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Summary

A
“An inverse method was developed for treating gas-particle supersonic flow
past axisymmetric blunt bodies. This method is based on two transformations
(von Mises and an additional one), which are convenient for determining the
shock-layer flow fields and the body shapes.

In using the present method, the pure gas flow fields around spheres were
first solved numerically for the freestream Mach numbers =10, 6, 4, 3, 2
and 1.5. These were found to be in very good agreement with®the available
results of Van Dyke and Gordon. Then the gas-solid-particle flow in the shock
layer around blunt bodies (nearly spheres) were solved for the freestream Mach
numbers = 10 and 1.5, with freestream loading ratios &g= 0, 0.2, 0.5 and
1.0 and_particle diameters =1, 2, 5 and 10 um, respectively. The effects
of M_, d, and @ on the shock-layer thickness and the body surfacf pressures are
discussed. The variations of the flow properties along the stagndtion and
adjacent streamlines are also shown in some detail. \
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Notation

freestream gas sound speed = (1§Tm)1/2,m/sec
bluntness of body shape

bluntness of shock-wave shape

drag coefficient of a particle

gas specific heat at consiant pressure, (_TP/Cp =1
gas specific heat at constant volume, CV/CP

specific heat of solid-particle material, CS/C = By

dimensional particle diameter, um

particle diameter, ap/ﬁs

dimensional gas thermal conductivity, J/(m-sec-K)
gas thermal conductivity, k/(o U Ep ﬁs)
mass of a particle = :5-*/6~a: , 8

equilibrium freestream Mach number [see Eq. (5.14)]

freestream Mach number, Uﬁ/iv

number of particles in a unit volume, 1/cm3
n = ﬂ-ﬁ?
S

Nusselt number of a particle

gas pressure, ﬁ/fxﬁj

stagnation pressure, ﬁst/smﬁi

freestream gas pressure, kPa

gas Prandtl number

gas constant, mz/seczx

nose radius of body shape, ﬁb/ﬁs

dimensional nose radius of shock wave shape, cm
nose radius of shock wave shape, ﬁs/ﬁs =1
particle Reynolds number, Eﬁap/ﬁ

gas temperature, T/(ﬂj /CP)

particle temperature, Tp/(Qj /ép)

freestream gas temperature, K

gas velocity component in x-direction, G/ﬁm
particle velocity component in x-direction, Gp/ﬁm
freestream gas velocity = Mm-iw, m/sec

gas velocity component in r-direction, v/U_
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particle velocity component in r-direction, \"p/flOu
transformed gas velocity, V = v/Y
transformed particle velocity, Vp = vp/Y

relative velocity between gas and particle,
[u-uy)? + (v-v,) 21172

cylindrical coordinates (see Fig. 1), x = i/ﬁs,
r = r/Rs

loading ratio in freestream = ratio of particle_
phase density to gas density in freestream, op/cm

specific heat ratio of two phases, (ZS/Cv
gas specific heat ratio, Cp/Cv

specific heat ratio of equilibrium gas-particle
mixture [see Eq. (5.13))]

impact angle [see Fig. 10(a))

density ratio across shock wave [see Eq. (5.11)]
shock stand-off distance, E/ﬁs

integration step size in n-direction

step size in ‘-direction

coordinates defined by Eqs. (4.3) and (4.4)

gas viscosity, poise = g/(cm-sec)

gas density, B/Sw

dimensional density of particle phase = n-m

density of solid particle material, g/cm3
freestream gas density = ﬁm/-fm, g/cm3
coordinates defined by Eqs. (3.5) and (3.6)
gas phase stream function

particle phase stream function

dimensional quantijty

body
particle
shock or solid particle

stagnation

freestream

vi i
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1. INTRODUCTION

High-speed gas flows including small solid or
liquid particles have been studied by a number of
authors |[Refs. 1-6] in the last few years owing to
important engineering applications relating to
rocket-nozzle flow, shock waves in a dusty gas
[Refs. 7, 8] and in supersonic flight [Refs. 9-13].
In such two-phase flows the gas-phase flow field
will differ from its corresponding field in a pure
gas owing to the gas-particle interaction through
viscous drag and heat transfer.

The present report deals with supersonic gas
particle flow past blunt bodies. Assuming that
the mass ratio of the particle phase to the gas
phase in the freestream, or the loading ratio in
the freestream a, is small enough and that the
particle phase does not affect the gas phase,
Probstein and Fassio [Ref. 9}, Waldman and Reinecke
{Ref. 10], and Spurk and Gerber [Ref. 11] calculated
the particle trajectories in the hypersonic sheock
layer. Their main interest was to find the collee-
siom osrialony defined as the ratio of the number
of particles which strike the body to the number
of particles which could strike it if their trajec-
tories were straight and unaltered by the vehicle
flow field.

Taking into account the interactions, i.c., the
drag force and the heat exchange between the gas
and the particles, Chang [Ref. 13] investigated
dusty supersonic flow past blunt bodies using a
direct method. He showed that the shock-laver flow
is in nonequilibrium and investigated the effects
of the loading ratio a on this flow, His main
interest was to clarify the nonequilibrium pheno-
ucna in the two-phase flow within the shock layer,
which 1s also the purpose of the present report.

In this report a numerical method for treating
dusty supersonic flow past blunt bodies will be
developed. This method is the so-called inverse
method in which the shock shape is specified and
the flow field and body shape is to be determined.
First, the governing equations for dusty flow past
axisymmetric bodies are derived in a cylindrical
coordinate system (x, r). It is assumed that there
are no collisions between the particles. The inter-
actions between the gas and the particles considered
are only the drag force and the heat exchange.
Next, the governing equations are transformed into
a (¥, Y) coordinate system by using a von Mises
transformation, where y is the stream function
for the gas phase, and Y = r. To facilitate the
integration of the governing equations in the shock
layer, they are further transformed into a (£, n)
coordinate system, which will be discussed subse-
quently. The advantages of the present method are:
(1) body shapes are easily determined without any
approximate calculations; (2) relatively low com-
puter storage is required, since it i5 unnecessary
to store all the flow field data within the shock
layer; and (3) solutions are obtained quickly.

Although the advantages and disadvantages of
the inverse method and the direct method (including
the time-dependent method) for the blunt-body
problem have been fully discussed in Refs. 14-19,
it is worthwhile to summarize. The direct method
is more important for practical-type problems than
the inverse method. However, the inverse method
is significant and useful for complex flow problems

which have not been fully clarified, such as three-
dimensional flows of a pure gas, and two or three-
dimensional flows with relaxation processes. The
inverse method is much easier for numerical calcula-
tions, gives a more detailed flow field, and provides
better insight into the rlow fields.

Using the present method, the Zust)-gas shock
layer flows around hlunt hodics (nearly spreicvs)
were solved numerically. For experimental purposcs,
glass microspheres in air were chosen as the dusty
gas. To investigate the effects of the freestream
Mach number M., particle diameter dp, and freestream
loading-ratio a on the shock layer of the dusty-gas
flow, the following parameters were chosen:

M =10

N ’

1.5

d =1, 2,5, 10 ur

«a=0,0.2, 0.5, 1.0
Numerical results for a pure gas (u = ) were com-
pared with those of Van Dyke and Gordon [Ref. 16]
and very good agreement was obtained, thus lending
confidence to the dusty-gas calculations.

It is worth noting that spalling, ablation and

erosion of the glass particles were not considered
in the present study.

