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SUMMARY

Rk a0 -

This report shows that when the extended Yule-Walker equations are used

4

to estimate the autoregressive parameters of an autoregressive moving-average

.

»
r
1
»
)

time series, the parameter estimates are asymptotically unbiased and normal.
The covariance matrix is evaluated for the general autoregressive moving-
average case and for the special case of autoregressive plus noise series.

The evaluation of the asymptotic statistics of the corresponding spectral

estimate remains to be completed.
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I. INTRODUCTION

In many applications, such as those found in radar, sonar, speech anal-
ysis, and econometrics, one may assume that the observed time series is gener-
ated (or adequately modeled) by an autoregressive moving-average (ARMA) model,
In these cases the first estimation problem is that of estimating the model
parameters from the observed time series. In some applications, only the
autoregressive (AR) parameters will be of interest., The problem considered in
this report is the evaluation of asymptotic statistical properties for esti-
mates of the AR parameters of an ARMA series from a finite set of observa-
tions. We also consider the related special case of estimating the AR param-
eters of an AR series corrupted by additive noise. In both cases the extended

1 . .
Yule-Walker (Y-W) equations (see Gersch ) are used for parameter estimation.

Similar problems have been considered by Gersch’, Walkerz, and Pagano3.
Gersch uses the extended Y-W equations to form asymptotically unbiased esti-
mates of the AR parameters of an ARMA series, He indicates (but does not
prove) that the limit distribution of the estimates is normal and evaluates
the asymptotic covariance matrix, Walker was the first to consider the prob-
lem of estimating the AR parameters of an AR series corrupted by additive
noise, He evaluated the asymptotic efficiency and variance of the parameter
estimates for a first order AR series, Pagano proves that the correct model
for an AR series plus noise is an ARMA model and through the use of nonlinear

regression methods develops strongly consistent efficient parameter estimates.
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In this report, under the assumption that the AR or ARMA series is Gauss-

ian distributed, we derive the asymptotic statistical properties for the AR

& parameter estimates based on well known asymptotic statistical properties of
;Q standard covariance estimates (Parzen4). For the estimation of the AR param-
ii eters of an AR plus noise series, Walker's results are extended proving asymp-

totic normality and obtaining the asymptotic covariance for arbitrary model

order. For the estimation of the AR parameters of an ARMA series, Gersch's

ey

results are extended by providing a more precise derivation of the asymptotic

covariance matrix and by proving that the limit distribution is normal.

The organization of the report is as follows: 1In Section II we define
the extended Y-W equation estimates and establish certain definitions required
in Section III. 1In Section III we prove that the limit distribution is normal
and evaluate the asymptotic covariance matrix for the extended Y-W equation
estimates. A separate covariance matrix is derived for the AR series plus

noise case,

II. PRELIMINARIES

o«
Let {Yn}n _ _w De a discrete parameter time series generated (or modeled)

by a zero-mean autoregressive moving average process of known order,

ARMA(p,q). We write

Y ~a_ Y - eoe = a_ Y =n —bn _.-o-bn (1)
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where the sequence {nn} is assumed to be stationary, independent, identically

distributed (i.i.d.) with zero mean and variance onz. The set {aj}§=1 is

referred to as the autoregressive (AR) parameters and the set {bj}§=1 is

referred to as the moving average (MA) parameters.

Define the polynomials in 2z, z complex, by

P .
Ap(z) 1 - 2: a.zJ (2a)
- 3
j=1
q d j
Bi(z) =1 - 3 Dbz . (2b)
j=1 )

We assume that all zeroes of Ap(z) and Bq(z) lie outside the unit circle on
the complex z-plane and that the polynomials have no common zeroes. The pro-
cess Y is guaranteed to be stationary by this assumption. For the stationary

process the spectral density is given by:

2 i 2

n |BY(e'™)]

2n ix 2 *
[aPe'™) |

c
(3)

o(r) =

P ) We evaluate the autocovariance sequence for the Y process by multiplying

Equation 1 through by Yn_ and taking expectations term by term, we obtain

k




'-.0'

