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Sunified account is presented of the various inviscid models used to represent
three-dimensional vortex flows in aerodynamicas essentially those relying on vortex
sheets and line-vortices. Recent developments in extending the scope, accuracy, and
stability of these models are described. An evaluation of their relative strengths and
weaknesses suggests that the different models all have continuing roles to play. It is
claimed that vortex modelling has cae of age, In the sense that we can now learn about
the real world from the behaviour of models, after decades of trying to make the models
conform with reality.

1 INTRODUCTION

To set the sort of model to be discussed in perspective, it is helpful to recall
the usual hierarchy of flow models, together with the assumptions about the fluid and the
flow which give rise to them. The first model, the Navier-Stokes equations, depends on
assumptions about the nature of the fluid. Flow at large Reynolds numbers involves
turbulence, and the mean motion is then modelled by the time-averaged Wavier-Stokes
equations, involving Reynolds stress terms. To represent these Reynolds stresses in
terms of the mean motion and Its history, one or more turbulence models are required. In
the flow of a uniform stream past a body at a large Reynolds number, both turbulent motion
and the large shears which make molecular viscosity important are confined to thin
boundary layers on the body and to the wake which arises from the separation of these
boundary layers from the surface of the body. Outside the boundary layers and wake the
flow behaves as if the fluid were inviscid.

For most flows of Importance to aerodynamics, the wakes are thin, in the sense that
their thickness reduces as Reynolds number increases. The effects of turbulence and vis-
cosity can then be modelled by the theory of thin sheer layers, provided there is an
appropriate model for the interaction between the external flow and the thin shear layers.
A thi she layer affects the external flow in two ways: through a displacement effect,
requiring a difference in normal velocity between its opposite surfacess and through a
vortex effect, requiring a difference in tangential velocity between its opposite surfaces.
As the Reynolds nmber tends to infinity, the displacement effect dies away, but the
vortex effect remains. The shear layers become vortex sheets In the limit. This leads to
an inviseid model of the flow, which is governed by the Ruler equations. However, in
general, the formulation of the problem for the Ruler equations must include a specifica-
tion of the lines on the body from which the vortex sheets arLse, the separation lines.

A symmetrical wing at sero Incidence sheds no vortex wake, so it is not necessary to
Gpecify a separation line. When the wing is placed at incidence the assumption that
separation takes place from the sharp traiLling-edge is automatically made. In reality,
separation also takes place from the tip, spreading forward from the trailing-edge as the
angle of incidence increases, at a rate depending on the design of the tip. For a wing
with a highly-swept sharp leading-odge, a similar separation takes place from the lead-
ing edge.

We may expect that, for most bodies of practical Interest to erodymamicists, the
limit of the real flow as the eymolds number tends to infinity will be an Lnvicid flow
with embedded vortex sheets. In this limit, it sems likely that the positions of theseparation lines are determined, though not necessarily Uniquely. The smem flow represe-
tation may also be used as a model of the flow ak large, but finite, Reynolds numbers,
though then the positions of the separation lines must be supplied to the model from out-
side it. The assumptions leading to this model are, first, largo Reynolds number and,
second, the sort of thin wake flow which is neturally associated with aerodynamically
efficient shapes.

Por shock-free flows past bodies Imersed in a uniform stream, the inviscLd flow can
be represented by a potential funation, and the ame representation can be extended to
model flows with weak shook w"ve9. From this point, at which the flow is described by a

en potetiaI function everywhere outside the body and outside the vortex sheets, the various
treatmate to be disoussed in this paper diverge. To order the discussion, we reserve

- the word 'amdel' to describe an approxism Ion to the vortex sheet, and introduoe the word
'framework' to deerlbe a treatment of the potential flow in which the vortex sheet is

embedded. tMOn the models of the vortex shot to be oosidero are the classical rigid-3 wake mode lOf a trilag vortex sheet, the amngler-eith modell for a rolled-up core,
the mulUtiple lie-vortox modal, and the single line-vortex model. The possible frame-
works are the full nonlinear potential formulation, the nonlinear transonic mall
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perturbation approximation, the linear mall perturbation (Prandtl-Glauert) approxima-
tions for subsonic and supersonic flows, and the slender-body approximation. To illus-
trate the independent aspects of model and framework, a two-dimensional presentation is
useful s.

Model ultiple Single
Rigid wake Rolled-up core line-vortex line-vortex

Full potential Jameson

TSP Albone
P - G, N C 1 multhOpp F.T. Johnson, e at ,

2  Rhbach
3  Nangia and Hancock

4

P - G, N 1 D. Cohen

Slander-body R.T. Jon*s Mangler and Smith
I  

Sacks, at 
5 1 Brown and Michael

6

In this table the names have been introduced for illustrative purposes only. The classical
rigid-wake model has, of course, been used in all the frameworks; but the other vortex
models have only been used to a significant extent in the subsonic Prandtl-Gleuert frame-
work, which includes the important special case of incompressible flow, and the slender-
body framework.

A further point is worth clarifying at this stage, even though It is of greater
significance for Dr Hoeijmaker's paper . This concerns the mathematical nature of
the problems to which the various frameworks give rise, and how these can be modified
by particular geometries. The discussion is restricted to steady flow. To illustrate the
point, consider a purely supersonic flow and Ignore the complexities of the vortex models.
Both the full potential and the supersonic Prandtl-Glauert frameworks load to hyperbolic
problems. However, for the flow past a conical shape, the problem can be reformulated in
conical variables, yielding an equation in only two variables which changes type fram
elliptic near the free-stream direction to hyperbolic at a large inclination to it. The
presence of vortex sheets of conical form does not change the type of the problem in this
case, though of cous the presence of boundaries of unspecified shape does make it more
complex. In the slender-body framework, the solution splits into an axial flow perturba-
tion depending only on the distribution of cross-sectional area, and a cross-flow pertur-
bation. The problem for the cross-flow is governed by japlace's equation and is therefore
always elliptic. Without the complication of the vortex sheets, each of the two-
dimensional cross-flow problems is independent of the others and cam be solved in isola-
tion. With vortex sheets each cross-flow problem depends on the solution upstream. in
this respect the problem takes on a quasi-parabolic character, with the stroemwise coupling
represented by ordinary, rather than partial, differential equations, because the circula-tion 18 concentrated in sheets, not diffused as vorticity. in the particular ase of a
conical body shape, for which a conical vortex configuration is sought, the quasi-parabolic
behaviour is eliminated. A single elliptic problem with unknown boundaries then mrges.
The other effect of introducing a vortex representation which goes beyond the rigid planar
wake is to introduce an essential nolinearity into the problem. The governing differen-
tial equations for the Prandtl-Glauert and slender-body frameworks are linear, but the con-
dition of continuity of pressure across a vortex sheet is nonlinear.

In view of the large amount of work in this field using the slender-body framework,
it Is worth recalling the relationship between It and the theory of incomprssible two-
dimensional flow. There is an exact correspondence between the cross-flow component of a
slender-body solution and an unsteady two-dimensional flow in which the body is growing,
body is changing in the stramwise direction. When vortex sheets are present, the separa-
tion lines must also be specified in the some way. There is no direct relationship between
the viscous effects In the two- and three-dimensional flows. A consequence of this
correspondence is that the classical treatment of the roll-up of a three-dimensional wake,
treating it as a time-dependent problem, is just a slender-body approximation to the
three-dimensional flow.

