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ESTIMATION TECHNIQUES FOR TRANSPORT EQUATIONS

H. T. BANKS P. L. DANIEL P. KAREIVA
Div. of Applied Math Dept. of Mathematics Div. of Biology and

Brown University Southern Methodist Univ. Medicine
Providence, RI 02912 Dallas, Texas 75275 Brown University

Providence, RI 02912

Abstract. We present convergence arguments for algorithms developed to estimate

spatially and/or time dependent coefficients and boundary parameters in general

transport (diffusion, advection, sink/source) models in a bounded domain a C R2.

A brief summary of numerical results obtained using the algorithms is given.

I. Introduction. In this note we present theoretical results for estimation of

function space (i.e., time and spatially varying) parameters in general transport

equations. The presentation here is motivated by our own efforts on problems in

transport of labeled substances in brain tissue [3], population dispersal (in

particular insect movement--see [2], [3], [7]), and bioturbation [6], among other

applications in the biological sciences. Due to limitations in space, we shall
not discuss here any of those particular efforts. Rather we provide an outline of

a general convergence theory for a class of approximation schemes that we have used

and are continuing to use successfully in a number of biological applications. In

the first two sections we present for the first time general theoretical arguments

underlying these approximation schemes; our use ofthemethods in specific problems

is discussed elsewhere ([2], [3]). In a final section we summarize briefly one

aspect of the numerical performance of our methods that is pertinent to any con-

vergence theory that one might develop.

As our fundamental state system we consider the scalar equation

(1) - + 7.(Vu) = V. (D Vu) + au + f, t c(O,T]

on the bounded domain n C R2 with boundary conditions u(t,.)jl = 0 and given initial

conditions u(O,.)I, = Uo(y). Here we assume that 0 and D are functions depending on

(t,x,y), t > 0, (x,y) Q and f = f(s,t,x,y), a = s(t,x,y), a = a(t,x,y), v = y(x,y).
While we treat only trivial Dirichlet boundary conditions in this note, our ideas

are sufficiently general to allow nontrivial boundary conditions depending possibly

on unknown parameters. We assume that any such boundary conditions have been

transformed in the usual manner so that the unknown boundary parameters are included

in the vector parameters a and y in f and u0 above. We have also simplified our

exposition in treating only a scalar equation even though our methods are applicable

to (and have been used with) vector systems.

A
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Along with the state equation (1) we assume that we have observations uiE HO0 (a)
for u(ti,.), or uijk E R1 for u(ti,xj'yk) and that we wish to choose the parameter

functions , D , o, y so that the corresponding solution of (1) best fits the

observations. For our discussions here we shall assume that this problem is posed

in terms of an optimization problem for a least squares fit-to-data criterion.

Letting q = (D,V,a,B,y) represent the set of unknown parameters and Q represent the

class of admissible parameter functions, we denote by q s J(q) the least squares

criterion function. For the observations mentioned above this function is given by

(2) J(q) J ju(ti,q) - uil2

- 0in the case of distributed data ui C H (), and

(3) J(q) = i, k Iu(tixj'Ykq) - uijki

in the case of pointwise data u j R1 , where in both cases u(.,q) is the solution
ijk

of (1) for a given q = (D, ,a,8,y). In either case our basic problem consists of

minimizing J over Q.

This problem is difficult in part because it isin general, infinite dimensional in

both the state u and the parameters q, each of which lies in a function space.

Therefore algorithms for its solution will, in most cases, involve two separate

and often unrelated approximation ideas, one for the state space and one for the

parameter set. In the next section we consider these approximations and outline

convergence arguments that indicate that the schemes can yield useful computational

results.

11. Convergence Results. We first rewrite equation (1) in its weak form in the

state space H = H0 () with the usual inner product. We have, dropping the Kronecker

product sign Qfor ease in notation,'that for all * C HI(a), the weak solution u

must satisfy

<uto + <Dvu(t),v¢' - <Qu(t),vo> - <Qu(t) + fi> = 0, t E (O,T],
(4)

u(O) = uo().