E (Y Y] -a_ EI[Y Y ] - «eo - a_ EI(Y Y ]

n-k n 1 n-k n-i p n-k "n-p

=E[Y n]-b E[Y n ]-o.o-b E[Y n ]c (4)
n n 1

-k n-k n-1 q n-k n-q

Define the covariance sequence for the Y process to be {rk}, where

r =E(Yy v ], since Yn

" n Yn-x -k does not depend on inputs nn—j for n-j>n-k, it
follows that E [Yn_k nn—j] = 0 for k>j, thus we can rewrite Equation 4 as -
r, - a, rk_1 - ees - ap rk-p = 0 k = qg+1, g+2, «.e, g+p . (5)

This set of equations is referred to as the extended Yule-Walker equations.

Let !q be a (pxp) covariance matrix with elements ij = Tg+(k-3)°

r r eee T

q gq-1 g-p+1
r A 4 Y ese T (6)
-q q+1 q g-p+2

and define the (px1) vectors by

then Equation 5 can be written in matrix form as

. (7)
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Gersch proved that the non-symmetric Toeplitz matrix Eq, q finite, is nonsin-

gular; thus a solution for Equation 7 always exists.

Given a finite set of observations {Yn}:=1' N > p+q, we estimate the

covariance sequence {rk} by

’ N-|k|
o2
(N) < Y Yn+lkl k| < N=1
Ek = (8)
o Ik| > N-1.

When the covariances ry in the matrix Iq and vector gq are replaced by their
corresponding estimates using Equation 8, the resulting matrix and vector are
denoted by Eq and éq' The extended Y-W equations, BEquation 7, can be written

in terms of the estimated quantities as

d=R. (9)

These equations are used for estimating the AR parameters of an ARMA series.
In subsequent developments of the asymptotic statistical properties of

the estimates é_formed using Egquations 9 and 8, we use the following vectors

and matrices

[ro' r1’ se 0y rp+q]

}o
"

He»

i(k+3)A i(k=j)A .
{e N, e I k=0, 1, ..., ptq; j=0, 1, «ee, P+q
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[0, 0' *e &y 0]
where the dimension of 9 will be clear by the context in which it is used.

III. ASYMPTOTIC STATISTICAL PROPERTIES

A. FUNDAMENTAL PROPERTIES AND ASSUMPTIONS

Let Y = {Yﬁ}n _ _, be a discrete time stochastic process defined on

(R,%P) satisfying:

ASSUMPTION 1: Y = {Yn}: - _o 1s a real-valued stationary Gaussian
process with zero mean and absolutely continuous spectral distribution

function with spectral density ¢(A) which is strictly positive and bounded,
Under Assumption 1, it follows by Kromers, Theorem 2.1, that there is a
real sequence {cj};=1 and a positive real number ¢ such that the process Y

admits an infinite MA representation with spectral density

02 o i9a 2
#(2) =37 |1+ E cj etd | . (10)
1=

ASSUMPTION 2: The infinite sequence {cj} satisfies

Z 'cj|<o .

j=1

e i e LAA'L--j




We proceed to establish the asymptotic distribution of the covariance

estimates (Equation 8)

THEOREM 1: Under Assumptions 1 and 2, the elements of the covariance

error vector
1 ~
N /2(5 -.5)

are asymptotically jointly multivariate normal with mean zero and covaria

structure given by

n
lim cov (N/2R - ) n'"2R - 0T} = 2w/p_¢2(x) ax. (11)
-

N+»

This result was proven by Kromer in Theorem 3,2, Define for later use the

p+g+1 X p+g+1 covariance matrix Y by

A o2
Y22 fuetin an . (12)
-n

The following lemma establishes a convergence in probability result that

is fundamental to the proof of the main asymptotic results.,

.. LEMMA 1: Under Assumptions 1 and 2
-1 P -1
r — T as N— =
-q -q

for all finite q.




o ga Shoen o me seusss Sl Shfe-Sibnes SR S i daihe bt S st i S aEadh. Hadie i e -t AL A A A A
| RA A T 2nm S i et ane ada s Syl ol 4 G-l Sadar~us b A S i Bt Sl T SR B A A L e i N - T e T .. .
R y N S .

