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Introduction

-> The capacity of the Gaussian channel without feedback, subject to a

generalized energy constraint, is determined in -4. In that work, the con-

straint is given in terms of the covariance of the channel noise process. How-

ever, there are many situations where one may wish to determine capacity subject

to a constraint determined by a covariance that is different from that of the channel

noise. An example is in jamming or countermeasures situations.

Channels where the covariance of the noise is the same as that of the

constraint will be called matched channels; otherwise, we say that the channel

is mismatched (to the constraint). In this paper, the capacity of the mismatched

Gaussian channel is determined for two situations: the finite-dimensional channel,

and the infinite-dimensional channel with a dimensionality constraint on the space

. of transmitted signals. Results on the infinite-dimensional mismatched channel

without a dimenionality constraint on the signal are given elsewhere [2]. Various

special cases of the mismatched channel have been treated previously [3]- [5].

The results for the mismatched channel differ significantly from those for

the matched channel. A discussion of these differences follows the proof of the

main result.
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Definitions and Structure

The channel is defined as in [1]. H1 and H2 are real separable Hilbert

spaces with Bore] o fields 8l and 02 and inner products <.'">l and <'">2"

The message process X in H is represented by a probability vX on (Hi,Bl).

The message is encoded into the transmitted signal A(X) in H2 by a 0/82-measurable

coding function A. To each sample function of the signal process, the channel

adds a sample function from the noise process N, represented by a Gaussian measure

p on (H2,02). The received signal (channel output) is then a sample function
N

from the process Y = A(X) + N, represented by the measure py. As usual X and N

are assumed independent, so that py (B) = PX@PN{(XY): A(X) + YEB} where

Ik(uN is product measure. The channel probability pXY, which has marginal measures

Ox and PY, is a measure on (Hl x H2, 8] x 82) defined by pXY (C)

.X@PN f(X,Y): (X,A(X) + Y)EC}. The average mutual information is then I[Vxy],

where I[UXy] --®if it is false that vXY is absolutely continuous with respect
.to 'X6'Y (U~y Oy), and otherwise I[pxy] f log [dXLI (x,y) duxy (x,y'.

Hl xH2

The information capacity is then slp I[pxy], where Q is a set of admissible

pairs (px,A).

For this paper, a covariance operator in a Hilbert space will be defined to be

a symmetric and trace-class bounded linear operator. The constraint on the

transmitted signal process A(X) will be given in terms of a covariance operator

RW in H2; as is well-known, to every such covariance operator there corresponds a

zero-mean Gaussian measure on (H

When H2 = L2 [O,T] and R is a covariance operator, R can be represented as an

integral operdtor with kernel R which is a covariance function. There is then a

well-known isomorphism between range (R/2) ind the reproducing kernel Hilbert space

of R. All measures considered here will be assumedd WLOG to have zero mean. The

capacity will he determined under the following assumations:

,...-. ...... . -
'

--' ...
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(A-i) RN = R 2 (I + S) R 2 , where RN is the covariance operator of the noise 3

measure PN, and S is a compact linear operator that does not have -1 as an
N9

eigenvalue;

(A-2) The admissible set Q is the set of all (Px.,A)
./2 A(x)I1 dtx(X) < P, where P>O is fixed.

It will be assumed WLOG [1] that range (RN) = H2, so that RN exists.1/ "N 112 1/2

Assumption (A-1) then implies that RW12 exists; in fact, that range (RN )=range (RW  )
l2R 1/2( + S 12 U w

Thus, there exists a unitary operator U in H2 such that R/ : + , where

U* is the adjoint of U.

The class of all zero-mean Gaussian measures 'N with covariance operator as

in (A-i) includes all those that are mutually absolutely continuous with respect

" to 1W, where PW is zero-mean Gaussian with covariance Rw[6].

From the results of [1], one can limit attention to cases where A(X) is

Gaussian with covariance operator
11 112

RA(X) [R2 un [RN un] (2)W = En 'n[N u
where Tn .> 0 for n > 1, Zn Tn < W,{u , n > 1} is a c.o.n. set and (umv)x = <v.x > u.