2 Moo= or VO M SHEM

The flat wake behind an elliptically-loaded wing is in equilibrium, in the classical
treatment just referred to. The equilibrium Is unstable, but even the existence of a
simple equilibrium configuration makes this an exceptional case. In general, the equi-
librium shape of a vortex sheet involves the rolling up of its free edges Into a spiral
form, the spiral containing an Infinitely large number of turns about its axis. We shall
be concerned with the representation of such spiral sheets. For a conventional, tail-aft,configuration, the rolling up of the vortex wake is of relatively little Importance to the
aircraft Itself (though it may be very significant for a lighter, following airoraft)
because It takes place wall downstream of the wing and well outboard of the tail. Rollng
up is of greater Importance for a canard lay-out end Is a dominant feature of flows involv-
ift eoa B-eage eperation from strokes and delta wings. It is also b"~MLAI *loe thatC
the behaviOt of rolled-up vortex sheets can explain many aspects of the aerodynamics of
the noses of aircraft and missiles at large angles of attack.

g..ed...d.e..paatio from.a ad d a w. It --' i also- be'omin:-'= clea;-;r : that - C--- . 6
.JF .. ..
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5
To represent an infinite spiral in a numerical calculation would present consider-

able difficulties. The simplest way out is that adopted by Mangler and Smith'. It is
simply to represent the inner turns of the vortex sheet by a single line-vortex, at least
as far as the effects of the inner turns on the rest of the flow field are concerned. A
few turns on the outside of the spiral can then be represented explicitly in a numerical
treatment. An essential feature of flows of this kind is that circulation* is being con-
vected along the sheet. Same simplified representation Is therefore needed of the convec-
tion of circulation from the free edge of the outer part of the sheet to the line-vortex
representing its core. in the existing model, used both In the slender-body and the sub-
sonic Prandtl-Glauert frameworks, this convection process is represented as occurring
entirely in the cross-flow plane, which Is not very different frm a plane normal to the
line-vortex. As a result, a discontinuity of pressure appears across the cut connecting
the free edge of the sheet to the vortex, a discontinuity whose magnitude depends on the
streamwise coordinate only. To obtain a force-free system, the force which arises from
this pressure difference in each cross-flow plane is balanced by the local force on the
line-vortex which arises from its inclination to the local flow direction. Since the
force arising from the pressure difference scales on the product of the circulation of the
line-vortex and its distance from the free edge of the sheet, it will tend to zero as the
extent of the properly-modelled outer part of the sheet increases. In fact, for most
purposes, it is enough to include explicitly about half a turn of the sheet on a delta
wings.

Because this model has often been applied to flows which are conical, it is often
thought of as being restricted to conical flows. In fact it has been used for non-conical
flos in the frameworks of slender-body theory

9
s.1 and of the fuller Prandtl-Glauert treat-

ment for subsonic flow2 ' 11. The boundary conditions to he applied on the properly-
represented outer part of the sheet are that the pressure is continuous across the sheet
and that the sheet forms part of a three-dimensional stream surface. These are exactly
equivalent to the requirement that the circulation is convected with the mean of the
velocity vectors on the two sides of the sheet. An additional Kutta condition is usually
needed at the separation line. For flows without lateral symetry It is also necessary
to fix the overall circulation about the cross-section of the configuration to be zero,
a condition which follows from the application of Kelvin's theorem to a closed contour
which is convected from upstream to surround the configuration.

This model, implemented in the slender-body framework, has been shown to give a
useful qualitative picture of the effects of planform, thickness, cross-sectional and
lengthwise camber, side-slip, roll, and oscillations in pitch and heave for simple flows
over sharp-edged wings, involving only a single pair of leading-edge vortices. It has
also been implemented, with much greater difficulty, in the subsonic Prandtl-Glauert
frmeworki and has been shown to give reliable quantitative predictions of lift, pitching
moment and pressure distribution. For a discussion of these results and more complete
lists of references, see previous reviews

e , 1
s. For these simple flows, the major weak-

nesses arise from the absence of any representation of secondary separation or vortex
breakdown.

An Important special case of this vortex-sheet model, which significantly pre-dates
it, is obtained by omitting the explicit representation of the outer turns of the spiral
sheet, so that the cut extends from the line-vortex to its associated separation line.
This was used by brown and Michael

5
, following earlier work by Legedre' . The same model

wes applied to represent vortices shed from inclined cones and cylinders by Bryson",
still within the framework of slender-body theory, and It has also been implemented in the
subsonic Prandtl-Glauert framework4'

1l
. It will be referred to as the (single) line-vortex

model. Again it is not confined to conical flow, thougn the curvature of the line-vortex
then presents a mathematical difficulty.

The self-siiced velocity of a curved line-vortex is infinite and directed normal to
itself. This is obviously non-ph sical and indicates that the model in over-simplified.
The same difficulty aris with tKe core representation in the vortex-sheet model. It can
be resolved by considering the vortex core to have a finite cross-sectional area, based on
the geometry in the cross-flow plane and a continuous distribution of vorticity, based onone of the asymptotic solutions 1,16-18 for the inner part of a vortex. The self-induced

velocity is then finite, and can be calculated'
9

, and could, in principle, be included in
the model. in the slender-body framework the self-induced velocity in of the same order
as other neglected quantities and there is no mathematical reason to include it.

Another mitted effect I t the representation of the whole or part of the spiral
sMet by a line-vortex In that of the circumferential component of the vorticity vector.
This component hes the effect of accelerating the flow along the axis of the vortex,
often very appreciably, producing an associated inflow as required by continuity. It Is
possible to represent the effect of this inflow on the outer flow by combining a line-
sink with the lin*-vortex. This approach has been discussed by Hoeijmakersf and
Vorhaaqen

t 1
, but It Is necessary to take considerable care over the definition of

The term 'circulation' Is here used in a slight extension of its usual meaning. Conven-
tionally, circulation is a property of a closed contour. However, in a potential flow
with embedded vortex sheots, the circulation about all closed contours which Intersect
one Sheet only, and that sheet at one and the same point, is the same, so that it can be
regarded "e a local property of the sheet. It Is ;just the jump in potential across the
sheet. Ie seems better to extend the use of 'circulation' in this way rather than use
'vorticity' in senses which may be confusing.

I, _ _ __ _i___ __ _ __ __ _ _ i_ __I _ I
ii
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6
entraInment if their results are to be Interpreted correctly. it again appears that, in
the slendor-body framework, the strength of the line-sink is of the same order as the
other neglected quantities.

In view of these complexities, it is not surprising that other, ap prently more
straightforward, approaches have been made to the modelling of the infinitely rolled-up
sheet. The most popular of these in the representation of the sheet by a large number
of lino-vortices. The hals of this may be seen by drawing on the sheet a family of
spiral curves which are lines of constant circulation, or constant jump in potential. As
mentioned above, these will also be streamlines of the mean fl;,. The spiral curves cut
the sheet into ribbons, and, if the circulation in each ribbon is condensed into a line-
vortex, a multiple line-vortex model Is obtained. The condition to be satisfied is
simply that each line-vortex should be aligned with the local flow direction along the
whole of its length.

The question of the self-induced velocity of the curved line-vortex arises again.
This time the line-vortex represents, not acore of finite area, but a ribbon of the
sheet, and a different approach is needed. Since a plane element of sheet has no self-
induced velocity, no local contribution from the ribbon is required. A plausible proce-
dure would be to omit from the range of Biot-Savart integral for the self-induced velocity
of a line-vortex at a point P an interval surrounding P of the same length as the dis-
tance between the adjacent line-vortices. In the published calculations using this Multi-
vortex model, the curved line-vortices are replaced by segments of straight lines. The
velocity is either calculated at the mid-point of the segment, where it is finite, or at
the end, where it is presumably necessary to neglect the infinite contributions of the two
segments which meet there.

The multi-vortex model is most naturally used to describe separation from the edge
of a wing which is also represented by a set of line-vortices, as in a vortex-lattice or
vortex-ring model of the wing. The Kutta condition is then just that the vortices run
off the edge into the sheet, with continuity of circulation. If the wing is represented
by a continuous load distribution, as in slender-body theory, for instance, there is acme
arbitrariness about where the vortices representing the sheet are to be Introduced, and a
Imllar difficulty arises in modelling separation from a smooth surface. This arbitrari-
ness affects the circulation of the vortices through the Kutta condition.