4
.

PROOF: Parzen4 states, under assumptions satisfied by our Assumptions 1
and 2, that the estimate ;k of Equation B converges almost surely to r, as

N—>wo, It follows directly that

T - Eq as N—w

for all finite g, Gersch proves that the matrix Eq is ncnsingular and thus
. -1 . L . .
guarantees the existence of Iq . Since the matrix inverse is a continuous

function, then on a neighborhood containing Eq it follows (Raos) that

The next lemma establishes a relationship between a vector of covariance

~
estimates, R, a matrix of the AR parameters D, and the extended Y-W equations,
It is through this relationship, in conjvnction with Theor:m 1, that we will

establish the asymptotic distributional properties of the AR parameter

estimates of Equation 9,

LEMMA 2: For any ARMA(p,g) process there is a pxp+g+1 matrix D such that

P

j=1" ones and zeroes,

where the matrix D is comprised of the AR parameters {aj}

This result follows directly from the definition of the matrix D and the
o extended Y-W equations, see Equations 7 and 9. The matrix D is defined in the

appendix.

b, 10
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LEMMA 3: For an ARMA(p,q) process satisfying Assumptions 1 and 2, the
elements of the vector

N1/2(ﬁ -T a)

=q T =q=
are asymptotically jointly multivariate normal with mean zero and covariance
matrix structure given by
. 1/2,» s 1 ~ A T T
lim cov {N / (R -Ta),N /2(R -Ta)l=DY¥YD. (13)
N+ -q —q- -q q= - -

This result follows directly from Lemma 2 and Theorem 1 with the matrix ¥

defined by Equation 12,
B. ASYMPTOTIC PROPERTIES OF THE AR PARAMETER ESTIMATES

We now establish the asymptotic distributional properties for the vector
of AR parameter estimate errors (é_- a). In Lemma 3 we established asymptotic
normality and evaluated the asymptotic covariance matrix for the vector
N1/2(§q - fqg); in Lemma 1 we proved that the inverse estimated covariance

matrix 3;1 converges in probability to 2;1 as N—»®, Using these two results,

we prove the following asymptotic distribution result.

THEOREM 2: For AR parameter estimates of Equation 9, under Assumptions 1

1/2

and 2, the elements of the error vector N (§_— a) are asymptotically jointly

normal with mean zero and covariance matrix structure given by

1M




g lin cov (823 - &y N'2GE - 2T -1

N—»rw q

Define the px1 vector Z by

;. 1,N
N z
) 2,N
I 1 A ~ -~ -
2 Z = . e N /2 r ! (R r a) - N1/2 r !
- : -q -q —-q -q
Z
| pINJ
Lemma 3 implies that
lim N/2R -FTa)<e
N+» q

and by Lemma 1 it follows that

v,

Q'

.. 1 A - ~ ~ .

- Z =N /2(r L r 1)(R - T a)_z ¢ as N— =,
; - -q Q9 —q —q- -

X

on (8,%7P) define the set A, y for €20 and N>p by
’

12

P W W O S G e

g PROOF: By Lemma 3 it suffices to show
1/2,A /2 -1,2 - P
N (a - a) - N I' (R -Tal—59% as N—>o,

(14)

(15)

W N ,L‘\)\‘;A'_x'.n'J_i
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By Equation 15, for every a€ [0,1] there exists a N; a such that

’

P(A ) >1-a for N > N*
— ¢g,a

~

Since |z, .| < e for j =1, 2, ..., p then the vector I""(R - T a) exists for
3N =q =q 9=

all w€ A . Hence, by Equation 9, we write
€

for all weAt and we write 2 as

N

z=N723 - a) - N1/2I‘-1 (R -T a)
- - = -9 —q ~q-

for all wg i

e N° Since the selection of € and a is arbitrary we conclude that
14

1/2_-1,2 A
R =-T
r-( I

N1/2(3
- -q '=q

-a)-N g)_ligas N—> o,

We define the matrix @ to be the asymptotic covariance matrix established

by Theorem 2.

