,~ I = 1,2, 3, ....
(iwk"tOkk k

(3.43)

To discuss admissible input elements in this case we let k' -k

be non-negative numbers, k = 1, 2, 3,..., and define

P {Wk)} = 1k fL {-i k} = n-k = 1, 2, 3,...

P ({Re (z) _a a)- U (fic} U (-iakl)) = 0
k=1
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Let P(w), -< < , be defined as the piecewise linear function

such that In the nterval [ iIk. 'iC k+l]

k(ck+1 - ) + k+(a - k)344
Ca) = .(3.4
Wk+l - COk

Since o 1/2 +/2
fok+1lO/2 ( )d = k k 2 k+l k+l

k l +13 ) --,W cc ," "(13k + k+1) J

we conclude that IL is a Carleson measure just in case there is a constant

C such that
fT./Z(w) do _s Cl-jr- al (3.451
a

whenever 0 < a < r together with a comparable condition involving the

13k; and negative values of o * But (3, 45) is true just in case

W 1/ L , k = 1, 2,3,.
k k

and the comparable condition for negative k is

,/2 S ..

k -k C k=1,2,3,..
Thus for the inhomogeneous system

Q)= a() + Qu

the input element Qb) with
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b2 k

•k b~ 1

is admissible, from this criterion, if

k1/2 (Ik+ kI 2 ) < C (3.46)

for some fixed positive number C . It will be noted that this is (slightly)

less restrictive than the requirement

e

Dcample 5. Negative Results. For any system similar to the one in

Example 4 but with Icak+l - wk1 = (l/kl/2 + e) the Carleson measure

condition will be stronger than requiring b e X. Hence failure of the

Carleson measure condition cannot be used to show that an element b is

not admissible, for any b e X is admissible.

To illustrate what can be done in a negative direction, we return to

Example 1 with 1 = 0. This situation has been studied, using a different

approach, in (13]. We present here an argument more in the spirit of the

present work. As shown in (3.15),

and2 -k 22 (3.47)

and (cf. (3.16) and, w.l.o.g. taking a = 1)
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'bk 4  = -- kw cos(kw)- (-I)k42 k w (3.48)

Since =k lbk12 = 2k2 W2  while (k+l) 2  2  k2 w2 = 2kw 2 +W2 ,

itsnothardto see thatt he measure P- = ILb{}, (X-kk) = IbkJ2  is

not a Carleson measure in this case . As we have remarked, this by itself

is not enough to show that the input element with coefficients (3. 48) is not

admissible . To show this, we ask the reader to consider the function

*r(z ) = (z + 
I)r

analytic in the complex plane minus the cut consisting of (z I z real, z -S -1).

If r > i r  is square Integrable on any vertical line {z I Re (z) =

e , t 0) with uniformly bounded 0 norm and * r(Z) is bounded for

Re (z) & 0 . It follows that q r(Z) Is the Laplace transform of a function

fr = f r (t) with fr e [O,)- Then

b k  fek 2rt Jr(t) dt

(-I k. 42lk 'k O(k?* 2 ) = f-1) k %'-kw

r ( k 2 W2 +l)r

= (- l 1-Zr k -O 1 (3.49)

This expression is not square summable if r satisfies the inequalities

I-Zr

so we require

2 S

.. 4
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Let E be the closed subspace spanned by the functions ek in

L2(O, .) and let ET , T > 0 , be the subspace of L2 [0,T]

consisting of restrictions to [0,T] of functions in E. If fr is

the orthogonal projection of fr onto E we clearly have

fek f(t ) =t fo e- 2 2  fr(t) dt
0 0

It is shown in (7], (18] that the natural restriction map R: E - ET

is onto, (obviously) bounded and (not so obviously) boundedly invertible

with respect to the Induced .[( O, ), L2[O,T] topologies of E, ET,
-k 2 ,r 2 t

respectively. Thus, with Pk (t)= e

f - ft) dt Pk) 2o

R- R (-) f

r R pL[0,m) = 0) ) r k )[0,T]

=f0 e k 2  t 9r(t)dt

0
where

r (Rl)*f € C L2[0,T]

It follows that ipr is an element of L2[0, T] such that the numbers
T ek 2.i 2 t

(-)k kir f Tr (t) dt, k = 1, 2, 3,..
0

are not square summable. From earlier developments, the input element b

with coefficients (3.12) corresponding to the boundary condition (3. 10),

with 3=0, C9 =1:

x(1,t) = u(t)

is not an admissible input element.

