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WAVE PROPAGATION IN ANELASTIC
MEDIA WITH APPLICATIONS TO SEISMOLOGY
by
Walter Silva
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ABSTRACT

A formulation is presented which incorporates
linear anelastic attenuation into plane layer models
in an exact manner. Several examples of body wave
propagation in absorbing media are presented. Surface
time histories are compared between predicted acceler-
ation records using the plane-layered model and data
recorded by a vertical array. Spectral ratios between
the surface and bedrock, computed for the horizontal
components, show fair agreement with the model pre-
dictions. 1In particular, the importance of attenuation
in predicting ground motion in soils is demonstrated.
It is further shown that converted waves are of minor
importance while lateral propagation can be significant.

The formulation is extended to both Love and
Rayleigh wave propagation. Eigenvalue and surface

displacement calculations for a high loss soil structure

indicate that Rayleigh waves are more strongly affected
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by attenuation than are Love waves. Inverse calculations
for upper mantle and crustal structures, with both
synthetic and real data, reveal a significant dependence
of surface wave attenuation upon the velocity structure.
Use of this information can greatly aid in velocity
inversions and demonstrates the incompatibility of con-
ventionally extracted attenuation data with respect to
phase data. Further indications are that, for the
overdetermined case, the same layering (number and
thickness) may not be optimum for both the velocity and
attenuation inversion parameters. In addition, the same
layering is probably not optimum for both Love and

Rayleigh wave inversions. i
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INTRODUCTION

Recently there has been a greater appreciation of
the effects of anelastic attenuation in the earth. The
recent upsurge in interest is primarily due to a recog-
nition that the velocity dispersion accompanying atten-
uation can be significant (Liu and Archambeau, 1976).
In view of this much effort has been directed towards
dispersion corrections to free oscillation data which
is then inverted to obtain corrected earth models
(Hart et al., 1977). The results have been very
encouraging in that hody wave and free oscillation earth
models have largely been reconciled. In light of this
realization it now appears that attenuation will receive
much more consideration. It is the effort of this
thesis that this consideration be in terms of exact,
rather than approximate, theory.

In Chapter 1 the Haskell-Thompson propagation
matrix technique is extended to include anelastic
attenuation in an exact manner. 1In order to demon-
strate the effect of attenuation (as compared to purely
elastic propagation) on body waves, several examples
are presented. In particular, transfer functions are
calculated for typical soil and crustal structures.

In addition, an example is shown demonstrating the

effect of an attenuating boundary layer above the

core-mantle boundary on reflected pulses.




As a means of estimating the suitability of the
plane-layer model in predicting ground motion compar-
isons are made between the predicted surface motion and
data recorded at a vertical array. The array is located
in a so0il section and demonstrates the effect of low
velocity surficial material on wave motion,

In Chapter 2 the formulation is applied to both
Love and Rayleigh wave propagation. In this section a
soil and an upper mantle model are considered which
demonstrate the effects of attenuation on surface wave
propagation. In addition, an inversion scheme is
presented by which depth dependent velocity and
attenuation may be estimated simultaneously from sur-
face wave phase and amplitude data. The inversion
scheme is demonstrated using synthetic data and is then

applied to real data suitable for upper mantle structures.




CHAPTER 1
BODY WAVES

I. FORMULATION

In both the body wave and surface wave analysis
the matrizant technique (see Haskell, 1953, for first
seismological application) is employed as the compu-

r tational algorithm. In this approach the medium

properties are assumed piecewise constant. The equations

of motion are integrated analytically and the solutions

propagated by matching boundary conditions at the layer

interfaces. The main disadvantage of this method over

direct numerical integration of the equations of motion

(Gilbert and Backus, 1966) is, of course, that it is

possible only for plane geometry. To overcome this

shortcoming, various earth stretching transformations

have been developed (Schwab and Knopoff, 1972) which are

used in this treatise where appropriate. The following

paper extends the matrizant method to include anelastic

attenuation in an exact manner and forms the basis for

this thesis.
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BODY WAVES IN A LAYERED ANELASTIC SOLID
By W. Siiva

ABSTR A

A formulation extending the Haskell-Thompson matrix method to include the
effects of anelastic attenuation is presented. The formulation is exact in that no
low-loss approximations are made. Consideration is given to nonparallel
propagation and attenuation directions with corresponding velocity anisotropy .
Examples are presented for models representing soils, the crust, and the core-
mantle boundary.

INTRODUCTION

With the increase in the number of stations and the higher degree of standardiza ‘-
recent years, more use is being made of seismic amplitude data. This has contribute
increased regionalization of structure down to the core-mantle boundary. In ore. . »
accurately represent this fine structure in applying corrections or to resolve it in inverting
data, more use is being made of the higher frequencies where the attenuation effects are
most significant. Itis therefore becoming increasingly important to consider nongeometri-
cal attenuation exactly. Past approximations in dealing with loss (K nopofl, 1964) must be
replaced with exact formulations (Lockett, 1962: Cooper, 1967; Borcherdt, 1971 Buchen.
1971).

In order to consider the effects of a vertical variation in atlenuation as well as velocity
and density on body waves, an extension of the Haskell- Thompson (Haskell, 1953) matrix
formulation using an exact theory is presented. In particular, the restricted problem of
anclastic layers on an elastic half-space is considered. but the formulation can easily be
extended to include an attenuating half-space. Previous consideration of the problem

! (Kanai, 1950) dealt with normally incident homogencous waves with viscoclasticity of the
. Voigt type. The present treatment considers incident P or S} waves at arbitrary angles
: and a general constitutive relation.

FORMULATION

The most general form of a linear constitutive relation is Boltzman’s superposition
principle (Gurtin and Sternberg. 1962) which, written in terms of the tensorial relaxation

' function r(t)is

P,,U'=_f' s Tl = D) deg (1)
(1)

=rit )* (I!I,.,(Il

where P,;(t) and r; (1) arc the time-dependent stress and strain tensors and the symbol «

denotes the Stieltjes convolution.
Assuming the medium to be isotropic and homogeneous, equation (1) may be broken

up into bulk and shear components and written as
Ptt)y=2u(n > de, (1) i=]

Puty=3n10)*dey, (1) (2)

where u(t) and (1) are the relaxation functions in shear and bulk. Assuming that the
1539
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particle displacements u; are infinitesimal, the strain can be written
t,= 5[“:.; +uy,]
and, neglecting body forces, the linear momentum equation is
P

where p is the medium density. Substituting equation (2) into equation (3) yields the
equation of motion.
[R()+ 300 * [VIV -du)] - [p(r)*[V x (V x du)] = pu. (4)

Since the convolutions make the time-domain representation quite intractable, it is
customary to take the Fourier transform of equation (4). Restated in terms of transformed
variables, equation (4) becomes

[(R+3aV(V-0) - [jQV x (Vx @)= — po’i (5)

(1) = pii, (3)

ij.J

where
K=imf’, k(t)e "“dr, a=iof’, wltye " d
=, we'de
At this point it is convenient to introduce the transformed P and § displacement
potentials in terms of Helmholtz's relation
a=Vh+Vxyp. V-g=0. (6)

Substituting equation (6) into equation (5) results in the famuliar Helmholtz equations
for the P and S potentials ¢ and ¢.

[V2+K,21$=0. [V +K3)y=0 (7)
where
2
K= 2P
PERTY K{w)+$i(w)
w? p &)
ngz“2=(l)2'_" .
B i)

Note that the terms 2 and f? are in general frequency-dependent in both real and
imaginary parts.

MEDIUM PARAMETERIZATION

Let us now consider, for demonstration purposes, the case of S waves. A general
solution for ¥ in equation (7} is

V=yimexpi—iK;-X) 9)

where K is a complex vector with the real and imaginary parts having different directions
in general.

K;=Ps~iAg (10)
K52=KS-KS=|P5|’—|As[1—i2Ps~As (1)
P, A =|Py |Aj|cos (). (12)
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P, is the propagation vector such that o |l’si is the phase velocity and A the attenuation
vectorsuch thatexp (- Ay - Xirepresents the spatial decay of the potential. The nonvzero ),
gives rise to the inhomogencous waves (Boreherdt 1971, Buchen 1971, Cooper 1967,
Lockett 1962) whose amplitude varies tmonotomeally) along a wave front. It becomes
Ayl and o, in terms of material

.

necessary now Lo speetfy the three parameters [Pyl
properties and medinm geometry.

Writing the transformed shear modulus gites) in equation (8} in terms of a real part.
feten) and animaginary part, g, e, the quality factor Qy for shear waves is defined as

ey 1 AE

. 13
ftgleny 2ok (4

0, b
where K is the peak encrgy density stored and AE s the energy lost, both per cycle
{Borcherdt, 1971.1973), K ¥ may be written in the following form

L l')" 2 1
Ky A ) (14)
N N N N

where ¢, s the homogencous wave velocrty of the medim. Usimg (14) tomvert (1) and
(12)we arrive atcomventent expressions for P and A
iy 2 o | . s <
LNy B ALy Q0 eos T (15
RO BRI B0 ¢ N
Voo I

EWE ol Ly Q) Teos T (1)

U N N N
with similiur expressions for Powaves usimg the Poparamcters. In the tow-loss
approainiation for homogencous waves (7 O Q@ yequation (163 reduces to the well-

known expression
)

I"\] 3, :
2r.Q,

When dealing with highly dissipative matertals the vectonal nature of A must be
considered. The problem is that for a given incident wave (direction of both Pand A
specified) onto @ plane boundary between two viscoclastic media, the direction of both P
and 4 must be determined for the P and SV reflected and transnutted waves. These
directions can be uniguely determined by applying the usual boundary conditions at a
welded interface (or free surface for half-space probiems). This results in an extended form
of Snell's law in that A as well as P, must be continuous (Borcherdt 1973, Lockett 1962),
In the restricted case considered in this paper where the incident medium s clastic, 4, 1s
sero everywhere, This enables elastic layers 1o be interbedded with absorbing media.

Extinsion o 1 Haskrnr-Tnosmesos Forsuranion 1or Lavirip Minia

The following development foltows closely that of Haskell (1953, 1962). However,
displacement potentials are used here. Referring to Figure 1 for coordinate reference, we
can write the solutions to equation (7)in the usual form

G [AexpUR, Zy e Boexp - iKp Z)]exp(—iKp X)

¥ ¥, [oexpiRgZ s Boept K Z0evpt -iK((X) (17
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where A, B are complex and in general frequency-dependent amplitudes. From equation
(10)
K,=P,—1a,. K,=P,-iA,.

In the simple case we are considering (incident elastic wave) we have A, =0, and from the
boundary conditions 4, must be zero everywhere. Thus K, remains a real quantity. If the
incident medium were anelastic, the incident attenuation direction would have to be
specified along with the propagation direction, and then A, in each layer would adjust
itself to be consistent wih a continuous 4, and a specified K} ¢ for that layer (see equation
14). Choosing A, and 4, as upgoing potentials (negative - direction) we can write for each

layer
K_=principal value (K2 —K,%)' 2. a8)

Jz x L

1
£n. N A r n-y
| 1 Y P

n-]

P

FiG. 1. The problem is umquely specified given V,, V,, Q,. Q5. p. and Z for each layer and given +Ap 5 lincident
P- or S-wave potential amplitude) in the elastic half-space. For an anelastic half-space, the direction of the

incident-wave attenuation vector must also be specified.