When UA(X) has (2) for covariance and is Gaussian then [1]

IIl1Pxy] = (1/2) zn log [1 + Tn]. (3)

- Moreover,

E PX IRW2 A(S)J1 = Trace R1W2 R WAX)R 2

>''i"

E + 11U*un2 (4)
.... n

Defining X2  + S) 1 2  2
n n11(I nU*Un12, the capacity problem is thus

reduced to maximizing 1 2  1
(1/2) log [1+X(1 + -n) (5)

. over all sequences (X ) and c.o.n. sets {vn , n > IU such that E X < P,

where Yn <Sv n 2' n > 1.

The supremium of (5) subject to the stated constraint is the capacity

and will be denoted as Cw(P); the capacity for the matched channel (RW = RN)

will be denoted by CN(P) .



4
Preliminary Results
Lenma 1: Let (~n), n < M, be any non-decreasing sequence of strictly positive

real numbers. Let (X ) be any sequence of M real numbers. Fix P>O, and define

M 2g(M,P,y) = sup TI(Yn +Xn)/yn"

MX2< p1 n nn

K K
Then g(M,P,y)= II (Z yi + P)/(Kyn)

n=l I K

where K < M is the largest integer such that E yi + P > K g(M,P,y) is uniquely
1 KYK.

attained by (X 2) such thatn 2 K

n y.+P)/K- y n n<K

-0 n>K.

M -1
Proof: Define fM: I R M  IR by fM(y) Z log [1 + yn Yn Y " We seek to maximizen=l

fM subject to the constraints
=M

g (y-) M y n - P < 0

hi(Y) = -Yi < 0, i = 1,.., M.

This is a constrained optimization problem with objective function fM which is concave

over the convex set {Z in IRM; Zi > 0, i = 1,..,M}. Moreover, each constraint

function is linear. Thus, any solution to this problem will define a unique

global maximum for fM [7]. In order that * be a solution, it is necessary and

sufficient that the following set of equations be satisfied [7]:

1 + a- =0 i = l,.., M (6)

M M
. P < 0, B[E Y*- P] = 0 (7)

-yi 0, YT 0, i l..,M (8)
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for some set of non-positive real numbers {,a 1, ,. ,aM} .

We first attempt to obtain a solution by setting a, = a2  = aM = 0.

This requires B(yi + y) = -1 for i = 1,..,M; thus,

_ M M M .

E Y* + yi= -MB-  and so yn = (E y + Ey.)/M -1 i-1 nni11 1

for n = 1, 2,..,M. This definition of y* and the constraints (8) require that

M M
I yi + Yi >Myn

for n < M; this inequality is satisfied for all n < M if and only if it is satisfied

for n = M. Also, = (yi + y.) for i < M implies 8<O, so that E yi = P by

constraints (7). Thus, if P + E yi -  MM an optimum solution is given by
I

Yi = ( P + Eyn - MYi)/M, i < M.

K
If there exists K<M such that KYK <_ P + Ey. < (K+l)YK+l'

l K

then constraints (6)-(8) are satisfied by choosing 8 = -KIP + Eyi ] 1

,0,

= P

11
y*= 0, i >K

i

K
Y K [P + EYn Kyi], i < K

1

ai = -K[P + yn ] ' l +l i K

Thus,
M 2 K K

sup
.. p(y + Xn)/y (E Y. + P)/(KY)M P n=ln n n n=l I I n{X: E:X < P}
Sn-



L- 6

K
where K < M is the largest integer such that Zyi + P > KyK" The supremum is

attained by y* as defined above, or for
2 K

XI [P + Eyi]/K - Yn n < K

=0 n > K.

El
Lemma 2: Let (Ai), 1 < i < K, be a non-decreasing sequence of strictly

positive real numbers. Suppose that (yn) is a non-decreasing sequence such
J . K

that zyi > ZAi for all J< K, and let P>O be such that Lyi + P > KYK. Define

K K
fK(y) =l (P + zyi)/(Kyn). Then fK (Y ) < fK(A) with equality if and only if- n=l 1- -

Yi = i for all i < K.

