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ABSTRACT

A formulation is presented which incorporates

linear anelastic attenuation into plane layer models

in an exact manner. Several examples of body wave

propagation in absorbing media are presented. Surface

time histories are compared between predicted acceler-

ation records using the plane-layered model and data

recorded by a vertical array. Spectral ratios between

the surface and bedrock, computed for the horizontal

components, show fair agreement with the model pre-

dictions. In particular, the importance of attenuation

in predicting ground motion in soils is demonstrated.

It is further shown that converted waves are of minor

importance while lateral propagation can be significant.

The formulation is extended to both Love and

Rayleigh wave propagation. Eigenvalue and surface

displacement calculations for a high loss soil structure

indicate that Rayleigh waves are more strongly affected
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by attenuation than are Love waves. Inverse calculations

for upper mantle and crustal structures, with both

synthetic and real data, reveal a significant dependence

of surface wave attenuation upon the velocity structure.

Use of this information can greatly aid in velocity

inversions and demonstrates the incompatibility of con-

ventionally extracted attenuation data with respect to

phase data. Further indications are that, for the

overdetermined case, the same layering (number and

thickness) may not be optimum for both the velocity and

attenuation inversion parameters. In addition, the same

layering is probably not optimum for both Love and

Rayleigh wave inversions.
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INTRODUCTION

Recently there has been a greater appreciation of

the effects of anelastic attenuation in the earth. The

recent upsurge in interest is primarily due to a recog-

nition that the velocity dispersion accompanying atten-

uation can be significant (Liu and Archambeau, 1976).

In view of this much effort has been directed towards

dispersion corrections to free oscillation data which

is then inverted to obtain corrected earth models

(Hart et al., 1977). The results have been very

encouraging in that body wave and free oscillation earth

models have largely been reconciled. In light of this

realization it now appears that attenuation will receive

much more consideration. It is the effort of this

thesis that this consideration be in terms of exact,

rather than approximate, theory.

In Chapter 1 the Haskell-Thompson propagation

matrix technique is extended to include anelastic

attenuation in an exact manner. In order to demon-

strate the effect of attenuation (as compared to purely

elastic propagation) on body waves, several examples

are presented. In particular, transfer functions are

calculated for typical soil and crustal structures.

In addition, an example is shown demonstrating the

effect of an attenuating boundary layer above the

core-mantle boundary on reflected pulses.

!-
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As a means of estimating the suitability of the

plane-layer model in predicting ground motion compar-

isons are made between the predicted surface motion and

data recorded at a vertical array. The array is located

in a soil section and demonstrates the effect of low

velocity surficial material on wave motion.

In Chapter 2 the formulation is applied to both

Love and Rayleigh wave propagation. In this section a

soil and an upper mantle model are considered which

demonstrate the effects of attenuation on surface wave

propagation. In addition, an inversion scheme is

presented by which depth dependent velocity and

attenuation may be estimated simultaneously from sur-

face wave phase and amplitude data. The inversion

scheme is demonstrated using synthetic data and is then

applied to real data suitable for upper mantle structures.
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CHAPTER 1

BODY WAVES

I. FORMULATION

In both the body wave and surface wave analysis

the matrizant technique (see Haskell, 1953, for first

seismological application) is employed as the compu-

tational algorithm. In this approach the medium

properties are assumed piecewise constant. The equations

of motion are integrated analytically and the solutions

propagated by matching boundary conditions at the layer

interfaces. The main disadvantage of this method over

direct numerical integration of the equations of motion

(Gilbert and Backus, 1966) is, of course, that it is

possible only for plane geometry. To overcome this

shortcoming, various earth stretching transformations

have been developed (Schwab and Knopoff, 1972) which are

used in this treatise where appropriate. The following

paper extends the matrizant method to include anelastic

attenuation in an exact manner and forms the basis for

this thesis.

I1 _I II Il_...__li ! _____... ............ . ...
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BODY WAVES IN A LAYER!'D ANELASTIC SOLID
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A formulation extending the Ilaskel-Thompon matrix method to include the
effects of anelastic attenuation is presented. The formulation is exact in that no
low-loss approximations are made. Consideration is given to nonparallel
propagation and attenuation directions with corresponding velocity anisotropy.
Examples are presented for models representing soils, the crust, and the core-
mantle boundary.

iN ro(Ilt CI ION

With the increase in the number of stations and the higher degree of standardiza
recent years. more use is being made of seismic amplitude data. This has contribute
increased regionalization of structure down to the core-mantle boundary. In or.
accurately represent this fine si ructure in applying corrections or to resolve it in inverting
data, more use is being made of the higher frequencies where the attenuation effects are
most significant. It is therefore becoming increasingly important to consider nongeometri-
cal attenuation exactly. Past approximations in dealing with loss (Knopoff, 1964) must be
replaced %.,ith exact formulations (Lockett, 1962: Cooper. 1967, Borcherdt, 1971 ; Buchen.
1971).

In order to consider the effects of a vertical variation in attenuation as well as velocity
and density on body waves, an extension of the Haskell-Thompson (Haskell. 1953) matrix
formulation using an exact theory is presented. In particular. the restricted problem of
anelastic layers on an elastic half-space is considered, but the formulation can easily be
extended to include an attenuating half-space. Previous consideration of the problem
(Kanai. 1950) dcalt h ih normally incident honogencous %%aes 'A ith % iscoelasticit) of the
Voigt type. The present treatment considers incident P or SI" waves at arbitrary angles
and a general constitutive relation.

FORMt lATION

The most general form of a linear constitutive relation is Boltzman's superposition
principle (Gurtin and Sternberg. 1962) which, %%ritten in terms of the tensorial relaxation
function rf is

Pu 1)= .', rijk, (f - T) dc,,(r)

- r~~~ ) • d+: tr ) I

where P,)it) and :,, () are the time-dependent stress and strain tensors and the symbol *

denotes the Stieltjes convolution.
Assuming the medium to be isotropic and homogeneous. equation (1) may be broken

up into bulk and shear components and written as

P,j(t ) =211(t11 drIlt I i

P, (I) =3h'(t I */,:,, (t) (2)

where pi(t) and K(t) are the relaxation functions in shear and bulk. Assuming that the

4
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particle displacements ii are infinitesimal. the strain can be written

1 = 2 it, -4 u.]

and, neglecting body forces, the linear momentum equation is
Pjj. j t ) = 1) ti, 13 )

where p) is the medium density. Substituting equation (2) into equation (3) yields the
equation of motion.

[ h t a t t) [ ( d ) -[ji(t) *[V x (V x du )] = p ii. 14 )

Since the convolutions make the time-dormain representation quite intractable, it is
customary to take the Fourier transform of equation (4). Restated in terms of transformed
variables, equation (4) becomes

[k + ]V(V(.f)-[I-]V X {V X):- -pw (5)
where

k=i " ()e e di, i=i(, , p( )e' ..It

u=J" , ue"'dt.

At this point it is convenient to introduce the transformed P and S displacement
potentials in terms of Helmholtz's relation

u=V+Vxo', V-0-o. (6)

Substituting equation (6) into equation (5) results in the fanailiar Helmholtz equations
for the P and S potentials 5 and 0.

[V 2 +Kp2 ] =0, [V 2 +K 2]=0 (7)

where

=p 2I = 21~

i 
2  

K(t)+ i(w)(
()2 2 8)

KS-2 =) 2

Note that the terms i2 and Pl
2 are in general frequency-dependent in both real and

imaginary parts.

MEDIUM PARAMFT.RIZATION

Let us now consider, for demonstration purposes, the case of S waves. A general
solution for j in equation (7) is

0 = 0 ( (1))exp j- iK ,;'X ) (9 )

where K, is a complex vector with the real and imaginary parts having different directions
in general.

K, = Ps - iA, (10)

K, 2 =K, K,' = IPsI2 -IA s12 -i2P.A s  (11)
P, A., I Pe,I IA j cos ;') (12)



lHon 'A %%P, IN k IAN51RID il VOR I 51SOtIID 1541

11, is the propagat in %ector sutch that c) 11j is the phase Neloci ty antd A, thle atteniiu at ionI

%elt)r SuIChI that exp A,~ -X1 represeuts thle spatial decay of tilhe Potential. 11wi noiiiero-.
gis es rise ito the inhomogeneous ss as sIBorcherdt 1971. BHuchenl 1971. Cooper 1967.
Lockett 1902) %s hose amplitude saries (inticlyalong a %%ase front. It becomes
necessar) nio" to specify thle three parameters 111,1 IAj. and -I- in terms of material
Propert ies and mlediumil geoniet ry

Writing the transformed shecar mlodulus /I((') in equation (8) in terms oif at real part,
pXWOI and anl imiaginarN part 1, 1()) thle quLalil) factor Q, for shear waies s d.,cefined ats

11,00' I AE-13

where I ik the peak energy density stored and N/- ls thle enlerg lost, both per c)cle
(HjorCherdti. 11)71. 11973).K,: mlay he"6s uitte inl the folloi,%ing forml

[lhee Is lie hoiino ii s11LMI01 %%I C locitI of' thIe ilIedIIIt I si ng 14)1 to InserC1t I Iad

ss thl similar e\prc"Soi1Nu 1,0r P' sases iisimn tile P' paIriiters. In the loss-loss
a pproxsim at ion f4 r i onmogenICU" 04L ~ae I , 1 Iuato1011 redl Iuces to thle ssell-
knmoss ni esprssioli

JAI.

When dealing ss ith highly dissipatise miaterials thle scltial nature of A must be

considered. Thle pro blem Ins thIiat for a gi en Incidn dc i s I direct ion of bothI P anid A
Specified]) on to at pl anie hoLI IIN bet s cII tO ssoiscoc st ic ued ia, it li iect ioii of hoth PiI

and( A1 must be determined for thle P iid. SI' reflected ii transinitted isases. These
directions. canl be uiniquely deteirni ined by appl i ng lie Lisual on d a ry conid it ions at ai

welded interface (lir frcesurface for hialf-space problems). This results inl anl exteinded form
of Snell's lawN in thatl A, as wsell as P, niust be continu~ouis IHorelierdl 1973, Lockett 1962 1.
In thle rest ricted case considered in this paper where thle incident mnedium is elastic. .4, Is
/ero eservss hre. This enables elastic lasers to be ititerbedded %% ith absorbing media.

F\1 sit ) m~0 1 tIl I I I I I II -hI liiMIvs(iN FoRmlI i sto- 1(R1,.\ sIN Hit) Mt I t1.

The follo'4iig des elopnient follows closely thatl of H askell (1953. 1962). Ii vr
displacement potentials are us~ed here. Referriiig to Figure I for coordinate refereiice. weK canl write thle soluitioiis ito equiationi (7) iii the usual forml

Al, exp (iK,,:/ Bp exp ( iK,../I expI iKrvY I

ill~~ ~~ H(, %eptt5 .I 11ep ibK%/Ilespt -iK,XI\ (17)
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where A, B are complex and in general frequency-dependent amplitudes. From equation
(10)

K,=P: -tA,', K = P, -iA,.

In the simple case we are considering (incident elastic wave) we have A. - 0, and from the
boundary conditions A, must be zero everywhere. Thus K. remains a real quantity. If the
incident medium were anelastic, the incident attenuation direction would have to be
specified along with the propagation direction, and then A: in each layer would adjust
itself to be consistent wi:h a continuous A. and a specified K., for that layer (see equation
14). Choosing Ap and .4s as upgoing potentials (negative : direction) we can write for each
layer

K: =principal value (K2 -K, 2 )' 2 (18)

1Z X 1 
0

p

2

n-"e

n-1 An-i

nP
FiG. I. The problem is uniquel) specified given 1,, V,, Q,. Qs, p, and Z for each layer and given A. (incident

P- or S-wave potential amplitude) in the elastic half-space. For an anelastic half-space, the direction of the
incident-wave attenuation vector must also be specified.