Theor are three basic difficulties which affect calculations with the multi-vortex
model, though the last only arises in the slender-body framework. The first is that a
large number of line-vortices are needed to obtain an accurate solution. The evidence
for this comes from the calculations by Sacks, ea .L $ 

in the slender-body framework, where
they were able to use a large number of vortices. A slight generalization of their
estimate of the number of vortices needed for a converged solution is:

30 + 300A/e , (1)

where A is the aspect ratio and a is the angle of incidence in degrees. The largest
value of A/e covered in their calculations is 0.2. There seams no reason why fewer
vortices would be needed in another framework.

The second difficulty concerns the shape of the line-vortices. These should follow
the strealine and these, as we know from many visualization experiments, are helices,
with the pitch of the helix becming smaller the nearer the streamline lies to the axis
of Zhu vortex. It follows that a l4ne-vortex starting near the apex of a delta wing
should follow a helix of very small pitch, and such a helix requires very many elements
to describe It with any realize. The more vortices are introduced, to meet the first
difficulty, the closer to the apex the first starts, so Increasing the second difficulty.
The solution must be to represent the inner part of the sheet separately, probably by a
line-vort x of growlin circulation, as in the vortex-sheet model.

In the slander-body frmework, a third difficulty arises because of the quasi-
Parabolic nature of the problem referred to above. The shapes of the line-vorticso are
found by Integrating ordinary differential equations in the streanwiso direction. As a
result of the basi instability of this procese and of the close approach of nighbouring
vortices, the shapes of the vortices become chaotic, as Sacks, et at founds. This situa-tion has since been studied in the exactly analogous 1anar unsteady problem, where the
oet of chaos has been Postponed In two weys. Nore- has used an explicit core repre-
sentatin, as suggested above for other reasmot and Flnk and Ioh'3 have redistributedthe voCticOs along the sheet at the end Of e01% time step. Recent works with a mlti-
Vortex fofmllatIn whiIk overcoe of these difficulties will be described later.

3 98MM WZ inf IN 
IFOUr recent 4evelogmeeta will be outlined. Two of them relate to the adaptation

of models geeraly apli to separatio from salient ees to the representation of
separatin from amtheMirf es sad two arise from the need to represeat mOr complicated
flew petterus them these on a delta wng.

Lot Os consider first the extension of the vortex-shet medal to describe separation
NIem emeth srfaees, as reported by tides2I for the Oase of the slender elliptic con at

tetimF&K t realise is that the sheet must leave the surface tangen-0
im0.. W e ttwoposbetpsobeaiuoftefonomloth

With the downstream side of the separation line defined as the side

S I .
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towards which the vortex shet departs, these behaviours ares either the vortex shoot has
Infinite curvature and the pressure gradient upetream of the separation line IS infinitely
adverse or both the sheet curvature and the upstream pressure gradient are finite. The
form of the singularity in both the curvature and pressure gradient is the inverne square
root of the distance from the separation line. To represent this behaviour in a calcula-
tion is not trivial, and the problem has been attempted so far only in the slender-body
framework. Clearly, curved elements, or panels, are needed to represent the shbep, and
the be" element apparently needs infinite curvatur, at one end. An ingenious use oj con-
formal mapping25*

2 -avoids the need for such a special elemet, and an existing form' can
be used.

From the point of view of the invisoid modelling, the outstanding question concerns
the Kutta condition. Since all the velocities Are finite in the attached flow, and the
pressure is continuous everywhere, it is not clear that any further condition is required.
However, a further condition on the numerical solution is useful. In the exact Lnviscid
solution, the fact that both the body surface and the vortex sheet are troam surfaces
implies that the velocity vector on the surface on the downstream side of the separation
line mat be parallel to the separation line. This will not naturally emerge from a
numerical solution, in which the strom surface condition is enforced by setting the
normal component of the velocity to zero. It is therefore helpful to require, as a form
of Kutta coodtt.,n, that the surface velocity Is along the separation line on its down-
stram side.

From the point of view of modelling the real viscous flow, the outstanding question
is the determinaticn of the separation line. For boundary layers which are laminar
upstream of separation, Fiddes describes an approach which is both rational mathematically,
and reasonably successful in reproducing the observations on circular cones. The approach
rests on the asymptotic theory of laMinar separation for large Reynolds number which wsa
put forward by Sychov and completed by f.T. Smith". The essential points ares
(1) at infinite Reynolds number, separation must be smooth, ie the singular behaviour in
sheet curvature and upetroem pressure mast not ocourr (Ii) at finite Reynolds number, the
separation line is displaced downstream from the position of month separation until there
is a alance hetween the strength of the singular behaviour and the level of skin friction
upstream of separation.

The use of this approach, with the vortex sheet model and a laminar boundary layer
calculation, makes It possible to calculate the position of the separation line as a
function of Reynolds number. Fig I shows how the predictM4 movement of the separation
line with Reynolds amber compares with that obeerved by Raliabird, st :11t In a water-tunnel
experiment on a circular cone. The trend is sell pedieted, and the difference in actual
position is mIl compared with the displacement of the separation line from Its position
for infinite Reynolds number. There is, of course, no reason to expect that the line
along which the vortex sheet leaves the surface in the model should agree exactly with any
particular observed feature of the reel flow. It is surprising that the asymptotic treat-
ment is as suqgeful as it appears to be, relying as it dose on a leading term which is
of order I "1

The invisoid model can be assessed independently by using it with a measured posi-
tion of the separation line. Fig 2 shows a aos-seation of the calculated vortex con-
figuration, with the separation line at the observed, laminar posLtionj and the observed
position of the core of the vortex for omparison. The vortex is at about the rignt dis-
tance from the surfia, bet not far enough round from the separation line. The same sort
of discrepancy arises in wing flows, end is usually attributed to the failure to repre-
sent secondary separation in the model. A further comparison is shown in Fig 3. To give
amfte idea of the shape of the real vortex, contows of total pressure measured by
Ralbird3 t around a circular cone in a wind tumel are shown, with the calculated vortax
configuration superimposed. The observed position of the turbulent separation line was
used in the calculation. The model is clearly producing the correct qualitative behaviour.

It see perfectly feasible to extend this work to non-conical slender bodies of
general cross-sectional shape, and, with rather more effort, to implement the model in
the Subsonic prandtl-Glauert framework. Nowsver, to produce a similar method capable of
predicting turbulent separation demnds a sew insight.

Comared with this substantial achievement, the second advance to be reported is a
mLnor one. What it provides is an Improvement in the Kutta condition for use with the
single lIne-vortx model. Te standard boudary oandition, introduced by bryson' b , is
tht the velocity at the searti~o lineo 8paralleJl to It. This forces the sepasrating
@trem mrfac to leave the body in a direotiom nomal to the body, whreas, if the shoot
we represented, it would leave tangentially. The Improvement is achieved by writing
the utta condition for the shoot modeL, that the velocity on the ontream side inparallel to the operation lie, entirely in tes of the mean velocity and the rate at
which circulation is being shOd. Thee are quantities which also appear in the simpler
line-vortex model and so the revised form of the gatte condition cas be taken over
Immediately. For the simple example of separation from a body of revolution at Inoidence,
with the separation line lying along a meridian, the condition be s

.37

. . . .



8
where v is the circumferential component of the velocity, U is the undisturbed spoed,
and dr/dx is the axial rate of growth of the circulation. Compared with the original
form of the condition, t v - 0, equation (2) clearly allows the vortex to be weaker If
its position is unchanged. The general expression corresponding to (2) io given in Ref 12.
An illustration of the effect of the different forms of Kutta condition is given in Fig 4

for conical flow. The curves drawn are all cross-sections of conical stream surfaces, of
which the body surface forms one. At the top is sketched a vortex sheet solution, in which
the sheet leaves the body tangentially along the separation line, S , to form the surface
of separation. On the left, the flow corresponds to a line-vortex solution with the
original Kutta condition: the separation line is a singular point for the family of curves
shown and the separation surface leaves the body there in the normal direction. On the
right, the flow corresponds to a line-vortex solution with the revised Kutta conditions
the specified separation line, S , is no longer singular and the separation surface
follows further round the body before leaving it, again in the normal direction.
Neighbouring conical stream surfaces are now more like those in the vortex sheet solution
shown at the top.