Using equations (2). (3), (6). (17). the displacements and stresses for layer m can be put in
the following matrix form

“w | -KeCr  KsSs Kp.Se ~iKs,Cs |
LW “ —Ks.Sp - iKs,Cs KKp,Cp K, Ss
‘ P, ‘ 24K p Kp.Sp —iQCs 24K p Kp,Cp — ijidSg
P,. | HQC, i2jiK s Kp,Ss inQS, 2K 5.K5,Cs !
‘( 4,+8B,
' As"’BS |
Ap— B,
‘ AS - BS
where
Cp=Cos(Kp,Z,) Cs=Cos(Ks.Z,,)
S, =Sin(K,,Z,) Ss=S8in(Ks,Z,,).
Q=K2,-K%,
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This result (which is equivalent to equation (3 20) of Grant and West, 1965) can be
conveniently written as

X, =D AZ.C,. (19)

Thus wesee that Z, (layer thickness) is the phase factor which propagates the potentials
across the mth layer and that D, may be thought of as a form of propagator matrix with
C,, the coefficient matrix. With this in mind and with the idea of eliminating C,, we can
write (Haskell, 1953}
=D ANC,:  C,=D, "0, ,. (20)

\' m

‘w1
Then applying the usual boundary conditions

‘\.m:'Dm(Zm)’)m l(On(l)m l(zm l)Dmll‘O)lxm 2
(21)

=d,,d S X

mtim 1
and for n — 1 layers where layer nis an elastic half-space and interface O is a free surface

C,=D, "0, a4, 2...a X,

=JX, (22)
with the following matrix clements.
~ ik, 0 0 VTR
0 —i2K, -l 0 ‘
-~ K2 Wl * 23
(= K 1D () 0 —i0Kp, —Kp iKp,) o (23)
QK. 0 0 —Kp, (1K) "
Uy ‘4P+BI" ;
: 1
y " Ag+ By
X, - Wy (‘"= ‘ s S , 124)
0 ! Ap—Bp :
0  As—Bs |
The elements of ‘
(-MKSZ )“m

are given by
ay, =QCs~2K3.Cp
a;y= —1IKp [2Kg. S+ (QKp S, ]
ayy= — i '[Ky.Ss+ (Kj 'Kp,)S,]
g = —iKppt '[Cp—Cy]
dy, = iKp,[2Kp.Sp + (K, )54]
a;;=0C,-2K% Cs

dyy=dy,
tra=—fi ‘[Kp.Sp+ (K} Ks.)S56)
ay, =pa[4K 3K p.Sp+ Q2K ,)S5]
(g, = —i2pKp Q[Cp— Cs)
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dy3=dg,
dyy =dy,
dgy =dy,

X asy = (4K} K. Ss+ Q2 Kp,)S,]
a3 =dy,

gy =da,.

C, therefore becomes the input matrix and choosing A, ¢ in the upgoing ( — =) direction
and considering incident P, we can invert equation (22) to give the surface displacements
ug and w,, in terms of the incident potential (,4,).K,. and the layering.

ug=~20J,,+J,,1,4,/R
wo=2{J; +J4,1,4,R

R=[Jy +J )12+ J32) =T+ J 0000 5] (26)

APPLICATIONS

In order to illustrate the effects of attenuation, three models which represent soils, the

! crust, and the core-mantle boundary are considered. The structures are listed in Table 1.

With the exception of the low-velocity layer of the upper mantle, these appear to be the

i three regions where nongeometrical attenuation is most pronounced and therefore may

have some effect on observational interpretation. Also, knowledge of the Q structure of

these regions will be valuable in interpreting materials and structure mechanisms when an

acceptable theory is found relating state variables. material properties, and energy
absorption.

In applying this formulation in calculating reflection and transmission coefficients,
transfer ratios, synthetic seismograms, elc., some estimation must be made of the medium
parameters. This usually means a frequency-independent loss and velocity which can be
! shown to violate causality (Futterman, 1962). However, since the frequency-dependence
can be made weak over a finite frequency band, assuming a frequency-independent loss
and phase velocity over the space-time dimensions considered here should not be critical.

(a) Soils. The effects of attenuation can be rather drastic in a highly dissipative material
such as toosely compacted soils. The structure chosen (Table 1) is for the Richmond Field
Station of the University of California, Berkeley and consists of mud deposited in San
Francisco Bay. Borehole measurements of velocity and sample measurements of both
{ velocity and density werc available for this site. The Q structure represents a best guess for

iHustrative purposes {structure data from T. V. McEvilly, oral comm.). Figure 2 shows the
vertical and horizontal -displacement spectra for normally incident P and § waves,
respectively. All input potentials were normalized to unity total displacement for incident .
P(,Ap =k, "Yor SV(,A5= ks '). The solid line is for an elastic stack while the broken
line includes the effect of loss. The vertical motion is somewhat unstructured because the
compressional wavelengths are greater than any of the layer thicknesses. The loss behaves .
as we might expect for purely homogencous waves, mirroring the clastic behavior at a
lower amplitude amd becoming asymptotic to it toward low frequencies. Considering the
. shear spectra (Figure 2B) we begin to note some interesting effects. First, the elastic
spectrum shows the characteristic peaks (shear wavelengths <layer thickness) which are
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TABLE 1

PHYSICAL PARAMETERS FOR REPRESENTATIVE MODFLS
CONSIDERED IN NUMERICAL CALCULATIONS

URIND RTINS e Q, Q, Zihmy

Soil (Richmond)

0421 0.214 1.95 5 I 1.52x 10 3
0.641 0.299 1.95 10 2 1.53
1.007 0.299 1.95 10 3 1.52
1.296 0.305 2.00 20 4 1.43
1.464 0.305 2.00 20 5 214
| 82§ 07 205 20 S 1.83
0.48x 0.308 1.97 20 5 213
1.739 0427 208 50 10 3.05
1.647 0.397 2.00 50 10 378
1.739 0427 208 50 10 1.52
1.678 0.323 1.92 20 5 305
1.952 0.372 1.97 50 10 244
1.793 0.329 192 20 N 4.27
203 0.488 219 100 20 3.66
1.983 0.900 230 ¥ x ¥
Crust (Berkeley)
42 24 21 67 30 1.4 % 10°
6.1 35 2.6 100 45 8.2
73 42 30 180 80 129
7.8 4.5 33 ’ ] v
Core-mantle Boundary

1363 7.30 5.60 ] bl ]

13,33 699 S SR 00 11s 150
8.08 0 9.90 2500 I

resonances associated with the total S-wave travel time (Bakun, 1971, Haskell, 1960). The
total S-wave travel time of the stack is T = 0.098 sec and maxima and minima arc expected
at

fmal =

" 13,5 =" 1.2.3
oon=135...: = aam=123,
at’ dmn a7

=26.79.12.7.... =5.1,10.2,20.3.. ..

The peaks and troughs are not exact because the total stack travel-time effect is modulated
by the layering. In the loss spectra we sce that there is little information content at
frequencies greater than about 14 Hz. The cffect of attenuation is more drastic for shear
waves due to the lower Qg and the longer travel times. Also, it is important to note the
slight shifting of the peaks in the case of loss. The velocitics are the same in the elastic and
attenuating layers and the shifting is due to the change in modulation as the loss affects the
acoustic impedance.

In Figure 3 are shown the crustal transfer function ratio (w, u, ). the vertical spectra,
and the horizontal spectra for an incident compressional wave at i =10 for the same soil
structure. It is interesting to note the considerable change in the ratio for the loss. Any
inversion scheme not accounting for the loss would yield a different structure. Again the
shear spectrum is the controlling mechanism but in this case the large discrepancy between

N
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the elastic and loss is largely due to the velocity anisotropy induced by the inhomogeneous

waves (see equation 15).
{b) The crust. The crustal model (Table 1), excepting the Q structure, was taken from

Bakun’s best-fitting Berkeley crustal model (Bakun, 1970). The Q structure represents a

4

L
24 HZ

0 12

FiG. 2. Spectra of normalized surface displacements for a high-loss soil structure (Table 1). Solid lines are
clastic layers, broken lines include loss. (A) Vertical displacement for incident P wave, (B) Horizomal

displacement for incident S wave; both at normal incidence.

f best guess for Qg by the author based on some near-Berkeley crustal studies (Kurita, 1975,
O'Neill'and Healy, 1973) and the relation
Q,=10s(V,/V). @7

The transfer ratio for the crustal model for an incident compressional wave at i =25° is
shown in Figure 4 along with the vertical and horizontal spectra. The transfer ratio for the .
| elastic and loss agree well out to about 3 Hz which is high enough to resolve the structure.
The spectra of the vertical and horizontal surface displacements for the Berkeley crust
have been synthesized and are shown in Figure 5, where (A) and (B) are the vertical elastic
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e

LS - 2 S <
FiG. 3. Spectrum of normalized (A) crustal transfer function (wg ug) (B) vertical surface displacement. (C)

horizontal surface displacement for incident P wave at 10 for the Richmond structure (Table 1). Solid lines are
clastic layers, broken lines include loss.

e P el RO S K
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80 A

H

Q

[o) 12 Mz

FiG. 4. Spectra of normalized (A) crustal transfer function (wy/ig ). (B) vertical surface displacement, (C)
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layers, broken lines include toss.
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and loss while (C)and (D) represent the horizontal. The effect of the loss shows a general
, smoothing of the record, a decrease of the higher-order reflections, and a reduction in
| amphtude {vertical peak to peak by 0.7, horizontal by 0.8).

(¢) Core-mantle boundary. To demonstrate the effects of loss near the core-mantie
boundary on PcP and PcS. the reflection spectrum for the core-mantle boundary structure
of Table 1 was synthesized. The velocities are from Bolt (1972) and the boundary layer
density was derived assuming the region to be a thermal boundary layer and to consist
entirely of mantle material (Glyn Jones. personal comm.). The Q, ts from Kuster (1972)
while Qg 1s derived from equation (27) (zero loss in bulk). An incident P wave is considered
with i=25 and the synthesis is performed for a point 70km from the boundary layer.
Figures 6 and 7 show the synthesized potential cocfficients (,B,, ,A,..Bs:,A,)for the same
explasion source as the crustal seismograms. The first small pulse in Figures 6 and 7
represents reflected P and S} waves. respectively, from the abrupt transition between the
fower mantle and the boundary layer. A more realistic gradient would largely eliminate
this reflection. The figures then represent PP and PcS sources to be convolved with
suitable transfer functions and show the effect of attenuation on the reflected amplitudes
(PcP zero-to-peak reduction 0.8, Pe$ 0.6). The effect on the wave {orms seems to be small
at this angle of incidence for such low Q values and indicates that a considerable amount of
attenuation is possible in the boundary layer and still be unobservable.

APPENDIX

To consider a fluid layer (1 =0) the matrix D,,(Z,,) (equation 19) must be modified duc
to the overspecified boundary conditions at a solid-fluid interface. Using a development
similar to Teng (1967) D, (Z,,}for a fluid layer becomes
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FiG. 5 Synthctic seismograms for the Berkeley crust. (A) and (B) are vertical motion (positive down) for the

elastic and loss cases, respectively, which were synthesized from the spectra in Figure 4B. (C) and (D) are
horizontal motion for the elastic and loss cases, respectively. which were synthesized from the spectra in Figure
4C. All were convoived with an explosion source function appropriate for BOXCAR (Helmberger and
Harkrider. 1972). a Benioff short-period instrument, and a low-pass filter with a corner frequency at SHz.
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IT. APPLICATION

In this section the body wave formulation will be
applied to an earthquake (Briones Hills: 8 Jan. 1977,
4.3, 37° 54.31'N 122° 10.97'W, depth 9.5 km,

H

M

i

A= 13 km) recorded at a vertical array. The array
consists of three 3-~component accelerometers positioned
at depths of 120 feet {bedrock), 40 feet (bay mud), and
the surface (so0il) located at the Richmond Field
Stations. The array is near the borehole referred to

in Secion I so the soil parameters listed in Table I
(Section I) can be used to calculate transfer functions,
The general problem of calculating the effect of local
geology on earthquake ground motion is critical in the
design of structures. Of particular concern is the
amplification factor associated with low velocity
surficial material. In order to test the suitability of
the body wave formulation in predicting the response

of the mud-soil structure, a comparison is made between
the observed surface acceleration records and the bedrock
accelerograms continued to the surface. Different
transfer functions (eq. 26, Section I), applied in the
frequency domain, encompassing different angles of
incidence will be considered. Also both elastic and
anelastic propagation will be compared to the observed
surface time histories. The entire accelerogram is

used in computing the spectra and no time window has

been applied. Twenty seconds of record is transformed
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with 2048 points. The analysis will be restricted to
horizontal components as the bedrock vertical instru-
ment had a telemetry malfunction. Also, the actual
orientation of the horizontal components have not yet
been determined and will therefore be referred to
simply as Hl and H2.

In Figure 1 are shown the bottom and surface Hl
(horizontal) component acceleration records plotted
to the same scale. The onset of the P-wave is clearly
visible while the S arrival is somewhat emergent. Of
particular interest is the long period component of
the bottom S arrival compared to the corresponding
part of the surface record. The surface trace appears
to have more high frequency content. This observation
is substantiated by the spectra shown at the end of the
section. Compare the H1B and H1T spectrums. The peak
in the H1T between 1 - 2 Hz is missing in the bottom
spectra. Also the bottom record tapers off after the
S-wave while the surface record continues with large
amplitudes and points out the importance of high
frequency surface waves in the duration of motion
for near sources. The surface wave traces, either
Love or Rayleigh waves, represents a laterally prop-
agating disturbance and is not included in the theo-
retical model. A full treatment of the problem requires
the inclusion of a non-plane wave source and is not

considered here.
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In order to simulate the layering effect, the
bottom trace (Figure 1, a) was continued to the surface
using the previously mentioned transfer function.

