
D-RI34 999 APPLICATION OF HIERARCHICAL DATA STRUCTURES TO i/i .
I GEOGRAPHICAL INFORHATION SYSTEMS(U) MARYLAND UNIV

COLLEGE PARK COM1PUTER VISION LAB H SRMET ET AL I
UNChSSFIE 38SEP 83 TR-i327 ETL-0337 DAAK70-8i-C 8859 F/G 8/2 N

Eh hhE0h

.'J.

1111 2 . .3

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-I963-A

~b,

I"I.

. ..",,' _ . ""'. . '. ". ,. ..
°

•- ,--". -. - .•. -. •.... r"

S " " -: ". ,.'e ,' '*....,,*.,:,,-..,:.,, . . , - . .- : , .. : . L - .. .
* ... -* . -. ... A

ETL-0337

6 ' Application of hierarchical data
structures to geographical
information systems (Phase II)

I Hanan Samet

Azriel Rosenfeld

Computer Vision Laboratory
University of Maryland
College Park, MD 20742

4--
SEPTEMBER 1983

L.. APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

Prepared for

U.S. ARMY CORPS OF ENGINEERS

ENGINEER TOPOGRAPHIC LABORATORIES

FORT BELVOIR. VIRGINIA 22060
8.

Destroy this report when no longer needed.
Do not return it to the originator.

The findings in this report are not to be construed as an official

Department of the Army position unless so designated by other
authorized documents.

The citation in this report of trade names of commercially available
products does not constitute official endorsement or approval of the
use of such products.

;4 Final Report on
*1 Contract DAAK7O-81-C-0059/P0007

APPLICATION OF HIERARCHICAL DATA STRUCTURES

TO GEOGRAPHICAL INFORMATION SYSTEMS
IPHASE II

Submitted to:
* U.S. Army Engineer

Topographic Laboratories
Fort Belvoir, VA 22060

Attention: Mr. Joseph A. Rastatter

Submitted by:
* Computer Vision Laboratory

Center for Automation Research
University of Maryland
College Park, MD 20742

...
Principal Investigators:

Hanan Samet
Azriel Rosenfeld

September 30, 1983

Accession For

VTTS C7'&:
DTIC T '1

'

ii

PREFACE

This report documents the research conducted under
Phase II of Contract DAAK7O-81-C-0059/PO0007. The report
was prepared for the U.S. Army Engineer Topographic Labora-

* tories (ETL), Ft. Belvoir, Virginia 22060. The Contracting
Officer's Representative was Mr. Joseph A. Rastatter.

This report was prepared by Hanan Samet, Azriel Rosen-
feld, Clifford A. Shaffer, and Robert E. Webber.

'S.
.9

.9

a.

w~W , ~W~W - *~ -v ..-' . *.. - . . *

~iii

SUMMARY

This document is the final report for Phase II of an
investigation of the application of hierarchical data struc-

tures to geographical information systems, conducted under
Department of the Army Contract DAAK70-81-C-0059/PO0007.
The purposes of this investigation were twofold: (1) to con-
struct a geographic information system based on the quadtree
hierarchical data structure, and (2) to gather statistics to
allow the evaluation of the usefulness of this approach to
geographic information system organization.

To accomplish the above objectives, in Phase I of the
project a database was built that contained three maps sup-
plied under the terms of the contract. These maps described
the flood plain, elevation contours, and landuse classes of
a region in California. The map regions were represented in
quadtree form, and algorithms were developed for basic
operations on quadtree-represented regions (set-theoretic
operations, point-in-region determination, region property
computation, and submap generation). The efficiency of
these algorithms was studied theoretically and experimental-
ly.

On Phase II of the project, the following additional
tasks were performed:
(a) Query Language.- Design-o$f-a high-level query language

permitting easy interaction with the database by users,

thus making the quadtree representation transparent to
the users.

(b) Database updating; ev-l-eent of algorithms for addi-
tion, deletion, and editing of data items in a
quadtree-encoded database.

(c) Point and linear feature data 1A -Qaadt-re-e- lke represen-
tatio--s of point and linear featur-e data, extracted
from the same geographic region, Vere also constructed.
Algorithms were developed for interfacing between these
representations and the quadtree-represented areas.

.5.

iv

TABLE OF CONTENTS

page

1. Introduction 1
2. The database query language 2

2.1 An overview of the query language 2

2.2 The query language syntax 3
2.3 A demonstration of the query language 9

2.4 On the timing of the query language demonstration . 30

3. The quadtree editor - a tool for database update 35
3.1 An overview of the quadtree editor 35
3.2 Quadtree editor commands 37
3.3 Implementation of the quadtree editor commands 44

3.4 A demonstration of database updating 47

4. The quadtree memory management system 53
4.1 The user's view of the memory management system ... 53
4.2 Implementation of the memory management system 56

5. Point and line data 58

6. Conclusions and plans 61

Appendix: Facilities used 62

Bibliography on quadtrees 63

:.9

. -..- - - . . .- -- -.

. , .. . , . . , , . - -- - -'- . . i , , -" ,. " ,, + ".'' " " ..

FIGURES

page
1. The geological survey map of the Russian River valley . 14
2. The floodplain map 15
3. The landuse map 16
4. The topography map 17
5. The map named "zz" 18
6. The map named 'center 19
7. The map named 'low' *............. 20
8. The map named "stepl 21
9. The map named 'final 22
10. The road map 0.......0............................ 23

11. The city border map 24
12. The powerline map 25
13. The railroad map 26
14. The map named "lowroad . 27
15. The house map 28
16. Intersection of the house map with low .0 29
17. The floodplain map with marked revisions 50
18. The landuse map 51
19. The updated landuse map 52

TABLES

page
1. Timings for example demonstration 32
2. Sizes of maps referred to by Table 1 33
3. Timings for intersection task 34

4

4

I

- , -~~~~~~~~~~~~~~~~~~~~~~ ~~~..-.-.-. .-..-- ,..-.%.. -..-.... ', '... .".-.. .*'-. . -. '.."..,.-.

1. Introduction

This project is concerned with the applicability of a
class of hierarchical data structures, known as "quadtrees",
to the representation of cartographic data. Section 2 de-
tails the database query language that defines how the sys-

*tem appears to the user. Section 3 presents the quadtree ed-
itor which allows the user to directly edit and update a
map. Section 4 describes the quadtree memory management

* system which allows the user to manipulate maps that cannot
fit in core. Section 5 discusses the usage of the quadtree
memory management system to store maps of point data (e.g.,

-a map of house locations) as well as line data (e.g., a map
of road layouts). Section 6 presents our conclusions and
future plans. At the end of the report is a bibliography on
quadtrees.

The facilities used on the project are described in the
Appendix. In particular, the display deviced used by this
project is a Grinnell GMR-27 Display Processor (see [Kirb79]
for information pertaining to use of this device at the
University of Maryland), referred to in the rest of this re-
port as the Grinnell.

r.i

N 2 L: K -* *,. ****.. * - .-

2

2. The database query language

2.1. An overview of the query language

The query language is an English-like keyword-based in-
terface between the database user and the database system.The query language allows the user to display, window, and

construct submaps from individual maps, perform set-
theoretic operations on groups of maps, and extract various
kinds of information from a map (e.g., find the total area
of a map, list the polygons in a map, etc.). It also allows
the user to access the quadtree editor (described in Section
3) which enables the user to update maps and draw new ones.

The query language is embedded in the University of
Maryland version of FRANZ LISP ([FodeBO,[Alle82]). The en-
tire database system can be viewed operationally as a query
language that is interpreted by LISP as LISP functions which
call C functions (i.e., functions coded in the programming
language C) to actually process the maps. Thus all of the
algorithms of the database are coded in C, and LISP merely
serves as a convenient front end for translating the query
language into calls to C functions. Although normally it is
necessary to enclose a function call in parentheses when us-
ing LISP, the particular LISP we are using interprets an in-
put line containing three or more words as being implicitly
enclosed by parentheses. We make use of this device to give
the interface a more natural appearance to users who are not
used to LISP.

The query language is keyword based, which means that
the database ignores words that it doesn't understand. This
has the advantage that one can insert words and phrases
(e.g., articles like "the" and "an") to give the command a
more natural appearance, or one can ignore unnecessary
phrases and just type the minimum to cause the appropriate
commands to be executed. This added flexibility is bought
at the cost of more obscure error messages resulting from
the misspelling of a keyword. In order to allow the user to
customize his interface with the database, there are com-
mands that allow keywords to be changed.

The syntax of the database interface is explained inSection 2.2. In Section 2.3, an example of an interactive

session with the datAbase is presented. Section 2.4 con-
*. tains timing statistics gathered when using the database

system.

[.4.

2.2. The query language syntax

A description of the query language syntax is present-
ed. Curly braces (I are used to indicate phrases in the
command where a sequence of non-keywords can be inserted.

These words are used to add clarity to the query. Some
standard sequences are shown in the given command forms.

Words enclosed in angle brackets <> are syntactic un-

its. A syntactic unit is simply something which, when the
query is typed, is replaced by its definition. For example,
suppose we had a syntactic unit <color> whose definition was

red, green, or blue. Then whenever there was a query whose
syntax contained the symbol <color> we would actually type
our choice of red, green, or.blue. The query language is
presented by describing each syntactic unit.

2.2.1. <command>

The portion of the query language that corresponds to

-- an English sentence is a <command>. All other syntactic un-
its correspond to words or phrases. The following are the

. allowable forms for a command:

Please { explain) <syntactic unit> { }
Use { the Grinnell at) <window> (1
Measure { points from the lower left corner of } map { }

Measure { points from the) global { origin }
Enter <file name> { into database }
Display <map> { on Grinnell)
Display <map> I on Grinnell starting from 1 <point> { I
Display { the I value { of I <number> { I
Let <name> { } denote { } <object> I I
Let <name> { } rename I } <map> (}
Describe { the type of this } <name> II
Forget { about the meaning of this } <key word> { }
List I all the I classes [on I <map> { }
List { all the } polygons { on } <map> { I
Edit { } <map> (with the database editor }
Move { to) <point> { I

Perhaps most useful to the beginning user is the Please
command. The request

Please explain <command>
* gives a list of the allowable forms for a <command>. In

general, one uses the Please command as a help function
which gives information about syntactic units.

The following three commands are used to initialize the

database system: the Use command, the Measure command, and

the Enter command. The Use command enables the user to

specify a portion of the display device (in our case, a

Grinnell GMR-27) that is to be used in displaying the map.

The Measure commands tell the database system how the user
wishes coordinates of points to be interpreted. One can ei-
ther measure locations from the lower left-hand corner of
the map or from some external global origin (defined when
the map was built or last edited). The Enter command places

the name of a quadtree file into the database's list of
known quadtree files. The Enter command also checks the
file to make sure that it is a quadtree file.

There are three different types of Display commands.
The first type simply causes a map to be displayed in the
portion of the display device that was defined by the Use
command. This command places the lower left-hand corner of
the map in the lower left-hand corner of the display region.
The second ype of Display command allows the user to speci-
fy some other part of the map to be placed in the lower
left-hand portion of the display region. This is particu-
larly useful for displaying maps that are larger than the
display region. The third type of Display command allows
one to display the value of a clause (expression) without
first having to bind the value to a name.

There are four commands that allow the user to manipu-
late the names that the query language interpreter knows
about (these are in addition to the Enter command described
above): two forms of the Let command, the Describe command,
and the Forget command. The first form of the Let command
enables the user to associate a name with an object. The
value of the name becomes the value of the object at the
time the Let was performed. The second form of the Let com-
mand permits the user to name a map and at the same time re-
move the old name of the map. This is particularly useful
because each map name corresponds to a file in the operating
system and one doesn't want to clutter up one's directories
with the names of many temporary maps. The Describe command

tells the user what the query language interpreter knows
about a particular name (generally its type and something
about its value). When the Describe command is applied to a
quadtree file, the quadtree file's header information is
displayed on the terminal. The Forget command causes the
interpreter to forget a previous meaning that had been asso-
ciated with a name.

Finally there are four miscellaneous commands: two
types of List commands, the Edit command, and the Move com-

* mand. The first type of List command allows the user to get
a list of the classes that are used by a particular map.
Each class corresponds to a color on the map. The second
type of List command provides the user with a list of po-
lygons (simply-connected regions) in a map. Note that a po-
lygon name is a class name concatenated with the x and y
coordinates of some point inside the polygon. The Edit com-
mand allows the user to access the the quadtree editor (QED)

• °.

+. % . . - , , % + >. '+' .' + + + , , + + , + , ,.+ .. . - + + y - . " . + . - . +

described in Section 3. The Move command causes a cursor on
the display device to be moved to a specified location.

2.2.2. <syntactic unit>

The possible <syntactic unit>s constitute the allowable
parameters to the Please command. They also correspond to
the actual syntactic units of the query language grammar
augmented by two additional values, <system> and <syntax>,
whose explanations tell how to interpret the results of a
Please command. The following are the allowable
<syntactic unit>s:

<system>
<syntax>
<class>
<command>
<cplist>
<file name>
<key_word>
<map>
<name>
<number>
<object>
<point>
<polygon>
<syntacticunit>
<window>

The explanation of a <syntactic unit> is an abbreviated ver-
sion of its description in this document. Note that
<syntactic unit>s are meant to be used with angle brackets
enclosing them. Thus for an abbreviated version of Section
2.2.1, one would type

Please explain <command>
An error would result from a request to explain anything
other than one of the <syntacticunit>s that are listed
above. Failure to use angle brackets also ge-erates an er-
ror. Clearly a more forgiving version could be provided if
ever needed.

2.2.3. <number>

A number can be represented in decimal format or by a
<name> that denotes a number. It can also have one of the
following forms:

* (the } area (of } <map>
{ the } perimeter (of) <map>

*The area form allows one to calculate the total area of the
non-white parts of a line, point, or area map. The perime-
ter form is used to calculate the perimeter of the non-white

""--" '.Ai.,- -A - . - - "• • -. , " --* . -.. L 2...._____ - .-'.- , - °,- -

6-

parts of an area map.

