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Introduction

o The capacity of the Gaussian channel without‘feedback, subject to a
generalized energy constraint, is determined in-{ié: In that work, the con-
straint is given in terms of the covariance of the channel noise process. How-
ever, there are many situations where one may wish to determine capacity subject
to a constraint determined by a covariance that is different from that of the channel
noise. An example is in jamming or countermeasures situations.
Channels where the covariance of the noise is the same as that of the
constraint will be called matched channels; otherwise, we say that the channel
is mismatched (to the constraint). In this paper, the capacity of the mismatched
Gaussi;n éhanne] is determined for two situations: the finiteedimgnsipnal channel,
and the infinite-dimensional channel with a dimen;iona]ity constraint on the space
of transmitted signals. Results on the infinite-dimensional mismatched channel
without a dimenionality constraint on the signal are given e]sewheréngi\_’!g(jous
special cases of the mismatched channel have been treated previouslyffg]- [5]]
The results for the mismatched channel differ significantly from those for

the matched channel. A discussion of these differences follows the proof of the

main result.
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Definitions and Structure

The channel is defined as in [1]. H] and H, are real separable Hilbert
spaces with Borel o fields B and B, and inner products <ty and <st>g.
The message process X in H] is represented by a probability Wy On (H1,3]).
The message is encoded into the transmitted signal A(X) in H2 by a 3]/32-measurab1e
coding function A. To each sample function of the signal process, the channel
adds a sample function from the noise process N, represented by a Gaussian measure
m on (HZ’BZ)‘ The received signal (channel output) is then a sample function
from the_process Y = A(X) + N, represented by the measure My As usual X and N
are assumed independent, so that uY(B) = pXGuN{(X,Y): A(X) + Y e B} where
WQ“N is product measure. The channel probability Myy s which has marginal measures
Hy and My is a measure on (H] X Hys By X 32) defined by Hyy (C) =
”XG”N {(X,Y): (X,A(X) + Y)eC}. The average mutual information is then I[uXY],
where I[uXY] zwif it is false that Myy is absolutely continuous with respect

du
to uyBuy (“XY <<uX0uY), and otherwise I[uXY] = .I' log [——KX——] (x,v) duyy (x,y).

du,8p
) A |
H]xH2

The information capacity is then sup I[uXY], where Q is a set of admissible

Q
pairs (ux,A).
For this paper, a covariance operator in a Hilbert space will be defined to be
a symmetric and trace-class bounded 1inear operator. The constraint on the
transmitted signal process A(X) will be given in terms of a covariance operator
Rw in HZ; as is well-known, to every such covariance operator there corresponds a
zero-mean Gaussian measure on (H,,8,). )
When H, = L, [0,T] and R is a covariance operator, R can be represented as an
inteqgral operator with kernel R which is a covariance function. There is then a
well-known isomorphism between range (RVQ) and the reproducing kernel Hilbert space

of R. A1l measures considered here will be assumedd WLOG to have zero mean. The

capacity will he determined under the following assumotions:
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\ . (A-1) Ry = RL/Z (I +5) R:‘/z » where R, is the covariance operator of the noise 3
;?E measure My, and S is a compact linear operator that does not have -1 as an

;;i eigenvalue;

{:‘ (A-2)  The adm1ss1b1e set Q is the set of all (uy»A)

::: . -’;{] ”RN/2 A(x)||2 dux(X) < P, where P>0 is fixed.

;g It will be assumed WLOG [1] that range Ry) = 2, so that RN/2 exifts .»2

Assumption (A-1) then implies that @M/Z exists; in fact, that range (R )-range(RN ).
Thus, there exists a unitary operator U in Hy such that RJZ R/Z(I +S) /2U*, where
U* is the adjoint of U.

§ The class of all zero-mean GaussianneasuresuN with covariance operator as

in (A-1) includes all those that are mutually absolutely continuous with respect

to My where My is zero-mean Gaussian with covariance RN[G].