2. GOVERNING EQUATIONS

To formulate the motion of the gas-particle flow
in the shock layer, the following assumptions are
made [Ref. 4]:

(1) The volume fraction of the particles is small so
that the collisions between individual particles
are neglected,

(2} The interactions between the gas and particles
consist only of the drag force between the gas
and particles and the heat exchange between
them.

(3) The particles are assumed to be spheres of uni-
form size.

(4) The number of particles is large and the flow
can be treated as a continuum.

In this report a superscript ( ) over a quantity
means a dimensional quantity, otherwise it is non-
dimensional. Let u and v be the x and r components
of velocity (Fig. 1), o the demsity, p the pressure,
and T the temperature of the gas, and up, v,, ©
and T, be the corresponding_values of tge_p rticle
phase. Here, vy = /0 = n'm/e_, where n is the
number of particles per unit volume and m is the
mass of a particle. All lengths are nondimensional-
ized by the shock nose radius Rg, velocities by the
freestream velocity U , densitieg by the freestream
gas_ densxty R pressure by p U ¢, and temperatures
by Uy 2/c., where ¢y is the gas specxflc heat at
constant pressure. The other nondimensional quan-
tities are listed in the Notation.

Uinder the above assumptions, the governing
equations of the steady, axisymmetric, dusty-gas
flow become (Refs. 4, 13):




e
PR il

For the gas phase,

Continuity:

g} (reu) + f} (rov) = 0 (2.1
Momentum:

ou %§-+ v %% = - ;x + pr (2.2)
u %% + 0V %X = - %% + Fpr (2.3)

Energy:

.ucp %g + .i»vcp ;% -u ;x -V %%

=Q (up—u}pr + (\'p-V)F:,r (2.4)

State:
p=rlo (2.5)

and for the particle phase,

Continuity:

— (r..u — (re.v) =0 2.6
T ) T ) (2.6)
Momentum:
e -
‘pup o * Dpvp erai —pr (2.7)
w W
cu L4 v _Psp (2.8)
PP X Ppp v pr
Energy:
Tp -
YpUpCs Tx + “pvpcs T -Qp (2.9)

where cg is the specific heat of the particles.

Fpx and Fpr are the components of the force exerted
upon a unit volume of gas by the particles, and Qp
is the heat transferred from the particles. The
terms upFpx + vpFpy represent the work done by the
particles passigg through the gas. Equation (2.4)
shows that the thermal energy of the gas is changed
by both the heat exchange and the dissipation due
to the particles moving relative to the gas. Equa-
tion (2.9) states that the thermal energy of the
particles can be changed only by heat transfer.
From tqs. (Z2.2) and (2.3),

SR/ ) 4
u < vart Upr + var (2.10)

Similarly, from Eqs. (2.7) and (2.8},

d s
! T ‘,(uh ‘\’-
R ‘u — 4+ v _:!_.L_E)__ = ~u F - v F
p P ox p Tl 2 J p px ppr
(2.11)

that is, the kinetic energy of the particles is only
affected by the work done by the drag on the parti-
cles.

The drag force exerted by n-particles of dia-
meter dp in a unit volume (=R¢’ ) of space moving
through a perfect gas is given by

(‘dpz] CD Cow (up-u) (2.12)

OO »—

.px

_ 1 20 _ I
Fpr = n E»(T'dp ) CD " [vp v) (2.13)

where 2]1/2

x
H

((u—up)2 + (v-vp)

is the relative velocity between the gas and part
cles, and Cp is the drag coefficient. At present
the nonstationary drag coefficient for a gas-part)
cle flow is uncertain [Ref. 6}, and is assumed as
[Ref. 20]

85 ,

Cp = 0.48 » 28 /Re?" (2..

where

W ap/u (2.16)

ia¥l

Re =
is the Reynolds number based on the diameter of
the particle dp and the relative velocity w.

The heat transfer between the gas and particles
is given by

=n N~ dk(T-T 2.173
Qp pk( P ) ( )

where the Nusselt number is expressed as [Ref. 21]

Nu=2.0+ 0.6 Prl/3 Rel/z (2.18)
where Pr is the Prandtl number,
ue
pr = —£ (2.19)
k

and k is the gas thermal conductivity.

In the present analysis, the Prandtl number is
taken at 0.75, the specific heat of the gas is held
constant, the specific heat ratio of the two phases
is taken as £ = cg/cy = 1.0, and the power law for
the viscosity-temperature variation is assumed as
[Ref. 22]

_ - §10.77

w=1.71 ¥ 10~ x [ 373 ] poise (2.20)

It is worth noting that any other relation for

e e —————— —-——-—-»
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viscosity can be easily inserted without affecting
other parts of the analysis.

v

EQUATION QF MOTION IN (y, Y) COORDINATE SYSTEM

Introduce the stream functions y(x, r) for the
ras phase and ,,(x, r) for the particle phase as
I P p p

1% = ru (3.1)
:—;——r\ (3.2)
-2 = (3.3)
T pp
Loy (3.4)
ax pP

which satisfy the continuity equations (2.1) and
(2.0}). Using the von Mises transformation [Ref.
23] to transform the governing equations in (x, r)
coordinite syvstem into those in a (3, Y) coordinate
system, where Y = r, a se¢t of transformation oper-
ators can be obhtained as [Refs. 24, 25])

T.‘z: F'X -":‘ (3.5)
‘_r=ﬁ. r~ (3.6)
UtV ey By (3.7)

From the inverse transformation,

X
T (3.8

Comparing kgs. (3.7) and (3.8) and Egqs. (3.5) and
(3.9,

X _u

.- (3.10)
<X 1
T T v (3.11)

Using the above transformation operators, the
governing equations (2.1)-{2.5) for the gas phase
are transformed as follows:

. u vV v 3y
IO I i A S (3.1
u "1
oy T —g * Fox (3.13)
V. _P., 2
SR 2 O Fpr (3.14)

T 3p
‘vcp aY v aY

"
=)
2~
+
—~
=
-:’I
=4
-
]
=]
*
+
—~
<
.UI
<
—
]
~
=
—_
(%)
-
7]
—

(3.10)

Similarly, the governing equations (2.6)-(2.9} for
the particle phase are transformed to

Y Y “
—~E+-f—R*, '—Bo-]—{u + _B

“x T \ r P Y p'r
Voo v
S S L (3.17)
. \
‘ll) ¥
(u. + R SN = -l 13.18)
p px pr - pp px
% v
fu., +v. 3 -2+ v =y (3.19)
p opx pr pp pr
-T) 'Y)
ctu. v =P ve <R g (3020,
P opx prs -, pps Y P

4. EQUATIONS OF MOTION IN (7, - ) COORDINATE SYSTEM

The shock-layer gas-particle flow is now analyvsed
by the inverse method, that is, the shock wave 1s
prescribed and the body surface is then determined.

