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CHAPTER I

INTRODUCTION AND LITERATURE REVIEW

Statement of the Problem

An inventory problem exists whenever it is neces-

sary to stock physical goods or commodities for the purpose

of satisfying demand over a specified period of time.

Almost every business must stock goods to ensure the

smooth and efficient running of its operation. Decisions

regarding how much and when to order are typical of every

type of inventory problem. The answer to this type of

problem depends on a large number of factors, such as the

demand pattern for the commodity, circumstances governing-

* its replenishment, various inventory costs, and the char-

acteristics of the commodity such as whether it is f lam-

mable, poisonous, explosive, perishable, or deteriorating.

of these important factors, the notion of item deterioration

has not been adequately addressed in the literature.

In general, almost all items deteriorate over some

time period. Fortunately, for most items, the rate of

deterioration is so s~ow that there is little need to con-

sider the factor of deterioration when determining economic

* . lot sizes. However, commodities such as blood, alcohol,

* gasoline, and certain foods are examples of perishable



products that deteriorate rapidly over time. Since these

types of products deteriorate relatively quickly in inven-

tory, the cost impact of their loss should be considered.

Many researchers have developed various inventory models

to reduce losses due to deteriorating inventories. How-

ever, there is no existing model which treats the demand

price function, which is essential to the market in facili-

tating optimal price and production level deteriorations.

The focus of this effort is on the modification of an

* inventory model to facilitate optimal price and production

level determinations.

Literature Review

This review examines the current literature to show

the flow of inventory model development for a deteriorating

inventory system and provides a basis for modifying the

current model.

Initial researchers considered optimal production

decisions when developing the deteriorating inventory

model. Later, other reseachers added optimal price deci-

sions to the inventory problem. Recently, many efforts

have analyzed mathematical models of inventory for items

with a stochastic lifetime, and deteriorating life cycle

in inventory.

When developing inventory models, initial research-

ers were concerned with optimal production decisions only.
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Ghare and Schrader (5) described several models in which

depletion over time was the result of the combined effect

of demanded usage and decay; such as direct spoilage as in

fruit, physical depletion as in highly volatile liquids,

or deterioration as in radioactive substances, blood banks,

and grain. They derived a revised economic ordering quan-

tity (EOQ) model under conditions of constant demand and

exponential decay. Emimons (4) developed a replenishment

model for radioactive nuclide generators which also modeled

exponential decay where a product which decayed at one rate

was processed into a new product which decayed at a second

rate. His model particularly applies to inventories of

radioactive isotopes. Covert and Philip (3) developed the

EOQ model for items with a variable rate deterioration by

utilizing the two-parameter Weibull distribution, which is

assumed to be useful for an item with a decreasing rate of

deterioration only if the initial rate is either an extreme

high or low. In addition, Philip (11) expanded Covert and

Philip's model and developed a generalized EOQ model by

assuming the three-parameter Weibull distribution to

describe the time to deterioration of an item. Specifi-

cally, the three-parameter Weibull distribution can be

used for items with any initial values for rate deteriora-

tion and also for items which start deterioration only

after a certain period of time. Hence, a more general EQ

3



model was developed using a three-paraineter Weibull dis-

tribution.

Cohen (1) was also concerned with an inventory

problem in which the product is perishable. In particular,

* - the product is distinguished by a maximum usable lifetime.

* - Impetus for the analysis came from attempts to apply exist-

ing perishable inventory theory to the practical problems

associated with blood bank management. Specifically, he

considered the effects on the inventory model of restrict-

ing order policy to the single critical number class, which

is an ordering quantity thought to be optimal for an item.

The objective function was expected cost per period.

Accordingly, the steady state characteristics of the inven-

tory process, influenced by the order restriction, were

* . analyzed. He demonstrated the existence of an invariant

measure for an inventory-related process, which provides

information sufficient for cost minimization.

In the production lot size for the deteriorating

*inventory system, Misra (9) developed a more general and

realistic deterministic model for items with either a con-

stant or a -variable rate of deterioration for a system with

a finite production rate. He used a two-parameter Weibull

rate such that the items in inventory start deteriorating

* . the instant they are received into inventory. He showed

the impact of a constant deterioration rate on the produc-

tion lot size model. His results reduced the optimum

4



production lot size and also reduced their associated

costs.

* The consideration of price as an inventory decision

variable has been undertaken by a number of authors.

Whitin (16) showed the important relationship between the

inventory control and price policy. Most of the inventory

control systems consider the determination of economical

lot sizes only with cost minimization aspects of the prob-

lem, and neglects the demand function which is a standard

tool of economic theory. He described the effect of the

demand function on inventory control levels and optimiza-

tion with respect to both price and stocked level. In

short, the analysis has linked price policy and inventory

control policy together in various -,odels and has deter-

mined a combined policy which yields the highest profits.

Kunreuder and J. F. Richard (7) described optimal

pricing and inventory decisions for non-seasonal items.

They investigated the relationship between the pricing and

inventory decisions for a retailer who orders his goods

from an outside distributor. Most retailers make pricing

decisions at certain times of the year on the basis of the

expected demand for their product. In order to do this,

they have some idea of what their demand curve looks like

over some range of prices, however narrow this range may be.

The firm may, of course, revise its initial decision in the

future if certain unanticipated changes in demand or costs

5



occur. The marketing department would want to meet the

retailer's demand and maximize the profits under the assump-

tion that the inventory-related costs were zero. The pur-

chasing department would then specify an ordering policy

based on price which minimized the inventory-related costs.

In this sense, the decisions with respect to price and

order size should be considered for optimal inventory con-

trol.

Kunreuder and L. Scharage (8) showed the joint

pricing and inventory decisions for constant priced items

by expanding the results of the study by Kunreuder and

Richard (7) to a more interesting case. They developed

an algorithm for determining the pricing and ordering deci-

sions for a firm that produces one product for which there

is a deterministic demand curve that differs from period to

period. It is assumed that the firm wants to maintain the

same price for the product throughout the season. There

is a fixed cost associated with each order placed in addi-

tion to per unit ordering and storage costs for carrying

inventory over time.

