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ESTIMATION OF TEMPORALLY AND SPATIALLY

VARYING COEFFICIENTS IN MODELS FOR

INSECT DISPERSAL

H. T. Banks, P. L. Daniel Lamm and P. M. Kareiva

ABSTRACT

We describe techniques for estimating temporally and spatially dependent

parameters (including coefficients ) that appear in general transport

models. Convergence properties of the resulting algorithms are given and

sample computational findings with test examples are presented. We con-

clude with a summary of our use of the methods analyzing experiments on the

movements of marked flea beetles in cultivated arrays of the cole crop,

collards (Brassica oleraceae).
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I. INTRODUCTION

Transport equations appropriately model numerous biological systems

and have played an important role in mathematical biology (cf Rubinow

(14], Okubo (121). Recently such transport equations have been increas-

ingly used with experimental data, ranging from developmental biology

(cf Kauffman et al. [10]) to population biology (cf Levin [11]). This

connection between model and data can be facilitated by parameter iden-

tification schemes (i.e., algorithms for generating the parameters in

a model that provide the best match between model predictions and ob-

served data). For the past several years we have been developing and

testing spline-based algorithms for identifying parameters in transport

equations (cf Banks, Crowley and Kunisch (1]). Our most recent efforts

have been directed towards models of insect dispersal where,working

with insect mark-recapture data, we have had some success in identifying

constant coefficients and spatially varying coefficients in transport

equations of insect movement (Banks and Kareiva [4]). However, our

successful efforts involved only our more abbreviated data sets (those

spanning one or two days) and were counterbalanced by failures at de-

scribing shifts in insect distributions over the course of three days.

We hypothesized that our models failed in some instances because they

lacked temporal variation in the parameters reflecting rates of insect

movement and migration (Banks and Kareiva [4]).

The idea of temporally varying dispersal rates is not new to bio-

logists. In general, the complication of temporal variation in rate

constants or model parameters is ubiquitous in biology. For example,

many biological processes vary with time because the environment changes



seasonally. Biological processes may also vary temporally without anyK

driving environmental force; a familiar example is the inexorable

senescence of organs in aging individuals. Motivated by the apparent

temporal variation in the mobility of the insects in our experiments,

and the recognition that temporal variation is a general feature of bio-

logical processes, we have made efforts to exteaid our parameter estimation

algorithms to enable us to treat transport equations that contain time-

varying parameters.

In this paper we describe our methods for identifying both spatially

and temporally varying coefficients in transport equations. Although

the particular examples with which we illustrate our methods here repre-

sent scalar equations, our techniques are readily used with vector systems.

Beginning with a basic transport model, we sketch the ideas behind our

spline based techniques and summarize the main convergence results. We

then report on tests of our methods on numerical examples involving co-

efficients that simultaneously vary in space and time. Because we view

our methods as tools, we discuss practical computing aspects of implementing

these methods. We then summarize results obtained when we applied the

methods to experimental data that describes the dispersal of flea beetles.

It was this data that initially prompted us to consider models with time-

varying coefficients. Since this paper represents the culmination of

several mathematical and biological investigations, we have sacrificed

many details in order to present an overview. Readers interested mainly

in the biological issues of flea beetle dispersal should consult

Kareiva (71, (8], (91, and Banks and Kareiva [4] ; for more details

concerning our general approximation techniques, including convergence
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proofs, readers may consult Banks and Daniel [21 and Banks, Daniel

and Kareiva [31

II. SPLINE BASED ESTIMATION TECHNIQUES FOR TRANSPORT EQUATIONS

We continue here our investigations (Banks and Kareiva [4], Sec. 2)

of general transport equations which describe advection, Fickian diffusion,

and sink/source mechanisms containing variable and possibly unknown rate

parameters. Specifically we consider the problem of estimating the un-

known functional parameters V, V, a, , and y appearing in the system

u -L (x + au + f, tE(O,T], xE(O,1)
at 9x (Vu ax

(1) u(t,O) u(tl) 0

u(O,-) = Uo(Y)

