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UNEiMITER

#A unified account is presented of the various inviscid models used to represent
three~dimensional vortex flows in aerodynamics; essentially those relying on vortex
sheets and line-vortices, Recent developments in extending the scope, accuracy, and
stability of these models are described. An evaluation of their relative strengths and
weaknesses suggests that the different models all have continuing roles to play. It is
claimed that vortex modelling has come Of age, in the sense that we can now learn about
the real world from the behaviour of models, after decades of trying to make the models

conform with reality. ﬁ

1 NTRODUCT

To set the sort of model to be discussed in perspective, it is helpful to recall
the usual hierarchy of flow modsls, together with the assumptions about the fluid and the
flow which give rise to them. The first model, the Navier-Stokes equations, depends on
assumptions about the nature of the fluid. Plow at large Reynolds numbers involves
turbulence, and the mean motion is then modelled by the time-averaged Navier-Stokes
equations, involving Reynolds stress terms. ToO represent these Reynolds stresses in
terms of the mean motion and its history, one Oor more turbulence models are required. In
the flow of a unifors stream past a body at & large Reynolds number, both turbulent motion
and the large shears which make molecular viscosity important are confined to thin
boundary layers on the body and to the wake which arises from the separation of these
boundary layers from the surface of the body. Outside the boundary layers and wake the
flow behaves as if the fluid were inviscid.

Por most flows of importance to aerodynamics, the wakes are thin, in the sense that
their thickness reduces as Reynolds number increases. The effects of turbulence and vis-
cosity can then be modelled by the theory of thin shear layera, provided there is an
appropriate model for the interaction between the external flow and the thin shear layers.
A thin shear ll‘.t affects the external flow in two ways: through a displacement effect,
requiring a difference in normal velocity between its opposite surfaces; and through a
vortex effect, requiring a difference in tangential velocity between its opposite surfaces.
As the Reynolds number tends to infinity, the displacement effect dies away, but the
vortex effect remains. The sh layers becoms vortex sheets in the limit. This leads to
an inviscid model of the flow, which is governed by the Euler equations. However, in
general, the formulation of the problem for the Ruler equations must include a specifica-
tion of the lines on the body from which the vortex sheets arise, the separation lines.

A symmetrical wing at zero incidence sheds no vortex wake, 80 it is not necessary to
upecify a separation line. When the wing 1is placed at incidence the assumption that
separation takes place from the sharp trailing-edge is automatically made. In reality,
separation also takes place from the tip, spreading forward from the trailing-edge as the
angle of incidence increases, at a rate depending on the design of the tip, For a wing
:Lth .: highly-swept sharp leading-edge, a similar separation takes place from the lead-
ng edge.

We may expect that, for most bodies of practical interest to aerodynamicists, the
limit of the real flow as the Reynolds number tends to infinity will be an inviscid flow
with embedded vortex sheets. In this limit, it seems likely that the positions of the

. separation lines are determined, though not necessarily uniquely. The same flow Tepresen-

tation may also be used as a model of the flow at large, but finite, Reynolds numbers,
though then the positions of the separation lines must be supplied to the model from cut-
side it. The assumptions leading to this model are, first, large feynolds number and,
second, the sort of thin wake flow which is naturally associated with aerodynamically
afficient shapes.

Por shock-free flows past bodies immersed in a uniform stream, the inviscid flow can
be represented by a potential function, and the same representation can bs extended to
model flows with weak shoock waves. From this point, at which the flow is described by a
potential function everywhere cutside the »ody and outside the vortex sheets, the various
treatments to be discussed in this peper diverge. To order the discussion, we reserve
the word 'model’ to desoribe an approxim: lon to the vortex sheet, and introduce the word
‘framework' to desoribe a treatment of the potential flow in which the vortex sheet is
enbedded. Then the models of the vortex sheet to be considered are the classical rigid-
wvake model of a trailing vortex sheet, the Mangler-smith model! for a rolled-up core,
the multiple line-vortex model, and the single line-vortex model. The possible frame-
works are the full nonlinear potential formulation, the nonlinear transonic small




perturbation approximation, the linear small perturbation (Prandtl-Glauert) approxima-
tions for subsonic and supersonic flows, and the slender-body approximation. To illus-
trate the independent aspects of model and framework, a two-dimensional presentation is

usefuls.

Model

Multiple Single
Rigid wake Rolled-up core un.-vo';ux u.no-v%rt.x
Framewor

Full potential ] Jaweson
TSP Albone
P-G M<1l {multhopp |F.T. Johnson, et ai® | Rehbach® Nangia and Hancock$
P-G, M>1 D. Cohen

Slender-body R.T. Jones | Mangler and smith! Sacks, et al” | Brown and m.c:h.ul.6

In this table the names have been introduced for illustrative purposes only. The classical
rigid-wake model has, of coursa, been used in all the frameworks; but the other vortex
models have only been used to a significant extent in the subsonic Prandtl-Glauert frame-
work, which includes the important special case of incompressible flow, and the slender-
body framework.

A further point is worth clarifying at this stage, even though it is of greater
significance for Dr Hoeijmaker's paper’. This concerns the mathematical nature of .
the problems to which the various frameworks give rise, and how these can be modified
by particular geometries. The discussion is restricted to steady flow, To illustrate the
point, consider a purely supersonic flow and ignore the complexities of the vortex models.
Both the full potential and the supersonic Prandtl-Glauert frameworks lead to hyperbolic
problems. However, for the flow past a conical shape, the problem can be reformulated in
conical variables, yielding an equation in only two variables which changes type from
elliptic near the free-stream direction to hyperbolic at a large inclination to it. The
presence of vortex sheets of conical form does not change the type of the problem in this
case, though of course the presence of boundaries of unspecified shape dces make it more
complex. In the slender-body framework, the solution splits into an axial flow perturba-
tion depending only on the distribution of cross-sectional area, and a cross-flow pertur=-
bation. The problem for the cross-flow is governed by lLaplace's equation and is therefore
always elliptic., Without the complication of the vortex sheets, each of the two-
dimensional cross-flow problems is independent of the others and can be solved in isola-
tion. With vortex sheets each cross-flow problem depends on the solution upstream. In
this respect the problem takes on a quasi-parabolic character, with the streamwiss coupling
represented by ordinary, rather than partial, differential equations, because the circula-~
tion is concentrated in sheets, not diffused as vorticity. In the particular case of a
conical body shape, for which a conical vortex configuration is sought, the quasi-parabolic
behaviour is eliminated. A single elliptic problem with unknown boundaries then emerges.
The other sffect of introducing a vortex representation which goes beyond the rigid planar
wake is to introd an ial nonlinearity into the problem. The governing &ifferen-
tial equations for the Prandtl~Glauert and slender-body frameworks are linear, but the con-
dition of continuity Of pressure across a vortex shest is nonlinear.

In view of the large amount of work in this field using the slender-body framework,
it is worth recalling the relationship between it and the theory of incompressible two-
dimensional flow. There is an exact correspondence between the cross~flow component of a
slsnder-body solution and an ungteady two-dimensional flow in which the body is growing,
moving, and deforming in time in the same way as the cross-section of the three-dimensional
body is changing in the streamwise direction. When vortex sheets are present, the separa-~
tion lines must alsoc be specified in the same way. There is no direct relationship between
the viscous effects in the two- and three-dimensional flows. A consequence of this
correspondence iz that the classical treatment of the roll-up of a three-dimensional wake,
treating it as a time-dependent problem, is just a slender-body approxisation to the
three-dimensional flow.

