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ABSTRACT

This technical report summarizes the image understanding and
image processing research activities performed by the Image Processing
Institute at the University of Southern California during the period
of 1 April 1976 to September 30, 1976 under contract number
F-33615-76-C-1203 with the Advanced Research Projects Agency
Information Processing Techniques Office,

The research program has as its primary purpose the development
of techniques and systems for processing, transmitting, and analyzing
iznages and two dimensional data arrays. Four tasks are reported:

Image Understanding Projects; Image Processing Projects; Smart Sensor
Projects; Recent Ph. D, Dissertations. The Image Understanding project
has concentrated on edge detectors, image segmentors, clustering
techniques and higher level symbolic descriptors from segmented imagery.
The Image Processing projects have concentrated on a posteriori restora-
tion, degree of freedom analyses of imaging systems, phase coding for
optical image processing and artificial stereo algorithms. The Smart
Sensor projects include the development of adaptive CCD image processing
chips and circuitry. The Ph.D. dissertations completed in this time

period are abstracted in the next task.
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1. RESFARCH PROJECT OVERVIEW

This report describes the progress and results of the University
of Southern California image understanding and image processin'
research stuly for the period 1 April 1976 to 30 September 1976. Th

research study has been subdividad into five projects:

Tmage Undarstanding Projects
Image Processing Projects
Smart Sensors Projects
Rezent Ph.D. Dissertations

Publications

' The imag2 unierstanding projects involve research directed toward the

goal of developing generalized processing systems capable of analyzing
images and extracting salient information. Specific studies includé
featare extraction, symbolic description, interpretation, clustering
techniques, edge detectors, segmentors, and systems analysis. The
imag? processing projects include research on novel image codian
techniques based upon results of the image wunderstanding study{
advanced image restoration methods, including a posteriori phase
computation techniques, degree of freedom, wmodelling in support of
image understaniing, and studies of phase coding for optical filtering
techniques and artificial stereo algorithas, The smart sensors
projects comprise investigations of electronic and optical processing
methods which can be integrated with imaging sensors to perfors 1low

level 1image enhancement and feature extraction within the sensor. An

adaptive CCD processor has been developed for first stage image
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proca2ssingy. Th2 smart sensors research work is being performed by the
Hughes Aircraft Company Research Laboratories in Malibu, California

under subcontract to USC.

Section 2 of this report details the research effort on the image
understanding projects. The image processing research activities are
described in Section 3, and Section U covers the work on the smart
sensors projects. Section 5 is a compendiuam of abstracts of recent
Ph.D. 1lissertations covered under this past six month period and
Section 6 1is a list of publications by project members during the

reporting period.




2. IMAGE UNDERSTANDING PROJECTS

The results of the image understanding projects described below
are directed tovard the eventual developament of fprocessing systeams for
generalized image analysis. Applications of such systeas include
photointerpretation, vehicle guidance, visual tracking, cartography,

and many other areas of military interest.

our research study is organized according to the structure of a
conceptual image understanding system. This system consists of a
feature extraction stage vhich detects and measures primitive features
such as edges and texture regions froa an input image. Next the
primitive features are clustered into =meaningful symbols such as
object boundaries, segments of some common attribute, or basic shape
structures. Such clustering then is used to completely segment the
scene of interest. Finally image symbols are interpreted in terms of
their semantic relationships to produce a concise guantitative
description of the original image. Some extra-image kaowledge base is
assumed available for guidance of all elesments of the image

understanding systenm.

The philosophic approach to the study has been to bring together
a research team skilled in digital signal processing and concepts of
artificial intelligence. Although the research effort at USC involves
all s*tages of the overall image understaniing system, emphasis has
been placed on the feature extraction, clustering, and symbolic
description subsystem elements. Rapid progress is being made in these

areas to assist the research in the higyher stages of the image
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understanding systen.
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2.1 EVALUATION OF A SIMPLIFIED HUECKEL OPERATOR

Ramakant Nevatia

Introduction

An edge detector due to Hueckel «<1,2> has been in vide use..
Though no definitive studies have been made, its performance is

considered to be superior to that of other edge detectors (e.g. seoﬁ

<3>, see <4> for a contrary conclusion). Hovever, computation

required for a Hueckel edge detector is considerably larger than fot;
4
other types of operators. The central part of the Hueckel edgc}

detector involves approximation of a tvwo dimensional image intensity
pattern by expansion into a truncated Fourier series. Mero and Vassy
described a method of simplifying the approximatiomn by using feuer%
hases functions for expansion <5, In this report, we examine a
generalization of this approach and effect c¢n performance of thei
reduction in the number of bases functions. The main experilentai
conclusion is that such reduction in computation is achieved at (

significant loss in performance, if the images in use are noisy.

Operation of the Hueckel Edge-Line Detector

The basic process of Hueckel edge operator consists of optimally
fitting an ideal edge-line to the image intensity values in a smal
circular neighborhood. The ideal edge-line is determined by a 7-tupl
of parameters, three parameters determining the brightness levels (b_,
t and t+, as shovn in figut; 1) and the other four paraseter

determine the position, orientation and the width of the lipe. The
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Figure 1. Intensity profile of an ideal edge-line.
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fitting process consists of determining the values of the seven
parameters for a best fit with the image intensities. TIdeally a tuple

of parameters is to be computed such that

N = || 1 - S(tuple) || (1)

is a minimum, where I is a vector representing image intensities and S

is an ideal edye-line.

This minimization process is approximated ty expansion of both
the input image disk and the edge-line in an orthogonal Fourier
series. Let a, be the coefficients of expansicn for the image and %
be the coefficients for an ideal edge-line. The asinimization of (1)

is then approximated by choosing a tuple such that

8

g 2: 2
N = (2 - s,) ()

i=0

is minimized. Hueckel gives arguments for the optimality of the
chosen series <2>. A crucial decision is to use only the first nine
teras of expansion. Two reasons are given for the choice of this

nusber:

(a) Higher order terms correspond to noise in the image and

should be ignored.

(b) An analytical solution to the minimization problem 1is found

using nine terms.

Decision as to the presence of an edge is based on the aeplitude
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of the computed step, as well as the degree of fit, determined by N in

eq. (1) above.

Simplification of the Operator

The computation of Hueckel operator can be reduced substantially
if the number of terms used in the expansions above is reduced. An
edge-line is completely specified by seven parameters. Purther,
absolute brightness level (b ) is of 1little interest for edge
computation; only six Fourier coefficients are needed to coapute these
parameters. Also, the problem of minimization in eq. (2) above reduces
to that of determining six unknovns in six equations (details are in

the Appeniix).

Only four parameters (orientation, position and step size) are
needed if only step edges are of interest. Mero and Vassey describe
an approach to determining these parameters for a square region of the
image <5>, They conclude that expansion in only two bases functioas
is needed to determine the orientation of the step. The position and

step size are then Jetermined by an approximation.

We have generalized the procedure to determine the four
parameters for a step from four coefficients of expansion, used by
Hueckel, for a circular neighborhond and detersining the six

parameters for a step-line froe six coefficients of expansion.

In either case, as far as the truncated expansion is concerned,
the signal can be fit perfectly with an 1ideal edge or an ideal

edge-line. Thus, no aminimization coamputation is necessary.

| LS
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% The important question is the effect of ignoring some terms in
] the orthogonal expansion of the signal. It is clear, that if the
] signal indeed consists of an ideal edge element, the fever terms of
r expansion are sufficient to characterize the signal exactly. Results

of experimental evaluation signals containing noise are presented

next.

Experimental Results

The input for these experiments consists of a picture vwvith two
vertical edges; the intensity profile is as illustrated in figure 2.
A varying amount of random, Gaussian noise is added to this image.
Results are presented for three images, figures 3a, 4a and Sa, vith

step size to noise variance ratios of: 10, 4 and 2.

The three images were processed by three versions of the edge

detector:
1. oOriginal Hueckel edge detector (operator 1)
2. Edje line datector using six coefficients (operator 2)
3 3. EAge detector using four coefficients (operator 3)

1 Determining the presence of an edge reguires the use of a
threshold on the computed step amplitude. Use of a higher threshold .
will allow fewer noise edges but also lose scme of the desired edges,

Por the results presented, the thresholds vere determined for the best

subjective performance. The differences in the performance of three

operators are so marked that a more careful control of thresholds |
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Intensity profile of a test step (without noise)
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(e.g. by requiring the total number of detected edges to be the same)

vas not considered necessary.

Figures 3,4 and 5 show the results of the three operators o
three images. (The edge detector was applied every three pixels alon

every thirl rovw. Each application looks at a neighborho

approximately circular and eight pixels in diasmeter. There it
considerable overlap of regions in two neighboring applications,
resulting in multiple edges for the same step. The phenomenon i
pronounced in figures 3, 4 and 5 for the right edge only, because o

accidental placements.)

It is clear that the performance of operator 1 declines graduall‘
with the increase in added noise. Operators 2 and 3 on the othe
hand, perform reasonably well for high signal to noise ratio, but ver
poorly for images with high noise. Further, the performance o
operator 2, using more coefficients of expansion, is superior to tha
of operator 3. (In absence of any noise, all three operators perfor

perfectly.)

Similar results are obtained for dotection of 1line -edges (i.e

vhen the width of step is small, say tvo or three pixels wvide).

Conclusions

The results shown above are somevwhat surprising. It is teaptin

to think that as the ideal step is completely determined by fou
parameters, four bases vectors can be found to span the space of idea

step elements. Unfortunately, the space spanned by the ideal steps it

=)=




not a complete space (the addition of two arbitrary steps 1is not
another step). {For the special case of edges defined on a 3 x 3
square neighborhood, a complete two dimensional sub-cpace spanned by

the edges has been determined by Prei and Chen <6>).

It is concluded that the simplification cf Hueckel edge detector,
by 1ignoring some of the terms of Fourier expansion results in
unacceptable loss in performance, if images are likely to be noisy.
(Unfortunately, Mero and Vassey present no results cn ccmparable
isages in their claim that the performance is not coaprceised.)
Further, it raises questions as to the effect of using orly nine terms
in Hueckel's original operator and also the effects of similar

approximations using other series for expansions, (e.g. see <7>).

Appendix: Details of approximaticns

Pamiliarity with references <1,2> 1is assumed here and the
notation used therein is used here without much elaboration. The nine
coefficients of expansion for an ideal edge-element are as followus:

3 3 5 7
o = (3n)2(32b_+t_(16 - 21r_+ 7r_ -~ 7r_+ 5r)

3 _wid gl i o (3)
+t+(16-21r++ WE SeiY Ty I 5r,) /5

oy = k_r_ + X+r+ -
s, = (X_ + )\+)cx )
85 = (1_ + )\+)cy

(6)
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8, = Z%(X r +\,r )(cz - cz)
4 - - Sp Tap (RS y

1
84(A_r_+1r.r)c c

- ++ xy
5, 2 5%(k r2 + A rz)c
6 - - ++ x
SIS 5%(k r2 + A rz)c
7 - - + + Yy

H

2 2
sg = AT_(0.5-2.5r%) + A r (0.5 - 2,5¢%)

(7)

(8)

(9)

(10)

(11)

where r , r, stand for the positions of brigbtness tramsitions, b ,

i 2
. . o 2 _
and t+ are as shown in figqure 1, k+ (3m) t+ (1 r+

are the direction cosines of the adge orientation

details). Consider two cases separately:

1. Step edges only:

f/u, and cx and

(see <1> £

The ideal edge-line can be converted to a step by setti

t+ = 0 (hence k+ = 0). We are nov interested in determining A

T, c,‘and cy. ¥e need use only egs. (4), (5) and

need only three coefficients.

2. Step and line edges:

Six parameters need to be determined now and

equations. Several subsets of the above nine equations vil
suffice, TIn particular, eqs.(4) through (9) are sufficient, T

solution can proceed by deteraining c, 2nd c, from egs. (5) at

-16-
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{6) (note: ci + cj = 1). Parameters K_, K+, r_ and r, can now
be determined from four eguations: (4), (5) or (6), (7) or (8),
anl (9) or (10). These equations can be solved in exactly the
same way as in referance <1>, Appendix A. (Note that ccaputation
of o and cy using all nine coefficients reguires iterative

solution of a fourth order polynomial.)
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2.2 APPENDING OF LINEAR EDGE SEGMENTS WHICH CCNTAIN CCHMCN EDGE POINTS

!
E Lee W. Martin

In an image, there are generally sub-areas which stand out froa

the background. They may be classifiable as straight lines, curves,
boundaries, etc. and they may be given the attributes of a feature,
i.e. something that can be uséd in describing the image scene, using
a set of image pixels as a single element. That element, or feature,
has a nmore global information content than the stea of the pirxels
because of a recognizable interpixel relationship. This report
considers the appending of 1linear segments to create lcnger, and

possibly more ijentifiable edge segments to ke used as features.

Elongated edge segaments generally correspond to areas or objects
of interest in a scene, e.gy. partial tloundaries of objects,
identifiable segments along an edge (perhaps functions, or particular
occurrence of an edge pattern). As such this feature vould be useful
for stereo analysis (small pnqle stereo) or scene segaentation. In
the 1latter determine areas of the image where further (seccnd level)

processing would be rost fruitful, e.qg. deteraine segaent

continuabllity criteria determined by the feature segmaunt. In small

-18-




angle stereo analysis, features in a primary image will generally have
a high correspondence with a segment edge which lies on siwsilar points
in the coaplement image, allovwing identification of correspondent edge
segments. These elongated edge segments satisfy some criteria for
being selected as features as previously stated <1>. They have

(a) relativ2 invariance under slightly dissimilar imaging conditions
and small perspective changes.

(b) reproducibility of the feature

{c) uniqueness, or at least the set of features which have cosmon
attributes should be small, to be useful in ccoplement image matching
(d) correspondence with areas of interest in the image, e.g. object

boundaries.

Reference <1> describes the steps leading to the attainment of a
lipear seygment map, Basically a Huackel <2> edge operator processes
the entire image returning an edge point wmap, which in turn |is
processed to 1link edges within orientation and proximity constraints
<3>. At this point, edge segments which are continuous in the image
are hroken into subsegments which lie along fpre-selected orientations.
Generally, if the edge curve is smooth, edge fcints near the end of
linear ‘segments vill also occur in linear seguments occurring in the
same, or adjacent angles. Thus we have "points of continuity™ with
which we may 1link linear edge segmants to create more general edge

segments of greater lenjth.

The typical links possible are shown in figure 1, Segments are

classified as

-19-
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HSI\——_\J H TS1
RS1 DS1
(1a) Typical head appendage.
RS2
o o
HS2
H3T™ 1 T
DSI

(1b) Typical connection, when H and T
are in different PS's.

s m —0 |

HS1 H 0 % TS1

(1c) Typical case where H, T are in same PS. Then ;
CS must be absorbed into Sl.

Figure 1. Append Schematics
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(1) previous segments (PS)

(2) candidate segments (CS).

The TS may be appenlel to any PS with a common edge point. Only the
head (H) and/or the tail (T).of the CS may Lte in common with some PS.
Each edge point in the set of edge points in the PS's (previously used
edges, PUE) belongs to a unique PS, but may re-occur in some future
CS. A PS contains

(1) the H of CS dasignated as S1,

(2) the T of CS as S2.

Notation HS2 implies the head of segment 2, i.e, the PS which
contains T{of C5). D, (R), preceding a segment identifier imglies
possible disconnect subsegments, (possible remainder subsegaent i.e.
appended to CS). CS is appended to S1 (s2) if the length {(CS) >
length (DSI), I = 1,2, Otherwvise CS is identified as a new segment
(given a newv segment identifier number). All possible linkages were
considered, as indicated in figure 1. The program to accomplish the
inter-angle and intra-angle 1links is complete and approximately 95%

dehbugqged.,

The preliminary results indicate a slight angular preference in
the direction of the step angle (¢tcc,-c) if linking is not done over
the full 360 range (because links can only te wmade to PS's which

occur at pravious step angles). All anticipated modes of linking have

been accomplished vith the desired results.

Upon completion of the programming effort the results will be

applied to stereo pairs for evaluation.

~21-
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2.3 CONTRIBOTION OF EDGE DRIENTATION OF EDGE DETECTION

Peter Chuan

The purpose of this investigation is to find the class of edge
detectors that could find edges with greater resolution. One of the
properties that could be looked into is the orientation of edges in_
the image. The pictures we are most concerned with are pictures of
natural images, most of which contain structured objects 1like trucks
and vehicles on a natural background. Figure 1 shows the picture of a
tank with a background of marsh. This background, for our purposes of

extracting only the tank, is considered noise. However, it should be

noticed that this very background which ve condesn to be noises

actually contains considerable information in itself. Therefore, anyi

i
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good edge operator that will pick up high resclution edges will detect
both backgrouni and object. The problema facing all edge detectors is
to be able to selectively discriminate edge points not cof interest.

Por this, locally adaptive thresholding is considered.

An edge magnitude map and an edge orientation wmsap is produced.
Figure 2 shows the edge map thresholded so that the most significant
4000 edge points are displayed. In this examfle, the Kirsch operator
is used. Based on the observation that edge points wvhich do not
belong to any structured object should have edge directions
distributed randosly, the variance 02 of edge directions inside a
3 x 3 vindov is computed. The edge magnitude map e(x,y) is then

modified by the following relation

and the resulting wmodified edge map o' (x,y) is threshclded ¢to obtain

figure 3.

Other inforsation that could be obtained from the edge direction
map is the continuity of edge directions. 1In figure 4, the edge map
e' (x,y) is thresholded, where e'{x,y) is the modified version of the

edge saygnitude map e(x,y) given by the relation
If the edge orientation at point (x,y) is O(x,y), and the orientation

of the pixels at the front end and back end of C(x,y) is O(xl,yl) and

O(xz,yz), respectively, then
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Figure 1. Tank on a noisy Figure 2. Kirsch thresholded
Background to display 4000 most

significant

A=

Figure 3. Kirsch with variance Figure 4. Kirsch with continuity

modifying function modifying function
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Figures Sa, 5b, and Sc show the same three procedures applied to
a noicy straight line edge and evaluated with Pratt's figure of merit |
<1>., The original picture of the 1line has an S/N ratio of five

defined in the convention given by the above figure of merit.