Retaining the notation q = (D,,a,y) we make the standing assumptions on the

parameter set Q:

[ The set Q is a bounded subset of L.([O,T] x ).
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[ There exists a positive constant m such that for every q z (D,a,=,By) in Q,

Di(t,x,y) _ m for i 1 1, 2, and (t,x,y) in [0,T] x a.

We also assume throughout that the perturbation function f is C1 in all of its

arguments and that y * u0 (y) is continuous from HO(Q) to H
0 (a). This will suffice

for most of the results stated below, but the regularity of solutions u assumed

later can be guaranteed only under more stringent smoothness assumptions on f along

with conditions relating f to the initial data uO.

0*0

Under our standing assumptions on Q and f, we can, further assuming that u 0 C HO(n),

use rather standard arguments (e.g., see [10, p. 104]) to guarantee existence and

uniqueness of solutions u to (4) with u(t,q) 9 H0(a).

For the state space approximation of (4), we consider a Galerkin scheme on finite
HN 0N I

dimensional subspaces H of HO(a). We assume H C H (0) for each N = 1, 2.
0 N

and define the Galerkin approximation for a given q E Q as the solution u

uN(t) E HN, of the equations

N +DuN N NN
<u,> + <DVuN(t),vp> - <Vu (t),V*> - <au t) + f,*> = 0, C HN,

(5)

uN(o) = PNuo(y) ,

where P is the orthogonal projection of H (a) onto HN.

It is useful to define the bilinear form C(q): H() () R by

- -

a(q)( ,) - b(q)(*,¢) -

Then we may rewrite the original equation and its Galerkin approximation in HN as

<ut,> + C(q)(u,o) = <f,#>, V#E H(
(6) 0

u(O) = uo(q)

and

N N<u t , > + C(q)(uN) <f,*>, V* CH N ,

u N(0) .P Nu0(q).

Defining, for solutiorns u N. of (7), the approximate fit-to-data function JN

(corresponding to (2)) by
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(8) JN(q) = uN(ti,q) - i2

we find that our estimation problems with approximate states (which are still

optimization problems over an infinite dimensional function set Q) consist of mini-

mizing JN over Q. Before turning to a second level of approximation (for the param-

eter set) we give some convergence results for these approximate problems that will

prove useful in discussing the state-and-parameter approximation problems. We make

the following standing assumptions on the approximation properties of HN relative

to H.

N ~0
[ Let PN denote the orthogonal projection of H () onto HN. Then for any

6 C2 (a) n H (a) the following estimates hold: IN, 0 j2 1(pN .)xI2

I(P* -
2 are each dominated by some functional g(N,*) satisfying

Jg(N,*)J .1 c(N) {Ipx1 2 + I yy12 } where e(N) - 0 as N

We remark that for Q = (0.1) x (0,I), tensor products of the subspaces LO0(A N ) an

SO0(A N ) of linear and cubic splines (corresponding to a gridsie/NmofedtWeiz </N)j modifie to

satisfy homogeneous boundary conditions, are readily seen to satisfy the condition

C (see [I, Chap. 6] for further discussion and details). The following fundamental

convergence statement (e.g., see [2], [3]) is most helpful in establishing the

desired approximation theorems.

N qN * 0

Theorem 1. Suppose qN, q F Q with q q in H((OT) ). Suppose further that

u(q*) , C2((O,T) xa). Then uN(t,q N ) - u(t,q*) in H( ) for each t E [O,T], where

u, uN are solutions of (6), (7), respectively.

Since this theorem is fundamental to our discussions in this note, we shall outline

the essential steps of its proof. First, we note that under assumptions A and B

above, it is easy to establish the following Grding inequality (e.g., see also [9,

p. 144], [4, p. 34]): There are positive constants cO , cl depending on a, the

bounds for Q, and m such that C(q)(O,) > cl1I 1 - col i1 for all oE H0I(Q) and all

q E Q.