2 MODEL$ OF VORTEX SHEETS

The flat wake behind an elliptically-loaded wing is in equilibrium, in the classical
treatment just referred to. The equilibrium is unstable, but even the existence of a
simple equilibrium configuration makes thias an sxceptional case., 1In qeneral, the equi-~
lidbrium shape of a vortex sheet involvas the rolling up of its free edges into a spiral
form, the spiral containing an infinitely large number of turns about its axis. We shall
be concerned with the representation of such spiral sheets. For a conventional, tail-aft,
configuration, the rolling up of the vortex wake is of relatively little importance to the
aircraft itself (though it may be very significant for a lighter, following aircraft)
because it takes place well downstresm of the wing and well outboard of the tail, Rolling
Up is of greater importance for a canard lay-out and is a dominant feature of flows involve
ing leading-edge separation from strakes .J delta wings. It is also boco.::: clear that
the behaviour of rollsd-up vortex sheets can explain many aspects of the asrodynamics of
the nosss of aircraft and missiles at large angles of attack.
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To represent an infinite spiral in a numerical calculation would present consider-
able difficulties. The simplest way out is that adopted by Mangler and smith!., 1t s
simply to represent the inner turns of the vortex shaet by a single lins-vortex, at least
as far as the effectz of the inner turns on the rest of the flow field are concerned. A
few turns on the outside of the spiral can then be represented explicitly in a nuserical
treatment. An essential feature of flows of this kind is that circulation*® is being con~
vected along the sheet., Sowe simplified representation is therefore needed of the convec-
tion of circulation from the free edge of the outer part of the sheet to the line-vortex

representing its core. In the sxisting model, used both in the slender-body and the sub-

sonic Prandtl-Glauert frameworks, this convection process is represented as occurring
entirely in the cross-flow plane, which is not very different from a plane normal to the
line-vortex. As a result, a discontinuity of pressure appears across the cut connecting
the free edge of the sheet to the vortex, a discontinuity whose magnitude depends on the
streamwise coordinate only. To obtain a force-free system, the force which arises from
this pressure difference in each cross-flow plane is balanced by the local force on the
line~-vortex which arises from its inclination to the local flow direction. Since the
force arising from the pressure difference scales on the product of the circulation of the
line-vortex and its distance from the free edge of the sheet, it will tend to z2ero as the
extent of the properly-modelled outer part of the sheet increases. In fact, for most
purpt.uu, it is enough to include explicitly about half a turn of the sheet on a delta
wing?.

Because this model has often been applied to flows which are conical,.it is often
thought of as being restricted to conical flows. In fact it has been used for non-conical
flows in the frameworks of slender-body th 3,10 304 of the fuller Prandtl-Glauert treat-
ment for subsonic flow?¢!l, The boundary conditions to be applied on the properly-
represented outer part of the sheet are that the pressure is continuous across the sheet
and that the sheet forms part of a three~dimensional stream surface. These are exactly
equivalent to the requirement that the circulation is convected with the mean of the
velocity vectors on the two sides of the sheet. An additional Kutta condition is usually
needed at the separation line. Por flows without lateral symmetry it is also necessary
to f£ix the overall circulation about the cross-section of the configuration to be zero:

a condition which follows from the application of Kelvin's theorem to a closed contour
which is convected from upstreas to surround the configuration.

This model, implemented in the slender-body framework, has been shown to give a
useful qualitative picture of the effects of planform, thickness, cross-sactional and
lengthwise camber, side-slip, roll, and oscillations in pitch and heave for simple flows
over sharp-edged wings, involving only a single pair of leading-edge vortices. It has
also been implemented, with much greater difficulty, in the subsonic Prandtl-Glauert
framework; and has been shown to give reliable quantitative predictions of lift, pitching

¢t and pr e distribution. For a discussion of these results and mors complets
lists of references, see previous reviews®'!2, For these simple flows, the major weak-
nesses arise from the absence of any representation of secondary separation or vortex
breakdown,

An important special case of this vortex-sheet model, which significantly pre-dates
it, is obtained by amitting the explicit representation of the outer turns of the spiral
sheet, 80 that the cut extends from the line-vortex to its associated ufu'ation line.
This was used by Brown and Michaelf, following earlier work by Legendre!!. The same model
was applied to represent vortices shed from inclined cones and cylinders by Bryson’,
still within the framework of siender-body theory, and it has also been implemented in the
subsonic Prandtl-Glauert framework*'!S, It will be referred to as the (single) line-vortex
model. Again it is not confined to conical flow, thougn the curvature of the line-vortex
then presents a mathamatical difficulty.

The self~induced velocity of a curved line-vortex is infinite and directed normal to
itself. This is obviously noa-phl:ten and indicates that the model is over-simplified.
The same difficulty arises with the core representation in the vortex-sheet model. It can
be resolved by considering the vortex core to have a finite cross-sectional area, based on
the geometry in the cross-flow plm‘ and a continuous distribution of vorticity, based on
one of the n:g::touc solutions 16=18 gor the inner part of a vortex. The self-induced
velocity is finite, and can be calculated!’, and could, in principle, be included in
the model. In the slender-body framework the self-induced velocity is of the same order
as other neglected quantities and there is no mathematical reason to include it.

Another omitted effect in the representation of the whole or part of the spiral
sheet by a line~vortex is that of the circumferential component of the vorticity vector.
This component has the effect of accelerating the flow along the axis of the vortex,
often very appreciably, producing an associated inflow as required by continuity. It is
possible to represent the effect of this inflow on the outer flow by combining a line-
sink with the line-vortex. This approach has been discussed by Hosljmakers? and
Verhaagen?! , but it is necessary to take considerable care over the definition of

* The term ‘'circulation’ is here used in a slight extension of its usual meaning. Conven-
tionally, circulation is a property of a closed contour, However, in a potential flow
with embedded vortex sheets, the circulation about all closed contours which intersect
one sheet only, and that sheet at one and the same point, is the same, so that it can be
regarded as a local property of the sheet. It is just the jump in potential across the
shest. IY¥ seems better to extend the use of 'circulation’ in this way rather than use
‘vorticity’ in senses which may be confusing.
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entrainment if their results are to be interpreted correctly. It again appears that, in
the slender-body framework, the strength of the line-sink is of the same order as the
other neglected gquantities.

In view of thess complexities, it is not surprising that other, apparently more
strajghtforward, approaches have been made to the modelling of the infinitely rolled-up
sheet. The most popular of these is the representation of the sheet by a large number
of line=-vortices. The basis of this may be seen by drawing on the sheet a family of
spiral curves which ars lines of constant circulation, or constant jump in potential. As
mentioned above, these will also be streamlines of the mean fluw. The spiral curves cut
the sheet into ribbons, and, if the circulaction in each ribbon is condensed into a line~
vortex, a multiple line-vortex model is obtained. The condition to be satisfied is
simply that each line-vortex should be aligned with the local flow direction alomg the
whole of its length,

The question of the self-induced velocity of the curved line-vortex arises again.
This time the line-vortex represents, not a core of finite area, but a ribbon of the
sheet, and a different approach is needed. Since a plane element of sheet has no self-
induced velocity, no local contribution from the ribbon is required. A plausible proce-
dure would be to omit from the range of Biot-Savart integral for the self-induced velocity
of a line-vortex at a point P an interval surrounding P of the same length as the dis-
tance between the adjacent line-vortices. In the published calculations using this multi-
vortex model, the curved line-vortices are replaced by sagments of straight lines. The
velocity is either calculated at the mid-point of the segment, where it is finite, or at
the end, vwhere it is presumably necessary to neglect the infinite contributions of the two
segments which meet there.

The multi-vortex model is most naturally used to describe separation from the edge
of a wing which is also represented by a set of line-vortices, as in a vortex-lattice or
vortex-ring model of the wing. The Kutta condition is then just that the vortices run
off the edge into the sheet, with continuity of circulation., If the wing is represented
by a continuous load distribution, as in slender-body theory, for instance, there is some
arbitrariness about where the vortices representing the sheet are to be introduced, and a
similar difficulty arises in modelling separation from a smooth surface. This arbitrari-
ness affects the circulation of the vortices through the Kutta condition.