Early simplistic mathematical techniques did not

provide a suitable method for manipulating complicated

deteriorating functions in algorithms which addressed

perishable items. However, the differential equation pro-

vides a means of handling these functions. Spiegel (13)

showed how the differential equation could be used to

6



manipulate functions of deteriorating inventory containing

time, quantity, and cost.

So far, we have considered the flow of the develop-

ment of the deteriorating inventory models and the impor-

tance of the demand function which has been usually

neglected by businessmen. Even though there are many kinds

of deteriorating inventory models, most of those models have

ignored the impact of the demand function in attaining an

optimal price and inventory policy decision. Only Cohen

(2) expanded his early model by considering Kunreuder and

Scharage's joint pricing and inventory policy theory in the

EOQ model for the decaying inventory system. In the pro-

duction lot size model for the deteriorating inventory sys-

tem, Misra (9) developed a more general and realistic model

by using the two-parameter Weibull distribution. Misra's

model, however, used a simple cost function which ignored

the impact of the demand function (market controlled price

or selling price). Therefore, the model itself lacked accu-

racy in determining optimal price and production lot sizes.

In summary, the initial research to develop deteri-

orating inventory models concerned only optimal production

decisions, and the consideration of price as an inventory

decision variable was later added to those inventory

models. However, most of the deteriorating inventory

models ignore the impact of the demand price function.

Misra (9) developed a more general and realistic production

7



lot size model for a deteriorating inventory system.

Misra's model was inaccurate because the model was devel-

oped by using a simple cost function which neglected the

demand price function. Therefore, no model currently

exists in the literature which can determine, with improved

- accuracy, the optimal price and production level of inven-

tory with deteriorating characteristics.

Objective

The objective of this research is to determine if

an existing inventory model may be modified such that price

and production levels for a deteriorating inventory system

can be optimized.

Scope and Limitations

This study, which considers current literature on

*o the deteriorating inventory problem, contains the follow-

ing limitations for developing the deteriorating inventory

model. Generally, constant deterioration of an item was

observed to follow the exponential distribution by

Misra (9); therefore, the exponential distribution repre-

sents the distribution of the time to deteriorate con-

stantly. The optimal production quantity is assumed to be

under conditions of continuous review, deterministic demand

of a constant rate and no shortage because stochastic

demand and shortage make this problem much more complicated.

The sensitivity to changes in perishability and product

8



price is considered. From these materials, a revised

deteriorating inventory model for optimal price and produc-

tion level will be developed. Current studies in selected

text and reference books provide detailed material for

development of mathematical calculations, and application

of this deteriorating inventory model. These studies were

identified in the literature review.

Research Questions

1. Can an inventory model be modified such that

price and production level for a deteriorating inventory

system will be optimized?

2. Does the modified model have an impact on price

and deterioration?

3. Can optimal price and production levels be

attained?

9
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CHAPTER II

RESEARCH METHODOLOGY

Introduction

This methodology chapter will develop the pro-

cedure for answe-ing the research questions mentioned

earlier, such as modifying the model to attain an optimal

price and production level for a deteriorating inventory

system, checking an impact on price and deterioration for

the modified model, and attaining the optimal price and

production levels. First, Misra's model as a general and

realistic model will be presented to establish a founda-

tion for understanding how his model treats the deteri-

orating production lot size. The modified model will be

developed on the basis of this model and will be illus-

trated in Chapter III. Further, the faults of the Misra

model will be indicated. The discussion of the mathe-

matical development-will describe how the concept of the

price function can be added to the existing model and how

the differential equations for the modified model may be

solved. A numerical example will describe how to validate

the modified model and also show the impact on price and

deterioration for the modified model.

10
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General Model

Misra's model of deteriorating inventory systems

represents the most current evolution of these type models

found in the literature. The purpose of presenting Misra's

model is to describe it and to indicate its faults with

respect to handling price functions. Misra (9) developed

a general and realistic production lot size model for items

with either a constant or a variable rate of deterioration.

Misra used a two-parameter Weibull rate which can be

applied to those items that may start deteriorating the

instant they are received into inventory. For the more

general case, a three-parameter Weibull rate would be used

for already deteriorated items and also for those items

which may start deteriorating sometime in the future.

For mathematical simplicity, the two-parameter Weibull

rate has been used in Misra's model. Most of the follow-

ing is introduced directly from Misra's article (9); some

explanations are added to help understand the equations,

and the order of equations is also changed to help under-

standing. Of his two models, Misra's variable deteriora-

tion rate model is omitted because this paper concerns,

specifically, the constant deterioration rate model.

Description of Variables

The variables used in Misra's model are as

follows:

'211



production rate given in number of units/year

X = demand rate given in number of units/year

Q = production lot size

I = the inventory level at time t

10 = maximum inventory level within a cycle

C = cost of a deteriorated unit

C1 = inventory holding cost/unit/unit time

C3 = setup cost/cycle

T = cycle time

T1 = time required to produce Q units

T2 = time during which there is no production in a
cycle; i.e., T= T - T

D(t) = the deterioration rate, given by cSt 8 1 where
c,8,t > 0. When 1 = , D(t) becomes a constant
which is the case of an exponential decay

K = total cost/unit time

Assumptions

Misra's model was developed using the following

assumptions:

-' 1. Demand is known and has a constant rate.

2. Shortages are not allowed.

3. Production rate governing supply is finite.

4. Units are available for satisfying demand

immediately after their production.

5. A deteriorated unit is not repaired or replaced

by a good unit.

12
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6. The cost of a deteriorated unit is constant.

7. The units start deteriorating only when they

are received into inventory. This assumption allows us to

use a two-parameter Weibull rate as mentioned earlier.

8. The system is in steady state; i.e., the produc-

tion rate is greater than the demand rate.

9. The production lot size, though unknown, is

fixed; i.e., it will not vary from one cycle to another.