It is assumed that y = y(x) and that V, D, a, and a are functions of

(t,x)E(O,T]x(O,l). We note that although (1) is formulated in terms of

homogeneous boundary conditions, our ideas are sufficiently general to

include systems with nontrivial boundary conditions, possibly even depen-

dent upon unknown parameters. A standard transformation (see Banks and

Kareiva [4]) may be used to reformulate such systems as special cases of

(1) and we shall therefore restrict our considerations in this paper to

estimation problems for (1).

The parameter estimation problem associated with the set q =(D,V,ot, ,Y)

of unknown parameters appearing in (1) is the following: Given spatially

distributed observations ui E L2 (0,1) corresponding to times t, i l .. L,

find q E Q (for Q a given class of admissible parameter functions) that

minimizes a given fit-to-data criterion. We employ here a least squares

3



criterion (although we are not limited only to functionals of this

type) of the form

L ^2(2) J(q) = lu(t 1 ;q) u

i=l

where u is the solution to (1) corresponding to qE Q; the parameter set Q

is assumed to possessboundedness, compactness, and regularity properties

(these assumptions are made precise in Banks, Daniel and Kareiva (31)

Due to the infinite dimensional nature of both the state u and the

parameters q (and the computational difficulties associated with optima-

zation over infinite dimensional spaces), one of our objectives has been

to develop numerical estimation algorithms based on approximation schemes

for both the state and the parameters. We describe such an algorithm

N
here. To this end we define finite dimensional state spaces H and

approximate parameter sets Q and reformulate the parameter estimation

problem in a computationally more tractable finite-dimensional setting.

To consider state approximations, we first rewrite (1) in weak form

in the state space 1.2(0,1) with the usual inner product <.,'>. For a

fixed q- (D,V,a,a,y)EQ, this weak form is given by

<ut,- - <Vu,D> + <VDu,D4> - <otu,> = <f,c>, tE(O,T](3) ;

u(O) - u0 (y)

which solutions u of (1) must satisfy for all sufficiently smooth 0 with

()-(1)M-0. Here D denotes the spatial differentiation operator.

We next use Galerkin ideas with (3) to approximate solutions u of (M):

For each N, we construct finite dimensional subspaces HN of L2(0,1),
NN BN N

HN - span fB N..., BN+I where the basis elements B are linear com-

4



binations of standard Cubic B-spline elements (see Schultz [15], for

example) defined on a uniform mesh of size 1/N. The linear combinations

are chosen so that the resulting basis elements B. satisfy the homogeneous
J

boundary conditions in (1). For q and N given, we then seek the solution

N N N+l N Nu , u t) = N w (t)B which satisfies the Galerkin equations

N N N N
<u ,1> - <VuN, > + <DDu ,D*> - <oLuN,> = <fp> tE(O,T],

(4)

<u N(0),> = <Uo(Y), I

N N
for all 4EH . Since H is finite dimensional, it is easy to see that

(4) is an ordinary differential equation in the "Fourier coefficients"

NwWt); we defer further discussions on the nature of the approximating
J

equations to a later section where we provide details on the computer

implementation of the overall algorithm.

Our approach to approximation of the functional parameters

q = (D,V,oL,6,y)EQ is similar to that of the state approximations in

M
that we construct finite dimensional sets Q that "approximate" (in an

appropriate sense) the original infinite dimensional parameter set Q.

Our theory allows for a wide variety of classes of approximation

M M
sets Q (we need not have Q C Q) which in general are unrelated

tb N
to the N order state spaces H . In the next section we indicate

how we have successfully used cubic and linear spline-based approxi-

mations for the parameters; a more precise statement of these general

ideas may be found in Banks and Daniel [2] and Banks, Daniel, and

Kareiva [31

In practice we combine both state and parameter approximation

5



ideas to formulate an approximate estimation problem: For given levels
-N QM

of approximation N and M, the problem consists of determining qM EQ

that minimizes

N L ^ ~ 12

(5) JN (q) = ; uNtq ) - u

M. N

over qEQ . As before, u is the solution to (4) corresponding to q.