2.2.4. <name>

A name can be represented by a letter followed by any
sequence of characters. Names are used to denote keywords
in the query language and the values of objects created by
the user. A name can be used wherever the object that the
name denotes can appear.

2.2.5. <point>

A point represents a location on the map. A map loca-
tion can be specified in one of the following ways:

- the point where x I <number> { and y I <number>
" the point at the } cursor

The specification of a point by the value of its x and y
coordinates is useful when these values are known. Often it
is difficult to determine accurate x and y values by just
looking at the screen. When an accurate point value is
needed, the most convenient way to get it is to position the
cursor at the location on the map that is desired. The lo-
cation of the cursor can then be referred to using the key-
word "cursor".

" :2.2.6. <window>

A window describes a rectangular region. A window can
be specified in one of the following ways:

, from) <point> { extending } <number> { by } <number>
the smallest) window { for < (map>

In the first specification, <point> refers to the coordinate
of the lower left corner of the window. It is followed by
the width and the height of the window. The smallest window
for a map is the smallest rectangle that encloses all the
non-white regions in the map.

2.2.7. <file name>

<file-name> is a special type of name which is inter-
preted as the name of a file in the operating system. Only
such names are valid parameters to the Enter command.

2.2.8. <map>

A map can be denoted by a <file name> that has been en-
tered into the database. It can also be constructed by one

.- of the following phrases:

. . -. :.'..%, * * *.* ~ *

- --- . --

{ the } intersection { of I <map> { with < (map>

{ the } union (of } <map> { with } <map>
[the } windowing [of) <map> { with) <window>
{the }map { formed from } <cplist> { in) <map>

the } points { in) <number> { of } <point> { in } <map>

The first two phrases construct the obvious set-theoretic
results. There is no phrase to construct the set-theoretic
complement of a map, because this can be done easily in the

quadtree editor described in Section 3. The windowing con-
struction creates a map whose lower left-hand corner is the
lower left-hand corner of the window and which has had all
the area that lies outside the window painted white. A
<cplist> is a collection of classes and polygons. The map
formed from a <cplist> looks exactly like the original map
except that all regions not specified in the <cplist> have

* been painted white. The <cplist> construct in conjunction
with union, intersection, and windowing will allow the user

* to create maps containing any collection of polygons from
any set of maps he desires. The points construction is used
to build a map of the points within a distance <number> of a
location <point> in a point map <map>.

2.2.9. <object>

The types of objects that can be associated with a name
are the following:

<class>

<key_word>
<map>
<number>
<point>
<polygon>
<window>

2.2.10. <class>

A class is used to refer to a collection of regions in
a map that have the same color. There are two kinds of ob-

" jects that have colors associated with them. One is the po-
.. lygon, which is a simply-connected region of one color, and

the other is the point, which is a location that can have a
color. Thus classes can be specified in the following two
ways:

{ the } class { of I <polygon>
{ the I class { at } <point> (on } <map>

The word 'class' comes from the concept of a landuse class -
for example, all of the wheatfields might form a class.
Here that notion has been extended so that each topography

..............." ."" " %" "'. " ""*- ' " ". - , -". '-" •"•"%- ." " ". . " *" '- <"- . • * -

level has a predefined class- e.g. all the polygons with
elevation below 100 feet are part of the class levell. Ad-
ditionally there is the class of polygons which are white
(no information or binary value '0'). All classes have a
unique color value, and new classes can be created on the
fly (and renamed if desired) by giving a polygon an unused
color.

2.2.11. <polygon>

A polygon is a simply-connected region in a particular
map. Any point in a polygon can be used to denote a po-
lygon. Thus the internal form for a polygon is a point
value concatenated with a map name. Sometimes it is useful
to have a unique name for a polygon. A typical case might
be when polygons of the same class are derived from two dif-
ferent methods, and the user wishes to know if they are the
same polygon. in those situations, an arbitrary ordering is
imposed on the points inside the polygon (corresponding to
the order in which a tree traversal would find them) and the
least point (according to this ordering) that is inside the
polygon is used to uniquely denote the polygon (when con-
catenated with the polygon's map name). Quite often, howev-
er, a unique name is not needed. Since calculating unique

*. polygon names is expensive, the following two forms are
given to allow the user to specify a polygon and whether or
not the name should be unique:

(the I polygon { at) <point> { on) <map>
(the I unique f I polygon { at I <point> (on I <map>

2.2.12. <key word>

The keywords recognized by the query language are any
words that appear outside the curly braces in a syntax
description. These include the syntactic units (see Section
2.4) and the following: area, class, classes, cursor,
denote, global intersection, map, perimeter, polygon, po-
lygons, rename, union, unique, value, window, windowing.
Also included are: Describe, Display, Edit, Enter, Forget,
Let, List, Measure, Move, Please, Use.

2.2.13. <cplist>

A cplist is a nonempty list of classes and polygons.
This allows the user to specify any arbitrary subset of po-
lygons from an area map. This is a portion of the grammar
that could easily be extended to include various operators
for building a list of classes and polygons using set-
theoretic operations in conjunction with the total list of
classes or polygons in a map. However, so far, no need has
been found for such a capability.

a'a

a...

2.3-. A demonstration of the uer language

Below is an example of an interactive session between a
user and the database. Our database is a collection of maps

relating to the Geological Survey Map shown in Figure 1.
Phase I of our project used three maps that represented
three different partitionings of Figure 1, and are shown in
Figures 2, 3, and 4. Note that these figures represent
multi-color maps. The first portion of this demonstration
will be concerned with showing how the tasks of Phase I can
be done using the query language. We assume that the data-

base has already been invoked via the appropriate system
calls.

help

The one word phrase help is used to remind the user of how

to use the Please command. This ability is not actually
part of the formal query language, but exists to maintain
compatibility with the user's expectation that if he types
help at a system, he will be told something useful.

Please explain this <system>

This is the official way to find out how to get a list of
the system commands.

Please explain <command>

And this is the official way to get the list of the system

commands. These are the same commands listed in Section

2.2.

Enter flood into the database

Enter land in

These two Enter commands verified that flood and land are
names of files that contain maps. A connection between
these names, flood and land, and those files, has been made
by the query language interpreter. Note that flood is the

name of the floodplain map and land is the name of the land-

*- use map.

Let be denote denote

This allows us to use "be" anywhere we could use the keyword

"denote". This illustrates how the user can tiilor the
query language to his own taste.

Let extra be land

Now both extra and land can be used as names for the landuse
map. Note that this does not create a new map.

- 10 -

Describe extra please

The Describe command allows the user to verify that the pre-
vious Let command actually worked. Perhaps a more realistic
usage of the Describe command would be to ask for a descrip-
tion of a name that had been set thirty commands ago and
whose exact usage had now been forgotten.

Let x be 100
Let y be 400

We can now use x and y to denote 100 and 400 respectively.

Let z be the polygon at x y in extra

Thus the above command causes z to refer to the polygon at
100 400 in the landuse map.

Use 0 0 512 512 to open Grinnell

This tells the database to use a window size of 512 by 512
(the entire Grinnell screen) for displaying a map. This is
the standard size for our maps.

Let zmap rename the map for z from extra

Now zmap is the name of a map that is white except for a po-
lygon at 100 400 that has been copied from the landuse map.

Let center be map of class at 100 400 in flood from flood

Now center refers to a map that contains only the polygons
of the floodplain map that have the same color as that of
the polygon at 100 400 (in the floodplain map).

Display center please

This enables the user to see the new map called center.
Seeing the map we named center, we note that it actually
contains the left bank of the floodplain.

Let left rename center

Thus, we rename it left.

Display center please

\ This results in an error message because the rename form of
the Let command does an implicit Forget command on the file
name that corresponds to its object.

k Display left please
Let frame be the smallest window enclosing zmap

~- 11 -

Since zmap is a map containing only the polygon z,-frame now
denotes the smallest rectangle that encloses the polygon z.

Enter top into the database

Note that top is the name of the topography map.

Let zz be the windowing of land with frame

We have now created a new map that is smaller than land and
..includes that portion of the landuse map that was within the
* smallest enclosing rectangle of the polygon z. Thus zz con-

-. stitutes a map of z with some surrounding context (as op-
posed to a map of z surrounded by white).

Display zz quickly!

Note that the word "quickly" has no special meaning to the

system, although in this case the display is indeed done

quickly. A picture of zz is shown in Figure 5.

Use 256 256 128 128 to open Grinnell

Here we see one of the benefits of being able to specify

that output is done in a particular part of the display re-
gion. After execution of the next command, we will be able

to have two copies of the map zz on the screen. Using this
"" type of facility, one could edit a map while simultaneously

viewing a copy of the original map. Unfortunately, the
* current implementation only allows manipulation of the map

in the last window created using the Use command. A more
sophisticated system might allow one to edit more than one
map at the same time, much as some text editors allow the

.. editing of more than one textfile during the same invoca-

tion.

Display zz please
Use 0 0 512 512 to open Grinnell

Now we resume using the entire Grinnell screen.

Display the value of the area of left

Recall that left is the name of the left bank in the flood-

plain.

Display the value of the perimeter of left

These Display commands are printing values to the terminal.

Let center be a map of class at 100 300 on flood from flood
Display center please

7

.., .*.? -.;. . ?.
, . ,..-. .. :. .. :, .- , . * -< -. ,; - . . . - - --- . - ' -'-. . .-_ .. , " - ,

- 12 -

This time we make center from the- correct portion of the
floodplain (as shown in Figure 6).

Let low be the map of levell on top
Display low please

Low is a convenient name for a map of the lowest contour
level in the topography map. Note that levell is a class
name that is currently hardwired into the system and indi-
cates the first level in a topography map (as shown in Fig-
ure 7).

Let stepl be the intersection of land with low
Display stepi please

Now we are creating a new map (Figure 8) that contains those
portions of the landuse map that lie inside the boundaries
of levell in the topography map.

Let final be the intersection of stepl with center

The result of the previous operation is in turn intersected
with the center region of the floodplain map.

Display final please

Now the results are on the Grinnell screen (and Figure 9).

This particular result was one of the computations per-
formed by the system during Phase I and reported in
[Rose82a]. Recalling the sequence of operating system com-
mands that were necessary to perform the same calculation
before the query language was implemented, one can see the
merits of having such a query language associated with a da-
tabase system. Such an interface makes the commands more

-.. easily understood and provides a way of using the system
that is transportable across different operating systems.

Phase II of our project required integration of line
* and point data into the database. From the map of Figure 1,

four maps of line data were extracted. The most interesting
* one is shown in Figure 10, and consists of the roads shown

on Figure 1. Figures 11, 12, and 13 show other linear
features on Figure 1. The Power Lines Map and the Railroad

* .Map are conceptually similar to the Road Map (although much
simpler). The City Border Map contains a closed curve (the

V line begins and ends on the same point). This information
could have been stored as an area map with the region within
the city border as a single polygon (a 'black' area) and the
outside region another polygon (a 'white' area). Converting
between line maps and area maps in such a way is a task out-
side the scope of Phase II of this project; however this
might be a suitable task for future work. Line maps are en-

'S

J'-V . . .- ..-.. :..-- - - - - . -- -. , - - -. .- -, . ,- . . - -. -. -, ,- . - ,. , .. ,- • - -. , " . ,

-13 -

tered into the database and displayed by the same commands
as are area maps, as is shown in the following commands.

Enter road into the database
Display road please

Line maps can be intersected with area maps, but not with
point maps or other line maps.

Let lowroad denote the intersection of road and low

Display lowroad

The result of this intersection is shown in Figure 14.

Display the value of the area of lowroad

The above returns the number of pixels in the digitization
of the lines in the map lowroad. This yields a rough esti-
mate of the length of the lines in the map.

We also have a set of point data, shown in Figure 15,
which corresponds to the location of the houses on the map

* in Figure 1. This map can also be entered and displayed in
a natural manner.

Enter point into database
Display point please

It is possible to display map expressions, as well as map

names, as demonstrated by the following command.

Display the intersection of point with low

The result of this command is shown in Figure 16. As with
*line maps, point maps can only be intersected with area

maps. It is also possible to ask for the area of a point
map, which has the natural interpretation of returning the
number of points in the map.

..........

JN1TED STA -ES STATE OF CAUFORNIA

OEPARTMENT OF THE INTERICR RAKGOODWIN J. KNIGHT. GOVERNOR
FAK3DURYE., DIRECTOR OF PUBLIC WOPY.S

GEOLOGICAL SURVEY HARVEY 0. BANKS, STATE ENGINEER
c.o..o. S -

j-w 3e 4*# =41 Z~j RS.

.

-f- -*'7L \-p~J

'SP

A f-

... 6

.,

/-. yn..

-'rt

V. f ~

~5 7.

.

% Figure 1. The geological survey map of the Russian River
valley.

%5

-15-

.. °

Figure 2. The floodplain map.

. - -AM

~.d F F - -:--
r~ -. * - * --.-- -. - -

- * .~.***

-16-

N

B

.4,'
-9

'4

*~ ..

'p.,

S..

'a

4-..

".4-

Figure 3. The lariduse map.

- .*.-.*.*....,*....'.. j~i.4 -. --

- ..-....-. - ..-. - -. '~-~-- .~ W. 4. - . 4~. - -. -

-'7-U

'4..
4.'

4

* S

d

0
I.-

-4

~4
4.

*1~

4.,

'5'

V

.9

.9

9

* Figure 1$. The topography map.
A
4.
(
4.

4%

4%

.. -S.' **.*.~ *~'.*.**.*~.*' -. 5.--- - . - S -

* . S 5 9 *4* *** S * - 4 -. S - *...... *................... S * * S

-18-

F.ih

-4.

'V'.

%,

4,? . .