Thers are three basic difficulties which affect calculations with the multi-vortex
model, though ths last only arises in the slender-body framework. The first is that a
large number of line-vortices are needed to obtain an accurate solution. The evidence
for this comes from the calculations by Sacks, ¢t ai® in the slender-body framework, where
they were able to use a large number of vortices. A slight generalization of their
estimate of the number of vortices needed for a converged solution is:

30 + 300A/a , (1)

where A is the aspect ratio and a 1s the angle of incidence in degrees. The largest
value of A/a covered in their calculations is 0.2. There seems no reason why fewer
vortices would be needed in another framswork.

The second difficulty concerns the shapes of the line-vortices. These should follow
the streamiines and these, as we know from many visualization experiments, are halices,
with the pitch of the helix becoming smaller the nearer the streamline lies to the axis
of the vortex. It follows that a line-vortex starting near the apex of a delta wing
should follow a helix of very small pitch, and such a helix requires very many elements
to describe it with any realism. The more vortices are introduced, to meet the first
difficulty, the closer to the apex the first starts, so increasing the second difficulty.
The solution must be to rapresent the inner part of the sheet separately, probably by a
line-vortex of growing circulation, as in the vortex-sheet model.

In the slender-body framework, a third difficulty arises because of the quasi~
parabolic nature of the problem referred to above. The shapes of the line-vortices are
found by integrating ordinary differential equations in the streamwise direction. As a
result of the basic instability of this process and of the close approach of neighbouring
vortices, the shapes of the vortices become chaotic, as Sacks, ¢t al found3. This situa-
tion has since been studied in the exactly analogous g}mr unsteady problem, where the
onset of chaos has been postponed in two waya. Moore’? has used an explicit core repre~
ssntation, as suggested above for other reasons; and Fink and Soh?! have redistributed
the vortices along the sheet at the end of sach time step. Recent work®™ with a multi-
vortex formulation which overcomes eame of these difficulties will De described later.

3 BECHNT. CRVEIQPWENTS IN TG NOORLS
Four recent developments will be outlined. Two of these relate to the adaptation
of models gmnwu‘l to separation from salient edges to the representation of

separation from surfaces; and two arise from the need to represent more complicated
flow patterns than those oa a delta wing. g o

Let us consider first the extension of the vortex-sheet model to describe separation
frem smooth surfaces, as reported by Fiddes?® for the cass of the slender elliptic cone at
ucu?u. The £irst point to realise is that the sheet must leave the surface tangen-
tially®, m‘ .uﬁo two posaible types of behaviour of the flow normal to the

separation 1 With the downstream side of the separation line defined as the side
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towards which the vortex sheet departs, these behaviours are: either the vortex sheet has
infinite curvature and the pressure gradient upstream of the separation lins is infinitely
adverse; or both the sheet curvature and the upstream pressure gradient are finite. The
form of the singularity in both the curvature and pressure gradient is the inverse equare
root of the distance from the separation line. To represent this behaviour in a calcula-
tion is not trivial, and the problem has been attempted so far only in the slender-body
framework. Clearly, curved elesments, or panels, are ded to rep t the sheet, and
the base element & rently needs infinite curvature at one end. An ingenious use of con-
formal aappings?5+2% avoids the need for such a special element, and an existing fora' can
be used.

PFrom the point of view of the inviscid modelling, the outstanding question concerns
the Kutta condition. Since all the velocities are finite in the attached flow, and the
pressure is continuous everywhere, it is not clear that any further condition is required.
However, a further condition on the numerical solution is useful. In the exact inviscid
solution, the fact that both the body surface and the vortex sheet are stream surfaces
implies that the velocity vector on the surface on the downstream side of the separation
line must be parallsl to the separation 1ine. This will not naturally emerge from a
numerical solution, in which the stream surface condition is enforced by setting the
normal component of the velocity to sero. It is therefore helpful to require, as a form
of Kutta condit‘on, that the surface velogity is along the separation line on its down-
strean side.

From the point of viaw of modeliing the real viscous flow, the outstanding question
is the determinaticn of the separation line. TFor boundary layers which are laminar
upstreaa of separation, Piddes describes an approach which is both rational mathematically,
and ab. ful in reproducing the observations on circular cones. The approach
rests on the asymptotic theory of laminar separation for large Reynolds number which was
put forward by Sychev?® and completed by P.T. Smith¥®, The essential points are:

{1) at infinite Reynolds number, separation must be smooth, i¢ the singular behaviour in
sheet curvature and upstream pressure must not occur; (11) at finite Reynolds number, the
separation line is displaced downstream from the position of smooth separation until there
is a balance between the strength of the singular behaviour and the level of skin friction
upstrean of separation.

The use of this approach, with the vortex sheet model and a laminar boundary layer
calculation, makes it possible to calculate the position of the separation line as a
function of Reynolds number. Pig 1 shows hov the predictsd movement of the separation
line with Reynolds number compares with that observed by Rainbird, et al’! in a water-tunnel
experiment on a circular cone. The trend is well predicted, and the difference in actual
position is small compared with the displacement of the separation line from its position
for infinite Reynolds number. There is, Oof COUrse, NG reason to expect that the line
along which the vortex sheet leaves the surface in the model should agree exactly with any
particular obeerved feature of the real flow, It is surprising that the asymptotic treat-
-:nt ‘t‘: as yi1 ful as it appears to be, relying as it does on a leading term which is
of order R~ .

The inviscid model can be assessed independently by using it with a measured posi-
tion of the separation lime. Fig 2 shows a cross—section of the calculated vortex con-
figuration, with the separation line at the observed, laminar position; and the observed
position of the core of the vortex for comparison. The vortex is at about the rignht dis-
tance from the surface, but not far encugh round from the separation line. The same sort
of discrepancy arises in wing flows, and is usually attributed to the failure to repre-
sent secondary separation ian the model. A further comparison is shown in PFig 3. To give
aome idea of the shape of the resl vortex, comntours of total pressure measured by
Rainbizd¥ around a circular cone in a wind tuanel ars shown, with the calculated vortex
configuration superimposed. The observed position of the turbulent separation line was
used in the caloulation. The model is clearly producing the correct gualitative behaviour.

It seems perfectly feasible to extend this work to non-conical slender bodies of
general cross-sectional shape, and, with rather morve effort, to implement the model in
the subsonic Prandtl-Glavert framework. However, to produce a similar sethod capable of
predicting turbulent separation demands a aew insight.

Compared with this substantial achievement, the second advance to be reported is a
minor one. What it provides is an improvement in the Kutta coadition for use with the
single line-vortex model. The standard bousdary conditiom, introduced by Bryson!®, is
that the velocity at the separation line is parallel to it., This forces the separating
otream surface to leave the body in a directios normal to the body, whereas, if the shest
were represented, it would leave tangeatially. The improvement is achieved by writing
the Kutta condition for the sheet model, that the velocity on the downstream side is
parallel to the separation line, eatirely in terms of the mean velocity and the rate at
which circulation is being shed. These are quantities which also appear in the simpler
line-vortex model and 50 the revised form of the Xutta condition can be taken over
immediately. Pox the simple example of separation from a body of revolutiom at incidence,
vith the ssparstioa line lying along a meridiam, the conditiocn becomes
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where v 1is the circumferential component of the velocity, U is the undisturbed speed,
and dr/dx is the axial rate of growth of the circulation. Compared with the original
form of the condition, t¢ v = 0, equation (2) clearly allows the vortex to be weaker if

its position is hanged. The g 1 expression corresponding to (2) is given in Ref 12.
An illustration of the effect of the different forms of Kutta condition is given in Pig 4
for conical flow. The curves drawn are all cross-sections of conical stream surfaces, of
which the body surface forms one. At the top is sketched a vortex sheet solution, in which
the sheet leaves the body tangentially along the separation line, S , to form the surface
of separation. On the left, the flow corresponds to a line-vortex solution with the
original Kutta condition: the separation line is a singular point for the family of curves
shown and the separation surface leaves the body there in the normal direction. On the
right, the flow corresponds to a line-vortex solution with the revised Kutta condition:

the specified separation line, S , is no longer singular and the separation surface
follows further round the body before leaving it, again in the normal direction.
Neighbouring conical stream surfaces are now more like those in the vortex sheet solution
shown at the top.