Each approximate estimation problem, being finite dimensional, enjoys

significant computational advantages over our original estimation prr lem;

in addition we have the following convergence results (valid under "i-

cient regularity assumptions on f, u0 and Q -- see Banks, Daniel and

Kareiva [3]) for solutions of the approximate problems:

-N

Theorem: For N=I,2,..., and M=l,2,..., there exists a solution qM

N M
to the problem of minimizing J over Q . In addition, there exists

N
-ka convergent subsequence q - q* such that q*EQ is a solution to the

original problem of minimizing J over Q. Finally, we obtain state
N N k

variable convergence u (t;q u(t;q*), where u , u are solutions
_ N

to (4), (3) corresponding to qMk, q* respectively.

The proof of this theorem, which relies heavily on variational

arguments and spline estimates (e.g., see Schultz [15]), may be found

for a general transport equation in a two-dimensional domain in Banks,

Daniel and Kareiva [31 and thus will not be presented here. Instead

we turn to a discussion of computer implementation and numerical testing

of our algorithms, and to our findings upon use of these techniques with

flea beetle dispersal data.
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III. NUMERICAL IMPLEMENTATION

In this section we first outline some essential features of computer

implementation of the spline-based approximation ideas introduced above.

Then, before examining the more difficult problems associated with esti-

mating parameters for models using experimental data, we shall present

our findings for a representative test example.

For given values of M and N, we wish to consider the approximate

parameter estimation problem, namely that of minimizing JN of (5) over

M
Q . In developing a computational package to effect this minimization,

one can often take into account special characteristics of the state

N M
space H and the parameter set Q . Turning first to the state space

approximations, we examine equation (4) for any given value of parameter

M N N N
q = (D,V,a,8,y) in Q . We recall that u (t)E H may be written u (t) =

N+1 N N N
Nw(t)B (where B. are the cubic spline basis elements defined in sec.j~lj t)j (wer

N
2); substituting this expression into (4) and letting x' Bi, i=l,...,N+l,

we obtain the system of ordinary differential equations (ODE)in wN(t)=co1[wN(t))s
j J

N*N N N N N
Q w (t) = (K (t) + G (t))w (t) + F (t)

(6) QNwN o) = w N

Here Q N, K N(t) and G N(t) are (N+I) x (N4-1) matrices, where for i,j=l,...,N+l,

N N N
QJ <BjBi>

NN IN NK i,. =<D(t,') DB i+ V(t'''B j DB[> >

Gi,j , •

NNN

7



N N
In general, these matrices are sparse, banded, and (in the case of QN, G

symmetric. In addition, the (N+l)-vectors F N(t) and wN are given by

F N (t) = col(<f( ,t,.),B N>)
i

N
W N col(<UoB N >).
0 1i

We remark here that, with the exception of the time-varying nature of the

matrices above, the ODE (6) in wN is essentially the same as the corres-

ponding system (equation (12)) in Banks and Kareiva [4]. The fundamental

difference between the two, however, involves the way in which variable

parameters are treated in each. In Banks and Kareiva [4], a fized para-

metrization is chosen that imposes a specific a priori shape for the co-

efficients (e.g., in that reference, the choice of parametrizations for V,

namely V(x) = c(x-.5), constrains V to a class of affine functions). Here we

allow the iterative estimation scheme itself to determine the shape of

the coefficients by searching over functions in a class QM which contains

a large number of different functional shapes. (For the special case

described below, we use linear and cubic splines to generate the elements

of Q M.) We shall 6riefly indicate some of the computational aspects of

this approach and refer the reader to Banks and Daniel [2] for a more

thorough treatment of these ideas (we note that the underlying model

equation in Banks and Daniel [2] differs from the one considered here,

but that the approximation ideas for variable parameters presented there

are directly applicable here).