,, . W, - , , , . , . - * %-. . *,. *, * *i' .* * * , . - "i. i .. . - - .-

-19-

Figure 6. The map named 'center' (the center region of the
floodplain map).

- 20-

j-j

4.

.

Figure 7. The map named 'low' (the lowest contour of the to-
A pography map).
~.°

.-... .

- 21 -

rjgure 8.The
map named Pstepl' (the intersectionl

Or the

landuse map with
the map named lw)

L.. - 22 -

rK-

Fiue9Jh a ae fnl'(h nescino sel

wih 'cner)

-23-

Figure 10. The road map.

~24

Figure 11. The city border map.

- 25-

Figure 12. The powerline map.

% -~- ~ - ~ ~ -

- 26-

Fr

-.4

.,

.:" Figure 13. The railroad map.

.. , ' . - ,.,, ,,. _. .,- - . -..-..... -.. >.-.- . . -- . . .

>27

Figure 14. The map named 'lowroad' (the intersection of the
road map with the map named 'low').

r nw~.. .. *. - , . -, ._ .

~- 28 -

...t...
• . -"t. . ..-'

7..-:. ": "f" " " . .

I. 44 _* ..--- -- --

*' . °° I -•

* --

.- .* .-.

N- ,. , O.'o

• I I - °°

ft ".- .

. . ft.

ft* . . .

f%

ft .t f. . . -

* t t f ft 'f ° ft.

-!ff~.X2t * .f .. * .. f t . . f

. . . - ..

m - 29 -

9.

S -

a..

a,

-30-

2.4. On the timing of the query langtiage demonstration

The timing of the execution of commands in the query
language, as done for Phase II, is quite different from the
timing of the programs developed in Phase I. First, a dif-
ferent mechanism is performing the timings. In Phase I, a
system routine was being accessed directly by the C program
that was performing the calculation. In Phase II, the tim-
ing is being done by the LISP system. Therefore, in addi-
tion to the time it takes for the C functions to perform the
query, our values include the time necessary for the LISP
functions to interpret the query language, parse the com-
mand, and cross the interface between LISP and C. Second,
the kernel (which was not used in Phase I) explicitly per-
forms memory management functions that were handled less ef-
ficiently, but invisibly to the Phase I timing mechanism, by
the operating system in Phase I. Third, the quadtree file
representation used in Phase II requires considerably more
space than the file representation used in Phase I, but the
Phase I quadtree files had to be read sequentially, whereas
the Phase II quadtree files can be accessed randomly. The
result of this is that in Phase II, commands that manipulate
a part of map have been speeded up at the expense of com-
mands that manipulate the entire map.

The main intent of timing measures is to give a feel
for how interactive a process is. Timings are most useful
when the process being timed is compute bound (as opposed to
I/O bound). Unfortunately, it is not clear whether signifi-
cant portions of the database system are compute bound; but
given this and the above considerations, we submit the fol-
lowing two timing results.

The first timing task analyzes a typical work session
involving a wide variety of queries. Table 1 presents the
timings for the query language demonstration of section 2.3.
In both this table and the later table, time is measured in
seconds. Looking at the timings, we find that the most ex-
pensive operations are taking a single area map and con-

Ni. structing a new map that corresponds to a subset of the re-
gions in the map or the windowing (clipping) of a region of
the map. This is because these operations require the most
processing time per node of the quadtree. For example, win-
dowing requires calculation of what portion of each node
lies within the window. The processing of a node to deter-
mine whether or not it is in a given class (as is done in
the case of the construction of the Low Map) would be trivi-
al except that it is done in a general setting where the
node could conceivably be compared to many class or polygon
types; thus carrying more overhead than is obvious from the
usage given. The cost of the intersection commands are not
surprising when one considers the size of the quadtrees in-
volved (as shown in Table 2) in the case of area maps and

• *o o. * *.o ° . ° o o o ~ , ° - . o -. -i - - . - ,- . . . - ,

- 31 -

.,%

*- the necessary calculations performed per node in the case of
the point and line map intersections.

The second timing task analyzes a single query (the in-
tersection query) on a wide variety of data. In Table 3,
results are shown for the intersection of each of the land-
use classes (see Figure 3 and the Phase I report [Rose82a])
with each of the following three maps: the Center map (Fig-
ure 6), the Houses Map (Figure 15), and the Road Map (Figure
10). The size information given in Table 3 indicates the

4result of calculating the area of the map that results from
the intersection. Note that the time needed to construct a
map for each of the landuse classes is not included in these
times. Recall from [Rose82a] that the landuse class ws was
the Russian River - Dry Creek water system of Figure 1.
Then, looking at Table 3, we see that 9 houses are insepar-
able from the water at the level of accuracy (discussed in
(Rose82a]) with which the maps are encoded.

.4

i

S.

-32-

Table 1. Timings for Example Demonstration
(time is measured in seconds).

I Abbreviated Command I Time I

I Please <system> 10.1
I Please <command> 0.1

Enter flood 0.0
Enter land 0.0
Let be denote denote 1 0.1
Let extra be land 1 0.1
Describe extra 1 0.0
Let x be 100 0.1
Let y be 400 0.1
Let z be polygon x y extra 0.2 1
Use 0 0 512 512 0.1 1
Let zmap rename map z extra 1 10.3 1
Let center be map class 100 400 flood floodl 10.2 1
Display center 1 1.4
Let left rename center 1 0.1
Display center - error return 1 0.0
Display left 1 1.2
Let frame be smallest zmap 1.0
Enter top 0.0

I Let zz be windowing land frame 82.1
Display zz 1.0

I Use 256 256 128 128 0.1
""Display zz 2.1

Use 0 0 512 512 0.2 1
Display value area left 2.1 1

" Display value perimeter left 10.0 1
ILet center be map class 100 300 flood fioodt 13.2 1
I Display center 1 1.91

Let low be map levell top 1 34.3 1
Display low 1 1.71
Let stepl be intersection land low 1 67.0 1
Display stepi 1 5.9 1
Let final be intersection stepl center 1 38.2 1
Display final 1 3.7
Enter road 1 0.3 1
Display road 1 3.8 1

I Let lowroad denote intersection road low 1 30.0 1
Display point 1 1.0 1

I Display intersection point low 5.5 1

4J
--

011

- 33

Table 2. Sizes of Maps Referred to by Table 1.

I Name of Map I Number of Nodes in Map

center 4687
extra (land synonym) 28447
final 10090
flood 5248
intersection point lowi 454
land 28447
left 3197
low 4996
lowroad 3091

1 point 1906
I road 7729

stepi 15898
zmap 1765
zz (shifted zmap) 3805

-34 -

Table 3. Timings for Intersection Task
Intersection of each class from the landuse map with:

1) the center region of the floodplain map (an area map)
2) the house map (a point map)
3) the road map (a line map)

(Note: size is measured in number of non-white pixels
time is measured in seconds)

I Land I1 Center Map II Houses Map II Road Map I
I Class 11 Time I Size II Time I Size 11 Time I Size I

I acc 11 13.4 1 6341 11 2.7 1 9 11 13.9 1 30 1
I acp 1! 19.3 126886 11 3.1 1 25 11 15.8 1 94 1
1 ar 11 5.9 1 1197 11 2.6 1 11 11 7.9 I 12 1
I are 11 4.3 1 152 11 2.4 1 0 11 5.8 1 0 I
I avf 11 31.7 123776 11 3.7 1 59 11 29.5 1 264 1
I avv 11 32.9 129685 11 3.1 I 50 11 28.6 1 341 1
I bbr 11 5.0 I 432 11 2.4 1 0 1I 6.2 1 0 1
I beq 11 4.6 1 229 11 2.4 1 0 11 6.3 1 0 1
I bes 11 4.2 1 147 11 2.5 1 0 1I 6.4 1 0 I
I bt 11 8.7 I 3403 11 2.9 I 13 11 8.5 1 3 I
I fo 11 16.4 116952 11 2.5 1 4 11 11.7 1 30 1

I lr 1 7.0 1 948 I 2.4 1 0 I 7.3 1 1
I r 11 19.2 123147 11 2.5 1 4 11 14.6 1 94 1

SI ucb 11 4.4 I 249 11 2.4 1 0 11 6.8 1 14 1
I ucc 11 5.5 I 1018 11 2.6 1 4 11 8.4 1 34 1
I ucr 11 6.3 I 1518 11 2.5 I 1 11 9.3 1 90 I
I ucw 11 4.8 I 305 11 2.6 I 2 11 6.9 1 4 1
I ues 11 6.6 1 1628 11 2.4 1 1 II 9.0 1 33 1

-I uil 11 4.8 1 422 11 2.6 I 0 11 7.7 I 13 1
I uis 11 6.1 I 1042 11 2.6 I 6 11 8.8 1 18 I
I-uiW 11 4.6 186 11 2.8 1 4 11 6.8 6I uo0 1 4.2 1 288 11 2.6 1 0 11 6.5 1 14 1

I uog 11 4.5 1 1115 11 2.6 1 2 11 7.0 I 30 1
1 uoo 11 4.7 1 490 11 2.5 1 1 I1 7.1 1 11 1
I uop 11 4.4 1 213 11 2.8 1 10 11 7.1 1 8 1
I uov 11 4.5 1 238 11 2.6 1 9 11 6.2 1 6 1
I urh 11 4.5 I 167 11 2.5 I 3 11 6.6 1 3 1
I urs 11 26.9 126752 11 10.6 1 577 11 46.5 I 1098 1

* I uus 11 4.8 1 261 11 2.5 I 0 II 6.14 0 1
1 uut 11 10.4 I 1928 11 2.6 I 2 11 12.7 I 18 1
I vv 11 4.2 1 108 11 2.3 1 0 11 6.1 1 2 1
I wo 11 4.3 1 0 11 3.0 1 0 11 6.9 I 0 1
I ws 11 13.7 1 3409 11 2.7 1 9 11 15.3 I 11 I
I Iwwp 1114.6 120611 2.51 0 1 6.01 01
- - - - - - - - - - - - - - - - - - - -

a> <l. C*. %72<s..S..- .77 7.S... -*- *. . ." ** ~i

7-- . - . -. _. 7- -

- 35 -

3. The quadtree editor - a tool for database update

3.1. An overview of the quadtree editor

The quadtree editor (QED) exists to facilitate the in-
teractive construction and updating of maps stored as quad-
trees. Rather than forcing the user to think in terms of
the tree structure, QED tree manipulation commands make ref-
erences to logical units of the map (e.g., lines, points or
polygons). The user performs editing operations such as in-
serting a line or point, changing the value of a specified
polygon, or splitting a specified polygon into more than one
piece.

When many changes are to be made, the user may wish to
see the effects of each step. Commands are provided to al-
low him to examine all or part of the map at a selected lo-
cation on a display device. This display is continuously
updated as further map manipulation commands are executed.
Associated with each map's quadtree representation is a
descriptor termed the quadtree header. It contains informa-
tion such as the size and location of the map. There exist
commands which allow the user to modify this header. In ad-
dition, he may also insert textual comments into the header
for documentation purposes.

QED is a command based system - i.e., the user gives a
command and it is executed, after which the system is ready
to execute the next command. There is no notion of compos-
ing functions as there is in the quadtree database language.
When the editor is ready to receive a new command the prompt
<?> is displayed. Area maps are updated by use of the re-
place, change, and split commands which replace all polygons
of a given value with a new value, change the value of a
given polygon, or split a polygon into multiple polygons,
respectively. Line and point maps are updated by use of the
insert and delete commands which insert or delete lines or
points, respectively. In order that the user may see what
he is editing, there are commands that draw all or part of
the map onto a selected section of the Grinnell display dev-
ice. The user may also alter the header of the map.

To begin using the editor from the database system, the
user types

Edit <file> please
where <file> is the name of the disk file in which the map
to be edited is stored. If the file does not already exist,
then the editor assumes a new map is to be created. In this
case the user will be prompted to indicate what the map type
is (region, line, or point data). New maps are initially
entirely white. If the file does exist, then it must be a
legal quadtree file; otherwise QED informs the user that the
file cannot be edited and halts. In order to protect the

r -. - - - . . -.- < --. -<. -.< - . - ."-. .j .-.-. * . -v . "- - -- -* - -. -- -. --- - "- - -"

-36-

user against errors and machine crashes, a complete copy of
the file being edited is made, and all editing is actually
done on the copy. At the termination of an editing session
the old copy of the file being edited is stored in a backup
file, and the copy containing the revisions replaces it.
For example, after editing a file named "mymap", the prior
version is stored in the backup file "mymap.bk", and the new
(edited) version will then reside in "mymap". The commands
typed while editing are also recorded in a file with the
suffix ".ty". Therefore, in this example, file "mymap.ty"
would contain the commands used in the last editing session.

Sections 3.2 describes each command in greater detail.
Where syntax lines are given, names enclosed in angle brack-
ets <> are syntactic type indicators - the user would type a
numerical value or name in their place. Arguments enclosed
in square brackets [] are optional. In Section 3.3, some of
the implementation details of QED commands for region maps
will be considered. Implementation details for point and
line maps may be found in Section 5. Section 3.4 presents a
demonstration of database updating for an area map.

4.

- .. *

- 37 -

3.2. Quadtree editor commands

3.2.1. Header and comment commands

Each map file includes a header which contains informa-
tion such as the width of the map, its location and orienta-
tion in space, and the type of data represented - say, to-
pography or landuse data for region maps, roads for line

*? maps. A comments section is also provided to allow the user
to document his maps. The following commands allow the user
to change the header, add comments, and read the header.
Note that once the map's type has been set to region, line,
or point, the map type can not be changed.

3.2.1.1. Header

4 Syntax: Header

This command allows the user to view and alter informa-
tion in the header. For each item of data contained in the

*. header, the editor gives the user the opportunity to change
it. The editor outputs a description of the information,
its old value (in parentheses) and a prompt for the user to
insert the new value. If no change is desired, typing the
return key will leave that item as is. The modifiable
values are:

Map size - All maps are a square of size N x N where N
is some integer power of two. If the value given
is not a power of two, then it will be converted
to the least power of two greater than the given
value.