For the stream functions ahead of the shock wave,
¢hoose

rZ
o= = (1.1}
k)
r
5 (4.2)

To facilitate the integration of the governi.g equa-
tions in the shock layer, introduce further the
following independen: variables [Ref. 24}:

o

-

= (4.3)

ra]

ro

yo= S (4.9)

(]

-

In this (©, ) coordinate system, the shock wave
surface and the body surface correspond to N = 1 and
0, respectively. From the transformation equations
(4.3) and (4.4), a set of transformation operators
are obtained:

(4.5)

i

|
op

I

< e

Y

[
™

3]

(4.6)

w
=

Considering v « Y, v, ~ Y near Y = 0, transform the
dependent variables v and vp to V and Vp as

v

v = 7 4.7}
Vv

v, = —YR (4.8)




Ihen the governing equations (3.12)-(3.20) become,
for the gas phase,

xSV Ty L Yy
R AU TR B UM EI A G
(4.9)
l.‘
u J}_ -'E_ X
. X - —1—-_,0‘/ (4.10)
ooy vy v e
- S O e
V2
(4.1
I ' 0 l 1 ip Q)
R UL Ly 14
P ‘ p o R
U)"\) V. =V
- _,[ - F )
27 P T2 e (4.1
1op 1w 1o
iy - - = - — - = (0
P - T ( (4.13)

u

i

LR 1Y
IR s A e vl Bl ALY
. . p
Vo R A F
fu -ozy X3 RPo RROPL PRy s
p p p i Y 3 20V
( y oW v oy vy
4y -V X, P, PRP_ P, PP P
p 1 p p fan R'AE v o2
F 1
+ _PL,)V (4.10)
Van T
; o) AT vV T Q
Soqu -2 Xxhbe o PR P, D
p p p 0 Ts an oV ERERER 20V
(4.17)
tquation (3.11) becomes
; 1

In deriving the above equations, the following rela-
tions were used:
¢

2w (4.19)

, 2
er~Y 3]

R
= 2(u-r) = 4V SF (4.20)

For the ten unknown variables, u, Vv, ¢, T,
P, Up, Vp, oo Tp and x, the ten equations (4.9)-
(4.lg) provide a solution through numerical
integration.

S. INITIAL CONDITIONS

The initial conditions i1mmediately behind the
shock wave for the gas are the usual jump conditjons
{Rank inc-Hugoniot relations), und for the dust
particles use the frozen conditions, that is, the
particle flow gyuantities immediately behind the
shock wave are the same as those immediately ahead
of the shock wave.

[et
X = s(r) (5.1

be the equation of the shock-wave shape.  Then the
tflow quantities behind the shock wiuve are given by

u =1 - ‘—T (5.2)
\-
S
velpd (5.3)
p e e (5.4
IM: NT
:.l 15.5)
I = ‘; ) (5.0)
for the gas, and
up =1 (5.7
\/p =0 (5.8}
Vp = (5.9)
) 1
T o= - — (5.10)
Py
for the particles, where
s
-1 2 NT
s + 5 (5.11)
y+1 Y+l M“..
3
N2 =1 +s” (5.12)

and | is the specific heat vatio of the gas, and
My = Uy/aw is the freestream Mach number.

It is worth noting that the specific heat ratio
of the equilibrium gas-particle mixture 1, and the
equilibrium Mach number ahead of the shock wave M.
are given by [Ref. o]

AR
\ =

o o g (5.13)

B

uilliaantaes




(5.14)

B /(1«&)(1#&8)
Me =M, 1 + ai/y

where .+ is the loading ratio, and B = cg/cy is the
ratio of the specific heats of the two phases.

6. NUMERICAL PROCEDURE

The governing equations (4.9)-(4.18) are numer-
ically integrated from a point immediately behind
the shock wave (n = 1) to the body surface (1 = 0)
by a forward (i.e., downstream) integration method
[Ref. 16].

The numerical procedure is summarized as follows:

1. Calculate the initial values £(™ at r = from
Egs. (5.2)-(5.10), where £(m) peans any flow
quantity.

2. Calculate ! derivatives fst by numerical
differentiation (here a 5-point Lagrange
relation was used).

3. Caleulate £{™

"’ from the governing equations
(4.9)-(4.18).

4. Extrapolate f(m’l)

value of ni:

linearly to the next smaller

g™ | gM e (6.1)

)

5. Calculate { derivatives fém*l as in step 2.

5. Calculate fﬁm*l) as in step 3.
7. Extrapolate again f(™1) using average value of

fr:
R

(6.2)

8. Repeat steps 2 to 7 for this new value of r,
and continue until n = 0.

As the freestream Mach number M  reaches a low
value, the numerical calculations become difficult
owing to numerical instability at the outer calcul-
ation points (end instability). In this case, the
end stability is eliminated by dropping the outer-
most 2 or 3 points at each step.

The mesh sizes Af, An used were Af = 0.005, 0.01
and An = 0.1, 0.2. The numerical calculations were
done on an IEM 1130 computer at UTIAS, and the
calculation time was about 1 to 3 seconds for each
case.

7. NUMERICAL RESULTS AND DISCUSSIONS

7.1 Pure-Gas Case

To check the adequacy of the present numerical
results, the flow field around a sphere in a pure
gas (i.e., no solid particles) was solved and com-
pared with those of Van Dyke and Gordon [Ref. 16].

Any shock wave ahead of a smooth, blunt body
may be described by [Refs. 15, 16]

(7.1a)
or

M
ro=s X - Bsx {7.1b)
here Rg is the nose radius, Bg is the bluntness of
the shock shape, and r = r/Rs, x = x/Rg. The blunt-
ness Be is a convenient parameter that characterizes
the eccentricity of the conic section. It is worth
noting that Bg - 0 generates a hyperbola, Bg = 0
generates a parabola, and Bg - 0 generates an cllipse,
and Bg = 1 results in the special case of a sphere.
Table 1 shows the values of Bg taken from Ref. l6.
In addition, other quantities such as shock standoff
distance .., nose radius Rp and bluntness Bp are also
tabulated and will be discussed subsequently.

The body shape corresponding to a given shock
shape may be approximated by [Refs. 16-19]

s 2R () - By (R-D)? (7.2a)
or 2 2
r- o= ZRb(x-ﬂ) - Bb(x-ﬁ]" (7.2b)

where Ry = Rp/Rg is the nondimensional nose radius,
Bp the bluntness of the body, and > = 2/Rs the non-
dimensional standoff distance. The process used to
determine Rp and By, is the same as that of Refs. 16
and 17, that is, the quantity

2 Bb

= Rb -5 (x-1)

(7.2¢)

is plotted versus {x-%), and the points are approx-
imated by a straight line. Then, the vertical
intercept of the line is Ry, and its slope is -}By.

Figures 2{(a)-(d) show the shock waves, sonic
lines and streamlines for a sphere at freestream
Mach numbers M_ =10, 3, 2 and 1.5, respectively.
The abscissa x = x/Rs and the ordinate r = r/Rs are
nondimensional distances, as noted previously. For
comparison, Van Dyke and Gordon's numerical results
{Ref. 16] are shown. The present calculated body
shapes agree very well with those of Ref. 16 for the
high freestream Mach number M_ = 10, and the agree-
ment is also good for the low freestream Mach
numbers M, = 3, 2 and 1.5. The present calculated
sonic line shapes almost coincide with those of
Ref. 16 except for the case of M_ = 1.5. It
may be noted that the present sonic-line shape for
M_ = 1.5 resembles that of Ref. 27. The flow
patterns of the shock layer around a sphere are
well-defined from the present calculated stream-
lines.

In Figs. 3(a) and (b% appear the relations
between the quantities r</2(x-3) and (x-A) for the
calculated bodies. From these figures Ry and By

are determined as shown in Table 1. It is seen that
the present nose radii Ry coincide with those of

Van Dyke and Gordon [Ref. 16] within 1.5%, and the
present bluntness of the body By = 1, i.e., the
calculated body shapes are spheres.