Let uN, u be the solutions of (7), (6) corresponding to qN, q, respectively. We
wish to argue that JuN(t) - u*(t)l - 0. But from the inequality luN u*(

Ju - P Nu + P Nu* - u*J (to simplify notation here and throughout we suppress

the dependence on t) and the approximation results of condition C, it suffices to

argue JuN - pNu U O.



Let fN denote f at 8N of qN and note that the convergence hypotheses on qN and theSsotnsoffipyfN f~ 0 where f* * N
smoothness of f imply If - 0 corresponds to q*. We have that uI u satisfy the equations (see (6), (7))

N + (N N NN
u N )(uN, ) <fNi> for all *E HN

(9)
u N(o) = PNu(q )

and

,u*.O> + C(q*)(u *,) = <f ,o> for all e H 1(a)t 0(10)

u(o) = Uo(q*).

Since HN C H1(a), lett ,ig Dt denote -- , we have for all I E H
N

<Dt(u - p u*),w> + C(qN)(uN - u
- N* - N
<DtP Nu ,$ C (q N)(P Nu*,4) + <f N,4'>

t .<t(u* PNu*),o> + f(q*)(u*,) - 9(qN)(pNu*,*) + <fN _ f*

where we have used (9) and (10). Choosing = u - PNu* in HN we thus find

using the above identity

1 N2 N N N N
Dtz )(z ,z ) <Dt(u - pu*),z

+ C(q*)(u*,z N) - £(qN)(PNu*,z N) + <fN- f,z N>

Use of the Garding inequality then yields

1 DtN 2 + cl'zN 12 Co- N 2 < <Dr(u* _ pN* ),zM

+ C(q )(u zN) - C(qN )(pNu* zN) + <fN f*,zN>

(N1 *-N 2 ~1 N 2 N aN *N z N
1 jut Pu I Iz j )(u ,zN ) a(qN)(PNu,zN)

b(qN)(PNu,zN) - b(q*)(u*,zN)

+ <(QNPN u ,1%%z • + fN - fz N>

But
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a(q )(u ,z ) - a(qN)(P u ,z <DVU V - Dvpuvz>

ID*VU - DNN* 2 +f T I N2

while

b(qN )(P N u,z) - b(q )(uz N) = <vNpNu* - v u >

12 NN N 1 l N 2
- I-lNpu -Vu + -Ivz

Thus, using these estimates in (11) we find

I N 2 N 2  N 2

t ,lz + 1 llz - c0(z I

1 * 2 1 2  1 N N 2
7 - u I + Z- + ID v* N D VP u

I NuN * ** 2 C1  N2

-f IQ Pu +i 4. jp- I f Z YI

N 2 #NzN 2

or, since 1z 11 >

12 tzN 2  3 N 2  hN
(1V OIz NJ2+ (- 3 c0 1 z < h

where

N 1 N* 2  1 * N * 2

h 7 - P uti + F ID*vu Di Vp uI

C 1 1

4.1L vNpN* *12 1 N N* * * 1 N_
c _ 10 u + Ja P u P Ii +i If f I

Using the Gronwall inequality and defining cN = uN(0) - pNu*(O)( , we may obtain

from (12) the estimate

u N(t) - P Nu*(t)I , N + e26t ft e.26 s 2h N(s)ds
0(13)

N 42e26t 2
(T hN(s)J 2ds)

0
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3. Nwhere 6 = c 0 + 7 is independent of N. Since c - 0 follows from the continuity

assumption on uO, for the desired convergence it suffices to argue that hN 0 in

HO((o,T) x a). However, using the convergence q q , the assumption that u is

in C 2((D0,Tj _ ), the estimates of condition C, and the bounds from condition A,

this convergence is readily established. Thus is the statement of Theorem 1 proved.