First X and First Y - The external coordinates of the
lower left corner of the map. This might be used
by other functions in the database for comparing
the relative positions of two maps.

Rotation Angle - A real number which is the tilt (in
radians) of the map from the external horizontal.
Once again, it could be used to compare two maps.

* Data Type - A single capital letter. This describes
the type of information conveyed by the map. Some
currently understood values are:

B binary map (all polygons are black or
white)
T topography map
L landuse map
U unknown type

When creating a new map, the editor will automatically
execute the header command in order to allow the user to
give initial header information.

-:'i* . .

:p f i f i - ..

-38-

3.2.1.2. Comment

Syntax: comment <comment-line>

Add <comment-line> to the comments which are stored
along with the header. These comments are provided by the

user to say whatever he wishes about the map. Some database
functions may also add to the comments. For example, when
QED creates a map, that map receives a comment stating that
it has been created by QED. All comments are automatically
prepended with the date and time.

3.2.1.3. Print

Syntax: print

Print out the header and comments (see header and com-

ment commands).

3.2.2. Grinnell manipulation commands

The following commands allow the user to select the
section of the map he wishes to view and on what portion of
the Grinnell. When the Grinnell viewing functions are on,
all changes to the map which occur within the user's viewing
window will be displayed.

3.2.2.1. Gon

Syntax: gon <fx> <fy> <nx> <ny>

This command selects (or changes) the section of the
Grinnell on which the user will display his map. The four
integers <fx>, <fy>, <nx> and <ny> describe the window -
lower left x and y coordinates, width and height, respec-
tively (the lower left corner of the Grinnell is assumed to

be (0,0)). The selected section of the Grinnell is erased
by this command.

3.2.2.2. Goff

Syntax: goff

This command releases the Grinnell. After this command
is given the Grinnell window is erased, and no further
changes to the map will be shown on the Grinnell.

3.2.2.3. Look

Syntax: look <tx> <fy>
look<..

°.o.

I _ _. . - ! . . , . . - • . - ' - • • i . - - . - -

-39-7
i - 39 -

This command selects the portion of the map which is to
be viewed, and displays it on the Grinnell in the window de-
fined by the last gon command. The integers <fx> and <fy>
describe the lower left x and y coordinates of the portion
of the map to be viewed (the height and width are taken from
the previously defined Grinnell window).

3.2.2.4. Point

Syntax: Point <x> <y>

This command places a flashing cursor in the Grinnell
window at the point specified by the arguments.

3.2.3. Area map changing commands

The three commands replace, change and split enable the
user to make changes to a region map. These changes are re-
flected on the Grinnell if they occur within the current
user specified window of the map and a Grinnell window has
been opened by a gon command.

3.2.3.1. Replace

Syntax: replace <old-val> <new-val>

All polygons of the map with (integer) value <old-val>
will be replaced by polygons of type <new-val>.

3.2..2.Change

Syntax: change <x> <y> <new-val>

This command changes the value of one particular po-
lygon of the map to the given (integer) value <new-val>.
The integer values <x> and <y> define a coordinate which
lies within the polygon to be changed.

* 3.23.~.split

Syntax: split [s) <val> [<file>]

This command is used to split a polygon into more than
one region. The user supplies a chain code which is drawn
onto the map with value <val>. Typically, one of the
resulting subpieces of the polygon will subsequently be
given a new value with the change command.

The chaincode may be entered in one of two ways. If
<file> is given, then the editor gets the code from a disk
file with the name <file>. Otherwise, the editor will

-40-

prompt the user to input the chaincode online. The syntax
of a chaincode is as follows:

(<x>,<y>)<list>#
<x> and <y> specify the beginning coordinate. Each direc-
tion is either one of the letters h, J, k or 1, or else a
number followed by one of those letters. The letters have
the following meanings:

h move left
j move up
k move down
1 move right

If a number is given before the letter, than the code moves
that number of pixels in the appropriate direction. An ex-
ample of a chaincode starting at (100,100) and forming a 5 X
5 box would be:

(100, 100)414k4h3j#

As the user types the chaincode (or as it is read from
the file), it is drawn onto the map. It is also displayed
on the Grinnell if a window has been opened, thereby ena-
bling the user to see the chain growing as he inputs it.
Typing the backspace key will erase the last pixel of the
chaincode. If the "s" option has not been given then the
chain may extend across any number of polygons. If the "s"
option is given then the chain will stop when it attempts to
cross into a polygon other than the one it began in. In ei-
ther case, the chain will stop if it attempts to go off the
edge of the map.

* 3.2.4. Point map changing commands

The commands insert and delete enable the user to make
changes to a point map. These changes are reflected on the
Grinnell 1i they occur within the current user specified
window of the map and a Grinnell window has been opened by a

-p gon command.

'I. 3.2.4.1. Insert

Syntax: insert <x> <y>

A single point is inserted at the coordinates specified
by <x> and <y>. If a point already exists there, nothing
will be changed.

3.2.4.2. Delete

Syntax: delete <x> <y>

- 41 -

The point at the specified coordinate is removed. If
no point exists there the editor will complain, but nothing
will be changed.

3.2.5. Line map changing commands

The commands insert and delete enable the user to make
changes to a line map. These changes are reflected on the
Grinnell if they occur within the current user specified
window of the map and a Grinnell window has been opened by a
gon command. While they have the same name as similar com-
mands for point maps, they take different parameters.

3.2.5.1. Insert

Syntax: insert <ax> <ay> <bx> <by>

A line segment is inserted from (<ax>,<ay>) to
(<bx>,<by>).

3.2.5.2. Delete

Syntax: delete <ax> <ay> <bx> <by>

A line segment is deleted from (<ax>,<ay>) to
(<bx>,<by>). If no line segment exists over all or part of
this span, no change will occur in che clear sections. If,
however, another line segment crosses the (non-existent)
segment specified by the user, this other line segment may
develop a gap where the intersection occurs. The user is
encouraged to view line segments as atomic units when delet-
ing. Only segments known to have been insertee should be
deleted, and the end points should be given in the same ord-
er. The safest way to delete a part of a line segment is to
remove the entire line segment and then re-insert the ap-
propriate parts. This way one avoids problems relating to
roundoff errors in line slope calculations.

If used correctly, where the deleted line segment
... passes through another line segment, this other line segment

will not be left with a gap.

3.2.6. Miscellaneous commands

3.2.6.1. Quit

Syntax: quit

,4.t:> -. -... -.. -.-...-,.. -' '. -- ,-..-..---. " . .. -. ... - -h.-.-,-- -.-. . -
• . ., <. ,. -- ... - , , -, .- - . . .: - ;

- 42 -

This command signals the editor to save the changes
made to the map and finish processing. It is the normal way
to exit the editor. When this command is given, QED will
ask the user for a parting comment. This makes it easy for
him to keep a history of editing sessions on the file. If
no comment is desired, typing a carriage return will insert
no comment. Otherwise, the user's comment and the date will
be inserted into the comments section.

3.2.6.2. Abort

Syntax: abort

This command signals the editor to stop without saving
the changes to the map. The state of all files is exactly
as it was before the editing session took place, except that
the file which contains the commands typed during an editing
session will reflect this latest session. This command pro-
tects the user in case of error.

3.2.6.3. Shell

Syntax: shell <command>

This command enables the user to access the UNIX shell.
Whatever the user types as the <command> argument will be
executed as though the user were not in the editor. After
the command is executed, the bell on the terminal will ring,
and the command prompt will be given.

.3.2.6.4. Help

Syntax: help [<command>]

If <command> is not specified, then a list of the edi-
tor commands is displayed along with their syntax (as given
on the syntax line in this section) and an extremely brief
description of their functions. It serves to remind the
user of the available commands and their correct usage. If
<command> is given, then a longer description of that com-
mand is output on the user's terminal. The help command (as
well as the editor itself) is controlled by the map type.
This means that the commands which the user sees relate to
the map currently being edited. If, for example, the map
being edited is a line map, help with no <command> option

*will give the list of commands applicable to line maps. The
change, replace and split commands will not be listed. The
insert and delete commands will each be listed with four
parameters for specifying line segments. Both asking for
help or trying to execute a change command while editing a
line map will result in the editor complaining that this
command does not exist. Asking for help on the insert com-

* mand while editing a point map will give the description in

............ *i..

. - - -

- 43 -

-. Section 3.2.4.1.

3.2.6.5. Value

Syntax: value <x> <y>
Alternatively: value

This command returns the value or color of the node at
a given pair of coordinates in the map. If' "-" is the only

*! argument, then the coordinates are taken from the position
of the Grinnell cursor. This enables the user to determine
the point visually via the trackball.

3.2.6.6. Set

Syntax: set <variable> <value>

This command allows the user to change the value of
* certain user accessible variables. The only variable imple-

mented in the editor is called "global." It may be set to
either "true" or "false" and is initialized to "false." So,
to use this command to change "global," the user would type:

set global true

When global is set to "false" all coordinate values supplied
,. to commands are interpreted relative to the lower left

corner of the map being edited. When global is set to
,. "true" all coordinate values are interpreted relative to the
*global coordinate system - in other words, the editor looks

at the values for First X and First Y as set by the header
command. These values are subtracted from the given coordi-
nate to calculate the position relative to the lower left
corner of the map. Coordinates returned by editor commands

' will also be relative to the global system when global is
set to "true," and relative to the lower left corner of the
map when global is "false."

*

-44-

3.3. Implementation of the quad~ree editor functions

As explained in Section 4, all quadtree primitives and
memory management functions are handled by an underlying set
of general purpose quadtree routines. The quadtree editor
itself views these functions as atomic actions. The editor
proper is then concerned with receiving and executing com-
mands provided by the user.

When the editor is called, the user gives the name of

the file to be edited. A temporary disk file is created on
which all editing is to be done. Another file is created to
store the commands given by the user. These files help pro-
tect the user from serious loss due to system crashes or his
own errors such as mistyped or unwanted commands. They also
enable him to abort the editing session without damaging the
original copy. If the file to be edited is an old one, a
copy is made in the temporary file. If a new map is to be
created, then a default header is installed and the map is
initialized as all white. The memory management initializa-
tion routine is executed and (for new maps) the user is re-
quested to supply initial header information through the
header editor function.

From here on, the editor accepts commands from the
user. For each command, it parses the command line and exe-
cutes the request. Many of the commands were quite easy to
implement. The abort command needs only to remove the
editor's temporary file (since the original file and its
backup are not affected by the editor). The quit command
first invokes the memory management functions which write
the quadtree and memory management headers to disk along
with the B-tree pages currently in core, and then moves the
original quadtree file to the backup file and copies the
temporary (edited) file in place of the original. The
header command changes values in the header structure. The
comment command passes the user's comment to the memory
management function which inserts the comment into the com-
ment list. Print uses memory management functions to read
comments and then writes them with the header to the user's
terminal. The shell command uses a standard C system call
to allow the user to execute normal C program calls.

The Grinnell accessing commands gon and goff change
global variables used by the map manipulating functions.
These variables include a Boolean flag to indicate if map
changes are to be displayed, and a description of the Grin-
nell window available. The look command (after changing
other global variables which describe the map window) per-
forms a traversal of the entire tree. For each node, it
determines if the node lies within the chosen map window. If
it is, then the appropriate offsets are calculated and the
node is displayed on the screen.

- 45 -

The commands value and point were included to assist
the user in relating the map coordinates to what is
displayed on the Grinnell. Without them, choosing coordi-

* nates for the beginning of a chaincode or determining the
current value of a polygon would be difficult. The value

*command searches for the node at the requested location and
returns its value. The point command uses a standard Grin-
nell primitive function to set the cursor to a requested po-
sition.

In order for the quadtree editor to be useful, a set of
* map manipulating functions is needed that permits the user

to create any desired map. The user of a geographic data-
base system such as this will view the units of his map in
terms of logical units such as "lines" or "polygons," and
not square "nodes." Therefore, for region maps it is clear
that the most natural implementation is one that allows the
modifying commands to make changes to specified polygod.
This means that when implementing these commands it must be
possible to modify all of the nodes which make up a polygon
or group of polygons without affecting nodes of neighboring
polygons. In our system, each node has a value field. Each
polygon (and hence each node making up the polygon) is con-
sidered to be a member of a "class". This class could be an
elevation range or a landuse type such as "wheatfields".
The value of the node indicates the class of which it is a
member.

The following commands apply only to region maps. In-
serting and deleting lines or points is discussed in Section
5.

The replace command is executed by traversing the en-
tire quadtree. Those nodes with the old (class) value have
that value replaced by the new. For this command it is not
necessary to distinguish between polygons of the same class
since they are all processed in the same way.

The change command is more complicated. This command
should manipulate only one polygon; however, other polygons
of that class may also exist. After the command line has
been parsed, a recursive function is called which actually
performs the desired work. This function takes a node as
its parameter. This node is checked to see that it has the
old value (the one to be changed). If so, then its value is

*changed to the new one and the function is recursively ap-
plied to all of the node's neighbors. In this way, all
nodes of a polygon will eventually be reached and only nodes
in the polygon will have their values changed (since only
four-neighbors of nodes in the desired polygon are ever can-

. didates for processing).

4

n o *.. . . , . . - - .. . -.. : ..I . . .- .-..- :,. .,U .b71

-46-

The split command allows the user to impose an arbi-
trary line, one pixel wide, of a designated value onto the
map. The intended use of the command is to split a polygon
into two or more separate parts. One of these parts would
then become a polygon of the same class as the chaincode via
subsequent invocation of the change command. The pixels of
the chaincode would then be part of this new polygon. Al-
ternatively, the split command can be used to make slight
modifications of only a very few pixels, such as correcting
a slightly misplaced border of a polygon. This type of
correction could not be applied in any other way with the

available command set.