The shock standoff distances A are also listed
in Table 1. The present results agree very well
with those of Ref. 16 for high freestream Mach
numbers M_ = 10, 6 and 4, and also agree quite well
with those of Ref. 16 for low freestream Mach
numbers M_ = 3, 2 and 1.5 within 2.5%.
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Table 2 shows the stagnation pressure on the
bodies. The exact values shown in Table 2 are
calculated from the following equation [Ref. 26]:

- ) 2 Y
o = Poe 1 { Gr+1)M }Y-l
<t = K -
st » N YMO: 2
W __L_
-1
| 1 Ik
S _—_ifli——___ f (7.3)
M - (v-1)

The present results coincide with the exact values
within 1%.

The pressure distributions on the bodies
(spheres) ure shown in Figs. 4(a)-(d) for M_ = 10,
3, 2 and 1.5, respectively. The present results
agree very well with those of Van Dyke and Gordon
[Ref. 16] in the stagnation region for all free-
stream Mach numbers. But the difference between the
present results and those of Ref. 16 appear near
sonic lines on the bodies at the low freestream
Mach numbers M_ = 3, 2 and 1.5. It may be worth
noting that Hamilton [Ref. 19] has pointed out that
the results of Ret. 16 underpredict the pressure
near the sonic line on the body at low freestream
Mach numbers.

7.2 Dusty-Gas Case

The following numerical examples concern the
flow of gas-solid particles past blunt bodies
(near spheres). Since the inverse method is used,
the freestream-flow conditions and the shock waves
described by Eq. (7.1) are assumed first and then
the numerical method is used to find the shock-layer
gas-particle flows and the body shapes.

7 7
Air (v = 1.4, gas Lonstant R = 287 m™/s“K) and
glass spheres (°g = 2.5 g/cm3) are used for the
gas-solid particle tlow The temperature and the
pressure of the air ahead of the shock wave are
101.3 KPa, and the reference

T, =300 K, p_ =
length is Rg = 1 cm for all the calculations.

To investigate the effects of the freestream
Mach number M,, the freestream loading ratio x and
the particle diameter d, on the shock layer gas-
particle flow, the following range of parameters
were used:

ax =0, 0.2, 0.5, 1.0

d =1, 2,5, 10 um
p
The number of solid particles in the freestream
flow ahead of the shock wave appear in Table 3.

7.2.1 Results for M_= 10

Although the results for M_ = 10 are only of
academic interest because of the assumptions made
concerning gas properties at high temperature and
the resulting particle drag and heat transfer
coefficients, these calculations were performed in
order to show the trends of the shock-layer gas-
particle flows. As noted previously, the Prandtl
number was taken at 0.75, the specific heat of the
gas was held constant, and the viscosity power law,

Eq. (2.20), and the drag coefficient, Eq. (2.15),
remained unchanged.

Figures 5(a)-(d) show the assumed shock waves
and calculated body shapes for M_ = 10 and dp = 1,
2, 5 and 10 um, respectively. The loading ratios
« ahead of the shock wave were : = 0, 0.2, 0.5 and
1.0. The abscissa and ordinate are nondimensional-
ized by the shock nose radius Rg = 1 em. It is
seen that, when ap = 1 um, the shock layer thickness
decreases as .« increcases from 0 to 0.5 [Fig. 5(a)].
(When « = 1.0, a body shape was not obtained
because of numerical instability near the body
surface.) This tendency is similar to the results
of Ref. 13 for an aerosol-gas mixture. However,
when dp = 2, 5 and 10 um, the shock layer thicknesses
increase, that is, the shock standoff distance
increases with . The reason will be considered
later, since the shock stand-off distance is closely
associated with the variation of the gas-flow
quantities within the shock layer.

Figures 6(a)-(d) show the relations between

the quantities r2/2(x-") and (x-.) of the calculated
bodies. From these figures, the nose radius Rp and
the bluntness of the body Bhp were calculated, which
are shown in Tables 4(a)-(d). It is seen that, for
example, when dp = 1 um, Rp increases with increasing
@, and Bp differs slightly from unity with increasing
1. It may be noted that Bg = 1.0 means a true sphere,
and Bg = 0.93 means a prolate sphere.

Figures 7(a)-(d) show the variations of the
velocities and the temperatures of the gas and
particles along the stagnation streamlines for
dp = 1, 2, 5 and 10 um, respectively. Similarly,
Figs. 8(a)-(d) show the variation of the gas and
particle densities and gas pressures along the stag-
nation streamlines. As noted previously, the
particle density . = =m-n/y , and it
changes within the shogr la)er flow field.

The results for dy = 1 um will now be discussed
in detail. Figure 7(a) shows that the gas velocity
u decreases gradually .long the stagnation stream-
line and becomes zero at the body surface. However,
the particle velocity uy, decreases much more rapidly
as a result of the drag interaction of the particles
with the gas. The particles reach almost the same
velocity as the gas near the body surface. In other
words, the particle and gas velocities are in
dynamic equilibrium near the body surface.

Figure 7(a) also shows that the gas temperature
T increases along a stagnation streamline until it
reaches a maximum, and then decreases as the loading
ratio ahead of the shock .t increases from 0.2 to
1.0. This variation of the gas temperature is
explained as follows. As noted previously [Eq. (2.4)],
the gas temperature T is changed owing to both the
work done by the particles on the gas (uy-u)Fpx and
the heat transfer from the gas to the particles Q.
Just behind the shock wave, the difference between
the gas and particle velocities is so large that the
heat generated by the work done by the particles
(up-u)Fnx dominates the heat loss Qp, and as a result
the gas temperature T increases behind the shock wave
at first. Near the body surface, the velocity differ-
ence (up-u) becomes smill, and (u —u)pr becomes small.
However, the increase in ppy results in a larger heat
loss from the gas to the particles. Consequently,
the heat loss Qp dominates the work done (up-u)F X
and the gas temperature T decreases near the bodv
surface. When the heat generated by the work done
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by the particle on the pas is cqual to the heat loss
to the particle phase, the gas temperature reaches

a maximum. This variation of gas temperature is
similar to that obtained in Ref. 13.

1t should be noted that the gas stagnation
temperature on the body increases with increasing
v owing to the decrease in kinetic energy of the
particles. The particle temperature T, increases
monotonically because of the heat transfer from
the gas phase, but it does not reach the gas
temperature T. The gas and particle temperatures
arce alwavs in nonequilibrium.

Figure 8(a) shows that the gas density . for
¢ - 0 decreases along the stugnation streamline at
first and then it increases near the body surfuce.
However, the density of the particle phase p
increases gradually at first and then increases
more rapidly near the body surface as .+ increases
from 0.2 to 1.0. The gas pressure p oincreases
along a stagnation streamline owing to the decrease
of the gas and particle velocitics.

The results for d,, = 2 um [Fig. 8(b}] are
significantly different than for d, =1 ,.m. In
this case, the particle velocity up does not reach
the gas velocity u near the body surface [Fig. T(bi{,
and a substantial difference between the gas and
particle velocities (u,-u) always exists. Heat 1is
always generated in the gas phase owing to the work
done by the particles. On the other hand, the
particle temperature T, does not increase very much.
That is, the hcat loss from the gas to the parti-
cles is slight. Consequently, the gas temperature
T always increases along the stagnation streamline.
When o = 0.5 and 1.9, the gas temperature T reaches
more than 10,000 K near the body surface. In these
cases, one has to consider real-gas cffects, and
evaporation and melting of the particles. Consc-
quently, the range of  for which the present
analysis is applicable is . 0.5,

Figure 8(b) shows that the density of the gas
. decreases along a stagnation streamline owing to
the increase in gas temperature as . increases trom
0.2 to 1.0. The gas pressure p ana the density of
the particle phase . p increase along a stagnation
streamline as . increases,

As mentioned previously, when ip = 2, 5 and 10
um, the shock standoff distance increases with
increasing « [Figs. 5(b), (¢}, (d)]. This pheno-
menon can now be explained as follows: the gas
density . along stagnation and adjacent stream-
lines decreases owing to the increasce in gas
temperature as ¢ increases. On the other hand,
the shock location is determined by the continuity
condition of equal gas mass flow. Consequently,
the shock standoff distance increases as « in-
creases.