To explain the implementation of approximation techniques for para-

meters, we shall simplify our presentation by focusing on the parameter

a only and note that the parameters V, V, B and y are treated in a similar

8



manner. To illustrate our ideas, we assume, in the examples to follow, a

separable form for the parameters (i.e., n(tx) = cl(t)a 2 (x)) and that

the approxiz, ition from Q for a takes the form a = I where

(7) c I(t) Y. akCk(t).1
k.1

(8) c12(x) - [ (}
k= I

Here C , k-l,...,M, are linear spline basis elements based on a mesh size

T/(M-l) and C k k=l,.. .,M are standard cubic spline (B-splines -- see

Schultz [15]) elements with mesh size 1/(M-3). (We note that the orders

of the approximation for aI and a2 need not be related; the form assumed

here is only for ease in expostion.) For fixed M, N, the matrix GN(t) of e-

quation (6) has entries

(9) It) = C M M C ()) MB NB N

k=l k k=l

M ^M
where ak9 ak9 k=l,.. .,M, are to be estimated. We note that the inner

^M-N N
products <C B.,B.> may be computed and stored prior to beginning the

kj i M ^M

optimization process, so that as the ak, ak are updated, we need only

recombine the terms in (9) to obtain the current value of G N(t). It is

easy to see how to extend these ideas to the matrices involving approxi-

mations for D, V, 8 and y.
Tomiiiz N QM

To minimize J over Q using any one of a number of iterative opti-

mization procedures, it is necessary to select start-up values for the

M ^M
parameters (i.e., for the coefficients ak9 ak in expansions such as

(7), (8)). For the examples reported here we used the minimization

package LMDIF1, which is MINPACK's version of the Levenberg - Marquardt

modified Newton algorithm. We also used IMSL's DGEAR (stiff ODE solver)

to compute the solution to (6) for each parameter iterate, and the

IMSL numerical quadrature package DCADRE to compute JN (the L2 norm

9



N
difference between u and sample data at sample times ti). All the com-

putations reported on here were executed on the CDC 6600 at Southern

Methodist University and the IBM 370/158 at Brown University.

We now consider a test example where (synthetic) data generated from

a known solution (see Banks and Daniel [21) is used with the estimation

algorithm; by comparing the parameters identified by our estimation pro-

cess with known "true" parameter values, we are able to evaluate the per-

formance of our algorithm. In this test example, "true" parameters are

given by D=20, V(t,x)=-l00(x-.5)(4-t), and a= S = y = 0, while the "true"

state is given by u(t,x)= -400x(x-l)cos(t/2), 0 < t < 2, 0 < x < 1.

Starting from initial guesses of the parameters, we apply the optimization

14 N
procedure to J , where the distributed sample data needed to compute J is

given by ui=u(ti,.), ti = .25i, i=l,...,8. For each example presented

below we let N=3. (Further details on the implementation of test examples

may be found in Banks and Daniel [2] .)

Example 1.

(a) We estimate D only, holding V fixed at its true value. We allow time
M MM M

varying estimates for V , letting M(t) = k4idkCk(t) where M=4 and the Ck

are defined as in (7). A time-varying initial guess of D=40-15t yields

the following resuits:

dM dM dM dM
1 2 3 4

initial guess 40. 30. 20. 10.

estimated values (N=3,M=4) 20.0002 20.0002 20.0001 20.0000

"true" values 20. 20. 20. 20.

Execution time was 110 seconds with a final value of J N(D) 6.7 x 10- 7

10
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(b) We estimate the time-varying part of V only, holding other parameters

fixed at true values; i.e., we let V(t,x) - VI(t)V 2 (x) and estimate

V(t) 4-t only. As before, N-3, M-4, with VM(t) =klv Ck(t). Starting

from an initial guess of V -1 we obtain the following estimates:
M M M M

v v v v
12 3 4

initial guess 1.0 1.0 1.0 1.0

estimated values (N=3,M=4) 3.99994 3.33329 2.66664 1.99999

"true" values 4.0 3.33333 2.66667 2.0

The execution time for this example was approximately 62.55 seconds and

the converged value of JN was given by J N(N) = 1.2 x 10
- 6 .

