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NOISE

Abstract

This report explains the tefrmnoise the point

of view of probability and statistics. Namely, noise is

regarded as a random process. Two special cases of noise,

Gaussian noise and white noise, are discussed.

Key words: Non-linear filtering, Gaussian noise, power
spectral density, white noise
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The term "noise" was first used in communications

engineering as a result of the undesired acoustic effects

accompanying spontaneous electric fluctuations in receivers.

Ever since the advent of electric communications, communi-

cations engineers have searched to reduce the electric noise

in communications systems. Nowadays the idea of noise has

been widely used in many other fields where no acoustic

effect is involved. Roughly speaking, noise means something

which interferes with the desired signal. There is a variety

of sources of noise. For example, the fundamental source of

electric noise is the quantized electric charge. (Its

graininess causes the voltage fluctuations in electric

circuits.) Another common example is the computer generated

noise due to roundoff error. In many statistical methods such

as regression analysis and categorical data analysis, the noise

is the randomly fluctuating part (e.g. due to sampling) and the

signal is the unknown deterministic parameters. To understand
the noise structure and to extract the signal from the noisy

environment are the most important objectives in many studies.

Noise is usually treated as a stochastic process of

irregular fluctuations. In applications, the noise process

is often assumed to be stationary and ergodic*. That is,

its statistical properties can be completely characterized

by just one sample over a long period. Many tools used in

tim series analysis* [4, Part III are very useful in
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analyzing noise. For example, fast Fourier transform (FFT)

[10, Chapter 6] is a powerful computational tool in estimating

noise power spectra. The analysis of autocorrelation and

partial autocorrelation functions is useful in fitting

autoregressive-moving, average (ARMA) models to the noise

process.

GAUSSIAN NOISE

In many cases, noise is best described as a Gaussian
*

process (e.g. thermal noise and shot noise in electronic

systems). That is, the joint distribution of noise random

variables at any set of time points is multivariate normal.

In other words, the noise process can be completely charac-

terized by its autocorrelation function, or equivalently its

spectral distribution if it is stationary. The assumed

normality can be justified by the central limit theorem if

the noise is composed of many small independent (or weakly

dependent) random effects. The main advantage of using

Gaussian assumption is that the best linear estimator of the

signal is optimal under the criterion of mean squared error.

(Of course, the signal neede to be Gaussian, too). That is

to say, there is no need to consider non-linear theory in

A signal estimation in Gaussian system. In signal detection,

the likelihood ratio statistic is an optimal test statistic,

and many resIlts hew been established an absolute ctinuity

and the ladonMikodyn derivative betwm the two Measures
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induced by pure noise and signal plus noise, when both

measures are Gaussian [7, Chapter 3113). For example, Feldman

and Hajek derived the dichotomy theorem that two Gaussian

measures are either singular or equivalent. Rice (11,121

studied the behavior of sample paths of stationary Gaussian

noise with zero mean in continuous time. Suppose that X(t)

is stationary Gaussian with EX(t) - 0 and EX(t)X(t+s) - R(s).

The expected number of zeros per second in sample paths is

2 ff2w(f)df/ fw(f)df]1 / 2 where w(f) - 4 fR(t)cos 2wftdt

is the power spectral density and f is frequency in cycles

per second. However, there is not much known about the

distribution of the distance between two successive zeros.

The expected number of local maxima per second in sample paths

is [f f 4w(f)df/f f 2w(f)df] I / 2 . When the noise X(t) is
0 0

narrow-band (i.e. the spectrum w(f). vanishes except in a

small region), the envelope of X(t) has the Rayleigh distri-

bution which is defined to be the distribution of the square

root of a random variable with the chi-squared distribution

of degree 2.

It is worth noting that even though optimal statistics

can be obtained under the Gaussian condition, robust
,

statistics are desired so that decisions based on the

statistics are less sensitive to the Gaussian assumption.

I ' Various kinds of non-Gaussian noise take place in different

situations. Sam are generated f ram Gaussian noise through

non-linear devices. For exaple, the output voltage of
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noise has the Rayleigh distribution when narrow-band Gaussian

thermal noise is applied to an evelope detector. AnOther

example is quantization noise which has the uniform distri-

bution from -d/2 to d/2 where d is a unit quantization

step. Quantization noise occurs when analog signals are

converted to digital form. One more example is impulse noise.

impulse noise is a generalized random process composed of

short bursts which occur at random time points with random

amplitudes. In the analysis of electroencephalographic (EG)

wave recordings of brain activity, the EG recordings are a

Gaussian signal pzocem of brain activity plus a Poisson

process of impulse noise due to muscle contractions by nerve

impulses [I.