Calculations??,3% for conical bodies using the revised Kutta condition do show
smaller circulation, lower peak suction, lower lift, and vortices lying further inboard.
These changes tend to improve the relationship with experimental obssrvations. There is
a lower bound on the angle of incidence for which the line-vortex model has solutions in
which the vortex lies near the separation line. This bound is unrealistically high in
relation to experiment and to the vortex-sheet model's predictions?5; unfortunately the
use of (2) does not lower the bound.

We now turn to the improvements aimed at the treatment of more complicated vortex
configurations, in particular, configurations which involve more than one axis about which
rolling-up occurs. Hoeijmakers and Vaatstral?S:36, using the vortex sheet model in time-
dependent planar problems, equivalent to the slender-body framework, have introduced a
very useful feature. Where, in the course of the evolution of the vortex sheet, a kink
begins to form in ths shape, a short segment of the sheet is removed. The circulation
about this segment is concentrated into a line-vortex, which is inserted in place of the
segment, and connected by cuts to the free edges of the sheet, leaving the velocity poten-
tial single-valued once more. Circulation convected off the free edges of the sheet is
added to the circulation of the line-vortex. The system of a line-vortex with two cuts
represents an infinitely rollsd-up, double-branched core of the sheet, which we can
imagine as growing from a point on the vortex sheet at which a singularity has appeared.
The spontansous emergence of singularities in the svolution of vortex sheets has recently
been discussed by Moore! in a proper mathematical context. It appears that by identify-
ing and treating these kinks or singularitiss an orderly evolution of the vortex configura-
tion can be computed for longer times, or further downstream, than would otherwise be
possible.

One of the configurations for which this sort of extra freedom is needed is the
double~-delta wing, or the swept-wing with strake. If the inboard and outboard portions
of the leading-edge have almost the same angle of sweep and the angle of incidence is not
too small, a vortex sheet will form along the whole leading-edge and roll-up into a single
spiral core, just as if the planform were smoothly curved. The local disturbance to the
sheet produced by the kink in the edge is quickly smoothed ocut. This flow should present
no difficulty to any of the models.

If the kink is larger, the disturbance it causes to the smooth growth of the sheet
will result in the formation of a second centre of roll-up, as sketched in Pig 5. This
situation has been made visible by Verhaagen, whose photographs are published in Ref 36.
The circulation shed from the outboard leading-edge cannot be convected past the newly-
formed outboa:d core, 30 the circulation of the inboard part of the sheet remains constant,
or may even reduce if the outboard core becomes strong enough to coavect circulation back
towards itself. The outboard core continues to grow on the circulation shed from the
leading-edge, and will eventually dominate, and perhaps swallow, the inboard core, if the
wing extends far enough. The surface sketched in Pig 5 is a stream surface, but not
necessarily a proper vortex sheet everywhere. The jump in tangential velocity may decay
to zero near the points of inflexion in the curves which connect the two cores, since both
cores are convecting circulation away from the inflexion points.

If the kink is larger, or the incidence smaller, part of the stream surface connect-
ing the two cores is likely to collapse onto the surface of the wing, as sketched in
Fig 6. The structure of the outboard vortex is now of the familiar leading-edge vortex
type, though it is worth noting that its initial growth from the kink is not conical,
even in the slender-body framework. The inboard cure is shown as connected to the wing
surface by a stream surface springing from the line AD. This is not msant to suggest
that the boundary layer on the wing sepsretes along AB, though it might do so. However,
there must be & surface streamline such as AB which forms a boundary between the surface
streamlines which are swept boazd b th the inboard core and the surfacs streamlines
which attach to the upper surface of tha wing after passing above the outboard core.
Fig 7 shows a sketch of the surface streamline pattern which would be associated with the
flow structure of Pig 6. AC and DR are attachment lines from which boundary layers grow.
These boundary layers may collide along AD and, if they 4o, circulation may be shed from
AB, There is some evidence® that this does happen on practical configurations, but
interpretation of the limited experimental information is complicated by the presence of
a secondary vortex formed on the forwrd rn of the wing. TFor simplicity, secondary
separation has been ignored in Pigs S to 7, and the streamlines sketched in Fig 7 may
be regarded either as the surface streamlines of the inviscid flow or as the limiting
streamlines of the re:i flow.

A= . . . -

cacT NTAV 1Y




]
|

i

™ Asro 1963

The stream surface through AB is drawn as simply as possible in Fig 6, intersecting
the wing normally. This implies that there is no shedding of circulation along AB., Part
of the stream surface will then no longer be a vortex sheet, as suggested in Fig 8a, It
is then likely that a second centre of roll-up will form, as in Fig 8b. On the other hand,
if circulation is being shed from AB, the cross-section of the sheet will resemble Fig 8c
or 84, depending on the sign of the shad circulation. Resolving these details seems
unlikely to be important.

If the flow near the kink is as sketched in Fig 6, there is still a question about
its downstream development. The inboard vortex is moving slightly outboard, under the
influence of ita image vortex in the wing, while the ocutboard vortex is growing in size
and strength. Will the outboard vortex pture the inboard one? We return to this
question later.

As the sequence of reductions in the sweep of the ocutboard wing and reductions in
the angle of incidence continues, the separation on the outboard leading-edge is eventually
suppressed. The flow structure then resembles that of Pigs 6 and 8, with the outboard
vortex removed. The corresponding surface streamline pattern is sketched in Fig 9. The
line AB now forms a boundary between the flow swapt outboard under the vortex from the
attachwent line DE and the flow coming inboard from the leading-~edge AC. Again there is
the possibility of separation from AB and again the real flow is complicated by secondary
separation on the strake. Ref 38 provides data on a flow of this kind also.

Il a calculation method is to tell us which of these flow patterns actually occurs
on a particular wing at a particular angle of incidence, then it must clearly be a
flexible one. 1t may well be that Hoeijmakers technique of representing double-branched
spirals provides the needed flexibility, but an alternative approach is to turn to the
sultiple lins-vortex model.

Peace®™ has implemented a multi-vortex model, in the slender-body framework, which
incorporates two improvements over the original approach of Sacks, ¢t al®, The first of
these 1is to allow the circulation of the vortex which was shed most recently to increase
along its length. Each vortex can then start with zero circulation, at a point actually
on the leading-edge of the wing; instead of starting with its ultimate strength at a point
near the leading-edge. MNoreover, the Kutta condition can be satisfied at every point of
the leading-edge, through the continucusly varying strength of the most recently shed
vortex. The first vortex can be shed from the apex of a delta wing, so that near the apex
the model is just the single line-vortex model, As soon as the second vortex is intro-
duced at the leading-edge, the first vortex is no longer fed with circulation and convects
with the local flow. The second vortex grows in circulation, so as to satisfy the Kutta
condition; and follows a path which is determined by the condition of zero overall force
on it and the out which joins it to the leading-edge. When the third vortex is introduced,
the second is shed, and so on.