Example 2.

We repeat the above examples (same start-up values, N=3, M=4) but

consider the case where sample data is available only at discrete spatial

points x. in (0,1). The least squares fit-to-data criterion in this case
J

is given by

(10) J(q) = )u(tix ;q) - u
i,j

with the corresponding approximate criterion

(11) jN(q) I IuN(tix;q)- j12;
( ) =i~j ,~xj;q u Ij ;

N i^

here u, u are solutions to (3), (4) respectively and uij E R are observed

data points. Repeating example 1(a) (where we estimate D), we obtain the

following converged values.

M M M MdI  d2  d3  d4
1 2 34

estimated values (Nf3,M-4) 19.9998 19.9996 19.9997 19.9997
~N 3

The CP time here was 475.33 sec. while J (NM) - 1.44 x 10- 3 . Repeating

11
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example l(b) resulted in the following converged values of v i with a

CPU time of 143.99 sec. and the least squares criterion value J N(V) =
M

4.57 x 10- 7 .

M M M M
vI  v2  v3  v4
V1  V 2  34

estimated values (N=3, M=4) 3.99994 3.33329 2.66664 1.99999

Example 3.

Here we estimate both spatially and temporally varyinq parts of

V(t,x) - [4-t][-100(x-.5)1= V1 (t)V2 (x) using the "pointwise" criterion
NI
1 . As in the previous examples we approximate VI by V1 , and also

approximate V2 by V2 (x) = klV kCk(X) where Ck is defined as in (8) and
M is fixed at M=4. Since VM is 'the product of -and V2 at least one

1 2'9tlas n
of their basis coefficients must be fixed or there will be an infinite

number of possible combinations of a and 2 that still yield VMVM=VM.1 2 1 2M ^M
For the case considered here we fixed v 1 and v2 at their "true" values

throughout the entire optimization process. Initial guesses for the

remaining coefficients, as well as their converged values (for N=3),

are given below.
^M ^M M M
v 3  V 4  VI V 2  v3 v4

initial guess -5.0 -15.0 1.0 1.0 1.0 1.0

estimated values (N=3,M=4) -8.3333 -24.9883 4.0005 3.3338 2.6670 2.0003

"true" values -8.3333 -25.0 4.0 3.3333 2.6667 2.0

Additional numerical findings for this example, as well as numerous other

examples (with both temporally and spatially varying parameters), may he found

in Banks and Daniel (12]; Section 41

We consider in the next section the estimation of parameters using

models for insect dispersal with experimental data from field studies.

12
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The numerical results reported below were generated using a state approxi-

mation index of N-32 and parameter approximation index of M-4. In addition,

for convenience, the "pointwise" least squares critrion iN was used in the

N
minimization scheme instead of J since sample data uij was readily available

in discrete form. As in the test examples above, we determined that the use

SN .jN
of J vs. J made little difference in the outcome when one is estimating

time-varying parameters. (We repeated several of the computations with J

as the criterion, where the distributed data u was constructed by inter-

polating linearly between data points uil,... ,u p; here p is the number of

observed spatial locations.)

