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SUMMARY

This report shows that when the extended Yule-Walker equations are used

to estimate the autoregressive parameters of an autoregressive moving-average

time series, the parameter estimates are asymptotically unbiased and normal.

The covariance matrix is evaluated for the general autoregressive moving-

average case and for the special case of autoregressive plus noise series.

* The evaluation of the asymptotic statistics of the corresponding spectral

estimate remains to be completed.

AC,[. .r
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I. INTRODUCTION

In many applications, such as those found in radar, sonar, speech anal-

" ysis, and econometrics, one may assume that the observed time series is gener-

ated (or adequately modeled) by an autoregressive moving-average (ARMA) model.

In these cases the first estimation problem is that of estimating the model

parameters from the observed time series. In some applications, only the

autoregressive (AR) parameters will be of interest. The problem considered in

this report is the evaluation of asymptotic statistical properties for esti-

mates of the AR parameters of an ARMA series from a finite set of observa-

tions. We also consider the related special case of estimating the AR param-

eters of an AR series corrupted by additive noise. In both cases the extended

Yule-Walker (Y-W) equations (see Gersch I ) are used for parameter estimation.

1 2 3
Similar problems have been considered by Gersch , Walker , and Pagano

Gersch uses the extended Y-W equations to form asymptotically unbiased esti-

mates of the AR parameters of an ARMA series. He indicates (but does not

prove) that the limit distribution of the estimates is normal and evaluates

the asymptotic covariance matrix. Walker was the first to consider the prob-

lem of estimating the AR parameters of an AR series corrupted by additive

noise. He evaluated the asymptotic efficiency and variance of the parameter

estimates for a first order AR series. Pagano proves that the correct model

for an AR series plus noise is an ARMA model and through the use of nonlinear

* regression methods develops strongly consistent efficient parameter estimates.
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In this report, under the assumption that the AR or ARMA series is Gauss-

ian distributed, we derive the asymptotic statistical properties for the AR

parameter estimates based on well known asymptotic statistical properties of

standard covariance estimates (Parzen 4). For the estimation of the AR param-

eters of an AR plus noise series, Walker's results are extended proving asymp-

totic normality and obtaining the asymptotic covariance for arbitrary model

order. For the estimation of the AR parameters of an ARMA series, Gersch's

results are extended by providing a more precise derivation of the asymptotic

covariance matrix and by proving that the limit distribution is normal.

The organization of the report is as follows: In Section II we define

the extended Y-W equation estimates and establish certain definitions required

in Section III. In Section III we prove that the limit distribution is normal

and evaluate the asymptotic covariance matrix for the extended Y-W equation

estimates. A separate covariance matrix is derived for the AR series plus

noise case.

II. PRELIMINARIES

Let (Y n be a discrete parameter time series generated (or modeled)

by a zero-mean autoregressive moving average process of known order,

ARMA(p,q). We write

Sal Yn- -."'"- a Y = n -b b -..- b r(1)

n 1 n-1 p n-p n 1 n-1 q n n-q

4



where the sequence {,n} is assumed to be stationary, independent, identicallyn
2 p

distributed (i.i.d.) with zero mean and variance a . The set (a.j1 is11 j)=1

referred to as the autoregressive (AR) parameters and the set {b.} - is

- referred to as the moving average (MA) parameters.

Define the polynomials in z, z complex, by

p
AP (z) p 1 -E a.z (2a)j=1 I

q
Bq(z) = 1 - L b zj  (2b)

We assume that all zeroes of AP (z) and B q (z) lie outside the unit circle on

the complex z-plane and that the polynomials have no common zeroes. The pro-

cess Y is guaranteed to be stationary by this assumption. For the stationary

process the spectral density is given by:

2 2n ( ) Bq(e )1 (3)
.2w22

IAP(e i)I

We evaluate the autocovariance sequence for the Y process by multiplying

Equation 1 through by Y and taking expectations term by term, we obtainn-k

5



EC(Y Y]-a E([Y Y 1 .- a E [Y Y I
n-k n 1 n-k n- 1 p n-k n-p

= E [Y n ] - b E (Y Tn-I - - b E (Y ]. (4)
n-k 1 n-k n-I q n-k n-q

Define the covariance sequence for the Y process to be {rk}, where

rk = E (Yn Y n-k, since Yn-k does not depend on inputs nn-j for n-j>n-k, it

follows that E (Yn-k nn-j = 0 for k>j, thus we can rewrite Equation 4 as

rkk - a - ... - a rk- p = 0 k = q+1, q+2, ... , q+p . (5)
rk-ar- ~p

This set of equations is referred to as the extended Yule-Walker equations.