The original Kirsch output has a figure of w®merit F = 68%. The
Kirsch output implemented wvith directional variance @gseasure has
F = 1% and the Kirsch output implemented with continuity sodifying

function has F = 75%.

From figures 2, 3, and 4 it is obvious that the <continuity and
variance modifying functions create more backgrcund edges than the
original =2dge magnitude map. However, figure 4 chows that more edges
on the side of the tank were Jdetected by the continuity modifying
function while tha other edges are more or less preserved. Pigure 3
shows eodges that have less randonm edge directions and therefore most
detected edges appear as part of a chain of edge pcints. It is not
exactly clear as to what extent the orientation information could

contribute to ietecting fine edges.
References
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2.4 SCENT SEGMENTATION BY CLUSTERING

Guy Coleman

The major portion of the effort during the fperiod of this report
has been directed at examination of scene features and their
relationship to the ov=rall clustering problem. The only intrinsic
features of a pixel in a monochrome image are its position (x and y
coordinates) and its brightness. All other features are of higher
order, that 1is, they are based upon the relaticnship of the pixel to

other pixels in the scene.

& number of differ2nt features were conmputéd for overlapping
blocks in an aerial photograph (see figure 1). As expected, the
larger block sizes virtually destroy the scene detail. These features
(see fiqgures 2 through 6 for examples) were computed by averaging the

value of the feature over the blcck.

A different approach wvas adopted for the tank scene (figure 7)
and the armored personnel carrier scene (figure 8). In these scenes,
features vere computed for several block sizes centered on each pixel.
While this approach requires wmore computation, the intrimsic
resolution of the picture is maintainad (see figures 9 through 22 for
examples). Some of the features (mean, for example) still cause

sutstantial blurring and loss of detail.
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Figure 1. Aerial photograph
original
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Figure 7. Tank original

Figure 9. Tank mean 7 x 7

Figure 11. Tank texture 7 x 7

Figure 12, Tank mode 7 x 7
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Figure 13, Tank mode 15 x 15 Figure 14. Tank median 7 x 7

4

Figure 15. Tank median 15 x 15 Figure 16, APC mean 7 x 7

Figure 17. APC Variance 7 x 7  Figure 18. APC Texture 7 x 7




Figure 19. APC mode 7 x 7 Figure 20. APC mode 15 x 15

Figure 21. APC median 7 x 7 Figure 22. APC median 15 x 15
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E Some of the features are highly influenced by the value of a ¢
pixels wvithin the block. Examples of this are variance and textu

(averaged modified Roberts Cross operator). These features alwa

1 have large values at edge boundaries. Segmentations based on the
features would therefore be expected to identify "“edge™ as a distin

region in the segmented image,

The median and mode features are formed by computing the gri

scale histogram median and mode in a block centered on each pixel .

. ~¢."x‘?"ﬁ o

the scene. These foatures (mode in particular) do not cau:

substantial degradation of the scene resolution. The median featu:
does cause some blurring while the mode feature fills in some conca:
areas and clips some highly convex areas. Nevertheless, featur
subjected to modal filtering are expected to substantially improve t|
classifier performance since they are based on the most frequent.
cccurring values within the block centered o¢n each pizxel. Textu!

features having these properties are being investigated.

The activity in progress at present is concerned wvith featu
thinning as a preprocess to clustering. The feature covariance matr
vas computed and subjected to Karhunen-Loeve transformation. T
resultant features are linear combinations cf the original featur
and are statistically uncorrelated. The highly correlated set
original features wvwill be replaced vith an uncorrelated set that
substantially smaller. Reduction of the feature space dimension
this manner is expected to reduce the amount of computation requir

in the clustering algyoritha.

s
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The clustering phase of the scene segmentation is presently in a
preliminary state. It is anticipated that the overall performance
will not be highly dependent on the clustering algorithm chosen and
the algorithm chosen will be one having computational efficiency. The
procedure under consideration presently will proceed as fcllcus (see

figure 23):

1. Initial clustering with a few clusters will be performed using the

thinned features computed previously,

2. The "quality" of the clustering will be computed by any of several

methods presently under consideration.

3. The number of clusters will be increased (by cne perhaps) and

steps 1 and 2 repeated.

U. The process will end when the improvement of the cluster quality

is less than a threshold.

It has been r2cognized that many of the linguistic or artificial
intelligenc® nmethols at higher levels of the image understanding
systems rely on preprocessing which produces closed, connected
boundaries of the scene segments. The approach described here is
based on the vector space model and uses comsunication theory methods
to achieve segmentation. Because of that, a finite mis-classification

probability wvwill always exist. It 1is 1likely that a transitional

procedure will be required to produce closed ccnnected boundaries from

the segmented scene bhefore further processing can be performed,
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2.5 RECURSIVE BESTIMATICN OF BOUNCARIES

Nasser E. Nahi and Simon Lopez Mora

The purpose of this research is to develop recursive algorithes
for the estimation of boundaries of objects in noisy pictures, the
available information being limited to the statistics of the object

boundary, object and back ground.

The scanned picture in the absence of ncise is represented bLy

S(k) = A(K)S_(K) + @ - NK)S, (k) (1)

for k = 1,...,N2 vwhere N is the number of lines in the picture, so and
Sy, denote the intensity values of object and background assumed to be
sample functions of two statistically independent, cyclo-stationary
randos . sequences whose first two moments are available, and A is a
binary valued function taking values of 1 or 0 corresponding to points

of the image belonging to the objectAor the tackground, respectively.

The domains of S, S, and A are the entire picture.
A set of observations

y(k) = S(k) + V(k) (2)

is assumed, with s(k) as defined in eq.(1) and v(k) represeating a

q . . . 2
zero mean Gaussian vhite noise sequence of variance 0 .

Let us assign to each k tvo variables w(k) and c(k) represen*ing
the vidth and the geometrical center (as meacsured frca the midpoint on

the image) of the object at the associated lire., Hence
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w(k+1)
c(k+l)

wi(k) (m-1)N+1 <k < m N-1
c(k) L T p— (3)

Since the obhject width is a positive quantity and the object lust‘
be within the image, w(k) and c(k) satisfy
w(k) 2 0 ()
wik)/2 + | (k)| = N/2
In terms of the widths and centers, the chosen representation for A (k)
is
k) = 1 for (m-~1)N+N/2 + c(k) - w(k)/2 =<k <
0 else  (M-1)N+N/2 + c(k) + w(k)/2 ) |
The quantities w(k) and c(k) are random sequences with known first and

second order statistics., Let

wik) = w(k) + w (6)
ck) = (k) + ¢
vhere v and c are the mean valuyes, respectively. As a first order

A ~ ~
approximation, the pair r(k) = [wi(k) c(k) ]* is assumed to reprcsent a
first order Markov sequence,

r(k+1) =Ao(k) r(k) + Bo(k) uo(k) M

where u, (k) = (u; uy]}* is a zero mean white normal sequence wvith unit

covariance, Ao(k) and Bo(k) are matrices cf appropriate disensions,

As a result of eq.(3)
A k)= 1 (identity matrix)

Bo(k) =0

(8)

for all k except k = aN, 0 = 1,,.,.,N,

By augmenting 2q.(7) with dynamic equations Trepresenting the
statistics of the object and background it is possible to state a

nonlinear MMS estimation problem that can be solved by the wmethod

-36-

| |




———r—

T ———r——

introduced in <1>.

To illustrate the estizator performance a binary picture with an
ellipse of unit luminance against a background of zero luminance has
been used. The original observation has been ccrrupted by adding
white Raussian noise of standard deviation 0.5 (0 = 0.5 or P = 1.0) in
the high signal-to-noisa ratio case and noise of variamce 4 (O = 2.0
or p = 0.25) for the hijhly noisy case. Twvo different estimators were
used: I) estimation of the boundaries wvhen so(k) = 1 and sb(k) =0 in
eg. (1), this condition singles out the boundary estimation itself, see
figures 1b, 1c, 2b, and 2c. 1II) estimation of the boundary as well as
the object intensity when the last one is assumed constant and only a
priori information on its variance and mean is known, see figures 14,
e, 24, and1 2e. In either case a refinement of the estimator
consisting of a detection test at the end <cf every 1line has been
performedi, As a result of this detection step, the estimate can be
rejected in which case the estimator is initialized or accepted
vithout change, The estimator detector form is referred to as the

refined estimator.

The parameters chosen for these estimators vere:

N = 256 W =57 cC =0
Case I
a8 . 926 0 7.78 0
o o S IR, BT 6z
Case II
=37
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(a) the observation, p=1.0

(b) estimate (d) c¢stimate

(¢) relined estimate (¢) refined cstimate

Fig., 1. Fstimated and original boundaries for known (b, ¢) and
unknown (d, ¢) object Tuminance, ~ indicates signal-to-

|

noisce ratio,

Bt Ten
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(a) the observation, p=.25

(b) estimate (d) estimate

(c) refined estimate (¢) refined estimate

Estimated and original boundarics for known (b, ¢) and

¢ indicates signal-to-

BTS2
unknown (d, ¢) object luminance. ¢

noise ratio,
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Es = 0.5 E(s - E s f = 0.C5
[o] [o]

Although the estimator procedure 1is afplicable to non-binary
Pictures, the way to reduce the possible increase in cosputation is

still under investigation.
Reference

1. 'N. Nahi and M. Naraghi, "A General Image Estimation Algoriths
Applicable to Multiplicative and Non-Gaussian Roise," 18th Midwest
Symposium on Circuits and Systems, Montreal, Canada, August 11-12,

1975.

2.6 SHAPE ANALYSIS AND DESCRIPTION

BErica M. Rounds

This research is directed toward constructing region
representations vhich are useful at the interpretation level. A good

representation should be largely invariant with respect to location,

orientation, and size to facilitate matching with object descriptions |

in the knovledge base <3>. The process of extracting global features

from region descriptions is called here "shape analysis.”

Shape analysis can be considered as an intermediate level betwveen
the segmentor and the interpreter. Each of these levels deals with

image descriptions on a conceptually different basis. Por example,

-40-
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regions of homogeneous properties extracted by the segmentor are
considered areas by the shape analyzer having geometrical
1 1 characteristics such as size, perimeter, and shape. On the
interpratation 1level these @may correspond to object surfaces.
Likewise, global discontinuities in the contour may te associated vith

L vertices of a three-dimensional object.

The shape analyzer operates on the region descriptiocn produced by
the segmentation level. Typically, this consists of the set of points
vhich constitutes the boundary of a region. More precisely, ve define
the closed boundary of a simple region (nc holes) to be a set of N
ordered grid points {(xk,yk)} such that (‘k-l'yk-l) is adjacent to

(xk'ﬁc)' 2 < | < N, and (xN,xN) = (xl,yl). Geometrically, the

sequence of points corresponds to a clockvise or counter-clockvise
traversal of the contour. Tvo points are said to be adjacent if they
are one grid cell apart in a horizontal, vertical, or diagonal
direction, Figure 1 shovs the eight possible neighbors of a central

reference point together with their direction codes <2>.

The region representation will be obtained by a sequence of

operations performed on the boundary data such as

(1) gap filling,
(2) local smoothing,
(3) finding global extreme points,

{4) fitting 1linear or curvilinear 1line segments between extreme

points,

(5) computing the centroid, area and perimeter of the region,
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(6) computing the convex hull, and

{(7) assigning the region to one of a set of standard shapes.

Operations (1) and (2) deal with local features of boundary segments.
Gaps can be filled by computing the bias line segaent between the two
endpoints of a yap and digitizing the intermediate points on the 1line
according to eight-connectedness. An opetator for ssoothing local
extrema is presented in the next section of this report. Operations
(3) and (4 seek to divide the closed boundary into meaningful
segments, Just as intensity discontinuities are important in edge
finding, so curvature discontinujities are significant in object
contours <4>. Fitting of «curvilinear 1lines achieves information
compression as well as facilitates manipulaticn at later stages.
Operation (6) is useful in identifying concavities in the figure.
These would be due to occluding objects. If the fitted lines of the
contour are described relative to the centroid and the principal axes
<1>, then the representation will be location and rotation invariant.
Size invariance can be achieved by normalizing ccntour segments with
respect +to area. Invariant properties will reduce the problee of
assigning a standard shape to the region. Current research is devoted

to (4), (5), 2nd (7).

Tha operations described above are not only useful for processing
boundary points obtain2d from the segmentor but also for data acquired
by manual segmentation. We have developed a nusber of prograas to
hand-sejment regions interactively from a disgplayed digital image.

The purpose of *his work is to construct object descriptions for +*he
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knovledge base. Given the resolution of images it is often extremely

difficult to manually extract straight continuous boundary segsents.

Later portions of this report presemt am algoritham for generating

figures or regions from their boundary coordinates.

feferences
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2.7 LOCAL SMOOTHING OFP DIGITAL CONTOURS

Brica M. Rounds

In extracting shape features from regiomn boundaries, a large
amount of information is contained in the global discontinuities of
curvature, i.e., at the extreme points where a significant change in
direction occurs. It is frequently desirable to perform a prior

smoothing operation on the boundary points to reduce the number of

small 1local extrema. These may be due to noise or to the particular
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algorithms used at lower levels.

A very simple technique for smoothiny is "Hysteresis smoothing"
described by Mason and Clemens <1>, In this approach, x and y
coordinates of the boundary points are treated separately. The
smoothed curve essentially follows the digitized curve within a
threshold of 2A, wvhere A is a given constant. This has the effect of
deleting local extrema of height < 2A. Let yk+1be the y-coordinate of
the (k+1) st data point, and let ;k be its smoothed predecessor. Then

Y is determined as follows:

k+1
(ii) If Yypq - A > N then y ., =y, - A,
(ii1) If Yio > Yppt A then y ., = v, ¢ A.

Pigures ta and 'b show the application of Hysteresis smoothing to a
curve segment. The dashed line indicates the smoothed curve. VNote
that this scheme is sensitive to the spacing o¢f data points. In
figure 1b where the data points are one yrid cell apart {of dimension
A), the swmoothed curve follows the original <cne more faithfully.
Thus, hysteresis smoothing is sensitive to gaps in digitized curves.
It is also highly dependent on the starting point. Since the
saoothing process is5 1influenced by the orientation of the boundary
seqgments, it will distort symmetry inherent in the figure.
Furthernmore, for closed cucves the smoothed version may not be closed.

{(For an example see figure 7a.)

FPigure 2 shovs a different type of smcothing operation called

-45-
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here "P-S pair smoothinqg," because it is based on the predecessor and

succa2ssor points of the data point to be smoothed. We consider all

possible P-S pairs in a 3 x 3 neighborhood of the reference point
(using eight-neighborhood adjacency). There are a total of 64 such
pairs, of which the eight pairs which reverse on themselves have been
ﬁ ignored. That is, we assume that the boundary encloses a region at
least one cell wide, The remaining 56 pairs have been classified into
six types as shown in figure 3. These types fora a basic set froa

vhich all others can be obtained by the following operations:

2 rotation by 900,

ey rotation by 45°, and
ey: reflection.

Computation of types is very efficient since for each type (excepting

I and V) the distance o (P,S) betvween predecessor P and successor S has

a unique value, Thus, at most two tests are necessary. The

properties of the P-S types are summarized in table 1 of figure 4.

Constant A is the dimension of the grid cell.

The objective of the smoothing operation is to eliminate local
sharp corners such as types 1II, IV, and V. Por II and IV, the
operation deletes the central reference point. 1In case of type V, the
reference point is moved to create a type I P-S pair. Let

p, = (x oY, ) denote the point to be smoothed, and let p = ( )

1

i 9
-1 yarTia

be the smoothed predecessor of p; -

llgorithl
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Figure 3. Distinct P-S pairs.
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TYPE d(R,S) e e, e; TOTAL

I 20 X 4

I J2A | X X 8

1T V5 A X | x 16

v A X | X 16

v 2A | X X 8

I | 2./2'A | X 4
Table 1

Figure 4, P.S Type Characteristics
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(0) Initialize: Scan the data points until a point P; is found suck
that P, has type I, 1III, or IV, This is the first smoothed point
P. ;- Set i to i+1,

(1) Compute g = aﬁ’j-rpiﬂ’ and assign a type to p; .

(2) If type = I, TII, or IV then Ei =p . Go to (3). If type = II o
IV then set i to i+1 and go to (V). (This checks the type of the new
reference point before assigning the smoothed point.) If type = V thet
coapute ﬁj such that 5j has type I. Go to (3).

(3) Set i to i+¢1, J to j+1 and continue vith remaining data points at

(M.

The performance of the algorithm is demonstrated on two digitized
contours shown in figures Sa and 5b. FPigures 6 and 7 coapare the
effects of Hysteresis smoothing with P-S pair smoothing. 1In general,
P-S pair smoothing tends ¢to fproduce a curve vwhich has a close
reseablance to the original one. Since this method is not
direction-dependent it will preserve symsetry. It is also insensitive
to gaps in the boundary, since successive points separated by aore
than 2A are not changed. The choice of starting point (marked ir
figures 6 and 7 by X) assures that the algorithms will produce a closed

contour.

This smoothing algorithm can serve as a preprocessor before¢
applying more sophisticated techniques for curve fitting. Althougl
the 3 x 3 neighborhood is usually not 1large enough to assess thi
global significance of some corners, it is felt that the econoay of

the algoritha outweighs these disadvantages. The large nuaber o
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Figure 5.

(a)

(b)

Original data points of contour
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possible configurations which must be considered ina £ x S or 7 x
neighborhood would add considerable computaticnal complexity withou

producing much better results.

