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Nyquist Frequency

Abstract

Nyquist frequency is related to aliasing and the

sampling theorem. This report explains the relation-

ship among these terms.
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The Nyquist frequency is half the sampl g frequency when

a continuous-time function is sampled at equ4ly spaced time

points. That is, the Nyquist frequency is/'r/i , (in radians

per unit timel where A is the time interval between two

successive sampled data. In-.this 'rticle, -we-&isu9s the

basic ideas of the Nyquist frequency and-a relevant and very

9 -mp=ta--t" em.- -,-the .sampling theorem. - ,, , '

In many applications involving processing a continuous-time

signal, it is often preferable to convert the continuous-time

signal to a discrete-time signal since discrete-time signal

processing can be implemented with a digital computer. It is

important to examine whether the discrete-time signal preserves

all the information in the original continuous-time signal.

We first consider the case that the signal x(t) is a real-valued

function. Assume that its Fourier transform X(M)

f x(t)exp(-iwt)dt exists and that x(t) = 2-w

for all t. The signal x(t) is sampled at t = nA, n =

-I,0,1,... We are interested in interpolating x(t) from

its samples x(nA). A natural question arises: Under what

conditions can x(t) be perfectly reconstructed from x(nA)?

The samples x(nA) can be related to X(w) as. follows.

x(nA) X(w)expic&dw

X(w + 2wk/A)exp~iwnA)dw
7t f~~
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Therefore, Xd() = EXCw + 21rk/A) lI < i/A) is the discrete

Fourier transform of the sequence x(nA). Obviously, Xd (.) is

obtained by folding X(') every /A radians per unit time.

(Here we identify w with -w.) This frequency it/A is the

a. ! Nyquist frequency, and hence also called the folding frequency.a.

It is easy to see that X(-) is not uniquely determined by Xd('.

In other words, some sinusoidal components of different

frequencies (e.g. 2wk/A+w0 , k - ...,-i,0,l,...) in x(t) cannot

be distinguished from one another by the observations x(nA).

This is called aliasing. Aliasing is the effect of under-

sampling. This effect is the principle on which the strobo-

scopic effect is based [6, Section 8.3].

When x(t) is a band-limited signal with X(w) - 0 for

jwJ > wMXd(w) is identical to X(w) (i.e. no aliasing) if

wM < i/A. In other words, from the uniqueness property of

Fourier transform, x(t) is uniquely determined by its samples

x(nA) under the condition that X(M) = 0 for Iwi> 't/A. This

is usually called the (Shannon) sampling theorem on infor-

mation theory [5]. From the sampling theorem, if we sample

the signal x(t) at a rate at least twice the highest frequency

in x(t), then x(t) can be completely recovered from the

samples. This sampling rate (twice the highest frequency in

ax(t)) is commonly referred to as the Nyquist rate. Actually

x(t) can be explicitly written, in terms of x(nA), as

sin 7 {(.t/A)-n}
x(t) n=E-C. x(nA) - n}
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It should be noted that band-limited signals are generally not

realizable physically, for x(t) = 1 Xw)exp(iwt)dw is
T -ed

analytic in t, as a complex variable, and therefore cannot

vanish for all t<-T for arbitrarily large T. Therefore,

aliasing is inevitable in practice. A discussion on error

bounds for aliasing can be found in [5].

In some applications, the signal x(t) is assumed to be

bandpass, i.e. there exist 0 < W a < W1 such that Xw) = 0

outside the intervals [w0 ,w1 ] and [-w1,-wl]. The sampling

theorem says that x(t) can be recovered from equally spaced

j sampling at a rate of 2wI. Actually, this rate 2w1 is too

conservative. It has been shown [4, Section 8.51 that a

sampling rate of 2wi/v is enough to recover x(t) where v

is the largest integer not beyond w1 /(W 1 -W0 ).

The sampling theorem has been generalized to many situations

such as random signals. When x(t) (-o < t <-) is a wide-sense

stationary stochastic process, possessing a spectral density

which vanishes outside the interval [-ir/A,7r/A], Balakrishnan

showed [l] that x(t) has the representation

N sin -{ (t/)-n}
x(t) = lim E x(nA) {(t/AI n}

N- n= -N

for every t, where lim stands for limit in the mean square.

Gardner [3] derived a similar result for non-stationary

stochastic processes. Obviously, the Nyquist frequency and
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Nyquist rate can be similarly defined in the random signal

* case.

Blackman and Tukey 12, Section 12] provided good inter-

pretations on aliasing. Jerri 15] gave an excellent review

of the sampling theorem and its various extensions and

applications. He discussed topics such. as unequally spaced

sampling, higher-dimensional functions, nonband-limited

functions and error bounds for the truncation, aliasing,

and jitter. A very exhaustive bibliography can be found

therein.
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