DYD (r ') . (16)
We now examine the detailed form of the asymptotic covariance matrix 6 as a
function of the assumed form for ¢(1A), First, we use the ARMA(p,q) form

{Equation 3) and, secondly, we use the form for the special ARMA case of AR(p)

plus noise.

13
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- c. GENERAL ARMA(p,q) CASE

. . : T . .
We first examine the matrix D ¥ D which by Equation 12 can be written as

p¥p'=2r/pup’ e’ ar (17)
-7

T
Let Ek ;, be an element of D UD , let d . be an element of D and let ukj be an

s

kj

element of U. We can write

PN
£ . = u d. k=1, 2, seee,y Ps j=1’ 2, eeey P
k,J £=0 B0 dkl 2m jm
. but by definition
- Upn = exp [i(2-m)a] + exp [i(L+m)r)
r.
thus
p+q p+q
Ek,j = > dkldjm {exp [i(&-m)A) + exp [i(2+m)A)}
£=0 m=0
Py > 5
= 4 exp(ifd) d. exp(-im)l) + d. exp(imi) | . (18)
i=o ** m=0 " n=0 "
14
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Using the structure of the matrix D and Equation 2a we write

d, . exp (itd) = exp [i(g+k)1] aP(e71})

=0 ke

p
=26 3 a, sin (t-g-k)) (19)
t=g+k+1

the second term of Equation 19 vanishes for k > p-q. We also write

pz*r:q pi:q
d. exp (-im}) + d. exp (iml)
m=0 im m=0 jm
= exp [-i(q+i)r] AP(el) + exp [i(g+j)n1aP(e i), (20)

By Equations 18, 19 and 20, after further manipulation, we obtain

£, . = APe™™)aP(e™)exp [1(k-1)01 + aPle ™ )aP(e ™ Jexp [i(k+j+2q)1]

k,J

p p
-4i ) 3 a,a_ sin[(t-k-q)1] cosl(s-j-q)r] (21)
t=q+k+1 s=0

the third term of Equation 21 vanishes for k > p-q.

Let pk 3 be an element of 2_!_2?, then
’
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S Using Equation 21 we obtain

n N .
= 2:/Ap(e-u)AP(en)exp[i(k-j)x] 62(2) ax

N ] .

3% k.3 n

5.\

:":\

Y i i) 2

. + 21'/Ap(e 1aP(e ™ M) expli(k+j+2q)A] #4(1) da (22)
o =

NG

' P P " 2
; - 8ni 2: 2: a.a_ ~/r51n[(t-k—q)A] cos[(s=-3j-g)A] ¢ (i) da
-7 t=q+k+1 S=0 <

the third term of Equation 22 vanishes for k > p-q. To simplify further

< evaluation of € we state the following lemma whose proof can be found in the
v appendix.
LEMMA 4: For any ARMA(p,q) series satisfying Assumption 1 we have
= y -ix i 2
: 2n [ aPe™ AP ) expli(kei+2a0A] ¢°(1) ax = 0
-

:::: for k =1, 2, ... y P =1, 2, «ev , P.

X

-~

Ty By Lemma 4 it follows that the contribution of the second term of Equa-
5 tion 22 is zero over the range of k and j; since the integrand of the third
i: term is an odd function in A, its contribution is also zero over the range of
- k and j, therefore, we have
3N

N "

N -ix ia . . 2

N by g = 27 /AP aPe™) expli(k-111 o%(1) an, (23)
o ’ w

-:'4

A 16

s oA P a s -';J



Using the ARMA spectral density representation for ¢(1), as given by Equation

3, we obtain

T N N
o, . = o> fsq(e“)sq<e'1") expli(k-3)A] 6(1) dA. (24)
k,J n 2

Let QMA(X) represent the spectral density for a moving-average process, that

is with Bq(elx) defined by Equation 2b, we write

o i —ix
(M) = -2% 8de* M%) (25)
and pk,j becomes
n
by g = 27 / 4,a(A) 02) expli(k-3)A] dh. (26)
' i