. From the results of [1], one can limit attehtibn to cases where HA(X) is
{2 Gaussian with covariance operator
A 1, 2
- ? where v > 0 forn >1, Z v <= {u,n>1} is a c.o.n. set and (uav)x = <v.x > u.
0
) When Ma(x) has (2) for covariance and is Gaussian then [1]
] . .
_ Iuyyd = (°/2) £ Tog [1 + < 1. (3)
. Moreover,
1 1 1
-2 2 _ -2 -2
EuXIIRN A(S)| |5 = Trace Ry RA(X)Rw
= 2o I+ 8)72 Ul (4)
-‘;: Y. 7. 2
o Defining X = rnll(I +5) U*unllz, the capacity problem is thus
A
- reduced to maximizi 1 -
.;. MG (2) T 10g 11+ 2 (14 )] (5)
iﬁ over all sequences (Xg) and c.o.n. sets {vn, n > 1} such that znxﬁ <P,
< where Yy ¥ <SSV, Vp > oo N2 1.
<
{ The supremium of (5) subject to the stated constraint is the capacity
ﬁ and will be denoted as Cw(P); the capacity for the matched channel (Rw = RN)

will be denoted by CN(P).
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Preliminary Results

Lemma 1: Let (yn), n < M, be any non-decreasing sequence of strictly positive

real numbers. Let (Xn) be any sequence of M real numbers. Fisz>.0, and define

g(M,P,y) = sup ” (v, * Xﬁ)/Yn-
-~ M 2 ]
{X: % Xn < P}

K K
Then g(M,P,y)=n_ (¥ v, + P)/(Ky,) ]
- n=] K : i
where K < M is the largest integer such that : v; t P Z.KYK- g(M,P,y) is uniquely !
] -~

attained by (X2) such that B} l
K &
2 - 4
Xn-(§yi+P)/K-yn n<K .
=0 n> K. I
. M M -1 - :
Proof: Define fy: R™ + R by fM(x) = Ilog[1+ Yn Yp ]J. We seek to maximize j
n=] p
fM subject to the constraints '
" l
g(_y_)=z_yn-PiO ]
] <
]

hi(1)= -yiio, i=1,.., M,

This is a constrained optimization problem with objective function f

M

over the convex set {Z in R"; Z, >0, i =

function is linear. Thus, any solution to

global maximum for fu [7].

sufficient that the following set of equations be satisfied [7]:

y* lY' + B- a.i = o i = ], 'Y M
i 1
M M
o yx oo L - =
;o P<O, e[] y*-Pl=0

L

S il

M which is concave

1,..,M}. Moreover, each constraint

this problem will define a unique

In order that y* be a solution, it is necessary and

(6)
\
]
(7)
(8)

-
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fﬁj for some set of non-positive real numbers {B,a],,.,aM}.

We first attempt to obtain a solution by setting a4y Ta, T ... Tay= 0.

This requires 8(y; + y¥) = -1 for i =1,..,M; thus,
M M iy M, M
Ly* + Iy; = -Mg ', and so y; = (1 y; t Zyi)/M - Yp
1 i 1 1 1

forn =1, 2,..,M. This definition of y* and the constraints (8) require that

M M
*
)]:‘yi +§Yi 2MYy,
for n < M; this inequality is satisfied for all n < M if and only if it is satisfied
M
- * *
for n = M, Also, 8 L -(yi+ yi) for i < M implies g<0, so that £y, = P by
M 1

constraints (7). Thus, if P + & Y; Z.M'YM’ an optimum solution is given by
. M ‘
Y; = (P + ZYn - MYi)/M» i<M,
! K
If there exists K<M such that Ky, < P + Zy; < (K+1)YK+],

K
then constraints (6)-(8) are satisfied by choosing 8 = -K[P + 271]-1,
1

(11 ‘02_ = U-K = 0’
K %
y* =0, i>K
i
K
VU= kTP + 3y, - Kyyds § <K
1
K - R
a; = -K[P + %yn] + Y; ixK
Thus,
M 2 K K
P2 My + Xy = T (5 + P)/ (k)
. n= n=
(X: £X < P}

~ - -
.........
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K

where K < M is the largest integer such that 21% +P > KYK. The supremum is
1

attained by y* as defined above, or for
2 K
n [P"'?i:Y-i]/K' n

X

n>K.