Calculations
3 3

,
3

4 for conical bodies using the revised Kutta condition do show
smaller circulation, lower peak suction, lower lift, and vortices lying further inboard.
These changes tend to improve the relationship with experimental observations. There is
a lower bound on the angle of incidence for which the line-vortex model has solutions in
which the vortex lies near the separation line. This bound is unrealistically high in
relation to experiment and to the vortex-sheet model's predictions

25
, unfortunately the

use of (2) does not lower the bound.

We now turn to the improvements aimed at the treatment of more complicated vortex
configurations, in particular, configurations which Involve more than one axis about which
rolling-up occurs. Hoeijmakers and Vaatstra

3 s,36
, using the vortex sheet model in time-

dependent planar problems, equivalent to the slender-body framework, have Introduced a
very useful feature. Where, in the course of the evolution of the vortex sheet, a kink
begins to form in the shape, a short segment of the sheet is removed. The circulation
about this segmnt is concentrated into a line-vortex, which is inserted in place of the
segment, and connected by cuts to the free edges of the sheet, leaving the velocity poten-
tial single-valued once more. Circulation convected off the free edges of the sheet Is
added to the circulation of the line-vortex. The system of a line-vortex with two cuts
represents an infinitely rolled-up, double-branched core of the sheet, which we can
imagine as growing from a point on the vortex sheet at which a singularity has appeared.
The spontaneous emergence of singularities in the evolution of vortex sheets has recently
been discussed by Moore" In a proper mathematical context. It appears that by Identify-
ing and treating these kinks or singularities an orderly evolution of the vortex configura-
tion can be computed for longer times, or further downstream, than would otherwise be
possible.

One of the configurations for which this sort of extra freedom is needed Is the
double-delta wing, or the swept-wing with strake. If the inboard and outboard portions
of the leading-edge have almost the same angle of sweep and the angle of incidence is not
too mall, a vortex sheet will form along the whole leading-edge and roll-up into a single
spiral core, just as If the planform were smoothly curved. The local disturbance to the
sheet produced by the kink in the edge Is quickly smoothed out. This flow should present
no difficulty to any of the models.

If the kink is larger, the disturbance it causes to the smooth growth of the sheet
will result in the formation of a second centre of roll-up, as sketched in Fig 5. This
situation has been made visible by Verhaagen, whose photographs are published in Ref 36.
The circulation shed from the outboard leading-edge cannot be convected past the newly-
formed outboard core, so the circulation of the inboard part of the sheet remains constant,
or may even reduce if the outboard core becomes strong enough to convect circulation back
towards itself. The outboard core continues to grow on the circulation shed from the
leading-edge, and will eventually dominate, and perhaps swallow, the inboard core, if the
wing extends far enough. The surface sketched in Fig S is a stream surface, but not
necessarily a proper vortex sheet everywhere. The jump in tangential velocity may decay
to zero near the points of nflexion in the curves which connect the two cores, since both
cores are convecting circulation away from the inflexion points.

If the kink is larger, ot the Incidence smaller, part of the stream surface connect-
ing the two cores is likely to collapee onto the murfce of the wing, as sketched in
Fig 6. The structure of the outboard vortex Is now of the familiar leading-edge vortex
type, though it is worth noting that its initial growth from the kink is not conical,
even in the slender-body framework. The inboard core is shown as connected to the wing
surface by a stream surfawe springing from the line AM. This is not meant to suggest
that the boundary layer on the wing separates along AS, though it might do so. However,
there must be a surface streamline much as An which forms a boundary between the surface
streamlines which are swept outboard beneath the inboard core and the surface streamlines
which attach to the upper surface of the wing after passing above the outboard core.

Fig 7 show* a sketch of the surfae streamline pattern which would be associated with the
flow structure of Fig 6. AC ad N are attachmeat lines from which boundary layers grow.
Thome boundary layers my collide along AD and, if they do, circulation may be shed from
AS. There Is som evidence

3 
that this does happen on practical configurations, but

intorpretation of the limited experimental information Is complicated by the presence of I -'

a soedaty vortex formed on the forward part of the wing. For simplicity, secondary C
separation has been ignored in Figs S to 7, and the streamlines sketched in Fig 7 may
be regarded either as the surface streamlines of the inviscid flow or as the limiting C
streamlines of the rep 1 flow. L

. - -~ .



The stream surface through AS is drawn as simply as possible in Fig 6, intersecting
the wing normally. This implies that there is no shedding of circulation along AD. Part
of the stream surface will then no longer be a vortex sheet, as suggested in Fig $a. It
is then likely that a second centra of roll-up will form, as In Fig 8b. On the other hand,
if circulation is being shed from AS, the cross-soction of the sheet will resemble Fig Sc
or 8d, depending on the sign of the shed circulation. Resolving these details seems
unlikely to be Important.

If the flow near the kink is as sketched in Fig 6, there is still a question about
its downstream development. The inboard vortex is moving slightly outboard, under the
influence of its image vortex In the wing, while the outboard vortex is growing In size
and strength. Ail the outboard vortex capture the inboard one? We return to this
question later.

As the sequence of reductions in the sweep of the outboard wing and reductions in
the angle of incidence continues, the separation on the outboard leading-edge is eventually
suppressed. The flow structure then resembles that of Figs 6 and 8, with the outboard
vortex removed. The corresponding surface streamline pattern is sketched in Fig 9. The
line AU now forms a boundary between the flow swept outboard under the vortex from the
attachment line DR and the flow ccming inboard from the leading-edge AC. Again there is
tie possibility of separation from AB end again the real flow is complicated by secondary
separation on the strake. Mef 38 provides data on a flow of this kind also.

-- a calculation method is to tell us which of these flow patterns actually occurs
on a particular wing at a particular angle of incidence, then it must clearly be a
flexible one. It may well be that Hoeijmakers technique of representing double-branched
spirals provides the needed flexibility, but an alternative approach is to turn to the
multiple line-vortex model.

Peacs
m has Implemeted a multi-vortex model, in the slender-body framework, which

Incorporates two improvements over the original approach of Sacks, #t a1
5

. The first of
these is to allow the circulation of the vortex which was shed most recently to increase
along its length. Mach vortex can then start with zero circulation, at a point actually
on the leAing-edge of the wAngS; instead of starting with its ultimate strength at a point
near the leading-edge. Noreover, the Kutta condition can be satisfied at every point of
the leadLg-edge, through the continuously varying strength of the moet recently shed
vortex. The first vortex can be shod from the apex of a delta wing, so that near the apex
the model is just the single in&e-vortex model. As soon as the second vortex is intro-
duced at the leading-edge, the first vortex is no longer fed with circulation and convects
with the local flow. The second vortex grows in circulation, so an to satisfy the Kutta
conditins and follows a path which io determined by the condition of zero overall force
on it end the cut which joins it to the leading-edge. when the third vortex Is introduced,
the second is shed, and so on.

The second Improvement is to form a strong core vortex by successively amalgamating-

vortices with the fir "t ae to be shed. This is the approach successfully used by oore z

to delay the oaset of aos in evolutionary multi-vortex calculations. The usual tech-
nique ia to replace the two vortices with one, of the same total circulation, placed at
ther 'centroid of circulation,. This Introduces a minor discontinuity into the evolu-
tionary pcocess, which may trigger a potential Instability. Peace avoids this by trans-
ferring the circulation, cad moving the vortices, gradually, again making use of a condi-
tie of zero overall fores. Two minor details of the technique are worth noting. The
Initial growth Of each new vortex is given by an asymptotic expansion, with the numerical
interation process taking over when the vortex is a short distance from the leading-edge.
To avoid a multiplicity of weak vortices with a random distribution of signs being formed,
vortex formation is suppressed over ay length of the leading-edge for Which the Kutta
conLtion is approximately satsftied by the existing vortices. This is important in the
case of a wing with lengthwise camber, to be considered later.