Mathematical Development

The initial and ending inventory level of the cycle

is assumed to be zero. The cycle length is equal to Q'/X

where Q' is the number of good units from Q units which is

the production lot size. The production will take place

for a duration of T 1 time units; the time required to pro-

duce Q units. At the end of this period, enough units

should be on hand to cover the demand and the losses due

to deteriorated units which occur in time unit T 2 0 during

which there is no production in the cycle.

Inventory Level (I). Let D(t) represent the

deterioration rate function for the item stocked. The

change in the inventory level, dI during a very small inter-

val of time at, is a function of the deterioration rate

D(t), the demand rate X, production rate 0 and the remain-

ing inventory. I denotes the inventory at time t.

13



Therefore, the infinitesimal change in the inventory level

at time tI during production is:

"-"-dl I =ID (t) dt + Adt - g dt for 0 < t I <,  (1)

and the infinitesimal change in the inventory level at

time t2 during no production is:

-dI 2 = ID(t)dt + Xdt for T1 < t < T. (2)

Equations (1) and (2) can be rewritten as

dI1 ---+ ID(t) = -), 0 < t 1  < T (3)

,'

and

dI 2- + ID(t) =-X, T 1 < t 2 < T. (4)

The solutions of these differential equations are

given in Spiegel (10). Therefore, the inventory level

at time t during production is given by:

f 1 exp( JD(t)dt)dt + B1
=  1 (5)

exp( fl D (t) dt)

and inventory level at time t2 during no production is

given by:

12 (-X) exp(fD (t)dt) dt + B2

. 2 = 2 (6)
exp(J2 D (t) dt)

14



The values of the constants of integration Bi,

B2 can be found by establishing and using the boundary con-

ditions. That is, the lower boundary is established by the

initial inventory such that tI = 0 and 1 = 0 and the

upper boundary is expressed as t2 = T1 and 12 = 10.

Applying these boundary conditions yields B1 = 0, B2 = I0.

This gives

f t ( -X) exp 
(fD (t) dt) dtI1 f ~tl(7)

exp ( D (t) dt)

A-" and

" f~t2
and ~(fD(t)dt)dt + 1I

12 1 t 0(8)

exp(1 D (t) dt)

In order to simplify the expressions of II , 12

further, it is imperative that the deterioration rate func-

tion D(t) be known.

If the deterioration rate is constant, the function

D(t) can be written as D(t) c. Substituting this value

of D(t) in equations (7) and (8) yields the inventory level

at time t1 and t2

=f-(O-X) exp(at) dt

exp (,t

_ (~-X) [1- exp(-tl)] (9)

15
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+fo
(-X) exp (tdt 2  Xexpat dt

12 exp (t2)

Now at t2 = T - T = T2, 12 0; hence the maximum inven-

tory level at time t2 is

10 Xexp(ct)dt

0

X[exp(T2) - 1] (11)

Total Cost (K). Let C1 represent holding cost/

unit/unit time, C3 represent setup cost/cycle, C represent

the cost of a deteriorated unit and K represent total cost/

unit time.

Holding Cost. The total holding cost/unit time can

be written as follows:

ClT +T L dt + 2 dtJ
1 2 [f JQ

after substituting 1 1 and 12 in equations (9) and (11),

the total holding cost/unit time yields

16



r :T fi [1- exp (--at) ]dt11 + T2  o

T exp(cT 2 - exp (ct2 )+ 2 W exPT 2 ) dt2J

or, after simplification

1 T22 +(T)2

Deteriorated Unit Cost. The cost of deterioration/

unit time (C) is

C((O-X)T 1 - I) C(1 0 -XT 2 )

T T

or, after simplification

CT +T -C.
91 + T2

Setup Cost. The setup cost/unit time is

C3c3

T1 + T2

Summing all these three costs gives the total cost/unit

time
C~T1 2 2

C _T C1  tO-X)T1 + AT2] c3K = 1 1 T C + - •T 1 + 2 + 31 + T (1 2 )
K1 + T -7 T +T T +T (

1 T2 1 2 1 2

17



As can be seen, the total cost contains three costs:

the cost of holding inventory, the cost of a deteriorated

unit, and the setup cost. Therefore, because Misra's model

was developed by using a simple cost function which

neglected the demand price function, the impact of price

and deterioration on production lot size level cannot be

determined.

Development of the Model

This section will describe how the concept of the

price function can be added to tale existing model and then

show how 6 he differential equations of the modified mouel

may be solved.

Mathematical Development

This mathematical development section will describe

how the price function can be added to the existing model

and how the differential equation for the modified model

in this type of inventory system may be solved. The first

step is to develop the ideal concept for adding the price

function to the current model. The concept comes from

Thowsen (15). The elements of the concept are that the

demand function is derived by the price function because

price can control demand. However, the control of the

demand by price is not absolutely true in all cases. But,

for this, the demand price function is assumed to have a nega-

tive slope; i.e., when price is increased, the demand is

18
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decreased. After deciding the concept for adding the price

function, the next step is the process of mathematical

development. Some variables and assumptions will be added

or changed at this step during development. This process

of mathematical development will require the solution of

differential equations. It is usually hard to solve differ-

ential equations when the equation contains integrals.

There are many kinds of methods to attack this

problem. The simplest method is the tedious and long

method of expanding the exponential terms in a series form

and then integrating term by term. However, since most

series usually contain an infinite number of terms,

generally, most researchers (1; 3; 5; 8; 9; 11; 16) have

resolved to ignore terms with second and higher order dif-

ferentials to solve this type inventory model because the

effect of higher order terms is negligible. Ignoring the

second and higher order differential equations will result

in a simple, first order differential expression which can

be differentiated and equated to zero. Thus, the approxi-

mate optimum value can be found. Covert and Philip (3)

have applied the Correction Method of Newton (14:79-83)

which uses the recursive formula in geometric terms for

their EOQ model with a Weibull distribution. This method

or bisection method (6; 10) can be used for a constant

deterioration such as the case of exponential decay (9:496)

19
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because the Weibull rate can be changed to a constant form

by setting equal to one.