The split command operates by first inserting a one
pixel node into the tree corresponding to the first coordi-
nate given and then following the chaincode inserting nodes
as it reads the code. As the user types the code, the code
is also inserted into the command file. Allowing the user
to observe the progress of the chaincode as he is inputting
it is a key feature of our implementation of the split com-
mand. Typing an incorrect chaincode was Judged to be a very
common source of error when the implementation was designed.
Enabling the user to see the chain displayed as he inputs it
allows the rapid detection and correction of errors. When
the backspace key is typed the chaincode is backed up one
pixel. This is accomplished by examining the end of the
command file. The last direction of the code is read to
determine the coordinates of the previous pixel of the

.7. chaincode and then both the map and the command file are up-
* dated to reflect the backup. In typical usage of the split

command, the result will be a line splitting a polygon into
two or more pieces. The user would then change the value of
some of the pieces via the change command.

By repeated use of the three commands replace, change,
-. and split, it is possible to a make any desired changes to a

region map. Clearly this is true since in the worst case
the user could construct an entire map from one pixel chain-
codes. However, it is hoped that the provided commands are
of sufficient power to enable a user to easily edit maps as
he wishes.

..

b7."

.V

-47

3.4. A demonstration of~ database updating.

Figure 17 shows the original floodplain data provided
for this project. Also included are four regions bordered
by dotted lines indicating intended revisions to the landuse
map. This section demonstrates how these revisions can be
executed using the quadtree editor. When in the database
system, if the user wishes to edit the landuse map (which
has been given the name 'land') he would begin by typing:

Edit land please

The editor will then start up, prompting the user with the
symbol <?>. Following are the necessary commands to create
Figure 19 from Figure 18, along with explanations of the
steps taken. Messages from the editor to the user are typed
in capital letters.

OLD FILE
<?> gon 0 0 512 512
<?> look 0 0
DISPLAY AREA MAP
28447 NODES DISPLAYED

The editor informs th'e user that the file is an old (already
existing) quadtree file. The gon command clears the Grin-
nell screen, then the look command displays the landuse map
for the user to see. There are 28447 nodes in this tree.

The map of revisions shows a polygon which should have class
value of ACC. In the original landuse map, this area is two
polygons - the one on the left having value AVV, and the one
on the right having value ACC. The change command is used
to convert the AVV part to ACC.

<?> change 19 247 100
NODES FOUND: 408, # NODES IN POLYGON: 112

This command changes the color value of the polygon contain-
ing the point (19,247) to color 100 (the integer code for
landuse class ACC). During the processing, the change func-
tion examined 408 nodes, of which 112 where actually in the
polygon and had their value changed. The AVV polygon has
now merged with the ACC polygon to create the desired revi-
sion.

The AVV polygon is somewhat harder to construct. On the
original landuse map, this region contains a polygon of
class AVV and a polygon of class ACP. The rest of the new
region consists of two parts of a large AVF class polygon.
To make the requested revision, it is necessary to draw the
border of the new polygon through the AVF section. This is
done with the split command in two pieces. The newly creat-

I " " ': i- -. . . ii : : :: " " "l".- -." I.

7I- . -. C -- C-- . --.

-48-

ed polygons will then be converted to class AVV via the
change command. Lastly, the ACP polygon will be converted

OF to AVV.

<?> split 96
4. PLEASE ENTER CHAINCODE (ENDING WITH #):

(32,238)klklklklllk#
<?> split 96
PLEASE ENTER CHAINCODE (ENDING WITH #):
(62,219)4khkh7k7hj10h#

Note that 96 is the integer code for AVV and that the line
is therefore of class value AVV. The following change com-
mands complete the AVV polygon revision.

<?> change 50 211 96
NODES FOUND: 125, # NODES IN POLYGON: 33
<?> change 29 227 96
NODES FOUND: 288, # NODES IN POLYGON: 74
<?> change 32 207 96
NODES FOUND: 265, # NODES IN POLYGON: 70

The UIS polygon is formed in a manner similar to that used
to form the AVV region - once again the split command is
used to complete the border of the new polygon, and the
change command then merges the pieces together. 3080 is the

*. integer code for UIS.

<?> split 3080
PLEASE ENTER CHAINCODE (ENDING WITH #):
(53,273)32h10Jljjh4jljj121J#
<?> change 30 297 3080
NODES FOUND: 321, # NODES IN POLYGON: 82
<?> change 26 289 3080
NODES FOUND: 94, # NODES IN POLYGON: 27
<?> change 25 279 3080
NODES FOUND: 99, # NODES IN POLYGON: 27

For the final revision, the URS polygon, we simply draw the
complete border of the polygon and fill in the pieces. 3268
is the integer code for URS.

<?> split 3268
PLEASE ENTER CHAINCODE (ENDING WITH #):
(213,205)68115kl5kllklllkkhkkl10k3h15k45hk6h36jh9j19h6j#
<?> change 241 203 3268
NODES FOUND: 559, # NODES IN POLYGON: 151
<?> change 240 179 3268
NODES FOUND: 217, # NODES IN POLYGON: 63
<?> change 253 199 3268
NODE FOUND: 139, # NODES IN POLYGON: 41
<?> change 264 188 3268
NODES FOUND: 283, # NODES IN POLYGON: 79

. .. .-.

~49

<?> change 260 162 3268
NODES FOUND: 232, # NODES IN POLYGON: 63
<?> change 276 190 3268
NODES FOUND: 272, # NODES IN POLYGON: 77

The line codes for this demonstration were of course
prepared beforehand, and the commands shown here are pol-
ished final results. However, a user who has only a hard
copy map in front of him can determine by eye what points to
use via the point and value functions. He can easily
correct errors while drawing line boundaries by using the
backspace key. So while this demonstration does not show
commonly occurring errors, these errors can easily be dealt
with by the user as he makes them.

--

.•.-.

-50-

9-,

I +

V IS'-I

.........
AVV

-URS

N + iT:- VVM

+-I- TRAF.91 i

At

.hm

.* Figure 17. The floodplain map with marked revisions

S.

7-

Figure 18. The landuse map.

-~~~~~~~~ - --,--. -r-,-vr,.- f -

- 52 -

iL

3IS

Figure 19. The updated landuse map.

I,

- 53 -

4. The quadtree memory management system

4.1. The user's view of the memory management system

The quadtree memory management system, henceforth known
as the kernel, controls the interface between the quadtree
files and the programs that the database uses to view and
manipulate quadtrees. At the level of the kernel, the three
types of quadtrees (region quadtrees, point quadtrees, and
edge quadtrees) are identical. The kernel views the quad-
tree file as a collection of quadtree leaves, each leaf hav-
ing some vrlue associated with it. One could view the ker-
nel as definIng the quadtree file as an abstract type, as
all routines in the database use the kernel to acceis the
quadtree files. The word 'user' in this section refeis to
the programmer of the quadtree database (i.e. the 'user' of
the kernel routines), not the 'user' of the quadtree data-
base system described in Section 2.

From the user's point of view, a quadtree file has
three parts: an array of user defined information, a list of
comments, and a list of quadtree leaves.

The array of user defined information, known as the
user's header, is a fixed size array that is set up when the
quadtree file is created and its usage is totally up to the
user. The kernel supports the array by offering the user two
routines: read head and write head. These routines transfer
the user's he-der between the quadtree file (where the user

"" can't change it, but it is associated with the file) and a
character array (where the user can change it, but it is no
longer associated with the file). The routines readhead
and write head do not allow access to any part of the quad-
tree file that is outside of the initially defined user's
header. Typical usages of the user's header would be to

*keep track of whether a quadtree file is to be interpreted
*i as a point quadtree or a region quadtree, the x and y coor-

dinates of the lower-left-hand corner of the quadtree (with
respect to some global coordinate system), and how many pix-
els wide the quadtree is.

The list of comments provides a variable size disk area
where the user can place comments (usually a list of the
function calls used in the creation of the file). The com-
menting feature is maintained by three routines:
append cmnt, read cmnt, and cmnt init. Note that a comment
cannot be changed once it has been inserted, because the
only write capability is to append. The read cmnt routine
allows the user to fetch the next n characters of comments.
Thus it was necessary to provide a cmnt init routine, to re-
turn the read routine to the beginning of the comment list
(allowing rereads).

. .. --... '............-.........-...'

- 54 -

Most of the code in the kernel is dedicated to main-
taining the list of quadtree leaves. The kernel user inter-
faces with this code through twenty C subroutines and mac-
ros. The major distinction between these routines is wheth-
er they access the quadtree file or are utilities for mani-
pulating quadtree leaf descriptions.

The quadtree leaf description has three parts. It con-
tains the depth of a leaf (accessed via qddepth), the coor-
dinates of the lower left hand corner of the leaf (accessed

. via qd x and qdy), and the user interpreted value of the
"- leaf (accessed via qd value). A leaf also lies in a partic-
* ular quadrant of its father; which quadrant the leaf lies in

can be computed by qdwhich. As well as interpreting exist-
ing leaves, there are routines that allow the construction
of leaf descriptions. The basic constructor is qd_clear,
which creates a leaf of depth 0, with value UNUSED, whose x
and y coordinates are <0,0> (which is always measured from a
leaf's lower left hand corner where the entire tree's lower
left corner has <0,0> for its coordinates). The user inter-
preted value of a leaf description can be changed using the
qd set command. A leaf description of a leaf having a cer-
tain depth and x and y coordinates relative to a tree with a
given maximum depth is built by the qd_xy routine. A leaf
description for a node which would be the father or son of a
given node can be built using qd_father or qdson (respec-
tively). A copy of a leaf description can be made using the
qdcopy routine. Two leaf descriptions can be compared re-
lative to their visitation order by a preorder traversal
ordering using the addr_gt function. The number of bytes

used by a leaf description is kept in a macro called
BADDRSIZE.

t Those routines that access the quadtree file can be di-
vided into those that search the file and those that change

lthe file. The most basic of the functions that search the
file is qd_find. Given a leaf description, it returns the
description of the leaf in the quadtree that would contain
the given leaf. Sometimes the leaf to be found is larger
than the actual leaves at the appropriate position in the
file, there is no 'containing' leaf. In this case, qd find
returns the leaf in the quadtree contained by the given
leaf's description that is least (using the ordering defined
by addr_gt). If one wants to find a leaf description in the
quadtree that is the preorder successor, neighbor with
respect to a particular side, or a diagonal neighbor, then
one uses the qd preorder, qd_neighbor, or qd diagonal func-
tions (respectively). Often one wishes to apply the same
function to every leaf in a quadtree. One way to implement
this would be to have the function be the body of a loop
that calls qd_preorder until it runs off the end of the map.
However, qd_preorder works by first calculating the value of
the successor of a given leaf, and then searching for this

4

4

- 55 -

newly calculated leaf. Since we know that we wish to exe-
cute the same function on every leaf in the tree in any con-
venient order, it is not necessary to search for a particu-
lar leaf. Instead we can use whatever leaf is next in the
tree. Qdtravel is a kernel routine which takes a function
as its argument, and applies this function to every leaf in
the file in the most efficient manner.

The principal way to change a quadtree file is to in-
sert a leaf using the qd_insert routine. If one inserts a
leaf description that is identical to one that is already in
the quadtree (except for the leaf having a different color),
then the color associated with that leaf description is
changed and if that causes any leaves to merge (due to four
siblings having the same color), then those leaves are
merged. If the leaf description to be inserted describes a
leaf that contains more than one leaf already in the quad-

*tree, then the contained leaves are deleted and the new leaf
is inserted. Thus one can empty a quadtree by inserting a
white leaf at depth zero. If one inserts a leaf description
that is contained by a leaf description that is already in

• .the quadtree, then the leaf in the quadtree is split into
its four sons (each with the same color as the father) and
the insertion attempt is repeated. There is also a quadtree
file changer called qd_packer that tries to compress the ar-
rangement of leaves in the quadtree file. Although
qd_packer can change the quadtree file, its effects are in-
visible to the routines described above' (with the exception
that most routines run faster on a quadtree file that has
been packed).

Finally, there are two routines needed to monitor the
relation between the external operating system, in which the
quadtree files persist across many invocations of the data-
base system, and the kernel, whose memory vanishes when the
database system exists. The first routine is qbinit, which
allocates and initializes a portion of core that can be used
by the routines that manipulate a particular quadtree file.
The second routine is qb_post, which deallocates the portion
of core that was associated with a quadtree file (most im-
portantly, qb_post makes sure that all buffers have been
written back onto the quadtree file).

9

0

-.9

-56-

4.2. Implementation of the memory management system

The major question in the implementation of the kernel
is to decide how to order the storage of the leaf descrip-
tions. It can be seen [Garg82a] that if one orders the
leaves according to how they would be visited by a preorder
traversal of the quadtree, then the next leaf description
sought will tend to be near the last leaf description found.

* In the kernel, a leaf description is stored in two long
words (32 bits each). The first long word is split into one
field of 3 bytes (24 bits) that contains the result of in-

, terleaving the bits of the x and the y coordinates of the
-leaf described. The second field of 1 byte (8 bits) con-

tains the depth of the leaf described. It can be shown that
if one compares this four byte address descriptor of two
leaves (using an arithmetic comparison of the absolute value
of the two long words), then the leaf corresponding to the
greater value will be visited later by a preorder traversal
of a quadtree than will the other leaf. Thus we have a
quick and efficient way of determining a linear ordering of
leaf descriptions. The second long word of the leaf

* description is used to store the value/color of the leaf.
Note that this leaf description structure will support quad-
trees with leaves at depth twelve or less. This limit ar-
ises from the 3 bytes (24 bits) that are used to store the
interleaved coordinates. This gives a maximum size of 2048
by 2048 pixels for any map. Our original database consists
of three maps each approximately 400 by 450 pixels, so this

%is quite sufficient.