Figure 2 shows the computed surface motion assuming

S Tew o TS e T T

Figure la as a normally incident S-wave. Figure 2a,
considers the soil elastic while Figure 2b includes the
loss (note different scales). In comparing the observed
surface motion with the computed (including loss)
several interesting features are observed. First,

the amplitudes are fairly close (not considering the
P-wave as it was continued as an S-wave) with the
calculated somewhat large. This indicates that the

Q structure is approximately correct. Also, the longer
period part of the S-wave 1is present on the continued
trace as we might expect since its wavelength is far
greater than the thickness of the soil section. In
addition, the large amplitudes following the S-wave

are not present on the computed seismograms. This
indicates that this part of the motion is propagating

in a horizontal direction. Figure 3 shows the same

input (assumed SV) continued with an incidence angle i
of 10°, This trace demonstrated that converted waves
{ are unimportant in this case as it is virtually the
same as Figure 2.

Considering now Figure 4, we have the same analysis
for the other (H2) component. Again (a) and (b) arc

the bedrock and surface records respectively. Again

;
'f
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the longer periods seem more dominant in the bedrock
component. Also, the surface waves are much more
dominant in this component, appear to arrive later,
and may be associated with Rayleigh waves. Comparing
the surface record (b) with the computed in Figure 5
we observe the amplitudes of the attenuation record
(b) are fairly close. The longer periods are continued
as dominant while the large amplitude and long period
wave train is absent. Figure 6 shows the continued
record for a transfer function with an incident SV
wave at 10° and is virtually the same as 0° in Figure 5.
In order to compare frequency domain data with
the model, spectral ratios (surface to bedrock) were
calculated for both components and are shown in Figure
7. The ratios shown have been smoothed with a 20
point averaging filter. Because of this smoothing,
coupled with the spectral contamination of a boxcar
window, the absolute magnitudes cannot be directly
compared with the theoretical transfer function.
However, the observed ratios (solid line in Figure 7),
except for the peak near 5 Hz, agree fairly well with
the theoretical transfer function (broken line in
Figure 7; also shown in Figure 2b, Section I (an
unfortunate error has the decimal on the wrong side
of the digit: i.e., 4-24,)). The peak position
reflects the total stack travel time while the

amplitude decrease reflects the loss. The 5 Hz peak
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may be due to the spectral contamination by the surface
waves present in the surface records. Further analysis
will require careful windowing to isolate the shear
wave, The positions of the peaks are indicative of the
travel time while the relative peak heights reflect
the loss,

Following Figure 7 all nine acceleration records

are shown along with their” spectra.

III. CONCLUSION

In this section some success has been demonstrated
in modeling the response of a soil structure. The
method used an extension of the Haskell-Thompson
matrix method presented in Section 1. In particular
it was shown that a significant amount of attenuation
was necessary in order to compare amplitudes. It was
also shown that a large portion of significant motion
was due to lateral propagation and therefore not present
in the calculated response.

In addition the observed ratios (surface to bedrock)
showed good agreement between components. Also, it was
found that the observed ratios compared favorably with
the calculated, both in peak position and in peak

duminition with frequency.
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The following nine figures represent the
acceleration records and their spectra (dashed line
is noise spectra windowed prior to signal) as recorded
by the Richmond Fiel Station vertical array for the
Briones Hills event. Components are labeled. The
poor bedrock (ZB) record was the result of telementry

difficulty which has subsequently been repaired.
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CHAPTER 2
SURFACE WAVES

I. FORMULATION

The development presented in Chapter 1 which
incorporates attenuation in an exact manner into a
Haskell-Thompson formulation is extended here to
surface waves, The extension follows quite naturally
for the period equation as the horizontal wave number
now becomes complex in order to accommodate the surface
wave quality factor. This now requires the determin-
ation of complex roots of the complex determanental
equation. The details are outlined in Appendices

1l and 3.

IT. FORWARD PROBLEM

In this section the surface wave formulation (Love
and Rayleigh waves) will be applied to a soil structure
and a crust and upper mantle structure. It is thought
that this will demonstrate in which parts of the earth
and over which period ranges anelastic attenuation may

be significant.

A. Soils
A typical soil structure is that of San Francisco

Bay mud and is shown in Table 1 of Chapter 1. Velocity

and density values were measured from samples taken
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from a borehole located at the Richmond Field Station w
while Q values represent a best guess (Chapter 1, i

Section I).

1. Love Waves

Figure 1 shows the dispersion and attenuation
parameters for Love waves over the soil structure.
The phase velocities C (E, elastic; L, including loss)
are very similar (no causality corrections applied)
and shows the anelastic phase velocity can actually
be greater than the elastic. The group velocity UE
is the elastic because the Q structure (2 10) is too

low to apply the variational method of Appendix 2

meaningfully.
The Qp curve is the phase quality factor and
has a frequency dependence similar to the elastic
group velocity curve. It is most essential, since the
group quality factor is the physically meaningful
' parameter, to develop some reliable means of obtaining
the attenuating group velocity for highly attenuating

media.

2. Rayleigh Waves

In Figure 2 are shown the dispersion and attenu-
ation parameters for Rayleigh waves over the same soil
structure. In this plot we note some interesting

features. The two phase velocities, elastic and loss,
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are asymptotic at the longer periods but diverge sig-
nificantly toward the shorter periods. The attenu-
ating phase velocity (CL) is significantly greater
than the elastic at the shorter periods and actually
very nearly corresponds to the first overtone elastic
phase velocity for periods less than about 0.15
seconds (near the Airy phase). Meanwhile, the first
overtone attenuating phase velocity corresponds nearly
to the elastic fundamental phase velocity over this
range. This suggests that a mode has been skipped
in the calculation procedure but this does not appear
to be the case because the Qr associated with the two
modes are considerably different and both appear to
be continuous (a much finer sample interval was used
in this range to check continuity). This presents
the interesting possibility that two modes may possess
the same phase velocity at some period but degeneracy
is avoided through distinct attenuation factors.
This may be the result of the rather large layer
attenuation significantly perturbing the mode shapes.
Further work along these lines is needed. These
results also demonstrate the need for a means of
accurately calculating the group velocity (or some
more meaningful physical parameter) in highly attenu-
ating media.

In Figure 3 is shown the phase of the surface

displacement ratio UO/W0 for the elastic and loss

50
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cases. The two curves are significantly different
from each other, particularly in the region near the
Airy phase. The  two moduli are shown in Figure 4.

It is interesting that the magnitude remains nearly
the same at the peak while the loss shifts it to
shorter periods (towards the Airy phase). Clearly
there are significant 2ifferences between the surface
waves for elastic and highly dissipative media, and a
complete understanding of these differences will

require more work.

B. Upper Mantle

The upper mantle elastic structure which is
investigated in this section is basically that shown in
Knopoff and Chang (1977) for a typical oceanic structure
and is listed in Table 1. An oceanic model was used
because it is appropriate for the data to be considered
in the next section, which was collected for great
circle paths that were over 70% oceanic.

The attenuation structures were chosen to be
broadly consistent with popular models yet tailored
to give a chosen starting fit for the inverse problem
considered in the next section. They are therefore

different for the two data sets considered (see

Section I11).
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1. ZLove Waves
Figure 5 shows the dispersion and attenuation
parameters for Love waves over the upper mantle struc-
ture. Again Qr is the phase quality factor and Qy the
group quality factor. Both the phase velocity C and
group velocity U include attenuation and are within
0.01% of the corresponding elastic results. Group
velocity is calculated as outlined in Appendix 2.
: No dispersion corrections are applied (Kanamori and
; Anderson, 1977) since the effect is too small to be
noticable. The SH earth stretching transformation
was applied according to the method of Schwab and

Knopoff (1972).

2. Rayleigh Waves

Figure 6 shows the same parameters for Rayleigh
waves, Again dispersion corrections are not applied.
The P-SV earth stretching transformation was applied

according to the method of Schwab and Knopoff (1972).

ITI. INVERSE PROBLEM

In order to apply the inversion kernels presented in
Appendix | on observational data, an initial attempt
was made at inverting 400-25 sec. fundamental mode
Love and Rayleigh wave data. The data consist of phase
velocity and phase quality factors for great circle

paths through Berkeley recorded on a broadband system.
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The main objective of this exercise is not to derive

a realistic upper mantle structure, but rather to
investigate the possible difficulties present in using
the exact kernels with conventionally extracted amplitude

data.

A, Data Analysis

For the Berkeley data the following procedure was
used. The record tapes are filtered to remove alias
frequencies and then digitized. Seismograms are then
group velocity windowed between 4.50 and 4.30 km/sec
for Love waves and between 4.00 and 3.45 km/sec for
Rayleigh waves. The mean is removed before spectra
are taken. Phase velocity is then determined using
the smoothed (Appendix 5) phase difference for two
great circle paths (Toks0z and Ben-Menahem, 1963).

The amplitude spectra is smoothed with a seven point
moving average and then, if necessary, further smoothed
by eye. The phase quality factors (defined by exp(- i%%);
C is the phase velocity) are determined using the single
station method (Kanamori, 1970).

The other data set was taken from Anderson et al.
(1965) with both the Love and Rayleigh wave data
augmented at the short and long periods. For Love waves
the long period data (T=400,360) are from Press et al.
(1961) the short period data (T=39.55, 36.38, 24.92)

are from two sources; the velocity data are synthetic




from Case 122 of Sykes et al. (1962) and the attenuation
data are tﬁat of Tsai and Aki (1969). The Rayleigh wave
long period data (T=400.00, 370.37) are from Ben-
Menahem and Tokséz (1962). The short period data
(T7=39.29, 33.12, 24.63) are also from two sources:

the velocities are synthetic from model 8099 of Dorman
et al. (1960) while the attenuation data are from

Tsai and Aki (1969). The conversion to phase quality

factors (QL, QR) has been made according to the

U group velocity

equation g Q, = Q
q c U L,R C phase velocity.

B. Inversion Algorithm

The inversion method is simply a damped Gauss-
Newton algorithm using the fundamental decompesition
theorem (Lancsoz, 1961), as in Appendix 1 with synthetic
data, to obtain the singular values and the inverse
of the Jacobian. An overdetermined system is used
since it is assumed that the Q starting model, although
hopefully close enough for local convergence, probably
is in considerable error. The resolution matrix
(Jackson, 1972) is used along with the condition number
to guide in structure reduction and in parameter
constraint. Standard errors of the parameter adjust-
ments are calculated using the goodness of fit as an
estimate of the data variance. In order to avoid fixing

parameters at the wrong value, only those parameters

whose corrections failed to stabilize were held constant.
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This allows the other parameters to adjust themselves
somewhat more freely without compensating for the fixed

erroneous value., This, of course, results in somewhat

unreasonable values of the less well determined parameters.
However, the standard errors are usually large thus
keeping the parameters within acceptable bounds.

During the course of many trial and error inver-
sions, it was found that a critical factor is the choice
of layering. This makes a very good case for either of
two alternatives: 1) the use of the above procedure
with thickness derivatives to aid in the choice of
layering; 2) the underdetermined system coupled with
a suitable resolution and or stabilization method.

In favor of the underdetermined system the point should
be made that perhaps the same layering may not be
optimum for both a velocity and attenuation inversion.
Ad justments for this could easily be made in the under-
determined system simply by using different resolving
kernels (Knopoff and Jackson, 1972). This must, of
course, be weighed against the heavy dependence upon

starting models implicit in the underdetermined system.

C. Love Waves

Figure 7 shows the spectra (a, unsmoothed and
noise; b, smoothed) of the G pulses 3 through 6 for
the Tang Shan event (7/27/76, {&=88°, M=7.5). For




the Qp data (Figure 9) the harmonic mean of the two
ratios 6/4 and 5/3 was used. The phase data (Figure 9)
were taken from the 6/4 ratio only as it seemed the best
behaved. The phase difference (A £) of the observed

and smoothed is shown in Figure 8.