The new method has three significant advantages. Many vortices can be shed, to
represent the flow accurately, without necessarily inducing a chaotic development.Greater smoothness In the streamwi8s development of the flow is achieved, though weak
fluctuetions remain. The overall accuracy is greater, because the flow near the apex is
better represented.

before giving an example of the capability of the method for a wing flow, we note
that the technique of allowing each now vortex to grow from the separation line cannot he
applied to separation from smooth surfaces. There is no asymptotic solution for the
initial growth of msch a vortex from 4 finite point, as pointed out by Bryaon14.

To illustrate the capability of this multi-vortex technique, we show the results,
taken from Ref 24, of applying it to a doubl*-delta configuration like those discussed
above. The planform is defined by the equations

e O.1x for 0 Cx . 10 3s(x) - (3)
11 + G.4(x - 10) for 10 C x 2'20,

for the local semi-span, s(X) , of the wing. Thi 1 corresponds to a semi-angle of 5.7 °
S at the apx and a kink in the leading-edge of 16.1 . In Fig 10 results are shown for an

angle of incidence of .7. Cross-sections of the calculated vortex configuration are
show for three stremwise stations, the first at the kink. This shows the usual
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pattern expected of a conical vortex sheet solution for an incidence equal to the semi-
apex agle. Further downstream, the vortics being shed roll-up into a new core cloe
to the leadintg-edge, leaving those abed upstream to convect as a group. The last vortex
shed upstream of the kink just fails to be caught up in the rotating group. The numbers
beside the groups of vortices indicate the total circulation in the group, as a value of
r/u . The value of 0.48 at the kink station cmpares well with that of 0.47 given by the
sheet model" (f/%Us - Q + g - 4.7, 9 - 0.1, a - 1, in the notation of Ref 39). The
circulation of the outboard group grows quickly, owing to the lower swop of the outboard
leading-edge. There is no indication of any appreciable interaction between the groups
of vortices at this angle of incidence.

Fig 11 shows the vortex configuration for the same cross-setions on the saw plan-
form for an angle of incidence of 10.30. nearly twice as large as before. Again at
x - 10 we have the expected behaviour for a delta wing - at this Incidence Ref 39 gives
r/U a 0.94 - with a larger size and circulation corresponding to the Increased incidence.
Again the newly shed vortices dowstream of the kink roll up in a separate group, which
is also larger and stronger than before. bowever, at this incidence, the Inboard group
of vortices moves fLtt enough laterally, under the influence of its bage in the wing, t
interact significantly with the outboard group. At x - 17.5 the inboard group is just
being broken up by the Interaction. by x - 20, not reproduced here, the orderly atruct.
has been disrupted. with the capture of several individual inboard vortices by the out d
group. It should be pointed out that many more individual line-vortices are involved
the calculation th n appear in the final downstream section, because many of them have
amalgamated in the cores.

4 RQIV ADV TAGU OF TM DIF DuM MOCULS

As a starting point for a comparison of the advantages of the three different sex
of rolled-up vortex sheets, it is helpful to describe the features which belong particu
larly to one of them. The remaining, shared, featuree are then discussed; and an overall
view it formed.

The particular advantage of the single line-vortex model is its simplicity. When
Implemented In the slender-body framework, the model is simple enough for exact analysis
to be possible. For Instance, the equations governing the Bryson model l* of separated
flow over a circular cone at incidence have been reduced to a polynomial of the 18th
degre, so that all solutions can be found3*. After the obviously non-physical solutions
hve been rejected, a branch additional to that found by Bryson remains, and may be of
pkyatcal significance. When lateral asymetry is allowed in the Bryson model further
solutions ar found* .  

An asymptotic analysis of the equations Is possible, for large
values of the incidence parameter a/8 (beat thought of as arisn from amall values of
the cone semi-angle. 4 ). This confirms the physically realistic asyametric solutions
which had been found numerically; and reveals a second branch, which turns out to be
non-physical.

In the case of wing problems, asymptotic expansions of the ine-vortex model for
emall values of the circulation have proved useful. in particular they have shed light
an the difficulty In finding solutions of the vortex-shet model In two oases. The first

of these is the flat-plate delta wing, for which it baa proved impossible to ftid vortex
seet Solutions which spring from the leading-edge at very small values of the incidence
Parameter. s/A , whero A Is the aspect ratio. Bareby" found solutions in which the
sheet &MUMS from the upper surface, just inboard of the edge. gaminaties of the Ie-
vortex Model Shows that it, too, predicts a separation stream surface speining from the
upper surface, rather then the leadin-edge, when a/A Is =Ai. Asymptotic eaalystshow the saMe situation arising on wings with non-zero thicknes1. The second case,also 4dietfered by arahs? . is of a thin delta wing with conical camber. Por sumb a
wing, the flow is attached all along the leadineg-edge for a particular single i Of incidee

* Solutions of the ast model could be found for a C s , but not for a significat
range4 Of angls$ Of Incidence below a. , far which a vortex would be expected to iea
below the wing. asaxeIntion of the asymptotic expansion of the line-vortex model showd
that the analytic behaviour of the solution for the cambered wing io quite different from
that for the plane w1ng and that no solution could be found for angles of incidence just
below a,

The nsesrical work Involved in aVIIln the line-vortex model is also uch lighter
than It Is for the vortex sheet and multi-VOrtex models. this would be useless unless
the 0olutims ObtaiMed Wd sem veue. 0ne way in which the solutions are of value to
to pointa the way to amietemoo and uniqueness properties of more* complax models.%KMVUSsof thia struturasl similarity* between the models, additional to those

metime 'be are given below. Leviseki A Wei"' calculated flows pest ones with
conical sArges io the slender-body framework and found multiple mution* for* a certain
tAmAV Of m101106 Of incidence. "ae sme behaviour arises got bth the lnevortex modeland the vurtx-sheet del, though the ranges f Incidence are not the sm for the twe
msdels. Pat a delta wing with lengthwise camber, placed at an overall agle of Incidence
slab that the total geIetric incidene fslls to swo at som lengthwise station, both
the worse aet m oel' a"d the line-vortex model produce unphystica results before the
stati' O ft tonal i-"noMsO Is reached. Par laterally symmric flow past a circular
e at 1msI:s1e1, these Ar me solutos to the as,-vorti moel with the vortex Clase

aA~ Icausee 0 14)
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where ** in the elevation of the separation line above the horizontal*. Solutions of
the vortex sheet model have been found below this limit 25 , but there still appears to be
a lower bound below which solutions cannot be found. When the restriction to lateral
symmetry is removed, families of asymmetric solutions have been found for the line-
Vorte,4

0 
and vortex-sheet

2
s models. In fact, the solutions for the line-vortex model

were used to find the vortex-sheet solutions.

It must be said that much of the simplicity of the line-vortex model is lost when
the slender-body framework is replaced by the Prandtl-Glauert framework. Although the
vortex circulation and path can still be described simply, the need to model the wake
more completely than in treatments of attached flow, in order to satisfy the Kutta condi-
tion at the trailing-edge, introduces a considerable complexity4

,
1
5
. The model has not

proved popular in this framework.

