
7 000-A35 105 ON ACYC DATABSE DECOMPOSITONS(U
STANFORD UNIVCA

/
DEPT 0F COMPUT ER SCIENCE C BEER ET AL JUL 83

SANCS-83-976 AFOSR-TR-83-0959 AFOSR-B0-0212

J UNCLIESSIFED 0G9/2 N

EEE12hE8hi1h

p2.2

11111112.01.0 IIIII

11111125 1J.4 111111.6

MICROCOPY RESOLUTION TEST CHART

July 1983 Report No. ST%'N&CS-8-976
/

AFOSR- TR. 3 -o 95 9

On Acyclic Database Decompositions

to by

Catriel Becri and Moshe Vardi

Department of Computer Science

Stanford University
Stanford, CA 94305 . L .- i E "

'.... .

CD)

Approved for public release;
.distribution unlimited.

,,- -- -, ,

f.".WUNCLASSIFIED
- ,,. ,01fRITY CLASSIFICATION OF THIS PAGE (nen Dais Entered)_

REPORT DOCUMENTATION PAGE BEFORE COMPLETINGO
REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

AFOSR-TR. 83-0959 N -A1/35 ET R R
"r 4. TITLE (and Subttle) S. TYPE OF REPORT A PERIOD COVERED

ON ACYCLIC DATABASE DECOMPOSITIONS TECHNICAL

6. PERFORMING ORG. REPORT NUMBER

7. AUTNORFa) S. CONTRACT OR GRANT NUMBER(s)

Catriel Beeri and Moshe Vardi AFOSR-80-0212

S. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK
Department of Computer Science AREA WoRK UNIT NUMBERS
Stanford University PE61102F; 2304/A2
Stanford CA 94305

St. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Mathematical & Information Sciences Directorate JUL 83
Air Force Office of Scientific Research//V#- 13. NUMBER OF PAGES

Bolling AFB DC 20332 /0
$4. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office) IS. SECURITY CLASS. (of this report)

UNCLASSIFIED
Ia. DECLASSIFICATION/DOWNGRADING

SCHEDULE

10. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Report)

IS. SUPPLEMENTARY NOTES

I19 KEY WORDS (Continue an reverse side if necessary and Identify by block number)

$. ABSTRACT (Continue on reverse side If necessary and identify by block nuember)

Given a universal relation scheme, presented as a set of attributes and a set
of dependencies, it may be advantageous to decompose it into a collection of

kschemes, each with its own sets of attributes and dependencies, which has some
desired properties. A basic requirement for such a decomposition to be useful
is that the corresponding decomposition map on universal relations be injective
A central problem in database theory is to find the reconstruction map, i.e.,
the inverse map of an injective decomposition map. The authors prove here that
when the decomposition, viewed as a hypergraph, is acyclic and (CONTINUED)

DD JA 1473 EDITION OF I NOV 01 IS OBSOLETE UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Enterce)

-UN&6ASSIFIED

gsCURIYY CLASSIFICATION OF THIS PAGE(Whonm Dfta Entnwo

ITEM #20, CONTiNUED: the given dependencies are full implic'ational dependen-
cies, then the reconstruction map is the natural join. Based on this, the
authors show that there is a polynomial time algorithm to test for injective-
ness of decompositions.

UNCLASSIFIED
SECURITY CLASSIFICATION OF Tul PAGEt'hon Date Enterold)

AIR F"J (-F SCIENTIFIC RESLARCH (AySC;
NO- TI CE .. 'I TTALT3DTIC
This te .i reiewed and is
approvc-d o!.' :' . e A APR 190-12.
Distributi:, .1 imitod.