WHITS NOISE

fhite noise is a stationary stochastic process with

coustant spectral density. 7he term "whitew is borrowed

from optics where "white light" has been used to signify

uniform energy distribution among the colors. (Actually

the analogy is not correct since in optics the uniform

energy distribution of white light i based on wavelength

(the reciprocal of frequency) rather than frequency

[3, p. 141.) Discrete-tims white noise is simply an unor-

related wide-semse statiolary tim series with sero man.

Autoregresive-ning average (A ) processe" are driven

by disorete-tim white noise. Continuous-timm white noise
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2X(t) satisfies formally EX(t) - 0 and EX(t)X(s) - a8 (t-s)

where 6(.) is the Dirac delta function . In the following,

we only consider continuous-time white noise. Since entirely

flat spectral density distribution implies infinite power,

white noise does not exist in practice. Nevertheless, the

use of a white noise model is justified in many aspects.

Many real data sets, such as aircraft flight test data, radar re-

turn data and passive sonar detection data, involve an additive

random noise which has large bandwidth compared to that of

the signal. In some other problems, noise may be best

described as a linear transformation of white noise. More

importantly, it is often much easier analytically and

computationally to deal with white noise (e.g. Kalman filter ).

A crucial problem of robustness arises: Can the results based

on a white noise model effectively approximate those based on

a real case where the noise involved has large but finite

bandwidth? When only linear operations on the data are

considered, the answer is yes, i.e. the results based on a

white noise model are consistent with the asymptotic case

where the noise bandwidth tends to infinity in any way

desired. However, serious difficulties arise in interpre-

tation when non-linear operations on the data have to be

considered [21. The problem of robustness has yet to be

further investigated in the non-linear case.

Let us take a close look at the following non-linear

filtering problem. Let 3(t) and X(t) (t > o) be the mutually



independent signal and white noise, respectively. Let Y(t)

- Z(t) + X(t) be the observation process. The classic

filtering problem is to calculate the conditional expectation

(or distribution) of Z(t) given {Y(s): o.< s.< t). Tradi-

tionally, white noise X(t) is treated as the formal derivative*
of the Wiener process W(t) - JX(s)ds. The Wiener process

is well defined in terms of the Wiener measure on C[O,T]

(- the set of all continuous real-valued functions on [0,T])

where T is the time span. Now, the filtering problem can be

solved using Ito integral which allows non-linear operations.

The conditional expectation of Z(t) given {Y(s): o <s < t)

is uniquely determined up to a null subset of sample paths.

Unfortunately, the Wiener process sample paths are of bounded

variation with probability zero and all the physical sample

paths are of bounded variation. Thus non-linear filtering

theory cannot be applied in practice unless we are able to

choose a particular version of the conditional expectation

which is defined everywhere (not just almost everywhere) and

continuous in sample path with respect to the supremum norm

on C[O,TJ. This is another robustness problem. It has been

taken up by several authors [5,6,91. Balakrishnan [21 took

a different functional approach which avoids the above

problem. He developed non-linear white noise theory in

which white noise is defined on L2 [0,T] (- the set of all

square integrable real-valued functions on [0,T]). Specifi-

cally, let C be the class of cylinder sets in L2 [0,T] with
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Borel bases in finite dimensional subspaces. A weak

distribution is a finitely additive probability measure on

C which is countably additive on any class of cylinder sets

with bases in the same finite dimensional subspace. Now,

white noise is defined to be the triple (L2 [0,T],C,IG) where

UG is the weak distribution (Gaussian measure) defined by

the characteristic function

T T

L20,T] exp[i~Jh(t)x(t)dt]dG(x) - exp[ - ofh2(t)dt]

for all heL2 [0,T]. Based on this construction of white noise,

some results on likelihood ratio, innovation process and

conditional density are derived [1, Chapter 6; 2].

SIGNAL PROCESSING IN THE PRESENCE OF NOISE

The effect of noise on information transmission is the

main subject of statistical communication theory . Infor-

mation theory*, signal detection and signal estimation

(filtering and smoothing) are-three important topics. See

the article on STATISTICAL COMMUNICATION THEORY for a detailed

exposition. Spline approximation is another subject related

to signal estimation in the presence of noise. It is a

method of recovering a smooth (signal) function f (t)

(o < t < T) when only discrete, noisy measurements

Yi - f(ti) + e(ti) i - 1,2,...,n) are available. What is

known about t) is that it is smooth, e.g. fII -



-- 8

The spline estimator of f is the spline function which
1i (f(ti) -

minimizes Yi ) + X (f"(s)) ds where the smoothing

parameter A is determined by the generalized cross-valida-

tion method [141. This estimator may be regarded as a low-

pass smoother in a general sense. The estimator has the

remarkable property that the higher order derivatives of it

are good estimators of those of f.
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