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NOISE

Abstract

oo

This report explains the term noise® from the point
of view of probability and statistics. Namely, noise is
regarded as a random process. Two special cases of noise,

Gaussian noise and white noise, are discussed.
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The term "noise" was first used in communications
engineering asa result of the undesired acoustic effects
accompanying spontaneous electric fluctuations in receivers.
Ever since the advent of electric communications, communi-
cations engineers have searched to reduce the electric noise
in communications systems. Nowadays the idea of noise has
been widely used in many other fields where no acoustic
effect is involved. Roughly speaking, noise means something
which interferes with the desired signal. There is a variety
of sources of noise. For example, the fundamental source of
electric noise is the quantized electric charge. (Its
graininess causes the voltage fluctuations in electric
circuits.) Another common example is the computer generated
noise due to roundoff error. In many statistical methods such
as regression analysis and categorical data analysis, the noise
is the randomly fluctuating part (e.g. due to sampling) and the
signal is the unknown deterministic parameters. To understand
the noise structure and to extract the signal from the noisy
environment are the most important objectives in many studies.

Noise is usually treated as a stochastic process of
irregular fluctuations. In applications, the noise process
is often assumed to be stationary and ergodic'- That is,
its statistical properties can be completely characterized
by juqt one sample over a long period. Many tools used in
time loficn analysis* [4, Part II] are very useful in
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analyzing noise. For example, fast Fourier tranlform* (FPT)
[10, Chapter 6] is a powerful computational tool in estimating
noise power spectra. The analysis of autocorrelation and
partial autocorrelation functionl* is useful in fitting

auforogroalivn—moving. avoraga' (ARMA) models to the noise

process.

GAUSSIAN NOISE

In many cases, noise is best described as a Gaussian
érocoss* (e.g. thermal noise and shot noise in electronic
systems). That is, the joint distribution of noise random
variables at any set of time points is multivariate normal.
In other words, the noise process can be completely charac-
terized by its autocorrelation function, or equivalently its
spectral distribution if it is stationary. The assumed
normality can be justified by the central limit theorem* if
the noise is composed of many small independent (or weakly
dependent) random effects. vThe main advantage o:'using
Gaussian assumption is that the best linear estimator of the
signal is optimal under the criterion of mean squared error.
(Of course, the signal needs to be Gaussian, too). !hatiin
to say, there is no need to consider non-linear theory in
signal estimation in Gaussian systems. 1In signal detection,
the likelihood ratio statistic il'an optimal test statistic,
and many results have been established on absclute continuity
and the Radon-Nikodym du:iyntivn between the two measures
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induced by pure noise and signal plus noise, when both
measures are Gaussian [7, Chapter 3;13]. For example, Feldman
and Hajek derived the dichotomy theorem that two Gaussian
measures are either singular or equivalent. Rice [11,12]
studied the behavior of sample paths of stationary Gaussian
noise with zero mean in continuous time. Suppose that X(t)

is stationary Gaussian with EX(t) = 0 and EX(t)X(t+s) = R(s).
The expected number of zeros per second in sample paths is

2[6ff2w(f)df/ bfw(f)df.]l/z where w(f) = 4 !R(t)con 2nftdt

is the power spectral density and f is frequency in cycles
per second. However, there is not much known about the
distribution of the distance between two successive zeros.
The expected number of local maxima per second in sample paths
is 1 f f‘w(f)df/j-fzw(f)dfll/z. When the noise X(t) is

o

narrow-band (i.e. the spectrum w(f) vanishes except in a
small region), the envelope of X(t) has the Rayleigh distri-
bution which is defined to be the distribution of the square
root of a random variable with the chi-squared distribution
of degree 2. .

It is worth noting that even though optimal stati;tico
can be obtained under the Gaussian condition, robust
statistics’ are desired so that decisions based on the
statistics are less sensitive to the Gaussian assumption.
Various kinds of non-Gaussian noise take place in different
situations. Some are generated from Gaussian noise through
non-linear devices. For example, the output voltage of
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noigse has the Rayleigh distribution when narrow-band Gaussian
thermal noise is applied to an evelope detector. Another
example is guantization noise which has the uniform distri-
bution from -d/2 to 4/2 where d is a unit quantization
step. Quantization noise occurs when analog signals are
converted to digital form. One moro example is impulse noise.
Impulse noise is a generalized random process composed of
short bursts which occur at random time points with random
amplitudes. In the analysis of electroencephalographic (EEG)
wave recordings of brain activity, the EEG recordings are a

Gaussian signal process of brain activity plus a Poisson
process of impulse noise dus to muscle contractions by nerve

impulses (8].