From the above discussion, it is clear that obtain-

ing the solution of differential equations for our model

is not easy. Therefore, if the second and higher order

differential equations are ignored, as most researchers

have done, the problem can be considerably simplified to

get an approximation of the optimum value. The computer

package for solving differential equations and high order

nondifferential equations can also be used for this study.

Some of the most useful of these include DSL/90, MIMIC,

BHSL, DIHYSYS, and S/360 CSMP (12:119).

Validating the Model

Numerical examples will be prepared to facilitate

validating the modified model. The modified model will be

validated by demonstrating how the production lot size

of a deteriorating inventory system is affected by the

introduction of the price function under the given deteri-

oration rate. These values for the variables of the

numerical example will be arbitrarily given by considering

some specific deteriorating item such as a shelf life item

in the Department of Defense, assuming there is an appropriate

item which satisfies the given assumptions.

The concern of market entry for setting price in

the event of facing inventory costs and a downward sloping

20



demand curve was considered by Kunreuder and Richard (7).

The producer will influence the market by setting price

to obtain a positive profit. The optimal price will be

achieved at some finite price strictly greater than total

production cost. The producer will adjust optimal price

to remain profitable. Therefore, it is important to show

the impact of the price and deterioration on a production

lot size model and to obtain the optimal price and produc-

tion level for attaining maximum profit under a given

deterioration rate for a specific item.

This demonstration by numerical example will also

show how the modified model will be used to answer the

research questions to meet the research objective.

42
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CHAPTER III

DEVELOPMENT OF THE MODEL

This chapter will describe the variables, assump-

tions and mathematical development of how the concept of

the price function can be added to the existing model and

then how the differential equations of the modified model

may be solved.

Descriptions of Variables

The variables used in this paper are as follows:

= production rate in number of units/day

*d(p) = demand rate, when the price is p, in number of
units/day

*C = unit production cost

C1 = holding cost/unit/unit time

C2 = setup cost per cycle

it = the inventory level at time t

10 = maximum inventory level within a cycle

T = cycle time

T, = production time per cycle

T2 = time during which there is no production in a
cycle; i.e., T2 = T - T1

a = the deterioration rate, a is a constant which
is the case of an exponential decay

o = production lot size

22



TC =total cost/unit time

*T optimal value ofT
22

**T *=optimal value of T for conventional production
lc lot size model 1

2c optimal value of T for conventional production
lot size model 2

=optimal production lot size

Some of the above variables are already used in

Misra's model. This paper will also use those variables

because they are general variables in this type of inven-

tory model. The symbol *before the variables means the

variable is an added one or a revised concept of the vari-

* . ables used in the Misra model.

Assumptions

The model will be developed using the following

assumptions:

*1. Demand rate is known and constant. When the

price is increasing, the demand rate is decreased; i.e.,

demand function d(p) = a - bp, where a, b are zero or

positive coefficients (15:461-476).

*2. Production rate governing supply is finite and

constant.

3. Shortages are not allowed.

4. Units are available for satisfying demand

after their production.
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5. A deteriorated unit is not repaired or replaced

by a good unit.

*6. The unit production cost, C, is also considered

to account for the deterioration cost, and all the cost

coefficients are constant.

7. The system is in steady state; i.e., the produc-

tion rate is greater than the demand rate.

8. Deteriorating rate follows exponential distribu-

tion with parameter a.

9. The units are deteriorating only when they are

received into inventory.

10. The production lot size, though unknown, is

fixed; i.e., it will not vary from cycle to cycle.

Some of the above assumptions are already used in

Misra's model. This paper will also use those assumptions

because they are general assumptions in this type model.

The symbol * before the number of the assumption means

the assumption is an added one or a revised concept of the

assumptions used in Misra's model.

Mathematical Development

Figure 1 shows an inventory cycle for a finite pro-

duction rate. The inventory level at the beginning and end

of the cycle is zero. During time interval (0, T) the

inventory level increases due to production and decreases

after production stops at time T V Let a represent the

24



inventory

with deterioration

without deterioration

(0-d (p)) T1 ----- ---

-" -d.

• - ,t 2

dI
t

0 t T t T time

Fig. i. A Finite Production Lot Size Model
with Deterioration of Inventory

instantaneous deterioration rate function for the items

stocked.

The change in the inventory level dIt, during the

infinitesimal time dt, is a function of the deterioration,

the demand rate d (p), the production rate 0 and the remain-

ing inventory.

Thus

-dI t =Itadt + d(p)dt -dt for 0 < t<T1  (13)

and

-dI t  I tdt + d(p)dt for T1 < t < T (14)

25
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Equations (13) and 14) can be rewritten as

dI
-- +aI = - dp), 0 < t < T (15)

and

dIt
-- +t =-d(p), T < t < T (16)

To solve this first-order linear differential equation,

multiply by an integral factor, both sides of equation

(15).

fol t ( tl tlt
exp( 1dt) -+ aexp 1 cdt) It  (-d(p))exp dt)

(15-1)

such that

[exp sadt) It] = ( -dlp)) exp adt) (15-2)

integrate both sides and solve for I Thus

(4-d(p))exp(jfadt)dt, + A1
it t < T1 (17)

expf acdt)

and, in a similar fashion from (16)

(-d(p)) exp (fdt)dt +A 2
It=I T1 < t < T (18)

• exp (fTt dt)
1

(A, and A2 are integral constants.)
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Using the boundary conditions that at t = 0, It = 0 and

at t = T, It =10, A1 = 0 and A2 = 101 let t = t for

0< t <T 1

. [and

t =t -T for T < t < T
2 11

then ftl(- d (p) exp (at) dt

t I  exp (at1 )

d - (p) -

1[ exp(-atl] (19)

(-d(p))exp(ct)dt + 10
0t 0

t2 exp (at 2 )