K
Proof: For any fixed n, 3fK(Y)/Dy n is negative, using Eyi + P > KYK. Thus fK(y)

Kl  K
increases for yn decreasing. One can now assume that EYn E .. To see this,

K K
suppose EYfn > zXfn. First assume that there exists p < K such that yp >Yp-1 and

1 1
I I

yp > A p. Define a sequence (y n) by yn = Yn f p, y; = yp -

K
c e = min ( y p - E i )X Yp - p

L1

Continuing to form new sequences in this manner, one will eventually obtain a
j J K K

non-decreasing sequence (y ') with Ey > En for all J < K, and either Eyn = En
n 1 n -1n1 1

or else y1 = Y2 = "'" = Y where p is the largest integer i such that yi > Xi.
l"II II

If the latter case holds, define a new sequence (yn), with yn = Yn for 2 < n _< K,
.n Kn, n

while y, yl - e, c = min (yl-xl, E(yi - i))  ) is non-decreasing andiy" -> n
1 (n) 1n n

If Y : l "l. the procedure is repeated for (yn) and Y2; if c = E'yi - A.)' the

II II

procedure is repeated for (yn) and y,. Continuing in this manner will eventually
K K

produce a sequence (y") such that E Y EAn n n'

- . * " - . .- . - . • . . . . , .. . . . . . .
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K K
Assume then that E y X. If y and x are not identical, let p < K

1 n 1 - p-1 p-1 p p
be the largest integer such that y x ; since z y > Xn and Yn =

1 - 1 1 1

Y p < Xp. Let t < p be the largest integer such that yt > Xt; such t must exist.

" Define a new sequence (y by y Y if n t, n p, while yp y + E,
n yn y n p ,n~p hl

]yt = yt - c, c = inf (X-p - p, Yt -Xt ) fK(Y ) < fK (y ') , since (yt - )(yp + E)

= Y €(y yt) -Y 2 and y > Yt" This procedure is successively repeated;

it will terminate when and only when one obtains a sequence (yn) such that
I n

Yn X n for all n < K.

Main Result

* Theorem:

*]' (a) Suppose that H2 has dimension M<-. The capacity is then

I K KC' w(P) :(/2) 1 log Iei + P + K

W]i n=l 1

where 1 < 2 <.. < oM are the eigenvalues of S, and K is the largest.-. K

integer < M such that Kei + P > K oK " The capacity is attained by

a Gaussian "A(X) with covariance operator (2), where un = Ue and

T n  1+ - n  + n K for n < K, T = 0 for n > K, and

{en n > 1U are o.n. eigenvectors of S corresponding to the eigenvalues (e

No other Gaussian PA(X) can attain capacity. The same result is obtained

if H2 has dimension L<- and UA(X) is constrained to have support of dimension

M <L.
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(b) Suppose that H2 is infinite-dimensional and that support (A(X)) is

restructed to have dimension < M < . Let (X ), n > 1, be the non-
n

decreasing strictly negative eigenvalues of S.

(i) If (X n n > 1U is empty, then Cw(P) = (M/2) log [1 + P/M]. Capacity

can be attained if and only if S has zero as an eigenvalue of multiplicity

> M. In this case Cw(P) is attained by a Gaussian PA(X) with covariance (2),

where ui = Uei and Ti 
= P/M for i < M, with {el,..,eM} any o.n. set in

the null space of S.

K
. (ii) If Kx <EX + P<KxK+ I  for some K < M, then the capacity is as in (a),

with ai : Xi' i = 1,.,K, and can be similarly attained.

K
(iii) If S has K < M strictly negative eigenvalues, K>O, and P +x._ KXK, then

1 1 -t
the capacity is K

P + M + .
Cw(P) (M/2) log 1

M

KK
- (/2) log (1 + \n).

n=l

The capacity can be attainedifand only if zero is an eigenvalue of Swith

- multiplicity > M-K. The capacity is then achieved by a Gaussian PAX with covariance
K

(2), where un = Uen and Tn = (Ei + P - MXn )(l + X )1M1 for n < K, with

K
Sen = Anen and {e1 ,..,eK} an o.n. set; and with un Uvn and Tn = (P + ZT.