The second improvement is to form a strong core vortex by successively amalgamatin
vortices with the £iz 't one to be shed. This is the approach successfully used by Moore
to delay the omset of chaos in evolutionary multi-vortex calculations. The usual tech-
nique is to replace the two vortices with one, of the same total circulation, placed at
their ‘centroid of circulation', This introduces a minor di{scontinuity into the evolu-
tionary process, which may trigger a potential instability. Peace avoids this by trans-
ferring the circulation, and moving the vortices, gradually, again wmaking use of a condi-
tion of zero overall force. Two minor details of the technique are worth noting. The
initial growth of each new vortex is given by an asymptotic expansion, with the numerical
integratioa process taking over when the vortex is a short distance from the leading-edge.
To avoid a multiplicity of weak vortices with a random distribution of signs being formed,
vortex formation is suppressed over any length of the leading-edge for which the Xutta
condition is approximately satisfied by the existing vortices. This is important in the
case of a wing vith lengthwise camber, to be considered later.

The new method has three significant advantages. Many vortices can be shed, to
represent the flow accurately, without necessarily inducing a chaotic development.
Greater smoothness in the streamwise development of the flow is achieved, though weak
fluctuations remain. The overall accuracy is greater, because the flow near the apex is
better represented.

Before giving an example of the capability of the method for a wing flow, we note
that the technique of allowing each new vortex to grow from the separation line cannot be
applied to separation from smooth surfaces. There is no asymptotic solution for the
initial growth of such a vortex from & finite point, as pointed out by Bryson!®,

To illustrate the capability of this multi-vortex technique, we show the results,
taken from Ref 24, of nppl%h\q it to a double-delta configuration like thosa discussed
above. The planform is defined by the equations

O.1x for 0<x <10
s({x) = z ‘ (3)

1 +0.4(x -10) for 10 € x <€ 20,

for the local semi-span, s(x) , of the wing. 'l'hig corresponds to a semi-angle of 5.7°
At the apex and a kink in the leading-edge Of 16.1 In Fig 10 results are shown for an
angle of incidence of $.7°, Cross-sections of the calculated vortex configuration are
shown for three streamwise stations, the first at the kink. This shows the usual
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pattern expected of a conical vortex sheet solution for an incidence equal to the semi-~
apex angle. Further downstream, the vortices being shed roll-up into & new core close

to the leading~edge, leaving those shed upstream to convect as a group. The last vortex
shed upstream of the kink just fails to be caught up in the rotating group. The numbers
beaide the groups of vortices indicate the total circulation in the group, as a value of
T/U . The value of 0,48 at the kink station compares well with that of 0.47 given by the
shest modeld® (f/XKUs = G+ g = 4,7, K = 0.1, s = 1, in the notation of Ref 39).
circulation of the outboard group grows quickly, owing to the lower sweep of the outboard
leading-edge. There is no indication of any appreciable interaction between the groups
of vortices at this angle of incidences.

Fig 11 shows the vortex configuration for the same cross-sections on the same plan~
form for an angle of incidence of 10.3%, nearly twice as large as before. Again at
x = 10 we have the expected bshaviour for a delta wing - at this incidence Ref 39 gives
/U = 0,98 ~ with a larger size and circulation corresponding to the incresased incidence.
Again the newly shed vortices downstream of the kink roll up in a separate group, which
is also larger and stronger than before. HOwever, at this incidence, the inboard group
of vortices moves fust encugh laterally, under the influence of its image in the wing, t
interact significantly with the outboard group. At x = 17.5 the inboard growup is just
being broken up by the interaction. By x = 20, not reproduced here, the orderly utruct
has been disrupted, with the capture of several individual inboard vortices by the aut
group. It should be pointed out that many more individusl line-vortices are involved .
the calculation than appear in the final downstream saction, becauss many of them have
amalgamated in the cores.

4 IVE AGES OF THE DIFFERENT MODELS

As a starting point for a comparison of the advantages of the three different mox .-
of rolled-up vortex sheaets, it is helpful to describe the features which bslong particu
larly togonc of them. The remaining, shared, features are then discussed; and an overall
view is formed.

Tha particular advantage of the single line-vortex model is its simplicity. When
inplemented in the slender-body framework, the model is simple encugh for exact analysis
to be possible. TFor instance, the equations governing the Bryson model!* of separated
flow over a circular cone at incidence have been reduced to a polynomial of the 18th
degree, 30 that all solutions can be found¥. After the cbviocusly non-physical solutions
have been rejected, & branch additional to that found by Bryscn remains, and may be of
phyeical significance. When lateral asysmetry is allowed in the Bryson model further
solutions are found"¥, An asymptotic analysis of the equations is possible, for large
values of the incidence parameter /8 (best thought of as arising from small values of
the cone sami-angle, & ). This confirms the physically realistic asymmetric solutions
vug:b lu:“b:on found numerically; and reveals a second branch, which turns cut to be
aon-phys . :

Ia the case of wing problems, asymptotic expansions of the line-vortex model for
small values of the circulation have proved useful. In particular they have shed light
on the difficulty in finding solutions of the voriex-sheet model in two casas. The first
of these is the flat-plats delta wing, for which it has proved impossible to find vortex
sheet solutions which spring from the leading-edge at very small values of the incidence
parameter, a/A,whare A is the aspect ratio. Barsdy® found solutions in which the
shest springs from the upper surface, just inhoard of the edge. IExamination of the line-
vortex model shows that it, too, predicts A ssparation stream surface springing from the
upper surface, rather than the leading-edge, when a/A 1is small. Asymptotic snalysis
shows the same situation arising on wings with non-zero thickneas*:. The second case,
alsc discovered by Barsby™, 1s of a thin delta wing with conical camber. _Por such &
wing, the flow is attached all along the leading-edge for a particular angle of imcideace,
e, . Sclutions of the sheet model could ba found for o < a, , Dut not for a significant
range of angles of incidence below a, , £Or which a vortex would be sxpected to lie
below the wing. Examination of the asyaptotic sion of the line-vortex model showed
that the analytic behaviour of the solution for canbered wing is gquite different from
::::'!or the plane wing; and that no solution could be found for amgles of incidencs just

Gy .

The numerical work iavolved in u{plytng the line-vortex model is also much lighter
than it {a for the vortex sheet and multi-vortex modeis. This would be uselsas uniess
the solutions obtained had som¢ value. One way in which the solutions are of value is
in puatuz the way toO existende and uniqueness properties of more complex models.

of this ‘structural similarity' betwesn the models, additional to those
mentioned above, are given below. Lavinski and Wei% caloulated flows past cones with
conical strakes in the slender-body framework and found sultiple solutions for a certain
vange of mgles of incidence. T™he same behaviour arises for the line-vortex modsl
end the vortex-shest model, though the ranges of incidence are not the same for the two
wodels. PFor a delta wing with lengthwise camber, placed at an overall angle of incidence
such that the loesl geomstric incidence falls to xzeko at some lengthwise station, both
the vortde shwet aodel? and the line-vortex model unphysical results before the
prs & safo local uiuu:m- ::1 n:el\d m {nunny symmetric ::ov past a circular
oohe idence, there no utions to ins~vortax model with the vortex cliose
o the suparatisn line 1f

s/t < !.Sm.. ) (L}]
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where 4, is the elevation of the separation line above the horizontal*. Solutions of
the vortex sheet model have been found below this limit?5, but there still appears to be
a lower bound below which solutions cannot be found. When the restriction to lateral
symmetry is removed, families of asymmetric solutions have been found for the line-
vortex*?! and vortex-sheet?? models. 1In fact, the solutions for the line-vortex model
were used to find the vortex-sheet solutions.

It must be said that much of the simplicity of the line-vortex model is lost when
the slender-body framework is replaced by the Prandtl-Glauert framework. Although the
vortex circulation and path can still be described simply, the need to model the wake
more completely than in treatments of attached flow, in order to satisfy the Kutta condi-
tion at the trailing-edge, introduces a considerable complexity“s!5, The model has not
proved popular in this framework.