Using equations (2), (3), (6), (17), the displacements and stresses for layer m can be put in
the following matrix form

U iK pCp KsSs Kp.Sp - iKs.Cs I

K' -Kp:Sp iKs.Cs iKpCp gs.Ss
Pz, i2AJK pflp:Sp - i.QCs 21fiKp, rKp.Cr - ils

P'iil(4  i2 1iKsKp.Ss ipflSt 2fiKs 5sCs

4p 4+ B,

A,+ B,
Ap- Bp

As - B,

where
('.= Cos (K p,Z.) Cs = Cos (Ks:Z . )

S= Sin (Kr,Z.) S, = Sin (KsZ - ).

n=K', -K's
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This result (which is equi.alent to equation (3 20) of Grant and West, 1965) can be
conveniently written as

(19)

Thus 'c sc that ,,, (liaye r thick ne s) is the phase factor which propagates the potentials
across the nth layer and that D,., may be thought of as a form of propagator matrix with
C,,, the coefficient matrix. With this in mind and with the idea of eliminating C,, we can
write (Haskell. 1953)

X ,=D, (0)C,.; (,,lD. '(0) ,. (20)

Then applying the usual boundary conditions

X\',=(D.,(Z.)I., '(0 )(D., I (Z. ,)D. ',(O))X , 2

= , , A...a" .'O. (21)

and for n - I layers where layer n is an elastic half-space and interface 0 is a free surface

C.=D '(0)a a. 2...aX 0

= JX") (22)

with the following matrix elements.

-2A,, 0 0 1If
0 -i2Kv - l- 0

0 -Mi'Kp -Kp, '(ftKe) 023)

• iQ K,. 0 0 K (tKs:I
u O  ,4p + Bp
VI,,

"'0 A, + B'. t24)
r 0 A p - Bp

0 AS - Bs

The elementIs of

are given by

i(t, QCS - 2Kj Cp

,2 = - K[ 2K. s: S + ((2IK p: )S P]

'013i -fi '[Ks:Ss+(K,Kp,)S]
a 14 - Wp,11 I[Cp- CS]

'21 = ipj2Kp:Sp + (Q Ks. )Ss]

'122 = f'CP - 2KCS

(123 "- 14

a2 4 = - '[KP:SP + (KA'"K. :)Ss]

a,, = l,[4O 2,KP:Sp + (Q2-,'Ks )Ss]

a.32 = - i2f-pf[Cp - CSj

I _ 4 - -- --- -
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133 =01

(134 = a.,

114, =U32

'142 =jf[4K.Ks:Ss + (Q
2 Kz)Sp]

(143 =012

1144a = "'l 2"

C, therefore becomes the input matrix and choosing Ap.s in the upgoing ( - :)direction
and considering incident P, we can invert equation (22) to give the surface displacements
u, and w0 in terms of the incident potential (.A.),K , and the layering.

Io = - 2[J,, +JJ, 2 ].A, iR

wo =2[J 21 +J 4 ,].A , R

R = [J,, + J4 1]JP I' + J3 21 -[J12 + J42"PJI I + J31" (26)

APPLICAI IONS

In order to illustrate the effects of attenuation, three modcls which represent soils, the
crust, and the core-mantle boundary are considered. The structures are listed in Table I.
With the exception of the low-velocity layer of the upper mantle, these appear to be the
three regions where nongeometrical attenuation is most pronounced and therefore may
have some effect on observational interpretation. Also, knowledge of the Q structure of
these regions will be valuable in interpreting materials and structure mechanisms when an
acceptable theory is found relating state variables, material properties, and energy
absorption.

In applying this formulation in calculating reflection and transmission coefficients,
transfer ratios, synthetic seismograms, etc., some estimation must be made of the medium
parameters. This usually means a frequency-independent loss and velocity which can be
shown to violate causality (Futterman, 1962). However, since the frequency-dependence
can be made weak over a finite frequency band, assuming a frequency-independent loss
and phase velocity over the space-time dimensions considered here should not be critical.

(a) Soils. The effects of attenuation can be rather drastic in a highly dissipative material
such as loosely compacted soils. The structure chosen (Table !) is for the Richmond Field
Station of the University of California, Berkeley and consists of mud deposited in San
Francisco Bay. Borehole measurements of velocity and sample measurements of both
velocity and density were available for this site. The Q structure represents a best guess for
illustrative purposes (structure data from 1. V. McEvilly, oral comm.). Figure 2 shows the
vertical and horizontal displacement spectra for normally incident P and S waves,
respectively. All input potentials were normalized to unity total displacement for incident
PI.Ap =.kp -1) or SV(As =., - ' 1. The solid line is for an elastic stack while the broken
line includes the effect of loss. The vertical motion is somewhat unstructured because the
compressional wavelengths are greater than any of the layer thicknesses. The loss behaves
as we might expect for purely homogeneous waves, mirroring the elastic behavior at a
lower amplitude and becoming asymptotic to it toward low frequencies. Considering the
shear spectra (Figure 2B) we begin to note some interesting effects. First, the elastic
spectrum shows the characteristic peaks (shear wavelengths < layer thickness) which are

i _ _ __ _.
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TABLE I

PHYSKA PARAMIT-RS FOR RI PRISENIATIVE MODFLS

CONslDI-RED IN NuMi-RI AL CAILCUILATIONS

Soil ( R ih nond )
0.421 0.214 1.95 5 I 1.52 - 10
0.641 0.299 1.95 10 2 1.53
1.007 0.299 1.95 10 3 1.52
1.296 0.305 2.00 20 4 1.43
1.464 0.305 2.00 20 5 2.14
I 525 0317 205 20 5 1.83
0.488 0.305 1.97 20 5 2.13

1.739 0.427 2.08 50 10 3.05
1.647 0.397 2.00 50 10 3.75
1.739 0.427 2.05 50 10 1.52

1.678 0.323 1.92 20 5 3.05
1.952 0.372 1.97 50 10 2.44
1.793 0.329 1.92 20 5 4.27
2.034 0.488 2.19 1( ) 20 3.66
1.983 0.900 2.31 x

(ru.st (Berkeltv)
4.2 2.4 2.1 67 30 1.4 × I(0
6.1 3.5 2.6 I110 45 8.2
7.3 4.2 3.0 18( 80 12.9
7.8 4.5 3.3 , I

(or- -wnrla ' Bo indojri

13.63 731 5.61 ,
1333 699 558 100 115 15(
8.08 0 9.91 2511

resonances associated with the total S-wave travel time (Bak'in, 1971, Haskell, 1960). The
total S-wave travel time of the stack is T = 0.098 sec and maxima and minima are expected
at

n I
fm ? =4T =1, 3,5'.. f, 2T 1,2.3....

2.6, 7.9. 12.7.... = 5.1, 10.2, 20.3....

The peaks and troughs are not exact because the total stack travel-time effect is modulated
by the layering. In the loss spectra we see that there is little information content at
frequencies greater than about 14 Hz. The effect of attenuation is more drastic for shear
waves due to the lower Q, and the longer travel times. Also, it is important to note the
slight shifting of the peaks in the case of loss. The velocities arc the same in the elastic and
attenuating layers and the shifting is due to the change in modulation as the loss affects the
acoustic impedance.

In Figure 3 are shown the crustal transfer function ratio (wo uo . the vertical spectra.
and the horizontal spectra for an incident compressional wave at i = 10 for the same soil
structure. It is interesting to note the considerable change in the ratio for the loss. Any
inversion scheme not accounting for the loss would yield a different structure. Again the
shear spectrum is the controlling mechanism but in this case the large discrepancy between_ __ _

.4__________
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the elastic and loss is largely due to the velocity anisotropy induced by the inhomogeneous
waves (see equation 15).

(b) The crust. The crustal model (Table I). excepting the Q structure, was taken from
Bakun's best-fitting Berkeley crustal model (Bakun, 1970). The Q structure represents a

4

CA

2

0

.8
B

2 24 HZ

FIG. 2. Spectra of normalized surface displacements for a hilh-loss soil structure (Table I). Solid lines are
elastic layers, broken lines include loss. (A) Vertical displacement for incident P wave, (B) Horizontal
displacement for incident S wave; both at normal incidence.

best guess for Qs by the author based on some near-Berkeley crustal studies (Kurita, 1975,

O'Neill'and Healy, 1973) and the relation

QP = 4 Qs( vlv, ),.  (27)

The transfer ratio for the crustal model for an incident compressional wave at i = 250 is
shown in Figure 4 along with the vertical and horizontal spectra. The transfer ratio for the
elastic and loss agree well out to about 3 Hz which is high enough to resolve the structure.

The spectra of the vertical and horizontal surface displacements for the Berkeley crust
have been synthesized and are shown in Figure 5, where (A) and (B) are the vertical elastic

II.
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6 01 A

401

20,/ i""

47

2

0

024 HZ

F .. 3 . S p e c tru m o f n o rm a liz e d (A ) c ru sta l tra n sfe r fu n c tio n (K , 
o u o ) ( B) v e rtic a l s u rfa c e d isp la c e m e n t. (')ihorizontal surface displacement for incident P wave at 10 for the Richmond structure (Table I). Solid lines are

elastic layers, broken lines include loss.

AI
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so A

4

R

0 IQI

Fici. 4. Spectra of normalized IAlI crustal transfer function lw,/u(,0 . 113 vertical surface displacement. (CI
horizontal surface displacement for incident P wave at 25 for the Berkeley crust (Table 1). Solid lines are elastic
layer%,. broken lines include lows
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and loss while (C) and (D) represent the horizontal. The effect of the loss shows a general
smoothing of the record, a decrease of the higher-order reflections, and a reduction in
amplitude (vertical peak to peak by 0.7, horizontal by 0.8).

(c) Core-mantle houndary. To demonstrate the effects of loss near the core-mantle
boundary on PeP and PS. the reflection spectrum for thecore-mantle boundary structure
of Table I was synthesized. The velocities are from Bolt (1972) and the boundary layer
density was derived assuming the region to be a thermal boundary layer and to consit
entirely of mantle material (Glyn Jones. personal comm.). The Q, is from Kuster (1972)
while Qs is derived from equation (27) (zero loss in bulk). An incident P wave is considered

%ith i=25 and the synthesis is performed for a point 70km from the boundary layer.
Figures 6 and 7 show the synthesized potential coefficients (.B. ,At,. ,Bs5 ,A )for the same
explosion source as the crustal seismograms. The first small pulse in Figures 6 and 7
represents reflected Pand S,' waves, respectively, from the abrupt transition between the
lowAer mantle and the boundary layer. A more realistic gradient would largely eliminate
this reflection. The figures then represent P,'P and PS sources to be convolved with
suitable transfer functions and show the effect of attenuation on the reflected amplitudes

(PeP zero-to-peak reduction O.K. P'S 0.6). The effect on the wave forms seems to be small
at this angle of incidence for such low Q salues and indicates that a considerable amount of

attenuation is possible in the boundary layer and still be unobservable.

API'i NDIX

To consider a fluid layer (i = 0) the matrix D,,(Z,,) (equation 19) must be modified due
to the overspecified boundary conditions at a solid-fluid interface. Using a development

similar to Teng (1967) D,,(Z,,) for a fluid layer becomes

0 0 0 I

- k,.S, 0 ik,:C(, 0

0 1 0 0
- r 2 C, 0 -ij(!.

2S, 0!J
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400

-40

020 30 FC
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II. APPLICATION

In this section the body wave formulation will be

applied to an earthquake (Briones Hills: 8 Jan. 1977,

M = 4.3, 370 54.31'N 1220 10.97'W, depth 9.5 km,

= 13 km) recorded at a vertical array. The array

consists of three 3-component accelerometers positioned

at depths of 120 feet (bedrock), 40 feet (bay mud), and

the surface (soil) located at the Richmond Field

Stations. The array is near the borehole referred to

in Secion I so the soil parameters listed in Table I

(Section I) can be used to calculate transfer functions.

The general problem of calculating the effect of local

geology on earthquake ground motion is critical in the

design of structures. Of particular concern is the

amplification factor associated with low velocity

surficial material. In order to test the suitability of

the body wave formulation in predicting the response

of the mud-soil structure, a comparison is made between

the observed surface acceleration records and the bedrock

accelerograms continued to the surface. Different

transfer functions (eq. 26, Section I), applied in the

frequency domain, encompassing different angles of

incidence will be considered. Also both elastic and

anelastic propagation will be compared to the observed

surface time histories. The entire accelerogram is

used in computing the spectra and no time window has

been applied. Twenty seconds of record is transformed

-.. . .
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with 2048 points. The analysis will be restricted to

horizontal components as the bedrock vertical instru-

ment had a telemetry malfunction. Also, the actual

orientation of the horizontal components have not yet

been determined and will therefore be referred to

simply as H1 and H2.