- d(p)
c •(ct 2 ) - 1] +I0= (20)

exp (ct 2 )i2
Sincet = It1  10 and at t2 =T 2 , It2 =0,

it follows thc

.=x-d(p) [1 - = d(p)[exp(cT 2) - i] (21)
0, 2

and, from (20) and (21)

= d (p) [exp(aT 2 ) - exp (t 2 ) 
(t2 exp (at2)

2 27
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from (21), it follows that

IT dl (p e-ctT) (23)
T 2 Ld(p) d(p) exp

from (22)

fofT 2 Itd - -- T2 + - exp(aT2)] (24)

and from (19)

f Tdt = d~ 1 -p .T exp(-aTI ) - . 25)

Equations (24) and (25) can be expressed in te-ms

of T1 using equation (23).

f T1 T2 -(p) (dp np ,T
T 1 dtf 2 Idt T d d(P) In d-p exp (-a T]' , 1 10 t- 2 E() d (p) 1

a(26)

Thus, the total inventory cost/unit time becomes

D Cld (p) t Od (p)]

C2  T + C  d(2) T1 _ 2 In - d exp(-aT I)
TC (TI , p) = 2 a ac+i T 1  In (p) l Od (p) exp (-T I

a- p p (27 )

To derive an approximate solution, those terms of

degree higher than or equal to 2 in a are neglected in

Taylor's expansion of the function (27) and assuming a < 1;

this redvras to

28



C1 t (-d p)) T 2
C2 + COT1 +- d(p) 1

TC(TIrp ) =
1 (1_ J"p) T 2

d(p) d2 d(p)dlp) 1

2 Clct 3

+ O Nd9) T1 6 d p) d(p) C (28)
. 1 ( (-p) _ 2d dlp) 1 2 d d(p) dl(p) T1

To optimize T, it is necessary to differentiate

equation (28) with respect to T and then set the equation

equal to zero,

that is,

@TC(TI'p)

T1  = 0,

Thus
S1p) T 1  C2d (p)3d +_ O(Ca+CQ)T 2  2 (29)

Cla (2-d (p) 0 T + d(xp)

Equation (29) can be solved by computer using the bisection

method (61 10). See Appendices A and B for the computer

programs toget optimal T1 * and T* values. But, here, for

the purpose of developing the theory, letter style roots by

approximation are needed to derive these values.

Therefore, assuming aT1 < 1, the above equation can

be solved for the optimal T .

29
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This gives

T =2C 2 d(p) (0

1T ~ - (p) ) (Ct+C1) (0

Recalling that T *for items without deterioration (ct+O) is

T *- 2C2d (p) (1
TiC (0-d (p) ) 0 C1  (1

Equation (30) can be rewritten as

T1C1- Tilc* (32)
1 C 11

The same approximate procedures are applied to the

equation which is expressed in terms of T 2. By setting

aT(2,' 0, then

6 i d (p) 2T Od (p) cc 1 T 2 + 1 p T 2 +C=0
6 Od (p) 2cL 2 (p 2 C .d (p) 2

This gives

2C. -(- 1p

2 Od(p) (Ccz+C1) 2c 33

where T 2c .2C 2 (-d (p) ) /C Od(p)

Thus the cycle time T* is the sum T *+T *and1 2

the optimal production lot size is

30



OT 2C-d (p))(34,-=a+ 1 d(p)) (34)

From equation (30), for fixed selling price p, the

optimal production time decreases as decay rate a increases.

Though demand d(p) has been assumed to decrease with

increasing p, the effect of price on production cycle time

is not known.

It is necessary to determine what impact deteriora-

tion and price variation may have on the optimal production

*' decision. For comparative purposes the optimal production

rate is examined.

From (19) and (30), by the Taylor approximate

* expansion,

(p [ - exp(-ClT*
IT*/T1 TI
1

aTI*

2

where the first factor corresponds to the difference between

the production rate and demand rate and second factor

approximates the rate at which items deteriorate.

The sensitivity of the optimal pr ' ction rate

- to changes in deterioration is determined by,

31
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(IT * 1 -d(p) aTl*
T1. 1 [0-d(p)1 2 2 a

= _ C2dl(p) (O-d(p)) (Ca +2C1 )

L ' 2 (Cc + C) (2Ca+2CI) J 0 (36)

similarly, production rate is responsive to a price change

as,

(I*/T*) =d' (p) 1 - (-d(p))

It is seen that the optimal production rate decreases with

an increase in deterioration rate a and also increases with

increasing price, when assuming price to be an external

(market - controlled) parameter.

It is important to verify that the response of

optimal cycle time and production rate to changes in both

price p and deterioration rate a is consistent with the

results derived fromthe approximate cost function. An

example problem was considered by solving (30) for TI*

The corresponding optimal production rate IT I/TI* was then
T1

computed. This computer program is added in Appendix C.

The results of the computation and the associated values of

the cost parameters and values of p and a are illustrated

in Table 1.

32
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The expected reactions; i.e.,

0, p 0

, -~~ < 0 a n d> _@at TI*/ TI*

were observed.

From equation (28),

T -T = d_2_ (0-dO (p) T2  (38)
d(p) 1 2 Id(p) d(p)

In order to express the total cost function by

total cycle time (T), let T1/T = n be the fraction of the

cycle in which there is production time. From equation (28),

cost/unit time can be expressed as a function of (T,n,p)

as follows:

C2  Cl 0(0-d(2)) 2 C _ ) )2 3 2

TC(T,n,p) =2+C~n +- d(p) 3 . d(p)

CIa g -d (p) On3T2  _()

6 1 d(p) -d(p)C(39)

for fixed price p, TC(T,n,p) must be minimized with

respect to T. That is,

aTC(Tn,p) = C2 + C1  (-d(p)) 2 2C1 a I-d) (p) ) 3T

3T T2 2 d (p) 3L d (p)

n -a )- £2 
rI2Clct ~d(p) )n 3 T

34
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this equation can be solved by using bisection method