; ; r" " " " '" "' "'" " " ""","" "' ,2, .. '..:.'..'.',-.,., ".'-", "'.." '"



40

4. A Proof'of Theorem 2. 4. It is clear that the Carleson measure theorem

2
in HC , Theorem 2.4, is central to our work in this paper This result,

in one form or another has been known for somewhat more than a decade. A

proof for H (D) , where D is the unit disc in the complex plane,

appears in Duren (5] A proof for functions in H is given, by

Koosis in his recent book [ 121. The reader is also referred to the recent

book [ 8] by J. Garnett. Because the result is not particularly well known

outside the circle of mathematicians working in HP theory and because the

results are rather scattered and not readily available in precisely the form we

require, we offer here a proof of Theorem 2.4 which is a direct adaptation

to the half plane of the result for the unit disc appearing In Duren' s book.

The proof given here originally formed part of the first author' a doctoral

dissertation [9]. As in Duren' s work, the proof makes use of a relatively

simple case of the Marcinkiewicz interpolation theorem ([23] , Chapter XI)

and, again following Duren, we do not quote the general Marcinkiewicz

theorem but, rather, give a direct proof for the simple special case required

here

We begin with a covering lemma of "Vitali type".

.'Mma 4. L Let (I) IXeA} = be a family of intervals in R1 .

Supose there is a positive number K such that for any finite collection

x k 2disjoint intervals in

~ lI Ik < K. 4.1
k=l k
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Then we can choose a sequence fIk k = 1, 2, 3, • } of disjoint intervals

from J with the property: for every X c A there exists

k {1,2,3,...) such that

IxC Tk

where k  is the interval having the same center as Ix but five times

the length of IX k

Proof. From (4. 1) it follows, in particular, that the length, JI xt I' of

I is uniformly bounded (take n = 1, XI = X ). Define the sequence

(Ix k} inductively as follows . Let Ix be such that

1lkl 1a:1 Sup lIkx .Xc 11

For k = 2,3,4,... let Ixk be disjoint from Ix, I = 1, 2, - • , n-1,

and such that

Ii,.k Ic -2 A , I. n 1  - i -- l,2,-...k-l1. (4.0

Since the I are disjoint it follows from (4.1) that

lm jI. = o . (4.3)

Let Ik  J. Then there exists k such that

ix n ixk 6 (4.4)

Otherwise (4.2) and (4.3) could not both be true. Let k0  be the

smallest integer such that (4.4) is true . Then
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lzx z II koI

and, together with the fact that Ix n I $i, this implies that

I C Jk , completing the proof.

We subdivide the rest of the proof of Theorem 2.4 into several propositio-

for clarity The proof is given for the half plane Re (z) > 0, without

loss of generality, and we designate H2  simply by H2 o

Proposition 4.2. Let c c H2  and let 00(1. ) be the corresponding
boundary function in L2  For z = +i , a > 0, let

Iz  be the interval

Iz = [- a. r+ a] (4.5)

and let
1W(Z) sup f 100 (it)idt , (4.6)IC = , I I

where j z is the set of all finite intervals containing Iz . Then
l OzI S 1_. Irm. (4. 7)'

Proof. From the Poisson integral formula in the half plane we have

I -ao0(it) dt

so that

-om Ia 100 1 (it)dt

a1 0t. :S 2N+l a 1+"t) +
0 2aSIt--rI~

al 0 (it)l dt 1

I t-T < a ,.r ( - t)
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I 00it)I dt I I$0 (it)I dt]
< N +l 4 4N a 1<

4 t- S at-TI

1 [N0)+ w~( z

ProDosition 4.3. Let c i Ll(-w,m ) a for z = a +iT,

a > 0 , let Iz be given b (4. 5) while (cf. (4. 6))

z sup 1 1 i(t)Idt. (4.8

Let be a Carleson measure and; for s a 0 let Es  be the Borel

measurable subset of {z I Re (z)> 0) given

Es = {z I Re (z)0 W,(z) s}.