Let r be a (pxp) covariance matrix with elements r = r

-q kj q+(k-j)*

rq rq 1 ... rq p+1-rq .- rq-p+2

r q rq+1 r. ... rq-p4. 2  (6)

rq+p-I rq+p-2 rq

and define the (pxl) vectors by

I.'. aT =[a , a 2  a]

-%-RT Er r , ... ]
R q ( r q+2 r q+p

then Equation 5 can be written in matrix form as

r a R . (7)
-q- -q

6



Gersch proved that the non-symmetric Toeplitz matrix r , q finite, is nonsin-

gular; thus a solution for Equation 7 always exists.

N
Given a finite set of observations (y nn=,' N > p+q, we estimate the

covariance sequence (rk) by

N-Ikl Y() Y n+lkI Ikl < N-i
N n=1-- (8)

k 0Iki > N-I.

When the covariances r k in the matrix rq and vector R are replaced by their
-q -q

corresponding estimates using Equation 8, the resulting matrix and vector are

denoted by r and R . The extended Y-W equations, Bquation 7, can be written-q -q

in terms of the estimated quantities as

r =R . (9)-- -q

These equations are used for estimating the AR parameters of an ARMA series.

In subsequent developments of the asymptotic statistical properties of

the estimates a formed using Equations 9 and 8, we use the following vectors

and matrices

TA
0 = r 0 , rI , ... ,

U _ {e'(k+j)A + ei(k-j)X} k=0, 1, ... , p+q; j=0, 1, ... , p+q

7



A co,o ... ,o

where the dimension of 0 will be clear by the context in which it is used.

III. ASYMPTOTIC STATISTICAL PROPERTIES

A. FUNDAMENTAL PROPERTIES AND ASSUMPTIONS

Let Y = {Y } be a discrete time stochastic process defined on
n n= -

(,,,P) satisfying:

"a
ASSUMPTION 1: Y = {Y }n is a real-valued stationary Gaussian

process with zero mean and absolutely continuous spectral distribution

function with spectral density *(A) which is strictly positive and bounded.

5
Under Assumption 1, it follows by Kromer5 , Theorem 2.1, that there is a

real sequence (c j} = and a positive real number a such that the process Y

admits an infinite MA representation with spectral density

-.

2 eiJ 2
=- I1 + c. e (10)j=1

ASSUMPTION 2: The infinite sequence {cj} satisfies

IcjI < Go
jul

8



We proceed to establish the asymptotic distribution of the covariance

estimates (Equation 8)

THEOREM 1: Under Assumptions 1 and 2, the elements of the covariance

error vector

1/2
N" - R)

are asymptotically jointly multivariate normal with mean zero and covaria

structure given by

!.!
lim coy ( {I(R - R), (R1 2  - R)T = 2 IfU M( d)X. (11)
N-co -WT

This result was proven by Kromer in Theorem 3.2. Define for later use the

ep+q+1 x p+q+1 covariance matrix 7 by

w

7 2wf U 021 a) dX . (12)
-T

The following lemma establishes a convergence in probability result that

is fundamental to the proof of the main asymptotic results.

LEMMA 1: Under Assumptions 1 and 2

"-1 P r-1
qr -- r as N- -

"a-q -q

for all finite q.

-'- .7 - ".
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.' 4PROOF: Parzen states, under assumptions satisfied by our Assumptions 1

and 2, that the estimate rk of Equation 8 converges almost surely to rk as

N--m. It follows directly that

- P
r q r as N--

for all finite q. Gersch proves that the matrix r is ncnsingular and thus
-q

guarantees the existence of r- * Since the matrix inverse is a continuous
-q

function, then on a neighborhood containing r it follows (Rao6 ) that

A1 P -
r as N--*e®.-q -q

The next lemma establishes a relationship between a vector of covariance

estimates, R, a matrix of the AR parameters D, and the extended Y-W equations.

It is through this relationship, in conjunction with Theorem 1, that we will

establish the asymptotic distributional properties of the AR parameter

estimates of Equation 9.

LEMMA 2: For any ARMA(p,q) process there is a pxp+q+l matrix D such that

A ~ AA

D(R - R) = R - r a
-q -q-

where the matrix D is comprised of the AR parameters (aj -=1, ones and zeroes.

This result follows directly from the definition of the matrix D and the

extended Y-w equations, see Equations 7 and 9. The matrix D is defined in the

appendix.