In Figure 1 are shown the bottom and surface H1

(horizontal) component acceleration records plotted

to the same scale. The onset of the P-wave is clearly

visible while the S arrival is somewhat emergent. Of

particular interest is the long period component of

the bottom S arrival compared to the corresponding

part of the surface record. The surface trace appears

to have more high frequency content. This observation

is substantiated by the spectra shown at the end of the

section. Compare the HIB and HIT spectrums. The peak

in the HiT between 1 - 2 Hz is missing in the bottom

spectra. Also the bottom record tapers off after the

S-wave while the surface record continues with large

amplitudes and points out the importance of high

frequency surface waves in the duration of motion

for near sources. The surface wave traces, either

Love or Rayleigh waves, represents a laterally prop-

agating disturbance and is not included in the theo-

retical model. A full treatment of the problem requires

the inclusion of a non-plane wave source and is not

considered here.
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In order to simulate the layering effect, the

bottom trace (Figure 1, a) was continued to the surface

using the previously mentioned transfer function.

Figure 2 shows the computed surface motion assuming

Figure la as a normally incident S-wave. Figure 2a,

considers the soil elastic while Figure 2b includes the

loss (note different scales). In comparing the observed

surface motion with the computed (including loss)

several interesting features are observed. First,

the amplitudes are fairly close (not considering the

P-wave as it was continued as an S-wave) with the

calculated somewhat large. This indicates that the

Q structure is approximately correct. Also, the longer

period part of the S-wave is present on the continued

trace as we might expect since its wavelength is far

greater than the thickness of the soil section. In

addition, the large amplitudes following the S-wave

are not present on the computed seismograms. This

indicates that this part of the motion is propagating

in a horizontal direction. Figure 3 shows the same

input (assumed SV) continued with an incidence angle

of 100. This trace demonstrated that converted waves

are unimportant in this case as it is virtually the

same as Figure 2.

Considering now Figure 4, we have the same analysis

'or Lhe other (H2) component. Again (a) and (b) are4 the bedrock and surface records respectively. Again

.4
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the longer periods seem more dominant in the bedrock

component. Also, the surface waves are much more

dominant in this component, appear to arrive later,

and may be associated with Rayleigh waves. Comparing

the surface record (b) with the computed in Figure 5

we observe the amplitudes of the attenuation record

(b) are fairly close. The longer periods are continued

as dominant while the large amplitude and long period

wave train is absent. Figure 6 shows the continued

record for a transfer function with an incident SV

wave at 100 and is virtually the same as 00 in Figure 5.

In order to compare frequency domain data with

the model, spectral ratios (surface to bedrock) were

calculated for both components and are shown in Figure

7. The ratios shown have been smoothed with a 20

point averaging filter. Because of this smoothing,

coupled with the spectral contamination of a boxcar

window, the absolute magnitudes cannot be directly

compared with the theoretical transfer function.

However, the observed ratios (solid line in Figure 7),

except for the peak near 5 Hz, agree fairly well with

the theoretical transfer function (broken line in

Figure 7; also shown in Figure 2b, Section I (an

unfortunate error has the decimal on the wrong side

of the digit: i.e., .4-04.)). The peak position

reflects the total stack travel time while the

amplitude decrease reflects the loss. The 5 Hz peak
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may be due to the spectral contamination by the surface

waves present in the surface records. Further analysis

will require careful windowing to isolate the shear

wave. The positions of the peaks are indicative of the

travel time while the relative peak heights reflect

the loss.

Following Figure 7 all nine acceleration records

are shown along with theiv spectra.

III. CONCLUSION

In this section some success has been demonstrated

in modeling the response of a soil structure. The

method used an extension of the Haskell-Thompson

matrix method presented in Section 1. In particular

it was shown that a significant amount of attenuation

was necessary in order to compare amplitudes. It was

also shown that a large portion of significant motion

was due to lateral propagation and therefore not present

in the calculated response.

In addition the observed ratios (surface to bedrock)

showed good agreement between components. Also, it was

found that the observed ratios compared favorably with

the calculated, both in peak position and in peak

duminition with frequency.
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The following nine figures represent the

acceleration records arid their spectra (dashed line

is noise spectra windowed prior to signal) as recorded

by the Richmond Fiel Station vertical array for the

Briones Hills event. Components are labeled. The

poor bedrock (ZB) record was the result of telementry

difficulty which has subsequently been repaired.

-meow
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CHAPTER 2

SURFACE WAVES

I. FORMULATION

The development presented in Chapter 1 which

incorporates attenuation in an exact manner into a

Haskell-Thompson formulation is extended here to

surface waves. The extension follows quite naturally

for the period equation as the horizontal wave number

now becomes complex in order to accommodate the surface

wave quality factor. This now requires the determin-

ation of complex roots of the complex determanental

equation. The details are outlined in Appendices

1 and 3.

II. FORWARD PROBLEM

In this section the surface wave formulation (Love

and Rayleigh waves) will be applied to a soil structure

and a crust and upper mantle structure. It is thought

that this will demonstrate in which parts of the earth

and over which period ranges anelastic attenuation may

be significant.

A. Soils

A typical soil structure is that of San Francisco

Bay mud and is shown in Table 1 of Chapter 1. Velocity

and density values were measured from samples taken

j1
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from a borehole located at the Richmond Field Station

while Q values represent a best guess (Chapter 1,

Section I).

1. Love Waves

Figure 1 shows the dispersion and attenuation

parameters for Love waves over the soil structure.

The phase velocities C (E, elastic; L, including loss)

are very similar (no causality corrections applied)

and shows the anelastic phase velocity can actually

be greater than the elastic. The group velocity UE

is the elastic because the Q structure (ZlO) is too

low to apply the variational method of Appendix 2

meaningfully.

The QL curve is the phase quality factor and

has a frequency dependence similar to the elastic

group velocity curve. It is most essential, since the

group quality factor is the physically meaningful

parameter, to develop some reliable means of obtaining

the attenuating group velocity for highly attenuating

media.

2. Rayleigh Waves

In Figure 2 are shown the dispersion and attenu-

ation parameters for Rayleigh waves over the same soil

structure. in this plot we note some interesting

features. The two phase velocities, elastic and loss,

- ---... a . .
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are asymptotic at the longer periods but diverge sig-

nificantly toward the shorter periods. The attenu-

ating phase velocity (CL) is significantly greater

than the elastic at the shorter periods and actually

very nearly corresponds to the first overtone elastic

phase velocity for periods less than about 0.15

seconds (near the Airy phase). Meanwhile, the first

overtone attenuating phase velocity corresponds nearly

to the elastic fundamental phase velocity over this

range. This suggests that a mode has been skipped

in the calculation procedure but this does not appear

to be the case because the QR associated with the two

modes are considerably different and both appear to

be continuous (a much finer sample interval was used

in this range to check continuity). This presents

the interesting possibility that two modes may possess

the same phase velocity at some period but degeneracy

is avoided through distinct attenuation factors.

This may be the result of the rather large layer

attenuation significantly perturbing the mode shapes.

Further work along these lines is needed. These

results also demonstrate the need for a means of

accurately calculating the group velocity (or some

more meaningful physical parameter) in highly attenu-

ating media.

In Figure 3 is shown the phase of the surface

displacement ratio Uo/W for the elastic and loss
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cases. The two curves are significantly different

from each other, particularly in the region near the

Airy phase. The two moduli are shown in Figure 4.

It is interesting that the magnitude remains nearly

the same at the peak while the loss shifts it to

shorter periods (towards the Airy phase). Clearly

there are significant -ifferences between the surface

waves for elastic and highly dissipative media, and a

complete understanding of these differences will

require more work.

B. Upper Mantle

The upper mantle elastic structure which is

investigated in this section is basically that shown in

Knopoff and Chang (1977) for a typical oceanic structure

and is listed in Table 1. An oceanic model was used

because it is appropriate for the data to be considered

in the next section, which was collected for great

circle paths that were over 70% oceanic.

The attenuation structures were chosen to be

broadly consistent with popular models yet tailored

to give a chosen starting fit for the inverse problem

considered in the next section. They are therefore

different for the two data sets considered (see

Section III).

-_ __ ___. . .. ..



54

1. Love Waves

Figure 5 shows the dispersion and attenuation

parameters for Love waves over the upper mantle struc-

ture. Again QL is the phase quality factor and QU the

group quality factor. Both the phase velocity C and

group velocity U include attenuation and are within

0.01% of the corresponding elastic results. Group

velocity is calculated as outlined in Appendix 2.

No dispersion corrections are applied (Kanamori and

Anderson, 1977) since the effect is too small to be

noticable. The SH earth stretching transformation

was applied according to the method of Schwab and

Knopoff (1972).

2. Rayleigh Waves

Figure 6 shows the same parameters for Rayleigh

waves. Again dispersion corrections are not applied.

The P-SV earth stretching transformation was applied

according to the method of Schwab and Knopoff (1972).

III. INVERSE PROBLEM

In order to apply the inversion kernels presented in

Appendix f on observational data, an initial attempt

was made at inverting 400-25 sec. fundamental mode

Love and Rayleigh wave data. The data consist of phase

velocity and phase quality factors for great circle

paths through Berkeley recorded on a broadband system.
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The main objective of this exercise is not to derive

a realistic upper mantle structure, but rather to

investigate the possible difficulties present in using

the exact kernels with conventionally extracted amplitude

data.

A. Data Analysis

For the Berkeley data the following procedure was

used. The record tapes are filtered to remove alias

frequencies and then digitized. Seismograms are then

group velocity windowed between 4.50 and 4.30 km/sec

for Love waves and between 4.00 and 3.45 km/sec for

Rayleigh waves. The mean is removed before spectra

are taken. Phase velocity is then determined using

the smoothed (Appendix 5) phase difference for two

great circle paths (Tokso'z and Ben-Menahem, 1963).

The amplitude spectra is smoothed with a seven point

moving average and then, if necessary, further smoothed

by eye. The phase quality factors (defined by exp(- Ix-);

C is the phase velocity) are determined using the single

station method (Kanamori, 1970).

The other data set was taken from Anderson et al.

(1965) with both the Love and Rayleigh wave data

augmented at the short and long periods. For Love waves

the long period data (T=400,360) are from Press et al.

(1961) the short period data (T-39.55, 36.38, 24.92)

are from two sources; the velocity data are synthetic

_______ ________
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from Case 122 of Sykes et al. (1962) and the attenuation

data are that of Tsai and Aki (1969). The Rayleigh wave

long period data (T=400.00, 370.37) are from Ben-

Menahem and Toksz (1962). The short period data

(T=39.29, 33.12, 24.63) are also from two sources:

the velocities are synthetic from model 8099 of Dorman

et al. (1960) while the attenuation data are from

Tsai and Aki (1969). The conversion to phase quality

factors (QL' QR has been made according to the

equation a Q LQ U group velocity
C U L,R C phase velocity.

B. Inversion Algorithm

The inversion method is simply a damped Gauss-

Newton algorithm using the fundamental decomposition

theorem (Lancsoz, 1961), as in Appendix I with synthetic

data, to obtain the singular values and the inverse

of the Jacobian. An overdetermined system is used

since it is assumed that the Q starting model, although

hopefully close enough for local convergence, probably

is in considerable error. The resolution matrix

(Jackson, 1972) is used along with the condition number

to guide in structure reduction and in parameter

constraint. Standard errors of the parameter adjust-

ments are calculated using the goodness of fit as an

estimate of the data variance. In order to avoid fixing

parameters at the wrong value, only, those parameters

whose corrections failed to stabilize were held constant.
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This allows the other parameters to adjust themselves

somewhat more freely without compensating for the fixed

erroneous value. This, of course, results in somewhat

unreasonable values of the less well determined parameters.

However, the standard errors are usually large thus

keeping the parameters within acceptable bounds.

During the course of many trial and error inver-

sions, it was found that a critical factor is the choice

of layering. This makes a very good case for either of

two alternatives: 1) the use of the above procedure

with thickness derivatives to aid in the choice of

layering; 2) the underdetermined system coupled with

a suitable resolution and or stabilization method.

In favor of the underdetermined system the point should

be made that perhaps the same layering may not be

optimum for both a velocity and attenuation inversion.

Adjustments for this could easily be made in the under-

determined system simply by using different resolving

kernels (Knopoff and Jackson, 1972). This must, of

course, be weighed against the heavy dependence upon

starting models implicit in the underdetermined system.

C. Love Waves

Figure 7 shows the spectra (a, unsmoothed and

noise; b, smoothed) of the G pulses 3 through 6 for

the Tang Shan event (7/27/76, A=880 , M=7.5). For

!l _____________________
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the QL data (Figure 9) the harmonic mean of the two

ratios 6/4 and 5/3 was used. The phase data (Figure 9)

were taken from the 6/4 ratio only as it seemed the best

behaved. The phase difference (A) of the observed

and smoothed is shown in Figure 8.