In Table 1 is shown the starting model used in the
inversions (Anderson et al. augmented data has a
different Q starting model and is listed in appropriate
tables). The model (elastic parameters) is a typical
oceanic structure (Knopoff and Chang, 1977) slightly
modified to aid the Love wave convergence since it is
a poorer resolvent than Rayleigh waves. The Qs
structure was designed from trial and error to give
the closest starting fit while being as generally
consistent as possible with other results. The notable
exception being the lack of a low Q layer coinciding
with the low velocity layer. Any attempt to start a
low Q layer there resulted in either divergence or
a definite increase and slow convergence. It simply
seems to be incompatible with this data. The crustal
Q was fixed at 500 while the half space Q was fixed at
200. The crustal and half space velocities were also
fixed due 1o the limited bandwidth. Allowing the half
space parameters to vary did not significantly affect
the layer above but resulted in less reasonable half

space parameters (particularly velocities).
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In Table 2 are shown the inversion results using
the Berkeley data. The most significant result, which
appears to be general, is the incompatibility between
the velocity and amplitude data with respect to the
velocity. That is, inclusion of the derivative ’)QL,R
generally results in an unstable system. The QL'Rf)V—S
residuals are reduced at the expense of the C residuals
and the system becomes unstable after several iterations
(thirty-one is the maximum number of iterations in all
cases). A look at sections (B) and (D) of Table 2
reveals the unfortunate dilemma. Section (B) shows the
results without the derivative ‘)QL. The velocity
structure is reasonable with thgizsm square residuals
reduced by a factor of ten while the Q structure shows
a high Q 1id with a broad low Q zone below the low
velocity layer and the sum square residuals reduced by
1/3. The large discrepancy between the residual
reduction in the velocity and in the attenuation might
be an indication that the amplitude data is also not
representative of the Q structure. Section (D) shows
the results including the derivative )QL which
became unstable after the ninth iter2{?§g. Note the
phase velocity residuals have not been rcduced while
the Q residuals are reduced by anotl.cr 1/3 over section

(B). A look at the standard errors of the velocities

(A Vs) for both cases shows generally smaller values

when the derivative ‘>QL is included in spite of the

oVs

/ l

59




much larger residuals. This indicates more information
(orthogonal to -gé% ) as discussed in Appendix 1;
however, a look at the two velocity structures shows
that this information is not compatible. In section
(C) is shown the same conditions as in (B) without the
dispersion correction applied. The result is a more
pronounced low velocity layer (Hart et al., 1976) with
generally lower velocities throughout. The Q structure
is also somewhat different, as expected, but still
generally indicates a broad low Q zone below the low
velocity layer. Figure 10 shows the corrected data
along with the phase velocity and phase quality factor
for the derived model of section (B).

In Table 3 are shown the inversion results with
the augmented Anderson et al, Love wave data. Here
only two cases are shown: (B) without the derivative
JQL and; (C) including the derivative with dispersion
ngfections applied in both cases. The starting model
(A) has a different QS structure which was based on
the Q; data (data listed in Table 6). The general
pattern is very similar to the Berkeley data. Neither
the velocity nor the QS structure are significantly
different; however, this QS structure is generally
lower with a much more attenuating lid. Again, there
i no low Q zone corresponding to the low velocity

layer but rather a very broad low Q zone below the

layer. Also, a look at section (C) which includes
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the derivative ‘)QL reveals a similar pattern to the
Berkeley data. Thz QL residuals were reduced at the
expense of the increased C residuals, a different
velocity structure, and an unstable system after six
iterations. This indicates that the augmented Anderson
et al. (1965) Q; data is also inconsistent with respect
to velocity. Also, the poor QL residuals in section (B)
indicate that the QL data may not be consistent with

respect to a QS structure. The data and fit are shown

in Figure 11.

D. Rayleigh Waves

Figure 12 shows the spectra (a, unsmoothed and
noise; b, smoothed) for Rl and R3 for the Indonesian
event (8/19/77, £=1189, M=8.0). Due to noise and system

problems only Rl and R, were used for QR while R2 and

3
Ru were used for the phase data. Figure 13 shows the
phase difference Ag and the smoothed fit.

Table 4 shows the results for the Berkeley data.
The starting model (A) is the same as in the Love wave
case using the Berkeley data. The starting Qp structure
is simply 2.25 Qs and 1s an inversion paramcter set
(Appendix 2). The Vp structure is varied by maintaining
a fixed starting Poisson's ratio. The density remains
fixed. For the Rayleigh wave inversions it was found

necessary to vary the half space parameters to allow

the layer above to converge to a reasonable velocity.
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Twenty-four was the maximum number of iterations
used in all Rayleigh wave inversions.

In section (B) of Table 4 are shown the results
without the derivative ¢>QR. The residuals have been
reduced nicely; one orderv?or QR and two orders for C,
However, both the Qs and Vs structures show oscillations
which are probably due to non-optimum layering. Since
the layering was guided by the Love wave resolution
matrix only (because they have poorer resolution than
Rayleigh waves (Appendix 1)) and since the resolution
matrix is made up of partial derivatives which have
different shapes for the wave types, a different layering
is probably required for the case of Rayleigh waves.
This also makes another argument for the use of an
underdetermined system. Figure 14 shows the data and

the model fit.

In section (C) of Table 4 are shown the results
including the derivative I)QR. Again, the results are
very similar to the Love 3;35 inversions. The system
becomes unstable, the C residuals are not significantly
reduced, and the solution becomes more oscillatory in
the velocity. This indicates that the QR and C are
competing for different velocity structures. Again,
since the Qp residual in section (B) has not been
reduced as significantly as the C residual, it may

indicate that the QR data is not representative of the

attenuation in the earth.




Turning now to the augmented Anderson et al. (1965)
data, the results are shown in Table 5. Section (A)
shows the starting model which is identical to the Love
wave case for the same data. As in the previous case
the solution is oscillatory though stable when the
derivative DQR is not included (section (B)) and
unstable withvgespect to velocity when the derivative
is included (section (C)). No further conclusions should

be drawn from the Rayleigh wave analysis, especially

with regard to parameter values.

IV. CONCLUSION

Concerning the forward calculations, some inter-
esting features were noted for Rayleigh waves in high
loss material. It appears that, near the Airy phase,
the loss can significantly perturb mode shapes such
that the phase velocity can become multi-valued.
Degeneracy is avoided through distinct attenuation
factors for each mode. These observations are pre-
liminary and clearly more work needs to be done. Also,
a reliable means of determining group velocity for such
high loss material must be developed.

In the inverse problem investigations, probably
the most salient result is the incompatibility of the
Q data with the C data with respect to the velocit;

structure. The incompatibility is expressed through

€3




the derivative ¢7QL R, its inclusion rendering the
system unstable igrselocity and adversely affecting

the C residuals. The fact that the QL,R residuals

are much larger than the C residuals when the derivati.e
JC%JR is neglected also indicates that conventionally
exggzcted surface wave Q data probably are in consider-
able error. The error is probably due to multi-path
propagation and affects the spectral modulus to a
greater degree than the phase (Pilant and Knopoff, 1964),
A method of accurate amplitude determination which seems
hopeful is that of phase-matched filters (Herrin and
Goforth, 1977) and future work will be undertaken along
these lines,

Another result which emerges from the inversion
investigations is the possible inadequacy of the over-
determined system. It appears that it would be most
difficult to derive a layering that is simultaneously
optimum for velocity and attenuation with both Love
and Rayleigh waves., To optimize the Love and Rayleigh
layering, a simultaneous inversion seems appropriate,
but this does not resolve the velocity and attenuation
layering problem. Some investigations are needed into
the development of a suitable underdectermined formu-
lation with its heavy dependence on starting models,

Another approach, if a model rather than local

averages 1s desired, might be the use of a suitable
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non-linear algorithm such as the Marquardt-Levenberg
(Marquardt, 1963). Perhaps this algorithm would
tolerate a larger condition number (more layers) thereby

reducing the layering incompatibility,
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CHAPTER 3
SUMMARY

i Lately, albeit belatedly (Jeffreys, 1965), it

? has become apparent that the earth can no longer be
treated as an elastic body. An essential point of this
work has been to establish that it is equally insuf-
ficient to treat it as a perturbation on an elastic
body.

An exact plane layer propagator matrix which
includes attenuation was presented. Application of
the formulation to continue an incident elastic wave
through a realistic so0il structure to the earth's
surface, demonstrated the importance of energy
absorption in predicting ground motion. The minor
importance of converted waves was demonstrated and
it was further shown that lateral propagation, not
included in the formulation, can affect the duration
of motion, In addition to time domain analysis,
spectral ratios (curface to bedrock) show fair agree-
ment with model calculations.

Tn applying the matrix formulation to surface

wave eigenvalue and surface displacement calculations,

several results werce discussed. It appears that
attenuation perturbs Rayleigh waves significantly more
than Love waves in o high loss structure. In par-

ticular, different mode phase velocities may cross




near the Airy phase. Degeneracy is avoided, however,
through distinct quality factors.

Surface wave inversions for both velocity and
attenuation structures using an overdetermined system
revealed an incompatibility with respect to the
velocity structure between phase and attenuation data.
In particular inclusion of the derivative 0)QL R

TVs
with real data grently degraded the velocity solution
compared to inversions using only the derivative

J(J +. Poor attenuation solutions compared with
;zzEZity solutions further indicates the inadequacy
of presently used attenuation data. Clearly a reliable
formulation is needed in order to extract meaningful
amplitude data from surface wave observctions.,

Of particular concern in dealing with an over-
determined system which also bears on the quality of
attenuation solutions, is the choice of layering.

This appears to be critical at least for the velocity
structure. The same layering may not be optimum for
both Love and Rayleigh waves in addition to both
velocity and attenuation structures.

The general conclusion of this thesis is that
amplitude information is most essential in furthering
our understanding of both the velocity and attenuation

structures of the earth. It hac also been demonstrated

that realistic calculations with earth materials require
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simultaneous consideration of both velocity and

attenuation,

68




69
TABLE 1
Starting model for both Love and Rayleigh wave
inversions. The model is based on a typical oceanic
structure (Knopoff and Chang, 1977). The low velocity
layer thickness was increased 20 km at the expense of
the layer below to aid convergence in the Love wave
inversions (Berkeley data).
thickness
VP(km/sec) Vs(km/sec) {cgs) Q, Qg (km)
2.10 1.00 2.10 1200 500 1.0
6.41 3.70 3.07 1200 500 5.0
8.10 4,65 3.40 4500 2000 70.0
7.60 Lb.1s 3.40 425 200 130.0
8.80 4,75 3.65 275 125 2ko.0
3.80 5.30 3.98 225 100 200.0
11.15 6.20 L.,43 225 100 400.0
11.78 8.48 L,63 350 150 240.0
12.02 ?7.20 4,71 450 200 O
Fluid layer included in Rayleigh calculation
1.50 0.00 1.00 1200 4.0
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TABLE 2
Results of Love wave inversions with Berkeley data:
A) starting model; B) inversion without the derivative
N
Q
;V_g with dispersion correction applied; C) inversion
; Q
without both the derivative v‘v—g and dispersion
7
correction; D) inversion including both the derivative
JQL : . :
-{775 and dispersion correction. (AQS, O /g = standard
error; SSRQ, C = sum square residual %, Cr,1} (1),
(F) = initial, final; NI = number of iterations).
Layer 9_5- AQS V_s avg SSRQ SSRC E
500 1.00
500 3.70
2000 L.65
200 4.15
125 4.75
100 5,30
100 6.20
150 6.48
200 7.20
500 1.00
500 3.70
2289 20050 L.47  0.02 "
165 129 4.32 0.03 (1) 6.0 7.0x10 _ 31
14b 100 4.62 0.02 (F) 2.0 4.,0x10
8l 142 5,37 0.08
80 159  6.77 0.10
120 85 ?7.02 0.07
200 7.20
500 1.00
500 3.70
2090 47413 L.,4? 0.06
196 368 4,29 0.06 -3
124 46 4.55 0.02 (1) 6.0 2.0x1077 31
102 156 5.36 0.07 (F) 2,0 5.0x10 -
87 167 6.57 0.10
144 82 65.80 0.06