10
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LEMMA 3: For an ARMA(p,q) process satisfying Assumptions I and 2, the

elements of the vector

NI/ - r a)
-q -q-

are asymptotically jointly multivariate normal with mean zero and covariance

matrix structure given by

1/2(' 1/2 T T

lim coy (N - r a),N (R - r a) D I D . (13)
-q -q- -q -q-

This result follows directly from Lemma 2 and Theorem 1 with the matrix T

defined by Equation 12.

i 0B. ASYMPTOTIC PROPERTIES OF THE AR PARAMETER ESTIMATES

We now establish the asymptotic distributional properties for the vector

of AR parameter estimate errors (a - a). In Lemma 3 we established asymptotic

normality and evaluated the asymptotic covariance matrix for the vector

-/26 a); in Lemma 1 we proved that the inverse estimated covarianceE--q -q

matrix r converges in probability to r as N-. Using these two results,
-q -q

we prove the following asymptotic distribution result.

THEOREM 2: For AR parameter estimates of Equation 9, under Assumptions 1

1/2(
-. and 2, the elements of the error vector N (a - a) are asymptotically jointly

normal with mean zero and covariance matrix structure given by

011

- . . ,•
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1/2 - 1/2 .~ T -1 T -1 Tlrn coy (N (a a),N (a -a) }=r- D T D (r )(14)
q -q

PROOF: By Lemma 3 it suffices to show

1/2 ~ 1/2 1(- PN1(a - a) - N1r-(R - r 0a. as N-- .
-q -q -q-

Define the pxl vector Z by

"" Zl1,N

.',. 2,N

Z . N (R -r a)N r (R -F a).
-- q -q -q- -q -q -q)

L. p,N

Lemma 3 implies that

lim N/(R - F a) < --q -q

and by Lemma 1 it follows that

Z N Eq - E q )(Rq- r qa)--, as N--. (15)

On (0,AP) define the set A for E>O and N>p by
C , N

A = {wC: Iz I < c, j = 1, 2, p}., N j,N '"'

J12

-°. . . - . . -. -



* By Bquation 15, for every aE [0,1] there exists a N* such that

P(A > 1 - a for N > N*

Since Iz j,NI < c for j = 1, 2, ... , p then the vector -(R q r q a) exists for) ,Nq -q -q-

all wE J . Hence, by Equation 9, we write
C

Sr (R q - r a) = a - ai _~q -q -q- - _

for all wCA C,N and we write Z as

1/2 1 /2^-1AZ= N (a -a) -N r (R -ra)
-q -q -q-

for all wEILC, N . Since the selection of c and a is arbitrary we conclude that

N (1/2 a) - N 12r- (R - r a) P as N-*)o.
-q Eq -q--)

We define the matrix e to be the asymptotic covariance matrix established

by Theorem 2.

e r= 1 D 7 DT (r 1) . (16)
qq

We now examine the detailed form of the asymptotic covariance matrix 8 as a

function of the assumed form for (). First, we use the ARMA(p,q) form

(Equation 3) and, secondly, we use the form for the special ARMA case of AR(p)

plus noise.

13
- -II 1 3k



C. GENERAL ARKA(prT) CASE

We first examine the matrix D T DT which by Equation 12 can be written as

i .t

TT

D,_D = 2r u T ,2( d). (17)li-it

Letk be an element of D I D, let dkj be an element of D and let ukj be an

element of U. We can write

p+q p+q
k,j - 0 - &u mdjm k =1, 2 ... p; j =1, 2 ... p

but by definition

Um = exp (i(I-m)x] + exp [i(t+m)X]

thus

p+q p+q
= d exp [i(L-m)X] + exp [i(t+m)X]}

k,j jOmO cZ=0 m=O

pq p+q p+qd kt exp(itx) djm exp(-imX) + E d3m exp(im) (18)

d=0 m=O m=O

14



Using the structure of the matrix D and Equation 2a we write

dkL exp (iLA) = exp (i(q+k)A] AP(e- i )
L=0

p
- 2i at sin (t-q-k)A (19)

t=q+k+ 1

the second term of Equation 19 vanishes for k > p-q. We also write

p+q p+q
d.m exp (-imA) + 1 djm exp (imA)

m=O m=O

exp [-i(q+j)k] AP(e + exp [i(q+j)X]AP(e (20)

By Equations 18, 19 and 20, after further manipulation, we obtain

k,j = A P(e-ix )AP(e i )exp [i(k-j)XI + A P(e- ix )A P(e- ix )exp [i(k+j+2q)k]

P P
-4i ata sin[(t-k-q)XI cos[(s-j-q)X] (21)

t=q+k+1 s=O

the third term of Equation 21 vanishes for k > p-q.