MATTHER J. KEJ. jKi

Chief, Technical Information Divjlao '

ON ACYCLIC DATABASE DECOMPOSIrlONS

Catriel Beerit

Aiken Computation Laboratory

Harvard University

Cambridge, MA 02138

Moshe Y. Vardit

Department of Computer Science

Stanford University

Stanford, CA 94305

July 1983

Abstract

Given a universal relation scheme, presented as a set of attributes and a set of dependencies, it

may be advantageous to decompose it into a collection of schemes, each with its own sets of

attributes and dependencies, which has some desired properties. A basic requirement for such

a decomposition to be useful is that the corresponding decomposition map on universal rela-

tions be injective. A central problem in database theory is to find the reconstruction map, i.e.,

the inverse map of an injective decomposition map. We prove here that when the decomposi-

tion. viewed as a hypergraph, is acyclic and the given dependcncies are full implicational depen-

dencie then the reconstruction map is the natural join. Based on this, we show that there is a

polynomial time algorithm to test for injectiveness of decomposition 'n ?or

t On leave from The Ilebrew University of Jerulem, Israel. 0-. Ot-AI;-
Resmrch supposted by a Weizmann Post-Doctoral Fellowship and AFOSR

•'Ut /

Ii "" 2 . e

II

1. Introduction

A significant portion of research on relational database theory has been concerned with

the properties of database decompositions. The generic problem can be described as follows.

Given a "universal" scheme presented as a set of attributes and a set of dependencies, what are

the conditions under which it can be decomposed into a collection of schemes, each with its

own sets of attributes and dependencies, having some desired properties. The properties con-

sidered were, at first, various nonnal forms. (see [Ma, UIJ). It was then realized, however, that

there is a more fundamental property, called faithfulnes that has to be satisfied by decomposi-

tions [RI,BR,MMSU]. Intuitively, a decomposition is faithful if the relations corresponding to

the different schemes can be updated separately.

A basic assumption underlying these ideas is that when a universal scheme is decomposed

into smaller schemes, each of the universal relations associated with it is decomposed into

smaller relations using the projection operation, i.e., each such relation is projected onto each

one of the smaller schemes. For a decomposition to be faithful, we must not lose any informa-

tion by decomposing the universal relations, that is the decomposition map must be injective.

In other words, it should be possible to reconstruct the universal relations from their projec-

tions. The desirability of injectiveness is called in [B1G] the representation principle.

The question raised now is as follows: Given that a decomposition is faithful, what is the

resulting reconstruction map? The most natural choice for this map is the (natural) join opera-

tion. The problem is whether indeed the reconstruction map is the join. This problem was

first presented in [R1], where it is answered affirmatively for the case that only functional

dependencies are given and the decomposition is into two schemes only. This result was gen-

eralized in [BR, MMSU], where the restriction on the number of schemes was removed. It was

generalized further in [V2) to the case where full implicational dependencies are given. In con-

trast, it is shown there that if we allow arbitrary first-order sentences instead of full implica-

tional dependencies, then the reconstruction map does not have to be the join.

2

The result in [V21 assumes that both finite and infinite databases are considered. it is

more realistic, however, to assume that database arc inherently finite. This is the case that we

consider in this paper. While we cannot show that the reconstruction map is the join, we prove

it for the important case that the decomposition is acyclic [FMU, BFMY. Furthermore, in this

case the condition of injectiveness is equivalent to the condition that the reconstruction map be

the join. (The same result was shown independently in [CPJ for the less general case where

functional and join dependencies are given and and the decomposition is into two schemes.) In

contrast, it is shown in [V2] that for cyclic decomposition injcctiveness does not imply that the

reconstruction map is the join. Finally, based on this characterization of injectiveness, we show

that there is a polynomial time algorithm to test for injectiveness of decompositions.

2. Basic Definitions

2.1. Relation and Dependencies

We assume familiarity with the terminology and concepts of relational database theory as

presented in [Ma, UI. We use I[X] to denote the projection of the relation I on the attribute

set X, and * to denote the join of the set lj I of relations. We assume that the relations we

are dealing with and, accordingly, the dependencies that refer to them are typed that is, distinct

attributes have disjoint domains. We also assume that all relations are finite. The universal

relation scheme is denoted U, and a database scheme is a set R = {R 1 Rk) of distinct rela-

k
ion scheme such that U Ri = U.