IV. TEMPORALLY VARYING INSECT DISPERSAL

Since dispersal is important to the population dynamics of insects

(cf Stinner et al. [17], Joyce [61), mathematical models have been used

extensively to investigate the consequences of differing patterns of in-

sect movement (Kareiva (7], (8], [9]; Okubo [12]). The development Lf

accurate models may be especially valuable in the design of pest manage-

ment schemes, where certain cropping arrangements appear to promote out-

breaks by altering pest movements (Risch et al. [13]). As part of our

long-term study of insect dispersal, we have been examining population

models that are special cases of equation (1) (cf Kareiva [7]; Banks and

Kareiva (4]). An extensive review of field mark-recapture data has indi-

cated that, although passive diffusion models are a good beginning, models

of insect dispersal must also allow for rates that vary in space and time

(Kareiva [8]). In our first attempt at treating spatially varying dispersal,

we analyzed the spread of marked populations of flea beetles and found that

transport models with spatially varying convection (or oriented movement)

performed significantly better than passive diffusion models, but still

13



not as well as we would like (Banks and Kareiva [4]). We hypothesized

that in these flea beetle mark-release experiments, coefficients re-

presenting certain mechanisms were time dependent. Here we use our new

techniques to test the hypothesis that fic.. beetle dispersal and migra-

tion varies temporally in these mark-recapture experiments. Beetle move-

ment was observed in 1 m X 80 m cultivated strips of collard patches.

Since there were no food plants for flea beetles outside of these linear

arrays, their local movement was confined to short hops up and down each

linear array. This justifies the following model as a reasonable hypo-

thesis:

au 2
(12) 0(t)-- - CL(t)u, tE(0,T], xEO,l),

where u is the density of marked beetles, D is the diffusion coefficient,

O represents population "decay" rate due to death and emigration, and x

is the rescaled spatial scale (where the interval [0,1] corresponds to an

actual interval of length lOOm). On this rescaled interval the center of

each experimental array corresponds to x=.5, and the data are observations

of u at evenly spaced sample stations between .2 and .8. Initialdata is

given by u(O,x)=O for all xO.5 and u(O,.5) is the number of marked beetles

that were released at the mid-point of each array to begin the experiment.

Since less than 1% of the marked beetles reached the ends of the cultivated

arrays (x- .1 and x= .9), and since there was no food to support beetles

outside the arrays, we used u(t,O) = u(t,l) - 0 as our boundary conditions.

More details concerning the marking and recapture procedure and flea beetle

biology can be found in Kareiva 171. Our subsequent analyses of experimental

data and equation (12) are reported in terms of days after release. In fact,

the data were collected in terms of hours, with 8 hours (9 a.m.- 5 p.m.)

representing a beetle's "activity day." Outside of this activity period

14



beetles are inactive, neither feeding nor moving (Kareiva, personal obser-

vation). To explore the hypothesis of time-varying dynamics, we systema-

tically examine the ability of equation (12) to describe experimental

data, using different combinations of D constant, D varying in time, a

constant and a varying in time.

The spline algorithm we have developed estimates the coefficients in

equation (12) that yield the "best fit" between model dynamics and experi-

mental data; in particular, the algorithm minimizes the sums of the squared

differences between observed beetle d1 .sities u j and predicted beetle den-

sities u at all points (ti,x.) for which there are data. As a standard

against which to compare the fit of the model, we consider the null hypo-

thesis that beetle density is simply a constant normal random variable.

Using this null hypothesis, we have evaluated the success of differing

forms of equation (12) by an ad hoc modification of multiple regression

analyses and significance tests based on the F-distribution. The basic

idea in this approach is the "extra sums of squares" principle (Draper

and Smith [5]), which involves examining the reduction in the residual

sum of squares that is achieved by adding parameters to the model. Al-

though for such non-linear models use of the F-test cannot be rigorously

justified, it at least provides a guide to the significance of our findings.