Let {cl} represent the covariance sequence of the moving-average process, then

7 .
by Box and Jenkins we can write

(
, azltl
b.b, L] <
¢ 7
c =
. L
- (27)

: \. 0 it] > q

LAt S SRR R




;: where b0 = ~-1; then using the Fourier transform pairs

1 R
QHA(A) =3y <, exp(-if))

==

"
r, = _{Mx) exp(ikA) dA

in Equation 26 we obtain

q q
Pk, = S0Tk-3 * & Cafk-3-z * X Sfk-jert
=1 =1
T

Since Py j is an element of D ¥ D°, then with Pz as defined by Equation 6 with
’

q = 2 we have

DYD =c.T +Zq:c[r + 7] (28)
=== 7070 " L e TS

Using Equation 28 in Equation 16 we have a final form for the asymptotic

covariance matrix 6

q
-1 -1,T -1 T -1, T
8 =gl To(I.") +zz_:1 cylq (L, + I 1T )" (29)

This form for the asymptotic covariance matrix is analogous to that obtained

.8 . . .
by Gersch and Sakai . We note that § contains two main terms; the first term

is similar to the covariance result obtained for estimating the AR parameters

18
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of an AR process. In fact, if we let g=0, this term reduces to the classic
result obtained by Mann and Waldg. when g is non-zero the second term
provides the contribution to the covariance due to the presence of the

q

T
and 1};1 (r, + I,) are real

moving-average process. We also note that both Eo

symmetric matrices,

D. SPECIAL CASE: AUTOREGRESSIVE PROCESS PLUS NOISE

In the previous section we developed the asymptotic distribution and form
of the asymptotic covariance matrix for estimates of the AR parameters from
observations of an ARMA series., We now consider a special ARMA series. When
the observed series consists of an AR{p) process plus i.i.d. noise, Walker2
and Pagano3 showed that an ARMA(p,p) model can be used to represent the ob-
served series. Thus, let g=p and the results of the previous section can be

applied to this case,

Let {zn} be a discrete parameter time series generated by the sum of a
zero mean autoregressive process of known order and an i.i.d. noise sequence,

We write

(30)

where {Yn} is an AR(p) process generated by Equation 1 with g=0 and {en} is

. . , . 2 .
assumed to be an i.i.d. noise sequence with mean zuvro and variance Oc+ Given

19
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a finite set of observations {Zn}:=1, N>p, we estimate the AR parameters using
the extended Y-W equations, Since the process 2 can be modeled as an
ARMA(p,p) series, the result of Theorem 2 applies to this case and only the
detailed form of the asymptotic covariance matrix 8 as given by Equation 16
need be evaluated. As in the previous case we first examine the structure of
the matrix E.!.Q?' whose elements, ij' are given by Equation 23 and which is

repeated below

n N .
0. . = 2n pr(e“)AP(e'“) expli(k-3)A] ¢2(1) dA. (31)
K, 3 A

For the AR plus noise process, Z, we can express the spectral density as

2 2
Ue On
o(2) = 3.t v (32)

2r aP(e}}) AP(e7i}

Substituting this expression into Equation 31 we obtain

2 2
o °
pk,j = oy expli(k-j)al dxr

-n Ap(elx)Ap(e-lx)

2 2
20 on "
T __"/exP(l(kﬂ)Xl ax (33)
04 "
€ p, ix, _p, -i) s
* 5 :{ﬁA (e ")A (e ) expli(k-3)a] da.