The results for dy = 5 and 10 um appear in
Figs. 7(c}, (d) and 8{c), (d). As the particle
diameter dp increases, the rates of decrecase of
up and increase of T, along a stagnation strcam-
line decrease. In other words, the particle tlow
behaves almost like a frozen flow as dp increascs.
In the case of d, = 5 and 10 um, the variation of

the other flow quantities u, T, p, . and o, along
a stagnation_streamline are qualitatively  the
same as for dp = 2 um

Figures 9(a)-(d) show the pressure distribu-
tions on the body surfaces ftor dp = 1, 2, 5 and
10 wm, respectively. In cach case, the pressurc
increases with the toading ratio ., ahead of the
shock wave. However, for « = 0, the agreement
with the pressure distribution observed in Ref.
16 is very good.

Figures 10(a)-(d) show the gas and particle
streamlines near the stagnation regions in the
stiocn layers. When dp = 1 .m, the particle paths
are straight just behind the shock wave, and
continue to deflect as they approach the body
surface and collide at small impact angle - as
shown in Fig. 10{(a). As dp increascs from 2 to
10 .m, the particle deflection decreases and they
tend to move in a straight path towards the
body surtuce where they collide with large impact
angles.

After the particles collide with the body sur-
face, they may break up or reflect or stich to the
body surface. However, at present, it is not known
how the particles behave after colliding. This
analysis mayv be valid if the particles break after
colliding into much smaller ones to form a thin
dusty layer or if they stick to the body surface.

- 4 -

.2.2 Results for M = 1.5

Figures 1l¢a)-(d) show the assumed shock

shapes and calcuiated body shapes for M, = 1.5

and dp = 1, 2, 5 and 10 .m, respectively. In the
case of M = 1.5, the shock standoff distances

decrease with the loading ratio : ahead of the
shock wave for all particle diameters dp. The
sreatest effect on the shock standoff distance
occurs for the smallest particle diameter dp= 1um
The reason is that when dp = 1 1m, the gas density
increases most significantly along the stagna-
tion streamline and adjacent streamlines owing
to the gas and particle interaction as -1 increases
[see Fig. 14(a)]. Conscquently, the shock stand-
off distance decreases as : increases.  As the
particle diameter dy, increases from 2 to 10 um,
the effect of « on the shock standoff distance
becomes weak.  When dy, = 10 um, the effect of 1 is
indistinguishable from that of a pure-gas flow.

In Figs. 12(a)-(d), the guantitics rl/Z(x—L)
are plotted versus (x-'). In these cases, the
calculated points near a sonic point deviate
considerably from a straight line. Tables 5(a)-(d)
show the shock standoff distance .., nose radius Ry
and bluntness By of the calculated bodies for
dusty-gas flows. It is seen that, for all particle
diamet. rs Jp. the nose radius Ry increases as a
increases and the bluntness By becomes smaller
than unity, i.e., the calculated body shapes
become a prolate sphere as . increases.

Figures 13(a)-(d) and 14(a)-(d) show the vari-
ations of velocity, temperature and density for gas
and particles along a stagnation streamline. From
Fig. 13(a), we can see that in the case of My = 1.5
and d;, = 1 um, the particle temperature T, and gas
temperature T almost achieve equilibrium near the
stagnation point. However, the particle and gas
velocities do not achieve equilibrium near the
stagnation point. This tendency is just the
reverse of the M, = 10 case for dp = 1 um [see
Fig. "(a)]. 1t is worth noting that the variations




of the tlow quantities along the stagnation stream-
lLines resemble the known dusty-air solutions behind
a normal shock wave [Refs. 4, 6, 28, 29]. As the
particle diameters d,, increase from 2 to 10 um, the
particles tend to keep their initial values of up
and Ty as it the particles do not influence the

gas f&ow.

The gas pressure p and the gas and particle
phase densities . and .y increase along the stag-
nation streamlines as .« increases. These tenden-
cies become weak as dp INCreases.

Figures 15(a)-{d) show the pressure distribu-
tions on the body surfaces. As  increases and
Jdyy decreases, the pressures on the body surfaces
become larger. These effects are similar to the
case of M, = 10,

Figures 1o(a)-(d) show the gas and particle
streamlines near the stagnation regions in the
shockh lavers. When dp = 1 .m, the particle
streamlines deflect significantly near the body
surtace as shown in Fig. le(a). As the particle
diameter dyy increases from 2 to 10 um, the par-
ticle deflection decreases and it proceeds almost
in a straight line to collide with the surface
{Fig. lo(d)). This particle behaviour is similar
to the case of M, = 10,

8. CONCLUSIONS

An inverse method was developed to study dusty
supersonic flow past axisymmetric blunt bodies.
The analysis was based on the assumptions that
there are no collisions between the individual
particles and that the interactions between the
gas and the particles are only through drag and
heat transfer. The governing equations for axi-
symmetric gas-particle flow were described in a
cylindrical (x,r)-coordinate system. Then by
using the von Mises transformation, the governing
equations were again transformed into a (y,Y)-
coordinate system, where ;' is the gas stream
function, and Y = r. To facilitate the integration
of the governing equations in the shock layer,
they were further transformed into a (7,')-coor-
dinate system by using transformation equations
(4.3) and (4.4). The advantages of the present
method are: (1) body shapes are easily determined
without any approximate calculation; (2) the com-
puter memory required is not large; (3) the com-
puter calculation time is very short, so that it
is possible to extend this method to a direct
method by using au iterative procedure.

In using the present method, the pure-gas flow
fields around spheres were first solved numerically
for the freestream Mach number range 1.5 = M, - 10.
These were found to be in very good agreement with
the resutts of Van Dyke and Gordon [Ref. 16].

Based on the assumptions that the Prandtl
number Pr = 0.75, the specific heat of the gas is
constant, the specific heat ratio of the two phases
is unity, and the gas viscosity and drag coefficient
were described by Eqs. (2.20) and (2.15), the super-
sonic gas-solid particle flows past ncar-spherical
bodies were then solved for freestream Mach numbers
M, = 1.5 and 10, with freestream loading ratio
1=0, 0.2, 0.5 and 1.0, and particle diameters
dp =1, 2, 5 and 10 um, respectively. The numer-
ical results can be summarized as follows:

Shockh standoff distance -

(a) For M, = 1.5: the shock standoff distance
decreascs with increasing .« for all particle
diameters dp. As dp increases, the effect of
the freestream loading ratio : on /. becomes
weak .

{b) For M, - 10:; the shock standoff distance
decreases with_increasing « for dp = 1 um.
However, when dp = 2, 5 and 10 um, increascs .
with increasing ., because of the decrease of
the gas density ., in the shock layer.

Variation of gas and particle velocities and -
temperatures along u stagnation streamline

{a) For M. = 1.5 when d, = 1 um, the gas and
particle temperatures T and Tp almost achieve
equilibrium near the stagnation point on the
body. However, the gas and particle veloci-
ties u and up do not achieve equilibrium near
the stagnation point. As dp increases, the
particles tend to keep their initial values
of up and Tp.