Given the linear ordering of leaf descriptions
described above and the fact that we will be storing collec-
tions of leaf descriptions containing as many as 30,000
leaves, it is obvious that the quadtree files should be or-
ganized as some kind of b-tree structure [Come79]. The ker-

. nel thus becomes a collection of routines that maintain a
buffer pool in core and a b-tree in the disk file, allowing
the user to manipulate the leaf descriptions without having
to worry about any of the details. Note that the buffer
pool contains that portion of the quadtree file that there
is room for in core at any given time and, due to locality
of reference considerations, is probably best maintained on

a schedule that replaces the least recently used buffers
first.

We are currently using 512 byte b-tree nodes, which al-
.low room for up to sixty leaf descriptions. Each b-tree
node (except the root of the b-tree) is guaranteed to have
at least thirty leaf descriptions in it. Thus one will
rarely build a b-tree that is deeper than four b-tree nodes.

. There is much research that can be done with regards to the
kernel implementation. It would be interesting to know theeffects of different size b-tree nodes, different size

NSZ-

- 57-

ZI

buffer pools, and different b-tree node balancing schemes on
the response time of the kernel.

.4.

1'

.

;.%

o.

.44 . - .. - . .,.-.. - .--.-..- .

-58-

5. Point and line data

In the final report on Phase I [Rose82a], the details
of implementing region quadtrees were discussed. In Phase
II, quadtrees were also used to store two new types of data:
points and lines. The details of our usage of quadtrees for
these two new data types will be discussed below. It should
be noted that the same kernel (described in Section 4) is
used for manipulating quadtrees involving each of these
three data types. When storing area data in region quad-

* trees, the value of a leaf corresponds to the color of the
region that contains the leaf. Since there is no notion of
color associated with either point or line data, other in-
terpretations will be placed on the information stored in
the value portion of the leaf description. What interpreta-
tion a particular routine makes of a leaf's value is depen-
dent on what type of data is being stored in the quadtree.
The user keeps track of this in the user header described in
Sections 4.1 and 3.2.1.

To be precise, the routines that manipulate region
quadtrees view the 32 bit value field associated with each
leaf's location as containing three subfields. The first
field (leftmost bit) is set to indicate that an erroneous
value has been placed there. This corresponds to using a
negative long integer as the value of a node. As it hap-
pens, the routine that creates an empty leaf description
(qd_clear) places a -5 in the value field to indicate that
no one has specified a value for this leaf description yet.
This is consistent with the usage described, as something is
probably wrong if there is a leaf description in the tree
that does not have an assigned value. The second field
(also a one bit field) is the mark bit that is used by
sweep-and-mark type algorithms, e.g., connected component
labeling. The remaining field (30 bits) contains the color
of the described leaf.

The implementation of the point quadtree interprets the
value field as containing five subfields. The first two
fields are the error and mark fields that are used just as
in the region quadtree. The third field (two bits) is
unused. The fourth field (14 bits) contains the x-
coordinate of the point stored in the leaf. The fifth field
(also 14 bits) contains the y-coordinate of the same point.
Fourteen bits is more than sufficient considering the imple-
mentation restriction of using quadtrees with a depth less
than or equal to twelve. Note that a depth of twelve will
handle a 2048 by 2048 map. Thus we can interpret a y value
of 4096 as an unused value that can be used to denote a leaf
description for a region that contains no points.

4%
4-..", ', +- - . -' . . .+ -. .. , . . .,- . .-. ,

- 59 -

The above interpretation of the leaf description value
field has the following consequences with respect to point
quadtree algorithms. No more than one point can be stored
in a quadtree leaf. Insertion of a point in a point quad-
tree works as follows. First we find the leaf that contains
the point's location. If the leaf is empty, then the
point's x and y coordinates are placed in the leaf descrip-
tion. Otherwise, the leaf is split into its four sons, the
old leaf's point value is copied into the appropriate son,
and insertion is re-attempted. Deletion of a point in a
point quadtree is a matter of finding the leaf that contains
the point and then changing the leaf description to that of
an empty leaf. Next, one checks to see if it is possible to
merge the new empty leaf with its siblings.

The point quadtree described above differs from the
original point quadtree of Finkel and Bentley [Fink74], in

* that the structure of our point quadtree is independent of
the order of point insertion. This is a result of the fact
that leaves are always split by the kernel into four

*congruent squares, whereas the original point quadtree split
leaves up into rectangles whose dimensions were a function
of the first node inserted into the leaf's region.

The value field of the line quadtree leaf description
has four subfields. The first field (one bit) indicates er-
ror values as it does for the other two types of quadtree
leaf descriptions. The second field (one bit) indicates
whether or not the leaf corresponds to a single pixel in the
map. The third field (two bits) tells which son a node is
with respect to its father. By setting this field, we
guarantee that the leaf will not be automatically merged
with its brothers by the kernel's insert routine. The only
time this field is not set is when the leaf contains no line
segments. Thus empty regions automatically merge.

The fourth field (28 bits) of the line quadtree in-
terpretation of a leaf's value contains different informa-
tion depending on whether or not the leaf corresponds to a

*. single pixel in the map. If the leaf corresponds to a pix-
el, then the fourth field indicates how many lines pass
through that pixel. If a leaf corresponds to a larger re-
gion, then it is either empty (and contains a special empty
leaf code) or it contains exactly one line segment. If it
contains exactly one line segment, then the intercepts of
the line segment with the leaf's region are stored. Since
the line must intercept the region at the region's perime-
ter, it is possible to encode each intercept with 14 bits
and be able to handle regions as large as 4095 by 4095. In
our implementation, this fourth field is further split into
four subfields. The first two bits determine the side of

. the node on which the first intercept occurs. The next 12
bits indicate how far from the corner the intercept occurs

.', . .- . " .- -.-.' '- -

-60-

(the left corner for the north and south edges, the lower
corner for the east and west edges). The next fields of two

- and 12 bits repeat this for the second intercept.

-The insertion and deletion algorithms for line quad-
trees are designed so that if one viewed the line segment as

* an indivisible atomic unit, then line segments could be
dynamically inserted and deleted without roundoff errors
creeping into the map representation to the extent that a
line's endpoints have changed. This is important because

* the only way of indicating a line is by specifying its end-
points. Note however that the representation does not ex-
plicitly store the endpoints of a line segment, but rather
stores a compact form of the digitization of all the lines
in. the map. The digitization of the lines is eight-
connected, i.e., connection of the line is maintained
across horizontal, vertical, or diagonal neighbors.

With the above details in mind, the insertion and dele-
tion algorithms for line quadtrees are analogous to those of

. region or point quadtrees. Insertion of a second line seg-
8 ment into a region described by a leaf already containing

one line segment causes the leaf to be quartered, the infor-
mation that was in the original leaf to be distributed among
the new leaves, and then the insertion attempt is repeated.
The important thing to remember is that when a line segment
lies across two leaves, the appropriate intercepts in both

"* leaves must be eight-neighbors of each other. Deletion of
line segments is simply a matter of deleting all the infor-

* mation that is specific to that line segment.

.9

4

• '4'- .; . , -. ? , .-.- -. -. : - -, : .: .. -- - .

- 61 -

6. Conclusions and plans

6.1. Conclusions

This project has developed a set of software tools for
use with a quadtree-encoded cartographic database. A query
language was developed to make it easier for a user to work
with the database. An editing capability was developed to
permit database updating. A memory management system was
developed for manipulation of maps too large to fit into
main memory. Finally, the original database of regions was
augmented with a set of point and linear feature data from
the same geographical region. Those data were also quadtree
encoded, and programs were written to answer queries
(points-in-region, lines-meeting-region) that make use of
more than one type of data.

6.2. Plans

It is planned to extend the work on this project to
evaluate other types of hierarchical representations for re-
gions, linear features, and point data. These representa-
tions include

(a) For point data: point quadtrees, K-d trees, GRID
files, EXCELL

(b) For linear feature data: Strip trees, edge quad-
trees, line quadtrees

(c) For region data: B-tree encoded quadtrees, pyram-
ids, DF-expressions, quadtree Medial Axis
Transforms, forest-based methods.

The evaluation will make use of the same data base used on
the present project. It will involve timing and storage
space studies, and will also investigate the structure's
amenability to use in an off-line storage environment.

Other extensions include enhancement of the query
language, and an investigation of representations for gray-
scale data (in contrast with binary images). All methods
will be scrutinized from the viewpoint of their amenability
to use in an off-line environment. The evaluation will make
use of the same database used in Phasea I and II and will
consist of studies of time and storage requirements.

'.

- 62

* Appendix: Facilities used

The computer used during this project was a VAX 11/780
produced by the Digital Equipment Corporation. It has four

" megabytes of actual memory, six megabytes of virtual memory,
; a disk fetch speed of approximately 0.6 megabits per second,

and a memory cycle speed of approximately 1400 nanoseconds.
The wordsize for the VAX is 32 bits broken into four 8-bit
bytes. Data is stored on two DD 11/300 disk drives produced
by Plessey Peripheral Systems. Each disk drive has a
storage capacity of 300 megabytes. The VAX 11/780 runs
under the UNIX operating system (Berkley Release 4.1).

The picture output device used by this project is a
Grinnell GMR-27 Display Processor. Its memory consists of
thirteen 512x512 bitplanes. Twelve of these bitplanes carry
color information (four bits for each of the colors: blue,

- green, and red). The thirteenth bitplane is used for a
white overlay capability. The high order eight bitplanes of
the twelve color bitplanes can also be displayed to create a
grayscale output. The output speed of quadtrees on this
device compares favorably to a raster scan output of a pic-
ture file, because the GMR-27 can output a rectangle on the
display screen directly from the rectangle's coordinates
(i.e., a separate command is not necessary for each pixel in
the .'ectangle as is done when a picture file is output in
raster scan mode).

'4

2,aaDj . a 7!:.2~ ~ *§,~ . .. *.. ~ ..

_. .I- __ . .- -. . - -. - ; .I . • .I I .T . - , ° - -_. - "

-63-

Bibliography on quadtrees

[Abel83a] - D.J. Abel and J.L. Smith, A data structure and
algorithm based on a linear key for a rectangle
retrieval problem, to appear in Computer Vision,
Graphics and Image Processing, 1983.

(Abel83b] - D.J. Abel, A B+-tree structure for large quad-
trees, to appear in Computer Vision, Graphics and
Image Processing, 1983.

[Ahuj83] - N. Ahuja, On approaches to polygonal decomposi-
tion for hierarchical image representation, to ap-
pear in Computer Vision, Graphics and Image Pro-
cessing, 1983 (see also Proceedings of the IEEE
Conference on Pattern Recognition and Image Pro-
cessing, Dallas, TX, 1981, 75-80).

[Alex78] - N. Alexandridis and A. Klinger, Picture decompo-
sition, tree data structures, and identifying
directional symmetries as node combinations, Com-
puter Graphics and Image Processing 8, 1978, 43-
77.

(Alle82] - E. Allen, R. Trigg, and R. Wood, Maryland Artifi-
cial Intelligence Group Franz Lisp Environment,
Computer Science TR-1226, University of Maryland,
College Park, MD, 1982.

[Aoki79] - M. Aoki, Rectangular region coding for image data
compression, Pattern Recognition 11, 1979, 297-
312.

[Ball81] - D.H. Ballard, Strip trees: A hierarchical
representation for curves, Communications of the
ACM 24, 1981, 310-321 (see also corrigendum, Com-
munications of the ACM 25, 1982, 213).

[Bent75a] - J.L. Bentley and D.F. Stanat, Analysis of range
searches in quad trees, Information Processing
Letters 3, 1975, 170-173.

(Bent75b] - J.L. Bentley, Multidimensional binary search
trees used for associative searching, Communica-
tions of the ACM 18, 1975, 509-517.

[Bent77] - J.L. Bentley, D.F. Stanat, and E.H. Williams Jr.,
The complexity of fixed radius near neighbor
searching, Information Processing Letters 6, 1977,
209-212.

• ' .- - "- " 1 e ° . ' • "° . .'°...- , , .-.-. ,. - -. , ...-. , . : -:..% ,:' ::{': .;--:-: - _: .;- :- :-:,:, :-.-.. , .. , . :

- 64 -

[Bent79a] - J.L. Bentley, Decomposable searching problems,
Information Processing Letters 8, 1979, 133-136.

[Bent79b] - J.L. Bentley and J.H. Friedman, Data Structures
for range searching, ACM Computing Surveys 11,
1979, 397-409.

[Bent8O] - J.L. Bentley and H.A. Maurer, Efficient worst-
case data structures for range searching, Acta In-
formatica 13, 1980, 155-168.

[Bess82] - P.W. Besslich, Quadtree construction of binary
images by dyadic array transformations, Proceed-
ings of the IEEE Conference on Pattern Recognition
and Image Processing, Las Vegas, NV, 1982, 550-
554.

[Blum67] - H. Blum, A transformation for extracting new
descriptors of shape, in Models for the Perception
of Speech and Visual Form, W. Wathen-Dunn, Ed.,
M.I.T. Press, Cambridge, MA, 1967, 362-380.

[Burt8O] - P.J. Burt, Tree and pyramid structures for coding
hexagonally sampled binary images, Computer Graph-
ics and Image Processing 14, 1980, 249-270.

[Burt8l) - P. Burt, T.H. Hong, and A. Rosenfeld, Segmenta-
tion and estimation of image region properties
through cooperative hierarchical computation, IEEE
Transactions on Systems, Man, and Cybernetics 11,
1981, 802-809.

[Burt77] - W. Burton, Representation of many-sided polygons
and polygonal lines for rapid processing, Communi-
cations of the ACM 20, 1977, 166-171.

[Carl82] - W.E. Carlson, An algorithm and data structure for
3D object synthesis using surface patch intersec-
tions, Computer Graphics-SIGGRAPH 82 Conference
Proceedings 16, 1982, 255-26T.

[Come79] - D. Comer, The ubiquitous B-tree, ACM Computing
Surveys 11, 1979, 121-137.