The particular advantage of the multiple line-vortex model is its flexibility. In
principle, circulation is shed from the separation line and convected with the local flow.
In the slender-body framework, techniques following that description have been imple-
mented and solutions, of a kind, are always obtained. The problem of the delta wing with
lengthwise camber mentioned above illustrates this advantage of the multi-vortex model
very clearly. Both the vortex-sheet model and the single line-vortex model break down
because they are not sufficiently flexible to represent the change from shedding circula-
tion towards the upper surface over the forward part to shedding it towards the lower
surface over the rearward part. Peace' has treated the problem using his multi-vortex
model to obtain the results shown in rig 12. The planform of the wing is defined by the
local semi-span

s(x) - 0.25x (4a)

The apex region of the wing is at a uniform positive incidence, given by

as 0.2 for 0 < x < 1. (4b)ax

Further aft, the local incidence reduces smoothly, passing through zero at x = 2, after
which it is negative:

O - 0.2(2 - x) for x > 1. (4c)

Fig 12 shows ections through the vortex configuration for four stations, all downstream
of the conical flow region. Note that only the region near the leading-edge is illustra-
ted at each station. At x - 1.4. the multi-vortax configuration,t own by the circles,
agrees quite well with Clark's sheet solution

9
, shown by the line ann cross. By x - 1.6

no further positive vortices have been shed, as indicated by the unchanged figure for the
circulation above the wing, but a single negative vortex, represented by a solid circle,
has just been shed towards the lower surface. The geometric incidence is still posit.ve
at this station. Clark's solution also shows negative circulation being shed, but the
shape of the sheet has begun to look unrealistic, and the solotion could not be extended
further downstream. The multi-vortex solution will go further% by x - 2.2 a rolled-up
system of negative vortices has formed below the wing, though its strength is still weak
compared with the upper surface vortex, now reduced to a core by the operation of the
amalgamation algorithm. By x - 2.6, the negative system is stronger than the positive
one. Note how the interaction between the systems has drawn both of them outboard of
the leading-edge. Not surprisingly, the orderly structure is disrupted in a relatively
short further distance downstream, before the local incidence reaches a negative value as
large as the positive value at the apex.

Further evidence of the flexibility of the Aulti-vortex method is provided by the
calculations for the double-delta wing shown in Figs 10 and 11 and discussed above.
Many calculations of time-depandent planar flows and of the evolution of trailing vortex
wakes show the same flexibility. Hooijmaker's recent work35A has made the vortex-sheet
model more flexible, while Peace's use of an amalgamation algorithm has made the multi-
vortex model rather les flexible. The two models are perheos moving towards a comon
capability, but the multi-vortex model is still the more flo-'ible.

When the multi-vortex model is implemented in the Prandtl-Glauert framework for
steady, subsonic flow, the problem become elliptic. The simple idea of shedding and
convecting circulation no longer applies, since what is shed downstream affects the flow
upst rem. Considerable ingenuity may then be needed to obtain solutions for flows with
a simple structure, as Rehbach' and Schr6der'

t 
found for the case of the delta wing.

The difficulty is presumably that the flexibility of the model is not yet matched by a
corresponding flexibility in the numerical schemes available to solve the large number
of nonlinear simultaneous equations to which the model gives rise. It would seem worth
trying to exploit the existence of slender-body techniques, either to provide an initial
guess for the Newton-Raphson method, as Forrester, et at

2 
do; or as a step in an iterative

method, as Joppa4
7 

has proposed.

For unsteady incompressible flow, the problem is again an evolutionary one and the
flexibility of the multi-vortex model reappears",9V". Unfortunately, the tendency for

- the motion of the vortices to become chaotic also reap ears. It sems that neither steady
0 nor truly periodic solutions have been produced as a result of evolutionary calculations,

and, in their absence, it Is hard to asees* the accuracy of the calculations.

NO this is 8 different definition of 0. from that in Fig 1.

1 th.....
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The particular advantage of the vortex-sheet model lies In thd greater realium with

which it describes se atitt from a line on a smooth surface. As Indicated earlier, the
theory used by Fidds3to esiculate the position of laminar aepoation an a cone requires
the strength of the singular behaviour (f the inviscid solution at the separation line.
This can only be found from a vortex-sheet model. Even if it is not intended to predict
the position of the aeparation line, it still seems unlikely that reasonable accuracy can
be obtained without treating the inviscid flow near the separation line adequately. The
sketches of Fig 4 show the sort of qualitative difference that dam arise. As an extreme
example of the quantitative differences between the predictions Of the vortex-sheet model
and the predictions of the single line-vortex model, we have F1 USp which is diestased
in detail later. The discrepancy is far greater than that for flows over wings.

The common advantage of the vortex-sheet and multi-vortex models over the line-
vortex model is that they both offer a closer approximation to the infinite Reynolds
number limit of the real flow. As would be expected, they almost always give closer
agreement with measurements at finite Reynolds number. As between these two models, the
remaining advantages are lesa clear cut. in the terminology of panel methods, the sheet
model is a higher-order method. Consequently it gives greater accuracy for a similar
number of elements, with the ability to predict a smooth behaviour of the flow. On the
other hand, the programming effort involved In the sheet method is greater, and computing
time for the ame member of elemnts should also be greater. At present no comparison
can be made on the basis of compting time for the smoe accuracy, but the multi-vortex
method must involve more storage space. it it is desired for soe reason to represent
many turns of a rolled-up configuration, the vortex-sheet model has an advantage, because
a multi-vortex calculation is likely to be disrupted by vortices from adjacent turns
pairing-off and rotating round one another.

A largo potential advantage of a mlti-vortex model in the subsonic Prandtl-Glauert
framework is that it might well predict vortex breakdown. In fact Aparimov, at aZ5
claim tht the failure of their multi-vortex model to converge at a large angle of
incidence is related to vortex breakdown in the real flow. Rehbach aiming particularly
at the calculation of unsteady incompressible flow, has introduced a Lagrangian model
based on the vorticity equation, which has same resemblance to a multi-vortex model.
The outcome is a set of streak-lines which spring from the sparation line, in a direct
simulation of Werle's famous dye-lines. Rebch also claims that the disorganization
of the calculated streak-lines near the axis of the vortex corresponds to vortex break-
down. It should also be possible to predict at least the initial occurrence of vortex
breakdown using the vortex-sheet model in combination with a technique like that of
Halls for calculating the flow in an axisymetric core of distributed vorticity. By
averaging the predictions of the vortex-sheet model in the circumferential direction, the
inward flow of mass and circulation to the core and the pressure distribution along it
could be obtained. These are the boundary conditions required for the core calculation,
which would in turn supply a displacement effect along the axis of the vortex in the
sheet model. So far as the prediction of breakdown is concerned, it cannot be said that
either model has the demonstrated capability, nor that either is incapable. it may well
be that a direct attack on the Euler equations, like the one Rizzi describes%, will
provide the best approach to the problem.

In sumary, if a method of useful accuracy is required, the choice is between the
vort6A-sheet and multi-vortex models. For separation from smooth surfaces, the sheet
model is preferable. If the same program is required to calculate very different vortex
structures with minimal changes, the multi-vortex model is preferable. The line-vortex
model has a useful role to play in initial Investigations and in suggesting the underlying
structure of families of solutions of the more realistic models.

5 WHY N)DELLING?

Since thes models all lead to such complexities and still fall short of a proper
description of the behaviour of the fluid, we must ask whether it is worthwhile pursuing
them further. After all, solutions of the Navier-Stokes equations and the Euler equations
by field methods are becoming available and must eventually become the accepted methods
for making quantitative predictions about vortax flows. Nonetheless, I believe it is
worth continuing with modelling techniques. In support of this view, I have first Som
very general remarks, which can conveniently be put as quotations, and then an account
of how modelling has recently helped with a particularly intractable problem.

To start with, here is a quotation from a lecture5
6 given by James Lighthill to the

Royal Aeronautical Society, when he was Director of the RAE. He is speaking of the role
of mathematics in generating physical ideas.

'Examples of this mathematically generated kind of physical idea, which I have
already mentioned, are trailing vorticity, boundary layer, dynamic stability and Nyquistdiagram.