1

for K + 1 < n < M, where Svn = 0 and {vK+l,.. ' vM}is an o.n. set. The sets

{u1 ,., u K ) and { T1 ,., TK} are uniquely defined for any maximizing Gaussian "A(X)

(c) In (b-ii) and (b-iii), the capacity is strictly greater than for the case

RN = RW; i.e., Cw(P) >CN(P). In (b-i), Cw(P) = CN(P). In (a), Cw(P) > CN(P) if
N . -N. .N j
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" M K
,ei <0, or if P + Eei <0. Cw(P) < CN(P) if 0 < I < M*

Proof: (a) From (5),

1 M 21
Cw(P) = sup!(/2) E log [1 +X n ] , where yn = 1 + <Sv n  Vn> 2 ' {vn  n < M)

1 n {v' ' -

is a c.o.n. set, and the supremum is over all such c.o.n. sets and all (X 2
Mn

such that EX < P. Since e < < < a are the non-decreasing eigenvalues of
n 2 .

d d

S, E [ +<Svn vn > -- > [I + en] for all J < M and any fixed c.o.n. set
1 n 1 1 n

{Vn , n < M). The expression of Cw(P) in (a), and the unique covariance of the

* maximizing Gaussian 1 A(X)' both now follow from Lemma 1 and Lemma 2. The same

result holds if dim(H2 ) = L < - and dim [suPP(PA(X))] < M<L, since in this case

S again has M smallest eigenvalues.

(b) If S is strictly positive, then S being compact implies that S does not

have M smallest eigenvalues. However, given any e >0, one can find eigenvalues
"E C

y]YI""' yM such that 0 < y < c for i < M. Using this in (3) one obtains1

M
I[xy~] =(/2)E log [1 + Tn]

1 n

M 2
log [1 X (1 + yn)'l

12) 1 n n

1 M 2 1>(I/2)r log [l + X (1 + E)
1

" The expression on the right of the inequality is maximized, over all (X2) such that
n

" 2 < P, by defining X2 = P/M, n < M. Thus, Cw(P) > M/2"X =, C, P /2. log [1 + (1 + E)-Ip/H]

S1 n -  n 1
" M
for all E >0, and so Cw(P) > /2 z log [1 + P/M]. For the reverse inequality,

1 12
one notes that under the constraint E IIR N 2 A(X)I12 < P, it is shown in [1]

21 1 aI 2 /2  2
that CN(P) (M/2) log ( + P/M). For S 0 IR1 /2 A(X) I 1 W 2 I IA(X) I I

so that the solution for CN(P) is the supremum over a larger set than for Cw(P);

-~~~....................-.-. .... "? .*- . " - .
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i.e. CN(P) > Cw(P). Thus CW(P) < (M/2) log [1 + P/M], so that Cw(P) = (M/2) log [1 +P/M].

If S > 0, with zero an eigenvalue of multiplicity K, the above argument is

modified in an Ovious way (y = 0 for i 1,.., min (K,M)) to again obtain

Cw(P) = (M/2) log [1 + P/M].

To prove (b-ii), the proof of (a) is repeated after substituting X. for 8i ,

i <M.

Now suppose that S has K<M strictly negative eigenvalues x1 < "" <  KK- -and that EX + P> KAK. Cw(P) = sup C ,v) where

1 i (PI v)

1 M x2  211
Cw(PIv) sup n log [1 + (1 + <Svn' Vn> 2 )

1
i L - n=ln'

nv {V, n < M} is any o.n. set, 0 < P1 < P, and the supremum is over all (X n)

K 2 M 2
such that E X < P1 9 E X < P. Repeating the analysis of (a) and (b-i), one finds that

+ P  J

Cw(PIV) :(/2)) E log nn=l J l

I- I
+(/2)(M-K) log [1 + M - K

where J < K is the largest integer such that E Xi + P1 > J J, Since this result holds
1 -1-