Then, with A as in Definition 2.3,

p(E ) S + 1  (4.9
sL Tsm L )

Proof. Let J be the family of all finite intervals in R1 such that

I l (t)ldt >  (4.1

If 118 I21 . .I n ( J are disjoint, then (4.10) gives, for every n,
h- 2 06* 1 • (4oJ
I I 1I I-(t)Idt -II i .1 )

k =I =IlM

Thus J satisfies the hypotheses of Lemma 4. 1 and we can find a disjoint

sequence (In I n = 1,, ,... c j such that, Jn having the same
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center as In  but five times the length, each I e i is contained in
some J "

If z c Es, then Iz C I for some I c J and we have, for

some n ,

Iz =([- ,T +a] C n -

Then clearly,

z Scn= +iTo<a . TJ I}.

This being true for all z c Es

E C S
n=l

Since p is a Carleson measure and (4. 11) holds,P I I. ini

n=l n=l

Proositlon 4-4. 11t 0 e H0
2  with boundary function 0 0 (i. ) L

lt (z be defined X (4.6). T if FL is a Carleson measure on

(z Re (z) >o)

(.lz)O d (z) -, 1oAf j 0 (it)j dt. (4.12)

.__. . For each r > 0 let
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00(it(itif > r
I~r~t) = {I cito otherwise .

From fO 0- c L (-n V) we conclude that the support of tr is a

subset Er of (--, -a) of finite (Lebesgue) measure . Then

*r e L 2 (r) ( C L1( .r) and we conclude, since tr vanishes outside

' that r e L(-," )1 Moreover

f IIrIIL (-W dr f f 0 (it)jdtdr

.r

Im 0 it) Ifi f drj0(t))dt f i0(it)l2 dt (4.13)

-| m( ))II100(- AL 2(-4'CA,)

Let a(s) = pI(Es). Then we can see that

(;(z))d?. (z) -f s 2 da(s) = 2f soa(s)ds. (4.14)
W >( 00 0

From the definition (4. 8) of i it Is clear that for any two such

functions, 41 " 2, we have

JCO(1 + Wz~z S ql~z) + ;2 Zz)•

Hence

-(z) = ("r + (I ()I ))(z)

r r(Z) + ( 00( - r) (4. 15)

~ (rCz) + r
!r
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since [ (it) - Ir(t)I is either equal to 0 oris "- r. Let

Fs ={z I 4'rz> -- S)

Suppose z C E2re Then F(z) > Zr and (4.15) gives

" _z)a- (z) - r > r

and we conclude z E F r Thus
r"F

E 2r C F r .

Hence, from (4.9) of Proposition 4. 3,

(E) S F (Ff 5A.
r  r/2) r r rL1(-., W)

so that

Jra(r)dr f r(E) dr
0 0

:S SA f dr -S (using (4.13))

0 L,(-,)-S 5AR 00(i - )J2{ = ) .

Then (4.14) gives the inequality (4.12).

The proof of Theorem 2. 4 is completed by combining (4.7) of

Proposition 4.2 with (4.12) above to give

2000A02

"--'=2- J[0 { It ) ?dt

i" - A
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.j

as claimed in (2. 26), except for the trivial detail of replacing j 0 (i)

by + (a '°).

o%

-:,

* a

-4

-p

i

-" " ' °"4" ." " ' ': " " i i " , ' i : , i ,, ", , "
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