Reference

1. S.J. Mason anil J.K. Clemens, ®Character Recognition in a

Experimental PReading Machine for the Blind," in Recoqgnizing Patterns
P.A. Kolers and N, Eden, eds., M.I.T. Press, Cambridge

Massachusetts, 1968.

2.8 PIGURE CONSTRUCTION FROM ITS CONTOURS

Erica M. Rounds

A method is presented for constructing a planar, digitized figux
from its closed boundary. This can be useful for extracting a desire
region from a given scene once its boundary is determined. Anothe
potential application is image synthesis where the image i

constructed from various regions to wvhich different intensity, coloi
or texture values have been assigned. Image synthesis cculd be
valuable tool for coaparing the processed picture informsation with ¢t}

original input scene.

In the following ve assume a digitized contour usii
eight-neighborhood adjacency and counter-clockwise traversal. T
algorithm permits any nusber of "holes™ in the interior of the figu

or region, Hole boundary 1lists are sianply appended to the regi
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i boundary list. Fiqgure 1 shows the boundary points for a region with

twvo holes.

The algorithm consists of two steps. During the first step, each
boundary point (xk,yk) is assigned a type which 1is stored in a
correspondiing element (i,j) of a picture matrix P having dimension

- 1 - " 1
(anax ynﬁn + 1) x (xmax xmin + ) The type for (xk,yk) is based
on the "shape"™ of the line segment connecting points (xk f%(l)'
k (ﬁ(.ﬁ(): (HHJ'&+1)' Classification into types is straight-forward

since each type has a characteristic pattern. This is given by a

vector of 1length 3 whose elements represent the number of neighbors

above, on the same horizontal line, and below a given reference point
in 2 3 x 3 neighborhood. PFigure 2 gives the pattern and typical line
segaents for each of the six types. Pigure 3 shows the assignmsent of
boundary types to the points in figure 1. Types 1 and 1} are local
peaks (concave or convex), and types 2 and 4 are end segments of a
horizontal line. The latter always occur in pairs, possibly separated

by type 6 points.

Step 2 is described using figure 4. The interior of the region
is indicated by hatching. Each rovw of P is scanned loft to right and
interior cells of the figure are filled 1in, i.e., corresponding

elenents of P are assigned a specified value. To determine the left
and right end or a rovw of interior points, boundary points are

examined as follows:

(1) If the boundary point is approached frca the exterior of the

region, then

-55-
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Figure 1,

Contour points of regions with holes.
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(a) types 1 or 3 (figure 4f) and matched pairs of types 2
(figure 4a) are convex boundary segments which are ignored;
(b) type 5 (figure 4g) and unmatched pairs of 2 and 4 (figure &c

the beginning of an interior row.

(2) If it is approached from the interior, then
(a) types ' or 3 (figure 4e) and wmatched pairs of types 2 .
(figure 4b) are concave boundary segaments which signif

continuation of an interior row;

(b) type 5 (figure 4h) and unmatched pairs of 2 and 4 (figure 44|

the end of an interior row.

These cases are easily distinguished by using two parameters, on

the interior/exterior condition and one for reseabering v

horizontal boundary segment is scanned. Pigure S5 shows the resu

applying step 2 to the boundary types in figure 3,

The preceding algorithm requires only tbhe 1list of bo
coordinates. This could be the output of a region analyzer.
computationally quite efficient since each boundary point is ex
only once during each of the two steps. Storage requiresen
mininal and are determined by the region size. The resulting p
matrix can be mapped into any desired area for the purpose of

synthesis.

The silhouette generator by Dudani <1> is similar it
respects, It operates on a list of boundary fpoints together

list of predecessor/successor types (for a discussion of thes
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section 2.6 of this report). The notion of a "region crossing poin
includes the above boundary type 5 as well as sose other cases. T
algorithm requires one additional step and cannot be used directly

regions vith holes.
Reference

1. S.A. ©Oudani, "Region Extraction Using Boundary Fcllowing,"

appear in Proceedinys 1976 IEEE Workshop on Pattern Recogaition a

Artificial Intelligence.

2.9 AERIAL PICTURE SYKRTHESIS

Benham Ashijari

Image synthesis involves the derivation Lty computer of f"bas
information® from an image and applying it to recreate the pictu

from a set of available pictorial data bases.

The research currently being conducted involves digitized aeri
photographs. In some cases, the synthesized version of a picture a
the picture itself are close enough to describe various applicatio
of image synthesis, In general, the synthesized picture &
statistical and visual similarities to the original one. The "bas
information" derived from the original image suffices to describe a
form the synthesized version, and therefore this "basic inforamation
the information which represents the picture of interest and can

stored or transamitted instead of the original picture. The technig
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involves segmenting an area into distinct sections by texture or
features, and preserving only the outline of the sections. The
displaced segments are then compared with a predetermined set of data
tases, and those most similar to the original sections are chcsen for

reproduction.

It can be shovwn that for transmission of the outline of a picture
and synthesizing it at the receiving station ve need 0.1 to 0.2%
{1000:1 or 500: 1) of the information bits that would be regquired to

transmit a picture in the usual way.

Aerial Photographic Data Base

The data base used here is a set of 128 x 128 aerial Ffictures

taken from a flight from Los Angeles to New York (see figure 3).

There are nine distinct scenes in the data base:

1) Airport

2) Cloud patterns

3) Desert

4) Parmland

5) Forest

6) Mountain

7y Plains

8) High density urban areas

9) Water

These scenes are chosen to be mutually exclusive (i.e. such that

they do not have other types of texture or scenes in them). For
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Figure 1. Original Picture
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Figure 2. Segmented picture
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exanple, the urban area does not include a river passing through |
Pigure 3 shows some of the 128 x 128 data base pictures. Ideally
need 32 pictures of each aerial scene (for a S bit code), and tt
vould make the total number in the aerial data base 288. Hoverver,

have a total of 91 novw available.

Statistical Analysis on the Data Base

In order to have a measure of closeness betveen the data be
pictures and the corresponding segmented area of the original pictul
ve need to set some mathematical criteria. A variety of meacsures ha
been considered for coarseness, dissimilarity, homogeneity, a

orientation wvhich all fit into the area of texture analysis.

Gray-Level Co-occurrence Matrix

Before analyzing different criteria, wve need to discuss 1
concept of gray-level co-occurrence matrix. (In the literature tt
is sometimes referred to as the grey tone spatial dependence matr

<3>.)

Consider the (x,y) plane and a picture f(x,y) defined over ti
plane. Let 4 = (Ax,Ay) be a vector in the plane. We can ccapute |
joint probability density of any pair of gray-levels separated by |
vector A . Por the discrete case, Ax,AY are integers. By counting

number of times that each pair of gray levels occur at separation |

we can form an array of m x m, vhere n is the number of gray lev«
present in the picture. In this case, ve count pairs of gray leve

at separation 8 or -A indifferently. Therefore a symmetric matrix
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generated. Por example, consider a S x S picture as the following:
1PN 28 2 =3
1 2 3 2 0
01 00 3
) el N 2
2 3 210

There are four gray levels 0,1,2, and 3 in the above picture.
Let (8x,48y) = (1,0). This means the pairs of gray levels in the x (or
-x) direction and with a distance 1 from each other are ccunted. For

all possibilities the gray level co-occurence matrirx will be:

>l 1

W N =~O

We generally consider the vectors to be: (1,0, (1,1, (0,1,
(-1,1). This corresponds to the pairs of pixels with Oo, u5°, 90° and
135o from the x~-axis. Therefore, there are four (m x m) matrices for
each (n x n) sample window takenm out of the data base (» is the number
of gray levels, n is the number of pixels in one rov of the window).
At the moment n is chosen to he 32 and ve scale the gray levels of the

pictures to be 32 levels instead of the normal 256.
Texture

Texture analysis plays an important role in image synthesis. To
be able to replace a part of the original picture which includes, for
example, farmland, vith one of the 32 types of farmland pictures in

the data base, ve have to compare the textures in these two scenes and

pick the closest one.
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If a texture is coarse, and A is small ccmpared to the sizes
the texture elements, the pairs of points at separation 4 shou
usually have similar gray levels. This means that the high values
the wmatrix C, should be concentrated on or near its main diagona
Conversely, for a fine texture, if A is comparable to the textu
element size, then the gray levels of points separated by 4 shou
often be quite different, so that the values in Ch should be spre
out relatively uniforaly. Thus a good way ¢to analyze textu
coarseness would be to compute, for various values of the magnitude
4, somws nmeasure of the scatter of the CA values around the ma
diagonal. In what follows P(i,J) is the (i,J) th element of the giv
matrix (vhich has size m x m = 32) divided by a normalizing factor
vhich is equal to the sum of all of the matrix entries <4>. P(i,J)
actually a measure of joint probability density that the pairs of gr

levels (i,J)'s occur at pairs of points separated ty A= (&x,dy).

Beasure of correlation:

m m
f1=.z1 ;id(————”(};")
i= =

f; is a measure of coarseness <2>. f, can be normalized using mea
and standard deviations associated with the marginal density functio

(i, J) (i, J)

Homogeneity measures:

m m
f =:§ : EE: (Iﬂi,th
2 R
1= =
(sum of squares of all matrix entries) fz is the angular second mome

and is smallest when the P(i,J) are all as equal as possible, It
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large vhen some values are high and others are low <3,4>,

m m
L =9 D, P, IR log(Pl, I)/R)

i=1 J=1
F £3 is the entropy and is another measure of homogeneity in a picture.

This measure is largest for equal P(i,J) and small when they are very

unequal.

Other than the above, the radial distributicn of PFourier Powver

Spectrum gives a measure of coarseness but vas ruled out because it is
believed to have a high coaputational cost and goor performance

compared to the other textural features.

Crientation

Orientation is actually another measure of coarseness and it
shows that a texture 1is coarser in one direction than another,
Orientation is 4important in image synthesis because ot the
direct ionality of scme natural patterns, e.g., mountains or msan-made

scenes such as urbhan areas or farslands.

1f a texture is directional then the degree of spread of the

values about the main diagonal in C, should vary vith the direction of

8
4 (assuming that the A magnitude 1is in the proper range). This

texture directionality can be analyzed by comparing spread measure of

CA for various directions of & <u>.

A measure for directionality has been considerad to be the

contrast:

ARmae Ja oo

Mo ac o
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m m
f, =Z Z(i-J)z PG, J) /R
i=1 J=1
This is essentially the moment of inertia of the matrix around |its
main diagonal; it is a measure of the degree of spread of the matrix
values. It is expected to have the highest value at the direction

perpendicular to the directionality of the texture.

Also the *“angular™ distribution of values of Pourier Pover
Spectrum 1is sensitive to the directionality of the texture in f. It
will have 1its high values concentrated around the perpendicular
direction to the directionality of the texture. However, at this

soment it is not being considered for our measurements.

Feature Vectors

A 32 x 32 vindow is taken fros each data base picture and a gray
level co-occurrence matrix is computed for each of the four directions
0°, 85°, 90° and 135°. £, £, f, and f, are computed for each
matrix. There are, therefore, 16 nymbers associated vith each data
base picture. These 16 numbers can be assumed to be the coordinates
of a 16-dimensional vector. Therefore, there are 32 vectors for each
class (scene) of data base (Dil'bi2'°"bi32 and ve have nine classes

in the data base (1 < i < 9. These numbers vill be saved on tape for

future use.

Segmentation

The first stage in synthesizing a picture is delineating the

distinct areas and sectioning them according to their texture an
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features {see figures 1 and 2). (It should be mentioned that because
of wunavailability of a simple picture which could include various
textures and scenes, the original data (figure 1) was composed such

that it included various desirable pictorial data.)

Segmentation is achieved by using the track-tall on the digital

*
interactive display (Aerojet) driven by the PCP 11/40. The locations

of the pixels over vhich the track-ball passes is determined angd

i 2o

e

stored in a 2000 x 2 array. The first column of the array corresponds

to the rov-locations and the second colusn of the array gives the

column location of the pixels. The rov and column location of each
pixel is put in the array as the track-ball passes over then, They
are the pixels vwhich are 1located on the contours of segmented
pictures. This 2000 x 2 array along with the description of what are
inside the contours (mountain, forest, urtan, etc.) are sent to the

user's directory in a PDP KI10 computer on the ARPANET.

The user can nov start synthesis of the picture. The synthesis
is done automatically. The user should answer some questions asked by
the program on his terminal and the operator mounts the data base tape

and the feature vectors tape.

Statistical Analysis on the Original Picture and Selection of

Apgropriate Data Base

*An automatic segmentation routine based on pattern recoynition

techniques 1is being developed such that any picture may be segmented

by computer rather than manually.
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Once the different areas have been isolated (either wmanually ¢
automatically), each mnmust be wmatched against a wide selection ¢
standard data bases. For exasple, there are 32 types of mountains i
the data base. The mountainous area in the original picture amust t
replaced with the closest of these 32. For this purpose, we have t
take a window out of the scene to be synthesized and compute the gra
level co-occurrence matrix in four directions and Lasically do th
same type of calculations as described earlier and comse up with 1
nusbers which constitute a feature vector Z. Supgpose the featur
vector 1is from the @mountain class. We have to compare each vecta
#o 00 ¢D with Z and pick the closest

mountain32
No scheme has been developed yet for this purpose. However, th

L4

Dmountain 1 Dmou.ntain 2

Fisher 1linear discriminant technique has been discussed in th

literature and may be considered. We <can use a voting scheme t

determine the closest data base for a given seasurement Z,

S!nthesis

The receiving computer has the follcwing information: th
segmentation grid and the data base nuambers with their respectiv
positions. Now the appropriate data base is selected for eac
section. If the computer finds the data base ssaller than the spac
it is to fill, it automatically sagnifies it 2 x 2, wusing a

interpolative scheme (see figure 5).

The computer then matches the grid section to the data base¢

cutting off warginal areas, and pieces all of the seyments togyetherx

What results is a composite picture vwith great similarities to t}
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original (see figures 4 and 5).

Because the project is at such an early stage, the autcratic
selection of data base by computer was not possible. The data bases

in figures 4 and 5 are chosen by the user for illustrative purposes.
The choices are according to visual similarities to the areas in the

original picture.

The problea faced is that in a synthesized picture roads and
rivers may appear discontinuous and only by extensive research in the

future can ve hope to overcome this problea.

Application

For any n x n picture the total number of points goes as nz,

vhile the number of points on the edges is proportional to n.

For transmission of a 256 x 256 picture which will have values
from 0 to 255, there 1is a need for 256 x 256 x 8 = £24288 bits of

information.

If this picture can be synthesized, the amcunt of information
bits needed for transmission will be substantially reduced. This
involves segmenting the picture to its differentiable areas, such as
mountains, faraland, etc. This task is achieved by drawing a contour
around each area. The result is a grid. For ¢transaission of the
location information of the contour points, on the grid, a great deal
of advantage arises due to their connectivity. The beginning Ffpoints

of a contour reqguires 16 bits to specify its location. Then, through

-73-




Figure 4. Synthesized Picture
of Figure 1

Figurc 5. Synthesized with 2 x 2
magnification

The above figures (4 and 5) represent the simplest form of
Image Synthesis for figure 1.
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a chain coding process we can specify the seccod pcint of the contc
according to its local difference with the first one and fo on.

can approximate small variations on the contour with straight 1lii
and therefore ve have to code only the important turning points on {
contour and vith this procedure we probably need less than 60 poit
to be coded. Considering the average distance of two points to be
pixels, ve need 8 bits for each of them, and wve have 9 differe
scenes with at most 32 variations on each one in the data bases. Tt
takes about 9 bits of information for each area and supposing the
are 10 segmented areas on a picture; for transeitting ti
information, ve need 586 bits which is betwveen 0.1 to 0.2% of t
information needed to transmit the entire original picture. This 9¢
to 99.9% saving has some applications. Por examgple, in some cas¢
the 1local relations and types of scenes in a picture are of conces
pot the actual picture. For this case, image synthesis shall

useful.

In some occasions that the actual data is needed in part of
picture, synthesis is detrimental for that part. For these occasi
that part must he transamitted exactly and the rest can be synthesiz
For example, in figure 1, the airport éan be transmitted exactly

the rest of the picture can be synthesized.

In meteorological applications, original clcud patterns can

retained while the exposed surface features are synthesized.
synthesized picture will be an exact replica aad there will st

remain wmany cases in vhich the actual photographs are necessary.
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these, image synthesis will never be useful. But for a great many
uses, the ¢time and cost saved in transmission of image data
compensates for the loss of originality of the picture. The diagram

shows various stages of synthesis and transmission.
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2.10 SOME EDGE SEGMENTATION RESUL1TS

Ramakant Nevatia

Satisfactory segmentation of objects in a scene is a key part of
most scene analysis systems. The strategies employed for segmentation
vary along many dimensions, often determined by the particular domain
of the problem. Here, we restrict to the class of problems where no
prototype specific information about the scenes is available, i.e.,
the objects present are not restricted to a small set of objects, nor

any information known about their spatial relationships.

Results for four scenes, shown in figure 1 are presented here.
All four pictures contain only a few (incidentally only one each)
objects of interest and the objects are large (occupy a significant
proportion of the picture). The first three fpictures are of military
vehicles against a desert background. The chosen pictures represent
perhaps the simplest class of pictures, useful for practical
applications. VYet, by the current state of tbe art, segmentaticn of
these pictures is a difficult task (at least, without using prior
knowledge). The complicating factors are the presence of texture and

lack of multi-sensory information, such as cclcr or range.

Partial segmentation results using an edge tased approach are
presented here. Figures 2a through 2d shov the edges detected in the
corresponding pictures by the application of a Huveckel Edge C(Cperator
<1, The operator was applied at every seccnd pixel to every other
rov., A small vector along the direction of the edge is displayed for

each detected edg2. Note that same thresholds were used for all four
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(a) (b)

(c) (d)

Figure 1. Four selected scenes.

a.




Figure 2. Edges detected in pictures of Figure 1.
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pictures and no =manual tuning for optimum edge detection wa

attempted.