(6; 10) by computer; but, here, for the theory, the letter

style expression of roots by approximation is again needed

to compute an optimal price. Therefore, assuming aT < 1

yields

2  (i-d(p)) n2
2 2 d(p) =
T

thus,

TV =c 2!d (p) .1 (40)• T ( -~p))1 n

and from equation (38),

n T1 (41

.T _ 0- d(p) 1
"d(p) 2 d (p)

In order to consider the optimal price decision, it

is defined that the profit function is presented as a

function of cycle time and price,

7(T,n,p) = pd(p) - TC(T,n,p)

The price and production level problem is equivalent

to

maximize T (T,n,p)

for p i_ 0

using (39) and differentiating with respect to p to get

optimal price,
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r (T,n,p) d (p) + pd' (p) Tc(T,n,p)
ap aP

C 2 inT2 - d(p)

=d(p) + d'(p) + 3 d d(p)
232 2d (p)

.. CP Cle n3T2  ]

"-" 6d(p) + C =0

yields

' p d(p) CnT +p 2C 3T2 0 -d(p)
d'(p) 2-( p) 3 3

CtP n T C(21 -c
+ . 6 (p)2  (42)

From equations (40) and (41), equation (42) can

be rewritten as

" (C2 ([-d (p))

___-___ _ -,___=_ C2 _

_ d' (p) 2 (Ca+C1 d (p)

2d(p) (Ca+CI

- Cl 2 4C+ C2 -c

- 2( -d(p))d(p) + 3d(p) 3("-d(p)) C

In order to determine this p* value, the computer

program using the bisection method (6; 10) was used and is

added in Appendix D.
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CHAPTER IV

NUMERICAL EXAMPLES

Numerical examples for the model are illustrated to

both validate the model and show the impacts of price and

deterioration.

The values of various variables are arbitrarily

given and are as follows:

production cost, C = $1/unit,

holding cost, C1 = $0.5/unit/day,

setup cost, C2 = $250/order,

production rate, 0 = 50 unit/day,

demand rate, d(p) = 25 -0.5p unit/day.

From equation (43), if it is assumed that d(p)

belongs to the class of functions satisfying the following

conditions

(i) d'(p) < 0; i.e., demand function is negative
slope

(ii) lim d(p) = 0

(iii) lim pd(p) = 0,
p-*Ga

then lim 7r(T,n,p) = 0.

The profit function ((T*,n,p*)) achieves its maximum at

some possibly infinite value where the total revenue
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function (p*d(p)) > the total cost function (TC(T*,n,p*))

and is represented by ir(T*,n,p*) = p*d(p*) - TC(T*,n,p*).

It is noted that maximum profit may be zero, in cases where

p* approaches infinity.

The variation of the optimal solution, (p*,T

to changes in deterioration rate a was investigated

numerically for various cost coefficient configurations.

Analysis of the previously discussed example indicates that

optimal price and optimai production time do not behave

monotonically with respect to a. These computational

results are illustrated in Table 2 with optimal production

lot size and optimal production.

Management concerns of market entry for setting

price in the event of facing inventory costs and a downward

(negative) sloping demand curve was considered by Kunreuder

and Richard (7). The production company will have a share

in the market only in those cases where price is set to

obtain a positive profit. Optimal price will be achieved

at some finite price strictly greater than total cost. As

the deterioration rate a increases, the producer must adjust

the optimal price to remain profitable. The possibility of

positive profit decreases with higher values of a. It is

important to note that while the optimal price and optimal

production decisions do not behave monotonically to

increases in deterioration rate a, there is a marked

stability in the value of the optimal price. For the
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example in Table 2 it is observed that for low values of

deterioration rate a the optimal reaction to an increased

deterioration rate is to increase price. In the range of

higher values for a an optimal reaction to increased

deterioration rate is to decrease price.

For a specific example with deterioration rate and

optimal price established as follows, the optimal produc-

tion lot size Q*, optimal production time T * can be

derived by applying the developed algorithms.

deterioration rate = 0.03

optimal price p = 23.540

Solution:

d2C 2d(p) C
1("-(p))C1 1-c+1

1

= ./ 2 x 250 x(25 - 0.5 x 23.540) x 50
v (50 - 25 + 0.5 x 23.540) x 0.5

130.27 units
1- x0.03 + 1

0* 130.27
Ti* 50 2.605 days

2C2 (i- dp))
T2 (p) (Cc+C I )
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_V 2 x 250 x 150 - 25 + 0.5 x 23.540)
= 50x (25 -0.5 x 23.540) x 0.03 + 0.5)

= 7.242 days

Cycle time, T = TI* + T2* - 2.605 + 7.242

1 T

= 9.847 days,

Actual demand during T = Td (p)

= 9.847 (25 - 0.5 x 23.540) = 130.27 units

Total deteriorated units in a cycle time

= 130.27 - 130.27 = 0 unit.

Thus, by using optimal price and deterioration

rate, the number of deteriorated units is reduced to a

minimum.

The iterative computer programs to get an optimal

price, optimal production lot size and optimal production

time is shown in the appendices. Therefore, if the deteri-

oration rate and demand function of a specific item is known,

then the optimal price, optimal production lot size and

optimal production time for the specific item can easily

be determined.
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CHAPTER V

CONCLUSION

Summary and Conclusion

In general, almost all items deteriorate over some

time period. Especiaily, since some types of products such

as blood, alcohol, gasoline and certain foods deteriorate

relatively quickly in the inventory; the cost impact of

* their loss should be considered. Many researchers have

developed various inventory models to reduce losses due to

deteriorating inventories. There are two kinds of develop-

ment flow of the deteriorating inventory models. When

developing the model, the initial research to develop

deteriorating inventory models concerned only optimal pro-

duction decisions and the consideration of price as an inven-

tory decision variable was later added to those inventory

models. Even though there are many kinds of deteriorating

inventory models, most of these models have ignored the

* impact of the demand price function where demand is deter-

mined by price. Misra developed a more general anco realis-

tic production lot size model for a deteriorating inven-

tory system. Misra's model was also inaccurate because

the model was developed by using a simple cost function

which neglected the demand price function. Therefore, no
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model currently existed in the literature which could

determine, with improved accuracy, the optimal price and

production lot size with deteriorating characteristics.