The value of physical ideas in practical work, of course, is their elasticity.
Provided that they are sound ideas, such as those thrown up as the genuinely appropriate
physical descriptLOn of the mathematical solution of som well defined class of problem,
they usually show a splendid capacity to stand up to distortions of the problem, and
indeed to radical changes and complications in its conditions, and still give the right
guidance about what needs to be done. In other words, a well designed physical idea has
wide elastic limits, and will tolerate being pulled and twisted about, and go on giving
good service in suggesting the right experiment, or the way out of such and such a

.11
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difficulty, or in giving someone a feling the . is not Just diamally accumulating a
confused mass of experimental data, but there to some thread runing through them which
gives them meaning and interest. Naturally, then, these Ideas are much In demand, and
when we cme to a new kind of problem, where we are short of physical dea because
of the old ones that we are accustomed to sems to give any help In solving It, then we
can only hope that someone will com along with & mathematical treatment of me
appropriately simplified, although possibly also generalised case, and interpret its
solution by Iftroducing a new animal into the zoo of useful aeronautical concepts, prefer-
ably a well-behaved beast, which all of us will in due course be able to ride as to the
manner born, probably ignoring, if we are not mathematicians, whet kinds of technique
were usd to lick him into shape.'

Lighthill went on to discuss the role of mathematics in getting actual answers.

Now for a quotation from the final section of Dietrich 16ichemann's book37 on the
aerodynamic deign of aircraft.

'Above all, it is such conceptual frameworks which enable us to formulate intelligent
ways of modifying and controlling our part of human endeavours. Ideas and concepts
out of the mind, not out of computers or wind tunnels. If there is one overriding purpose
throughout these notes, above all others, It Is to deostrate the continued nod for con-
ceptual frameworks and for understanding the physics of airflows in any work on aerody-
namic design.*

Finally, because I have not found a better way to express the Idea since, a quota-
tion from a previous AGARD paper s$ of my own.

"The philosophical argument naturally concerns ends rather than means. If our aim
is to reproduce our bit of the real world In a computer, then the solution of the Xavier-
Stokes equations is a possible approach, at least for laminar flows. We may hope to
obtain more precise information, more quickly and more cheaply than by making measements
in real fluids, and this is well worth doing. Howesvr, as scientists we wish to understand
things, and as engineers we wish to alter things. In both of these processes the acquisi-
tion of data needs to be accompanied by the growth of conceptual frameworks which can
account for the date we already have and show us where more in needed. It is such concep-
tual frameworks which enable us to formulate intelligent ways of modifying and controllingi our bit of the universe. They are built of models, *on far-coaching and all-embracinq,
but sm quite special. I do not se the need for special models disappearing in our
field. n particulr, I expect the distinction between the external inviscid flow and the
boundary layer, on which the science of aerodynamics has been built, to continue, suple-
sneated locally by special models of separation phenomena.*

These quotations put the abstract case for modelling very clearly, but they do Aot
provide much in the way of illustration. It is therefore appropriate to turn to a descrip-
tion of soe recent work with two of the models that have formed the basic theme of this
paper, work that has significantly increased our understanding of some baffling observa-
tions. These observations are of the lack of expected symmetry in flows past bodies at
large angles of Incidence, leading to very significant out-of-plane forces on missiles and
to large yawing moments on aircraftsl. The work is that described by riddes1 t at the
Trondheim meetinq last yea, using first the lire-vortex model and then the vortex-sheet
model, and In each case showing the existence of a second family of solutions which
produce large out-of-plase forces an circular cone. I shall conclude by suggesting
that the simplifications Implicit In the models have actually helped to bring about the
increased understanding.

Both models are Implemented in the framework of alender-body theo y and applied to
flow past circular cones at jacidere. The lAne-vortex model is then simply the one which
was devised by Bryso=1

4s the only change is that the port and starboard vortices areallowed to lie asYMmtrically about the Incidence plane and to have different circula-
tions, and that the separation lines are also allowed to be saystIcally placed. The
model Is entirely 1151 18id, so the positions of the separation lines muot be supplied to
it. The separation lines are supposed to be generators of the ame. The entire geometry
is then conical, so, since slender-body theory is used, the existene of a conical flow
solution is to be expected. This means that the solution sought depends on three
parameteres the angular positions of the two separation lines round the Circumference of
the ecne, and an incidence parameter, s/4 , which is the ratio of the angle Of Incidence,
a , to the smNi-apex amle of the cone, 4 The entire flow field can be written down
in terms of these three Parameters and six unknown quantities the two coordinates and
the circulation of each of the two vortices. Six conditions are available to determine
theme six unknomms a Kutta condition at each separation line, and the vanishing of the
two ross-flow omaoeats of the overall teoe on the combination of each vortex and the
cut which Joine it to the appropriate 8paratin line. The original form of the uttacondition is retained.

The equations expressing the two Nutta ceditions are linear in the two circula-
M tions and so can be solved for then. The expreesices which result can be substituted

Into the remaing four equations, which are then extremely nonlinear in the four
0m coordinates of the vortices. A generalised W wtncf-Upheo technique is 0sed to solve

- these equations. "he results are most esily understood by concentrating on the cas in
0 which the two sepretOUM limes AMre plce Gsti filly with respect to the Incidence

plane, 90 that the solutions depend Only OR the "aceation line position end the Inci-
dene pa0ameter. Fig 134b shows the variation of the two c€oodinates of the starboard
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vortex, an the Incidence parameter increses, for separation lines which are Is -56
round from the 'horizontal' plane through the axis of the cone. The Coordinates are
referred to horizontal and vertical axes in the cross-flow plane, with origin on the
cone axie. For small values of the Incidence parameter. no solution* have been found,
For values above the limit of 1.81, given by equation (4), Bryson's symetric solutions
appear. No others have been found until the point B on the aymmetric solution curve
i reached. Here the solution, as a function of a/6 , bifurcates to the classical
manner, with the JacobLan matrix becoming singular. Two further solution branches exist
for larger values of */ and these are mirror images In the incidence plans. It is
only the intersection at 9 in Fig 13 which represents a bifurcabtion at the other Later-
sections only one of the two coordinates agrees.

It in easier to appreciate the solutions when the loci of the vortices are plotted
in the cross-flow plane for varying values of the incidence parameter. Flq 14 shows the
symmetric solution and one of the asymmetric solutions for values of s/4 between- 3 and
10, and a rather earlier separation position, 0. . 400. It Is necessary to check that
the flow on the surface of the cone does actually converge towards the postulated separa-
tion lines, since the equations are equally wall satisfied by attaching flows. It turns
out that the solutions are physically sensible for values of a/d up to a value rather
greater than the largest in Fig 14. Since the slender-body framework assumes the incidence
is small, such large values of a/& would he irrelevant for practical configurations.

Fig 15 shows the asymmetry in the circulation of the vortices, the strength of each
being referred to the strength of the vortices in the symmetric solution for the same
value of a/d . The range of values of */a does not extend downward as far as the
bifurcation point, so the curves do not start with a common value of unity, as they should.
It view of the very different loci shown in Fig 14, it is somewhat surprising that the
ditbtlations of the asymmetric vortices are not more different from one mnother and from
thbsb of the symmetric vortices. It is well known that slender-body theory tends to over-
ptedlct lifting forces and the line-vortex model also tends to overpredict the nonlinear
conflbutions. Therefore, to make a comparison with force measurements, the ratio.

.of side force to normal fore is presented in Fig 16. The serration lines are
still saymetrically placed at the arbitrarily selected value, 6. - 40 . The theoretical
curve needs no explanation, since it arises directly from the asymmetric solutions des-
cribed. The experimental points are taken from the measurements by Keener, .6 a166.
Each point represents the largest value of Cy/CX measured at that particular angle of
incidence, so the roll angle and Raynolds number may be different for the different
points. The agreement with observation is striking in view of the simplicity of the
model and the framework.