The particular advantage of the multiple line~vortex model is its flexibility. 1In
principle, circulation is shed from the separation line and convected with the local flow.
In the slender-body framework, techniques following that description have been imple-
mented and solutions, of a kind, are always obtained. The problem of the delta wing with
lengthwise camber mentioned above illustrates this advantage of the multi-vortex model
very clearly. Both the vortex-sheet model and the single line-vortex model break down
becauss they are not sufficiently flexible to represent the change from shedding circula-
tion towards the upper surface over the forward part to shedding it towards the lower
surface over the rearward part. Peace?® has treated the problem using his multi-vortex
model to obtain the results shown in Fig 12. The planform of the wing is defined by the
local semi-span

s(x) = 0.25x . (4a)

The apex region of the wing is at a uniform positive incidence, given by

= - 0,2 for 0 €< x <1. (4b)

Further aft, the local incidence reduces smoothly, passing through zero at x = 2, after
which it is negative:

g_: = = 0.2(2 = x) for x > 1. (4c)

Fig 12 shows sections through the vortex configuration for four stations, all downstream
of the conical flow region. Note that only the region near the leading-edge is illustra-
ted at each station. At x = 1.4, the multi-vartax configuration, :+ own by the circiles,
agrees quite well with Clark's sheet solution?, shown by the line an? cross. By x = 1.8
no further positive vortices have been shed, as indicated by the unchanged figure for the
circulation above the wing, but a single pegative vortex, represented by a solid circle,
has just been shed towards the lower surface. The geometric incidence is still posit.ve
at this station. Clark's solution also shows negative circulation being shed, but the
shape of the sheet has begun to look unrealistic, and the sol.tion could not be extended
further downstream. The multi-vortex solution will go further: by x = 2,2 a rolled-up
system of negative vortices has formed below the wing, though its strength {s still weak
compared with the upper surface vortex, now reduced to a core by the operation of the
amalgamation algorithm. By x = 2.6, the negative system is stronger than the positive
one. Note how the interaction between the systems has drawn both of them cutboard of

the leading-edge. Not surprisingly, the orderly structure is disrupted in a relatively
short further distance downstream, bsfore the local incidence reaches a negative value as
large as the positive value at the apex.

Further evidence of the flexibility of the multi-vortex method is provided by the
calculations for the double-delta wing shown in Figs 10 and 11 and discussed above.
Many calculations of time-depsndent planar flows and of the evolution of trailing vortex
wakes show the same flexibility. Hoeijmaker's recent work ¥ has made the vortex-sheet
model more flexible, while Peace's use of an amalgamation algorithm has made the multi-
vortex model rather less flexible. The two models are perhsos moving towards a common
capability, but the multi-vortex model is still the more fleaible.

When the multi-vortex model is implemented in the Prandtl-Glauert framework for
steady, subsonic flow, the problem becomes elliptic. The simple 1dea of shedding and
convecting circulation no longer applies, since what is shed downstream affects the flow
upstream. Considerable ingenuity may then be needed to cbtain solutions for flows with
a simple structure, as Rehbach*s "and Schréder*® found for the case of the delta wing.
The difficulty is presumably that the flexibility of the model is not yeot matched by a
corresponding flexibility in the numerical schemes available to solve the large number
of nonlinear simultaneous equations to which the model gives rise. It would seem worth
trying to exploit the existence of slender-body techniques: either to provide an initial
guess for the Newton-Raphson method, as Forrester, et al? dos or as a step in an iterative
method, as Jepps“’ has proposed.

For unsteady incompressible flow, the problem is again an evolutionary one and the
flexibility of the multi-vortex model reappears“t'’ Unfortunately, the tendency for
the motion of the vortices to become chaotic also resppears. It seems that neither steady
nor truly periodic solutions have been produced as a result of evolutionary calculations,
and, in their absence, it is hard to assess the accuracy of the calculations.

¢ WS this ia » different definition of o, from that in Pig 1.
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The particular advantage of the vortex-sheet model lies i the greater realism with
which it describes u&antton from a line on a smooth surface. As indicated earlier, the
theory used by Fiddes?> to ¢alculate the position of laminar separation on a cone requires
the strength of the singular behaviour of the inviscid solution at the separation line,
This can only be found from & vortex~sheet model. Even if it is not tntended to predict
the position of the separation line, it still seems unlikely that reasonable accuracy can
be obtained without treating the inviscid flow near the separation line adequately. The
sketches of Fig 4 show the sort of qualitative difference that can arise. As an extreme
example of the quantitative differences batween the predictions 6f the vortex-sheet model
and the predictions of the single line-vortex modsl, we have Fig 18, which is diecussed
in detail later. The discrepancy is far greater than that for flows over wings.

The common advantage of the vortex-sheet and multi-vortex models over the line~
vortex model is that they both offer a closer approximation to the infinite Reynolds
number limit of the real flow. As would be expected, they almost always give closer
agreement with measurements at finite Reynolds number. As between these two wmodels, ths
remaining advantages are less clear cut. In the terminology of pansl methods, the sheet
model is a higher-order method. Consequently it gives greater accuracy for a similar
number of elements, with the ability to predict a smooth behaviour of the flow, Omn ths
other hand, the programming effort involved in the sheet method is greater, and computing
time for the same member of elements should also be greater. At p t no parison
can be nade on the basis of computing time for the same accuracy, but the multi-vortex
method must involve more storage space. If it is desired for some reason to represent
many turns of a rolled-up configuration, the vortex-sheet model has an advantage, because
a multi-vortex calculation is likely to be disrupted by vortices from adjacent turns
pairing-off and rotating round one another.

A large potential advantage of a multi-vortex model in the subsonic Prandtl-Glauert
framework is that it might well predict vortex breakdown. In fact Aparimov, et al¥!
claim that the failure of their multi-vortex model to converge at a large angle of
incidence is related to vortex breakdown in the real flow. Rnhbacl;{ aiming particularly
at the calculation of unsteady incompressible flow, has introduced5? a Lagrangian model
based on the vorticity equation, which has some resemblance to a multi-vortex model.

The outcome is a set of streak-lines which spring from the -g;nntion line, in a direct
simulation of Werlé's famous dye-lines. Rehbach also claims that the disorganization
of the calculated streak~lines near the axis of the vortex corresponds to vortex break-
down. It should also be possible to predict at least the initial occurrence of vortex
breakdown using the vortax-shaet model in comblination with a technique like that of
Hall® for calculating the flow in an axisymmetric core of distributed vorticity. By
averaging the predictions of the vortex-sheet model in the circumferential direction, the
inward flow of mass and circulation to the core and the pressure distribution along it
could be obtained. These are the boundary conditions required for the core calculation,
which would in turn supply a displacement effact along the axis of the vortex in the
sheet model. So far as the prediction of breakdown is ned, it t be said that
either model has the demonstrated capability, nor that either is incapable. It may well
be that a direct attack on the Euler equations, like the one Rizsi describes™, will
provide the best approach to the problem.

In susmary, if a method of useful accuracy is required, the choice is batween the
vortsik-sheet and multi-vortex models. For separation from smooth surfaces, the sheet
model is preferable. If the same program is required to calculate very different vortex
structures with minimal changes, the multi-vortex model {s preferable. The line-vortex
model has a useful role to play in initial investigations and in suggesting the underlying
structure of families of solutions of the more realistic models.

5 WHY MODELLING?

Since these models all lead to such complexities and still fall short of a proper
description of the behaviour of the fluid, we must ask whether it is worthwhile pursuing
them further. After all, solutions of the Navier-Stokes equations and the Euler equations
by field methods are becoming available and must eventually become the accepted methods
for making quantitative predictions about vurtex flows. Nonetheless, I believe it is
worth continuing with modelling techniques. In support of this view, I have first some
very general remarks, which can conveniently be put as quotations, and then an account
of how modelling has recently helped with a particularly intractable problea.

To start with, here is a quotation from a lecture® given by James Lighthill to the
Royal Aeronautical Society, when he was Director of the RAE. He is speaking of the role
of mathematics in generating physical ideas.