The edge pictures contain a large number cf edges belonging t
the textured background but the objects are clearly visible to th
human eye. It is hypothesized that edges belonging to object
(particularly man-nade objects) tend to occur along elongate
segments, whereas most background texture edges tend to be distribute
randoaly. An edge 1linking procedure that links edges with simila
orientations in straight line segments along chosen directions ha
been described previously <2>, Results of applying this linkin
procedure to edges shown in figure 2 are shown in figure 3. Here
only those edge segments which contain at least seven edge element

are retained.

0f course, such linked edge segments do not constitute a coaglet
segmenation of the scene. However, they offer promising startin
points for further segmentation. The next step, for example, may be
completion of the partial boundaries of the cbjects. Por man
applications, such as recognition, the partial boundaries may suffic
in many cases. Research is in progress for further extending thi

approach.

Results shovwn here indicate that the techniques used are fairl
successful 1in 1isolating extended edges of objects of interest. Mat
of the difficulties arise in the process of edge detection itself
Hueckel edge detector is unable to detect fine, high resolution edg«

because of the large size of the operator and also fails in presen:
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of fine texture. Local high resolution edge detectors, and al
larger, texture edge operators may be used to supplement the edg

detected by Hueckel operator.

A major motivation of presenting these intermediate results is
stimulate comparison of techniques used by various groups vorking
the ARPA Image Understanding program. It is felt that the select
scenas are good test vehicles for segmentation techniques. (A larg
number of similar pictures is now available in the data base prepar

by USC.)

The picture used in figure 1d is a sub-gicture of the house sce
qsed in Ohlander's work at CHNU <3>, Ohlander's technique relies
recursive segmentation based ‘on histogramming of various ima
attributes. For the house scene, the most effective attributes se¢
to be those based on color, such as hue and saturation. Note that t
results presented here make no use of color inforsation at all. (U
of color in segmentation using techniques similar to those descrit

here is discussed in <4>,)
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2. 11 EDGE DETECTION THROUGH ORTHOGONAL TRANSPORMATICN

Ikram E. Abdou

The problem of edge detection was discussed through many
different approaches <1, However, so far, the application of
orthogonal transformation in edge detection has not been given enough
consideration, One of the few examples in this trend is the Hueckel
operator <2>. 1In Hueckel's work edge detection is based on fitting
the intensities in a given region to an idecal edge elamant. The
position and direction of this edge is obtained bty ainimizing the mean
square error between the intensities of the region considered and
those of the ideal edge. Computation is simplified by transforming
into the Pourier domain and using only the first eight coefficients.
A measure of the goodness of edge is coaputed and is used in accepting

or refusinjy the edge. His work was extended tc line detection in <3>.

Althoujh Hueckel's results are quite good, the operator has two
1isaivantages. Pirst, it is time consuaming and second, small edges

cannot be detected in the relatively large block size used.
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Another approach to the problea will be introduced here. In t
approach a finite set of edges in a small block is considerad.
corresponding Pourier coefficients are computed. Edge detection

isplemented by comparing these coefficients to suitable thresholds.

The computation of Pourier coefficients is a simfle problesn,
can be easily generalized to shifted or rotated edges. This is
the case for the detection problem, vhere a statistical model
needed to obtain an optimum detection strategy. In fact the w

described in <4> can be used in solving this problen.

The set of edges considered in this paper is shown in figure
A function f(x,y) defined on an N x N block has corresponding Four

coefficients F(u,v) given by

N-1 N-1
2 2
E E : 3 1
F(u, V) = f(x, Y) eru+w 3 (@B
_ N-1  N-I
where == T o5

Z"Y (2)
W =exp (- =)

In many cases closed foras for the Fourier coefficients can

derived. As an exasmple, for the case of a horizontal edge given by

£ xy) = fory< 0 (3a)
h
=b + 2 fory =0 (3b)
= >
h fory > 0 (1c)

The corresponding Pourier coefficients are
1

‘;;Z is dropped for simplification.
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Othervise

1
F}ﬂo,v) = Nh 2 + (5)

Fule,v) = 0 (ifu #0) (6)

Fourier coefficients are calculated for all the cases shown

figure 1. The results for N = S are shown in figure 2.

From these results it is obvious that the edge direction can
determined from the Fourier coefficients. This technique is used wi
the test image given in <5>, The Fourier coetficients corresgondi
to each block are coampared to different thresholds to decide t
presence or absence of an edge. The direction of ¢the edge,
present, is also determined. Edge maps for SNR = 10 and 1 are shc
in figures 3 and 4, respectively. In figures 3a and &a only ¢t
information about edge location is used, vwhile in figures 3b and
information about the edge direction is used to enhance the edge ma
In both cases the resulting edge maps show some degree of improveme

over those obtained by the Sobel operator <5>.

References

1. L.S. Davis, "A Survey of BEdge Detection Techniques,” Universi

of Maryland Computer Science Center, November 1973.

2. M.,H., Hueckel, "An Operator vhich Locates Edges in Digiti:

Pictures," Journal of the ACY, Vol. 18, No. 1, Januvary 1971, |

Sa=




—_——————————————— . ' = S . -

AD-A134 943 IMAGE PROCESSING RESEARCH(U) UNIVERSITY OF SOUTHERN 2/3
CALIFORNIA LOS ANGELES IMAGE PROCESSING INST |
H C ANDREWS 30 SEP 76 USCIPI-720 F33615-76-C-1203

UNCLASSIFIED F/G 20/6 NL




i mz.a 2.5

g 2
=rER
L | Sy

. EX) 20
T =

lizs e e

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU 0" STANDARDS ~1963 — A




i) o i) 1.82 jh i) 0
ii) 0 ii) 0 ii) 0
iii) 0.812 jh iii) -2.63 jh iii) 0
iv) 0 iv) 2.63 jh iv) -0,812 jh
i) 0 i) -7.69 jh i) 0
ii) O ii) O ii) O
v iii) 3.44 jh iii) 4.25 jh iii) O
iv) 0 iv) -4.25 jh iv) ~3.44 jh
1 (i, i, iii, iv) i) 0 i) 0
k h ii) -7.69 jh ii) 1.82 jh
25(b+> ) iii) -4.253h liii) 2.63 jh
E iv) -4.253h |iv) 2.63 jh
i ] ————p 1
i) Horizontal
Z 1i) Vertical
iii) m/4
iv) -m/4
Figure 2, Fourier coefficients for a 5 x 5 block.
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Figure 4, Edge maps for SNR 1,
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2.12 STATISTICAL DFSIGN OF EDSE DFTFECTORS

ITkram 5. Ablou and William K. Pratt

A wide variety of =2dqe detection methods hive been deviged <1-35,
Only recently has there been any attempt to devise a tigure of merit

for edye dotector parformance <4>, This report summarizes an ongoing

effact to Adevelop a statistical model for ndge detection *ha*t can be

used in the design and a priori evaluation of €dge datentors <5>.

Figje Model: Figure 1 illustrates the basic model for a 1local
ileal edge defined over a2 3 x 3 block of pixels. These ideal edges
are assumed to be subject to additive white Gaussian noise With
standard daviationg . Tha probability 12nsity at cack 3 x 3 point in

an observation array is therefore a Gaussiin density of the form

2
Gla,0) = [Znoz]-%exp{j-x—'?—} (1)

20

where Y rapraseuts the observed pixel amplitude and 1 is its mean
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value as specified by fiqure 1,

Linear Edge Detection: In a linear adge detector the observw

pixel array F(j,k) is multiplied by an enhancesent mask M (j, k) over a

4

I x L vindow to produce an edge gradient functioan
L L )

G = E :E::FTj.k)hdﬁ.k) (2) ¢
j=1 k=1

. . E e . 1
Since the gradient operation is linear, the probability density of th
gradient ¢ (G) =.$E (u,0) will also be Gaussian with mean and standat]

deviat ion given by

3 3 F

u = E E F(j, k) M(j, k) (3a)
j=1 k=1 |
33 1 '5

oc=0 E E MZ(J',k) ’ . (3b),
j=1 k=1 ':

where the overbar indicates an enfeable average. Edge detection isd
performed by thresholding the magnitude of the edge gradient functionm
G such that |G| > T implies the presence of an edge, and |G| < i
implies the absence of an edge, The fprotability density of thi

gradient magnitude is
p(|G|) = [JE(U,U) +JE(-U.,0)] (4) 1

for G > 0.

The detection procedure outlined above is entirely analogous tg
signal Adetection in radar and coemunication systess. The performance
of such systems is commonly measured in terms ¢f the probability of
detection when the siynal is present, and the probability of tals;

Aetection (false alaram) when no signal is present, Applying th11
1




techanique to edge detection, the probability of false detection is

foend to be

P [ p(1G! | u=0) dx = 2 erfc [%] (5)
. E

where erfc{+] represents the complesmentary Gaussian error function.
The probability of detection can be obtained by computing the
probability of making a correct decision given the presence of the
corresponding edge. If all edge orientations are equi-probable, the
probability of &etecting an edge of any orientation given that an edge

is present is given by

P = [ p(1G! | u=u) ax (62)

which reduces to

T-u T+u
Pp = erfc} +erfc| (6b)

Bquations (5) and (6) may be employed to determine the optimal
threshold as a function of noise level to achieve a specified false

detection probability or true detection probability.

Nonlinear Edge Detection: In a nonlinear edge detector the
observed pizxel array P(j,k) is combined in some nonlinear manner over
an L x L vindov to produce an edge gradient. Analysis is Ffossible
cnly if the form of the nonlinearity is specified. As an example of
the statistical procedure consideration will be directed to the Sobel

operator. With the Sobel operator the edge gradient is
G=[x%y?} M

vhere
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2

X =[F(1,3) + 2F(2, 3) + F(3,3)] - [F(1,1) + 2F(2, 1) + F(3, 1)] (8a)

Y =[F(1,1) + 2F(1,2) + F(1,3)] - [F(3, 1) + 2F(3,2) + F(3, 3)] (8b) -
The probahility densities of X and Y are given by ¢the Gaussian
densities ;
P(X) = $uy,/TZ o (92) |

where uX and uY are the means of X and Y, respectively, for a
particular edge orientation, The probability density of the edge

gradient is then found to be

2 2
120 240 oI et
whare uz = ui + ui and IO(.) is the modifi2d Eessel function of zero

order.

With this statistical model the probability of false detection

for no edye present is

240
vhere T is the gradient edge threshold. The probability of detection

2
Pp = exp {-——2 (11)

becomes

3’ h T
B Q{J; s m} (tay

wvhere Q(a,b) is Narcuam'’s Q0 function <6>.

Conclusions: The statistical design procedure summarized in this
report appears to hold promise for the design of edge detectors in the
presence of noise. Further study is undervay to evaluate the

procedure.
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3. INAGE PROCFESSING EROJECTS o

The 1imiage processiny proj2cts coaprise an cngoing research
activity Jdirected toward image <codinygy, image restoration, vision
moielling, and *he implementation of image Fprocessing systens. In
image coling novel ideas based upon the results of the 1irage
unlerstaniing study acre heing explored as a means of achieving
significantly higher compression ratios than obtainable b{
converntional <codiny me*thods. The 1image vrestoration studies are
lirectel toward the solution of two major prcblems: blind restoration
in which a priori information alout image degradation 1is wunavailable
cr incomplete; and constrained restoration which involves the use of
luminance bounds and smoothness criteria to improved imagé
testoration. Visjon molelling research activities include the
extension of previously developed models of the human visual system to
encompass higher levels of visual percepticn in support of the image
understanding proyraunm, Inplementation studies are underwvay oﬂ
tachniques of nonlinear, two dimensional optical filtering which caﬁ

he utilize? as a form of sensor based image processing.
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3.1 VARTABLE KNOT SPLINES AS AN IMAGE ANALYSIS TECHNICUPR

Dennis C. McCaughey

The degrees of freedom of an image or its infcrmation content is
an important and frequently recurring subject in image processing. It
is fundamental to the image coding problem and in other areas such as
remote sensing. (Here remote sensing refers to undervater as well as
RPV and satellite imaging.) In coding problems one 1is interested in
the transmission of that information relevant to the users needs and
in the elimination of irrelevant data, while in the remote sensing
problem the image is to be obtained frce samples of a corrupted
version. In these areas the concern is the degrees of freedom of
sampled images and in this context there have keen several attempts at

gquantifying this notion of degrees of freedor.

With respect to the remote sensing fproblem, Twomey <1> has
equated the degrees of freedom of samples output data with this number
of non-zero eigenvalues of the gram-matrix of ¢the linear systea
corrupting the original functions. This idea has been extended in two
dimensions and applied to projection imaging systems with significant
rtesults by McCaughey and Andrews <2>. Howvwever, if the linear systes
corrupting the original function is unknown, as is the case 1in the
blind deconvolution problea <3>, another approach is necessary. One
such approach is to apply the singular value decomposition (SVD)
algorithm <4> ¢to the sampled image matrix vhereupon the number of
degrees of freedom can be equated wvith the number of effectively

non-zero singular values.

7=
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Both of these methods deal with sampled versions of the image on
some linear ¢transformation of it, and are thus affected by the
sampling method used. In the SVD case this is readily apparent by
considering an image f(x,y) that can be written as the product of two
functions fl(x) and fz(y) as f (xy) = fl(x) fz(y). If this image |is
sampled on a Cartesian grid (xi'ﬁ<)' i=1,2,eee,N, kK = 1,2,00.,K.
The image matrix can be written as the outer product of the tvo
vectors [fl(‘l)"'fl(xb9] and [fz(yl)...fz(yN)] vhicp is a rank one
matrix for all such separable images f. The point is that the degrees
of freedom should be a characteristic of tae original image and|
reflected in the sampled image only by our inability to collect an‘

uncountably infinite nuaber of samples for apfplication on a cosputer.

This brings up some conceptual difficulties since the number ofi
degrees of freedom of a function defined on a continuum is countably
infinite at best viz the space of all square integrable functions on
[~-1,1), Lz(-1,1), vhere 2PY f(x)e Lz(-1,1) can be written as

f(x) = fidi(x)

i=1
{#) being a complete ort%onorlal set and

£ =] txe*eax.
=
Here to exactly specify f in an Lz sense a countably infinite set {fi}
is regquired., 1In general if we are willing to accept an approximation

vith some error say, 8, then there exists a number N(§,p) which is a

function of 8 and {9}, such that )
1 N(4,p)
[ Je - » fiq)l(x)lzdx] < 8.

i=1

We could then define the degrees of freedom of that f at level 8 , Doﬁ,
as the inf N ,9). In this case vhere § eLz(-1,1) for any complete

fol
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set {®} ve know that 8= b |f_|z :]t
i>N(6, )

so that § is a monotonically decreasing function of the number of
basis functions used in the expansion. This property is of
fundamental importance since wvithout it, it wvould be impossible to
compare two Adifferent orthonormal expansions for £. In what follows
we will generalize this concept of epsilon degrees of freedcm using
one dimensional cases for simplicity and then extend the results to
twvo dimensional expansions,

Let f be an element of normed linear vectcr space W with distance
function d . Let o be an approximation scheme where the estimate f of
f is given by n 2
f= 2 £8(x)=s .

L i n

i=1
Here M#,8,d)is dependent upond , the sequence {8} and the aetric (dN).
We further require the property that ¢ > 0 there exists N ¢,6,d) such
that n=N(, ,d) implies that dw(f,o’n) <8 . PFurther we require that
Ng,{8} '%V’ be a monotonically increasing function of the precision to
vhich wve are approximating f. The epsilon degrees of freedom with
distance 4, DoF(dw,tf), can then te defined as fcllows:

DoF(dw,a) = inf N(8, a,dw).
{8}

To find the set {B} is, in general, far too much to hope for. However
in the <case where W 1is taken to be the space of bandlimited L
functions observed over a3 finite subinterval of the real 1line, ¢*he
1istance dw being the L2 metric, the result is known. Here for every

& the 1(%5 N(ﬂ,ﬁ,d“) vis found by Landau and Pollack <5> to be achieved

by the functions {¢] vhich are related to the prolate spheroidal
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vaveformss and first described by Slepian and Pollack <6>. While this
result is known, the determination and utilization of these waveforas
for large space bandwidth problems has met with 1little success.
é Therefore to arrive at any meaningful and useful results we will have
to restrict the search to functions that are computationally feasible
and possess the approximating properties required. One such set is
the set of polynomial splines Sk nof degree k with n free knots and

defined as follows

g Sk, n" {s(t)| there exists
2 = = .= £

0= X, X) Fees® =1 and integers Byeeenm

vith 1 = Ii £ k+1 for each i and @ =n

such that s(t) II in each of the intervals
k-m
: e S
(xi,§+? wvhile S€C i 1in an open

neighborhood of X, i=0,...,c}

Here IIk denotes the class of all polynomials of degree less than k.

Sk nthus is the class of polynomial splines allowing multiplicities up

to order k+1 at each knot and every s{t) € Sk n Possess the

representation
k . n i n-itl
sty = Dat+ T T oc.lt-x), :
i=0 '  j=0 j=o Y i
where L
n x xz0
(x), = 3
Y lo o¥

Clearly the method of fitting a different ppclyncmial in different
subintervals of [0,1] as done by Pavlidis <7> can be classified as a

Fclynomial spline with appropriate knot wmultiplicities at the




subinterval boundaries.

Polynomial splines are chosen due tc their approximsation
properties and the fact that they possess a basis namely, the B-spline
basis, that provides a local basis property thus allowing a rapid
generation vhile the matrices involved in generating a B-spline fit to
a function £ are well conditioned. With DePoor's algorithe for
computations using B-splines <8> no difficulties are encountered in
handling multiple order knots. Hereafter we will consider a spline

s{t) of order k with n knots s(t) € Sk nto be of the following fora

n
s(t) = = b.B{&y)
= 11
vhere BP“(t) is the i-th k order B-spline basis function.
1

In one dimension the following LP approximation results are known

<9>.