WHITE MOISE

White noise is a stationary stochastic process with
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constant spectral density. The term "white" is borrowed
from optics where "white light" has been used to signify

uniform energy distribution among the colors. (Actually

the analogy is not correct since in optics the uniform

energy distribution of white light is based on wavelength

(the reciprocal of frequency) rather than frequency

(3, p. 14].) Discrete-time white noise is simply an uncor-
related wide-sense stationary time series with seroc msan.
Muqmntn-mtuq mngo' (ANMA) processes are driven
by discrete-times whits noise. Continuous-time white noise




X(t) satisfies formally EX(t) = 0 and EX(t)X(s) = 026 (t-s)
where §(:) is the Dirac delta function*. In the following, 7
we only consider continuous-time white noise. Since entirely
flat spectral density distribution implies infinite power,
white noise does not exist in practice. Nevertheless, the

use of a white noise model is justified in many aspects.

Many real data sets, such as aircraft flight test data, radar re-
turn data and passive sonar detection data, involve an additive
random noise which has large bandwidth compared to that of

the signal. In some other problems, noise may be best
described as a linear transformation of white noise. More

( importantly, it is often much easier analytically and
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computationally to deal with white noise (e.g. Kalman filter*). 4

; A crucial problem of robustness arises: Can the results based
on a white noise model effectively approximate théae based on
a real case where the noise involved has large but finite
bandwidth? When only linear operations on the data are
considered, the answer is yes, i.e. the results based on a
white noise model are consistent with the asymptotic case
where the noise bandwidth tends to infinity in any way

desired. Howévor, serious difficulties arise in interpre-
tation when non-linear operations on the data have to be
considered [2]. The problem of robustness has yet to be
further investigated in the non-linear case.

let us take a close look at the following non-linear
filtering problem. Let 2Z(t) and X(t) (t > o) be the mutually
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independent signal and white noise, respectively. Let Y(t)
= 2(t) + X(t) be the observation process. The classic
filtering problem is to calculate the conditional expectation
(or distribution) of Z(t) given {¥(s): o. <s. <t}. Tradi-
tionally, white noise X(t) is treated as the formal derivative
of the Wiener process* W(t) = j$X(s)ds. The Wiener process
is well defined in terms of th: Wiener measure on C[0,T]
(= the set of all continuous real-valued functions on [0,T])
where T is the time span. Now, the filtering problem can be
solved using Ito integral* which allows non-linear operations.
The conditional expectation of Z(t) given {¥(s): o <s. <t}
is uniquely determined up to a null subset of sample paths.
Unfortunately, the Wiener process sample paths are of bounded
variation with probability zero and all the physical sample
paths are'of bounded variation. ‘Thus non-linear filtering
theory cannot be applied in practice unless we are able to
choose a particular version of the conditional expectation
which is defined everywhere (not just almost everywhere) and
continuous in sample path with respect to the supremum norm
on C[0,T]. This is another robustness problem. It has been
taken up by -evorél authors [5,6,9]. Balakrishnan [2] took
a different functional approach which avoids the above
problem. He developed non-1linear white noise theory in
which white noise is defined on L,[0,T] (= the set of all
lquar-.intcgrablc real-valued functions on [0,T])). Specifi-~
cally, let C be the class of cylinder sets in Lzlo,T] with
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Borel bases in finite dimensional subspaces. A weak
distribution is a finitely additive probability measure on
C which is countably additive on any class of cylinder sets
with bases in the same finite dimensional subspace. Now,
white noise is defined to be the triple (Lzlo,'r],c,uG) where
Ug is the weak distribution (Gaussian measure) defined by

*
the characteristic function

T T
sz [o,T]exP[iIh(t)X(t)dt]duG(x) = exp{ - %— Ihz(t)dt]
o o
for all hel, [0,T). Based on this construction of white noise,
some results on likelihood ratio, innovation process and

conditional density are derived [1, Chapter 6; 2].

SIGNAL PROCESSING IN THE PRESENCE OF NOISE

The effect of noise on information transmission is the
main subject of statistical communication theory*. Infor-
mation theory*, signal detection and signal estimation
(filtering and smoothing) are-three important topics. See
the article on STATISTICAL COMMUNICATION THEORY for a detailed
exposition. spline approximation* is another subject related
to dignal estimation in the presence of noise. It is a
method of recovering a smooth (signal) function f£(t)

(0 <t <T) when only discrete, noisy measurements
Yy = £(t;) + e(ty) (4 = 1,2,...,n) are available. What is
known about f{(t) is that it is smooth, e.g. £"(t) € tho.-r].
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The spline estimator of £ isvthe spline function which
minimizes %:z_lcf(ti) Syl A{T(f” (s))2ds where the smoothing
parameter )\ is determined by the generalized cross-valida-
tion method [14]. This estimator may be regarded as a low-

pass smoother in a general sense. The estimator has the
remarkable property that the higher order derivatives of it

! are good estimators of those of £.
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