(b) For M, = 10: when ap = 1 &m, the particle
and gas velocities u and uy are in equili-
brium near the stagnation point on the body.
However, the gas and particle temperatures T
and Ty are not in equilibrium. This tendency
is just the reverse of the M, = 1.5 case.
When dy = 2, 5 and 10 um, up does not reach
the value of u near the body surface.

Variation of gas pressure p and gas and particle
phase densities . and , along a stagnation
streamline P

(a) For M,, = 1.5: for all particle diameters d R
the gas pressure p and the gas and particle
phase densities « and . always increase
along a stagnation strreéamline as : increases.

(b) For Mv = 10: when d, = 1 um, the gas density
» decreases slightly along a stagnation
streamline at first and then it increases
near the body surface. However, when dp=2, 5
and 10 um, the density of the gas . decreases
along a stagnation streamline owing to the
gas temperature increase as 1 increases. The
density of the particle phase ..y and the gas
pressure p increase along a stagnation stream-
line.

Body-surface pressure P,

For both M,. = 1.5 and 10, the body surface
pressure P, increases as . increases. This
tendency 1s significant as dp becomes smaller.

Behaviour of particle streamlines

For both M, = 1.5 and 10, when d, = 1 um, the

particle strcamlines deflect significantly -
near the body surface. As the particle

diameter dp increases, the particle deflection

decreases and it proceeds almost in a straight

line to collide with the body surface.

Within the limitations of the assumptions noted
above, the present numerical results provide an
understanding of dusty supersonic flow past blunt
bodies.

e B e




»

9.

11.

13.

14.

6.

REFERENCES

So0, S. L., "Fluid Dynamics of Multiphase
Systems", Blaisdell, Waltham, 1967.

Rudinger, G., "Relaxation in Gas-Particle
Flow"”, in P. P. Wegener, ''Nonequilibrium Flows"
Vol. 1, Part 1, Marcel Dekker, New York, 1969,
pp. 119-161.

wallis, G. B.,
McGraw-Hill, New York,

"One-Dimensional Two-Phase Flow",
1969.

Marble, F. E., "Dynamics of Dusty Gases'",
Annual Review of Fluid Mechanics, vol. 2,
1970, pp. 397-4d6.

Boothroyd, R. G., "Flowing Gas-Solids Suspen-
sions', Chapman and Hall, London, 1971.

Rudinger, G., "Fundamentals of Gas-Particle
Flow'", tlsevier, Amsterdam, 1980.

Miura, H., Glass, I. 1., "On a Dusty-Gas Shock
Tube', UTIAS Report No. 250, 1981 (see also
Proc. Roy. Soc. A 382, 1982, pp. 373-388).

Miura, H., Glass, I. 1., "On
Shock Wave Through a Dusty-Gas Layer",
Report No. 252, 1982.

the Passage of a
UTIAS

Probstein, R. F., Fassio, F., "Dusty Hypersonic
Flows'", AIAA J., Vol. 8, 1970, pp. 772-779.

Waldman, G. D., Reinecke, W. G., "Particle
Trajectories, Heating, and Break up in Hyper-
sonic Shock lLayers', ATAA J., Vol. 9, 1971,
pp. 1040-1048.

Spurk, J. H., Gerber, N., "Dust Collection
Efficiency for Power lLaw Bodies in Hypersonic
Flight', ATAA J., Vol. 10, 1972, pp. 755-76l.

Peddieson, J., "Gas-Particle Flow Past Bodies
with Attached Shock Waves", AIAA J., Vol. 13,
1975, pp. 939-941.

Chang, S. S-H., '"Nonequilibrium Phenomena in
Dusty Supersonic Flow Past Blunt Bodies of
Revolution", The Physics of Fluids, Vol. 18,
1975, pp. 446-452.

Hayes, W. D., Probstein, R. F., "Hypersonic
Flow Theory', Vol. l-Inviscid Flows, Academic
Press, New York and London, 1966.

Van Dyke, M. D., "The Supersonic Blunt-Body
Problem — Review and Extension", Journal of
Aero/Space Sci., Vol. 25, 1958, pp. 485-496.

Van Dyke, M. D., Gordon, H. D., "Supersonic
Flow Past a Family of Blunt Axisymmetric
Bodies', NASA TR R-1, 1959.

1s.

19,

20.

24 .

29.

Fuller, F. B., "Numerical Solutions for Super-
sonic Flow of an ldeal Gas Around Blunt Two-
Dimensional Bodies', NASA TN D-791, 1961.

lomax, H., Inouye, M., "Numerical Anslysis of
Flow Properties About Blunt Bodies Moving

at Supersonic Speeds in an Equilibrium Gas',
NASA TR R-204, 1964.

Hamilton, 1. H. 11, “Solution of Axisymmetric
and Two-Dimensional Inviscid Flow Over Blunt
Bodics by the Method of Lines', NASA Technical
Paper 1154, 1978.

Gilbert, M., Davis, L., Altman, D., "Velocity
Lag of Particles in Linearly Accelerated Com-
bustion Gases", Jet Propulsion, Vol. 25, 1955,
p. 2b.

Knudsen, J. G., Katz, D. L., "Fluid Dynamics
and Heat Transfer', McGraw-Hill, New York,
1958.

Chapman, S., Cowling, T. G., "The Mathematical
Theory of Non-Uniform Gases', Cambridge tniv.
Press, 1961.

von Mises, R., "Bemerkungen cur Hydrodynamik',
ZAMM 7, 1927, pp. 425-431.

Honda, M., Sugivama, H., "Analysis of Asym-
metric Supersonic Flow'", Mem. Inst. High Speed
Mech., Tohoku Univ., Vol. 36, No. 348, 1975
(in Japanese).

Sugiyama, H., "A Numerical Method for Super-
sonic Conical Flow Without Axial Symmetry",

Bulletin of the JSME, Vol. 20, No. 144, 1977,
pp. 711-717.

Liepmann, H. W., Roshko, A., "Elements of Gas-
dynamics', John Wiley and Sons, Inc., New York,
1957.

Belotserkovskiy, 0. M., Ed., "Supersonic Gas
Flow Around Blunt Bodies - Theoretical and
Experimental Investigation', NASA TT F-453,
1967.

Kriebel, A. R., "Analysis of Normal Shock Waves
in Particle Laden Gas', Trans. ASME, Jour. of
Basic Engineering, Vol. 86, 1964, pp. 655-665.

Rudinger, G., "Some Properties of Shcok Relax-
ation in Gas Flows Carrying Small Particles",
The Physics of Fluids, Vol. 7, 1964, pp. 658-
663,




Table 1

Shock Standoff Distance ., Nose Radius Rh and Bluntness Bb

of the Calculated Bodies (Spheres)

for Pure Gas, ; =1.4
Rb ) Rb Rs 1 Bb
M B Present Van Dyke | Present  Van Dyke | Present Van Dyke | Present Van Dyke
e s Method & Gordon Method & Gordon Method & Gordon Method & Gordon
10 r 0.49 0.103 0.102 0.746 0.754 0.138 0.135 1.01 -
} 6 | 0.47 0.109 0.109 0.724 0.732 0.151 0.148 1.01 -
BN r 0.38 0.121 0.120 0.681 0.690 0.178 0.174 0.98 -
|
3 i 0.25 0,137 0.135% 0.626 0.634 0.219 0.213 0.93 -
2 i—0.06 0.174 0.170 0.499 0.500 0.349 0.340 1.02 -
" 1.5 f- .71 0.206 0.201 0.350 0.350 i 0.589 0.574 0.98 -
N Sy S S S e s moomme s omimm s s e s o = mae zoozzm d
Table 2