Lemma 2: Let (Ai), 1 <i < K, be a non-decreasing sequence of strictly

PULIPY VI S VO

positive real numbers. Suppose that (yn) is a non-decreasing sequence such
K

J J
that Iy; > IA; for all J < K, and Tet P>0 be such that Zy; + P > Ky,. Define
1 1 ]
K K
fK(y) =1 (P + Xyi)/(Kyn). Then f, (v) < fK(A) with equality if and only if
- n=] 1 - ~
Y TN for all i < K.
K
Proof: For any fixed n, afK(y)/ayn is negative, using Iy; + P 2 Ky. Thus fK(y) .
—_— ] Y ;
K K K
increases for n decreasing. One can now assume that Iy, = zxn.. To see this, i
1 1
K K
suppose ZYn > zxn. First assume that there exists p < K such that Yp>‘yp_] and .
1 1 3
1 xp. Define a sequence (yn ) by Yo = v, ifn#op, Yp = Yp " € !
= mi - . <= As), - . ]
€ = min (Yp Yp-1 ? (v; = A5) Yp Ap)

ISRy g e

Continuing to form new sequences in this manner, one will eventually obtzin a ¢
J J
non-decreasing sequence (yn') with %YA > fxn for all J < K, and either %ya = fxn ;
1
: ) 1

or else y; =y = 76, where p is the largest integer i such that i >

2=-..

n n L}
If the latter case holds, define a new sequence (yn), with v = v, for 2 < n <K,

L i i A oy

while v; = v,

[] 1]
- €, € = Mmin (Y]-A1, §(Yi

) S
n

'A.i))- Y;;Z

(Y;) is non-decreasing and
K

" " !
If e = y; - 1), the procedure is repeated for (v,) and v, if € = ?(Yi - %), the f
M q
E procedure is repeated for (y;) and yy. Continuing in this manner will eventually ]
K [1] K
produce a sequence (y') such that £y = I}
n ] n ] n i

"""""""""""""""""

.....
.
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K K
Assume then that & Yy T LA, If y and A are not identical, let p <K
] ] ~ ~ p-1 p-1 p

P
be the largest integer such that Yp # xp; since % Y, 2 2] A and ? AP % Aps

Yp < Ap. Let t < p be the largest integer such that Ye > Ags such t must exist.

Define a new sequence (v,) by y, =y, ifn#1t, n#p, while Yp = Yp * e

Ve = Yp < € € = inf ()\p - Yp’ | -)\t). fK(Z) < fK(Y')a since (Yt -E)(Yp + ¢)

~

: 2 , . . .
= Ytyp - e(yp - yt) - ¢, and yp 2 Y- This procedure is successively repeated;

]
it will terminate when and only when one obtains a sequence (yn) such that
' .

Yn = A, for all n < K.

Main Result

Theorem:

(a) Suppose that H, has dimension M<=. The capacity is then

K

K
- ¢, (P) =(Y2) 5 tog] T G *P K

]
n=1 .
K(T + en)

where 8] £ 8, < .. < 0y are the eigenvalues of S, and K is the largest

integer < M such that §ei +P>K Oy - The capacity is attained by
1

a Gaussian MA(X) with covariance operator (2), where u, = Uen and

K
-1,-1 =
L {-§ei +P - Ken](l + en) K forn <K, T, = 0 for n > K, and

e, n > 1} are o.n. eigenvectors of S corresponding to the eigenvalues (en).

No other Gaussian MA(X) can attain capacity. The same result is obtained

if H2 has dimension L <~ and MA(X) is constrained to have support of dimension

M<L.

.............
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(b) Suppose that H_ is infinite-dimensional and that support (“A(X)) is

2
restructed to have dimension < M < ». Let (An), n>1, be the non-

decreasing strictly negative eigenvalues of S.

(i) If {An, n>1} 1is empty, then CN(P) = (M/2) log [1 + P/M]. Capacity
can be attained if and only if S has zero as an eigenvalue of multiplicity
> M. In this case CN(P) is attained by a Gaussian MA(X) with covariance (2),
where u; = Uei and T = P/M for i < M, with {e],..,eM} any o.n. set in

the null space of S.