1=1

The dependencies we use here are the full inmplicational dependencies (fid's) [BV, F2], i.e.,

equalitP.generating dependencies (egd's) and full tuple-generating dependencies (ftgd's). We

denote the class of relations that satisfy a set I of dependencies by SAT(S), and we denote

logical implication by 1=.

3

The class of join dependencies [ABU,R2] is a subclass of the class of ftgd's. They were

originally introduced using the following notation. A join dependency (d) is a statement *[R],

where R is a database scheme {R 1. Rk}. It is satisfied by a relation I on U if

kJ =* I[Ri]. Let R and S be database schemcs. We say that S covers R if for all R in R there

is some S in S such that RCS. It is known [BMSUI that ifS covers R then *[Rik *[S]. A

multivalued dependency (mvd) IF1, Za] is essentially a "binary" jd, i.e., it is a jd *[RbR21.

(Note that R 1U R2 = U). This notation differs from the standard arrow notations for mvd's.

Let R={R 1 Rk} be a database scheme. If R, and R2 are subsets of R, then RIR 2

is a partition of R if R1nR2=0 and R=R1UR2. A database scheme R is said to be acyclic

[FMU,BFMY] if the jd *[R] is logically equivalent to the set of mvd's

{*[U R,,U R21: R1,R2 is a partition of R}.
Note that one direction of the equivalence is true for any database scheme.

We will use here two properties of fid's that are shown in [V1,V3].

(1) Let I be a set of fid's and let r be an mvd. If I r then there is a relation I such that

1 1=2, 1 satisfies Y, and I does not satisfy r.

(2) There is a quadratic time algorithm to test for a given finite set I of fid's and an mvd '"

whether .I='.

2.2. Decompositions

A database on the database R={R 1 Rkl is a collection {/1. Ik} of relations on

R1 . .. Rk, correspondingly. With each database scheme R we associate a decomposition map

AR. Given a relation I on U, AR applied to I yields a database on R:

AR(I=1IIRiL IIRkJ}.

A decomposition map AR is injective with respect to a set X of dependencies if AR is injective

on SAT(). That is, if I and J are two distinct relations in SAT(E), then A(): ARM-(J). If

/J

4

AR is injective with respect to I then it has an inverse map

pR:{AR(I: I €SAT(Y,.,)I-SAT(XZ),

such that pR(AR())=! for all I in SAT(Z). pR is called the reconstruction map, If

k
PR (11. Ik)=.* Ij then we say that the reconstruction map is the join. Another map asso-

ciated with a database scheme R is the project-join map MR defined by

k
mR(I)= * I[RIJ.

J=1
Note that a relation I satisfies *[R] exactly when mR(l)= I.

3. The Main Result

Let I be a relation on U. A permutation on I is an injective map a from the set of

values in I into itself such that the set of values for each attribute is mapped into itself. A per-

mutation on I is essentially a vector of permutations, one for each attribute of U. We denote

by a(I) the relation obtained by replacing simultaneously each value in I by its image under

ar.

Lemma I. [BVJ Let I be a relation on U and let a be a permutation on I. Then I and a(I)

satisfy exactly the same fid's. E

Obviously, I and a(l) have the same projection on each singleton attribute set {A}.

They need not have, however, the same projections on larger attribute sets. A permutation a

on a relation I preserves a database scheme R if AR(I) = AR(a(l)).

Lemma 2. Let R={R1 ,R 2} be a database scheme, and let I ={wI.w21 be a relation on U.

For every tuple w in mR(I) there exists a permutation a on I that preserves R such that w is

in a(l).

Proof. If w is in I then take a to be the identity permutation, so we can assume that w is not

in I. If however either RICR 2 or R2CRI, then mR(I)=I, so assume that the two sets are

incomparable. We can also assume that wiIRiIPw2[R1 and w1[R2dw 2[R2], otherwise

mR(I)=I. Finally, wl[RIflR 2J= w2[RjnR2], since otherwise 'nR() I.