w
WRNRMAFWRHE OVONIMAFWHEF OO0 FWwh -

200 7.20
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TABLE 2 (continued)
Layer Qs AQS Vs Avs SSRQ SSRC NI
1 500 1.00
2 500 3.70
3 194 5854 L.42 0,00
4 198 127 L.ub 0,00 (1) 6.0 7.0x207, 9
) D 5 122 51 L6 0,01 (F) 1.0 7.0x10
6 97 56 5.70 0,08
7 99 22 6.23 0.10
8 151 13 6.52 0.08
9 200 7.20
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TABLE 3
Results of Love wave inversions with augmented
Anderson et al. (1965) data: A) starting model
(different Q  structure only); B) inversion without
the derivative —')——‘) QL; C) inversion including the
vion 28L TS . . o
derivative Vs Dispersion corrections applied in
v
all cases.
Layer Qs AQS Vs Avs SSRQ SSRC NI
1 500 1.00
2 500 3.70
‘ 3 500 L.és
' L 100 4.15
A S 100 4.75
6 100 5.30
7 100 6.20
8 100 6.48
9 200 7.20
1 500 1.00
2 500 3.70
3 423 3470 4.99 0.06
L 126 77 4,18 0.01 -3
B 5§ 88 12k L3 0.04 (1) 14 3.0xl07 31
! . 6 108 393 5.66  0.11 (F) 12 &.0x10
? 38 429 6.18 0.19
3 129 203 6.33 0.10
9 200 7.20
t
1 500 1.00
2 500 3.70
3 505 871 4,66 0.02
L 102 113 4,37 0.00 -3 )
c 5 101 132 4,56 0.03 (I) 14 3.Ox10_3 o
6 104 76 5.51 0.14 (F) ? 2,0x10
! ? 104 4o $.9%  0.13
8 156 21 6.21 0.14
9 200 % 7.20
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TABLE 4
Results of Rayleigh wave inversions with Berkeley
: data: A) starting model; B) inversion without the
} JQ
i gerivative ,er; €) inversion including the derivative
d Vs
'f:_gs. Dispersion corrections applied in all cases,
[ g
]
] Layer 3§ 8Q Q_p_ AQE Y_§ Aav, ZR SSRQ SSRC _1:
‘ 1 500 1200 0.00 1.52
3 2 500 1200 1.00 2.10
{ 3 500 1200 3.70 6.41
y 4 2000 4500 k.65 8.10
A 5 200 L2s L.1s 7.60
6 125 275 4,75 8.80
7 100 225 5.30 9.80
3 100 225 6.20 11.15
9 150 350 6.43 11.78
10 200 450 7.20 12.82
1 560 1328 18956 0.00 1.52
2 5G0 1329 152452 1,00 2.10
3 500 1304k 40199 3,70 6.41
L 3€6 106 LEok 31k 4,21 0.0 7.33 s
B 5 172 6 39 79 4.08 0.01 7.4% (1) 4.0 7.0x107;
6 69 b 322 35 4,99 0,02 9.24 (F) 4 5.0x10 24
7 555 436 197 28 4.66 0.05 8.62
8 224 37 A6 3 6.73 0.06 12.00
9 27 10 229 1 7.32 0.08 13.31
10 67 1 Ly 0 7.35 0.00 13.09
1 £00 1953 5225 0.00 1.52
2 500 1095 38155 1.00 2.10
3 500 1161 7962 3.70 6.41
L 745 217 LLo9 32h 4,39 0,06 7.¢64 -2
C 5 126 8 538 62 3.0 0.03 6.96 (1) b.o 7.0x1075 2L
6 77 13 322 22 5.73 0.C7 10.62 (F) .6 2.0x10
? 230 154 229 31 4,47 0.13 8.26
] 176 23 217 Y 6.36 0.24 11.u4
S ?0 18 341 14 72,40 0.33 13.82
10 154 1 449 0 3.28 0.10 14,74 |
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TABLE 5
Results of Rayleigh wave inversions with augmented
anderson gt al. (1965) data: A) starting model (sane
as Love wave in Table &4); B) inversion without the
)
Q
derivative ;Vﬂ; C) inversion including the derivative
. 8
afg. Dispersion corrections applied in all cases.
¢ VS
89 % A% Yy aY Y S#Q sRC M
1200 0.Co 1.52
1200 1.00 2.10
1200 3.70 6.41
1200 4,65 8.10
225 4,15 7.60
228 L4.75 8.80
225 5.30 9.80
225 6.20 13.15
350 6.48 11.78
4s0 7.20 12.82
1348 39573 0.00 1.52
1383 144248 1,00 2.10
982 A7967 13.70 6.1
42610k 7909 4,27 0.03  7.71 -2
24 363 1082 4.66 0.03 8.53 (I) 8.0 2.0x10 24
131 309 612 4.28 0.04 7,94 (F) 2.0 2.0x10"
112 274 190 6.35 0.39 11.73
2106 14 221 5.8 0.31 9.86
79 242 118 7.63 1.47 13.68
60 L3} 3 8.33 0.14 14.83
1175 9+ 0,90 1.52
1138 663 1.00 2.10
1122 254 3.70 6.41
1 1339 14 423 0.09 7 36 »
6 296 2 4 7% 0.01 569 (1) 8.0 2.0x1075 2k
15 366 3 b 0,06 9,66 (F) 11 3.oxic
11 364 3 6.28 0.2311.62
3 68 1 5.75 0.16 10.33
6 211 1 5.7 0.36 10.91
0 4l 0 8.15 o0.02 14.52
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TABLE 6
Data used in inversions: A) Berkeley data;
B) augmented Anderson et al. (1966) data.
Love Rayleigh
A)

4 T Q c c££1 T Qg c c ot
409.6 88 5.609 5.695 384.0 96 5.895 5.976
341.3 99 5,349  5.417 341.3 108 5.504  5.569
292.6 111  5.177 5.234  307.2 116 5.229 5.285
256.0 120 5.,0% 5.105 279.3 124 5.026 5.075
227.6 128 L.964 5,008 256.0 129 L.869 L.914
204.,8 135  4.894  4.93% 236.3 131 4.746 4,788
186.2 141 4.838 4.875 219.4 131 L.646 4,686
170.7 145 4.792  4.827 204.3 130 4.563 4.602
‘ 157.5 150 4.755 4.787 192.0 128 4,493 4.531
. 146.3 156  4.723 4,753 .30.7 124 L.433 L.472
. 136.5 161 4.696 4.725 170.7 120 4,382 4,420
3 128.0 166 L,674 4,701 161.7 117 4,336 L,374
120.,5 169 4,654 4,679 153.6 114 4,296 4,334
113.8 174 4,637 4,662 146.3 112 4.259 4.297
: 107.8 177 4,622 4,646 139.6 111 4,225 4,267
, 102.4 181  4.609 4,632 133.6 110  4.194 4.231
" 97.5 185 4.598 4,619 128.0 110 4,165 4,202
o 93.1 189 4,588 © 4,609 122.9 111  4.138 4.174
3 89,0 192 4,579 4.599 118.2 113 4,112 4,146
! 85.3 196 4.572 4.592 113.8 116 4.088 4.120
.3 81.9 198 4,565 4.584 109.7 120 4.064 4,095
78.8 201 4,559 4,577 105.9 124  4.042 4,071
q 75.3 203 4,553 4.571 102.% 130 4,020 L4.,0u48
4,548  L,565 99.1 136 3.999 4.025

y 73.1 206
: 70.6 208 4,543
68.3 209 4.538
66,1 211 4,534

4,560 96.0 143 3
L,555 93.1 149 3.
4,549 90.Lb 156  3.942

) 64,0 213 4.529 4, 3

. 62,1 216 4,525 4 3

E 60.2 217 4,520 &4 3

. 540 85.3 172

5
5
s45 87.86 164
5
.535 83.0 180




TABLE 6 (continued)

T Q c C <
58.5 222 4,516 4,530
56.9 227 4,511 4,525
55.4 233 4,507 4,521
53.9 237 4,503 4,516
52.5 2bh  4.h99 4,31
$l.2 250 4,495 4,507
Lo, 259 4,491 4,503
k8.8 271  4.488 4,k99
k7.6 281  L.485 4,495
k6.6 294 L,482 4,493
45,5 311  L4.497 4,489
be,s 329 4,478 4.,u86
43.6 350 4,476 4.484
hz.7 367 s.u7s oy u8;
41.8 3725  L,474 4,.48)
40.9 380 4,473 4,480
40,2 386 4,472 4.479
3.7 L6 L.L65 4,470
30.1 k97 L.4s52 4,457
26,6 547 4,455 4,459

B}

400.0 112  5.500 5.565
360.0 110 5,380  5.443
3333 113 5,307 5,366
32.5 1k 5,243 5,300
294.1 115 5,185 5,240
277.8 113 5,13k 5,189
263.2 112 5,088 5,142
250.0 113 5,046 5,098
238.1 114 5,008 5,059
227.3 116  L.972 5,021
217.4 115 4,940 4,988
208.3 115 4.911 4.959
200.0 116 4.885 4,931
1%2.3 117  4.861 4,906
185.2 117 4,840 4,885
178.6 118 4.821 4.865
172.4 118 4.805 4, guf
166.7 119 4,799 4,332
1€1.3 116 4,776 4,619
156.2 117  4.761  4.303

76
% c ‘e
80.8 187 3.880 3.987 1
78.7 193 3,867 3.883
76.8 200 3.855 3.87%1
1.8 220 3,827  3.841
68.3 234 3,814 3,827
65.4 2k3 3,806 3.818
62.7 253 3.802 3.813
59.1 266 3,801 3,811
56.9 270  3.803 3.813
53.9 280 3.808 3,817
51.2 282 3,812 3.821
L8.8 275 3.814 3,823
b6.s 280 3.812 3.820
bh,s 283 3.806 3.81%
42,7 288 3.799 3.807
Lo,k 279  3.789 3,997
36.1 320 3.782 3.788
29.3 321 3,823 3,788
25.2 369 3.737  3.737
400.0 138 5.985  G.042
370.4 147 5,760 5,811
333.3 189 5.548 5,581
Jl2.5 170 5,383 35,422
2% .1 136 5,251 5,202
277.8 157 5,132 5,171
263.2 149 5,012 5,052
250.2 142 4,917 4,958
238.1 144 4,824 4,843
227.3 138 4,754 4,793
217.4 140 L,674 4,712
208.3 136  4.616 4.6s4
200.0 137  4.569 4,606
192.3 134 4,517 4,554
185.2 136 4,469 4,504
178.6 137  4.436 4,k70
1724 138 4,407 4 uu)
166.7 138 4,374 4,407
L61.3 140 4,33 4,320
156.2 141 £.319  4.3%0
- —~——_-—-“~
o adia ot e i i
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3
TABLE 6 (continued)
by qy, c Egga T Q o c“r‘
151.5 116  4.748 4.789 151.5 142  4.299  4.329
125.0 101  4.690 4,734 125.0 132 4.250 4,281
113.6 102 4,673 4.715 113.6 1LO 4,196 4.224
104.2 106 4,662 4,701 104.2 145 4.173  4.199
96.2 113 4.652 4.688 96.2 139 4,167 4.193
89.3 120 4,650 4.683 89.3 135 4.159 4,185
83.3 122 4.627 4,658 83.3 129 L.167 4.194
78.1 118 4.613 L4.6Lu 78.1 128 4,169 4.195
73.5 106 4,603 4.637 73.5 128 4,160 4.185
69.4 100 4.595 u4.630 69.4 127 4,170  4.195
65.8 92 4.588  4.524 65.8 125 4.163 4,188
62.5 95 k.577 L.612 62.5 121 4,159 4,184
59.5 95 4,558 4.592 59.5 117 4,155 4,180
56.8 96  4.539 4.572 56,8 115 4,150 4.175
54.3 98 4,522 4,554 54,3 116 4,145 4,169
§2.1 101 4,519 4.549 §1.2 118 4,141 4,164
50.0 105 4.l98 uL,526 50.0 122 4,136 4.158
39.6 164 L,L90 L4.506 39.3 151  3.985 4,000
36.4 246 4,480 L.4%0 33.1 170 3.988 4,000
24,9 492 L4, UL60 L. 46b 24,6 166 3,980 3.990
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Fig., 7 a.

683 4009 228

Plots of the G pulse sprctrums. Dashed curve
is a noise sample windowed leading the pulse.
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Fig. 12 a. Plots of the Rayleigh wave spectrums. Dashed
curve is a noise sample windowed leading the
wavetrain samplced.
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I. INVERSION OF LOVE WAVE DATA FOR VELOCITY
AND ANELASTICITY USING EXACT KERNELS
by
Walter Silva
Department of Geology and Geophysics
University of California

Berkeley, California, U.S.A.