In Table 1 is shown the starting model used in the

inversions (Anderson et al. augmented data has a

different Q starting model and is listed in appropriate

tables). The model (elastic parameters) is a typical

oceanic structure (Knopoff and Chang, 1977) slightly

modified to aid the Love wave convergence since it is

a poorer resolvent than Rayleigh waves. The Qs

structure was designed from trial and error to give

the closest starting fit while being as generally

consistent as possible with other results. The notable

exception being the lack of a low Q layer coinciding

with the low velocity layer. Any attempt to start a

low Q layer there resulted in either divergence or

a definite increase and slow convergence. It simply

seems to be incompatible with this data. The crustal

Q was fixed at 500 while the half space Q was fixed at

200. The crustal and half space velocities were also

fixed due to the limited bandwidth. Allowing the half

space parameters to vary did not significantly affect

the layer above but resulted in less reasonable half

space parameters (particularly velocities).

4 _ __ _ _ ___ _
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In Table 2 are shown the inversion results using

the Berkeley data. The most significant result, which

appears to be general, is the incompatibility between

the velocity and amplitude data with respect to the

velocity. That is, inclusion of the derivative CQL,R

generally results in an unstable system. 
The QL,R

residuals are reduced at the expense of the C residuals

and the system becomes unstable after several iterations

(thirty-one is the maximum number of iterations in all

cases). A look at sections (B) and (D) of Table 2

reveals the unfortunate dilemma. Section (B) shows the

results without the derivative )QL. The velocity

structure is reasonable with the sum square residuals

reduced by a factor of ten while the Q structure shows

a high Q lid with a broad low Q zone below the low

velocity layer and the sum square residuals reduced by

1/3. The large discrepancy between the residual

reduction in the velocity and in the attenuation might

be an indication that the amplitude data is also not

representative of the Q structure. Section (D) shows

the results including the derivative )QL which

became unstable after the ninth iteration. Note the

phase velocity residuals have not been reduced while

the Q residuals are reduced by anot:,.r 1/3 over section

(B). A look at the standard errors of the velocities

(6Vs) for both cases shows generally smaller values

when the derivative iQL is included in spite of the

______

-5-
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much larger residuals. This indicates more information

(orthogonal to ) as discussed in Appendix 1;

however, a look at the two velocity structures shows

that this information is not compatible. In section

(C) is shown the same conditions as in (B) without the

dispersion correction applied. The result is a more

pronounced low velocity layer (Hart et al., 1976) with

generally lower velocities throughout. The Q structure

is also somewhat different, as expected, but still

generally indicates a broad low Q zone below the low

velocity layer. Figure 10 shows the corrected data

along with the phase velocity and phase quality factor

for the derived model of section (B).

In Table 3 are shown the inversion results with

the augmented Anderson et al. Love wave data. Here

only two cases are shown: (B) without the derivative

dQL and; (C) including the derivative with dispersion

a~s
corrections applied in both cases. The starting model

(A) has a different Qs structure which was based on

the QL data (data listed in Table 6). The general

pattern is very similar to the Berkeley data. Neither

the velocity nor the Qs structure are significantly

different; however, this Qs structure is generally

lower with a much more attenuating lid. Again, there

is no low Q zone corresponding to the low velocity

layer but rather a very broad low Q zone below the

layer. Also, a look at section (C) which includes

"4
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the derivative J QL reveals a similar pattern to the

Berkeley data. The QL residuals were reduced at the

expense of the increased C residuals, a different

velocity structure, and an unstable system after six

iterations. This indicates that the augmented Anderson

et al. (1965) QL data is also inconsistent with respect

to velocity. Also, the poor QL residuals in section (B)

indicate that the QL data may not be consistent with

respect to a Qs structure. The data and fit are shown

in Figure 11.

D. Rayleigh Waves

Figure 12 shows the spectra (a, unsmoothed and

noise; b, smoothed) for R and R3 for the Indonesian

event (8/19/77, 6=ll80 , M=8.0). Due to noise and system

problems only R1 and R3 were used for QR while R2 and

R4 were used for the phase data. Figure 13 shows the

phase difference ZSX and the smoothed fit.

Table 4 shows the results for the Berkeley data.

The starting model (A) is the same as in the Love wave

case using the Berkeley data. The starting Qp structure

is simply 2.25 Qs and is an inversion param Pr set

(Appendix 2). The Vp structure is varied by maintaining

a fixed starting Poisson's ratio. The density remains

fixed. For the Rayleigh wave inversions it was found

necessary to vary the half space parameters to allow

the layer above to converge to a reasonable velocity.

A _ _ _ _ __ _ _ _ _



62

Twenty-four was the maximum number of iterations

used in all Rayleigh wave inversions.

In section (B) of Table 4 are shown the results

without the derivative JQR. The residuals have been

reduced nicely; one order for QR and two orders for C.

However, both the Qs and Vs structures show oscillations

which are probably due to non-optimum layering. Since

the layering was guided by the Love wave resolution

matrix only (because they have poorer resolution than

Rayleigh waves (Appendix 1)) and since the resolution

matrix is made up of partial derivatives which have

different shapes for the wave types, a different layering

is probably required for the case of Rayleigh waves.

This also makes another argument for the use of an

underdetermined system. Figure 14 shows the data and

the model fit.

In section (C) of Table 4 are shown the results

including the derivative d R. Again, the results are

very similar to the Love wave inversions. The system

becomes unstable, the C residuals are not significantly

reduced, and the solution becomes more oscillatory in

the velocity. This indicates that the QR and C are

competing for different velocity structures. Again,

since the QR residual in section (B) has not been

reduced as significantly as the C residual, it may

indicate that the QR data is not representative of the

attenuation in the earth.

j . - -

" - - - . . - . . I . . . .. . . . . . . .



/

63

Turning now to the augmented Anderson et al. (1965)

data, the results are shown in Table 5. Section (A)

shows the starting model which is identical to the Love

wave case for the same data. As in the previous case

the solution is oscillatory though stable when the

derivative dQR is not included (section (B)) and

unstable with respect to velocity when the derivative

is included (section (C)). No further conclusions should

be drawn from the Rayleigh wave analysis, especially

with regard to parameter values.

IV. CONCLUSION

Concerning the forward calculations, some inter-

esting features were noted for Rayleigh waves in high

loss material. It appears that, near the Airy phase,

the loss can significantly perturb mode shapes such

that the phase velocity can become multi-valued.

Degeneracy is avoided through distinct attenuation

factors for each mode. These observations are pre-

liminary and clearly more work needs to be done. Also,

a reliable means of determining group velocity for such

high loss material must be developed.

In the inverse problem investigations, probably

the most salient result is the incompatibility of the

Q data with the C data with respect to the velocity

structure. The incompatibility is expressed through
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the derivative ?QLR, its inclusion rendering the
Sis

system unstable in velocity and adversely affecting

the C residuals. The fact that the QL,R residuals

are much larger than the C residuals when the derivati:e

) QLR is neglected also indicates that conventionally

extracted surface wave Q data probably are in consider-

able error. The error is probably due to multi-path

propagation and affects the spectral modulus to a

greater degree than the phase (Pilant and Knopoff, 1964).

A method of accurate amplitude determination which seems

hopeful is that of phase-matched filters (Herrin and

Goforth, 1977) and future work will be undertaken along

these lines.

Another result which emerges from the inversion

investigations is the possible inadequacy of the over-

determined system. It appears that it would be most

difficult to derive a layering that is simultaneously

optimum for velocity and attenuation with both Love

and Rayleigh waves. To optimize the Love and Rayleigh

layering, a simultaneous inversion seems appropriate,

but this does not resolve the velocity and attenuation

layering problem. Some investigations are needed into

the development of a suitable underdetermined formu-

lation with its heavy dependence on starting models.

Another approach, if a model rather than local

averages is desired, might be the use of a suitable

tI
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non-linear algorithm such as the Marquardt-Levenberg

(Marquardt, 1963). Perhaps this algorithm would
tolerate a larger condition number (more layers) thereby

reducing the layering incompatibility.

I

~1

I 
_ _ _ _ _ _ _ __ _ _ _ __ _ _-
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CHAPTER 3

SUMMARY

Lately, albeit belatedly (Jeffreys, 1965), it

has become apparent that the earth can no longer be

treated as an elastic body. An essential point of this

work has been to establish that it is equally insuf-

ficient to treat it as a perturbation on an elastic

body.

An exact plane layer propagator matrix which

includes attenuation was presented. Application of

the formulation to continue an incident elastic wave

through a realistic soil structure to the earth's

surfacc, demonstrated the importance of energy

absorption in predicting ground motion. The minor

importance of converted waves was demonstrated and

it was further shown that lateral propagation, not

included in the formulation, can affect the duration

of motion. In addition to time domain analysis,

spectral ratios (surface to bedrock) show fair agree-

ment with model calculations.

Tn applying the matrix formulation to surface

wave eigenvalue and surface displacement calculations,

several results were discussed. It appears that

attenuation perturbs Rayleigh waves significantly more

than Love waves in a high loss structure. In par-

ticular, different mode phase velocities may cross
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near the Airy phase. Degeneracy is avoided, however,

through distinct quality factors.

Surface wave inversions for both velocity and

attenuation structures using an overdetermined system

revealed an incompatibility with respect to the

velocity structure between phase and attenuation data.

In particular inclusion of the derivative d QLR

with real data greptly degraded the velocity solution

compared to inversions using only the derivative

) C .. Poor attenuation solutions compared with

velocity solutions further indicates the inadequacy

of presently used attenuation data. Clearly a reliable

formulation is needed in order to extract meaningful

amplitude data from surface wave observations.

Of particular concern in dealing with an over-

determined system which also bears on the quality of

attenuation solutions, is the choice of layering.

This appears to be critical at least for the velocity

structure. The same layering may not be optimum for

both Love and Rayleigh waves in addition to both

velocity and attenuation structures.

The general conclusion of this thesis is that

amplitude information is most essential in furthering

our understanding of both the velocity and attenuation

structures of the earth. It has also been demonstrated

that realistic calculations with earth materials require
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simultaneous consideration of both velocity and

attenuation.

I
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TABLE 1

Starting model for both Love and Rayleigh wave

inversions. The model is based on a typical oceanic

structure (Knopoff and Chang, 1977). The low velocity

layer thickness was increased 20 km at the expense of

the layer below to aid convergence in the Love wave

inversions (Berkeley data).

thickness
V (km/sec) Vs(km/sec) (cgs) Q Q (km)

2.10 1.00 2.10 1200 500 1.0
6.41 3.70 3.07 1200 500 5.0
8.10 4.65 3.40 4500 2000 70.0
7.60 4.15 3.40 425 200 130.0
8.80 4.75 3.65 275 125 240.0
9.80 5.30 3.98 225 100 200.0

11.15 6.20 4.43 225 100 400.0
11.78 6.48 4.63 350 150 240.0
12.02 7.20 4.71 450 200 oN

Fluid layer included in Rayleigh calculation

1.50 0.00 1.00 1200 4.0
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TABLE 2

Results of Love wave inversions with Berkeley data:

A) starting model; B) inversion without the derivative

'QL with dispersion correction applied; C) inversionsL

without both the derivative - and dispersion
as

correction; D) inversion including both the derivative
-Q and dispersion correction. (&Qs . 'rs = standard

error; SSRQ, C = sum square residual QR,L' CR,L; (I),

(F) = initial, final; NI = number of iterations).

Layer QS 6Q Vs  6V s  SSRQ SSRC NI

1 500 1.00
2 500 3.70
3 2000 4.65
4 200 4.15

A 5 125 4.75
6 100 5.30
7 100 6.20
8 150 6.48
9 200 7.20

1 500 1.00
2 500 3.70
3 2289 20050 4.47 0.02 -4
4 165 129 4.32 0.03 (I) 6.0 7.OxlO- 31

B 5 144 100 4.62 0.02 (F) 2.0 4.0xlO -

6 84 142 5.37 0.08
7 80 159 6.77 0.10
8 126 85 7.02 0.07
9 200 7.20

1 500 1.00
2 500 3.70
3 2090 47413 4.47 0.06
4 196 368 4.29 0.06

C 5 124 46 4.55 0.02 (1) 6.0 2.OxlO0, 31
6 102 156 5.36 0.07 (F) 2.0 5.OxlO0
7 87 167 6.57 0.10
8 144 82 b.80 0.06

200 7.20
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TABLE 2 (continued)

Layer QsQ3 I v 'Va SSRQ SSRC NI

1 500 1.00
2 500 3.70
3 194 5854 4.42 0.00 4
4 198 127 4.44 0.00 (I) 6.0 7.0x10- 4  9

0 5 122 51 4.46 0.01 (F) 1.0 ?.OxlO-
6 97 56 5.70 0.08
7 99 22 6.23 0.10
8 151 13 6.52 0.08
9 200 7.20

.4_______
L .- - - ------- - -
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TABLE 3

Results of Love wave inversions with augmented

Anderson et al. (1965) data: A) starting model

(different Q. structure only); B) inversion without

d QLthe derivative M-s; C) inversion including the
is

derivative -. Dispersion corrections applied in

all cases.