Let w!R11= w1fRil and wlR 2 l= w2!R21. Define a to be the identity on each attribute in

R1 . For an attribute in R2, a exchanges the values wl(A] and w2[A]. a is well defined, since

wIRl R j= woItnR2 . Now we have that a(w,)IRJ= wiIRi and a(w)1R 2J= w2[RJ, so

w=a(wi)Ea(1). It is also easy to see that a preserves R. a

The relationship between covering and preservation is pointed to in the following easy

lemma.

Lemma 3. Let R and S be database schemes such that S covers R. If a is a permutation on a

relation I that preserves S, then it also preserves R. M

We can now prove our main result. i -

Theorem 1. Let I be a set of fid's, and let R be an acyclic database scheme. The following

three conditions are equivalent:

(1) AR is injective with respect to ..

(2) T k -[RI.

(3) PR is the join.

Proof.

(1 -> 2): Suppose that AR is injective with respect to I but 7 li*[R]. Since R is acyclic, there

is a partition R1,R2 of R such that Y [i*[S], where s={U R1,U R2}. By property (1) of fid's,

there is a relation I ={Wl,W2} such that I satisfies I but I does not satisfy I[S]. Since I does

not satisfy S, there is a tuple w that is in ms(l) but not in 1. By Lemma 2, there is a permuta-

tion a on I such that w is in a(l), and a preserves S. But then we must have I 4 a(l), since

w is not in i, and by Lemma 1, I and a(/) both satisfy -. We also have that a preserves R,

because S covers R. Therefore, AR(I)=A(a(l))- in contradiction to the injectiveness of AR

with respect to E.

(2 -> 3): Let I be a relation in SAT(m). Since I I [R], I =MR(). That is,

.

_ 6

1= * [R I=PR(AR(I),

where pi is the join.

(3 -> 1): If PR exists, then AR must be injective with respect to 1. 0

We now show that the condition of Theorem 1 can be tested efficiently.

Theorem 2. There is cubic time algorithm to test for a given finite set I of fid's and an acyclic

database scheme R whether AR is injective with respect to 1.

Proof. By Theorem I it suffices to test whether X k * [RI. Our strategy is to construct first a

set r of mvd's that is logically equivalent to *[R) (by acyclicity), and then to test if I ri for

each r in r. By property (2) of fid's,. each of the latter tests can be done in quadratic time.

The crux of the proof is showing how to construct r such that I r I < I U I and the construction

can be done in quadratic time.

If R is acyclic then I R I _ U and there is a set r of mvd's that is logically equivalent to

*[RI such that I r I<I RI [BFMYJ. In order to construct r we have to construct first a join

forest for R.1 This join forest can be constructed in time linear in the size of R [FYI. Then

every mvd in F can be constructed from the join forest in time linear in the size of R [BFMY].

Since I r I < I U I, the claim follows. a

4. Concluding Remarks

We have shown that the reconstruction map is the join for quite a general situation,

namely when the dependencies are fid's and the decomposition is acyclic. We note that most

classes of dependencies treated in the literature are special cases of fid's. An exception is the

class of inclusion dependencies [CFP]. Our results can be generalized to deal also with inclu-

sion dependencies [KCV]. As for the restriction that the decomposition be acyclic there are

arguments to the effect that most real life situations can be captured by such decompositions.

A join focest for R is a labeled acyclic graph with the elements of R as nodes, an edge connecting R, to R, is

7

We have also shown how to test efficiently for injectiveness. We mentioned that there is

another desirable property of decompositions, called suriectiveness [V21. Faithful decomposi-

tions are both injective and suidective. When only functional dependencies are given there is a

polynomial time test for faithful [BH, BR, MMSU]. We do not know of any effective test

when fid's are given, even when the decomposition is acyclic.

References

[ABU] Aho, A.V., Beei, C., Ullman, J.D.: The theory of joins in relational databases. ACM

Trans, on Database Systems 4(1979), pp.297-314.

IBBG] Beeri, C., Bernstein, P.A., Goodman, N.: A sophisticates' introduction to database

normalization theory. Proc. Int'l Conf. on Very Large Databases, Berlin, 1978,

pp.113-124.