Following the protocol of traditional regression analysis, we define

a total sums of squares (TSSQ) for any data set {uij} as

m n2

S(uij-u)2j-l i-l

where nn is the number of observations of beetle density (one for each

(ti,x.)) and u is the observed mean beetle density. Unlike regression
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analysis, however, our model does not hypothesize that beetle density is

a simple function of selected independent variables. Instead, our model

is a partial differential equation, the solution of which depends on ini-

tial data and boundary conditions (known parameters) and on (possibly

time-varying) coefficients. These time-varying coefficients are the un-

known parameters we are seeking to identify. In our statistical analyses,

we calculated the degrees of freedom (df) in each model identification

run as simply the number of parameters in equation (12) that were esti-

mated by our algorithm. For example, if we were testing a model with

a=0 and D an unknown constant, the model df is 1. If we sought to

estimate a constant D and a time-varying a that was to be represented

by 4 linear splines, then our model df is 1 (for D) plus 4 (for the aM

ak'

k-l,... ,4 in (7)) or 5 in total. Given a total sums of squares (here-

Nafter TSSQ) and error sums of squares (j of Section 3; hereafter

referred to as ERRSQ), we calculated explained iums of squares (EXSSQ)

as TSSQ - ERRSQ. In traditional regression analyses EXSSQ must always

be nonytegative. When testing dynamic models such as equation (12), it

is possible, however, to obtain ERRSQ > TSSQ and consequently EXSSQ < 0.

This possibility arises because a dynamical model may be so inappropriate

that treating the data as simple normally distributed (white) noise provides a

better description than "foolish" dynamics. Thus the examination of

particular models such as (12) through parameter estimation techniques

is not an exercise in simple curve fitting with guaranteed success

whenever enough parameters are included. In our situation, no amount

of refining of parameter fitting can resurrect a poorly chosen dynamic

model.
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Three separate dispersal experiments were performed with the flea

beetle Phyllotreta striolata: one in a linear array with 3 ms between

collard patches, one with 6 ms between collard patches, and one with 9 mn

between patches. At all three interpatch spacings, our EXSSQ exceeded

75% of the TSSQ when both V and a were allowed to vary in time (Table 1).

However, a good fit between predicted and observed data could in fact,

be consistently obtained with a much simpler model in which we treated

D as a constant but allowed a to vary temporally. In this case we always

explained a significant portion of the TSSQ, a portion which was only

negligibly less than the portion explained when D also varied temporally

(Table 2). Without temporal variation in either V or a, solutions of

equation (12) could provide a good fit with data for only one day (Figure 1).

An interesting methodological point concerning the search for time-

varying parameters is the importance of initial guesses. In Table 3 we

see that using the same experimental data and the sane model but differing

initial guesses, we obtained dramatically different parameter values and

percentages of TSSQ explained. Our "good" first guesses (those eventually

leading to large EXSSQ) were the constant a's or D's identified by our

spline-based algorithm under the assumption of no temporal variation in

parameter values. These estimates of constant a and D then could be

effectively used as starting points for our search of temporally varying

parameters.

Not only was a consistently identified as significantly varying in

time, the quantitative nature of that temporal variation was remarkably

identical among different experiments (Figure 2). We interpret Figure 2

to represent the following general biological phenomenon: fiarly after

their release (i.e., in the first day), there is a peak in beetle emi-

gration (high a) due to the disturbance of being marked and handled;
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after one day of natural activity in the field this disturbance effect

disappears and a falls to its "natural" level. Disturbance following

marking and release is so common in insect dispersal experiments that

ecological methodology books warn against it as an experimental artifact

that needs to be controlled for or taken into account when analyzing

,data (cf.Southwood[16];p.91). Because our method allows us to explicitly

identify the disturbance effect, in studying specific models we have

a quantitative technique for estimating intrinsic natural diffusivity

and emigration of flea beetles after disturbance has been factored out.

We are now applying our methods to insect dispersal systems where we

suspect that day to day variation in temperature produces marked varia-

tion in movement rates. Our identification algorithms provide a tool

for describing the relationship between V and temperature under field

circumstances that do not permit the experimental control or manipu-

lation of temperature.
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TABLE 1. Least Squares Analysis of the Ability of Differing Transport
Models to Describe Beetle Dispersal Data.