Layer Qs Vs  aV s  SSRQ SSRC NI

1 500 1.00
2 500 3.70
3 500 4.65
4 100 4.15

A 5 100 4.75
6 100 5.30
7 100 6.20
8 100 6.48
9 200 7.20

1 500 1.00
2 500 3.70
3 423 3470 4.99 0.06
4 126 77 4.18 0.01 -3 31

B 5 88 124 4.43 0.04 (I) 14 3.0xlO- 3
6 108 393 5.66 0.11 (F) 12 4.OxlO 3
7 88 429 6.18 0.19
8 129 203 6.33 0.10
9 200 7.20

1 500 1.00
2 500 3.70
3 505 871 4.66 0.02
4 102 113 4.37 0.00

C 5 101 132 4.56 0.03 (I) 14 3.0xlO- 6
6 104 76 5.51 0.14 (F) 7 2.0x

O -3

7 104 40 5.94 0.13
8 156 21 6.21 0.14
9 200 94 7.20
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TABLE 4

Results of Rayleigh wave inversions with Berkeley
data: A) starting model; B) inversion without the
derivative .yR; C) inversion including the derivative

Dispersion corrections applied in all cases.

Layer 2s 6Qs Qo AQ V s 1 V V SSRQ SSRC N!

1 500 1200 0.00 1.522 500 1200 1.00 2.103 500 1200 3.70 6.414 2000 4500 4.65 8.10A 5 200 425 4.15 7.606 125 275 4.75 8.80
7 100 225 5.30 9.80a 100 225 6.20 11.159 150 350 6.48 11.7810 200 450 7.20 12.82
1 500 1328 18956 0.00 1.522 500 1329 152452 1.00 2.103 500 1304 40199 3.70 6.414 366 104 4604 314 4.21 0.01 7.333 5 172 6 394 79 4.08 0.01 7.49 (I) 4.0 7.0x10-6 69 5 322 35 4.99 0.02 9.24 (F) .4 5.OxlO- 247 595 436 197 24 4.66 0.05 8.628 224 37 66 3 6.73 0.06 12.oo9 27 10 229 1 7.32 0.08 13.3110 67 1 447 0 7.35 0.00 13.09

1 500 1098 5225 o.0o 1.522 500 1095 38155 1.00 2.103 500 1161 7962 3.70 6.414 745 217 4409 324 4.39 0.06 7.64C 5 126 8 538 62 3.80 0.03 6.96 (I) 4.0 7.0xIO-2  
246 77 13 322 22 5.73 O.C7 10.62 (F) .6 2.Ox10 2i7 230 1 4 229 31 4.47 0.13 8.26a 176 23 217 4 6.36 0.24 11.449 70 18 341 14 7.60 0.33 13.8210 194 1 449 0 8.28 0.10 14.74
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TABLE 5

Results of Ray1eigh wave inversions with augmiented

Anderson et a-l. (1965) data: A) starting model (samu

as Love wave in Table 4); B) inversion without thed~ri ati e QR
derivative --- ; C) inversion including the derivative

Dispersion corrections applied in all cases.

Layer QS 6qs QD 4Qo V AV s V SSRQ SSRC NI

1 500 1200 0.00 1.52
2 500 1200 1.00 2.10
3 500 1200 3.70 6.414 500 1200 4.65 8.10

A 5 100 225 4.15 7.60
6 100 225 4.75 8.80
7 100 225 5.30 9.803 100 225 6.20 11.15
9 150 350 6.48 11.78

10 200 450 7.20 12.82

1 500 1348 39573 0.00 1.522 500 1341 144248 1.00 2.10
3 500 982 67967 3.70 6.1I
4 017 4426 1040 7909 4.27 0.03 7.713 5 91 24 363 1082 4.66 0.03 8.53 (I) 8.0 2.xO10- 246 213 131 309 612 4.28 0.04 7.94 (F) 2.0 2.0xlO -
7 118 112 274 190 6.35 0.39 11.73
3 503 2106 141 221 5.48 0.31 9.86
9 103 79 242 i1C 7.63 1.47 13.88

10 67 6o 431 3 8.33 0.14 14.83
1 500 1175 94 0.00 1.52
2 500 1138 663 1.00 2.10
3 500 1122 254 3.70 6.41
4 !65 14 1339 14 4.23 0.09 7.36

C 5 84 6 296 9 4.74 0.01 8.69 (1) 8.0 2.0x10-2  246 196 15 366 3 11'14 0.06 7.66 (F) .1 3.Ox10-
7 149 11 364 3 6.28 0.23 11.62
8 325 3 68 1 5.75 0.16 10.33
9 112 6 211 1 5.73 0.36 10.51

10 6a 0 44l 0 8.15 0.02 14.52

_ _ - _ _ _ _ _ _ _ _ ~
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TABLE 6

Data used in inversions; A) Berkeley data;
B) augmented Anderson et al. (1966) data.

Love Rayleigh

A)

T QL C C cot T QR C C

409.6 88 5.609 5.695 384.0 96 5.895 5.976
341.3 99 5.349 5.417 341.3 108 5.504 5.569
292.6 111 5.177 5.234 307.2 116 5.229 5.285
256.0 120 5.055 5.105 279.3 124 5.026 5.075
227.6 128 4.964 5.008 256.0 129 4.869 4.914
204.8 135 4.894 4.934 236.3 131 4.746 4.788
186.2 141 4.838 4.875 219.4 131 4.646 4.686
170.7 145 4.792 4.827 204.8 130 4.563 4.602
157.5 150 4.755 4.787 192.0 128 4.493 4.531
146.3 156 4.723 4.753 -L80.7 124 4.433 4.472

136.5 161 4.696 4.725 170.7 120 4.382 4.420
128.0 166 4.674 4.701 161.7 117 4.336 4.374
120.5 169 4.654 4.679 153.6 114 4.296 4.334
113.8 174 4.637 4.662 146.3 112 4.259 4.297
107.8 177 4.622 4.646 139.6 ll 4.225 4.26,
102.4 181 4.609 4.632 133.6 110 4.194 4.231
97.5 185 4.598 4.619 128.0 110 4.165 4.202
93.1 189 4.588 4.609 122.9 111 4.138 4.174
89.0 192 4.579 4.599 118.2 113 4.112 4.146
85.3 196 4.572 4.592 113.8 116 4.088 4.120

81.9 198 4.565 4.584 109.7 120 4.064 4.095
78.8 201 4.559 4.577 105.9 124 4.042 4.071
75.3 203 4.553 4.571 102.4 130 4.020 4.048
73.1 206 4.548 4.565 99.1 136 3.999 4.025
70.6 208 4.543 4.560 96.0 143 3.979 4.004
68.3 209 4.538 4.555 93.1 149 3.961 3.983
66.1 211 4.534 4.549 90.4 156 3.942 3.964
64.0 213 4.529 4.545 87.8 164 3.925 3.945
62.1 216 4.525 4.540 85.3 172 3.909 3.928
60.2 217 4.520 4.535 83.0 180 3.894 3.912
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TABLE 6 (continued)

T QL C CT Q C C

58.5 222 4.516 4.530 80.8 187 3.880 3.98756.9 227 4.511 4.525 78.7 193 3.867 3.88355.4 233 4.507 4.521 76.8 200 3.855 3.87153.9 237 4.503 4,5116 71.4 220 3.827 3.84152.5 244 4.499 4.511 68.3 234 3.814 3.82751.2 250 4.495 4.507 65.4 243 3.806 3.81849.9 259 4.491 4.503 62.7 253 3.802 3.81348.8 271 4.488 4,499 59.1 266 3.801 3.81147.6 281 4.485 4.495 56.9 270 3.803 3.81346.6 294 4.482 4.492 53.9 280 3.808 3.817
45.5 311 4.497 4.489 51.2 282 3.812 3.82144.5 329 4.478 4.486 48.8 275 3.814 3.82343.6 350 4.476 4.484 46.5 280 3.812 3.82042.7 367 4.475 4.482 44.5 283 3.806 3.81541.8 375 4.474 4.481 42.7 288 3.799 3.80740.9 380 4.473 4.480 40.4 279 3.789 3.79740.2 386 4.472 4.479 36.1 320 3.782 3.78834.7 466 4.465 4.470 29.3 321 3.823 3.78830.1 497 4.452 4.457 25.2 369 3.737 3.73726.6 547 4.455 4.459

B)

400.0 112 5.500 5.565 400.O 138 5,985 6.042360.0 i0 5.380 5.443 370.4 147 5.760 5.811333.3 113 5:307 5.366 333.3 189 5.548 5.581312.5 114 5.243 5.300 312.5 170 5.383 5.422294.1 115 5.185 5.240 294.1 156 5.251 5.292277.8 113 5.134 5.189 277.8 157 5.132 5.171263.2 112 5.088 5.142 263.2 149 5.012 5.052250.0 113 5.046 5.098 250.2 142 4.917 4,958238.1 114 5.008 5.059 238.1 144 4.824 4.863227.3 116 4.972 5.021 227.3 138 4,754 4.793

217.4 115 4.940 4.988 217.4 140 4.674 4.712208.3 115 4.911 4.959 208.3 136 4.616 4.654200.0 116 4.885 4.931 200.0 137 4.569 4.606192.3 117 4.861 4.906 192.3 134 4.517 4.554185.2 117 4.840 4.885 185.2 136 4.469 4.504178.6 118 4.821 4.865 178.6 137 4.436 4.470172.4 118 4.805 4.848 172.4 133 4.407 4.441166.7 119 4-790 4.332 166.7 138 4.374 4.407161.3 216 4.776 4.519 161.3 140 4.348 4.370156.2 117 4.761 4.803 156.2 141 4.319 4.350

- 1j._ _ _ _ _ _ _ _ _ _ _ _ _ _ __ __ _ _ _
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TABLE 6 (continued)

T QL C C T QR C C

151.5 116 4.748 4.789 151.5 142 4.299 4.329
125.0 101 4.690 4.734 125.0 132 4.250 4.281
113.6 102 4.673 4.715 113.6 140 4.196 4.224
104.2 106 4.662 4.701 104.2 145 4.173 4.199
96.2 113 4.652 4.688 96.2 139 4.167 4.193
89.3 120 4.650 4.683 89.3 135 4.159 4.185
83.3 122 4.627 4.658 83.3 129 4.167 4.194
78.1 118 4.613 4.644 78.1 128 4.169 4.195
73.5 106 4.603 4.637 73.5 128 4.160 4.185
69.4 100 4.595 4.630 69.4 127 4.170 4.195

65.8 9: 4.588 4.624 65.8 125 4.163 4.188
62.5 95 4.577 4.612 62.5 121 4.159 4.184
59.5 95 4.558 4.592 59.5 117 4.155 4.180
56.8 96 4.539 4.572 56.8 115 4.150 4.175
54.3 98 4.522 4.554 54.3 116 4.145 4.169
52.1 101 4.519 4.549 51.2 118 4.141 4.164
50.0 105 4.498 4.526 50.0 122 4.136 4.158
39.6 164 4.490 4.506 39.3 151 3.985 4.000
36.4 246 4.480 4.490 33.1 170 3.988 4.000
24.9 492 4.460 4.464 24.6 166 3.980 3.990
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Fig. 7 a. Plots of the C pulse sp'-ctrums. Dashed curve
is a noise sample windowed leading the pulse.
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I. INVERSION OF LOVE WAVE DATA FOR VELOCITY

AND ANELASTICITY USING EXACT KERNELS

by

Walter Silva
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Berkeley, California, U.S.A.

