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1. Introduction

A significant portion of research on relational database theory has been concerned with
the properties of database decompositions. The gencric problem can be described as follows.
Given a “universal” scheme presented as a set of attributes and a set of dependencies, what are

the conditions under which it can be decomposed into a collection of schemes, each with its

own sets of attributes and dependencies, having some desired properties. The properties con-
sidered were, at first, various normal forms. (sec [Ma, Ul]). It was then realized, however, that

there is a more fundamental property, called faithfulness, that has to be satisfied by decomposi-

tions [R1,BR MMSU). Intuitively, a decomposition is faithful if the relations corresponding to

the different schemes can be updated separately.

A basic assumption underlying these ideas is that when a universal scheme is decomposed
into smaller schemes, each of the universal relations associated with it is decomposed into
smaller relations using the projection operation, i.e., each such relation is projected onto each
one of the smaller schemes. For a decomposition to be faithful, we must not losc any informa-
tion by decomposing the universal relations, that is the decomposition map must be injective.
In other words, it should be possiblc to reconstruct the universal relations from their projec-

tions. The desirability of injcctiveness is called in [BBG) the representation principle.

The question raised now is as follows: Given that a decomposition is faithful, what is the
resulting reconstruction map? The. most natural choice for this map is the (natural) join opera-
tion. The problem is whether indeed the reconstruction map is the join. This problem was
first presented in [R1]}, where it is answered affirmatively for the case that only functional
dependencics are given and the decomposition is into two schemes only. This result was gen-
eralized in [BR, MMSU), where the restriction on the number of schemes was removed. It was
generalized further in [V2) to the case where full implicational dependencies are given. In con-
trast, it is shown there that if we allow arbitrary first-order sentences instead of full implica-

tional dependencics, then the reconstruction map doces not have to be the join,




The result in [V2] assumes that both finite and infinite databascs are considered. It is
more realistic, hewever, to assume that database arc inhcrently finite. This is the case that we
consider in this paper. While we cannot show that the reconstruction map is the join, we prove
it for the important case that the decomposition is acyclic [FMU, BFMY]. Furthermore, in this
case the condition of injectiveness is cquivalent to the condition that the rcconstruction map be
the join. (The same result was shown indcpendently in [CP] for the less general case where
functional and join dependencies are given and and the decomposition is into two schemes.) In
contrast, it is shown in [V2] that for cyclic decomposition injectiveness does not imply that the
reconstruction map is the join. Finally, based on this characterization of injectiveness, we show

that there is a polynomial time algorithm to test for injectiveness of decompositions.
2. Basic Definitions

2.1. Relation and Dependencies

We assume familiarity with the terminology and concepts of relational database theory as
presented in [Ma, Ul}. We use /{X] to denote the projection of the relation [ on the attribute

set X, and ;I ; to denote the join of the set {/;} of relations. We assume that the relations we

are dealing with and, accordingly. the dependencies that refer to them are fyped, that is, distinct
attributes have disjoint domains. We also assume that all rclations are finite. The wuniversal

relation scheme is denoted U, and a database scheme is a set R={R,, ..., Ry} of distinct rcla-

k
tion scheme such that | J R, =U.
i=1

The dependencics we use here are the full implicational dependencies (fid's) [BY, F2], i.e.,
equality-generating dependencies (cgd’s) and fill tuple-generating dependencies (figd’s). We
denote the class of relations that satisfy a set 2 of dependencies by SAT(Z), and we denote

logical implication by |=.
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The class of join dependencies [ABU,R2] is a subclass of the class of figd’s. They were
originally introduced using the following notation. A join dependency (jd) is a statement *{R],

where R is a database scheme {R; ...,Ri}. 1t is satisficd by a relation I on U if
k
1 = _‘11 [R;]. Let R and S be database schemes. We say that S covers R if for all R in R there

is some S in S such that RCS. It is known [BMSU]J that if S covers R then *[R}E=*[S]. A
multivalued dependency (mvd) [F1, Za) is essentially a “binary” jd, i.e., it is a jd *[R1.R,l.
(Note that R\UR,=U). This notation differs from the standard arrow notations for mvd’s,

Let R={R,, ..., R} be a database scheme. If R; and R, are subsets of R, then R},R,
is a partition of R if RjNAR,=& and R=R;UR,. A database scheme R is said to be acyclic
[FMU,BFMY] if the jd *[R} is logically equivalent to the set of mvd's

{*[U Ri.U Ra): Ry,R; is a partition of R}.
Note that onc direction of the equivalence is true for any database scheme.

We will use here two properties of fid’s that are shown in [V1,V3].

(1) Let X be a set of fid’s and let r be an mvd. If Z i 7 then there is a relation / such that

|11 =2, I satisfies 2, and I does not satisfy .

(2) There is a quadratic time algorithm to test for a given finite set X of fid’s and an mvd 7

whether Z =1,

2.2. Decompositions

A database on the databasc R={R,, ..., R} is a collection {/,, . .., I} } of relations on
Ry, ..., Ry, correspondingly. With cach databasc scheme R we associate a decomposition map

Ap. Given a relation  on U, Ay applied to 7 yields a database on R:
Ap(D)={I[R1} ... . I[R:]}.