Therefore, the more accurate production lot size model was

needed to determine if an existing inventory model may be

modified such that price and production levels for a

deteriorating inventory system could be optimized.

In order to answer the research questions, an

extension of Misra's model is made to include the situation

in which the demand rate is expressed as the function of

price. To avoid making the problem much more complicated,

a revised deteriorating inventory model for the optimal

price and production level was developed under the assump-

tions that there was no shortage and demand was constant.

This modified model including the demand price function was

examined such that price and production levels for a

deteriorating inventory system were optimized by solving

differential equations. The exact values for optimal pro-

duction time (T1*), optimal production lot size (Q*),

optimal production rate (IT I/TI*), optimal nonproduction
1

time (T2 *), and optimal price (p*) were solved by computer

using the bisection method (6; 10). For the purpose of

developing theory, the approximation values for those

optimal solutions were taken by letter style expression.

In the numerical example, the modified model was

validated by demonstrating the impact on price and
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deteru1 ation which had a correlation effect and by attain-

ing the optimal price (p*) and optimal production level

(Q*) under the given deterioration rate and demand price

function. That is, if the deterioration rate and demand

price function were determined by the market for a

specific item, then the optimal price (p*), optimal produc-

tion lot size (Q*) and optimal production time (T1 *) could

easily be determined.

The results indicate that the tradeoff of revenue

and loss due to deterioration rate and demand function

allow for a more exact pattern of pricing and production

decisions. If the interaction of price considerations on

the deterioration rate and the demand function is not

accounted for, less than optimal pricing and production

decisions result in reduced available inventory at an

increased cost.

This paper is a step toward analyzing the inter-

action effect of deterioration with optimal pricing and

production decisions. If the result of this research can

be extended to the real specific deteriorating items, a

tremendous amount of money may be saved in the field of

deteriorating inventory production systems and defense

materials (radioactive missile warheads, volatile specific

petroleum products and foods, etc.).
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An extension of the deterministic inventory model

could be to consider the situation in which the deteriora-

tion follows a three-parameter Weibull distribution.

Another could be to consider the case of the stochastic

demand.

4-5
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APPENDIX A

i*

COMPUTER PROGRAM FOR OPTIMAL T1

.7

I.

_47

?~



100= PROGRM IMOB
110= EXTERNAL FF
120= A=0.001
130=100 B=10.0

*140= PpflT*' ENTER ALPHA VALUE
150= E*A
160= =pl* I ENTER PRICE
170= READ*,P
180= IF (AL. Gr. 1.) Go TO 200

*190= CALL BISECT (FF,A,B, 1.E-6,IFLAG,AL,P)
200= IF(IFLAG.GT.1) GO TO0 100
210= XI=(A+B)/2.
220= ERMR-RABS (A-B) /2.
230= C3=50.
240= L?---l25.-. 5*P
250= Q=C3*XI
260= Pl1t--(C3-DP) * (1. -AL*XII/2.)
270=- PRINT 600,XI,ERR
280= PRINT 650,Q,PR
.290= GO T0 100
300=600 EOPMAr(1OX,'THE ROO)T = ',E1O.5,6X,'PLUS/MINUS =',ElO.5)
310=-650 EORMAT(13X,'Q = ',E1O.5,6X,'PR =',E1O.5)
320=200 STOP
330= END
340= FUNCrION E?(X, AL, P)
350=- C-71.
360= C1=.5
370= C2=250.
380=- C3=50.
390= DP=-25.-.5*P
400=- FF= -(-C1*AL* (2. *C3.4)P) *C3/3./DP) *(X**3.)+ (C3+ (C*AL*C1) )*
410= C (X**2.)+C2*AL*X-c2*DP/ (C3-DP)
420= RETU RN
430= END
440= SUMOMINE BISECI'(F, A, B, 2MIL, IF (, AL, P)
450= IFLAG=0
460= N-1
470= FA-FF(A, AL, P)
480= CHECK FOR SIGN CHANGE
490= IF(FA*F(B,AL,P).LE.0) GO TO0 5
500= IFLAG=2
510= PRINT! 601,A,B
520=601 FOIN4A(10X,' A= ',E1O.5,6X,' B= ,E1O.5)
530 FrmTR
540=5 ERR=AB (B-A)
550=6 EPRREMRR/2.
560=C GECX FOR SUFICIENMY SMALL IN1ERVAL
570=- IF (ERR)R. LE. X'IOL) RE'IMR
580=- XMG4 V+B) /2.
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590=C CHECK FOR UNREASONABLE ERROR RQUIR[MENT
600= IF(XM+ERROR.EQ.XM) GO TO 20