ABSTRACT

The general problem of inverting Love wave

dispersion and amplitude data to obtain a velocity

and Qs structure is considered. A formulation is used

which incorporates attenuation into the Haskell-Thompson

matrix method in an exact manner and thus retains the

inherent non-linearity in the anelasticity. The

resulting exact inversion kernels allow simultaneous

inversion for velocity and intrinsic attenuation

4 parameters. The method is applied to synthetic data

which allows a comparison to be made with inexact

kernels. The results indicate that the use of inexact

kernels may introduce spurious oscillations into the

Qs structure and that a simultaneous inversion can be

more stable than inverting for velocity alone.
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INTRODUCTION

Surface waves provide an invaluable tool in the

study of the earth's interior. Their use has mainly

been in dispersion studies to infer such elastic para-

meters as velocity and density in structures ranging

from soils to the lower mantle. However, in recent

years there has been an increasing interest in the

anelastic parameters of the earth. This type of in-

vestigation can supply valuable information concerning

material properties, structures, and temperature dis-

tributions in the earth. Of most recent interest is

the frequency dependence and coupling between intrinsic

velocity and attenuation. With this in mind, it now

becomes important to have more exact methods of in-

verting the data for both velocity and attenuation if

any meaningful interpretation is to result from such

investigations.

A formulation is presented here using an exact

generalization of the Haskell-Thompson matrix method

(Haskell, 1953; Silva, 1976b) to include anelasticity

in inverting Love wave dispersion and attenuation data

for both layer velocity and attenuation. Synthetic

data are used to allow a comparison to be made between

the exact formulation and the approximate linear

theory of Anderson and Archambeau (1964). A somewhat

unstable problem is considered in order to demonstrate
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the differences and to represent more accurately actual

inversions, since surface wave attenuation data are

typically sparse and of limited accuracy and bandwidth.

FORMULAT ION

In a recent paper (Silva, 1976b) a theory was

presented for introducing, in an exact manner, anelastic

attenuation into a Haskell-Thompson formulation. This

is applied here to Love waves. The earlier treatment

considered plane P and SV waves propagated in a layered

linear viscoelastic half-space. In particular,

attenuating (or elastic) layers over an elastic half-

space were considered. However, due to the boundary

conditions, the component of attenuation parallel to

the interface Ax (which describes the spatial decay of

the surface wave) is constrained to be continuous along

with the horizontal wave number Px' This means that

each layer, along with the half-space, must be attenu-

ating.

Define P and A as
x x

-+ V ' 1 + Q L-  
(i)

Px C Ax c (c ' 1=+ T 1 + QL21

with c the Love wave phase velocity and where Ax has

been defined in this rorm to accommodate a Love wave

__ _ _ __ __ _ _ _ _
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phase quality factor QL (Brune, 1962). The attenu-

ation then has introduced another eigenvalue QL -1 to

be determined as a function of period. In the appli-

cation to surface waves, equation (18) of Silva (1976b)

(considering now SH only) for the complex vertical

component K of the complex wave number K must bez

modified to the following:

Kz K2 - Kx2.?2 R > R {KX? (2)

-i gK2 K2? 2 R K? <R KX?

where

+2 KK 2  + Ki2  2
+ + Qs- 2

and

K =P - iA x K = P - iAKx Px x z z z

with Vs and Qs the homogeneous shear wave velocity and

specific attenuation factor, respectively. The charac-

teristic equation is then obtained in the usual way

(Haskell, 1953) and Kx found for each period using

Mueller's method (Conte and Debor, 1972). In Figure 1

are shown C, QL' and U, the group velocity, for the

crustal model of Table 1 which represents the error

free data. Group velocity is calculated using a

____________



110

00

0

(U

00 -

4j 0

C.)
0

L.) 0 E-4

0

LO 0 LO 4-' 0

0

fl

CU



variational method applied to dissipative media

(Silva, 1976a).

INVERSION

Since the development above represents an exact

forward solution, the non-linearity of both the shear

velocity and intrinsic attenuation is retained. In

order then to invert the phase velocity and attenuation

data for Vs and Qs a Taylor series approximation is

made, keeping only the linear terms, and iterations

performed. We then have:

V s Qs s

(3)

S ) QL A QL
LA V + Qs s

where Sc and £QL represent the difference between the

observed phase velocity and Love wave attenuation

parameters at each period and those calculated from

an appropriately close starting model. The derivatives

are calculated in the following way: the first ,

is an analytical derivative using an extension of

Rayleigh's principle to dissipative media (Silva,

1976a), while the remaining are calculated numerically,

using a 10% parameter change. Plots of the derivative

versus period for each layer are shown in Figures 2

through 5. The plots contain a number of interesting

I7
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features. Figure 2 shows the derivative d and should,Vsd QL01s
be compared with ; (Figure 5) which confirms the

s
relation,

dc c Qs 2  d QL (4)
Vs v s  2 Qs(4

which is derived as equation (A2) in Appendix 4. This

is also the relation, applied rather to inverse Q,

used in the linearized theory (Anderson and Archambeau,

1964). The most revealing plots are those of

(Figure 3) and - (Figure 4) which confirm equation
( Vs

(A3) of the Appendix 4:

c . c s  6"L5
Q s 4 Q s 2 QL_2 Vs

In Appendix 4 it is argued that in equations such as

(3) the term involving is comparable to those
d c d eLs

involving and - . This demonstrates the

large dependence of surface wave amplitudes on the

velocity structure in plane layer models and strongly

suggests that the derivative -QL will play anPVs

important part in any inversion scheme. Also note the

lack of similarity of the curves in Figures 3 and 4

with those in Figures 2 and 5 which indicates that

they contain a different distributioii of information

and thus their inclusion should add to the stability

of the inversion process.

A ____
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TESTS WITH SYNTHETIC DATA

The crustal model shown in Table 1 was used as

a layer over half-space in a previous work (Harkrider,

1968) to demonstrate the results of a variational

formulation for surface waves. The 40 km thick crust

was subdivided here into four identical 10 km thick

layers in order to allow the inversion process greater

freedom in parameter adjustment. Although this may

seem excessive in order to exaggerate the effect, one

should realize that the data here are error free and

the real model is known. The period range is 120 to 5

seconds with 5 second intervals and the non-geometrical

dispersion due to dissipation (Burton, 1977) is

neglected.

In order to compare the linearized inversion

theory (Anderson and Archambeau, 1964) with the exact

L formulation, both inversions were carried out on the

same data (Figure 1) generated by the exact theory

using the crustal model of Table 1. Both inversions

used the method of singular value decomposition

(Lancsoz, 1961) with the non-linear appropriately

scaled (Wiggins, 1972) in order to produce a consistent

comparison. The results of the inversions are shown

in Table 2.

The first section, A, shows the results of the

linear theory (Anderson and Archambeau, 1964) using
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the exact velocity structure. The inversion results

in a highly oscillating Qs structure even with error

free data and an exact velocity structure. The

oscillations represent up to a 30% error, yet the

forward problem agrees with the exact QL in Figure 1

to well within 0.5%.

In section B is the result of simultaneously

inverting for Vs and Qs using the exact treatment.

The Qs structure was perturbed in an oscillating

manner towards the linear solution to determine

whether the iterations would move in this direction

or towards the actual model. It is important to stress

that the linear solution represents a global minimum

for that method and a local minimum for the exact

formulation. Considering the results in section B,

it appears that the overall oscillations in Qs have

decreased and the velocity structure has been approx-

imately recovered. This is really quite satisfactory

because: 1) the inversion is extracting twice as many

parameters as for either Qs or Vs alone and, 2) from

the derivative QL (Figure 4) it is apparent thatthe eriatie Vs

phase and amplitude data are certainly not independent.

The stability here is due to the derivative -QL since

any attempt to invert with simply the derivatives

$c d Qs diverges wildly in both and Qs

Section C shows a standard V s-only inversion
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using simply the analytical derivative 12_ (Figure12Vs

2). Since its final velocity model (smallest SSRC

for a suite of iterations) is not as close as the full

inversion of section B for the same starting velocity

model, the amplitude data actually adds resolution and

stability to the velocity inversion.

An obvious result that emerges from this study is

that attempting to resolve a number of layers with data

of limited bandwidth can result in an ill-conditioned

system. This fact, coupled with an approximate kernel,

leads to an oscillating solution which is far from the

exact model. The exact formulation leads to a result

which is closer to the actual model, but the con-

vergence is slow. One approach to this problem is

to use more sophisticated inversion schemes (Der

et al., 1970; Jackson, 1972; Wiggins, 1972) which

generally achieve better stability at the price of

decreased resolution.

CONCLUSION

An exact formulation is used in calculating the

dispersion and attenuation for Love waves in a layered

linear viscoelastic half-space. The exact method is

used to demonstrate the instability inherent in using

the approximate linear inversion kernel (Anderson and

Archambeau, 1964). Although the approximate theory

agrees well within 0.5% of the exact, in a forward

4 -4, _ __ __ _ __ __-__ __ _ __ ___'_ _ _ __ _
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sense, the inversion can result in alternating high and

low Q layers where none existed. The reason for this

instability is found in the neglect of the derivative

d . It is thought that this result strongly favors

simultaneous inversions for both velocity and atten-

uation of surface waves which may result in better

resolution for both velocity and attenuation. The use

of dispersion data only may be the source of discrep-

ancies in the inversion of surface wave data (McEvilly,

1964) which are sometimes interpreted in terms of

anisotropy. Studies currently in progress involve the

simultaneous inversion of both Love and Rayleigh wave

data using exact kernels and hopefully will further

resolve this matter.

In applying this formulation to observational data

two points must be emphasized. First the phase data

must be corrected for anelastic dispersion as dis-

cussed by Kanamori and Anderson (1977). One approach

is to correct all of the data to a convenient reference

frequency before applying the inverse method. The

second consideration is the effects on the velocity

and Qs structure due to errors in both phase and

amplitude measurements. The most general conclusion

is that the resolution will be reduced (Wiggins, 1972).

However, since the relative errors in phase and amp-

litude measurements are very different, the coupling

between the errors and the model parameter requires a

*1 __________.. ... _____. . .. ..
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very detailed treatment (Der, 1972), and is not within

the scope of the present paper. In general though,

the magnitude of the Q term mandates accurate

amplitude data if it is to contribute significant

information to the inversion process.

4 _ _ _ _ _ _ __ _ _ _ _ _ _ _
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TABLE 1

A standard model for a crust over a mantle

(Harkrider, 1968). Identical layers were introduced

into the crust to permit greater freedom in the

inversion process.

Vs(km/sec) (cgs) Qs thickness(km)

3.60 2.80 100 10

3.60 2.80 100 10

3.60 2.80 100 10

3.60 2.80 100 10

4.50 3.30 100

4o-..•: .

------ i i -- - -- a -
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TABLE 2

Results of inversion methods using data generated

from model of Table 1: A) linear theory inversion of

QS only; B) exact theory inversion for Qs and Vs8 C)

inversion for Vs using only the derivative
-c- . (SSRQLs ~; Vs L#

sum square residuals QL: SSRC, sum square residuals

c; NI, number of iterations.)

Initial Final

Layer Qs Vs SRQ SSRC Qs Vs SSRQ SSRC Ni

A i 100 3.60 122 3.60 ).xlO - 3  2.xlO "1 2  0

2 100 3.60 74 3.60
3 100 3,60 130 3.60

100 3.50 94 3.60
5 100 4.50 100 4.50

B 3 119 3.20 .08 0.1 100 3.59 9.x10 1 0  1.xlO - 9  13

2 90 3.20 98 3.63
3 110 3.20 101 3.57
4 90 3.20 100 3.62
5 100 4.50 100 4.50

C 1 100 3.20 .07 0.1 100 3.53 3.xlO- 3  l.x10-4  11

2 100 3.20 100 3.46
3 100 3.20 100 4.28
4 100 3.20 100 2.98
5 100 4.50 100 4.50

I

4 _____ _______________
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II. INVERSION OF RAYLEIGH WAVE DATA FOR VELOCITY AND

ANELASTICITY USING EXACT KERNELS

The following treatment will be precisely that of

the previous except Rayleigh waves will be considered.

The formulation again is that of the Haskell-Thompson

method extended to include anelastic attenuation

(Silva, 1976b) and applied to Rayleigh waves. The phase

quality factor (QR) is defined exactly as in section I.

An additional quality factor QU is introduced here and

is termed the group quality factor. It is defined by

the following equation C QR = U QU (Brune, 1962). It

was neglected in the Love wave treatment because for

a constant Qs structure QU for Love waves is frequency

independent and QU = Qs. This holds for Rayleigh waves

only if Qs = Qp = constant and then QU = Qp = Qs The

structure considered is identical to that of the pre-

vious treatment (Table 1) with a constant Qp = 200

structure added for P-wave attenuation.