T
Letp be an element of DD D, then

k, j

2
P k,j = 2- /k.j (A) dx k = 1, 2, ... , p; j = 1, 2, ... , p

15



Using Equation 21 we obtain

p- ix p ix ~ 2
Pk,j = 2wJAl(e )A (e )exp[i(k-j)X] *2(X) dA

+ 2w, AP(e -iX )AP(e-i )exp[i(k+j+2q)2 (X) dX (22)

8wi aa s  sin[(t-k-q)X] cos[ (s-j-q)X] 2(M dA

t=q+k+ = -W

the third term of Equation 22 vanishes for k > p-q. To simplify further

evaluation of e we state the following lemma whose proof can be found in the

appendix.

LEMMA 4: For any ARMA(p,q) series satisfying Assumption 1 we have

2w fAP(e -i)A P(e i) exp[i(k+j+2q)A] 2 (X) dX =0
-w

for k = 1, 2, ... , p;j , 2, ... ,p.

By Lemma 4 it follows that the contribution of the second term of Equa-

. tion 22 is zero over the range of k and j; since the integrand of the third

. term is an odd function in X, its contribution is also zero over the range of

" k and j, therefore, we have

. k, j  2w )AA (e A e ) exp(i~k-j)A] *2(A) d). (23)

16



Using the ARMA spectral density representation for O(M), as given by Equation

3, we obtain

2k,j B q (eiX )Bq(e - i x ) exp[i(k-j)X] *(A) dX. (24)
-W

Let #MA( ) represent the spectral density for a moving-average process, that

is with B q(e i ) defined by Equation 2b, we write

MA 1 ) B (ei)Ble (25)

and pk ,j becomes

0k,j 2w f$4MA (1) *(X) exp[i(k-j)X] dX. (26)
-W

Let {c represent the covariance sequence of the moving-average process, then

7
by Box and Jenkins we can write

2 qILJ

1 j=0 < q
ct

(27)

o Izl > q

17



where b = -1; then using the Fourier transform pairs

* (A) = - c. exp(-iIX)

rk = f (X) exp(ikk) d,
-=

in Equation 26 we obtain

q q
Pk,j = c0 rk-i + L L + L c~rk -j+I"

9=1 L=1

T
Since pk is an element of D D, then with r as defined by Equation 6 with

q = I we have

T qT
D D =c or  + c£ [r +_r . (28)

Using Equation 28 in Equation 16 we have a final form for the asymptotic

covariance matrix e

q
-1 -l T + -1 T -1, T .

,c-r r(r I + r Z _ q .
;'" f=1

This form for the asymptotic covariance matrix is analogous to that obtained

.8
by Gersch and Sakai8 . We note that e contains two main terms; the first term

is similar to the covariance result obtained for estimating the AR parameters

18
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of an AR process. In fact, if we let q=0, this term reduces to the classic

9result obtained by Mann and Wald . When q is non-zero the second term

provides the contribution to the covariance due to the presence of the

q
moving-average process. We also note that both r and t[_, + r T  are real

"." L=1

symmetric matrices.

D. SPECIAL CASE: AUTOREGRESSIVE PROCESS PLUS NOISE

. In the previous section we developed the asymptotic distribution and form

of the asymptotic covariance matrix for estimates of the AR parameters from

observations of an ARMA series. We now consider a special ARMA series. When

the observed series consists of an AR(p) process plus i.i.d. noise, Walker2

3and Pagano showed that an ARMA(p,p) model can be used to represent the ob-

served series. Thus, let q=p and the results of the previous section can be

applied to this case.

Let {Z n} be a discrete parameter time series generated by the sum of a

zero mean autoregressive process of known order and an i.i.d. noise sequence.