- 610= FM=F (94, AL, P)
- .602= N=N+l

; 630 CHANGE TO NER INTERVAL
- 640= IF(FA*FM.LE.0.) GO TO 9

650=- A=XM
660= FA=FM
670= GO TO 6
680=9 B=XM
690= GO TO 6
700=20 IFLAG=I
710= RETURN

.". 720= END
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APPENDIX B

COMPUTER PROGRAM FOR OPTIMALT2
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100= PROGRAM KIMJOB
10= EXTERNAL FF

120=100 A=0.001
130= B=10.0
140= PRINT*,' ENTER ALPHA VALUE
150= READ*,AL
160= PpIN*, ' ENTER PRICE :
170= REZAD*,P
180= IF (AL.Gr. 1.) GO TO 200
190= CALL BISECT (FF,A,B,1.E-6,IFLAG,AL,P)
200= IF(IFLAG.GT.1) GO TO 100
210= XI=(A+B)/2.
220= ERROR--ABS (A-B)/2.
230= PRINT 600,XI,ERROR
240= GO TO 100
250=600 FORMAT(10X,'THE lROT = ',EI0.5,6X,PLUS/MINUS = ',E10.5)
260=200 sToP
270= ED
280= FUNCTICN FF (X, AL,P)
290= Ci.
300= C1=.5
310= C2=250.
320= C3=50.
330= DP=-25.-.5*P
340= FF= (CI*C3*DP*AL/6. / (C3-DP)) * (X**3) - (DP*C3* (C*AL+CI)/2.
350= c/(C3-DP) ) * (X**2)+ (C2*AL*DP/(C3-DP) ) *X+C2
360= RETURN
370= END
380= SUBROUTNE BISECT (F,A, B, XTOL, IFIAG,AL, P)
390= lk AG=0
400= N=-1
410= FA=F (A, AL, P)
420=C CHECK FOR SIGN CHANGE
430= IF(FA*F(B,AL,P).LE.0) GO TO 5
440= IFLAG=2
450=- PRINT 601,A,B
460=601 FO-4A(10X,' A= ',E10.5,6X,' B= ',E10.5)
470= RE'TURN
480--5 ERROR=ABS (B-A)
490=6 ERROR=ERRR/2.
500=C CHECK FOR SUFFICITLY SKALL INTERVAL
510= IF (ERROR. LE. XTIOL) RETURN
520=-  XM= (A+B) /2.

" 530=C CHECK FOR UNREASONABLE ERROR REQUIREMENT
540= IF (M+ERVR. E. ) GO TO 20
550= F=F (XM, AL, P)
560= N=N+1
570C CHANGE TO NEW INTERVAL
580= IF(FA*FM.LE.0.) TO TO 9
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590= A=XM
600= FA=EM
610= GO T10 6
620=9 B=94
630= TOD TO 6
640 IFLAG=1l
650=- PZETJ
660=20 END

°'. 5
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APPENDIX C

COMPUTER PROGRAM FOR OPTIMAL PRODUCTION
TIME AND PRODUCTION RATE
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100= PRGRX4 KIMJOB
110= REAL ALC,C1,C2,C3
120= REAL P,DP,T1,PR
130=100 PRINT*, ' ENTER ALPHA VALUE
140= READ*,AL
150= PRINT*,' ENTER PRICE
160= RE*,P
170= IF(AL.Gr.i.) GO TO 200
180= C=I.
190= Cl=. 5
200= C2=250.
210= C3=50.
220= DP=-25.-.5*P
230= TI=SQRT ((2. *C2*DP) / (C3=DP) /C3/ (C*AL+CI))
240= PR= (C3-DP) * (1. -AL*TI/2.)
250= PRINT 650,T1,PR
260= GO TO 100
270=-650 FORMAT(13X,'TI = ',EIO.5,6X,'PR = ',ElO.5)
280=200 STOP
290= END
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APPENDIX D

COMPUTER PROGRAM FOR OPTIMAL PRICE AND
OPTIMAL PRODUCTION LOT SIZE
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100= PROGRAM MJOB
110= EXE144AL, FF
120=130 A=-O.
130= &r49. 99
140-- paXN* ENTER ALPHA, VALUE
150= =*A
160-- IF(AL.Gr.l.) GO) TO 200
170=. CALL BISE~r(FF,A, B, 1.E-6. IFLAG,AL)
180=- IF (IFIAG.GT. 1) GO) TO 100
190= XI=(A+B)/2.
200= ERlRR=ABS (A-B) /2.
210= C=1l.
220=- C1=.5
230= C2=250.
240= C3--50.
250=- DX3=25.-. 5*XI
260= Q=SORT (2. *C2*Dy2*C3/C1/ (C3-DX3)/I(C*AL/C1+.))
270=- Tl1-IC3
280= T2=SQIRI(2. *C2* (C3-DX3) /C3/DX3I (C*AL+C1))
290= PR=t-(C3-DX3)*(1.-AL*T1/2.)
300=- PRINT 600,XI,ERFRR
310= PRINTr 650,Q,T1,T2,PR
320= TO '10 100
330=600 FOFrAT(10X,I TEPRICE = W,E0.5,6X,IPLS/lNJS =',E1O.5)
340=650 FODW A(13X,'Q = ',E1O.5,3x,'T1 ',E1O.5,3x,
350=- C'T2 = 1,EIOV.5,3X,'PR =',E1O.5)
360=-200 slop
370= END)
380= FUNCTI(N FF (X,AL)
390= C=1.
400= l.
410= C2=250.
420-- C3--50.
430-- DX1=-.5
440= DX=25.-.5*X
450=- FF=-DX/DX1- (1./ (C3-AL*SQRr (C*C3* (C3-DX) /2./OX! (C*AL*C))))
460= C* (C3*SQRT (C1*C2*C3/2./ (C3-Dx) IDx)-4. *AL*C2*C3/3./D~X-c2*C3
470= C*AL/3./ (C3-DX) )-C-X
480= RIEURN

.p.490= END)
500= SUBROUTINE BISWI" (F,A, B, X OL, IFLA,AL)
510= IFLAG=0
520=- N-i
530= FA=F (A, AL)
540-C amm2 FOR siGN CHANE
550= IF (FA*F (B, AL) .LE.0) GO TO 5
560= IFLAG--2
570= PRINT 601,A,B
580=601 FORV1A(10X,' A= ,E1O.5,6X,' B= ',E1O.5)
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590= RETURN
600= ERROR=ABS (B-A)
610= ERR)R=ERROR/2.
620= CHECK FOR SUFFICIENTLY S4ALL INTERVAL
630= IF (ERROR. LE. XTIOL) RETURN
640= XM=- (A+B)/2.
650=C CHECK FOR UNREASONABLE ERROR REQUIREtIMI
660=- IF(XM+ERPOR.EQ.XM) GO TO 20
670= FM=F (XM,AL)
680= N=N+I
690=C CHANGE TO N INTERVAL
700= IF(FA*FM.LE.0.) GO TO 9
710= A=XM
720= FA=FM
730= GO TO 6
740=9 B=XM
750=- GO TO 6
760=-20 IFLAG=1
770= RETURN

" " 780= END

.- 5
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