[Cook78] - B.G. Cook, The structural and algorithmic basis
of a geographic data base, in Proceedings of the
First International Advanced Study Symposium on
Topological Data Structures for Geographic Infor-
mation Systems, G. Dutton, Ed., Harvard Papers on
Geographic Information Systems, 1978.

• *' [DeCo76] F. DeCoulon and U. Johnsen, Adaptive block
schemes for source coding of black-and-white fac-

t..

- 65 -

simile, Electronics Letters 12, 1976, 61-62 (see
also erratum, Electronics Letters 12, 1976, 152).

[DeF182a] - L. DeFloriani, B. Falcidieno, and C. Pienovi,
Triangulated irregular networks in geographical
data processing, in Environmental Systems Analysis
and Management, S. Rinaldi, Ed., North-Holland,
Amsterdam, 1982, 801-811.

[DeF181b] - L. DeFloriani, B. Falcidieno, G. Nagy, and C.
Pienovi, Yet another method for triangulation and
contouring for automated cartography. Proceedings
of the American Congress on Surveying and Mapping,
American Society of Photogrammetry, F.S. Cardwell,
R. Black, and B.M. Cole, Eds., Hollywood, FL,
1982, 101-110.

[Dett82] - G. Dettori and B. Falcidieno, An algorithm for
selecting main points on a line, Computers and
Geosciences 8, 1982, 3-10.

[Duda73] - R.O. Duda and P.E. Hart, Pattern Classification
and Scene Analysis, Wiley, New York, 1973.

[Dutt78] - G. Dutton, Ed., Proceedings of the First Interna-
tional Advanced Study Symposium on Topological
Data Structures for Geographic Information Sys-
tems, Harvard Papers on Geographic Information
Systems, 1978.

[Dyer8Oa] - C.R. Dyer, A. Rosenfeld, and H. Samet, Region
representation: boundary codes from quadtrees,
Communications of the ACM 23, 1980, 171-179.

[Dyer80b] - C.R. Dyer, Computing the Euler number of an im-
age from its quadtree, Computer Graphics and Image
Processing 13, 1980, 270-276.

(Dyer8lb) - C.R. Dyer, A VLSI pyramid machine for parallel
image processing, Proceedings of the IEEE Confer-
ence on Pattern Recognition and Image Processing,
Dallas, TX, 1981, 381-386.

(Dyer82] - C.R. Dyer, The space efficiency of quadtrees,
Computer Graphics and Image Processing 19, 1982,
335-348.

[East70] - C.M. Eastman, Representations for space planning,
Communications of the ACM 13, 1970, 242-250.

(Edel8l] - H. Edelsbrunner and H.A. Maurer, A space-optimal
solution of general region location, Theoretical
Computer Science 16, 1981, 329-336.

- 66 -

(Edel82a] - H. Edelsbrunner, H.A. Maurer, and D.G. Kirkpa-
trick, Polygonal intersection searching, Informa-
tion Processing Letters 14, 1982, 74-79.

[Edel82b] - H. Edelsbrunner and H.A. Maurer, On the
equivalence of some rectangle intersection prob-
lems, Information Processing Letters 14, 1982,
124-127.

[Edel83] - H. Edelsbrunner and J. V. Leeuwen, Multidimen-
sional data structures and algorithms: a bibliog-
raphy, Institute for Information Processing Report
F104, Technical University of Graz, Graz, Austria,
1983.

[Fagi79] - R. Fagin, J. Nievergelt, N. Pippenger, and H.R.
Strong, Extendible hashing - a fast access method
for dynamic files, ACM transactions on Database
Systems 4, 1979, 315-344.

(Fink74] - R.A. Finkel and J.L. Bentley, Quad trees: a data
structure for retrieval on composite keys, Acta
Informatica 4, 1974, 1-9.

[Fode8O] - J. K. Foderaro, The Franz Lisp Manual, The Re-
gents of the University of California, 1980.

[Free74] - H. Freeman, Computer processing of line-drawing
images, ACM Computing Surveys 6, 1974, 57-97.

CFrie75] - J.H. Friedman, F. Baskett, and L.J. Shustek, An
algorithm for finding nearest neighbors, IEEE
Transactions on Computers 24, 1975, 1000-1006.

[Frie77] - J.H. Friedman, J.L. Bentley, and R.A. Finkel, An
algorithm for finding best matches in logarithmic
expected time, ACM Transactions on Mathematical
Software, 1977, 209-226.

[Gibs82] - L. Gibson and D. Lucas, Vectorization of raster
images using hierarchical methods, Computer Graph-
ics and Image Processing 20, 1982, 82-89.

CGarg82a] - I. Gargantini, An effective way to represent
quadtrees, Communications of the ACM 25, 1982,
905-910.

[Garg82b] - I. Gargantini, Linear octrees for fast process-
ing of three dimensional objects, Computer Graph-
ics and Image Processing 20, 1982, 365-374.

[Gros] - W.I. Grosky and R. Jain, Optimal quadtrees for im-
age segments, IEEE Transactions on Pattern

* * *
S.. - . C C C C I

-67-

Analysis and Machine Intelligence 5, 1983, 77-83.

[Hend82] - T.C. Henderson and E. Triendl, Storing feature
descriptions as 2-d trees, Proceedings of Pattern
Recognition and Imag Processing 82, Las Vegas,
NV, 1982, 553--56.

[Hoar72] - C.A.R. Hoare, Notes on data structuring, in
Structured Programming, O.J. Dahl, E.W. Dijkstra,
and C.A.R. Hoare, Eds., Academic Press, London,
1972, 154.

[Horo76] - S.L. Horowitz and T. Pavlidis, Picture segmenta-
tion by a tree traversal algorithm, Journal of the
ACM 23, 1976, 368-388.

[Huff52] - D.A. Huffman, A method for the construction of
minimum-reduidancy codes, Proceedings of the IRE
40, 1952, 1098-1101.

[Hunt78] - G.M. Hunter, Efficient computation and data
structures for graphics, Ph.D. dissertation,
Department of Electrical Engineering and Computer
Science, Princeton University, Princeton, NJ,
1978.

[Hunt79a] - G.M. Hunter and K. Steiglitz, Operations on im-
ages using quadtrees, IEEE Transactions on Pattern
Analysis and Machine Intelligence 1, 1979, 145-
153.

[Hunt79b] - G.M. Hunter and K. Steiglitz, Linear transforma-
tion of pictures represented by quadtrees, Comput-
er Graphics and Image Processing 10, 1979, 289-
296.

[Jack80] - C.L. Jackins and S.L. Tanimoto, Oct-trees and
their use in representing three-dimensional ob-
jects, Computer Graphics and Image Processing L4,
1980, 249-270.

[Jack82] - C. Jackins and S.L. Tanimoto, Quad-trees, oct-
trees, and k-trees - a generalized approach to re-
cursive decomposition of Euclidean space, Depart-
ment of Computer Science Technical Report 82-02-
02, University of Washington, Seattle, WA, 1982.

[Jone81] - L. Jones and S.S. Iyengar, Representation of re-
gions as a forest of quadtrees,, Proceedings of
the IEEE Conference on Pattern Recognition and Im-
Il&e Processing, Dallas, TX, 1981, 57-59.

[Kawa8Oa] - E. Kawaguchi and T. Endo, On a method of binary

_ , . • . o . o- , , .

- 68 -

picture representation and its application to data
compression, IEEE Transactions on Pattern Analysis
and Machine Intelligence 2, 1980, 27-35.

[Kawa80b] - E. Kawaguchi, T. Endo, and M. Yokota, DF-
expression of binary-valued picture and its rela-
tion to other pyramidal representations, Proceed-
ings of the Fifth International Conference on Pat-
tern Recognition, Miami Beach, FL, 1980, 822-827.

[Kawa82] - E. Kawaguohi, T. Endo, and J. Matsunaga, DF-
expression viewed from digital picture processing,
Department of Information Systems, Kyushu Univer-

sity, Japan, 1982.

[Kede8l] - G. Kedem, The Quad-CIF tree: a data structure
for hierarchicil on-line algorithms, TR 91, Com-
puter Science Department, The University of Ro-
chester, Rochester, NY, 1981.

[Kell7l] - M.D. Kelly, Edge detection in pictures by comput-
er using planning, Machine Intelligence 6, 1971,
397-409.

[Kim8la] - C.E. Kim, On the cellular convexiti of complexes,
IEEE Transactions on Pattern Analysis and Machine
Intelligence ., 1981, 617-625.

[Kim8lb] - C.E. Kim and A. Rosenfeld, Digital straightness
and convexity, Proceedings of the 13th Annual ACM
Symposium on Theory of Computing, Milwaukee, WI,
1981, 80-89.

EKim82a] - C.E. Kim and A. Rosenfeld, Digital straight lines
and convexity of digital regions, IEEE Transac-
tions on Pattern Analysis and Machine Intelligence
i, 1982, 149-153.

[Kim82b] - C.E. Kim, Digital convexity, straightness, and
convex polygons, IEEE Transactions on Pattern

" Analysis and Machine Intelligence 4, 982, 61T-
626.

[Kirb79) - R. L. Kirby, R. Smith, P. A. Dondes, S. Ranade,
L. Kitchen, and F. Blonder, Interfaces, Subrou-
tines, and Programs for the Grinnell GMR-27
Display Processor on a PDP-11/45 with the UNIX
Operating System, Computer Science TR-810, Univer-
sity of Maryland, College Park, MD, 1979.

[Klin7l] - A. Klinger, Patterns and search statistics, in
Optimizin& Methods in Statistics, J.S. Rustagi,
Ed., Academic Press, New York, 1971.

- 69 -

[Klin76] - A. Klinger and C.R. Dyer, Experiments in picture
representation using regular decomposition, Com-
puter Graphics and Image Processing 5, 1976, 68-
105.

[[Klin79] - A. Klinger and M.L. Rhodes, Organization and ac-
cess of image data by areas, IEEE Transactions on
Pattern Analysis and Machine Intelligence 1, 1979,
50-60.

[Know8O] - K. Knowlton, Progressive transmission of grey-
scale and binary pictures by simple, efficient,
and lossless encoding schemes, Proceedings of the
IEEE 68, 1980, 885-896.

[Knut73] - D.E. Knuth, The Art of Computer Programming, vol.
3, Sorting and Searching, Addison-Wesley, Reading,
MA, 1973.

[Knut75] - D.E. Knuth, The Art of Computer Programming, vol.
1, Fundamental Algorithms, Second Edition,
Addison-Wesley, Reading, MA, 1975.

[Krau75] - E.F. Krause, Taxicab Geometry, Addison-Wesley,
Reading, MA, 1975.

[Lee78] - D.T. Lee and C.K. Wong, Worst-case analysis for
region and partial region searches in multidimen-
sional binary search trees and quad trees, Acta
Informatica 9, 1978, 23-29.

[Lee80] - D.T. Lee and C.K. Wong, Quintary trees: a file
structure for multidimensional database systems,
ACM Transactions on Database Systems, 1980, 339-
353.

(Lete82J - P. Letelier, personal communication, 1982.

[L1821 - M. Li, W.I. Grosky, and R. Jain, Normalized quad-
trees with respect to translations, Computer
Graphics and Image Processing 20, 1982, 72-81.

(Lieb78] - H. Lieberman, How to color in a coloring book,
Computer Graphics-SIGRAPH 78 Conference Proceed-
ings 12, 1978, 111-116.

[Linn73J - J. Linn, General methods for parallel searching,
Technical Report 81, Digital Syste.ms Laboratory,
Stanford University, Stanford, CA, 1973.

[Luek78] - G. Lueker, A data structure for orthogonal range
queries, Proceedings 19th Annual IEEE Symposium on
Foundations of Computer Science, Ann Arbor, MI,

. . ..4o ° . .

-70-

1978, 28-34.

[McC165] - E.J. McCluskey, Introduction to the Theory of
Switching Circuits, McGraw-Hill, New York, 1965,
60-61.

[Mart82] - J.J. Martin, Organization of geographical data
with quad trees and least square approximation,
Proceedings of the IEEE Conference on Pattern
Recognition and Image Processing, Las Vegas, NV,
1982, 458-463.

[Mats83] - T. Matsuyama, L.V. Hao, and M. Nagao, A file or-
ganization for geographic information systems
based on spatial proximity, to appear in Computer
Vision, Graphics and Image Processing, 1983.

[Meag82] - D. Meagher, Geometric modeling using octree en-
coding, Computer Graphics and Image Processing 19,
1982, 129-147.

(Merr73] - R.D. Merrill, Representations of contours and re-
gions for efficient computer search, Communica-
tions of the ACM 16, 1973, 69-82.

[Mins69] - M. Minsky and S. Papert, Perceptrons: An Intro-
duction to Computational Geometry, MIT Press, Cam-
bridge, MA, 1969.

[Mont70] - U. Montanari, On limit properties of digitization
schemes, Journal of the ACM 17, 1970, 348-360.

[Mort66] - G.M. Morton, A computer oriented geodetic data
base and a new technique in file sequencing, IBM
Canada, 1966.

CNagy79] - G. Nagy and S. Wagle, Geographic data processing,
ACM Computing Surveys 11, 1979, 139-181.

(Nash83] - C. Nash and N. Ahuja, Octree representations of
moving objects, to appear in Computer Vision,
Graphics, and Image Processing, 1983.

[Newm79] - W. Newman and R.F. Sproull, Principles of In-
teractive Computer Graphics, Second Edition,
McGraw-Hill, New York, 1979.

[Niev81] - J. Nievergelt, H. Hinterberger, and K.C. Sevcik,
The GRID file: an adaptable, symmetric multi-key
file structure, Report 46, Institut fUr Informa-
tik, ETH, Zurich, Switzerland, 1981.

[Nils69] - N.J. Nilsson, A mobile automaton: an application

- 71 -

of artificial intelligence techniques, Proceedings
of the First International Joint Conference on Ar-
tificial Intelligence, Washington, DC, 509-520.