[BFMYJ Beeri, C., Fagin, R., Maier, D., Yannakakis, M.: On the desirability of acyclic data-

base schemes. IBM Research Report RJ3131 (version 2), April 82. Also, to appear in

J. of ACM.

[BH] Beeri, C., Honeyman, P.: Preserving functional dependencies. SIAM J. on Comput.

10(1981), pp. 647-656.

[BMSU Beeri, C., Mendelzon, A.O., Sagiv, Y, Ullman, J.D.: Equivalence of relational data-

base schemes. SIAM J. on Comput. 10(1981), pp. 647-656.

[BR] Beeri, C., Rissanen, J.: Faithful representation of relational database schemes. IBM

Research Report, San Jose, 1980.

[BV] Beeri, C., Vardi, M.Y.: A proof procedure for data dependencies. Department of

Computer Science, The Hebrew University of Jerusalem, Dec. 1980.

[CFP Casanova, M.A., Fagin. R., Papadimitriou, C.H.: Inclusion dependencies and their

interaction with functional dependencies. 1st ACM Symp. on Principles of Database

libeled by R, n RJ, and for each attribute A the subgraph or nodes and edges that contain A is connected

k ----

8

Systems, 1.os Angeles. 1982, pp. 171-176.

tCPJ Cosmadakis, S.S., P1apadimitriou. C.1lI.: Updates of relational views. 2nd ACM Symp.

on Principles of Database Systems. Atlanta, 1983, pp. 317-331.

[FL] Fagin. R.: Multhalued dependcncics and a new normal fionn for relational databases.

ACMI Trans. on Datbase S)ystcms 201977), pp. 262-278

[F21 Fagin, R.: Horn clauses and database dependencies. 1. of ACM 29(l982) pp. 952-

983.

jFMUJ Fagin, R., Mendelzon, A.O., Ullman, ii).: "A simplified universal relation assump-

tion and its properties" ACM Trans. on D~atabase Systems 7(1982), pp. 343-360.

[KCVJ Kanellakis, P.C.. Cosmadakis, S.S., Vardi, M.Y.: Unary inclusion dependencies have

polynomial time inference problems, Proc. ACM Symp. on Theory of Computing.

Boston, April 1983, pp. 264-277.

[Ma] Maier, D., The Theory of Relational Databases, Computer Science Press. Rockv.ille,

Maryland. 1983.

[MMSUJ Maier, D.. Mendelzon, A.O.. Sadi., F., Ullman, J.D.: Adequacy of decompositions of

relational databases. In Advances in Database Theory (H. Galk.;re, J. Minker, and

J.M. Nicolas, eds.), Plenum Press, 1981, pp. 101-114.

(111 Rissanen, J.: Independent components of relations. ACM Trans. on D)atabase Sys-

tems 2(1977). pp. 317-325.

[112] Rissanen, J.: Theory of relations for databases - a tutorial survey. Proc. 7th Symp. on

Math. Found. of Computer Science, 1978, in Lecture Notes ir~ Computer Science 64,

Springer-Verlag, Berlin, pp. 537-551.

(YI Tarjan, R.E., Yannakakis, M.: Simple linear time algorithms to test chordality of

graphs, test acyclicity of hypergraphs. and selectively reduce acyclic hypergraphs. Bell

Laboratories Technical Report, 1982.

9

[Ull Ullman, J. D., Principles of Database Systems, Computer Science Press, Potomac,

Maryland, 1983.

[VII Vardi, M.Y.: [he implication problem for data dependencies in the relatonal model,

Ph.D. Dissertation (in Hebrew). l)cpt. of Computer Science, The Hebrew University

of Jerusalem, Sept. 1981.

[V21 Vardi, M.Y.: On the decomposition of relational databases. Proc. IEEE Symp. on

Foundation of Computer Science. Chicago, Nov. 1982, pp. 176-187.

[V3J Vardi, M.Y.: Inferring multivalucd dependencies from full implicational dependen-

cies. To appear.

[Zal Zaniolo, C.: Analysis and design of relational schemata for database systems. Techni-

cal Report UCLA-ENG-7769, UCLA, 1976.

A '