Stagnation Pressure on the Blunt Bodies
8 Pgt

for Pure Gas, y = 1.4
M 1.5 2 3 4 6 10
Present
Roenl 1.095  1.016  0.963  0.945  0.933  0.927
Van Dyke - - o
i Gordon | 1-081 1.007 0.95 0.940  0.928  0.923
Exact 1.084 1.007  0.957  0.941  0.929  0.923
Value
Table 3
Number of Solid Particles (Glass Spheres)
in Freestream Flow
< 0.1 0.2 0.5 1.0
_ -3 -3 -3 -3
dp (um) (em ™) (ecm ™) (em ™) (em ™)
1 8.98x10°  1.s0<10°  a4.49x10%  8.98x108
‘ 2 1124107 2.25x107  s.62x107  1.12x108
f
5 7.18x10°  1.44x10°  3.59x10®  7.18x10°
10 8.98x10°  1.80x10°  4.49x10°  8.98x10°

>y




Table 4

Shock Standoff Distance A, Nose Radius Rb and Bluntness Bb

of Calculated Bodies for Dusty-Gas Flows

M, =10, T = 300K, p = 101.3 KPa, ﬁg

=1 cm

- -2 YR I Y " %
0 0.103 0.746 0.138 1.01
0.2 0.103 0.755 0.136 0.98
0.5 0.102 0.764 0.134 0.93
(b) & = 2 um
pn T e -
(1 v = B/R R, = R /R VR B |
2 0.106 744 0.143 0.98
0.110 0.742 0.148 0.91
1.0 0.115 0.742 0.155 0.89
(c) dp = 5 um
a a = ARy Ry = R /R ARy B,
0.2 0.105 0.743 0.141 1.00
0.5 0.108 0.740 0.146 0.95
1.0 0.112 0.735 0.152 0.95
(d) & = 10 um
~ = - = - - - -
A A= B/R R, = R /R B, B
0.2 0.104 0.745 0.139 1.01
5 0.106 0.742 0.142 0.91
1.0 0.108 0.738 0.147 0.99

R




Shock Standoff Distance A, Nosc Radius Rb and Bluntness Bb
of Calculated Bodies for Dusty-tas Flows
M = 1.5 T =300K, p =101.3 Kpa, R_ = 1 cm
a) d_=1 um
( P 7
v A= A/RS Rb = R.b/kS "/Rb Bb
0 0.200 0.350 0.589 0.98
0.2 0.198 0.386 0.513 1.04
0.5 0.186 0.428 0.434 0.93 !
1.0 0.166 0.500 0.332 0.67
by d = 2um
(b) p A
i B \ = Lx/RS Rb = Rb/R /Rh Bb
0.2 0.203 0.365 0.556 0.95 1,
0.5 0.198 0.387 0.512 0.98
|

0.190 0.420 0.453 0.95 l

= /R = R /R 5
x &= MR R = R /R AR B ]
| 2 0.205 0.355 0.578 0.93 ‘
0.204 0.360 0.558 0.92 1
1
' 0.202 0.369 0.548 0.91 |
' (d) &p = 10 um
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FIG. 2 SHOCK WAVE, SONIC LINE AND STREAMLINES FOR A SPHERE
FOR PURE GAS, y = 1.4. ©O VAN DYKE & GORDON [REF. 16].
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g FIG. 2 - CONTINUED
4 SHOCK WAVE, SONIC LINE AND STREAMLINES FOR A SPHERE
FOR PURE GAS, vy = 1.4. © VAN DYKE § GORDON [REF. 16].
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FIG. 2 - CONTINUED
SHOCK WAVE, SONIC TINE AND STREAMLINES FOR A SPHERE

FOR PURE GAS, v = 1.4. © VAN DYKE & GORDON [REF. 16].
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FIG. 2 - CONCLUDED
cHOCK WAVE, SONIC LINE AND STREAMLINES FOR A SPHERE
FOR PURE GAS, vy = 1.4. © VAN DYKE § GORDON [REF. 16].
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FIG. 3 RELATION BETWEEN r2/2(x—A) AND (x-A) FOR CALCULATED
BODY SHAPES. ©O CALCULATED POINTS.
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RELATION BETWEEN r°/(2(x-A) AND (x-A) FOR CALCULATED
BODY SHAPES. © CALCULATED POINTS.
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FIG. 4 PRESSURE DISTRIBUTION ON THE BODY (SPHERE) SURFACE
FOR PURE GAS, v = 1.4. © VAN DYKE § GORDON [REF. 16].
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FIG. 4 - CONTINUED
PRESSURE DISTRIBUTION IN THE BODY (SPHERE) SURFACE
FOR PURE GAS, y = 1.4. o VAN DYKE & GORDON [REF. 1e].
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FIG. 5 ASSUMED SHOCK WAVE AND CALCULATED BODY SHAPES FOR
M_ =10, T_= 300 K, p_ = 101.3 KPa AND Rg = 1 CM.
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FIG. 5 - CONTINUED
ASSUMED SHOCK WAVE AND CALCULATED BODY SHAPES FOR

M, =10, T = 300 K, p, = 101.3 KPa AND Rg = 1 CM.
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FIG. S - CONTINUED
ASSUMED SHOCK WAVE AND CALCULATED BODY SHAPES FOR
M, = 10, T = 300 K, p_ = 101.3 KPa AND Rg = 1 CM.
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FIG. 5 - CONCLUDED
ASSUMED SHOCK WAVE AND CALCULATED BODY SHAPES FOR

M, =10, T =300 K, p_ = 101.3 KPa AND R = 1 CM.
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U,Up,T, Tp

FIG. 7 VARIATION OF GAS AND PARTICLE VELOCITY AND TEMPERATURE
WITH LOADING RATIO xt ALONG STAGNATION STREAMLINES FOR
M, = 10, T, = 300 K, p. = 101.3 KPa AND Rg = 1 CM.




(b) dp=2um

FIG. 7 - CONTINUED

VARIATION OF GAS AND PARTICLE VELOCITY AND TEMPERATURE
WITH LOADING RATIO o ALONG STAGNATION STREAMLINES FOR

M, = 10, T, = 300 K, p, = 101.3 KPa AND Rg = 1 CM.
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FIG. 7 - CONTINUED

VARIATION OF GAS AND PARTICLE VELOCITY AND TEMPERATU...

WITH LOADING RATIO x ALONG STAGNATION STREAMLINES FOR
M, = 10, T, = 300 K, po = 101.3 KPa AND Rg = 1 CM.
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(d) dp=10um

g FIG. 7 ~ CONCLUDED

: VARIATION OF GAS AND PARTICLE VELOCITY AND TEMPERATURE
WITH LOADING RATIO o ALONG STAGNATION STREAMLINES FOR
Mo = 10, T = 300 K, po = 101.3 KPa AND Rg = 1 CM.
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FIG. 8 VARIATION OF GAS AND PARTICLE DENSITIF ,
ALONG STAGNATION STREAMLINES FOR M, =
P, = 101.3 Kkpy AND Rg = CM.
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FIG. 8 - CONTINUED

VARIATION OF GAS AND PARTICLE DENSITIES, AND GAS PRESSURE
ALONG STAGNATION STREAML,
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FIG. 8 ~ CONTINUED
VARIATION OF GAS AND PARTICLE DENSITILS, AND GAS PRESSURE

ALONG STAGNATION STREAMLINES FOR M = 10, T_ = 300 K,
p, = 101.3 KPa AND Rs = 1 CM.
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FIG. 8 - CONCLUDED
VARIATION OF GAS AND PARTICLE DENSITIES, AND GAS PRESSURE
ALONG STAGNATION STREAMLINES FOR M_ = 10, T_ = 300 K,
p_ = 101.3 KPa AND Rg = 1 CM.