ABSTRACT

The general problem of inverting Love wave
dispersion and amplitude data to obtain a velocity
and Qg structure is considered. A formulation is used
which incorporates attenuation into the Haskell-Thompson
matrix method in an exact manner and thus retains the
inherent non-linearity in the anelasticity. The
resulting exact inversion kernels allow simultaneous
inversion for velocity and intrinsic attenuation
parameters. The method is applied to synthetic data
which allows a comparison to be made with inexact
kernels. The results indicate that the use of inexact
kernels may introduce spurious oscillations into the

Q_ structure and that a simultaneous invecrsion can be
o

more stable than inverting for velocity alone.
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INTRODUCTION

Surface waves provide an invaluable tool in the
study of the earth's interior. Their use has mainly
been in dispersion studies to infer such elastic para-
meters as velocity and density in structures ranging
from soils to the lower mantle., However, in recent
years there has been an increasing interest in the
anelastic parameters of the earth. This type of in-
vestigation can supply valuable information concerning
material properties, structures, and temperature dis-
tributions in the earth. Of most recent interest is
the frequency dependence and coupling between intrinsic
velocity and attenuation. With this in mind, it now
becomes important to have more exact methods of in-
verting the data for both velocity and attenuation if
any meaningful interpretation is to result from such
investigations.

A formulation is presented here using an exact
generalization of the Haskell-Thompson matrix method
(Haskell, 1953; Silva, 1976b) to include anelasticity
in inverting Love wave dispersion and attenuation data
for both layer velocity and attenuation. Synthetic
data are used to allow a comparison to be made between
the exact formulation and the approximate linear
theory of Anderson and Archambeau (1964). A somewhat

unstable problem is considered in order to demonstrate
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the differences and to represent more accurately actual
inversions, since surface wave attenuation data are

typically sparse and of limited accuracy and bandwidth.

FORMULAT ION

In a recent paper (Silva, 1976b) a theory was
presented for introducing, in an exact manner, anelastic
attenuation into a Haskell-Thompson formulation. This
is applied here to Love waves. The earlier treatment
considered plane P and SV waves propagated in a layered
linear viscoelastic half-space. In particular,
attenuating (or elastic) layers over an elastic half-
space were considered. However, due to the boundary
conditions, the component of attenuation parallel to
the interface A (which describes the spatial decay of
the surface wave) is constrained to be continuous along
with the horizontal wave number Px' This means that
each layer, along with the half-space, must be attenu-
ating.

Define PX and Ax as

(SR

e (evET)
Tl Vi E)

X
with ¢ the Love wave phase velocity and where Ax has

been defined in this form to accommodate a Love wave

i
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phase quality factor Qp (Brune, 1962). The attenu-

1 to

ation then has introduced another eigenvalue QL-
be determined as a function of period. In the appli-~
cation to surface waves, equation (18) of Silva (1976b)
(considering now SH only) for the complex vertical

component KZ of the complex wave number K must be

modified to the following:
] {Kz - szg)% R fK? >R {Kx? (2)
-1 £Kx2 -k R {k$ CR §K,¢

K

where
2 2 2 w? 2 i
K™ = K + K = — 1 - 5=
X z v > Qg
s 1 +\{y1 +Q
s
and

with VS and QS the homogeneous shear wave velocity and
specific attenuation factor, respectively. The charac-
teristic equation is then obtained in the usual way
(Haskell, 1953) and K, found for each period using

Mueller's method (Conte and Debor, 1972). 1In Figure 1

i
are shown C, QL' and U, the group velocity, for the |

{
crustal model of Table 1 which represents the error

free data. Group velocity is calculated using a
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variational method applied to dissipative media

(Siiva, 1976a).
INVERSION

Since the development above represents an exact
forward solution, the non-linearity of both the shear
velocity and intrinsic attenuation is retained. In
order then to invert the phase velocity and attenuation
data for VS and QS a Taylor series approximation is
made, keeping only the linear terms, and iterations

performed. We then have:

fexZe gy 4 4

) Vs J Qs s
(3)
J)Q JQ
Sox 57 A Vot agt b

where §c and SQL represent the difference between the
observed phase velocity and Love wave attenuation
parameters at each period and those calculated from

an appropriately close starting model. The derivatives
are calculated in the following way: the first i%%; ’
is an analytical derivative using an extension of
Rayleigh's principle to dissipative media (Silva,
1976a), while the remaining are calculated numerically,
using a 10% parameter change. Plots of the derivative
versus period for each layer are shown in Figures 2

through 5. The plots contain a number of interesting

111
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features. Figure 2 shows the derivative f;%; and should

be compared with (Figure 5) which confirms the

5—1%
D] O
®n |

relation,
2
D Vs VS QLZ D Qs

which is derived as equation (A2) in Appendix 4, This
is also the relation, applied rather to inverse Q,

used in the linearized theory (Anderson and Archambeau,

e

1964). The most revealing plots are those of Tas
s

9

(Figure 3) and 3V (Figure 4) which confirm equation
s

(A3) of the Appendix 4:

PP ! (5)

In Appendix 4 it is argued that in equations such as

(3) the term involving é}%& is comparable to those
involving f}%g and 4%L6§ . This demonstrates the
large dependence of surface wave amplitudes on the
velocity structure in plane layer models and strongly
suggests that the derivative é?gg will play an
important part in any inversion scheme. Also note the
lack of similarity of the curves in Figures 3 and 4
with those in Figures 2 and 5 which indicates that

they contain a different distribution of information

and thus their inclusion should add to the stability

of the inversion process.
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TESTS WITH SYNTHETIC DATA

The crustal model shown in Table 1 was used as

a layer over half-space in a previous work (Harkrider,
1968) to demonstrate the results of a variational
formulation for surface waves. The 40 km thick crust
was subdivided here into four identical 10 km thick
layers in order to allow the inversion process greater |
freedom in parameter adjustment. Although this may E
seem excessive in order to exaggerate the effect, one
should realize that the data here are error free and
the real model is known. The period range is 120 to 5
seconds with 5 second intervals and the non-geometrical
dispersion due to dissipation (Burton, 1977) is
neglected.

In order to compare the linearized inversion

theory (Anderson and Archambeau, 1964) with the exact

formulation, both inversions were carried out on the
same data (Figure 1) generated by the exact theory
using the crustal model of Table 1. Both inversions
used the method of singular value decomposition
(Lancsoz, 1961) with the non-linear appropriately

scaled (Wiggins, 1972) in order to produce a consistent

comparison, The results of the inversions are shown
in Table 2.
The first section, A, shows the results of the

linear theory (Anderson and Archambeau, 1964) using
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the exact velocity structure. The inversion results
in a highly oscillating Qg structure even with error
free data and an exact velocity structure. The
oscillations represent up to a 30% error, yet the
forward problem agrees with the exact Qp in Figure 1
to well within 0. 5%.

In section B is the result of simultaneously
inverting for Vs and Qs using the exact treatment.
The Qs structure was perturbed in an oscillating
manner towards the linear solution to determine
whether the iterations would move in this direction
or towards the actual model. It is important to stress
that the linear solution represents a global minimum
for that method and a local minimum for the exact
formulation. Considering the results in section B,
it appears that the overall oscillations in Qs have
decreased and the velocity structure has been approx-
imately recovered. This is really quite satisfactory
because: 1) the inversion is extracting twice as many

parameters as for either Q  or Vg alone and, 2) from
9,
JVs
phase and amplitude data are certainly not iigependent.
Q
v
any attempt to invert with simply the derivatives

f;g— !LEL diverges wildly in both V_ and Q
Vs ' d Qs ? - s s’

the derivative (Figure 4) it is apparent that

The stability here is due to the derivative L since

Section € shows a standard V_-only inversion
(o]
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using simply the analytical derivative f;%g (Figure
2). Since its final velocity model (smallest SSRC

for a suite of iterations) is not as close as the full
inversion of section B for the same starting velocity
model, the amplitude data actually adds resolution and
stability to the velocity inversion.

An obvious result that emerges from this study is
that attempting to resolve a number of layers with data
of limited bandwidth can result in an ill-conditioned
system. This fact, coupled with an approximate kernel,
leads to an oscillating solution which is far from the
exact model. The exact formulation leads to a result
which is closer to the actual model, but the con- 4
vergence is slow. One approach to this problem is
to use more sophisticated inversion schemes (Der
et al.,, 1970; Jackson, 1972; Wiggins, 1972) which
generally achieve better stability at the price of

decreased resolution.
CONCLUSION

An exact formulation is used in calculating the

dispersion and attenuation for Love waves in a layered

linear viscoelastic half-space. The exact method is
used to demonstrate the instability inherent in using
the approximate linecar inversion kerncl (Anderson and
Archambeau, 1964), Although the approximate theory

aFreces well within 0.5% of the exact, in a forward
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sense, the inversion can result in alternating high and
low Q layers where none existed. The reason for this
instability is found in the neglect of the derivative
f;%% . It is thought that this result strongly favors
simultaneous inversions for both velocity and atten-
uation of surface waves which may result in better
resolution for both velocity and attenuation. The use
of dispersion data only may be the source of discrep-
ancies in the inversion of surface wave data (McEvilly,
1964) which are sometimes interpreted in terms of
anisotropy. Studies currently in progress involve the
simultaneous inversion of both Love and Rayleigh wave
data using exact kernels and hopefully will further
resolve this matter.

In applying this formulation to observational data
two points must be emphasized. First the phase data
must be corrected for anelastic dispersion as dis-
cussed by Kanamori and Anderson (1977). One approach
is to correct all of the data to a convenient reference
frequency before applying the inverse method. The
second consideration is the effects on the velocity
and QS structure due to errors in both phase and
amplitude measurements, The most general conclusion
is that the resolution will be reduced (Wiggins, 1972).
However, since the relative errors in phase and amp-
litude measurements are very different, the coupling

between the errors and the model parameter requires a

116




very detailed treatment (Der, 1972), and is not within

the scope of the present paper. In general though,

J L

the magnitude of the 9 Vs term mandates accurate

amplitude data if it is to contribute significant

information to the inversion process.
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|
TABLE 1 §
|
A standard model for a crust over a mantle
(Harkrider, 1968). Identiewl layers were introduced
into the crust to permit greater freedom in the
inversion process.
Vg({km/sec) (cgs) Qs thickness(km)
3.60 2.80 100 10 ‘(
3.60 2.80 100 10 |
3.60 2.80 100 10 |
3.60 2.80 100 10
4,50 3.30 100 Co
!
i
i
!
|
! ;
: i
. !
|
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ABLE 2

Results of inversion methods using data generated

from model of Table l:

A) linear theory inversion of

Qs only; B) exact theory inversion for Qs and ng c)

inversion for Vs using only the derivative 5{%; .

sum square residuals Qs

(SSRQLo

SSRC, sum square residuals

¢i NI, number of iterations.)

119

Initial Final
Layer Qg Vs S3RQ SRC Qg A SSRQ SSRC
A, 100 3.60 122 3.60 2.x10°2  2.x10712
> 100 3.60 7 3.60
3 100 3.60 130 3.60
& 100 3.50 9%  3.60
s 100 k.50 100 k.50
By 115 3.z0 .08 0.1 100 3.59 9.x10°29  1.x1079
2 90 3.20 98  3.63
3 110 3.20 101 3.57
i 90 3.2 100 3.62
5 100 L.s0 100 &.50
© 1 100 3.20 .07 0.1 100 3.53 3.x1077  1.x10"
2 109 3.20 100  3.i6
3 100 3.20 100 k.28
L 100 3.20 100 2.98
5 100 L.s0 100 4.50
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II. INVERSION OF RAYLEIGH WAVE DATA FOR VELOCITY AND

ANELASTICITY USING EXACT KERNELS

The following treatment will be precisely that of
the previous except Rayleigh waves will be considered.
The formulation again is that of the Haskell-Thompson
method extended to include anelastic attenuation
(Silva, 1976b) and applied to Rayleigh waves. The phase
quality factor (QR) is defined exactly as in section I.
An additional quality factor QU is introduced here and
is termed the group quality factor. It is defined by
the following equation C Qp = U Q, (Brune, 1962). It
was neglected in the Love wave treatment because for
a constant Q  structure QU for Love waves is frequency
independent and QU = Qs. This holds for Rayleigh waves

only if Q_ = Q_ = constant and then = Q. = Q.. The
s P s

p
structure considered is identical to that of the pre-
vious treatment (Table 1) with a constant Qp = 200
structure added for P-wave attenuation,

In Figure 1 is shown C, U, Q; and Qp for the
crustal model and represents the error free data. The
group velocity, U, is calculated using a variational
method applied to dissipative media (Aprendix 3).