"Examples of this mathematically generated kind of physical idea, which I have
:itudy mentioned, are trailing vorticity, boundary layer, dynamic stability and Nyquist
agram.

The value of physical idsas in practical work, of course, is their slasticity.
Provided that they are sound ideas, such as those thrown up as the genuinely appropriate
physical description of the mathematical solution of some well defined class of problem,
they usually show a splendid capacity to stand up to distortions of the problem, and
indeed to radical changes and complications in its conditions, and still give the right
guidance about what needs to be done, In other words, a well designed physical idea has
wide elastic limits, and will tolerate being pulled and twisted about, and go on giving
good service in suggesting the right experiment, or the way out of such and such a
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difficulty, or in giving someone a feeling tha .~ is not just dismally accumulating a
confused mass of experimental data, but there is some thread rumning through them which
gives them meaning and interest. WNaturally, then, these ideas are much in demand,

when we coms to a nev kind of problem, where we are short of physical ideas because none
of the 014 ones that we are accustomed to seems to give any help in solving it, thea we
can only hope that someone will come along with a mathematical treatsent of some
appropriately simplified, although possibly also generalised case, and interpret its
solution Xmmcmq a nev animal into the 300 of useful asromsutical concepts, prefer-
ably a well-behaved beast, which all of us will in due course be sble to ride as to the
manner born, probably ignoring, if we are not mathamaticians, wbat kinds of technique
vere used to lick him into shape.”

Lighthill went on to discuss the role of mathematics in getting actual answers.

Now for a quotation from the final section of Dietrich Kichemann's book¥ on the
asrodynamic design of aircraft.

“Above all, it is such conceptual frameworks which enable us to formulate intelligent
ways of modifying and controlling our part of human endeavours. Ideas and concepts come
out of the mind, not out of computers or wind tunnels. If there is one overriding purpose
thxoughout these notes, above all others, it is to demonstrate the continued need for con-
ceptual framaworks and for understanding the physics of airflows in any work on asrody~
namic design.”

Finally, because I have not found a better way to express the idea since, a quota-
tion from a previous AGARD paper3® of ay own.

"The philosophical argument naturally concerns ends rather than means. If our aim
is to reproduce our bit of the real world in a computer, then the solution of the Navier~
Stokes equations is a posaible approach, at least for laminar flows. We msy hope to
obtain more precise information, more quickly and more cheaply than by making measurements
in real fluids, and this is well worth doing. However, as scientists we wish to uaderstand
things, and as engineers we wish to alter things. In both of thess processes the acquisi-
tion of data needs to be accompanied by the growth of conceptual frameworks which can
account for the data we already have and show us whers more is needed, It is such concep=
tual frameworks which enable us to formulate intelligent ways of modifying and controlling
our bit of the universs. Thay are built of models, some far-reaching and all-embracing,
but some quite special. I do not see the need for special models disappearing in our
field. 1In particular, I expect the distinction between the external inviscid flow and the
boundary layer, on which the science of asrodynamics has been built, to continue. supple~
mented locally by special models of separation phenceena.®

These quotations put the abstract case for modelling very clearly, but they do not
provide much in the way of illustration. It is therefore appropriate to turn to a descrip~
tion of some recent work with two of the models that have formed the basic theme of this
paper, work that has significantly inoreased cur understanding of scme baffling observa-
tions. These observations are of the lack of expected symmetry in flows past bodies at
large angles of incidence, leading to very significant out-of-plane forces on missiles and
to large yawing moments on aircraftS?, The work is that described by Fiddes?® at the
Trondhein meeting last year, using first the line-vortax model and then the vortex-sheet
model, and in each case showing the existence of a second family of solutions which
produce large ocut-of-plane forces on circular cones. I shall conclude by suggesting
that the simplifications implicit in the models have actually helped to bring about the
increased understanding.

Both models are isplementad in the framework of slender-body theory and applied to
flow past circular cones at incidence. The line-vortex model is then simply the one which
was devised by Bryson!*; the only change is that the port and starboard vortices are
allowed to lis asymmetrically about the incidence plane and to have different circula-
tions, and that the sepsration lines are also allowed to be asymmetrically placed. The
nodel is entirely inviscid, s0 the positions of the separation lines must be supplied to
it. The separation lines are supposed to be gensrators of the cone. The entire geometry
is then conicsl, s0, since slender-body theory is used, the existence of a conical flow
solution is to be expectad, This means that the solution sought depends on three
paramaters: the angular positions of the two separation lines round the circumference of
the cone, and an incidence parametar, a/é , which is the ratio of the angle of incidence,
a , to the semi-apex sngle of the cone, & . The entire flow field can be written down
in terss of these three paramsters and six unknows quantities: the two coordinates and
the circulation of each of the two vortices. BSix conditions are available to determine
these six unknowns: a Kutta condition at each separation line, and the vanishing of the
two Cross=-flow comp ts of the o 11 foroe on the combination of each vortex and the

cut which joins it to the appropriate ssparation line. The original form of ths Kutta
condition is retained.

The equations expressing the two Kutta comditions are linear in the two circula-
tions and 8o can be solved for tham. The expressions which result can be substituted
into the remaining four equations, which are then sxtremely nonlinear in the four
coordinates of the vortices. A generalized Newton-Raphson tachnique is used to solve
these equations. The results are most easily understood by concentrating on the case in
which the two separation limes are placed syametrically with respect to the incidence
plans, so that the solutions depend only on the separation line position and the inci-
dence parameter. Fig 13adb shows the variation of the two coordinates of the starboard
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vortex, as the incidence parameter incresses, for separation lines which are 0, = 56°
round from the ‘'horizontal' plane through the axis of the cone. The coordinates are
referred to horizontal and vertical axes in the cross-flow plane, with origin on the
cone axis, For small values of the incidence parameter, no solutions have been found,
For values above the limit of 1.81, given by equation (4), Bryson's symsetric solutions
appear. No others have been found until the point B on ths sysmetric solutioa curve
is reached. Here the solution, as & function of a/6 , bifurcates ia the classical
manner, with the Jacobian matrix becoming singular. Two further solution branches exist
for larger values of /8§ and these ars mirror images in the incideacs plane. It is
only the intersection at B 4in Fig 13 which represents a bifurcation; at the other inter-
sections only one of the two coordinates agrees.

It is sasier to appreciate the solutions when the loci of the vortices are plotted
in the cross-flow plane for varying values of the incidence parameter. Fig 14 shows the
symmetric solution and one of the asymmetric solutions for values of a/é between ) and
10, and a rather earlier separation position, &, = 409, It is necessary to check that
the flow on the surface of the cone does actually converge towards the postulated separa-
tion lines, since the equations are equally well satiasfied by attaching flows. It turns
out that the solutions are physically sensible for values of a/é§ up to a valus rather
greatexr than the largest in Fig 14. Since ths slender~body framework assumes the incidence
is small, such large values of a/8 would be irrelevant for practical configurations.

Pig 15 shows the asymmetry in the circulation of the vortices, the strength of each
being referred to the strength of the vortices in the symmetric solution for the same
value of a/8 . The range Of values of a/é does not extend downward as far as the
bifurcation point, 80 the curves do not start with a cosmon value of unity, as they should.
Ih view of the very different loci shown in Fig 14, it is somewhat surprising that the
titthlations of the asymmetric vortices are not more different from one another and from
thtse of the symmetric vortices. It is well known that slender-body theory teads to over~
ptedict lifting forces and the line-vortex model also tends to overpredict the nonlinear
conttibutions, Therefore, to make a comparison with force measurements, the ratio,

Cy/Cy » of side force to normal force is presented in Fig 16. The us&rntion lines are
still sysmetrically placed at the arbitrarily selected value, 0, = 40°, The theoretical
curve needs no explanation, since it arises directly from the asymmetric solutions des-
cribed. The experimental points are taken from the me ts by K » et albo,
Each point represents the largest valus of Cy/Cy measured at that particular angle of
incidence, 30 the roll angle and Reynolds number may be differant for the different
points. The agreement with observation is striking in view of the simplicity of the
model and the framework.