Theotem 1: Given f Adefined on [0,1])] then there exists a best Lp
approximation of f of the form

& (k)
2z b, B (t).

i=1
Theorem 2 (DeBoor unpublished): Let f and n te fixed then if

1 n 2
62=[ It - T b, B ()| at # 0
K 0 i=1

where gg biB (t) is a best approximation of f in Sk,n then 6k+l <6k.

Thus wve can create a sequence [si(t)} of best approximating splines of

(k)

i

order k such that if s _(t)e S s (t) € s
i k, f

ifd k, n+1’

Then si(tr‘f(t) in
2 . .
the L sense as 1 goes to®, Thus polyncaial sgplines possess the

aforementioned approximatingy properties, and the degree of freedom at

-101-

.



level epsilon in the 12 metric, DoF(kgS,H-HZL will be taken as

DoF(k,G,H-llZ) = nin{nlsi (t)€ Sk,n where si(t)

2
is a best L approximation to f €L [0,1]};

The degrees of freedom at level epsilon can be similarly defined
in two dimensions if we do the fcllowing. Using the B-spline bases of
order X ve can define the bilinear spline approximation Sk,n{rﬂxy) to

y

f (xy) as

ta - B % bBL 0B ) = 8, Gy
R e ) Xy

vhere the knots have been defined on the Cartesian grid (x; vy ) for

PSRN -2 0.0 ol 1 k=l,2,...,ny. The degrees of freedom can then be taken
x
as:

DoF (k¢ HWE) = mln{n + n |Sk n o (Xey) is a
Yy

best 1% approximation to f e 12 (0 1H}.

For our preliminary work we obtained the bicubic spline fits from the
following equations

¢ (3) (3)
Hoae nd = ‘? .il % (9 By )

k=1,2,..., N and g=1,2,...,N
In matrix notation this becoses

(el = (8105, 1(80))
vhere [B;Jﬂ is an N x n_ matrix, [b } is an n X ny matrix and [B§”]

is an n x N matri x. The solutlon minisizing the residual,
2:| f(! cY ) = f(! "i)l is'qivon by
(o, 1= (81781 (e T BT (1210 T T

Por each exper1lent N vas taken to be 128 so that the effects of the

quadrature error imglicit in this should not be a significant factor,
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2
and the residual should be a good approximation to the L error.

For our preliminary wvork we investigated the possibility of
placing the knots for the x and y knot sets from projection of f (xy)
along the y and x data sets, respectively. To do this we borrowed an
idea suygested by DeBoor <10> wherein he suggests placing the i¢1-st
knct with respect to the i-th knot for a k-degree spline according to

the followving

1/(k+1)

x
i+l
f |f(k+1)(x)| dx = const

X.
’ i
where fh)(x) indicates the i-th derivative of f£(x). To determine the

x-knot set for a bicubic spline fit the knots were such that
x

i+1 4 1 3
[ 125 = pay| ax
x dx -1

i
and similarly for the y knot set., The results for a bicubic spline

2
fit to f(xy)=e-50(x v

vith 10 knots determined in this manner for each
of the x and y knot sats compared to 10 and 20 knots taken uniforaly
are shown in figures 1, 2, 3, and 4. The corresponding least squares
residuals ar2 tabulzted in table 1. Por the case of 10 knots the knot
placements are shown for DeBoor's algoritha and for uniform knot
placement in figures S and €, respectively. It is gquite evident 1in
figure S ¢that the knots have been concentrated near zero vwhere the
function is varying more than at the edges. FProm the results of table
1 it is clear that 10 knots placed according to the fourth partials of
the projections is clearly better than the uniform case for both 10
and 20 knots. Figures 7, 8, and 9 show the results of a bicubic

spline approximation to an actual image of an armored personnel

carrier, for 40 uniform knots in each direction in figure 7 and for 80
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Figure 1. Bicubic Spline Fit with 10 Knots in X and Y Directions
Determined from 4th Partials of X and Y Projections
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Figure 2, Bicubic Spline Fit with 10 Uniform Knots in X and Y Directions
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Figure 3. Bicubic Spline Fit with 20 Uniform Knots in X and Y Directions




Figure 4, Perspective Plot of Original Function e

-50(x%+y?)

.
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NUMBER OF PLACEMENT RESIDUAL SUM OF
KNOTS MODE SQUARES
10 UNIFORM 2.158
10 4th DIFFERENCES 1.29 x 10”3
20 UNIFORM 3.24 x 1073

Table 1. Residual Sum onquzares for Knot Placement on
Function e-20(x¢+y%)
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Figure 5. X Projection of f(x, y) and Y-Knot Placement from 4th Partial
Algorithm for 10 Knots (Y-Knot Placement Identical)
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Figure 6. Y Projection and X-Knot Placement for 10 Uniform Knots

(Y -Knot Placement Identical)
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Figure 7. Bicubic Spline Approximation for APC with 40 Knots
Uniformly Placed in X and Y Direction




Figure 8. Bicubic Spline Approximation for APC with 40 Knots in
X and Y Directions Placed by 4th Differences on X and Y
Projections




Figure 9. Original APC Image
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kncts placed according to the fourth difference cf the projection data
in figure 8. Figure 9 1is the original. Table 2 contains the
respective residuals. The respective knot placements along with the

rov and column projections are shown in figures 19 and 11,

Conclusions

In this paper the attempt has been to define the concept of an |
"epsilon degrees of freedom'" of an image and to estimate that degrees.
of freedom by the number of variable knot hicubic splines necessary to:
approximate the image of an error level epsilon. Considerable success
vas achieved for the analytical ilageeéqxav%vhere 10 knots, each ini
the x and y directions were placed by an algorithas dependent on the
fourth partials of the projection, and provided an error reduction of
three orders of magnitude over the situaticn where each of the kngt
sets were uniformly spaced in the x and y directions. The error vas |
such that 10 knots placed in the above manner provided an error lowver
than that achieved by placing 20 knots uniformly in the x and y
directions. Por an actual image the results were not so good - mainly
a result of the difficulties in numerically obtaining the fourth
derivatives. Hovwever, vhile the residual sum of squares is greater
for the variable knot case than the uniform kpnct case more detail is

perceptable in the variable knot Lticubic spline approximation.

Splines were chosen as the expansion functions owing to their
relatively attractive computation and properties and it is felt that;
vith furthar research an efficient and accurate knot placement

algorithm can be develcped which would provide better results for real
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NUMBER OF PLACEMENT RESIDUAL SUM OF
KNOTS MODE SQUARES
40 UNIFORM 1.539 x 10°
40 4th DIFFERENCES s 0d

Table 2. Residual Sum of Squares for Knot Placement on APC
Image
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Figure 10a, Knot Placement from 4th Differences on Column Projections, 40 Knots
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40 Knots Placed Uniformly

Figure 10b,
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Figure 1la. Knot Placement from 4th Differences on Row Projections, 40 Knots
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Figure 11b, 40 Knots Placed Uniformly
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images than would be obtained for unifore knot bisplinef

approximations.,
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3.2 A TECHNIQUE OF A FCSTERIOERI RESTORATION

John Morton

Introduction

This project involves the restoration of a tlurred image without
a priori knowledge of the point sgread function (PSF) of the degrading

system. That is, consider+the model of the degrading systenm

g(x,y) =//h(h.y.a.ﬁ) f(a, B)dadB + n(x, y)

vhere g{x,y) is the degriﬁod imaje, h(x,y,0,8) 1is the system PSF,

f(x,y) is the image, and n(x,y) is noise.
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The majority of restoration technigues assume knowvledge of
h(x,y,0,8) and estimate f£(x,y). Yet, in most cases one would not have
knovledge of h(x,y,2,f). Thus, the technique under study estimates
both h(x,y,2,B) and f(x,y) solely from g(x,y) while assuming the

following:

1) the PSF is spatially invariant, i.e., h(x,y,%,8) = h(x-a,y-B),
2) the ex*ent of the PSF is small compared to the extent of the
image, and

3) the imige is not so severely blurred such that one cannot tell
the general class, for example, building, outdoor scene, etc., to

vhich the blurred image belongs.

Consider the Pourier transform of h
F{h} = H(“’ V)
Note in general that H is complex and can be represented in wmagnitude|

phase form as
3 8(u, v)
H(u,v) = |Hu,v)|e

Thus, if one knovs lH(u,v)l and 6(u,v), one in effect knovs h(x,y) via
the inverse Fourier transform relationship. Previous work in this
area vas termed "blind deconvolution®™ <1-4> and has had some loderatQ
successes. The wvork of Cole <1> estimated |H(u,v)|. Cannon <2-4>
extended this work by estimating |H(u,v)| and estimating S(u,v) for a
set of three common blurs. Tha estimate of 6(u,v) was accoaplished by
assuming the blur vas one of three fpossible blurs. Using a patterj
recognition technique Cannon <could discrizinate betwveen the thtei

possible blurs and effectively estimate g(u,v). The present work doei
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not assume a finite se* of possible blurs but will astimate 8(u,v)
directly from y(x,y). The mathematics involved in the estimate of
8(u,v) is similar to the mathematics developed by Knox [5-6] for recov-

ering astronomical images degraded by turbulance,

Schematically, the a posteriori restcration is presented in

figure 1.

Fstimate of PSF Magnitude

The estimate of |H(u,v)| will be essentially accomaplished by the
techniques developed by Cole <1> and Cannon <2>, For coapleteness,
hovever, let us reviev the methods of estimation. Por reasons of
clarity and due to the progress of the vork to date, only the

noise-free case will ba considered herein. By assuaption

gix,y) =// h(x-a, y-B) f(x,y)

= h(x,y) * f(x,y)
vhere * denotes convolution.

If the blurred image g(x,y) is broken into smaller images gi(x,y)
such that the spatial extent of h(x,y) is less than the spatial extent
of each g, (x,y), then approximately

gi (x, Y) ~ h(x, Y) * fi(xv Y)

In addit ifon

Gi(u, v) =~ H(u, v)Fi(u,v) (1)

vhere upper case letters denote Pourier transforams and specifically

| G, (u,v)| ~ | Hu, v |Fi(u,v)|.
1
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Averaying cver the ensemble <c¢f subimages where K-> denotes

averaging over gquantities indexed by i,
<|Gﬁu,vﬂ> m‘(‘}ﬂu,v” |Fﬁu,v)|>

=~ |H(U.,V)|<| Fi(U,V)‘ 3¢
For classes of images, for example, huildings, it was found <1>

that <|Fi(u,v)|> vas very similar for different imajes of the given

class. Thus, an estimate of |H(u,v)| is
<|G.(,v)|>
|H(u,v) PURMSEIEE
P
<|F (u,v|>
vhere <|€)(u,v)|> is performed on any image telonging ¢to the same
1

class or averaged over members of the same class.

Alternately, if one assumes stationarity,
2
Qg(u, v) = IH(u,v)| QF(u,v)

vhere Qg'éf are the power spectra of g and f, respectively.

Similarly, it was found that Qf(u,v) is very similar for different

images of a yiven class.l Thus, a second estimate of H(u,v) |is

¥ (u,v)]?
|H@,v)| ~ )
B ¢ (u,v)
vhere Qf is the power spectrum of an image belonging to the same

class,

Estimation of PSF Phase

The estimate of 6(u,v) proceeds as follows.

j'i (u' v) je (u, v) J cpi(uy v)

Let us consider the autocorrelation

*
RG (u,v,8u,dv) =< Gi {u, v) Gi {u+du, v+iv)> (2)
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Substituting Gi(u,v) from equation (1) into equationm {(2)
* *
R.G (u, v,8u,Av) s <H(u, V)Fi (u, v)H (utldu, v+iv) Fi (ut+du, v+iv)>
%*
i =H(u,v) 1 (utbu, v+av) < F,(u, v)F, (utly, viiv)> (3)
“H(u, v)H' (utbu, v+Av) R (u, v, bu, Av); [0 (u, v)-Outdu, v+iv)]
b
= |H@, v)| | H (utby, viav)| e Rp(u,v, Ay, 4v)

From equation (1)
| R (u, v, 8u, av)]| (4)
RF(u, v, Au, Av)]

| Hu, v)| IH*(u+Au, viav)| ~

Combining equations (3) and (#) and rearranging results,
:[6(u, v)-8(utdu, v+av)] RG(U; v, Ou, Av) | RF (u, v, Au, Av) |
¢ ~ |R-G (v, v, bu, AV)' RF (u, v, Au, Av)

and it follows that

= RG(u, v, Au, Av) | RF(U. v, Au, Av)| }
8 (utAu, v+Av) ~ 6 (u, v)-tan WG(u' v, Au, Av) | RF(u, v, Au, Av)
Assuming one knows RG and RF and letting 6(0,0) = 0, one may

obtain 6(u,v) by the above recursive relaticnship. Note, however,
that one can calculate R from the degraded image but one does not
knov R a priori. Thus to estisate (u,v) one must estimate R . Tt
has been assumed that the image is not so severely degraded that one
cannot tell the general class to which it belongs., As a result, the
estimate of R will be calculated by using a sisilar clear image,
Thus, the success of the phase estimation technique under study is
contingent on the similarity of R for different images within a given

class.

Froqress to Date
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A series of computer programs vhich estimate both maygnitude and
phase of the PSF has been wvritten. The programs are baing run on test
cases to ascertain wvhether or not the programs are error-free, The
programs have not been tried on real images. In particular the
important assumption of similarity of autocorrelation R for different
images within the same class has not as yet been experimentally
verified., This check will proceed as sooh as reasonable certainty as

to the correctness of the computer programs has been determined.

Although the tests to date are somevhat artificial, they reveal
protlem areas and illustrate the difficulty of obtaining a good check
of the computer proyrams. For example, consider the following test
case. The function
€x, y) = 200 -8lxl - 12}yl
vas calculated and stored on a file in standard eight bit/pixel image
format. This sinsulated image was then ccnvolved vith a function
h(x,y) and the result stored on another file in standard eight
bit/pixel imaye format. Because the object of the test was to test
the computer programs, the estimate of H(u,v) was then calculated

using the known f (x,y) and as a consequence R was not estimated but

vas calculat :d from the known f(x,y).

Results along the u = 3 and v = 0 axis are shown in figures 2 and

3, respectively. The correct answers are

b H(u,0) = sin(5mu)

S5mu

and

H(0,v) = ahﬂSﬂvl

5mv
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respectively. Note in both figures 2 and 3 that the estimated values:
are approximately correct and in gdeneral the error increases foré
increasing u and v. It is believed that the error is due to thei
estimation procelure and not the computer programs. Sources of error
include the discretization of a continuous process, li:itations.
inherent in wusing eight bit/pixel images, and inaccuracies in using
the discrete Pourier transfora to approximate the continuous Pourier

transforn.
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3.3 TMAGE PROCESSING BY TRANSPORMS OVER A FPINITE PIELD USING THE

O VERLAP~-ADD SFCTICNING TECHNIQUE

Jin Soh

The fast Fourier transform (FFT) has been used %o reduce the
computationil cost of convolution. Recent work has demonstrated that
there are attractive analogies to the FPT in certain finite fields and
rings. Transforas using these number theoretic concepts have been
developed to compute convolutions without 1loss of information of
sequences using the FPT algoritham, The transforas are defined on
finite fields and rings of integers with the arithmetic carried out
modulo an integer. Because of these characteristics they are ideally
suited for digital cosputation by taking into account quantization of
asglitude as well as time in their definitions. When the modulus is
chosen as a Permat nusmber, transformation requires only on the order
of N log N additions and word shifts but no multiplications. 1In i
addition to being efficient, they have no roundoff errors and do not
require storage of basis functions. There is a restriction on the

length of sequences imposed by the word length and also there is a

problem of oveiflov but methods for overcoming these are being

i
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investigated., Comparison with FPT has shovwn a substantial improvesent
in efficiency and accuracy. Variations on the basic nuaber theoretic

transforms are also being developed.

It is the purpose of the on-going experiment to point out that
the two-dimensional onumber theoretic transform may be defined as a
simple extension of the ona-dimensional number theoretic transfors.
For practical cases, two-dimensional finite impulse response filters
involve impulse response of a lot fewer than crdinary picture size
256 x 256 or 512 x 512 in almost all cases. Since these nusber
theoretic transforms have the difficulty that the word length required
is proportional to the length of the sequence being convolved, it is
conceivable that sectioning techniques may be of value vhen sequences
nust be convolved exactly, such as when sultiplication is very costly,
or when special-purpose hardvare for modest 1length convolution 1is
being considered. For the large picture s=mentioned above the
convolution can bhe done by sectioning the pfpicture by efficient
cverlap-adAd sectioning deleting and end effect. Por
yin) = x(n) * h(n), ve assume that x(n) is of long duration or that
the nusber of sasples representing x(n) exceeds the size of the h{(n).
Then, since the shift of the convolution y(n) is simply the sum of the
shifts of the functions being convolved, no information is lost if ve
shift each sectioned function to the origin prior to convolution. As
a result, it is necessary to decoaspose x(n) into sections and compute
the discrete convolution as many ssaller convclutiones ¢to avoid the
problea of dynamic range of the nuaber theoretic transfora. At the

same time, if N is small, then we would have the advantage that

-
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considerable time saviny could be achieved by using shorter sequences.
Therefore it can be true that the use of number theoretic transform as
a convolution tool may wmake it possible to have faster and more

efficient picture processing.
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3.4 PHASE CODING FOR OPTICAL IMAGE PROCESSING

hung-Kai Hseuh and Alexander A. Sawchuk

Many operations in digital image processing such as restoration,
linear filtering and interpolation can be performed wvith analog

optical systems., Research in these fields in the past has generally

concentrated on coherent optical systems as opposed to incoherent
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systeas., With ¢the wuse of general amplitude and phase opticai
elements, many usefﬁl image processing operations can be done veti
easily vith analog incoherent systems. If general optical element
combining amplitude and phase variation can be made, the only majo
restriction on incoherent systems is that the impulse response must b;

4

nonh-negative, }

A very useful function suitable for an incoherent opticag
processing system 1is a B-spline interpolator to give a continuoui
desampled output from the discrete spots on a CRT or other displai
systenm. Nther useful operations include Wiener filters, high spatia}

frequency emphasis filters, edge or directionally sensitive filters,

or restoration filters. ]

1

The filtering operation of the optical system can be described bq
a complex amplitude point-spread function h(x) or non-negativ‘
intensity response equal to the wmagnitude-squared |2(x”2 . In the
frequency or pupil domain, omitting scaling factors for simplicity
the desired complex pupil function H(f) is given by 4

H(O = ¥(hx)] (1)

vhere ®{.1] denotes the Pourier transform operation. The incoherenq

optical transfer function ¥(f) is then described by {
2
¥ = H(O *H(O = ¥ne|"] (2) :

using transform theory.