(@) dp= tum

FIG. 9 PRESSURE DISTRIBUTI(_)NS ON

BODY SURFACE FOR M_ = 10, T
P, = 101.3 KPa AND Rg = |

CM. © VAN DYKE & GORDON [REF

e e e — -

16].
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FIG. 9 - CONTINUED

PRESSURE DISTRIBUTIONS ON BODY SURFACE FOR M, = 10, Tm = 300 K,
p, = 101.3 KPa AND Rg = 1 CM.
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FIG. 9 - CONTINUED

PRESSURE DISTRIBUTIONS ON BODY SURFACE FOR M_ = 10, im = 300 K,
p, = 101.3 KPa AND Rg = 1 CM.
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FIG. 9 - CONCLUDED i}
PRESSURE DISTRIBUTIONS ON BODY SURFACE FOR M_ = 10, T_ = 300 K,
p_ = 101.3 KPa AND Rg = 1 CM.
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FIG. 10 GAS AND PARTICLE STREAMLINES AROUND BLUNT BODY FOR

M_=10, T_= 300K, p, = 101.3 KPa, Rg = 1 CM.
GAS STREAMLINE, ------ PARTICLE STREAMLINE,
IMPACT ANGLE .
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FIG. 10 - CONTINUED

GAS AND PARTICLE STREAMLINES AROUND BLUNT BODY FOR
M_= 10, T_ =300 K, p_ = 101.3 KPa, Rg = 1 CM.

GAS STREAMLINE, ------ PARTICLE STREAMLINE,

IMPACT ANGLE &.
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10~ CONTINUED
GAS AND PARTICLE STREAMLINES AROQUND BLUNT BODY FOR

M, =10, T = 300 K, p. = 101.3 KPpa, Rg = 1 CM.
GAS STREAMLINE, ------ PARTICLE STREAMLINE,

IMPACT ANGLE &.
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FIG. 10 - CONCLUDED

GAS AND PARTICLE STREAMLINES AROUND BLUNT BODY FOR
M, = 10, T_= 300 K, p_ = 101.3 KPa, Rg = 1 CM.

GAS STREAMLINE, ------ PARTICLE STREAMLINE,
IMPACT ANGLE §.




06— :
—— Assumed
Shock Wave d
i
!
04—
]
r
02 0.2
Calculated
0 Body Shapes
0] | I | ] 1
0 ol 0.2 03 04 05
X
(a) dp = [em

FIG. 11 ASSUMED SHOCK WAVE AND CALCULATED BODY SHAPES.
M,=1.5, T =300K, p_=101.3 KPa, Rg = 1 CM.
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FIG. 11 - CONTINUED
ASSUMED SHOCK WAVE AND CALCULATED BODY SHAPES.
1.5, T, =300 K, p_ = 101.3 KPa, Rs = 1 CM.
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FIG. 11 - CONCLUDED
ASSUMED SHOCK WAVE AND_CALCULATED BODY SHAPES.
M,=1.5, T = 300K, p_=101.3 KPa, Rg = 1 CM.
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FIG. 12 RELATION BETWEEN r2/2(x—/\) AND (x-A) FOR CALCULATED BODIES.

M_=1.5, T =300K, p = 101.3 KPa, Rg = 1 CM.
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FIG. 12 - CONTINUED 2
RELATION BETWEEN r°/2(x-A) AND (x-A) FOR CALCULATED BODIES.

M,=1.5 T 300K, p_=101.3 KkPa, Rg = 1 CM.
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FIG. 13 VARIATION OF GAS AND PARTICLE VELOCITIES AND TEMPERATURE

ALONG STAGNATION STREAMLINES.
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= 101.3 KPa, Rg = 1 CM.
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FIG. 13 - CONTINUED
VARIATION OF GAS AND PARTICLE VELOCITIES AND TEMPERATURE
ALONG STAGNATION STREAMLINES. M_ = 1.5, T_ = 300 K,
p_ = 101.3 KPa, Rs = 1 CM.
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(c) dp = 5um

YARIATION OF GAS AND PARTICLE VELOCITIES AND TEMPERATURE
ALONG STAGNATION STREAMLINES. M, = 1.5, T = 300k,
Py = 101.3 KPa, R = 1 (M.
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FIG. 13 - CONCLUDED

VARIATION OF GAS AND PARTICLE VELOCITIES AND TEMPERATURE
ALONG STAGNATION STREAMLINES. M, =1.5, T, = 300 K,
P, = 101.3 KPa, Rg = 1 M.
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FIG. 14 VARIATION OF GAS AND PARTICLE PHASE DENSITIES AND GAS_PRESSURE

ALONG_STAGNATION STREAMLINES. M_ = 1.5, T_ = 300 K, p, = 101.3

KPa, Rg = 1 CM.
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FIG. 14 - CONTINUED
VARIATION OF GAS AND PARTICLE PHASE DENSITIES AND GAS PRESSURE

ALONG_STAGNATION STREAMLINES. M_ = 1.5, T_ = 300 K, p, = 101.3
KPa, Rg = 1 CM.
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FIG. 14 - CONTINUED
VARIATION OF GAS AND PARTICLE PHASE DENSITIES AND GAS PRESSURE
ALONG_STAGNATION STREAMLINES. M_=1.5, T = 300 K, p_ = 101.3

KPa, Rg = 1 CM.
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FIG. 14 - CONCLUDED

VARIATION OF GAS AND PARTICLE PHASE D
ALONG_STAGNATION STREAMLINES.
KPa, Rg = 1 CM.
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FIG. 15 PRESSURE DISTRIBUTION ON BODY SURFACES. M _ = 1.5, 'T‘m = 300 K,
p, = 101.3 KPa, Rg = 1 CM. © VAN DYKE & GORDON [REF. 16].
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X FIG. 15 - CONTINUED
PRESSURE DISTRIBUTION ON BODY SURFACES. M_ = 1.5, T = 300 K,
P, = 101.3 KPa, Rg = 1 CM.
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FIG. 15 - CONTINUED

PRESSURE DYSTRIBUTION ON BODY SURFACES. M_ = 1.5, T_ = 300 K,
P, = 101.3 KPa, Rg = 1 CM.
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FIG. 15 - CONCLUDED 3
PRESSURE DISTRIBUTION ON BODY SURFACES. M_ = 1.5, T_ = 300 K,
p, = 101.3 KPa, Rg = 1 CM.
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16 GAS AND PARTICLE STREAMLINES AROUND BLUNT BODY.
M_=1.5, T =300 K, p, = 101.3 KPa, Rg = 1 CM.

GAS STREAMLINE, ------ PARTICLE STREAMLINE.
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FIG. 16 - CONTINUED
GAS AND PARTICLE STREAMLINES ARQUND BLUNT BODY.
M_=1.5, T = 300K, p, = 101.3 KPa, Rg = 1 CM.
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FIG. 16 - CONTINUED
GAS AND PARTICLE STREAMLINES AROUND BLUNT BODY.

M_=1.5, T = 300K, p_ = 101.3 KPa, Rg = 1 CM.
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FIG. 16 - CONCLUDED
GAS AND PARTICLE STREAMLINES AROUND BLUNT BODY.
M,=1.5, T =300K, p_= 101.3 KPa, Rs = 1 CM.
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