K
(ii) If KxK_ngi +P< KAK+] for some K < M, then the capacity is as in (a),
1
with ei = Ai’ i=1,.,K, and can be similarly attained.
K
(iii) If S has K < M strictly negative eigenvalues, K>0, and P I > Kiys then
1
the capacity is K
¢, (P) = (W2)log P HMTIN
M
1oy T
- (72) % log (1 +1).
_ n
n=1

The capacity can be attainedifand only if zero is an eigenvalue of Swith
multiplicity > M-K. The capacity is then achieved by a Gaussian MAX with covariance
K
- _ -1y-1 .
(2), where u_ = Ve, and t = (%Ai +P - Mxn)(l + An) M for n < K, with
K
Se, = \.e, and {e],,.,eK} an o.n. set; and with u = Uv_and 7 = (P + %Ti)M

vM}is an o.n. set. The sets

-1

for K+ 1 < n <M, where Svn =0 and {VK+1,..,

{u].-, uK} and {11,., rK} are uniquely defined for any maximizing Gaussian Ma(x) "

(c) In (b-ii) and (b-iii), the capacity is strictly greater than for the case

Ry = Rys T.ey Cu(P)>Cy(P). In (b-i), C(P) = Cy(P). 1In (a), C (P) > Cy(P) if

..... e e e e e i - A A A 5 : ; e fmtatmfa¥a e tan e e
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Proof: (a) va(SL

%91 <0,o0rif P+ %ei < 0. CN(P) < CN(P) if 0<6y< o

2

_ 1 -1 -
cw(p) = sup (/2) ? log [1 +x 0 Yn ], where Y, © 1+ <Svn, Vn>2s {Vn’ n < M}

is a c.o.n. set, and the supremum is over all such c.o.n. sets and all (Xﬁ)

M
such that zX2 < P, Since e] < 62 < .. <89
1"~ - - -

y are the non-decreasing eigenvalues of

. J

J
S, Z[1 +<Sv, v >2] 22 [1 +6_] for al11 J < M and any fixed c.o.n. set

1 n’ 'n 1 n —
{v,» n < M}. The expression of Cw(P) in (a), and the unique covariance of the
maximizing Gaussian MA(X) both now follow from Lemma 1 and Lemma 2. The same
result holds if dim(HZ) =L < = and dim [supp(uA(x))] < M<L, since in this case

S again has M smallest eigenvalues.

(b) IfS is strictly positive, then S being compact implies that S does not
have M smallest eigenvalues. However, given any ¢ >0, one can find eigenvalues

Y]seeen Y; such that 0 < y? < ¢ for i < M. Using this in (3) one obtains

M
Ilrygy) =(/2)3 Tog [1 + ]

M

=(y2)z Tog [1 + X2 (1 +4)
1
M 2 -1
>(/2)z log [1 + Xn (1 +¢) '].
1

The expression on the right of the inequality is maximized, over all (Xﬁ) such that

M M
?Xﬁ < P, by defining X2 = P/M, n < M. Thus, C,(P) > Y2 £ log [1 + (1 + ¢)7'P/N]
]

M
for all €>0, and so Cw(P).i Uz £ log [1 + P/M]. For the reverse inequality,
1

one notes that under the constraint E_ [1Ry /2 X)||2 <P, 1t is shown in [1]
X
that C\(P) = (MW/2) Tog (1 + P/M). For S >0, HR 2 A(X)||2 <||R /ZIIA(X) lI

so that the solution for CN(P) is the supremum over a larger set than for Cw(P)

N ) NS Y St S ) PR W Vo W PV P S T S S N S
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i.e. Cu(P) > C

If S >0, with zero an eigenvalue of multiplicity K, the above argument is

modified in an obvious way (y: = 0 for i = 1,.., min (K,M)) to again obtain
i

CN(P) = (M/2) log [1 + P/M].

To prove (b-ii), the proof of (a) is repeated after substituting A for 0:

i<M
Now suppose that S has K<M strictly negative eigenvalues A £ ees 20
K
and that x , P> KAK. CN(P) = sup CW(P]’X) wherg
i (P1,y)
G(Pov) = sup| L T 1o O+ X2 (0 + sy, v 5007
W1 2 o 08 n® 'n’2

v = {vn, n <M is any o.n. set, 0 §_P] < P, and the supremum is over all (Xﬁ)

. such that g X s i < P. Repeating the analysis of (a) and (b-i), one finds that
T+ P =
| 1
CW(P] 9!) (/2 Z ]Og I:J(] + 2 )

4

PP
+(72)(M-K) log [1 + M—Ki]

J

where J < K is the largest integer such that & A; + Py 2 Jxy. Since this result holds

J
1
for any o.n. set {vn, n < M}, it remains only to determine the value of P] that

maximizes Cw(P], v) (a differetiable function of P, in [0,P]). Differentiating,

1
one sees that Cw(P], v) is increasing with P] so long as
J

J
P <[JP - (M-K) Ia;] (M=K + J)']. Since Py < Jr; - I);, this inequality is satisfied
1

1

PP A I L. - .
el St e B B g A e VPR W W WP I R\ e PP I WP S N Y L G e aa o

w(P). Thus Cw(P) < (M/2) tog [V + P/M], so that Cw(P) = (M/2) log [1 +P/M].




