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In this final report we survey the research supported by the AFOSR over

several years on various aspects of nonlinear resonance and interactions, and

indicate some of the applications. Continued research in these areas is now

being supported by other agencies. Nonlinear resonance is an area of research

where a basic mathematical model describes several totally unrelated physical

phenomena. Thus, a fundamental understanding of the model can provide far

reaching results.

We consider systems of weakly nonlinear ordinary differential equations

with slowly varying coefficients (slowness being measured relative to some

basic period of oscillation). Resonance refers to a critical relation between

two or more slowly varying frequencies whereby the associated modal amplitudes

increase anomalously. In general, the frequencies pass through this critical

condition in a finite time after which the growth rate of the corresponding

amplitudes subsides. Sustained resonance is the unusual circumstance where

the critical condition persists for a long time.

1) Passage Through Resonance

In [1] - [2], the author studied the simple mathematical model of a linear

oscillator with given slowly varying frequency forced by a constant frequency

in order to establish a solution technique which remains valid through resonance

passage. This technique consists of constructing and matching three separate

multiple scale expansions describing the solution before, during and after

resonance. The basic ideas of matching asymptotic expansions and multiple

scale expansions are discussed in [3).
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2) Sustained Resonance: Roll Resonance, Particle Accelerators or

Free Electron Lasers

These ideas were later applied in [4) to the problem of reentry roll

resonance. Roll resonance occurs in spinning reentry vehicles with small

aerodynamic and mass asymmetrics. For a large set of initial conditions the

slowly varying pitch/yaw rate becomes equal to the roll rate at which time the

roll rate undergoes some moderate perturbations; thus, the term "roll resonance."

In nearly all cases, the ensuing buildup in roll rate ceases after a short time.

However, for a very small subset of initial conditions, the buildup persists

indefinitely and this phenomenon was discussed in [5], where it was shown that

the essential behavior hinges on solving the following "pendulum" equation with

slowly varying coefficients.

d 2  a2(t)sine = - b2(t); t =et, 0<<<l (1)
dt*

Sustained resonance corresponds to capture by a slowly varying center in the

phase plane.

Recently, there have been four independent studies, [6] - [10], using

different approaches that have further refined and provided rigorous results of

the above mathematical phenomenon. In [6], near-identity transformations are

used to derive a more accurate version of Eq. (1) as well as sharper necessary

conditions for sustained resonance. The corresponding energy bounds are

derived in [7]. In [8], a general version of Eq. (1) is analyzed using matched

asymptotic expansions to derive to the slowly varying energy bounds for capture.

Finally, the authors of [9] and [10] transform the model equations of [5] to a

form suitable for analysis by higher-order averaging, and the Melnikov method
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As pointed out by the author in [12], Eq. (1) also occurs in the study of

particle accelerators. An early reference to this equation appears in [13].

More recently, in [14], Eq. (1) is also derived in describing the motion of

electron beams near synchronous energy in free electron lasers.

In the physics of free electron lasers one studies the motion of an

electron beam (assuming no electrostatic interaction between electrons) in a

cylindrically symmetric magnetic field with slow axial variations. A primary

goal of such research is to determine the influence of the external "wiggler"

field upon the motion and resulting radiation of the electron beam. In the

absence of interactions, the motion of each electron may be approximated by a

slowly varying Hamiltonian of one degree of freedom with the electron energy as

the canonical momentum, the phase angle as the coordinate, and the axial distance

as the independent variable (Eq. (2.15) of [14]). Near the synchronous energy,

Hamilton's differential equations reduce to (1)!

In the context of free electron lasers, one is interested in the design

of the external field to achieve a particular goal. For example, as discussed

in [14], one objective consists of a 5 phase program involving

i) capture of the electrons into a stationary bucket with a resonant

energy equal to the mean electron energy,

ii) increasing the average phase angle to a positive value so that the

electrons can be placed in the center of a moving bucket,

iii) decelerating the electrons,

iv) decreasing the average phase angle of the electrons, and

v) decapture.

The purpose of this program is to obtain a minimum increase in the energy

spread while reducing the average electron energy. As pointed out by the

authors of [14], a detailed analysis for this program is missing and one must
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rely on qualitative estimates for both the number of oscillations required for

the process, and for its stability. Work is in progress to identify and model

the various weak perturbations that must be taken into account in order to

derive an accurate quantitative description of free electron laser dynamics.

3) Global Adiabatic Invariants

In [15] and [16] the author discussed the detailed structure of the solution

for weakly nonlinear two degree of freedom systems passing slowly through an

internal resonance. The work in [15] focuses on the problem of two oscillators

with a weak nonlinear coupling, a well known model (for the autonomous case) in

many applications, e.g., celestial mechanics [17], and hydrodynamics [18]. In

order to calculate a solution which remains uniformly valid through resonance,

two generalized multiple-variable expansions are constructed and matched with

an interior expansion valid during resonance. The dominant effect of passage

through resonance is the excitation of an oscillation of order E not present

before resonance where c measures the nonlinearity. Corresponding to this,

the actions of the individual modes change by O(c) after resonance.

In [16], a more general Hamiltonian system with two degrees of freedom

is used to derive a global adiabatic invariant (i.e., one which remains con- r

stant through resonance) using near identity canonical transformations. This

invariant turns out to be a generalization of the formal integral that one

can construct for the autonomous case and also confirms the results of [15].

It is tailored for a particular resonance and its constancy is verified both

by a direct substitution and numerical integration of the exact equations. In

isolating the global adiabatic invariant the Hamiltonian is reduced to one

degree of freedom and this problem is solved using the technique in [15].

In a recently completed study [19], we have identified classes of Hamiltonian

and non-Hamiltonian systems with infinite degrees of freedom passing through

........... ...... ...... .... .. ... II II i l IIII•II•



i -5-

resonance and for which global adiabatic invariants exist. Such systems arise

in various physical contexts including the modal representation for wave-guides

with slowly varying boundaries.

4) Weakly Nonlinear Wave Interactions

Wave propagation problems in the infinite or semi-infinite domain are

generally not solvable by discrete modal representations. Although the inverse

scattering technique provides a powerful tool for exact solutions in a class of

nonlinear initial-value problems, it does not apply for signaling problems or

when the medium has variable properties.

The multiple variable method has proven quite successful in treating such

problems in the weakly nonlinear case and there have been numerous contributions

to this area of research since the work reported in [20]. A survey of the

technique is given in [3] and work focusing on fluid mechanics applications can

be found in [21] and [22]. Research in this area with particular emphasis or

media with slowly varying properties is continuing.
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