With these definitions, the problems and tradeoffs of optical

processing can be 1lefined. Given a desired h(x) or Iﬁ(x)lz, it haw
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heen difficult to directly synthesize anything other than sismple
functions H(f). With ¢the development of scme new techniques in
complex computer holoyram synthesis, it is hoped that this fundamental
limitation can be overcose, Oone major approach that will be
investigated is to use the precision plotting capabilities of a
computer controlled microdensitometer to plot amplitude/phase masks
directly. Even with improved capabilities <¢f these areas, the
problems of spatial frequency response and dynasic range of the
hclogram recording medium still exist, since desirable functions
|E(xﬂz generally have transforms which reach some of the extremes.
Here, there is fortunately a free variable which can be manipulated to
alleviate some of these problemas. This variable is the phase < h(x)
of the impulse response which 1is entirely free, Thus, the major
problem of 1incoherent processing is to chocse a pupil function H(f)
wvhich has lowv dynanic range in amplitude and phase, has 1low spatial
frequency structure, =2aking it easy to plot, and gives the desired
intensity response h { x) accurately. This type of probleam is
related to other problems in imaje processing and is referred to under

the general name of "phase coding."

One possible approach is to cbtain a constant aamplitude |H(fH
for the pupil filter. This eliminates the need for any amplitude
variations. 1In dijital holography the resulting pupil filter is
called a kinofora, One approach to get the constant asplitude
spectrum in the transform domain is to assuse a phase diftuser, either
random or deterministic, for the phase of h(x). Another approach is

to start with a randoa phase in the object dcmain and go through a
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recursive searching routine to reduce the dynamic range, complexity,
and object error. Although this numerical searching is a
time-consuming process 1in general, it does show better results than
using a diffuser alone. In the application of analog filtering, thdy

hologram is coaputel only once and the computatjion time is no longer a

serious problem as long as good impulse response has been plotted.

One phase coding method was first developed at IBM <1 for the
coding of kinoforas. Kinoform errors due to truncation and
quantization are discussed by Gallagher and Liu <2>. In this lethod;
the phases of object are assigned randomly and the object is then
FPourier ¢transformed. The transfora is set to have a constant
amplitule and is then inversely transformed. The resultant phase is
used as the nev phase for the object. This procedure is repeated

until an error criterion is met.

Although this method generally gives good results, it has been
found <3> that the error at some points fails to decrease, stabilizing
at a high level. This prevents ¢the error from being arbitrarily
small, To overcose this deficiency, Pienup <3> adopts an Input-Output
Approach, which allows the amplitude of the input as vell as the phasé
to be molified. This gives better control of the reconstruction. Iﬁ
this model if certain output is used as input then the same output iﬂ
obtained. Hence modification can be either added to the previous
input or present output. We will refer to these tvwo methods as Pienupﬂ

I and Fienup II, respectively.
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In general, the shape of the spectrum does not have to bhe flat,
The probleama then becomes: given the amplitudes of the o ject and
transform, how do we f£ind the corresponding phases? This problem has
been studied by Gerchberg and Saxton <U4> and the method is essentially
the same as the iterative method mentioned atove except the amplitude
of the ¢transform is set ¢to be the desired spectrum rather than a
constant. Convergence of this methcd is also froved. This method has
found applications in many fields such as microscopy and stellar

interferometry.

The 1last method suggests a wmodification to the kinoform
procedure. We can allow the amplitude of the transform to vary in
such a way that the amplitule is still smooth enough to plot. Better
results and faster converqgence could be expected. Since the spectrua
can alvays be expanded in a Pourier series, the sum of the first few
large components can be chosen as the apprcximation of the spectrun.
Here we can consider the first method <1> as a special case in which
cnly D.C. components are chosen., Note that Fienup's method cannot be
applied in this general approach since Fienup's method ic tased on the
assumption that the amplitude of the transfcrm is constant. Further

derivation 15 requiredl in applying this methcd.

In evaluating the results, we need a gocd error criterion which
can be used to molify the computing procedure or to terminate the
procedure without human intervention. This error critericn has to be
consistent with the human visual system. In general, this task is not

possible an1 instead the mean squarel amplitude error <2> or the
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rcot-mean squared intensity error <4> is used. Since the actual
quantity measured is the intensity of the image, the latter one might
be a bhetter criterion although it is largyer in general. W#We can also
argue that since human eyes are sensitive to relative intensity other
than absolute intensity, it wvould be better tc normalize the above
quantities so that these quantities are not affected by the absolute
intensity and, hopefully, the specific object used. The error

criterion adopted in this study is the folloving for an N x N picture

N:1 L
1 Z | lz Tz )z]Z/Tz (3)
E "[ 2 ( anuz " 'mn max
- N M, N=0 i
vhere a_, Tnm are the resultant image and the desired image,
respectively and
T =
e Max Tmn 5 (u)
m, n

One dimensional objects are used in the experiment for sisplicity..
Only one of them will be illustrated here. Figure 1 shows one line of
a picture. This is a 256 point array imbedded in a 12 rpoints atrayf

in order to smooth the transfors and thus the kinoform. Figures 2, 3,

and 4 show the resultant isages and kinoforms after 3¢ iterations by

the methods of Hirsch <1>, Fienup I and Pienup II <4>, Compared with

figure 1, ve found that Pieaup II is slightly Eketter but alsmost the
sase as the first aethod. Fienup I, howvever, gets nearly perfec
reconstruction in the region of the object while more noise i_
introduced elsewvhere, Since intensity is seasured in practice, thig

noise in awmplitude contributes less in inteasity.

The corresponding errors evaluated by eq. (1) are given by

E1 = ,05222 Ez =,01297 E3 = , 04449
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Figure 1. One line of a picture with initial random phase
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Figure 3. Image and Kinoform by using Fienup I
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Figure 4,

Image and Kinoform by using Fienup II
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This data is consistent with the results shown in fiqures 2 to 4.
Modification of the amplitude of the transform has also Lkeen tried. A
tiased cosine function is chosen because it is similar to the
spectrum. The result is in figqure 5 with error 24 = 0.071€2.
Although this result is even worse than the first method, it does not
eliminate the possibility of wusing this method. Purther Fourier
analysis is required to determine the coamponent to be picked and its
corresponding phase, Perhaps more than one comgonent is required to
get better results. This technigque remains to be studied

systematically.

Experiments so tar indicate that Fienup IT is the best of the
methods tried., However, the performance of different methods changes
from one object to another and since other wmethods are still wunder
test, it 1is too early to conclude which method is the best for
particular response functions. Future work will include tests and
analysis of the various technigues and application to two-dimensional

problens.
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Figure 5.

A

Image and Kinoform by using cosine function as the
amplitude of the Kinoform
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3.5 ARTIFICTAL STEREO ALGORITHHMS

Alexander A. Sawchuk

In a previous report, the technique of artificially generating
stereo image pairs was introduced <«<1>, The stereo information is
obtained from various image features or combinations of features,
including pixel brightness, edge information, texture, or
multispectral data., The technigue is being explored as an enhancement
aid for the human observer whereby these fecatures are mapped into the
depth perception ability of the observer, It should be emphasized
that the stereo pairs generated are not reality, and *the resulting

stereo pairs may only coincidentally reseable the true stereo.

This s2ction describes some of the details of the algorithe used
to obtain the stereo and outlines curren* applications and extensions

under exploration. Figure 1 is a block diajram cf the entire process.

To generate the ar*tificial stereo pictures, feature extraction such as

described above is performed on a single-frase monocular picture,
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Linear saoothiny with a moving average convolutional windov is then
performed to eliminate any noisy or jagged 2dges on shifted rparts of
the stereo picture pair. The averaging window is necessary to avoid
severe shape distortions which would make visuval regyistration of local
features difficult. The 1local features such as objects, spots and
lines must remiin for any stereo to be percaived. Various windovw
sizes have been tried, and it appears that the optisum may be wveakly
picture-dependent, A good choice for most situations, however, is one
with 3 pixel horizontal averaging and S5 pixel vertical averaging. The
horizontal averaging is kept small so that blurring is wminimized, and
the vertical averaging is present to eliminate the most objectionable

vertical jagjed lines in shifted pixels.

The next stajgje of the operation is the actual stereo pair
generation. Any true stereo information externally supplied can be
introduced here, and a gain control for the stereo effect is provided
in the algorithn, The stereo effact is obtained by local edge
shifting as shovn in figqure 2. The perceived stereo in the 1left eye
is obtained by locally shifting pixels to the rigyht. For the right
eye, the shift is in the opposite direction. Pigure 3 shows the
details of the shifting procedure for each line of the image. The top
graph represents the desired non-negative height information after
smoothing as a function of position along the image line. The second
graph of figure 3 represents the input-output position
characteristics. The height data is added to the unit slope linear
function shown as a dotted line. With no height information, the

dotted 1line would be a mapping with no shift froms input to output.
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Figure 3, Shifting algorithm
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The second graph 1is then made monotonic by a curve-followi

algorithm, as shown in the bottom graph of fiqure 3. In the inpu
regions of zero slope, the pixels are obliterated by adjacent ones
soved in. In regions of large positive slope, certain output areas
may be missed and left blank. When this happens, pixels are wmoved in
beginniny from left to right, to fill in the blank areas., Thus,
local distortion takes place to create the 1local shifting. Th

directions for the right eye are simply opposite.

Future work on artificial stereo will concentrate on the case o
different features and alyorithe improvement. It has been recentl_
found that the addition of a brightness histogram equalizing step i
the block diagram of figure 1 just before the stereo pair generatio‘
gives a much better distribution of heights and a more pleasing stere

illusion.
Feference

s A.A. Sawchuk and H.C. Andrews, "Artificial Stereo from 1Imag
Features," USC Image Processing Institute Semiannual Technical Report
1 September 1975 - 31 March 1976, USCIPI Report 669, March 1976, pp

195-199,
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b.0 SMART SENSOR PROJECTS

This section presents the results ¢t the industrial 1liaiso
betwveen USCIPI and Hughes Research Laboratories. The objectives of
the past year's subcontract were twofold: first, to develop real tine
nonlinear optical data processing elements and second, to develop a.
CCDh chip for smart sensor image understanding signal processing. Bothf
objeciives have been met, in part, with quite exciting tesultsl
promised in the latter project. All projects are reported herein.i
The construction of the CCD chip is on schedule with completion, test,'

and evaluation expected within six months.
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6,1 MOTIVATION FOR AN ADAPTIVE CCD IMAGE PROCESSING CHIP

Harry C. Andrews

This document represents some ideas in motivational thought which
may be of some use in expansion of the Image Understanding CCD charge
couple device signal processing chip wvork. The chip which was
suggested for implementation under the first year subcontract had the
Sobel operator amongst four other different operations as possible
signal processing techniques to be considered for isplementation. The
motivation for these five different signal processing techniques may
not be evident to the CCD implementors and therefore this report is
designed to describe the thought processes that went into the
generation of the mathematical formulation for the function suggested
for chip implementation, The five operations so suggested are listed

below.

1. The Sobel operator

2. The Mean operator

3. The Unsharp Masking operator which is equal ¢to the Sobel
operator plus a vweighting of the Mean oferator

4, The Thresholded Mean or Adaptive Binarizing operator

5. The Adaptive Stretching operator

These five operations are described mathematically in the attached

statement of work.,

The Sobel operator is essentially a convolutional kernel designed

to detect edyes. The operator requires a 3 x 3 convolving matrix
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vhich is designed to detect vertical edges and then designed to detect
horizontal edges, the ¢tvo outputs of the vertical and horizontal
detectors then being combined by an absolute value operation to fors
the Sobel edge output. The absolute value operatioa is in lieu of a
square rooting operation, This edge detector is a fairly useful one,
requires only a small kernel; and in addition, contains nonlineaé
devices (i.e. the absolute value operations). The reason fof
selectiny this edge operator is because of the nonlinearities involved
as vell as the possibilities for future implementation by 1looking at
the ratio of the horizontal to the vertical edge energy. This will
provide edge direction vhich also becomes a useful feature techniqu;
to be wutilized 1in higher level image understanding operations, Th:
Sobel operator cam be viewed in image form and should provide a fairli
clean edge detected image. References on this operation are readili

available in the literature.

1

1

The mean operator is essentially nothing more than a 1lov pasg
filter. A 3 x 3 matrix vas suggested for implementation as i
convolving kernel. The mean operator measures the average btightnes!
in a 3 x 3 region’ surrounding the center pixel. This operator, as ij
stands alone, will tend to blur the image (remove high frequency noisé
as well as removing edge detail). The operator is suggested ag
possibly a signal processing lowv pass filter but more significantly a:
a swvitching signal to allow for adaptive signal processing f
subsequent operations. Because the smean operator tends %o track th

lov frequency variation in an image, it ©becomes very useful fo!

discriminating betwveen regions of high brightness and regions of largi
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shadov or lovw brightness.

The unsharp masking operator is suggested as one technique to
utilize with the mean operator. One could envision a weighting of a
percentage of the Sobel output with a percentage of the mean output,
the sum of the two percentages equaling 100%. Therefore, one could
range from a completely edge image to a completely low pass or blurred
image by modifying this particular percentage weighting factor. If
this percentage weighting factor were in fact defined or datermined by
some information content within the image, then this would provide an
adaptive signal processing aid. However, even if the percentage
weighting factors are wmaintained constant or fixed throughout the
image, this technique still qualifies for that under the Jeneral
category of unsharp masking. Unsharp masking is a *echnique utilize3l
by the Associated Press in transeitting sany of their 1images across
telephone coammunication 1lines, Unsharp macsking essentially foras a
low pass version of an image, subtracts it from the original image,
veighted by a certain percentage such that the resulting image has
higher frequencies emphasized by virtue of the fact that the low pass

or blurred portion is removed.

The fourth signal processiny function suggested for
implementation is that known as the threshold mean or the adaptive
binarizer. This function has numerous applications in a Lbandwidth
compression w@mode of operation. Essentially the function is the
folloving: the mean operator determines the local area mean and based

on the local area, sets the center pixel or gpixel in the center of the
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convolving kernel, to either completely on or completely off bhase
upon vhether that center pixel brightness is greater than or less thag
the mean average of its surrounds. This particular operation has the
advantage of providing a binary video signal in the context of certaiq
processes or has the advantage of providing binary adaptivd
thresholded signals as illustrated in adaptive binarization ftor
fingerprint identification. The motivation in the latter applicatioﬁ
is in use of the a priori knowledge that the original fingerprint is
best viewed under tinary circumstances. However, latent fingerprints,
vhen digitized, have a great many shades cf gray and the adaptive
binarizer has the property of tracking lov frequency smudge contents
and allowing edge and fingerprint 1information to be enhanced b{
subtracting off or essentially switching out the 1low frequency
information. I wmight also suggest that another application for thig
particular operator is in the generation of binary video. As I
understand it, in a 1lot of the Hughes Aircraft forward-looking
infrared work, binary video becomes a very useful signal in two
dimensions upon vhich to subsequently correlate. This particular typé
of binarization is adaptive in the sense that the local mean is

detected by the mean operator and then controls binarization by

tracking that mean in the bright region by rising high, and in lov{
regions by 1lovering the amplitude values. The possible drawvback off
this particular binarizing filter lies in the fact that the filter is!
only 3 x 3 in extent. Possibly, the S x S5 and even 10 x 10 adaptivei
binarizing filters might be more useful. This would require a largef?

array on the <chip but possibly because all of the wveights areq

TR
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identical this is not too unfeasible a pgospect.

The fifth and final application of the signal processing chip 1is
that known as an adaptive stretching operator. Pssentially this
operation is also triggerad based upon a decision by the 1local area
mean detector. This operation is hypothesized by virtue of the fact

that in regions that are fairly dark one would 1like to stretch the

3 dark or 1low amplitude brightness values, and in regions that are
. fairly bright one would like to stretch the large or high amsplitude
g brightness value. Therefore, this particular operation, known as

s adaptive stretching, is one in which the mean signal is tested against

a constant half amplitude or half dynamic range brightness value. If
in fact, the local area mean is greater than half amplitude brightness
on the average, then the center pixel is stretched in the bright
region. TIf in fact, the local area mean is less than half asplitude
of the dynamic range possible, then the center pixel is stretched in
the lovw brightness region. This operation will have the effect of
adaptively selecting, based upon bright regicns or dark regions, and
stretching the appropriate pixel value such that in dark regions, 1low
amplitudes are enhanced and in bright regions, high amplitudes are

enhanced.