In Figure 1 is shown C, U, QU and QR for the

crustal model and represents the error free data. The

group velocity, U, is calculated using a variational

f method applied to dissipative media (Ap)'endix 3).

In Figure 2 is shown the modulus and phasx of the

surface displacement ratio Uo for the attenuating
Wo

model. The phase is not very different from the

elastic (900) and the elastic modulus is within 1%

of the attenuating model.

A ______________ ____
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INVERSION

As in the Love wave inversion, the Taylor series

is truncated past the linear term with C and QR data

inverted for Vs and Qs
o The phase quality factor is

favored as an inversion parameter rather than Q since

its use is not contaminated by errors in determining

the group velocity. The derivatives are calculated

numerically using a 5% parameter change. A 10%

parameter change was found to be optimum in terms of

stability and speed of converbence; however, mode

tracking proved to be too difficult for this structure

and period range and therefore mandated a smaller

perturbation (plots are for a 10% change).

Considering now the plots of the derivatives

(Figures 3-14) we can note some interesting features

which give insight into the controlling features of

surface wave inversions. In Figure 3 is shown the

derivative dc The significant features are the

degree of independence of the curves and the presence

of peaks. Comparing these derivatives with those for

Love waves (section A, Figure 2) it is apparent that

the Rayleigh phase velocity has much more specific

information with respect to material shear velocity

for this structure and period range. This observation

is substantiated by comparing the shear velocity only

inversions for Love and for Rayleigh waves (Love;

.7 _ _ _ _ _ __ _ _ _ _ _ _ _ _
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section 1, Table 2; Rayleigh; Table 1).

Layer Love Exact Model Rayleigh*

1 3.53 km/sec 3.60 km/sec 3.60 km/sec
2 3.46 3.60 3.60
3 4.28 3.60 3.6o
4 2.98 3.60 3.60
5 4.50 4.50 4.50

It is quite obvious then that in this case the shape

of the derivatives give an excellent indication of

inversion effectiveness. A look at the next plot

(Oc , Figure 4) indicates that considerable dif-

ficulty would be encountered in trying to extract the

four layer P-wave velocities. Here a reduction in

layering is in order and one can be guided in layer

reduction by the curves. However, the magnitude is

also of importance because the c derivatives are
competing with the tics derivatives and are roughly

an order of magnitude smaller. This would result in

putting most of the adjustment in the shear velocity

structure and therefore excludes simultaneous deter-

mination of both P and SV velocity structures.

In Figure 5 is shown the first of the attenuation

derivatives. As expected, it is small (0(10-7))

indicating a second order effect of attenuat -. on

phase velocity. An interesting feature is the

* Extracted from given tables.

_____________,_____
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appearance now of some double peaks and greatly in-

creased structure. However, the peaks here are less

separated than those of d c (Figure 3). Also,Qs s d QR
comparing c (Figure 5) with C2- (Figure 9) it

is apparent that the relationship (Appendix 4)

dQR Q QR2 Qs2  2Ts -- c Vs Qs

holds.

The next plot, 4.2Qo- (Figure 6), again shows the

lack of specificity of Rayleigh waves to P-wave

parameters. We may again invoke the previous relation-

ship and apply it to the P-wave parameters citing

- -QR (Figure 10):dvp

PQR 
4 QR 2 pQ p2

d QR
In Figure 7, d , we begin with the QR deriv-

atives. The similarity of this plot with k (Figure

3) is predicted by the relation (Appendix 4)

Vs QS2  d Qs

and by an approximate theory of surface wave prop-

agation in anelastic media (Anderson and Archambeau,
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1964; where now C and V are elastic velocities ands

results in a linear inversion for attenuation parameters).

The shape of these curves indicates that with the

correct velocity structure and correct Qp structure,

reasonable success should be expected in a Qs inver-

sion. The correct Vp, Vs , and Qp structure is required

in order that the correct QR is obtained in derivative

calculations.

The next plot, (Figure 8), again shows

relatively little structure and is indicative of P

parameter insensitivity in Rayleigh waves. It can be

compared with (Figure 4).
4p d tRFigure 9 shows the derivative T . Again, the

double peak structure is present (as earlier compared

with c in Figure 5) and we have increased structure

at the cost of decreased independence. The final QR
= d QR

derivative, Qp (Figure 10), was earlier compared

with (Figure 6) and further shows little hope of a

V inversion simultaneously with Vs, as -- is an

order of magnitude smaller than QR and shows much

less independence. This comparison is analogous to

the s and -q-p comparison. An interesting idea

might be a mixed inversion. That is, use C for V

a Q
and QR for V -since appears to be less linearly

) c Arp; R
dependent than and conversely appears to

be more linearly dependent than . Future work

along these lines is needed.

'4 _ _ _ ___ _
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The final plots (Figures 11-14) show the change

in modulus and phase of the surface displacement ratios

Uo/W o for a change in Vs and Qs" The derivatives show

that both the modulus and phase are much more sensitive

to the velocity structure than the Qs structure for

this model. They also indicate that neither con-

tributes information independent of C or QR#

TESTS WITH SYNTHETIC DATA

As in the previous treatment of Love wres, the

40 km thick continental crust was subdivided into

four identical layers (section 1, Table 1). Both

the crust and uppermantle were assumed Poisson solids

for P-wave velocities which are kept fixed. Figure

1 shows the synthetic data (C and QR) with the same

period range and number of data as in the Love wave

inversion (120 to 5 seconds with 5 second intervals).

In Table 1 are shown the results of both the

linearized inversion (Anderson and Archambeau, 1964)

and the exact theory (both use singular value de-

composition with the non-linear appropriately scaled

(Wiggins, 1972)).

The first section, A, shows the results of the

linear inversion for Qs using the exact velocity

structure. The Qs structure is far from the true

structure (Qs = 100 all layers) and the oscillations

"4 __ _________

"I _ __ ___
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are similar to linearized Love wave inversion (Table 2,

section A). Since the error here, as much as 39%, is

greater than the linearized Love wave inversion, part

of the blame must be put on the approximate data

kernels. That is, the partial derivatives used in the

linearized Qs inversion are numerically calculated for

Rayleigh waves and are analytical derivatives for Love

waves. The numerical derivatives in the linear

Rayleigh formulation yield approximately a 5% error

in the forward calculation. However, the error may

be significantly larger for inverse operations. A

simple calculation may serve to point this out as it

indicates that small errors in inversions kernels can

be magnified especially in large condition number

systems.

Let;

D = (L + e)M = L(I + L-le)M

where D is some data vector, L some data kernel with

error terms e, and ?I the model. Now if e is say 5%

of L in some norm, then D will have an error of the

same magnitude. On the other hand, inverting the

system we have

M = (I + L-le) -I L-1 D.

Now if we let M' = L-1 D be the real model (error

free) then

M (I + L-le) -I M'

£4__ __________________
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or

MZ (I - L-le)M', IL-lell<l

then the model we get (M) can differ from the true

model (M') by more than 5% even though L-1 is well

behaved (i.e., IL-le 11<1). This should discourage

non-iterative inversions with approximate kernels.

This error magnification is probably contributing

to the very poor inversion results of the linear

theory and should further underscore the need for

extreme caution in evaluating its results. However,

the comparison between the linear approximation and

the exact theory is not unjust because the error

certainly cannot account for all of the discrepancy

and the same numerical derivatives are used in the

exact formulation (future work will investigate the

effect of analytical derivatives,.

In section B are shown the results of the exact

theory inversion for V and Q with an exact Q

structure (held constant). The results are quite

satisfactory as both the Vs and Q structures have

been recovered. Indeed, the results are superior

to the Love wave inversion as was expected from the

analysis of the derivative plots. The velocity only

inversion is shown in section C, shows good convergence,

and is far superior to the Love wave velocity inversion.

It appears then, that for this model the amplitude data

___ ___ __ _____ __11______ _-_........
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is not essential in the velocity inversion. Perhaps

a further perturbed starting structure would require

the amplitude data to stabilize the velocity inversion.

This was not attempted since more than a 10 percent

change is pushing the Taylor approximation and it

was desirable to keep the same starting models for

both Rayleigh and Love wave inversion.

In order to investigate the effect of Qp on the

inversion, it was fixed at the wrong value (250) and
the Vs and Qs inversion repeated. The results are

shown in section D and are somewhat surprising. One

might naively assume the effect of Qp to be small

since it is twice Qs. However, as section D shows,

fixing it at the wrong value (and with only a 25

percent discrepancy) has a disasterous effect on Qs
dQR

and affects V through . In light of these

results, Qp was allowed to float using the same

starting model as section D. The hope is that this

will release the inversion and allow it to converge

to a closer Qs and Vs structure. The results are

shown in section E and indicate that this is indeed

the case as both the Qs and Vs structures have essent-

ially been recovered while the crustal Qp has moved

the correct way. An attempt at using the linear

theory for a simultaneous inversion for Q s and Qp

yielded extremely poor values for both and is not

shown.

,- _.
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CONCLUSION

Tests with synthetic data in inverting Rayleigh

wave phase and attenuation data for velocity and

anelasticity indicate a greater stability and reli-

ability for an exact formulation over the appropriate

linear formulation (Anderson and Archambeau, 1964).

In addition, when inverting for anelasticity Q has

a first order effect and must be considered as an

inversion parameter along with Qs.
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TABLE 1

Results of inversion methods using data generated

from model of Table 1 (Section A): A) linear theory

inversion for Qs only; B) exact theory inversion for

Qs and V ; C) inversion for Vs using only the deriv-

ative -0-' ; D) inversion for V and Q with wrong Q

E) inversion for Vs , Qs* and Q . (SSRQ, sum square

residuals QR: SSRC, sum square residuals C; NI,

number of iterations in a suite of 20.)

Initial Final

Layer Qp Q s V5  SSRQ SSRC Qp Qs V5  SSRQ SSRC NI

A 1 3.60 88 3.60
2 3.60 83 3.60
3 3.60 120 3.60 0
4 3.60 61 3.60
5 4.50 86 4.50

B 1 200 110 3.20 200 100 3.60
2 200 90 3.20 200 99 3.60
3 200 110 3.20 l.x1O"7 7.xlO -2  200 100 3.60 3.x0 9 2.xlO-O 7
4 2C0 90 3.20 200 99 3.60
5 2"0 100 4'.50 200 100 4.50

C 1 3.20 3.6o
1 2 3.20 2 3.60

3 3.20 7.xlO 3.60 2.xlO -  6
4 3.20 3.60
5 4.50 4.50

D 1 250 110 3.20 250 98 3.61
2 250 90 3.20 7 2 250 98 3.55 -6 -6
3 250 110 3.20 8.xlO 7.xlO -  250 104 3.69 9.xlO 3.xlO 6
4 250 90 3.20 250 90 3.54
5 250 100 L.50 250 98 4.50

E 1 228 99 3.60
2 227 99 3.59

S-me as (D) 229 99 3.60 1.X10 - 7.xlO 9  13
4 22? 97 3.59
5 274 98 '".50
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Summary

A method is presented which allows the variational formulation for
elastic surface waves to be extended to the case of dissipative media. With
this formulation, correct to second order in the loss, Rayleigh's principle
can be applied to perturbations of the Rayleigh quotient to yield group
velocity without numerical differentiation. Other perturbations can be used
to find the change in phase or group velocity due to changes in loss,
density, or moduli.

Introduction

The use of Rayleigh's principle is of considerable importance in surface-wave
calculations. As suggested by Meissner (1926) and Jeffreys (1959, 1961) and amended
by Harkrider (1968) it has replaced numerical methods with an exact formulation for
calculating group velocities. In addition, Rayleigh's principle may be used to
calculate the effect on the velocity dispersion due to small perturbations in the elastic
parameters. This type of information is, of course, most essential in solving inverse
problems.

However, in its usual form, Rayleigh's principle is inadequate for dissipative
systems since its use requires equating the time average kinetic and potential energies.
This result follows from the virial theorem and imposes a vanishing Lagrangian for
the system.

The purpose of the following development is to construct a Lagrangian for a
non-conservative system which vanishes and then apply Rayleigh's principle to the
resulting equation. This can be done by writing a Lagrangian for two systems
operating simultaneously with one losing energy as the other gains energy, so that the
total energy is conserved. An estimate of the error introduced in combining the
systems is given in the Appendix.

The development will be for Love waves in order to simplify the equations. The
extension to Rayleigh waves follows naturally.