In Figure 2 is shown the modulus and phas: of the
surface displacement ratio Eg for the atternuating
model. The phase is not ve?? different from the

elastic (90°) and the elastic modulus is within 1%

of the attenuating model.
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INVERSION

As in the Love wave inversion, the Taylor series
is truncated past the linear term with C and QR data
inverted for VS and Q. The phase quality factor is
favored as an inversion parameter rather than QU since
its use is not contaminated by errors in determining
the group velocity. The derivatives are calculated
numerically using a 5% parameter change. A 10%
parameter change was found to be optimum in terms of
stability and speed of convergence; however, mode
tracking proved to be too difficult for this structure
and period range and therefore mandated a smaller
perturbation (plots are for a 10% change).

Considering now the plots of the derivatives
(Figures 3-14) we can note some interesting features
which give insight into the controlling features of
surface wave inversions. In Figure 3 is shown the
derivative 5%%5' The significant features are the
degree of independence of the curves and the presence
of peaks. Comparing these derivatives with those for
Love waves (section A, Figure 2) it is apparent that
the Rayleigh phase velocity has much more specific
informatior with respect to material shear velocity
for this structure and period range. This observation

is substantiated by comparing the shear velocity only

inversions for Love and for Rayleigh waves (Love;
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3
section 1, Table 2; Rayleigh; Table 1).
‘ Layer Love Exact Model Rayleigh*
; 1 3.53 km/sec 3.60 km/sec 3.60 km/sec
2 3.46 3.60 3.60
3 4,28 3.60 3.60
L 2.98 3.60 3.60
5 4,50 L.50 4,50
Q It is quite obvious then that in this case the shape
of the derivatives give an excellent indication of
inversion effectiveness., A look at the next plot
de . - . .
i (TJV;-, Figure 4) indicates that considerable dif
ficulty would be encountered in trying to extract the

four layer P-wave velocities. Here a reduction in
layering is in order and one can be guided in layer
reduction by the curves. However, the magnitude is
also of importance because the J%&; derivatives are
competing with the 7ﬂ%§ derivatives and are roughly
an order of magnitude smaller. This would result in
putting most of the adjustment in the shear velocity
structure and therefore excludes simultaneous deter-
mination of both P and SV velocity structures.

In Figure 5 is shown the first of the attenuation
derivatives. As expected, it is small (0(10'7))

indicating a second order effect of attenuat . on

phase velocity. An interesting feature is the

* Extracted from given tables.
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appearance now of some double peaks and greatly in-
creased structure. However, the peaks here are less
separated than those of f%%— (Figure 3). Also,
s
. c . . JQR . .

comparin (Figure 5) with (Figure it

p gg——qs gure 5 TVs gure 9)
is apparent that the relationship (Appendix 4)

()QRz_LP QR2 Qs2 jjc
pv c Vs PR
holds.

The next plot, f}%— (Figure 6), again shows the
1Y
lack of specificity of Rayleigh waves to P-wave
parameters. We may again invoke the previous relation-

ship and apply it to the P-wave parameters citing

Q
j%;ﬁ (Figure 10):

o

2 2
It % g
Q
p

Vo S p

: QR c .
In Figure 7, 7;3; » Wwe begin with the Qp deriv-
atives. The similarity of this plot with j%?— (Figure
s

3) is predicted by the relation (Appendix 4)

c c Qs aQR
Vs Vs QRZ aQs

and by an approximate theory of surface wave prop-

agation in anelastic media (Anderson and Archambeau,
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1964; where now C and VS are elastic velocities and
results in a linear inversion for attenuation parameters).
The shape of these gi curves indicates that with the
correct velocity structure and correct Qp structure,
reasonable success should be expected in a Qs inver-
sion. The correct Vp, Vgr and Qp structure is required
in order that the correct QR is obtained in derivative
calculations.

The next plot, i;%% (Figure 8), again shows
relatively little structure and is indicative of P
parameter insensitivity in Rayleigh waves. It can be
compared with {%&; (Figure 4).

Figure 9 shows the derivative 71?% . Again, the
double peak structure is present (as earlier compared
with 1}%; in Figure 5) and we have increased structure
at the cost of decreased independence. The final QR
derivative, i}é% (Figure 10), was earlier compared
with JQL; (Figure 6) and further shows little hope of a

J Sr
V_ inversion simultaneously with V as is an
P y s’ JVp
order of magnitude smaller than and shows much

Vs
less independence. This comparison is analogous to

the f;g_ and j;g— comparison. An interesting idea
Vs Vp

might be a mixed inversion. That is, use C for VS

Q

and QR for Vp since ) R appears to be less linearly
p

)c )QR

dependent than 7ﬁF— and 7ﬂfr conversely appears to
p

be more linearly dependent than é;%g » Future work

along these lines is needed.
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The final plots (Figures 11-14) show the change
in modulus and phase of the surface displacement ratios
UO/Wo for a change in VS and Qs' The derivatives show
that both the modulus and phase are much more sensitive
to the velocity structure than the QS structure for
this model. They also indicate that neither con-

tributes information independent of C or Qg
TESTS WITH SYNTHETIC DATA

As in the previous treatment of Love wwvres, the
40 km thick continental crust was subdivided into
four identical layers (section 1, Table 1). Both
the crust and uppermantle were assumed Poisson solids
for P-wave velocities which are kept fixed., Figure
1 shows the synthetic data (C and Qg) with the same
period range and number of data as in the Love wave
inversion (120 to 5 seconds with 5 second intervals).

In Table 1 are shown the results of both the
linearized inversion (Anderson and Archambeau, 1964)
and the exact theory (both use singular value de-
composition with the non-linear appropriately scaled
(Wiggins, 1972)).

The first section, A, shows the results of the
linear inversion for QS using the exact velocity
structure. The Qg structure is far from the true

structure (QS = 100 all layers) and the oscillations
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are similar to linearized Love wave inversion (Table 2,
section A). Since the error here, as much as 39%, is
greater than the linearized Love wave inversion, part
of the blame must be put on the approximate data
kernels. That is, the partial derivatives used in the
linearized QS inversion are numerically calculated for
Rayleigh waves and are analytical derivatives for Love
waves., The numerical derivatives in the linear
Rayleigh formulation yield approximately a 5% error
in the forward calculation. However, the error may
be significantly larger for inverse operations. A
simple calculation may serve to point this out as it
indicates that small errors in inversions kernels can
be magnified especially in large condition number
systems.,

Let;

D=(L+e)M = L(I+Lte)m
where D is some data vector, L some data kernel with
error terms e, and M the model. Now if e is say 5%
of L in some norm, then D will have an error of the
same magnitude. On the other hand, inverting the

system we have

(1 + 17 ie)"1 171 p.
1

M
Now if we let M' = L™" D be the real model (error
free) then

(1 + 17 le) 1 m

=
)
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or

Mz (1 -1 temr, urleli<a

E then the model we get (M) can differ from the true

model (M') by more than 5% even though 171 is well

behaved (i.e., IIL'le [I<1). This should discourage
[ non-iterative inversions with approximate kernels.

This error magnification is probably contributing

to the very poor inversion results of the linear
theory and should further underscore the need for
extreme caution in evaluating its results. However,
the comparison between the linear approximation and
the exact theory is not unjust because the error
certainly cannot account for all of the discrepancy
and the same numerical derivatives are used in the
exact formulation (future work will investigate the
effect of analytical derivatives).

In section B are shown the results of the exact
theory inversion for Vs and Qs with an exact Qp
structure (held constant). The results are quite
satisfactory as both the VS and Qs structures have
been recovered. Indeed, the results are superior
to the Love wave inversion as was expected from the
analysis of the derivative plots. The velocity only
inversion is shown in section C, shows good convergence,
and is far superior to the Love wave velocity inversion,

It appears then, that for this model the amplitude data
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is not essential in the velocity inversion. Perhaps

a further perturbed starting structure would require
the amplitude data to stabilize the velocity inversion.
This was not attempted since more than a 10 percent
change is pushing the Taylor approximation and it

was desirable to keep the same starting models for
both Rayleigh and Love wave inversion.

In order to investigate the effect of Qp on the
inversion, it was fixed at the wrong value (250) and
the Vs and Qs inversion repeated. The results are
shown in section D and are somewhat surprising. One
might naively assume the effect of Qp to be small
since it is twice Qs' However, as section D shows,
fixing it at the wrong value (and with only a 25
percent discrepancy) has a disasterous effect on Qs
and affects Vs through f;;% « In 1light of these
results, Qp was allowed to float using the same
starting model as section D. The hope is that this
will release the inversion and allow it to converge
to a closer QS and VS structure, The results are
shown in section E and indicate that this is indeed
the case as both the Qs and VS structures have essent-
ially been recovered while the crustal Qp has moved
the correct way. An attempt at using the linear
theory for a simultaneous inversion for Qs and Qp
yielded extremely poor values for both and is not

shown.
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CONCLUSION

Tests with synthetic data in inverting Rayleigh
wave phase and attenuation data for velocity and
anelasticity indicate a greater stability and reli-
ability for an exact formulation over the appropriate
linear formulation (Anderson and Archambeau, 1964).
In addition, when inverting for anelasticity Qp has
a first order effect and must be considered as an

inversion parameter along with Qg

T T T T T —_— e il T C "‘—j
il
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3
TABLE 1
Results of inversion methods using data generated
from model of Table 1 (Section A): A) linear theory -
inversion for Qs only;:; B) exact theory inversion for
Qg and V; C) inversion for Vg, using only the deriv-
M)
. _()__g R s . =
ative ;vg : D) inversion for Vs and QS with wrong Qp’
E) inversion for Vo Qg and Qp. (SSRQ, sum square
residuals Qg SSRC, sum square residuals C; NI,
number of iterations in a suite of 20.)
Initial Final
1 Layer Qp Q Vs SSRQ SSRC Qp Qg Vs S5RQ SSRC NI
, A1l 3.60 88 3.60
2 3.460 83 3.60
3 3.60 120 3.60 0
E 4 3.60 61 3.60
5 L.50 86 4,50
; B 1 200 110 3.20 200 100 3.60
% 2 200 90 3.20 -7 .2 200 99 3.60 -9 -10
i 3 200 110 3.20 1.x10 7.x10 200 100 3.60 3.x10 2.x10 7
| 4 200 90 3.20 200 99 3.60
5§ 2.0 100 &,50 200 100 4.50
' c 1 3.20 3.60
f 2 3.20 -2 3.60 10
3 3.20 7.x10 3.60 2.x10 6
L 3.20 3.60
5 L.50 L.so
D 1 250 110 3.20 250 98 3.61
2 250 90 3.29 = .» 250 98 3.55 -6 -6
i 3 250 110 3.20 3.x10°° 72.x10 250 104 3.69 9.x10 3.x10 6
. L 250 90 3.20 250 90 3.54
: 5 250 100 L,50 250 98 4.50
1 ! E 1 228 99 3.60
2 227 99 3.59 -8 -9
3 Sane as (D) 229 99 3.€0 1.x10 ° 7.xl0 13
. L 22 67 3.59
5 276 S8 .50




139

Layers are
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Summary

A method is presented which allows the variational formulation for
elastic surface waves 10 be extended 1o the case of dissipative media. With
this formulation, correct to second order in the loss, Rayleigh’s principle
can be applied to perturbations of the Rayleigh quotient to yield group
velocity without numerical differentiation. Other perturbations can be used
to find the change in phase or group velocity due to changes in loss,
density, or moduli.

Introduction

The use of Rayleigh’s principle is of considerable importance in surface-wave
calculations. As suggested by Meissner (1926) and Jeffreys (1959, 1961) and amended
by Harkrider (1968) it has replaced numerical methods with an exact formulation for
calculating group velocities. In addition, Rayleigh’s principle may be used to
calculate the effect on the velocity dispersion due to small perturbations in the elastic
parameters. This type of information is, of course, most essential in solving inverse
problems.

However, in its usual form, Rayleigh’s principle is inadequate for dissipative
systems since its use requires equating the time average kinetic and potential energies.
This result follows from the virial theorem and imposes a vanishing Lagrangian for
the system.

The purpose of the following development is to construct a Lagrangian for a
non-conservative system which vanishes and then apply Rayleigh’s principle to the
resulting equation. This can be done by writing a Lagrangian for two systems
operating simultaneously with one losing energy as the other gains energy, so that the
total energy is conserved. An estimate of the error introduced in combining the
systems is given in the Appendix.

The development will be for Love waves in order to simplify the equations. The
extension to Rayleigh waves follows naturally.