Ao, i A 4 N Son el d N Al AN v ARt i< aiicty S A et S A A R RGP Te ST ST T R e b
::': Performing the integrations we obtain
“ p-|k-3|
o 2 2 2 4
o~ .= r(k-j) + k-j) + o a_a .
AP k,3 = a7 o O (k-3) € =y M k-3
b. m=
-
k=1,2, ¢ee v P; =1, 2, «oe , P.
. . T .
Since Px 3 is an element of D ¥ D we can write
14
T 2 2 2 4
D D = + + 4
Y anO oeon_I_ 0.2 (34)
where the pxp matrix Q is defined by
P p-1 1
a2 a_a o o o E a a
s m ol m m+1 S M m+(p-1)
p-1
qm¥m+1
m=0
A
[ .
K 1 P,
3 2 >
E; K m m+(p-1) e m —1
F Using Equation 34 in Equation 16 for the AR plus noise process we obtain a
b
t final form for the asymptotic covariance matrix 6
k'.:
v
7
- 2 -1 -1.7T 22 -1, _~1.T 4 -1 -1.T
s e =g _ T.(r ) + 00l (I ) +0orT (r_ ) . (35)
- = n—p —0 —p € n-p —p erp £'1p
Li-a
4
\.n
\~t
LA
%,
N,
K 21
b
h oy Al ‘_"A_;A S e e PRy A T treesa ot Al et e s e A et a 11
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The first term of Equation 35 represents the contribution to the covariance
due to estimating the AR parameters of a non-noise corrupted process using the
extended Y-W equations, If there were no additive noise present, this would
be the only term in Equation 35. The second and third terms represent the

contributions due to the presence of the additive noise.
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APPENDIX

The structure of the (pxp+q+1) matrix D is most easily explained by

defining two submatrices b, and 22. Define D in terms of 21 and D, by:

2

[ 7 g=
5
- -1 3=p-9-1
D = - .
- F- i=p-q
2,
-  3=p
S oo S g
p+g+1

The structure of 24 is dependent on the relation between p and g and must be

defined separately for two cases:

h
For q > [p/2] the jt row of D, is given by

1

-aq+j' - (aq+j—1 + aq+j+1)' - (aq+j-2 + aq+j+2) ;e e e,
(A1)
(*)
a3 (p-g-3) ¥ Pqs3eip-q-3)’ " T (Bqo(peguzger)) rreer 3y 10 00 Lees O,
N
: p-3
5 .th ,
ga For g < [p/2] the j row of 24 (3 =1, 2, ... , [p/2]1-9) is given by
F
g}
S -a_ ., {a . +a_ . ), - (a_ . +a L), e .,
o q+j g+j-1 g+j+1 gq+j-2 g+j+2
- (a1 + 32q+2j-1)' (a2q+2j 1)y, - a2a+2j+1’ ceay -ap, 0, «eer 0
N atane
2q+)
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the remaining rows are given by Equation A1,

‘
= The submatrix D, is defined by:
3
4 j
l -ap —ap_‘ o o o -a, 1 0 . . . 0 .
- 0 -a -a ... -a 1 0 c .. 0
.- p p-1 1
0 . . . 0 -ap —ap__1 o o o -a1 1
Proof of Lemma 4: Define Sk 3 by
’
A T p, i -ia 2
Bkj = 21rf A (e )Ap(e ) exp [i(k + 3§ + 2g)A] ¢ (x)da. (a2)
' -
Using ¢(1), as given by Equation 3, in Equation A2 we get
o0 [T (8% (e) pY(e71?))?
Bk . = 2: f ixe 3 exp [i(k + J + 2g)Arldx. (A3)
) Ln (aPe™*))

Since the zeroes of Ap(z) lie outside of the unit circle on the complex
Z-plane, then 1/Ap(z) is analytic inside and on the unit circle, thus we can

write

1/1aP(e**))? = > 2 c ¢ exp [ilm+ m )\ (a4)
m1=0 m2=0 1 2

WY Ty R Y SV ST Y T YL Y,

.

o ——
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and we also have

, . q q
g, iX q, -ir, .2 _
[B'(e” ) B'(e 1T o= z—o .« o s E by b, by by

exp {i(ﬂ.1 -2+ 23 - 24)%) . (a5)

Using Equations A4 and A5, we rewrite Equation A3
4

Unﬂ'q q ® @ w
B,=——f oY ¥ Y bbb obococ
k,J 2n L, 11=O 220 m=0 n 20 21 L. L. m m

exp [i(m1 +m, + d)alda

where

d=k + 3+ 29 + 21 - 12 + 13 - 24. Since d > 0, it follows that

Bk’j=0f0rk=1, 2, e o o ,p;j=1, 2, e o o 4 P
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