, for any o.n. set {v , n < M}, it remains only to determine the value of P1 that
n

* maximizes CW(P1 9 v (a differetiable function of P1 in [0,P]). Differentiating,

one sees that CW(Pi, v) is increasing with P1 so long as

Pl <[ - (M-K) z .] (M-K + j)-l Since P1 < JxJ - ai' this inequality is satisfied

11-



11

J Kif (M-K + J)X -X. < P, which always holds because P + n i > KxK and

J X< XK < 0. It thus follows that Cw(P 1 , v) is an increasing function of P1
K K

for P 1 < i + KxK" Assumming that P1- + KAK' the maximum of Cw(P)I, v )

K
is attained uniquely by P1 = [KP - (M-K) EX-. Using the value of P1 in

1

the expression for CW(PI , v), one obtains Cw(P) as in (b-iii). The statement

on attaining capacity follows from the results of (b-i) and (b-ii).

To prove (c) for (b-ii) and (b-iii), it suffices to note that one can obtain

a capacity of Cw(P) = (M/2)log(l + P/M) by specifying that {un, n < M} be orthogonal

to the subspace spanned by {Ue n , n < 1}, where {en. n > 1) are o.n. eigenvectors

- of S correpsonding to all the strictly negative eigenvalues (X ); to see this, onen M
• can apply (b-i). The statement on (a) for 0 < eI < eM is clear. If z < 0,

M
then choosing T n = P/M for n < M gives ET n(1 + O ) < P; thus the constraint (A-2)

is satisfied. Together with any choice of an o.n. set {un , n < M}, this definition

of RA(X) as in (2) with Gaussian 1'A(X) gives I[pxy] = (M/2)log[l + P/M].

Since the maximizing Gaussian measure is unique, and is given as in (a),

K
Cw(P) > (M/2) log [1 + P/M] CN(P). If P + Eei < 0, then Cw(P) > P/2 > CN(P)

1 by l
follows by log X -l x.
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Discussion

In the matched channel, CN(P) = (M/2) log (1 + P/M) if H2 is M-dimensional,

or if H2 is infinite dimensional with dim[support (uA(X))] <M [1, Theorem 1];

moreover, the capacity can be attained in each case by choosing PA(X) to be

Gaussian with covariance (2), with (u u any M o.n. vectors in H

and with Tn = P/M for n < M.

Thus, it is seen that the mismatched channel differs in several ways. First,

the value of the capacity is different unless S > 0. Secondly, the problem of

attaining capacity is much more significant. Even in the finite-dimensional

channel the vectors u1  uM must be a specific set of vectors, not just any o.n.

set. If H2 is infinite-dimensional with dim[supp5A(X))]<M, the situation

is even worse except for (b-ii). That is, capacity can be attained only if S has

zero as an eigenvalue of multiplicity > M if S < 0, or of multiplicity_> M-K if
K

S has K<M strictly negative eigenvalues 1 < < XK and P + i z KXK.

Otherwise, in order to approach capacity, one will need to put part of the available

"energy"Pinelements(Uen ) where (en) are eigenvectors of S corresponding to

successively smaller eigenvalues. In practical applications, this usually

corresponds to eigenfunctions at higher and higher frequencies.

Thus, we conclude that not only does the capacity Cw(P) have a different

-. value than CN(P) (except when S > 0), but attaining or approaching capacity is

significantly more difficult in the mismatched channel than in the matched channel.

It may be noted that the results given in (a) and (b-ii) of the Theorem are

*. similar to those obtained in [4, p. 170], although the developments are quite

different. However, these previous results are given in terms of a constraint

on EIIA(S)JI 1, and assume that the noise variance components can be arranged

in ascending order. This can only be done if the channel is finite-dimensional. In

this case, one can take RW 
= I, the identity, and thereby use a true power constraint.

The assumption (A-i) becomes RN = I + S, and the capacity is as given in (a); this

agrees with the referenced results in [4].

S° .. . , °•. ° . . . . . .'
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