[Oliv83] - M.A. Oliver and N.E. Wiseman, Operations on
quadtree-encoded images, The Computer Journal 26,
1983, 83-91.

[Omol8O - J.O. Omolayole and A. Klinger, A hierarchical
data structure scheme for storing pictures, in
Pictorial Information Systems, S.K. Chang and K.S.
Fu, Eds., Springer Verlag, Berlin, 1980.

[ORou81a] - J. O'Rourke, Dynamically quantized spaces ap-
plied to motion analysis, Technical report JHU-EE
81-1, Electrical Engineering Department, Johns
Hopkins University, Baltimore, MD, 1981.

[ORou81b] - J. O'Rourke, Dynamically quantized spaces for
focusing the Hough Transform, Proceedings of the
Sixth International Joint Conference on Artificial
Intelligence, Vancouver, BC, 1981, 737-739.

[Pavl76] - T. Pavlidis, The use of algorithms of piecewise
approximations for picture processing applica-
tions, ACM Transactions on Mathematical Software
j, 1976, 305-321.

(Pavl79] - T. Pavlidis, Filling algorithms for raster graph-
ics, Computer Graphics and Image Processing 10,
1979, 126-141.

[Peuc76] - T. Peucker, A theory of the cartographic line,
International Yearbook of Cartography, 1976, 134-
1142.

[Peuq79] - D.J. Peuquet, Raster processing: an alternative
approach to automated cartographic data handling,
American Cartographer 6, 1979, 129-139.

[Piet82] - M. Pietikainen, A. Rosenfeld, and I. Walter,
Split-and-link algorithms for image segmentation,
Pattern Recognition 15, 1982, 287-298.

[Pfal67] - J.L. Pfaltz and A. Rosenfeld, Computer represen-
tation of planar regions by their skeletons, Com-
munications of the ACM 10, 1967, 119-122.

[Rana80] - S. Ranade, A. Rosenfeld, and J.M.S. Prewitt, Use
of quadtrees for image segmentation, Computer Sci-
ence TR-878, University of Maryland, College Park,
MD, 1980.

-72 -

.44 (Rana8la] S. Ranade, Use o1f quadtrees for edge enhance-
ment, IEEE Transactions on Sytes Man, and Cy
bernetics 11, 1981, 370-373.

[Rana8lb] - S. Ranade and M. Shneier, Using quadtrees to
smooth images, IEEE, Transactions on SysteMs, Man,
and, Cybernetics 11, 1981, 373-376.

[Rana82) S. Ranade, A. Rosenfeld, and H. Samet, Shape ap-
proximation using quadtrees, Pattern Recognition
15, 1982, 31-J40.

[Redd78J D.R. Reddy and S. Rubin, Representation of'
three-dimensional objects, CMU-CS-78-113, Computer
Science Department, Carnegie-Mellon University,
Pittsburgh, PA, 1978.

(Rise77) E.M. R1seman and M.A. Arbib, Computational tech-
niques in the visual segmentation of' static
scenes, Coinputer Graphics and Img Processing 6

1977, 22-27

(R03e66J A. Rosenfeld and J.L. Pf'altz, Sequential opera-
tions in digital image processing, Journal of' the
ACM 13t' 1966, 471-494.

[Rose74IJ A. Rosenfeld, Digital straight line segments,
IEEE Transactions on Computers 23, 1974, 1264-1 1269 .

(Rose76) A. Rosenfeld and A.C. Kak, Digia Picture Pro-
cessing, Academic Press, New York, 1976.

[Rose79) - A. Rosenfeld, Digital Topology, American
Mathematical Monthly 86, 1979, 621-630.

[R03e82a] - A. Rosenfeld, H. Samet,' C. Shaffer, and R.E.
Webber, Application of hierarchical data struc-

4 tures to geographical information systems, Comput-
er Science TR-1197, University of Maryland, Col-
loge Park, MD, 1982.

[Rose82b) - A. Rosenfeld and C.E. Kim, How a digital comput-
er can tell whether a line is straight, American
Mathematical Monthly 89, 1982, 230-235.

[Rose83a] - Rosenfeld, A., Picture processing: 1982, Comput-
er Graphics and Image Processing 22, 1983.

[Rose83b] - A. Rosenfeld, Ed., Multiresolution Image Pro-
cessing and Analyis, Springer "'arlag, Berlin,

"I 1973.

-73-

[Ruto68] - D. Rutovitz, Data structures for operations on
digital images, in Pictorial Pattern Recognition,
G.C. Cheng et al., Eds., Thompson Book Co., Wash-
ington, DC, 1968, 105-133.

[Same80a] - H. Samet, Region representation: quadtrees from
boundary codes, Communications of the ACM 23,
1980, 163-170.

[Saue8Ob] - H. Samet, Region representation: quadtrees from
* binary arrays, Computer Graphics and Image Pro-

cessing 18, 1980, 88-3•

[Same80c] - H. Samet and A. Rosenfeld, Quadtree structures
for image processing, Proceedings of the Fifth
International Conference on Pattern Recognition ,
Miami Beach, FL, 1980, 81-818.

[Same8Od] - H. Samet, Deletion in two-dimensional quad
trees, Communications of the ACM 23, 1980, 703-
710.

[Same8la] - H. Samet, An algorithm for converting rasters to
quadtrees, IEEE Transactions on Pattern Analysis
and Machine Intelligence 3, 1981, 93-95.

[Same8lb] - H. Samet, Connected component labeling using
quadtrees, Journal of the ACM 28, 1981, 487-501.

[Same81c] - H. Samet, Computing perimeters of images
represented by quadtrees, IEEE Transactions on
Pattern Analysis and Machine Intelligence 3, 1981,
683-687.

[Same82a] - H. Samet Neighbor finding techniques for images
represented by quadtrees, Computer Graphics and
Image Processing 18, 1982, 37-57.

[Same82b] - H. Samet, Distance transform for images
represented by quadtrees, IEEE Transactions on
Pattern Analysis and Machine Intelligence 4, 198f,
298-303.

[Same82c] - H. Samet and R.E. Webber, Line quadtrees: a
hierarchical data structure for encoding boun-
daries, Proceedings of the IEEE Conference on Pat-
tern Recognition and Image Processing, Las Vegas,
NV, 1982, 90-92.

[Same82d] - H. Samet, Data structures for quadtree approxi-
mation and compression, Computer Science TR-1209,
University of Maryland, College Park, MD, 1982.

.

-74-

[Same82e] - H. Samet, Reconstruction of quadtrees from quad-
tree medial axis transforms, Computer Science TR-
1224, University of Maryland, College Park, MD,
1982.

[Same82f] - H. Samet, A top-down quadtree traversal algor-
ithm, Computer Science TR-1237, University of
Maryland, College Park, MD, 1982.

[Same83a] - H. Samet, A quadtree medial axis transform, to
appear in Communications of the ACM, 1983 (also
University of Maryland Computer Science TR-803).

[Same83b] - H. Samet, Algorithms for the conversion of quad-
trees to rasters, to appear in Computer Vision,
Graphics and Image Processing, 1983 (also Univer-
sity of Maryland Computer Science TR-979).

[Same83c] - H. Samet and E. V. Krishnamurthy, A quadtree-
based matrix manipulation system, in progress.

[Same83d] - H. Samet and R. E. Webber, Using quadtrees to
represent polygonal maps, Proceedings of Computer
Vision and Pattern Recognition 83, Washington, DC,
1983, 127 - 132.

[Sham75] - M.I. Shamos and D. Hoey, Closest-point problems,
Proceedings of the Sixteenth Annual IEEE Symposium
on the Foundations of Computer Science, Berkeley,
CA, 1975, 151-162.

[Shan8o - U. Shani, Filling regions in binary raster im-
ages: a graph-theoretic approach, Computer
Graphics-SIGGRAPH 80 Conference Proceedings 14,
1980, 321-327.

[Shne8la] - M. Shneier, Calculations of geometric properties
using quadtrees, Computer Graphics and Image Pro-
cessing 16, 1981, 296-302.

(Shne8lb] - M. Shneier, Path-length distances for quadtrees,
V Information Sciences 23, 1981, 49-67.

[Shne8lc] - M. Shneier, T. hierarchical linear feature
representations: edge pyramids and edge quad-
trees, Computer Graphics and Image Processing 17,
1981, 211-224.

S[Sloa79] K.R. Sloan Jr. and S.L. Tanimoto, Progressive re-
finement of raster images, IEEE Transactions on
Computers 28, 1979, 871-874.

(Sloa81] - K.R. Sloan Jr., Dynamically quantized pyramids,

.4..

- 75 -

Proceedings of the Sixth International Joint
Conference on Artificial Intelligence, Vancouver,
BC, 1981, 73'-73 .

• [Smit79] - A.R. Smith, Computer Graphics-SIGGRAPH 79 Confer-
ence Proceedings 13, 1979, 276-283.

* [Suth74] - I.E. Sutherland, R.F. Sproull, and R.A. Schumack-
* er, A characterization of ten hidden-surface al-

gorithms, ACM Computing Surveys 6, 1974, 1-55.

[Tamm8l] - M. Tamminen, The EXCELL method for efficient
geometric access to data, Acta Polytechnica Scan-
dinavica, Mathematics and Computer Science Series
No. 34, Helsinki, 1981.

[Tamm83] - M. Tamminen, Encoding pixel trees, Laboratory of
Information Processing Science, Helsinki Universi-
ty of Technology, Espoo, Finland, 1983.

[Tani75] - S. Tanimoto and T. Pavlidis, A hierarchical data
structure for picture processing, Computer Graph-
ics'and Image Processing ., 1975, 104-119.

[Tani76] - S. Tanimoto, Pictorial feature distortion in a
pyramid, Computer Graphics and Image Processing 5,
1976, 333-352.

(Tani8O] - S.1 Tanimoto and A. Klinger, Eds., Structured Com-
puter Vision, Academic Press, New York, 1980.

[Tous80] - G.T. Toussaint, Pattern recognition and geometri-
cal complexity, Proceedings of the Fifth Interna-
tional Conference on Pattern Recognition, Miami
Beach, FL, 1980, 1324-1346.

[Trop8l] - H. Tropf and H. Herzog, Multidimensional range
search in dynamically balanced trees, Angewandte
Informatik 2, 1981, 71-77.

* (Uhr72] - L. Uhr, Layered "recognition cone" networks that
preprocess, classify, and describe, IEEE Transac-
tions on Computers 21, 1972, 758-768.

[Warn69] - J.L. Warnock, A hidden surface algorithm for com-
puter generated half tone pictures, Computer Sci-
ence Department TR 4-15, University of Utah, Salt
Lake City, UT, 1969.

[Webe78] - W. Weber, Three types of map data structures,
their ANDs and NOTs, and a possible OR, in
Proceedings of the First International Advanced
Study Symposium on Topological Data Structures for

.4- . . .- .- - . .- ,. . - - - - . , ,', . , , - ,. - , , -

- 76 -

Geographic Information Systems, G. Dutton, Ed.,
Harvard Papers on Geographic Informatton Systems,
1978.

[Will78] - D.E. Willard, Predicate-oriented catabase search
algorithms, Report TR-20-78, Harvard University
Aiken Laboratory, 1978.

[Will82] - D.E. Willard, Polygon retrieval, SIAM Journal on

Computing 11, 1982, 149-165.

[Wood82] - J.R. Woodwark, The explicit quadtree as a struc-

ture for computer graphics, The Computer Journal
25, 1982, 235-238.

[Wu82] - A.Y. Wu, T.H. Hong, and A. Rosenfeld, Threshold
selection using quadtrees, IEEE Transactions on
Pattern Analysis and Machine Intelligence 4, 1982,
90-94.

[Yau 8 1] M. Yau and S.N. Srihari, Recursive generation of
hierarchical data structures for multidimensional
digital images, Proceedings of the IEEE Conference
on Pattern Recognition and Image Processing, Dal-
las rx, q81, 42-4.

.o'

* "UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS~BEFORE COMPLETING FORM

1. REPORT NUMBER 2. GOVT ACCESSION NO 3. RECIPIENT'S CATALOG NUMBER

• -- ETL-0337

4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

APPLICATION OF HIERARCHICAL DATA STRUC- Contract Report

TURES TO GEOGRAPHICAL INFORMATION 7/29/82 - 6/29/83
SYSTEMS (PHASE II) 6. PERFORMING ORG. REPORT NUMBER

TR-1327
7. AUTHOR(a) 0. CONTRACT OR GRANT NUMBER(&)

Hanan Samet DAAK70-81-C-0059
Azriel Rosenfeld

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK
Computer Vision Laboratory AREA & WORK UNIT NUMBERS

University of Maryland R3205HT09
College Park, MD 20742

I1. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

U.S. Army Engineer Topographic Labs. September 30, 1983

Fort Belvoir, VA 22060 13. NUMBER OF PAGES

81
K4. MONITORING AGENCY NAME & ADORESS(If different from Controlling Office) IS. SECURITY CLASS. (of this report)

UNCLASSIFIED

13s. DECLASSI FICATION/ DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Report)

Is. SUPPLEMENTARY NOTES

1. KEY WORDS (Continue on reverse aide It necesary end Identify by block number)
Query language Data structures
Quadtree editor Quadtrees
Storage management
Geographical information systems

24L A STACT (Coathua do **~so abEn f noeceeaty and Idetify by block number)

This document is the final report for Phase II of an inves-
tigation of the application of hierarchical data structures to
geographical information systems. It describes a set of software
tools developed for use with a quadtree encoded database contain-
ing area, point, and line data. Included in this software is an
English-like query language, an editing capability to permit data
base updating, and a memory management system to allow manipula-

DO 1JA7 1473 EDITiON OF I NOV 6S IS OBSOLETEN
SEU RIY 1LA UNCLASSIFIED

%°[" SCUItTY CLAJIFICATJON OF r~tS PAGE (W m Dote Entered)

E:A/b

I:,

14I