In concluding this report and in considering the signal
processing applications for the chip that has been proposed for

development, one point I think is important to be made clear. Whether

the actual signal processes that have been described become useful in

an image understanding or higher level image processing environment,
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and whether the processed images themselves are pictorially andt
cosmetically more pleasing or not, is rteally not ¢the point of thei
development of the chip wunder consideration. Rather, the selected
five functions that have bheen suggested, themselves represent a latge;
variety and great breadth of signal processing operations thaté
conceivably could become quite useful on the front end of a sensorf
device. Therefore, it is possible that all the implementations will
require larger kernel arrays or modifications of the signal processing
operation descrihed thus far. Hovwever, the imgortant thing to

emphasize is the fact that if these signal processing operations can

indeed be inmplemented, and with the linear and nonlinear implications
of the implementations so described, such imgplementation is a success
even if the applications results are not striking and I feel that

success in itself will motivate further investigation.
Appendix

I. There shall be tvo 3 x 3 convolving kernels on a chip.
kernel #1 shall be the Sobel operator, f

kernel 2 shall be the mean operator, f

II. There shall be various combinations of the outputs of the above
kernels, These shall form five different output lines, and therefore

output images.

1. Sobel operator = edge detection = f!(j,k)
2. mean operator = low pass filter = %n(j'k)

| 4
3. Sobel +a mean = unsharp wmasking = fu {},k)
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4, Threshold mean = adaptive binarizer = fu(j,k)

S. Function memory switch = adaptive stretching = fb(j,k)

IIT. For every single image tested, there will be five images
generated, The test procedure shall be either in real time TV or via

digital eight bits 512 x 512 magnetic tape isagery.

Mathematically Defined Functions

Lo£G,N =%{ | £5-1, k-1) + 2 £(3, k-1) + £(j+1, k-1)
- £(-1, k+1) - 2£(j, k+1) - £(j+1,k+1) |
eG4, k-1) + 2£G+1, 1) + £G+1, k1)
- £(-1,k-1) - 2£G-1,%) - f(j-1,k+1)(}

2. fm(j,k)=%{ £(-1,k-1)  + £(G-L, k) + £i-1,kH)
+0G, k1) 4G,k + £(G,kH)
HGH, kA1) + £GHLK) + S+, k+1)}

' j ' ‘ 0<as1
3. fu(_;,k) = (1-0) fB(J,k) +a fm(_],k)

r £ _(,k) = £(j, k)

4. £ (G %) m
0 fm(Jrk) > £(j, k)
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. . r . ST
2 Min {f(J,k),-z- fm(Jok)" >
5. f (k) = « -
: 2Max {fG, k-5 )0} £ G,k> 5
_ f(j,k) = center pixel in 3 x 3 array to be processed
é_
—»
k
Sobel abec 1 21 w2 1 101
operator
1 |z eage de f| = |202 6 © 0 % il-2 02
cetecton g hi ¥ 2= 1-2-1 “101
4
£,k = [I(a+2b tc)- (g+2h +i)|+](c +2f +1) -
(a + 2d +g)|]1/8
’ output is center position given by fs(j, k)
< ie. f (k)= [l(f(j-l, k4) + 2 £(j, k-1) + f(j+1, k-1))
’ - (£(j-1, k1) + 2 £(, k1) + £(j41, k+1) |
+{(£G+, k-1) + 2£(G+], k) + £(j+], k+1))
- €(G-1,k-1) + 2£(j-1,k) + £(j-1, k+1))|] 1/8
mean a b c 111
opel;ator B e i 111
y 2 = 9
low pass g h 4 111
filter




£(5, k) = é— (atbictdtetfigthti)

output is center position given by fm(j,k)

fm(j,k) = [f(j-l,k-—l) + £(j-1, k) + £(j-1, k+1) +
f(j, k-1) + £(j, k) + £(j, k+1) +

(541, k-1) + £(41, k) + £G4, k+l)] —;—

Sobel + .

g ¢ mean f -5 = Q- a)fg G,k +af (j,k)

= : Sq <

- make o adjustable 0 =g <1
masking |
Threshold
mean r fm(j:k) <f(j, k)

4 = fb‘j’ k) =
adaptive 0 f (G,k) >£(j, k)

. . m
‘ binarizer
j output =2 Min (f(j,k),-%)
1 T - .

function
memorty .

5 switch ¥ ¥ seliel

= 2 £(j, k)
adaptive output T
stretching = 2 Max(f(j, k)-'z‘ ),0)
T




input dynamic range

Nl W

half input dynamic range

The above transfer curves are to be switched between - depending on

whether
1 1 11
9 1 11]-= fm(J, k) is

1 11
greater or less than r/2. The center pixel is to be the input

2min(£(, k),3 ) £_0,k)<3 r -

yes

& s r
fa(J'» 1) me(f(J,k).-Z- )

2max(£(j, k)-3, 0] =2

2max(£(j, k)—%, 0).l

no

4,2 CCD INAGE PROCESSING CIRCUITRY

rahas Nudi

During the past year we have investigated the possibility of
performing the following five algorithms with CCD/MOS integrated

circuitry:

1. Chirp transformation
2. Robert's cross

3. Sohel operator

4, Hueckel operator

5. Histogram operation.

We have developed circuit concepts for each of the above (apart from
the Hueckel operator) and include here block schematics together with
a brief functional description. Details of the <circuit design and
layout are in general omitted, and only factors which directly affect
the overall concept such as speed, dynamic range, etc. are discussed.

We have also initiated work on the detailed design and layout of two
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test circuits, one of which (the Sobel operator) is currently being

fabricated. Details of these are also included.

At the present time we have concentrated our efforts on charge
transfer technology and compatible MOS circuitry, because of its
inherently low power-delay product 10-2pJ {versus 50 pJd for typical
bipolar) and its application to both image dgtection and processing.
This will be particularly advantageous for the developaent <¢f "Samart
Sensors." A concept of an inteqrazed detector and pre-processor ig
shown in figure 1, Here a CCD imaging array is shown as detecting thae
image and creating charge carriers which are then clocked through a
matrix of CCD/MOS processing circuits, (which s®ight, for example,
perfora a two dimension convolution of the Sobel type) and the

processed Jata stored in a CCD analog store.

Chirp Transformation

A one dimensional CCD implemented chirp transform has beel
described in the literature <1>., Factors affecting the accuracy and
speed of this process are described in the previous seai-annual
Teport. The ®major issues are in the area cf (a) integrating thq
peripheral circuitry such as clocking circuits and input/outpuf
devices on the chip, (b) providing integrated accurate (26 bit!
multipliers. Both these areas are being pursued by other contractors;
and hence wve have devoted 1little effort in this area. The majof
impact Hughes Research Laboratories could have inm this area is t!
employ its high resolution electron beam exposure techniques ti

fabricate a high resolution (28 bits) CcCD wmultiplying digital ¢{
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analog converter <2> as previously discussed. 1Two dimensional Fourier
Transfora performed by ccncatenation of two one dimension transtorasj
requires a permuting memory to transform the data. Work in this area

is currently being sponsored by the Naval Undersea Center.

Rokert's Cross COperator

A circuit which will perform the Robert's cross operator is shown
schematically im figure 2. As shown it consists of tvwo parallel CCD
channels into which adjacent rows of picture elements are fed, The
inputs (not shown in figure 2) might typically consist of the Tonpsetf
surface potential equilibration circuits <3> or the CCD circuit might
also be wused as the sensor. The charge corresponding to the four
adjacent pixels (a through d) wused in the PRobert's cross are
siwultaneously sensed by floating gate electtrodes <4>. These outputs
are used to drive a nonlinear CCD circuit which performs the magni tude

operation Ia-dl + Ib-cl, required for the Robert's cross operation.

A schematic of the circuit is shown in figure 3. The two signals
corresponding to pixels "a" and "d" are connected to parallel gates,
as shovn, and create potential wells beneath the oxide progortional to
their magnitude. The source diffusions are then pulsed such that
charge flows across the barrier 01 and into both wells. Por surface

channel devices the surface potential 0. can be written as

2

¢S=VO+V- VO

+2VV (1)
o .

vhere Vv = Vg =~ Vpg - Q/Co,
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and

i V_ = applied gate voltage
Q0 = charge under the gate

g = oxide capacitance

When charge flows the surface potential is uniform and hence the
charge stored is proportional to the applied voltage (Q = Q{E)' For
the case shown in figure 3 where |d| > |a| a charge proportional to
(d=a) will be stored in the left half of the circuit. When the well
chown has been filled excess charge will flow to the drain. Should
Ial > |d| a charge proportional to (a-d) would collect in the right
side of the circuit. 1In either case after the source voltage is
lover ed charge proportional to |a-d| is dumped into the central bucket
as shown. An identical circuit is used to forn Ib-cl and the full
output Ia-dl + lb-cl can then be sensed. The output circuit is shown
as a simple source follower and reset but techniques such as

correlated double sampling can be used, if necessary, to reduce noise.

Sobel Opera%tor

The Sobel operator operates on a 3 x 3 array of pixels as shown

in figure 4 and foras the output

£ Gk = g [6G - 1 ks 1+ 260G,k - D)+ £G+ 1L k- 1)
“f(j -1, k+ 1)+ 2f(j,k+ 1) +£(j+1, k+ 1]
FEG+ 1, k-1 +26( + L,k +£(G+ 1, k+ 1)

-f(j-l,k-l)+2f(j-l.k)+f(j-l,k+l)|‘
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Tvo basic operations are involved (a) nondestructive charge tapping
and weighting and (b) magnitude operation and summation similar to

that described for the Robert's cross:

(a) The weighted summation can be perforsed by varying the area
of the sensing gates as shown in figure 4., Here three parallel
analog CCD registers are shown receiving charge frca three
adjacent rows of the picture, and the gates sense an output
proportional to their area. For clarity cnly the storage gates

are shown and the clocking lines are omitted.

(b) The magpitude operation can be achieved vy a nusber of
techniques similar to that described for the Robert's cross and

the summation by charge merging.

Hueckel Opectation

Puring the course of this study ve have spent some time
investigating the Hueckel operator. Our general conclucions are that
analog ZCD processing cannot directly be exploited to perform this
algorithm in 1its present form, and we have therefore not developed

circui* concepts for this at this tisme.

Histogram Operation

A block schematic of the circuit elements required to perform a
real-time histogram are shown in figure S. In principle, the input
data is used to set up a potential barrier q) at the surface of the

CCD and1 a linear current source is used to accusulate charge adjacent
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to this barrier. When the charge stored is sufficient to overconme

current flovs thereby converting amplitude to time delay. The charge
crossing the q) triggers a pulse shaping network which feeds data into
an analog store thus forming the histogram. The circuit which
provides the linear current source is shown in figqure 6a. Here the
first stage of the CCD acts as a virtual drain and the current is
self-regulating via the feedback path around the anmplifier. The

chacrge stored after time t is
vo
Q(t) = T t

For an input signal Vv, causing a barrier q) charge flows when Q(t)
cC x V or at time t = (V /V ) (C R). If the shift register is

o 8 8" o o
clocked at £ an output signal aprears after n clock cycles where

¢ f_CR

vo vs L]

This data, after some pulse shaping, is fed into a serially accessed

n =

digital CCD register prior to parallel readouyt into an analog store as
shown in figure 7. The accuracy of the «circuit 1is determined
primarily by the noise in the input circnit and error accurulating in
the analog store. The equivalent noise charge in the input circuit is
JKTC which for 15 x SO (pn)2 gate size will be approximately 150
electrons., Por 8 bit quantization the charge storage must therefore
be in excess of AD x 103 electrons, which imglies a gate vol tage swing
of >1 V. Since the curreat from the input circuit shown in figure 6a
vill be of the ocrder of 1077 A the pirxel data rate is limited to

fB < 100 kHz. requiring the amplifier to settle in approximately

4 x 10'8 seconds. Discrete devices are currently available at these

rates in which case the digital CCD register would be required to
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operate at approximately 25 MAzZ, vhich is abcut the present state of
the art. Data from this register is shifted out in parallel to the
analog store (figure 7) which accepts data at the pixels rate,
100 kHz. The total storage time is practically limited to about 0.1
seconds by dark current, limiting the operation to a total of about

4
10 sanmples.

The pulse-shaping circuit illustrated in figure 6b and 6c must be
included to provide a logical one to the input of the digital shift

register. As showvn, the circuit is based on digital refresh described

by Kosnocky and Carnes <5>. After charge flcvs over the barrier q) a
string of logical ones with charge equivalent to approximately 10

electrons will flow. The circuit uses floating gate sensors to
provide a single pulse output coincident with the start of this
string. When data under gates D and E are both "zeros" the refresh
circuit vill create potential wells under both gates A and B, This
will cause data to flov to drain C. When the input data changes (fronm
zero to one) the potential wvell under gate B disappears and the charge
drawn from the source is clocked through to P prior to entering the
cct digital delay. When both D and E are "ones" the potential under
gate A rises and no charge flows thus providing a single data output
at a time equivalent to the start of current flov. A cross section of
one of the yate interconnects is shown in figure 6c tojether with the
time constants involved. Present photolithographic techniques
indicate that this circuit will operate with lelays of less than a few

nanoseconds.
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Test Circuits

To emphasize that the signal processing operations described here
can indeed be implemented on single small chips using CCD/MOS
circuitry, ve are presently supporting, with cur own internal research

funds, the development of test circuits.

Sobel Operator

As shovn in figure 8, the CCD Sobel operator co9sists of a two
disensional CCDhD filter, CCD absolute value circuits and a charge
sunmer. The input format is three parallel or demultiplexed channels’
of neighboring scan 1lines on the image plane. The sampled analog
charges of a J x 3 detector submatrix are nondestructively
transferred, sensed, added, and subtracted in a mask-programmed CCD.
The outputs of the two dimensional CCD filter are then fed into the
CCD absolute value circuits where charges corresponding to the input
sagnitudes are generated. The final output is the charje sum of the
absolute wvalues and can be converted into voltage fotlsbfor further

processing.

The above descrihed CCD Sobel operator has been designed on a
single small chip wvhich might easily be integrated with a focal plane
detector array, thus forming an integrated sensor-processor chip which
sight have an exciting and important impact on future image processing
systems, This circuit is currently being fabricated and we anticipate

operatiny devices in several months.

Test Circuit II

ot e = .—..‘J
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Five basic algorithams are addressed in the second test circuit:

1. Lowvw pass filtering
2. Sobel edge detection
3. TUnsharp masking

&8, Adaptive stretching

5. Binarizing

A block schematic of the algorithm is shown in figure 9a togethnr wvwith
the five sepatafe outputs. It is designed tc cperate on a subarray of
3 x 3 adjacent picture elements, and a simplified circuit concept is
illustrated in fiqure 9b. A brief descripticn of each circuit

component is given belovw.

Low Pass Piltering

The low pass filtering operation 1is achieved by the parallel
connection of nine adjacent floating gates as illustrated at the left
of figure 10. Here three parallel CCD <channels are shown, through
vhich thra2e adjacent 1lines of data are fed (as for the Sobel
operator). For simplicity the transfer gates and clocking and
circuitry are omitted. The weighted outputs are connected to a single
output line vhich drives a source follower shown, The 1load is a
variable conductance consisting of a PET with variable gate voltage
providing an output

(0.0 = § (-1, kD +£G-1,k+6(-1, k+1)

+ £,k = 1) + £(j, k) + £(j, k + 1)
+EG+Y, k=1 + £+ LK) +EG+ Y, k+ D).

The tapping technigue is nondestructive and thus, after sensing, the

-178-




T T T T T DN YT

sas? 8

OUTPUT
{iv)
5 BINARIZAR —O
OUTPUT (1}
CHARGE
LOWPASS é ABSOLUTE
WEIGHTING VALUE
. SOBEL
| SR W |
ouUTPUT
A VARIABLE _ DELAY eyl CONYROLLEDO
WEIGHTING EQUALIZATION SUMMING BARRIER
B 1 . OUTPUT i) OUTPUT (iii)

Figure 9(a).

Block schematic for test Circuit II.
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charge is clocked through to the Sobel operator.

Sobel Operator

The weijghting required for the Sobel operator fs(j,k) is shown on
the right of fiqure 10 ({again the transfer gates and clocking
circuitry are omitted for clarity). It is essentially identical to
that described under Test circuit I. Howvever, the input charge will
be clocked directly from the low pass filter as shown and the output

vill be fed to the charge summing circuitry shown in figure 11,

OUnsharp Masking

The unsharp masking output fu(j,k) = £s(j,k) + afﬂ#j,k) is formed
by the charge summing circuit shown in figure 11. Here charge
corresponding to the lov pass filter and the Sobel operator are
clocked under a single storage gate as shown tc fornm £u(j,k). Three
stages of CCD delay are shown in the ohtput path from the 1low pass

filter to equalize the charge delay prior to summation.

Adaptive Stretching

The unsharp masking output is further clocked through the CCD to
a barrier (q)) which is controlled by an externally applied voltage.

If the signal charge Qusn}s less the ﬂb/Co the charge is collected on

X
the output drain. Charge equivalent to Qusn; Ob/cox is clocked over
the barrier to the remaining circuit, The effect of this is to apply
a threshold prior to a variable gain output connected to the adaptive

stretching pad shown.
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Adaptive Biparizer

The binarized circuit illustrated in figure 12 is based on the
regenerative charge comparator techniques vused im CCD digital
memories. It consists of a cross coupled flip flop. Charge entering
from the Unsharp Masking operator and the center picture element are
censed at output 01 and 02, respectively. The voltage difference
between the two nodes will cause differences in the conductivities of
transistors T1 and T2 which act as loads for the cross coupled flip
flop. When Qi is pulsed the gate voltages onm T3 and T4 therefore
differ, resulting in a further current imbalance which rapidly shuts
one transistor off while Ariving the other to saturation. The

resulting zero or one is taken out through load deyices (not shown).

Future Plans

Work on the above test circuits will continue. It is anticipated
that test devices for Circuit I will be available by year end, when
testing will commence, We have devised a test plan which will use an
IMSAI 8080 microprocessor to access U.5.C. data tapes and also drive
the CCD circuits. A block schematic is shown in fiqure 13, After
processing the supplied Adata will be Adisglayed as shown and also

supplied on magnetic tape to U.S.C.