We remark that the regularity required of u(q) in Theorem 1 can be guaranteed by

rather standard smoothness theorems (e.g., see [4, p. 141]). It is a straight-

forward exercise to verify that such theorems require sufficient smoothness of the

coefficients as well as of the perturbing function f (this also involves the initial

data uo). An alternate approach, which permits relaxation of the smoothness of the

coefficients (and requiring this smoothness only on (e,T] x 9) could be taken

(see [1], [5]) at the expense of some technical tedium. However, we shall be

approximating the parameter functions q below on [0,T], not (e,T], and hence the

stronger smoothness assumptions are more appropriate here.

To use the statements in Theorem 1 to obtain a convergence theory for aoproximate

parameters, we shall need a continuous dependence result for solutions u of (4).

To state this result, we define C1(Q) as the set of C1 functions with bounded

derivatives on ra.

Theorem 2. For any solution u of (4) such that u(t,q) C C(ar), we have that

q - u(t,q) is continuous on Q in the H ((o,T) x ra) topology.

The arguments for this theorem, which involve estimates for u(t,q) - u(t,q)J, make

use of conditions A and B above. They are very similar to the arguments outlined

r Theorem I and so we shall not give them here. Instead we explain how these

results are used to obtain a parameter convergence theorem.

Theorem 3. Suppose Q is compact in the H0 ((o,T) x s) topology. Then a solution
-N to the problem of minimizing jN over Q exists, N = 1,2..... Let {qNk be any

qNk 0 q
convergent subsequence, q - q in HO((o,T) x si). If u(q) E C2((0,T) x r) for
each q C Q, then q is a solution to the problem of minimizing J over Q.

Since the arguments are similar to those we have presented elsewhere (see [l,pp. 28-

29)), we only sketch them here. The existence statement follows once one estab-

lishes continuity of q - JN(q) on the compact set 0 (the continuity arguments are

similar to those behind Theorem 2). From Theorem 1, (2), and (8) we have
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J(q*) =lim JNk Nk JNk(qJ~q) =lim (q) < r Ji ()

Nk- Nk"-

for any qE Q. But Theorem 1 (with the constant sequence (qJ) also guarantees
jNk (q) - J(q). Thus J(q*) < J(q) for any q E Q.

As we have indicated previously, the state approximation results of Theorem 3 are

only first level results that are not satisfactory from a computational point of

view since the approximate problems still involve minimization over the infinite

dimensional set Q. We turn next to a second level of approximation where we com-

bi;.e the state approximation ideas outlined above with ideas for approximation of

the parameter set Q.

M 0MWe suppose that QM, M = 1,2,..., are subsets of H ((O,T) x o) defined by Q = im(Q)

where iM is a mapping from Q C H ((O,T) x o) into HO((o,T) x a). The approximation

properties for the QM are given in terms of the mappings iM. Specifically we

assume

0
tM (a) The mapping iM: Q -+ H is continuous;

(b) For each q E Q, iM(q) - q as M - - and the convergence is moreover uniform

in q E Q.

We note that we do not require that QMC Q. Furthermore, in the event

= (0,1) x (0,I), there are several useful special cases of approximation sets

that satisfy the assumptions of condition 0. Under sufficient regularity assumptions: M
on Q, we may choose iM  I = the linear spline (or cubic spline) interpolatory

map--for precise definitions and details, see [1], [Il]. As a second example, we

(again for sufficient regularity on Q) may verify that condition 0 is satisfied

when we choose iM = PM = the orthogonal projection mapping (in H ) onto the subspace

L(A M ) of linear B-splines (or the subspace S(a M ) of cubic B-splines)--see [111.