Formulation

As a working example, we shall consider Love waves propagated along the

445
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surface of a vertically heterogenous (layered) attenuating half space. The usual
equation to he satisfied in each layer is

Pit Vu+ tV4f = pi {

where u is the transverse particle displacement, p is the medium density, and 11R and
pi, are the conservative and non-conservative Lam6 parameters, respectively, which
are in general frequency dependent (Borcherdt 1971; Silva 1976). We take as the

is v(z) exp (- A., x) cos (P x- -cot) (2)

where P, is the spatial frequency such that the horizontal anelastic phase velocity c
is given by c = co/P and A. is the horizontal attenuation factor. Application of the
usual boundary conditions results in the continuity of both P, and A. They then
represent eigenvalues to be determined for propagating modes. The attenuation factor
may be defined as

A, [ +,](I+QCa - ' 2) M3)
A c I+'/('+QL_2) I 2cQ1.

where QL represents the effective quality factor for the spatial decay of the surface
wave. Equation (3) can then be interpreted as the projection of the attenuation in the
propagation direction. The shear quality factor Q, is defined as

lI AE p,
2i n E , t

where AE is the energy lost and E the peak energy stored, both per cycle.
At this point we introduce the mirror image system which is taken to exist

simultaneously with the original field. Since this field gains energy exactly as the first
loses energy, we can write the field equation as

ti 1 V 2 u+ - P V2ii+ = pf+ (5)

with the corresponding solution,

u = t'(:) exp ( i A) Cos (P, X - WI). (6)

It is seen then that the only difference in the systems is in the sign of Pl. This then
affects only the sign of the attenuation constant and yields the same spatial
frequencies as equation (2).

In order to construct a conservative Lagrangian density we make use of the
following form (Morse & Feshbach 1953; Moisewitsch 1966).

= [ CU

This yields an invariant Lagrangian, since u' increases in amplitude exactly as u
dcreases.
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The corresponding Euler-Lagrange equations become:
0.0 d D-Y d a-Y d o-Z
011 dt -04 dx T ut d- T uJ . (8)

2- d O.- d O2' d Of =0
lu dt O dx Out o dz Ou +

Direct substitution of equation (7) into equation (8) yields equations (1) and (5).
We now substitute the solutions (equations (2) and (6)) into equation (7) and then space-
time integrate the Lagrangian density to yield the Lagrangian of the combined system.
In the time and x integrations, where periodic solutions were assumed, the integrations
result simply in averages.

Defining L as the Lagrangian of the combined system, we can write:

L = (0
2 

1 pvv + dz- (P 2 - A .2 ) 1 u, vv+ dz- SpR v'v + ' dz. (9)

The first term is interpreted as a time average kinetic energy and the remaining
two terms as a time average potential energy. This allows the application of the
virial theorem (Moisewitsch 1966) which states that for a conservative system which is
quadratic in its potential energy the time average potential and kinetic energies are
equal.

We may then put equation (9) onto the form of the Rayleigh quotient:
c02o 11. (p.2 - A.2)1. +1, (10)

with the energy integrals

1o = df pIv = I PR V d:; 12 J, ,,,+' z

Application of Rayleigh's principle

Rayleigh's principle states that for a given Rayleigh quotient, as in equation (10),
any eigenvectors, correct to first order, will yield the eigenva'he appropriate to that
mode correct to second order. This can be stated more precisely by considering
the perturbation to equation (10) due to a small change in v, and , +.

o 2 = (p2 -A.2) 1 t +61(iI)

where the perturbed energy integrals are given by:

,o = Ip,(cv4 )dz; ,tl = I. PR6(vv+)dz; ,12 = f.a65(v'v") dz.

Making use of equation (i1) the new eigenvalues corrrect to second order may be
calculated.

(o0+6o))2 [Io+blo] = [(P"+6Pj)2 -(A,+6A) 2 ]. V, +6SI ]+[V2+612]. (12)

Using equations (10) and (11) and neglecting second order in small quantities
equation (12) becomes:

9w, = (P6P.,-A A,)I,. (13)

and using c = o/P, for phase velocity, U = 6u/6P, for group velocity, we can rewrite
equatior (13) in the following form:

U [ _ _! 6A, 1,(

At this point Rayleigh's principle may again be invoked and the elastic eigenvectors
may be used in the calculation of the energy integrals.

] - • ,- . , .. . ji
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In order to estimate the perturbation in A, (6A,) due to a frequency perturbation, we

use equation (3) and neglect the term containing 6QL/6o. This is correct to at least
second order in QL- I since QL is a slowly varying function of frequency and the term has
a coefficient of QL 2 . (It can, in fact, be estimated using a difference scheme since
QL(wU) is known from the eigenvalues.)

With this approximation equation (14) becomes

[ 2 1'
U= L+/(i+QL-2) 

c10  (15)

which reduces to the usual elastic expression as QL -* co and v + --, v. This expression,
which is an approximation correct to at least second order in the loss, is thought to be
preferable to numerical differt.ntiation of the phase dispersion curve.

In order to calculate the effect on Q. due to a small change in Q, we must first find an
expression for p. in terms of rs and Qs. This can be done by assuming a solution of
equation (I) of the form

u = uo exp(-i(K.X-o )) (16)

where K = P-iA (Borcherdt 193), Substituting this into equation (1), and defining
the shear velocity , as that of homogeneous waves (P parallel to A) we can write:

PR = P-- +,( +Q- ]. (17)

By substituting equation (17) into I, and 12 we are able to explicitly calculate the
change in the Love wave quality factor 6 QL due to a change 6Q, in the energy integrals.
We can write the entire perturbed Rayleigh quotient at constant frequency as:
(1,'[i0 +610] = [(P +6 P.,)' - (A, +,6A.,)1]. 11, +(5, +60S 1, 1

+[2+2+6SQSJI] (18)
where we have defined

s 2  +_,/(I + Q S- 2) d6 S = W KV  IT+' +. Q S
2 Q~

(19)!Ls 2 + r + '(I +QI_

'QS'2 = fP c [ l+/(l +Qs - 2  Iz.

Using equations (10) and (11) and neglecting second-order terms in small
quantities we can reduce equation (18) to:

0 = 2 [P 6P.- A, 5A ] , + [Px - A 21 QoS It +6Qs I2. (20)

Writing equation (3) as

A.=PJf(QL);.f(QL) + [- 0 1 +1(1 2 ,2 (1
-l+./( + Q -2) ,'

we can express the perturbation in A. due to a change in QL:

bA., = PJ (QL) + P], f (QL)- (22)

Neglecting the first term since it is at least second order in the loss we then have from
equation (20);

(f(QL) 6 I f[(P. 2 -A.' 2) Qs i + 6qS I21. (23)
P. 2Px A 1,

'Sf(L) =P-- = 2ea-i

I.,

# •.
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and to the same order we have from equation (3)

6QL ; - 2QL26f (Q"). (24)

This formulation then allows estimates to be made on the change in the Love-wave
quality factor or attenuation factor due to a small change in the shear quality factor.
Further perturbations involving r, and p can be made along similar lines (Harkrider
1968).

The extension to Rayleigh waves will, of course, be more tedious since equation (9)
%%ill now contain four integrals. In addition, equation (18) now must consider Q. as
well as Q,. The situation is unpleasant though tractable and the group velocity is
presently being programmed by the author.
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Appendix

In order to estimate the error introduced by the formulation presented in this paper
we shall consider a plane shear wave propagating along the Y direction in a Voigt
solid (Kolsky 1963).

The equation of motion can be written
a ' w is , '2 fi

p- - + -- =p, (I)

with the solution.
w = exp (-Ax) cos (wt- Px). (2)

.. . . . i i n. ',r r i I - - I - - I I I,- - {
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We may define the quality factor for this system as:

Substituting equations (3) and (2) into (I) we arrive at:

P 2-A 2 = . P (4
p(l+Q- 2) (4)

On the other hand, if we had applied the Lagrangian formulation presented in this
paper the results would have been:

P2 -A 2 = w 2 P

which is correct to second order in the loss.

' II
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APPENDIX 3

DEVELOPMENT OF ENERGY INTEGRALS AND GROUP

VELOCITY FORMULATION FOR RAYLEIGH WAVES

Applying the formulation presented in Appendix 2

to Rayleigh waves and using elastic eigenvectors, the

energy equation becomes

TAI.:(pa P1), + T., * +

where

(4a eJ|t o,Aa ,Ll

Uwo

with 1! and 5 the horizontal and vertical particle

Wo Wo
displacements normalized to the vertical surface

displacement. The L~ame parameterk R is defined in

r Appendix 2 with R similarly derived and is theI

It
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phase difference between the vertical and hori, .intal

attenuated displacements.

Performing the appropriate perturbations to

obtain the group velocity the Rayleigh wave equation

analogous to eq. (13) of Appendix 2 becomes

pt j ps Pi Pg

The group velocity is then

2____'I_ 4- .~

Since the elastic eigenfunctions are used in

the energy integrals the integrations can, in principle,

be done analytically. However, due to the tedious

algebra required it was decided to do the layer

integrations numerically while doing only the half-

space contribution analytically. The integration

method adopted was that of Gauss-Legendre quadrature.

The scheme uses the two point computation applied to

successive points within each layer. Estimates of the

accuracy are routinely obtained by checking the balance

of the elastic energy equation. Typical figures are

4-6 function evaluations in a 10-20 km thick layer

to achieve 10-2 percent accuracy. Liquid layers are

included by using the liquid layer matrix Dm
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(Chapter 1, Section 2) where 
appropriate and by

setting/'7= 0 in the energy integrals.
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APPENDIX 4

ANALYSIS OF INVERSION DERIVATIVES

The purpose of the following development is to

demonstrate, analytically, the relationships (mag-

nitude and sign) which must exist between the inversion

derivatives. The relationships follow from the complex

surface wave velocity being an analytic function of

the layer complex velocity.

Let

ico  iV0

o  2Q L 2Q

where C is the complex surface wave phase velocity

and V is the complex shear wave velocity and both

have an associated quality factor. The above expres-

sions are actually low-loss approximations and are used

for ease of computation.

At this point the Cauchy-Reimann conditions are

applied and the partials d (SO ) , L) O )jare taken

with respect to the quality factor only (velocity held

constant). The first condition yields:

FO O(VO) VO L

2Q°
ftS
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Applying the second condition yields,

resulting in

) QL 4 QL2 Q.2  d C0  (A3)
TVo  CO  Vo ; 3)

These relations are most useful in assessing the

relative magnitudes of the elements of the Jacobian.

Rewriting the Taylor approximation (eq. 3) with

normalized parameters we have in matrix form:

Q-7 Qs QL Vs Q s

%Q Q s Q QQ L I~ L 7Vs

6CL CL vs DCL ~ Vs
L CL L %s L T s v

Then, reducing the Jacobian to two derivatives using

equations (A2) and (A3) results in the system:

(A5)

SCL - 1 V5  dQL V5  aDCL &Vs

L L L 4L s L 7s UL Vs s
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For the model in Table 1 and the corresponding

partial derivatives (Figures 2-5) the elements 1,1,

1,2, and 2,2 of the coefficient matrix in equation (A5)

are all of the same order of magnitude while element

2,1, due to the QL -1 factor, is several orders

smaller. These results imply that element 1,2 is

significant compared to elements 1,1 and 2,2 and

cannot be neglected.

Note that equations (A2) and (A3) can be used as

a check on the accuracy of numerical derivatives. It

can also be easily shown that writing the Taylor

series approximation for Q-1 in lieu of Q leads to

precisely the same matrix equation as for Q (eq. A5).

In other words, inverting for Q or inverse Q are

formally equivalent.
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APPENDIX 5

PHASE SMOOTHING

Consider the calculation of phase velocity using

the following formula (Toks~z and Ben-Menahem, 1963).

(T) = t(2) - t(1) + T (A 6+ N)

Where 6x is the path between stations and t(l), t(2)

are times of subsequent Fourier windows. This required

the calculation of the phase difference (6X) between

the two spectra. Since noise, including multiple

arrivals, is generally present Aj may be poorly

behaved. It therefore, becomes necessary to devise

some suitable smoothing procedure. The idea is to

use some method which is easily controllable so the

smoothing is not excessive and useful information

lost. The method used here is that of simply fitting ZS

with a sine series and then retaining only those

coefficients which have the largest magnitudes. The

coefficients are then modified by the Lancsoz sigma

factors to reduce the associated Gibbs phenomena.
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