A decomposition map Ag is injective with respect to a set X of dependencies if Ag is injective

on SAT(Z). Thatis, if / and J are two distinct relations in SAT(Z), then Ap(7)#Ar(J). If




Ag is injective with respect to X then it has an inverse map
pr:{Ar(1): [ESAT(Z)} = SAT(Z),
such that pg(Ag(/)=1 for all I in SAT(Z). py is called the reconstruction map. 1If

k
pr(ly, . ... I)= .‘llj then we say that the reconstruction map is the join. Another map asso-
j:

ciated with a database scheme R is the project-join map my defined by

mR(I)-':jEl[[Rj].

Note that a relation / satisfies *[R] exactly when mg(I)=1.

3. The Main Result

Let /7 be a relation on U. A permutation on [ is an injective map a from the set of
values in 7 into itself such that the set of values for each attribute is mapped into itself. A per-
mutation on / is essentially a vector of permutations, one for each attribute of U. We denote
by a(/) the relation obtained by replacing simultancously each value in / by its image under

.

Lemma 1. [BV] Let / be a relation on U and Ict a be a permutation on /. Then 7 and a(/)

satisfy cxactly the same fid's. @

Obviously, / and a(/) have the same projection on each singleton attribute set {A}.
They need not have, however, the same projections on larger attribute sets. A permutation a

on a relation / preserves a database scheme R if Ag(7)= Ag(a(7)).

Lemma 2. Let R={R,R;} be a databasc scheme, and let / ={w,wy} be a rclation on U.
For every tuple w in mg(/) there exists a permutation a on / that preserves R such that w is
in a(l).

Proof. If w is in / then take a to be the identity permutation, so we can assume that w is not
in I. If however either R\CR, or RyCR,, then my(7)=1, so assume that the two scts are

incomparable. We can also assume that wy[R,)#wo[R] and w[R)]#w;[R,), otherwise
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mg(I)=1. Finally, wi[R,NR )= wo[RiN R}, since otherwise my(/)=1.

Let wlR )= w[R{] and w[R3]=wy{R3). Definc a to be the identity on cach attribute in
Ry. For an attribute in R, a exchanges the values wy[A4] and wo{A4]. a is well defined, since
WliRlnRﬂ= w;[RlﬂRﬂ. Now we have that a(Wl)[Rd——— wllRl] and a(w,)[R;]: Wz[Rz], SO

w=al(w))€a(l). It is also easy to see that a preserves R. W

The relationship between covering and preservation is pointed to in the following casy

lemma.

Lemma 3. Let R and S be database schemes such that S covers R. If a is a permutation on a

relation / that preserves S, then it also preserves R.

We can now prove our main result.

Theorem 1. Let T be a set of fid’s, and let R be an acyclic database scheme. The following

three conditions are equivalent:

(1) Agis injective with respect to Z.

@ ZE’R]

(3) pr is the join.

Proof.

(1 -> 2): Suppose that Ag is injective with respect to X but T F*[R]. Since R is acyclic, there
is a partition R.R; of R such that 2 F#*[S], where S={{J Ri.lJ R2}. By property (1) of fid's,
there is a relation / ={w;,w;} such that / satisfics T but / does not satisfy *[S]. Since / does
not satisfy S, there is a tuple w that is in mg(/) but not in /. By Lemma 2, there is a permuta-
tion a on I such that w is in a(/), and a preserves S. But then we must have / # a([), since
w is not in /, and by Lemma 1, I and a(/) both satisfy . We also have that a preserves R,
because S covers R. Therefore, Ag(7)=Ag(a(7)) - in contradiction to the injectiveness of Ag
with respect to X.

(2 -> 3): Let 7 be a relation in SAT(Z). Since = | *[R), / =mg(l). Thatis,




k
I= :l,[Rilsz(AR(I)-

where py is the join.

(3 -> 1): If pg exists, then Ag must be injective with respect to 2. W

We now show that the condition of Theorem 1 can be tested cfficiently.

Theorem 2. There is cubic time algorithm to test for a given finite set £ of fid's and an acyclic
database scheme R whether Ay is injective with respect to Z.

Proof. By Theorem 1 it suffices to test whether = = *[R]. Our strategy is to construct first a
set I" of mvd’s that is logically equivaleut to *[R} (by acyclicity), and then to test if Z =7 for
each 7 in T. By property (2) of fid's,. cach of the latter tests can be done in quadratic time.
The crux of the proof is showing how to construct T such that |T'|<|U| and the construction

can be done in quadratic time.

If R is acyclic then |R|<U and there is a set T’ of mvd’s that is logically equivalent to
*[R] such that |T'|<]R] [BFMY]. In order to construct I' we have to construct first a join
forest for R.! This join forest can be constructed in time lincar in the size of R [TY]. Then
every mvd in T can be constructed from the join forest in time lincar in the size of R [BFMY].

Since |T'|<| U, the claim follows. m

4. Concluding Remarks

We have shown that the reconstruction map is the join for quite a general situation,
namely when the dependencies are fid's and the decomposition is acyclic. We note that most
classes of dependencies treated in the literature are special cascs of fid's. An exception is the
class of inclusion dependencies [CFP]. Our results can be generalized to deal also with inclu-
sion dependencies [KCV]. As for the restriction that the decomposition be acyclic there are

arguments to the cffect that most real life situations can be captured by such decompositions.

1 A join forest for R is a labeled acyclic graph with the elements of R as nodes, an edge connecting R, to R, is




We have also shown how to test efficiently for injectiveness. We mentioned that there is

another desirable property of decompositions, called surjectiveness [V2). Faithful decomposi-
tions are both injective and surjective. When only functional dependencies are given there is a
polynomial time test for faithful [BH, BR, MMSU]. We do not know of any effective test

when fid’s are given, even when the decomposition is acyclic.
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