Because of the wide variety of linear and nonlinear operations
involved in Circuit II wve consider that a desonstration of the
feasibility of *his circuit is most important and ve have large impact

in the coamunity. We therefore propose that this circuit be developed
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4,3 REAL TIME NONLINEAR OPTICAL DATA PROCESSING

J.L. Erickson, A. Au and J. Grinberg

puring the past year ve have been using the hybrid field effect
liquid crystal 1light valve (LCLV) 4as an incoherent-to-coherent

intecrface in optical data processing (cDP) experiments, |
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Simultaneously, the LCLV has functioned as the thresholding/saturating
{clipper) device required in order to achieve nonlinear ODP functions
as reporte1 by S.R. Dashiell and A.A. Sawchuk (Optical

Coamunications, 15, €6-69, 1975),

The structure and operation of the hybrid field effect LCLV are
described 1in detail in "A New Real-Time Noncoherent to Coherent Light
Image Converter - the Hybrid Pield BEffect Liquid Crystal Light Valve,"
J. Grinberg, et. .al., Optical Engineering, 14:3, 217-225, May/June,
1975. This device vas developed for linear OPD applications, and so

is not optimized for the nonlinear ODP process.

Our approach has been to study the characteristics of the LCLV in
a level slicing experiment. Level slicing is a difficult nonlinear
ODP function to implement because it requires a very high gamma
response, rapidly saturating clipper. This is a useful approach,
because the results can be easily interpretod in terms of the device

characteristics.

The experimental setup uses the coherent optical data processing
system shown in figure 1 with variable definitions. The projection
light is derived from a mercury arc lamp and filtered at a center
vavelength of 5250 angstroas. The coherent 1light source is a 50
a¥ He-Ne laser. The densitometry curve for the light valve operating
at 4.0 volts RMS at 2 KHz was measured and plotted in figure 2.

Maximum gamma vas 2.1.

Pigure 3 is the transfer function achieved in a 1level slicing
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experiment. The input transparency is sampled by a 12 cycles/mn
Ronchi grating. The density levels of the grating are .21 ND and .68
ND. Although the light valve's gamma is too low to achieve an ideal
level slice, the filtered first order intensity increases *o a peak
where the input intensity at high gamma has maximum modulation.
Beyond the peak the first order output intersity decreases as the
modulation decreases at high intensities. Pigure 4 shows the level
slicing function with the lijht valve operating at 5.8 vclts RMS at

S KHz.

We studied the LCLV characteristics that impact 1level slicing
performance. The results can be understood vith reference to figure
5, which shovws an idealized input/output relaticnship for the LCLV ODP
systen, The LCLV has a threshold incoherent input intensity I below
wvhich the coherent output intensity is determined cnly by the quality
of the optics. Por input intensities above Ipe the output increases
linearly. When the input reaches a maximum intensity I , the output

n
saturates and remains constant fcor larger input intensities.

fhen the LCLIV input is a gray scale transparency in contact with

the grating of the 1level slicing experiments, the output will be

modulated by the grating for tranparency transgission coefficients TT

such that

<
IT TTTmaxIL i

and

TTTminIL < IM

wvhere T and ™  are the high and low transsission coefficients of
max min
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the yrating and I, 1s th2 incident lamp lntensity. Eeplacing the?

inequalities by ejualities, the gray scale (density) range that]

ajpears 13 a single "sliced” level is 1
I T
M  “max
ADS = log 1. T
T ‘min

The to*al number of levels that can be independently sliced out

degends on the maximum lamp intensity,

X .The traansperency densit
Lmax = Y T

ranje covered is

Tmin IL max

Dtotal = log IM 0
and the number of levels, n, is
_ Dtotal
ADS

These equations can he expressed in ¢erms of gquantities that are|
1
characteristic of the system components as fullows. The differentiaﬂ

jensity of the grating is

AD(; et Tmax
min
The device "density'" range is }
I L
ADD L 108 Tbj ’
T

which is, in a photographic analogy, the number of "log exposurei
units requirel to go from threshold to saturation. The lamp "density

is

i.e., the number of saturation "log exposure"™ units available from thﬁ
lamp. Finally, the tasic grating density is :

DG == long

in’
With these definitions, we have

ADS = ADD + ADG

-195-




for the width of the slice, and

D D -D

total = L C
for the total density ranga that can be sliced. The number of level
slices in this range is

DL = DG

ﬂ=A—DD+_ADG.

Therefore, in this simple picture, the number of level slices can
be maximized by using a low density grating with a small density step,
a bright lamp and a LCLV with a small AQD, i.e., a srmall In(Ip- To
some extent, the system can be isproved by increasing the device

threshold, if the intensity range I,, - IT is constant. However,

Tpe M
this also increases Ihdani therefora decreases tle available density

e D
rang total

The threshold intensity, Ipe is determined primarily by the
“switching ratio” of the LCLV photoconductor (see earlier LCLY
reference). For linear operation, a lov threchold is desired, and
consequently a low switching ratio is wused. This is the type of

levice used in our preliminary experiments.

A higher switching ratio is obtained with a thicker cds
photoconductor layer in the LCLV, Such devices are nowv being
fabricated and an iaprovement from ~ 1 level ¢to 3-5 levels |is
indicated. Thus far we have not been able to obtain a thick filws
device for the nonlinear ODP experiments, though atteampts are

continuing.

Work is also undervay (on another progras) to develop silicon

-196-

= : :1nu‘a;ﬂH;uHﬂd-i-.‘-lEi-ina_‘—d;-..I-ﬂ..-lh;- . .;_____._.._ji

A

2

oy

P




R o R

-

photoconductor LCLVs. The silicon characteristics indicate that up to

10 levels could be isolated with the same equipment and a silicon

LCLV. It is wunlikely, hovever, that a <silicon device will be!

available for tests.

The most lucrative device modification is to find liquid crystall

paterials that give a smaller Ih4- IT’ This would reduce ADD andf

increase QL' both of which would increase the number of levels n. |

There 1is a good probability that addition of some cholesteric liquidf

E

crystal to the device mixture would provide scme improvement in Ihrl

However, the reyuired 1liquid crystal chemistry is non-trivial and:

exreriments of this kind are beyond the scope cf the current prograam.

We are in the process of making some noise measurements on the

LCLV, but the results are preliminary and will not be reported here.




S. RECENT PH,D DISSERTATIONS

This section includes t he abstracts of recent Ph.D

lissertations completed over the past six-month research period. Duée

to the length of their reports, it was felt that abstracts
in this semi-annual report was appropriate. FPor those

interested in further details, these dissertaticns appear

entirety in the form of USC-Image Processing Institute reports. The

are available upon request,

presente
individuals
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r 5.1 NONLINEAR "PTTCAL IMAGFE PROCESSING WITH HALFTCNE SCRFENS

3 Stephen R, Dashiell

Coherent optical systems are of interest in iwage or data

processing because of their ability to rapidly handle large bandvidth

data in parallel. They have been restricted to performing linear
operations such as Fouri2r transformation and convolution, due to the
inherent linear nature of an optical system at low powver levels, In
+his dissertation, the combination of 2 ncnlinear halftoning step
followed by band-pass spatial filtering to yield a specific nonlinear

intensity transfer function is explored.

A general analysis of the problem assuming infinite copy film
gamma and saturation density is made. A constructive algorithm for
designing a halftone cell shape and selectinyg the diffraction order to
yield very general types of nonmonotonic nonlinearities is presented.

Numerous 2xamples of the synthesis procedure are given.

The da2sign of nonaonostonic halftone cells which allow a
nonmonotonic nonlinearity with an arbitrary nuasber of changes of sign
in slope to be obtained in the first diffraction order is considered.
An iterative algorithm suitable for computer implementation, and
numerous examples of halftone cells designed with this algorithm are

given.

The effacts of alloviny the film gamma and saturation density to
become finite are analyzed, and a technique for coapensating a priori

for some of the resulting degrada*ions is given.
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Exper imental results vith general halftone screens sade on a
plotting flathed microdensitometer are presented, Logarithaic,
exponential, and level slice characteristics have been achjieved with
sonotonic cells. Intensity notch filter and quantization
characteristics have been achieved with nonmonotonic cells. Other
generalizations of the technique are discussed, including the
possibility of real-time nonlinear processing with optical input

transducers.

5.2 ESTIMATION AND DETECTION OFP IMAGES DEGRADED BY FILM-GRAIN NOISE

Pirouz Naderi

Pilm-grain noise is a term describing the intrinsic noise .

produced by a2 photographic emsulsion during the process of recording an _
image on film. Although film-grain noise . s recently been considered
vwithin the field of image processing, the nature of the noise is stillf

somevhat misunderstood.

One goal of this study has been to use the theoretical and.
experimental results on film characteristics obtained by photographicf
scientists in order to define film-grain noise within the context of.

estimation theory. A detailed wmodel for the overall photographiec

imaging system is preseated. There are linear blurringy effects at the
initial and the final segments of this model to account for variou
optical and chemical degradations. The middle seqrent of the wmode

represents signal dependence effects of film~grain noise and include




v';v'w-;v,‘

i

a2 nonlinear noise tarm. The accuracy of this model is tested by
simulating images according to it and coaparing the results to images
of similar taryets that wvere actually recorded on fila. These
comparisons point out that the model is a1 gcod representation of the

photographic imaging systen.

The restoration of images degraded by filw-grain noise 1is
considerrd in tvo different contaxts - estimation theory and detection
theory. Under the topic of estimation, a discrete wviener filter is
develnped which explicitly allows for the signal-dependence of the
noise. The filter adaptively alters its characteristics based on
non-stationary first order statistics of an image. This filter is

shovn to have an advantage over the conventional wiener filter.

In the case of extremely low contrast images digitized by a very
small aperture, film-yrain noise is 50 severe that conventional
statistical restoration t2chniques have little effect. Por use 1in
this situation, 2 heuristic algorithm is devaloped which incorporates
some of ¢the vision properties of the human observer. Bayesian
detect ion theory is used to justify the procedure and to provide some
insight into its use., This algorithm also explicitly includes the
signal depandenc» on the noise and has the capability of greatly
outperforming the human observer in locating objects corrupted by very

severe noise,

Fxperisental results for modeling, the adaptive estimation filter

and the Rayesian detection algorithm are presented.
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5.3 IMAGE RESTORATION BY SPLINE FUNCTIONS

Mohammad J. Peyrovian

Spline functions, because of their highly desirable interpolating
and approximating characteristics, are used as a potential alternative

to the conventional pulse approximation method in digital image

processing. For uniformly spaced knots, a class of spline functions

called B-splines has the wuseful properties of shift invariance,
positiveaness, convolutional property and local tasis property. These
properties are exploitad in image processing for 1linear incoherent

imaging systeas,

The problem of image degradation in 3 linear imaging system is
described by a superposition integral. Tor simulation of degradation

and restoration by means of a digital computer, the continuous imaging

sodel must be liscretized. Thus, a theoretical and experimental study

of quadrature formulae, particularly monospline and best quadrature
formulae in the sense of Sard, is presented. It is shown that a good

choice of degree for a monospline highly depends on the frequency

content of the integrand, and in most cases, a cubic monospline |

generates less error than the pulse approximation method and

Newton-Cotes quadrature forasulae,

In space-invariant imaginj systems, the object and foint-spread

function are represented by B-splines of degrees m and n. Exgloiting

the convolutional property, the deterministic part of the blurred
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image 1is a spline function of degree m+n+3. A minimum norm principle
leading to pseudo-inversion is used for the restoration of space
variant degradations and underdeterained and overdetermined models.
Space-variant point-spread functions that describe astigmatiss and
curvature of field are derived and coordinate transformations are
applied to reduce the dirensionality. The
singular-value-decoaposition technique 1is wused for solution of the

simplifioad equations.

For noisy blurred images, a controllable smoothing criteria based
on the 1locally variable statistics and rinipization of the second
derivative is defined, and the corresponding filter, applicable to
both space-variant and space-invariant degradations, is obtained. The
paraaeters of the filter determine the 1local smoothing wvindow and
overall exteant of smoothinjy, and thus the trade-off betwveen resolution
and smoothing is controllable in a spatially nonstationary manner.
Since the matrices of this filter are banded circulant or Toeplitz,

efficient algorithms are used for matrix manigpulations.

S.4 INTERFRAME CODING OF DIGITAL IMAGES USING TRANSFORM AND HYBRID

TRANSFORM/PREDICTIVE TECHNIQUES

John A. Roese

In the design of ligital image coding systems, the principal
objective 1is to achieve high quality raceiver iragje reconstructions

vith a minimua number of transmit*ed code bits. Bit rate reductions
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are achieved by exploiting statistical r2dundancies within an image.

This is combined by transmission of only those portions of the
mathematical imagye representation which the husan observer is most

sensitive to. This dissertation describes research intended to extend.

3
current image coding techniques to the coling of sequences of digital

images transmitted over a digital communications channel. The
emphasis is 1irectel towvards definition of an image coding systes that

exploits temporal as well as spatial image redundancies.

A primary objective of this investigation is to develop a class
of 1interframe hybrid transfora/predictive coders having near optilui
levels of performance. The interfrase hybrid coder 1iaplementations
considered employ two-dimensional wunitary transforms in the spatial
dorain coupled with first-order DPCM predictive coding in the temporal
Aomain. Based on a statistical image representation, a model i‘
developed for the hybrid coder transfora coefficient temporal
difference variance matrix. With this model, theoretical KSE
performance levels for the hybrid coder with 2zonal «coding ar;

determined as a function of spatial subblock size.

Implementations of the interframe hybrid coder using discretd
cosine and Fourier transforms are experimentally evaluated. Hig
quality image reconstruction are demonstrated for reductions of 32:
in average pixel bhit rate. Operational considerations investigate:
for the hybrid interframe coder include initial conditions, spatia'
and teaporal adaptation, reimitialization, and total transasission bi!

rate, Also, sensitivity of the interframe hybrid coder to channe

Bl .
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arror is s*tudi-d.

Comparisons are drawn between hybrid transform/predictive and
three-dimansional transform interframe coders. Theoretical zonal
sagpliny ani zonal coding MSE performance for three-dimensional cosine
transform colers are avaluated for different frame storage

requirements and spatial subblock sizes.

A *abular summary of experimental performance and systeam design

parameters for the main classes of interframe coders is presented.
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Transactions on Computers.

10. D.G. McCaughey and H.C. Andrews, "Degrees of Freedom for
Projection 1Imaging,"™ accepted for publication in IEEE Transactions on

Acoustics, Speech, and Signal Processing.

11. N.E. Nahi and M.H. Jahanshahi, "“Image Boundary Estimation,"

accepted for publication in IEEE Transactions cn Computars.

12. N.E. Nahi, "Estimation of Object Boundaries .in Noisy Images,"
Proceedings of 1976 IBEE Decision and Control Conference, Clear Water,

Florida, Deceaber 1976, (invited paper).

13. ¥N.E. Nahi, "Image Modelling by Replacement Processes," Symposium
on Current Mathematical Problems in TImage Science, Noveaber 1976,

(invited paper).

14, R, Nevatia, "Depth Measurement by PMotion Stereo,®™ Computer

Graphics and Image Processing, June 1976, pp. 203~-214.

15. R. Nevatia, "A Color Fdge Detector,™ to appear in the
Proceedings of the Third International Joint Conference on Pattern

Recognition,

16. R. Nevatia, "Characteristics and Requirements of Computer Vision
Systeas," to be presented at the Workshop on Computer Vision Systeas,

University of Massachusetts, June 1977,
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17. R. Nevatia and T.0. Binford, "Description and Recognition oﬂ
Curved objects,” accepted for publication in the Artificial

Intelligence Journal,

18. W.X. ©Pratt, "Digital Image Enhancement and Restoration Display
Techniques," Society for Information Display, 1576 SID International

Symposium, Los Angeles, California, May 1976.

19. W.K. Pratt, "Pseudoinverse 1Image Restoration Computational
Algorithms," presented at 1976 Joint Soviet-USA Optical Information
Processing Symposium, Novasibirsk Siberia: to be published in oOptical

Information Processing, Vol. 1II, Plenum Press, 1¢€77.

20, W.X. Pratt, "Two-Dimensicnal Unitary Transforas," presented at
NATO ASI Symposium on Digital Image Processing: to be published in
Proceedings NATO ASI Symposium on Digital 1Image Processing, Plenunm

Press, 1977.

21, J.A. Roese and W.K. Pratt, "Theoretical Performance Models for

Interframe Transform and Hybrid Transform/DPCKE Coders,' Proceedings
SPIE Symposium on Advances in Image Transgissicn Techniques, San

Piego, California, August 1976.

22. A.A, Sawchuk, "Signal-Dependent Noise Models and Nonlinear
Nonstationary 1Image Restoration," NATO Advanced Study Institute on

Digital Image Processing and Analysis, Bonas, France, June 1976.

23. A.A. Sawchuk, "Nonlinear Noumonotonic Oftical Processing,"

Gordodn PResearch Conference on Coherent Optics and Holography, Santa
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Barbara, Jun= 1976, (invited paper).

24, A.A. Sawchuk, "Imaye Restoration and Enhancemen t with
Signal-Depend2nt Noise Models," Pngineering Foundation Conference -
Algorithms for Imaqge Processing, Rindge, New Hampshire, August 1976,

{invited paper).

A5, A.A. Sawchuk, "Artificial Stereo,"™ Engineering Poundation
Conference - Algorithms for Image Processing, Rindge, New Hampshire,

August 197A, (invited paper).

26, A.A. Sawchuk and S.R. Dashiell, "Nonlinear Coherent Optical
Processing - Synthesis Algorithms and Real-Time Systems," Proceedings
Society of Photo-0ptical Instrumentation Engine€ers Technical Symposium

- tptical Information Processing, Vol. 83, San Dieyo, August 1976.

27. A.A. Sawchuk, Session Organizer and Co-chairman, Optical
Information Processing: Real-Time Devices and Novel Techniques

Seminar, Society of Photo-Cptical Instrumentation Engineers Technical

Symposium, San Diego, August 1976; EBditor, Vol. 83, SPIE Proceedings.
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