..........

11

J K
if (M-K + J)xJ - Iy < P, which always holds because P + I > KxK and
1 1
Ay < A < 0. It thus follows that C, (P, ¥) is an increasing function of P
K K
for P, < - Ix, + Ki,. Assumming that P, > - £a + Ki,, the maximum of C (P);, v )

K
is attained uniquely by P] = [KP - (M-K) %A ]'1. Using the value of P] in
i

the expression for CN(P1’ V), one obtains CN(P) as in (b-iii). The statement
on attaining capacity follows from the results of (b-i) and (b-ii).

To prove (c) for (b-ii) and (b-iii), it suffices to note that one can obtain

a capacity of Cw(P) = (M/2)10og(1 + P/M) by specifying that {Un, n < M} be orthogonal

to the subspace spanned by {Uen, n <1}, where {en, n>1} are o.n. eigenvectors

of S correpsonding to all the strictly negative eigenvalues (xn); to see this, one

M
can apply (b-i). The statement on (a) for 0 < By < Oy is clear.If 36 ‘< O,
1
M
then choosing t = P/M for n < M gives £t (1 + 6 ) < P; thus the constraint (A-2)
1

is satisfied. Together with any choice of an o.n. set {un, n < M}, this definition
of RA(X) as in (2) with Gaussian “A(X) gives I[“XY] = (M/2)1og[1 + P/M].

Since the maximizing Gaussian measure is unique, and is given as in (a),

K
C,(P) > (M/2) Tog [1 + P/M]) = C(P). If P + e, <0, then C,(P)> P/2 > Cu(P)
W N 11~ W _ N
follows by log X-]_i 1 - x.
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Discussion

In the matched channel, CN(P) = (M/2) log (1 + P/M) if H2 is M-dimensional,
or if H2 is infinite dimensional with dim[support (“A(X))] <M [1, Theorem 1];
moreover, the capacity can be attained in each case by choosing MA(X) to be
Gaussian with covariance (2), with (u],"’ uM) any M o.n. vectors in H2,
and with v = P/M for n < M.

Thus, it is seen that the mismatched channel differs in several ways. First,
the value of the capacity is different unless S > 0. Secondly, the problem of
attaining capacity is much more significant. Even in the finite-dimensional

channel the vectors Uy Uy must be a specific set of vectors, not just any o.n.

set. If H2 is infinite-dimensional with dim[supp(pA(x))Ji M, the situation
is even worse except for (b-ii). That is, capacity can be attained only if S has
zero as an eigenvalue of multiplicity > M if S < 0, or Of multiplicity > M-K if
S has K<M strictly negative eigenvalues y < .. <A and P + gxi z Kay.
Otherwise, in order to approach capacity, one will need to put part of the available
“energy"P'h]e]ements(LEh) where (en) are eigenvectors of S corresponding to
succéésive]y smaller eigenvalues. In practical applications, this usually
corresponds to eigenfunctions at higher and higher frequencies.
Thus, we conclude that not only does the capacity Cw(P) have a different
value than CN(P) (except when S > 0), but attaining or approaching capacity is
significantly more difficult in the misnmatched channel than in the matched channel.
It may be noted that the results given in (a) and (b-ii) of the Theorem are
similar to those obtained in [4, p. 170], although the developments are quite
different. However, these previous results are given in terms of a constraint
on E!IA(S)I]%, and assume that the noise variance components can be arranged
in ascending order. This can only be done if the channel is finite-dimensional. In

this case, one can take R, = I, the identity, and thereby use a true power constraint.

W

The assumption (A-1) becomes R, = I + S, and the capacity is as given in (a); this

N
agrees with the referenced results in [4].
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