It is clear that asymmetric effects comparable with those observed can be produced
by an entirely inviscid mechanism, separation having been fixed symmetrically in the cal-
culations. To make it clear that this mechanism Is the relevant one, a further step is
needed. As explained above, the model allows the positions of the separation lines to he
chosen freely, but so far the results presented have been for separation lines placed
symmetrically about the incidence plane. Solutions for asymmetrically placed separation
lines can be obtained by proceeding in moll steps from either a symmetric solution or
an asymmetric solution with symmetric separation lines. Obviously all the solutions
obtained in this way are asymmetric, but they fall into two distinct familiess the first
family derives from solutions which are symmetric when the separation lines are symmetric,
the second derives from solutions which are asymmetric when the separation lines are
symmetric. The importance of the second family can be confirmed by examining the level
of side force produced by the first family. Fig 17 shows typical values of the ratio of
side force to normal force that correspond to solutions of the first family, for an
incidence parameter of 3.5. For this value of the incidence parameter, rig 16 shows the
experimntal value is 0.75, so the calculated values in Fig 17 are smaller by an order of
magnitude. The absissa in the figure is the degree of asymmetry in separation line posi-
tion, and the curves are drawn for fixed positions of one of the separation lines. It is
concluded that the second, globally asymmetric, family of solutions is needed to produce
the observed results on cones, and that it is capable of generating side forces of the
right order.

The vortox-sheet model has subsequently been applied to the sam mofiguration, in
the m framework. This offers two advant&ia an Increase in accuracy, and the possi-
bility of extending the calculation to the prediction of laminar separation, as previously
demonstrated2 s 

for the symmetrical case. So far, however, the vortex-sheet model has been
used with specified separation lines, in the same way as the line-vortex model. The
asymmetric solutions of the line-vortex model were only found ater a long search, but it
was hoped that they would provide a good starting point from which to seek solutions of the
vortex-sheet Model. In fact, the sarch for sheet solutions took even longer.

Fig 18 shows one of those found, with, on the left, the srmutric solutions for the
s4m incidence paramter and separation Ine position. For col iso, the positions of
the line-vortioas in the corresponding solutions for the simpler model we showt by solid
circles. For the symetric solutions on the left, the difference between the Core " -
tins for the two models Is not much greater then that familiar from solutions for delta
wings, and of a similar form. 8ow0ver, the asymmetric solutions an the right sem seer*elyrelated. This may be a rather exte exaimple - the starboard line-vortex hasl msoved *

initially fomvarda and outboard from the bifurcation point - bet the diffeseaces betwen
the elastrio Vortex Positions predicted by the two mels are generally large. Ulme
explains4 why it was hard to find the vortex-sheet solutions, but indicates that the effort
was probably worthwhile. The starboard @eet in the &symmtric solution io very similar
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in appearance, and, in turns out, in structure, to the symetric sheets; but the port
sheet Is quite different. In shape it is like the conical trailing vortex sheet calcula-
ted by Jones 61 , and its structure is also similar in that only a small part of the total
circulation lies in the core, with the bulk of it on the sheet. Fig 19 shows a vapour-
screen photograph due to Peake, et 41

6
2 of the flow over a circular cone at a similar

value of the incidence parameter, in which the vortices are visible as dark regions.
There in clearly a remarkable resemblance between the calculated solution and the
visualisation of the flow.

Ref 26 also includes a comparison of the forces predicted by the vortex-sheet model
with those measured in some unpublished work by Mundell at RAE. The positions of the
straight, laminar separation lines were measured along with the forces, with the flow
tripped at the apex by a tiny protuberance. Great care was taken to ensure that measured
forces arose from a region of approximately conical flow. The live portion of the model
is a circular cone of 100 semi-apex-angle, with a length of 292 me. Forces were measured
over a range of Reynolds numbers in a low-speed wind tunnel, for a continuously-varying
roll angle. The values chosen for comparison correspond to the largest Reynolds number
for which the boundary layer at separation is wholly laminar, and to the roll angle for
which the side force is greatest. At an angle of Incidence of 360, the observed separa-
tion lines lay in the 'horizontal' reference plane on one side and 140 above it on the
other side. (It is worth noting in passing that this degree of asymetry In the separa-
tion line position is small compared with the range considered in Fig 17.) Any calcula-
ted solution with these separation lines must be asymetricl but there in again a distinc-
tion between a first family of solutions which derive from a sy metric solution and a
second family whose members derive from solutions which are asymmetric even when their
separation lines are sysmetric. The solutions from the first and second families, for the
experimental value of the Incidence parameter and measured separation positions, are
illustrated In Fig 20. The table below shown same details of these solutions and a com-
parison of the forces.

First Second
family family Experient

Total circulation left -13.7 -13.9
right 16.0 14.0

Core circulation left 0.64 0.80

Total circulation right 0.60 0.25

Cy /4 2  
-1.5 -19.7 -17.6

CM/0 2  
36.6 36.0 27.0

The table shows first that the circulations of all the vortices are '4milar, despite the
very different shapes of those in the second family solution. Howver, the different
shapes are accompanied by a difference of structuret mot of the l,,ft-hand vortex circula-
tion is in Its core, and most of the right-hand vortex circulation !I on t- shoeet. Theforce coefficients are based on the plan area of the cones each is divided by &2 to
bring It to a similarity form. The side force in the first family is maller than that
measured by an order of magnitude, but the second family prediction ie close, considering
it Is based on slender-body theory. The normal force is almost the same for the two solu-
tions and much larger than the measrement. The discrepancy is not surprising, since the
slender-body framework relies an the angle of incidence, 360 in the experiment, being
small. There can be little doubt that the solution from the second family corresponds to
the experimental situation.

The success of this work In explaining the origin of the large side forces measured
on circular cones at angles of incidence greater then the apex angle is very significant,
but It is only the first Ntep in the process of explaining the observations of side forceon practical air,:raft and missile shapes. For instance, in a conical flow the local side
force coefficient Is the ses along the whole length of the come, whereas the oecillatory
variation of the local side force along the length of an ogive-eylinder is well known.
Moreover, a significant level of side fore* arises on an ogive-cylLnder at angles of inci-
dence too small In relation to its apex angle for the second family of solutions to exist
at the apex. However, the work has identified one Mechanism which must exert an important
influence on the aerodynamics of slender pointed bodies. before it there was only con-J00ture about the origin of out-of-plew force. After it, one origin is clear.

I think this is the first time that vortex modelling, in the sense used In this
paper, has aotually told us something we did not know before. After decades of trailing
behind expermentsl observation and measurement, models have at least repaid our efforts

C" by telling us sething about the real world.

Obviously we should be trying to overcome the limitations of models, and much of
this Paper hasbeen devoted t* efforts to do so. ow-ever, there is a senee in which the
very limitatians of the models used can contribute to the clarity of the outcome. It is
the need to supply the separation lines to the inviscid model which forces the Isolationof the large-scale asymetry of the second family from the mall-scale &symtry of the
first family. It is the consideration of conical flow which concentrates attention on
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th fo at the apex of the body. it is the use of the simplest possible model Which

as is the a" when the steady Ruler or Naviar-Stokes equations are solved. to a depend-
ence on four numbers, the coordinates of the line-vortices: and so makes it possible to
contemplate a systematic search for solutions.

It is too such to hope that second family solutions, even with a more appealing
name, will aver come to figure alongside 'boundary layer' and 'trailing vortex, in a list
of concepts given by mathematics to aeronautics, but they do encourage us to keep
modelling.
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Figs 4-7

Fig 4 Effect of different Kutta conditions on
conical streamline patterns (sketch only) _

Fig 5 Shape of vortex sheet on double-delta wing
with small change in sweep-beck angle
(sketch)
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Fig 6 Sh9e of vortex sheet on double-4elta wil
with moderate change In swoep-ack angle
(sketch)
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Figs 8-12
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Fig 8 Possible forms for inboard vortex sheet
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Fig 9 Surface streamline pattern on double-delta
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Figs 13-16
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()Nff)~A'r~Figs 17-20

Fig 18 symmetric and asymmtric solutions with
symrIcStSrrtion"24S; vortex
shuetl and in*-vortexO solutions

Fig 17 Effect on side force of asywetry in
reaion line position2 or first family
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