We write

Z Y + n (30)"Zn Yn n

where {Y } is an AR(p) process generated by Equation 1 with q=O and {c n isnn

2
*-' assumed to be an i.i.d. noise sequence with mean zero and variance a . Given

19



a finite set of observations (Z N=' N>p, we estimate the AR parameters using

the extended Y-W equations. Since the process Z can be modeled as an

ARMA(p,p) series, the result of Theorem 2 applies to this case and only the

detailed form of the asymptotic covariance matrix e as given by Equation 16

need be evaluated. As in the previous case we first examine the structure of
NT

the matrix D Y D T , whose elements, pkj are given by Equation 23 and which is

repeated below

2w j AP(ei )AP(eiI exp[i(k-j)A] *2(X) dl. (31)

For the AR plus noise process, Z, we can express the spectra] density as

2 2
Cy a

#(A) = - + (32)2% 2w AP(e ) AP(e-i X

Substituting this expression into Equation 31 we obtain

2 2

k' p expti(k-j)X] dX6S Pk,j 21r Ap( eix
-iA( )Ce A (e

2 2

2 . fexp(i(k-j)XI dX (33)
-w

4

+ I fAP(e)AA(e - i) exp[i(k-j)kJ dX.
2%

20



Performing the integrations we obtain

2 2 2 4 p - lk - jI

Pk,j = or(k-j) + o 6(k-j) + a amakj n C I C m=b m m+jk-j I

4 k = 1, 2, ... , p; j 1 1, 2, ... , p.

A-, T
Since Pk,j is an element of D Y D we can write

T 2 22 4
r0 + aO a + (34)

where the pxp matrix Q is defined by

2 p-1 1
2a m amam+1 . . . a2 aam+(p-1)m=O mm=O M=O

p-1-~ E = m aM+
M=O

[* ,

1 p

_ amin ama' m +p-1 ) Fam
_=Km=O

Using Equation 34 in Eauation 16 for the AR plus noise process we obtain a
L

final form for the asymptotic covariance matrix e

2 r- -1 T 2 2 -1 -1 T +4 -1 - )eo=  r (r-) +oor (r- +o a r )T. (35)
- n-P -:0 -p n-p -p -p -p

10

i%. 21
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The first term of Equation 35 represents the contribution to the covariance

due to estimating the AR parameters of a non-noise corrupted process using the

extended Y-W equations. If there were no additive noise present, this would

be the only term in Equation 35. The second and third terms represent the

contributions due to the presence of the additive noise.

22
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APPENDIX

The structure of the (pxp+q+l) matrix D is most easily explained by

defining two submatrices D I and D2. Define D in terms of D1 and D 2 by:S[ ] 1
,€ j = l

D 
D=

:- j=p-g-1

L __D2

p+q 1

" The structure of D is dependent on the relation between p and q and must be

defined separately for two cases:

th

For q > [p/21 the j row of D I is given by

-aq+j, (aq+j-_ + aq+j+l q+j-2 + aq~j+2

(Al)
. (a q+j(p- -j) + a q+j+(p-q-j)) - (a _-(p-q2j+l ) )  . . -al. I 0 . . ... O

(*)
i"-°I

°th

For q < 1p/21 the j row of D I (j = 1, 2, .... [p/2]-q) is given by

-aq+j, (aq+j-1 + aq+j+l (aq+j-2 + a j+2

- (a I  a q2_), -(a - I), *,- 0, ..... ,0
S2q+2j- 2q+2j a 2+2j+l' a p,

2q+j

25



* . .

the remaining rows are given by Equation Al.

S The submatrix D is defined by:

-2

-a -a . -a 1 0 . 0

0 -a -a * o -a 1 0 * 0p p-

o- 0 -a -a -a
p p-i

Proof of Lemma 4. Define . by

k~j -21rff7'A p(e ix)A (e exp [i~k + j + 2q)X] 2 (X)dX. (2

Usiq OA),as given by Equation 3, in Equation A2 we get

nB ) exp rick + j + 2q)XjdX. (A3)

I-:

TAr [A (e cc

pp

Since theo zeoes of ADefie outsid ofteui crlynth ope

k.

1/A e-i ix= 2 APE E)AP( c) exp [i( + m 2 2)XI. (A4)

mlOm2

!-26



and we also have

-xq ix~ 2 q * q ~ 9

Bq (e ) B ( -b .

11= 4 1 2 34

'C'

exp (-9] + 90 . .+ z I)X (A5)
1 2 3 4

Usinq Equations A4 and A5, we rewrite Equation A3

4
l o q q

-C' 2Lf . .. b b b b c c:. k,j 2wr > ""i 9. tO 10 n C inm

k 1=0 9 4=0 m1= m2=0 1 2 £3 4 m 2

exp [i(m + m + d)X]dX
1 2

where

d = k + j + 2q + L. - L2 + z3 - L4. Since d > 0, it follows that
1 2 3 4

8k,j = 0 for k = 1, 2, ... , p; j 1, 2, . . . , p.

2..
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