It is clear that asymmetric effects comparable with those observed can be produced
by an entirely inviscid mechanism, separation having been fixed symmetrically in the cal-
culations. To make it Clear that this mechanism is the relevant one, a further step is
needed. As explained above, the model allows the positions of the separation lines to be
chosen freely, but so far the results presented have been for saparation lines placed
symmetzrically about the incidence plane. Solutions for asymmetrically placed separation
lines can be obtained by procesding in small steps from seither a symmetric solution or
an asymmetric solution with symmetric separation lines. Obviously all the solutions
obtained in this way are asymmetric, but they fall into two distinct families: the first
family derives from solutions which are symmetric when the separation lines are symmeteic;
the second derives from solutions which are asymmetric when the separation lines are
symmetric. The importance of the second family can be confirmed by examining the level
of side force produced by the first family. FPig 17 shows typical values of the ratio of
side force to normal force that correspond to solutions of the first family, for an
incidence parameter of 3.5. For this value of the incidence parameter, Fig 16 shows the
experimental value is 0.75, s0 the calculsted values in Pig 17 are smaller by an order of
magnitude. The abscissa in the figure is the degree of asymmetry in separation line posi-~
tion, and the curves are drawn for fixed positions of one of the separation lines. It is
concluded that the second, globally asymmetric, family of solutions is needed to produce
tinh:budzxcd results on cones, and that it is capable of generating side forces of the
right order.

The vortex-sheet model has subsequantly been applied to the same oconfiguration, in
the same framework. This offers two advantages: an increase in accuracy, and the possi-
bility of extending the calculation to the prediction of laminar separatioa, as previously
demonstrated? for the symmetrical case. $0 far, however, the vortex-sheet model has been
used with specified separation lines, in the same way as the line-vortex model. The
asymmetric solutions of the line-vortex model were only found after a long search, but it
was hoped that they would provide & good starting point from which to seek solutions of the
vortex-shest sodel. In fact, the search for shest solutions took even loager.

Fig 18 shows one of those found, with, on the left, the symmetric solutions for the
same incidence parameter and sesparation line position. For comparison, the positions of
the line-vortices in the corresponding solutions for the simpler model are by solid
circles. Por the symmetric solutions on the left, the difference between the core posie
tions for the two models is not such greater than that familiar from solutions for delta
wings, and of a similsr form. HNowever, the asymmetric solutions on the right sees scercely
related. This may be a rather extrame exasple - the starhoard line-vortex has moved
initially down s and outboard from the bifurcation point ~ but the diffesences between
the asymmetric vortex positions predicted dy the two models ars gensrally large. This
explains why it was hard to find the vortex=shest solutions, but indicates that the effort
was probably worthwhile. The starboard sheet in the asymmetric solution is very similar
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in appearance, and, in turns out, in structure, to the symmetric sheets; but the port
shast is quite different. In shape it is like the conical trailing vortex sheet calcula-
ted by Jones®!, and its structure is also similar in that only a small part of the total
circulation lies in the core, with the bulk of it on the sheet. Fig 19 shows a vapour-
screen photograph due tO Peake, ¢t al®? of the flow over a circular cone at a similar
value of the incidence parameter, in which the vortices are visible as dark regions.
There is clearly a remarkable resemblance between the calculated solution and the
visualisation of the flow,

Ref 28 also includes a comparison of the forces predicted by the vortex-sheet model
with those measured in some unpublished work by Mundell at RAE. The positions of the
straight, laminar separation lines were measured along with the forces, with the flow
tripped at the apex by a tiny protuberance. Great care was taken to ensure that measured
forces arose from a region of approximately conical flow. The live portion of the model
18 a circular cone of 10° semi-apex-angle, with a length of 292 mm. Forces were measured
over & range of Reynolds numbers in a low-speed wind tunnel, for a continucusly-varying
roll angle. The values chosen for comparison correspond to the largest Reynolds number
for which the boundary layer at separation is wholly laminar, and to the roll angle for
which the side force is greatest. At an angle of incidence of 36°, the observed separa-
tion lines lay in the 'horizontal' reference plane on one side and 14° above it on the
other side. (It is worth noting in passing that this degree of asymmetry in the separa-
tion line position is small compared with the range considered in Pig 17.) Any calcula-~
ted solution with these separation lines must be asymmetric; but there is again a distinc-
tion between a first family of solutions which derive from a symmetric solution and a
second family whose members derive from solutions which are asymmetric even when their
separation lines are symmetric, The solutions from the first and second families, for the
experimental value of the incidence parameter and msasured separation positions, are
illustrated in Fig 20. The table below shows some details of these solutions and a com-
parison of the forces.

First Second

family | family | Experiment
Total circulation left =-13.7 -13.9

right 16,0 14.0

Core circulation left 0.64 0.80
Total clrculation «right 0,690 0.2%
c,,/c2 . -1.$ -19,7 ~17.6
t:“lc2 36.8 36.8 27.0

The table shows first that the circulations of all the vortices are %imilar, despite the
very different shapes of those in the second family solution. Howerer, the different
shapes are accompanied by a difference of structure: most of the loft-hand vortex circula-
tion is in its core, and most of the right-hand vortex circulation .s on the sheet., The
force coefficients are based on the plan area of the cone; each is divided by 42 to
bring it to a similarity form. The side force in the first family is smaller than that
measured by an order of magnitude, but the second family prediction is close, considering
it is based on slender-body theory. The normal force is almost the same for the two solu-
tions and much larger than the measurement. The discrepancy is not surprising, since the
slender-body framework relies on the angle of incidence, 36° in the experiment, being
small, Thers can be little doubt that the solution from the second family corresponds to
the experimental situation.

The success of this work in explaining the origin of the large side forces msasured
on circular cones at angles of incidence grester than the apex angle is very significant,
but it is only the first tep in the process of explaining the observations of side force
On practical airacraft and missile shapes. For instance, in a conical flow the local side
force coefficient is the sams along the whole length of the cone, whereas the oscillatory
variation of the local side force along the length of an ogive-cylinder is well known.
Moreover, a significant level of side force arises on an ogive-cylinder at angles of inci-
dence tooc smell in relation to its apex angle for the second family of solutions to exist
at the apex. However, the work has identified one mechanism which must exert an important
influence on the aerodynamics of slender inted bodies. Before it there was only con-
Jecture about the origin of out-of-plane force. After it, one origin is clear.

I think this is the first time that vortex modelling, in the sense used in this
paper, has wcnu¥ told us samething we did not know before. After decades of trailing
behind experimental observation and measuresant, models have at least repaid our efforts
by telling us something about the real world.

Obvicusly we should be trying to overcomse the limitations of models, and much of
this rm has been devoted tn efforts to do so. Howaver, there is a sense in which the
very limitations of the models used can contribute to the clarity of the outcome. It is
the nesd to supply the separation lines to the inviscid model which forces the isolation
of the large-scale asysmetry of the second u-u¥ from the small-scale asymmetry of the
first family. It is the consideration of conical flow which concentrates attention on
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the flow at the apex of the body. It is the use of the simplest possible model which
reduces the behaviour of the solution from being that of a three-dimensional continuum,
as is the case when the steady Euler or Navier-Stokes equations are solved, to a depend -~
ence on four numbers, the coordinates of the line-vortices; and so0 makes it possible to
contemplate a systematic search for solutions.

It is too much to hope that second family solutions, even with a more appealing
name, will ever come to figure alongside ‘'boundary layer' and ‘trailing vortex’ in a list
of concepts given by mathematics to aeronautics, but they do encourage us to keep
modelling.
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