To see that this approximation idea does indeed fulfill our needs theoretically, we

first observe that if Q is compact in H0 , then part (a) of condition 0 guarantees

that QM = iQ ) is compact. Hence the problem of minimizing JN of (8) over QM has

a solution q. From the compactness of Q, we have a convergent subsequence
Nk - M

-k in Q . It follows (under sufficient regularity) from Theorem 3 that

is a solution of the problem of minimizing J over Q M. Let qM 6 Q be chosen such

that iN - 'M). Then {M) C Q and the compactness of Q guarantees existence of a

subsequential limit q = lim qM." From (b) of condition D and the fact that

Mj i Pj~qrj), it is easily sein that qMj also converges to q*. We finally observe

~' '-~--I
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that J(qMj) < J(q) for all qE QMj. But since QMj itjj(Q), we actually have

J(Imj) < J(iMj(q)) for all q 6 Q. Taking the limit as Mj - in this inequality and

using the continuity of J and part (b) of condition D, we find J(q ) < J(q) for all

q EQ.

For details of the above double limit results in the case of cubic spline state

approximations and linear or cubic interpolatary splines for the parameter approxi-

mations, the reader may consult [1]. We further observe that a careful consider-

ation of the detailed arguments in [11 and those sketched above will reveal that the

order of the limits in the double limit procedure is immaterial. Summarizing we

have

M -N
Theorem 4. Let Q be as given above where Q is compact and let qM be a solution

of the problem of minimizing JN over QM. Then for any convergent subsequence_Nk *

qj N .q , the limit q is a solution of minimizing J over Q.

I1. Numerical Findings. We have carried out extensive numerical tests of the

methods described in this note on problems involving estimation of both constant and

time and/or spatially varying coefficients in parabolic equations. Computations

(involving linear and cubic splines) for both test examples and inverse problems

using experimental data have been performed. See, for example [1], [2], [3], where

descriptions of the algorithms and software packages employed can also I found.

We report here briefly on one aspect of our numerical findings whirl concerns the

possible difference in performance of the algorithms when one employs a pointwise

(in a--see (3)) fit-to-data criterion as opposed to an integral criteriun (e.g., as

in (2), where the H () norm is used).

We first observe that the theory presented in this note (for H O() convergence of

the approximating states) promises adequate performance of the methods when a dis-

tributed criterion such as (2) (and the analogous form of JN--see (8)) is used in

computations. One can, in some cases (e.g., see [83), at the expense of technical

tedium, establish pointwise (in o) convergence of states so that a convergence

theory for pointwise criterion such as (3) can be developed. This raises the

natural question as to which, if either, criterion is preferable from a computational

viewpoint. Our preliminary numerical investigations suggest that whenever one is

estimating constant or temporally varying parameters (the ones of interest in the

insect dispersal studies of [2], [3]), it doesn't matter whether the problem is

posed using (2) or (3).
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To be more specific, consider the Example 4.4 of [1], which is a test example where

both the true parameters and true solution are known. The equation involved has the

form (1) with a = 0, f known, s = (0,1), V = 100(4- t)(.5- x) and P = 20. Tests to

estimate the temporal part of 0 (i.e., the term 4- t) or D were performed (see [1]

for details). The methods yield essentially the same parameter values and functions

(to 3 decimal places) regardless of whether the integral form (i.e., (2)) or the

pointwise form (see (3)) of the criterion function J (and the corresponding JN) are

used. In general the computer time to carry out the estimation with distributed

criterion was equal to (or less than) that needed for the same example using a point-

wise criterion.

We also raised this "criterion" question in some of our extensive uses of the methods

with field data from insect dispersal experiments (see [2], [3] for a full report).

Again we compared performance of the algorithm using a pointwise criterion with that

employing a distributed (in 1) criterion. Results very similar to those reported

above for the test examples were obtained (i.e., same parameters with comparable

computational efficiency). For a more complete discussion see [2].

Finally we note that we have successfully used the methods discussed in this paper

for test examples and experimental data (again for insect dispersal) in the case of

two-dimensional spatial domains o. These results will be reported in a manuscript

currently in preparation.
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