Formulation
As a working example, we shall consider Love waves propagated along the
445
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surface of a vertically heterogenous (layered) attenuating half space. The usual
equation to be satisfied in each layer is

g Vu+ % Vi = pit ()

where u is the transverse particle displacement, p is the medium density, and pg and
ity are the conservative and non-conservative Lamé parameters, respectively, which
are in general frequency dependent (Borcherdt 1971; Silva 1976). We take as the
solution to equation (1)

u = v(z) exp (— A, x) cos (P, x—wr) Q)

where P, is the spatial frequency such that the horizontal anelastic phase velocity ¢
is given by ¢ = w/P, and A, is the horizontal attenuation factor. Application of the
usual boundary conditions results in the continuity of both P, and A,. They then
represent eigenvalues to be determined for propagating modes. The attenuation factor
may be defined as
4o [-1+\/(I+QL“2)T )
e L +va+esd | T 200,
where Q represents the effective quality factor for the spatial decay of the surface

wave. Equation (3) can then be interpreted as the prajection of the attenuation in the
propagation direction. The shear quality factor Qg is defined as

&)

O = = 2 @

where AE is the energy lost and E the peak energy stored, both per cycle.

At this point we introduce the mirror image system which is taken to exist
simultaneously with the original field. Since this field gains energy exactly as the first
loses energy, we can write the field equation as

jia Viu* — "—a: Vit = pirt 5

with the corresponding solution,
u=c{zyexp{ i, x)cos (P, x—wr). (6)

It is seen then that the only difference in the systems is in the sign of u;. This then
affects only the sign of the attenuation constant and yields the same spatial
frequencies as equation (2).

In order to construct a conservative Lagrangian density we make use of the
following form (Morse & Feshbach 1953; Moisewitsch 1966).

M

At ~ -

- Hy , . cu Cu cu cu

L =puit 42Vt —out |~ g | —— + ———
w éx éx oz @z

This yields an invariant Lagrangian, since u” increases in amplitude exactly as u
decreases.
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The corresponding Euler-Lagrange equations become:

0¥ do¥ do¥ do&

@®)
¢ dog dig dog

aut T dtont T dxou,t  dzouwt

Direct substitution of equation (7) into equation (8) yields equations (1) and (5).
We now substitute the solutions (equations (2) and (6)) into equation (7) and then space-
time integrate the Lagrangian density to yield the Lagrangian of the combined system.
In the time and x integrations, where periodic solutions were assumed, the integrations
result simply in averages.

Defining L as the Lagrangian of the combined system, we can write:

L=c*[pov*dz—(P2—A>) | pgov* dz~ [ ppv'v*’dz. 9)

The first term is interpreted as a time average kinetic energy and the remaining
two terms as a time average potential energy. This allows the application of the
virial theorem (Moisewitsch 1966) which states that for a conservative system which is
quadratic in its potential energy the time average potential and kinetic energies are
equal.

We may then put equation (9) onto the form of the Rayleigh quotient:

w’ly = (P2~A) ], +1, (10)
with the energy integrals
Io=fpootdz; I, = [pgrve*dz; I, =[pge'v* dz

Application of Rayleigh's principle

Rayleigh’s principle states that for a given Rayleigh quotient, as in equation (10),
any eigenvectors, correct to first order, will yield the eigenvalze appropriate to that
mode correct to second order. This can be stated more precisely by considering
the perturbation to equation (10) due to a small change in » and v*.

0?81y = (P2— A1, +61, an
where the perturbed energy integrals are given by:
8ly = [ po(re*)dz; 81, = [ ug6(rv™)dz; 61, = [ pp6(v' v*’)dz.

Making use of equation (11) the new eigenvalues corrrect to second order may be
calculated.

(@+80) [Io+615) = [(P,+8P) — (A, +8A4)?). I, +81,1+ (I, +81,].  (12)

Using equations (10) and (11) and neglecting second order in small quantities
equation (12) becomes:
wdwly = (P, 6P~ A 841, . (13)

and using ¢ = /P, for phase velocity, U = dw/d P, for group velocity, we can rewrite
equatior (13) in the following form:

A4, 1,
”‘[' P3P oI,

(14)

At this point Rayleigh's principle may again be invoked and the elastic cigenvectors
may be used in the calculation of the energy integrals.
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In order to estimate the perturbation in 4,(04,) due to a frequency perturbation, we
use equation (3) and neglect the term containing 6@, /6w. This is correct to at least
second order in Q. ~* since Q, is a slowly varying function of frequency and the term has
a coefficient of @, 2. (It can, in fact, be estimated using a difference scheme since
Q,(w) is known from the eigenvalues.)

With this approximation equation (14) becomes

T [ M s
T L1 +vA+Q Y] e

which reduces to the usual elastic expression as @, — o and »* — v. This expression,
which is an approximation correct to at least second order in the loss, is thought to be
preferable to numerical differcatiation of the phase dispersion curve.
fn order to calculate the effect on Q, due to a small change in Qg we must first find an
expression for g in terms of rg and Q. This can be done by assuming a solution of
equation (1) of the form
u=ugexp(—i(K.X~-on)) (16)

where K = P—iA (Borcherdt 19/3), Substituting this into equation (1), and defining
the shear velocity », as that of homogeneous waves (® parallel ta A) we can write:

o= p 5 [ LU0
TRTL vet T

By substituting equation (17) into I, and I, we are able to explicitly calculate the
change in the Love wave quality factor 8Q, due to a change 5Q in the energy integrals.
We can write the entire perturbed Rayleigh quotient at constant frequency as:

o {lo+01,] = (P, +6P) — (A, +8A)). {1, +01,+6y1,]
+ I +812+8ys1,] (18)

an

where we have defined

S rg’ 1+V(1+0s7%)
dysly = fp—;—— et o [—-‘:6;_—2‘-‘] dz

1+ +Qs_2)] d=
1+072 -

Using equations (10) and (11) and neglecting second-order terms in small
quantities we can reduce equation (18) to:

0=2[P. 6P, ~A,0A)1,+ [P~ A,%160s], +dgs . (20)
Writing equation (3) as

A, = PO f(Q) = [

(19)
S l‘sz YR
nqsll=j'p—,,~t‘ rTo

L0071 an

1+ +Q.7%)
we can express the perturbation in A4, due to a change in Q:
0A; =8P, f(QU)+ P [(Qu). (22)

Neglecting the first term since it is at least second order in the loss we then have from
equation (20);

34, 1
Sf(QL) = P, "I AL (P2~ A2)bgs ], +6¢s 5] 23)
;s |
' ) . ~ __A__,,w
. . ‘—d-""—"_. -
ﬂ

I B O B g, 180
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and to the same order we have from equation (3)
00, & =202 (Qy). (24)

This formulation then allows estimates to be made on the change in the Love-wave
quality factor or atienuation factor duc to a small change in the shear quality factor.
Further perturbations involving ¢, and p can be made along similar lines (Harkrider
1968).

The extension to Rayleigh waves will, of course, be more tedious since equation (9)
will now contain four integrals. In addition, equation (18) now must consider Q, as
well as Q,. The situation is unpleasant though tractable and the group velocity is
presently being programmed by the author.
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Appendix

In order to cstimate the error introduced by the formulation presented in this paper
we shall consider a plane shear wave propagating along the x direction in a Voigt
solid (Kolsky 1963).

The equation of motion can be written

w0t .
W Y aa=p¥ M

with the solution.

w = exp (— Ax) cos (wt— Px). )
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We may define the quality factor for this system as:

-1 Ko ™
e "

Substituting equations (3) and (2) into (1) we arrive at:
wlp
n(l+Q7% "

On the other hand, if we had applied the Lagrangian formulation presented in this
paper the results would have been:

P-4t = 4)

PPogt=?l
K %)

which is correct to second order in the loss.
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APPENDIX 3
DEVELOPMENT OF ENERGY INTEGRALS AND GROUP

VELOCITY FORMULATION FOR RAYLEIGH WAVES

Applying the formulation presented in Appendix 2
to Rayleigh waves and using elastic eigenvectors, the

energy equation becomes

WELo: (- B2)T, 2RI, ¢+ I,

[trrasalect's mefiz) '] 4
R [h) ) e () ) 4] 5= ¢

I,- {(,\ﬁ)./.,)‘fﬁ,’_!r, /.,l ) Az

o

with Hl and E} the horizontal and vertical particle
Wo Wo

displacements normalized to the vertical surface

displacement. The Lame parameter/ﬁ'R is defined in

Appendix 2 with ) g Similarly derived and £ is the
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phase difference between the vertical and hori: untal
attenuated displacements.

Performing the appropriate perturbations to
obtain the group velocity the Rayleigh wave equation

analogous to eq. (13) of Appendix 2 becomes

wio T . (1 - AiAx I, v I
Py § Py Pt%P‘ Px

The group velocity is then

I, + I3 |(cT,

)
U ) 1?01"’ Q':’ p‘

)"1

Since the elastic eigenfunctions are used in
the energy integrals the integrations can, in principle,
be done analytically. However, due to the tedious
algebra required it was decided to do the layer
integrations numerically while doing only the half-
space contribution analytically. The integration
method adopted was that of Gauss-Legendre gquadrature.
The scheme uses the two point computation applied to
successive points within each layer. Estimates of the
accuracy are routinely obtained by checking the balance
of the elastic energy equation, Typical figures are
L4-6 function evaluations in a 10-20 km thick layer

to achieve 1072 percent accuracy. Liquid layers are

included by using the liquid layer matrix Dm
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Section 2) where appropriate and by

(Chapter 1,
setting /_«= 0 in the energy integrals.
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APPENDIX 4

ANALYSIS OF INVERSION DERIVATIVES

The purpose of the following development is to
demonstrate, analytically, the relationships (mag-
nitude and sign) which must exist between the inversion
derivatives. The relationships follow from the complex
surface wave velocity being an analytic function of
the layer complex velocity.

Let
C=C, + 35—, V=V, + 5+ (A1)

where C is the complex surface wave phase velocity
| and V is the complex shear wave velocity and both
1 have an associated quality factor. The above expres-
sions are actually low-loss approximations and are used
for ease of computation.
At this point the Cauchy-Reimann conditions are
( applied and the artialsa CL) 0 !-O-— are taken
PP p 2.l 2Qs
with respect to the quality factor only (velocity held

constant). The first condition yields:

¢ e a(_
| | o D(_:

(A2)
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Applying the second condition yields:
C )
J[2o
D Vo ) [Vo )
ZQS
resulting in
2 2
’ Vo o Vo 49
These relations are most useful in assessing the
relative magnitudes of the elements of the Jacobian.
Rewriting the Taylor approximation (eq. 3) with
normalized parameters we have in matrix form:
pa p - — 1
[ s, ] [9s 99 Ve 99 fa
QL QL JQs ,QL ;Vs Qs
= (Al)
fcL o Jog Ve G §V
L O | G, V4 ¢, 9V | L Y
Then, reducing the Jacobian to two derivatives using
equations (A2) and (A3) results in the system:
B - -y o
Sy o vy 0o Y, %) [
L QW Cg avs e Vs Qs
- (A5)
.__zls " ‘L‘-i JQL Vs JCy §Vs
| "L L QT QL AR L vsJ { Vs
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For the model in Table 1 and the corresponding
partial derivatives (Figures 2-5) the elements 1,1,
1,2, and 2,2 of the coefficient matrix in equation (A5)
are all of the same order of magnitude while element
2,1, due to the Q -1 Qs'l factor, is several orders
1 smaller. These results imply that element 1,2 is J
h significant compared to elements 1,1 and 2,2 and
cannot be neglected.

Note that equations (A2) and (A3) can be used as J

a check on the accuracy of numerical derivatives. It

can also be easily shown that writing the Taylor
series approximation for Q1 in lieu of Q leads to
precisely the same matrix equation as for Q (eq. A5).
In other words, inverting for Q or inverse Q are

formally equivalent.
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APPENDIX 5

PHASE SMOOTHING

i Consider the calculation of phase velocity using

the following formula (Toks6z and Ben-Menahem, 1963).

X

C(T) = Ty —INT + T (B8F+ N

Where Ax is the path between stations and t(1), t(2)
are times of subsequent Fourier windows. This required
the calculation of the phase difference (Ag) between
the two spectra. Since noise, including multiple
arrivals, is generally present Ag may be poorly
behaved. It therefore, becomes necessary to devise
some suitable smoothing procedure. The idea is to

use some method which is easily controllable so the
smoothing is not excessive and useful information

! lost. The method used here is that of simply fitting Af
with a sine series and then retaining only those
coefficients which have the largest magnitudes. The

coefficients are then modified by the Lancsoz sigma

f factors to reduce the associated Gibbs phenomena.
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