DESCRIPTION OF DATA

3 m spacing: 9 points in space sampled I and 3 days after beetles
were released, TSSQ - 76.3

6 m spacing: 9 points in space sampled 1 and 3 days after beetles

were released, TSSQ = 53.5

9 m spacing: 7 points in space sampled 1 and 3 days after beetles
ier released, TSSQff 109.1

PERFORMANCE OF VARIOUS MODELS

% of TSSQ
Data explained by F-statistic and

Model Set model significance level

_u D au - au 3 m 32.7% F 3.64 p > .05
at ax2 2,15

@ith constant 6 m NONE (model ERSSQ> TSSQ)

*ind cstant4%F
and a) 9 m 73.4% F2,11 15.97, p< .005

2
au D a u - a(t)u 3 m 83.9% F = 12.48, p< .005

at ax2  5,12

(with constant 6 m 70.4% F 5 ,12 = 5.71, p< .01

9, variable a) 9 m 97.6% F = 68.7, p< .005

au a2u
at -- N) a - c(t)u 3 m 92.5% 89= 13.8, p< .005t ax F'

(with Yriable 6 m 76.7% F8, 9 = 3.71, p< .05

, variable a) 9 m 97.6% F8,15 19.2, p< .005
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TABLE 2. Choosing the "Best" Model By Examining How the Percent of
TSSQ Explained Can Be Increased as the Models Gain Complexity
(i.e., Number of Parameters)

A. Moving from constant a and V (2 parameters) to a constant D but
variable aL model (5 parameters)

3 m spacing: % TSSQ explained goes from F 3,2=12.7, p < .005
32.7 t 83.9significant improvement

6 m spacing: % TSSQ explained goes from F 9.51, p < .005
0 to 70.4 31

significant improvement

9 m spacing: % TSSQ explained goes from F 3, 18.82, p < .005

73.4 t 97.6significant improvement

B. Moving from constant V and variable a model (5 parameters) to
variable V and aL model (8 parameters)

3 m spacing: Z TSSQ explained goes from F =3.43, p > .05
83.9 to 92.
83.9 t 92.5improvement is not significant

6 m spacing: % TSSQ explained goes from F 39= 8.11, p > .5
70.4 to 76.7

improvement is not significant

9 m spacing: there is no change in % no improvement
TSSQ explained
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TABLE 3. Dependence of Performance of Algorithm on Initial cuess

Data from 6 m spacing experiments (see Table i)
TSSQ = 53.5

MODEL =V 2 - c(t)u % of TSSQ explained by uodelMDL at ax 2

EXI: D = .03101, INITIAL ot(t)E .20
SEARCH FOR VARIABLE e NONI' (model ERSSQ > TSSQ)

EX2: V = .00046, INITIAL a(t) '.2567
SEARCH FOR VARIABLE a 70.4%

au 2 D u)a

MODEL L =DW - oL(t)u

EX3:* INITIAL V(t): .0296 .0302 .00008 .0000
INITIAL a(t) 0

SEARCH FOR VARIABLE D AND u 12%

EX4:* INITIAL V(t): .0296 .0302 .00008 .0000
INITIAL A(t): .0097 .0263 .4834 .0058

SEARCH FOR VARIABLE D AND c NONE (model ERSSQ > TSSQ)

EX5:* INITIAL D(t) .00046
INITIAL cx(t): .2559 .2486 .0056 .00014

SEARCH FOR VARIABLE D AND a 76.7%

*FUNCTIONAL INITIAL GUESSES EXPRESSED IN TERMS OF SPLINE REPRESENTATION
COEFFICIENTS - SEE SEC. 3
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FIGURE LEGENDS

Figure 1. Fitting models to data on the dispersal of marked flea beetles.

Observed average densities of recaptured beetles in linear array

containing collard patches at 9 m spacing are represented by

solid dots; the dashed line represents best-fit equation (12)

with constant D and constant a; the solid line represents

best-fit equation(12) with constant D and variable a.

Figure 2. Temporal variation in beetle disappearance rate (a of equation 12).
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