
SDPS-78-002
June 1978

—Ö p
^ ä

SECURE DISTRIBUTED PROCESSING SYSTEMS;

QUARTERLY TECHNICAL REPORTS

Gerald J. Popek
Principal Investigator

SECURE SYSTEMS AND SOFTWARE
ARCHITECTURE GROUP

APPROVED FOR PUBLIC RELEASE
DISTRIBUTION U LIMITED

DTIC
ELECV
NOV 2 5 1983

H

bJ
CD

 i
COMPUTER SCIENCE DEPARTMENT

School of Engineering and Applied Science
University of California

Los Angeles

83 11 25 035

- ■ ■ ■«-■■■ ■ .-■■-. ■ .,..,;

.^^tgtsaw*!^^ ■ : . ■■ !>fl

The views and conclusions contained in this document are
those of the author and should not be interpreted as
necessarily representing the official policies, either
express or implied, of the Defense Advanced Research
Projects Agency or the United States Government.

nf ■ r

!l

SECURE DISTRIBUTED PROCESSING SYSTEMS

QUARTERLY TECHNICAL REPORT

1 July 1977 - 30 April 1978

Gerald J. Popek
Principal Investigator

Computer Science Department
School of Engineering and Applied Science

University of California at Los Angeles
(213) 825-6507

Accession For

NTIS GRA&I
DTIC TAB
Unannounced
Justification

D
D

By_

^distribution/

Availability Codes

Avail and/or "
Special

This research was sponsored by the
Defense Advanced Research Projects Agency

ARPA Contract No.
ARPA Order No.:
Program Code No.

MDA-903-77-C-0211
3396
7P10

Best
Available

Copy

SECURE DISTRIBUTED PROCESSING SYSTEMS

Advanced Research Projects Agency
Quarterly Technical Reports

July 1977 - March 1978

Inproduction

'This technical report covers research carried out by the
Secure Distributed Processing Systems group at UCLA,,under ÄRPA
Contract MDA-903-77-C-0211 during the -^three quarters in the
period July 1, 1977 to March 31, 1978. ^Significant advances have
been made on all four contracted tasks, namely network security,
data management security, high availability secure information
management, and UCLA secure system enhancements. Below, we
describe that progress and point to the list of references which
represent the published work resulting from this supported
research. h ß'H-

Task i - Network Security

A number of significant steps have been taken over the last
three quarters. First, UCLA is participating in the larger ARPA
sponsored network security experiment employing BCR units to
demonstrate that end to end encryption of individual connections
on the ARPANET is feasible. A BCR unit has been received at UCLA
and checkout has begun. Coordination of UCLA's initial role as a
server host in the BCR experiment, and subsequently potentially
as a key distribution center, has been coordinated with other
ARPA contractors.

A major portion of the effort in network security has been
devoted to the integration of encryption techniques into the pro-
tocols of networks and the architecture of the operating systems
which are connected. It was found feasible to extend the end of
encrypted channels right to the process boundary in host systems,
making network control software, as well as all other system
software, irrelevant to system security, so long as an appropri-
ate operating system kernel was installed in participating hosts.
Thi^ developmant dramatically simplifies the structure of th-j
network security mechanisms, obviating the need for BCR units at
secure hosts, as well as any requirement for trusted network
management software. A prototype of this integrated end to end
network security architecture has been developed for the UCLA
Secure Operating System Prototype. The implementation is now
being improved to integrate it into the complete system. The fi-
nal prototype is scheduled to be used in the Navy's ACCAT Guard
-project later this year.

The importance of this work is severalfold. First, it
demonstrates that end to end security to the process level is
very cheap to implement and operate, given the existence of
secure operating systems. Second, the approach is directly ap-

/

page 2

plicable to existing networks such as the ARPANET.

Several architectural design and analysis efforts have also
been in progress during this period, reported in references 6 and
7. The first presents a general view of design issues in network
security, and has been used by the Mitre Corp. in the development
of their network security methods for military systems. The oth-
er challenges much of the work on public key encryption methods,
and shows that all digital signature methods previously proposed
suffer from serious flaws. A superior method is then outlined.

Task XI - Data Management Security

Data management systems typically employ considerably more
software mechanism in the representation and management of the
data they contain than do operating systems. As a result, the
task of developing reliable enforcement controls potentially is
significantly more difficult. Many have thought as a result that
a kernel architecture approach to data management security was
not feasible. If so, that would be quite unfortunate, since ker-
nels severely limit the amount of software which must operate
securely. At UCLA, we have succeeded in developing a general
kernel based architecture, meaning that it is potentially feasi-
ble to provide highly reliable security enforcement in data
management systems through the correct installation of a very
small amount of software. This result is very important, since
without it, much of the code in a data management system would
have to operate securely, and the cost of providing secure data
management would then often be prohibitive. The design was pub-
lished late in 1977 as reference 2, and in order to demonstrate
its operational feasibility, the INGRES data management system is
currently being altered to include the proposed kernel struc-
tures. An important result of this test implementation, besides
demonstrating feasibility, is that our approach is retrofittable
to existing systems. The savings in existing software can he
e n J r n o u s .

Task III - High Availability Secure Information Management

A significant new direction rf the research at UCLA '"■■■•-. been
concerned with reliability, avdüabiii.cy, anc security in distri-
buted systems. The core of this effort is the development of a
highly available, secure distributed system base that can run in
an integrated fashion on local networks, utilize existing equip-
ment, and provide a base on top of which one can easily install
such applications as distributed data management systems, elec-
tronic office facilities, and the like. The base is to be en-
tirely responsible for backup, recovery, security, and much of
system management. It should be easily extensible in terms of
hardware additions and deletions, all without software altera-
tions or user knowledge.

The design of this system base has progressed great deal

page 3

over the past three quarters, and a preliminary design document
was reviewed by other internationally known researchers. A more
complete design report will be completed this summer, at which
time prototype development will commence.

In conjunction with this research direction, a number of
other strong efforts have been completed. First is a complete
protocol for coordination of resources in a distributed system,
that permits arbitrary failures of nodes, links, and software
modules, either during normal operation or recovery. Synchroni-
zation suitable for sophisticated data management is provided,
and the correctness of the entire protocol is proven. The work
is reported in reference 5, and has been accepted for publication
in the top journal of the field.

Several other protocols have also been developed for coordi-
nation of resources and detection of deadlock. These are now un-
dergoing refinement and have been submitted for publication.

To support the distributed system development, UCLA has par-
ticipated in the development of the Local Network Interfaces
(LNIs) principally developed by UCI and MIT, and three Interfaces
are scheduled to be installed at UCLA this summer, creating a
three node network for use in development and measurement experi-
ments .

Task IV UCLA Secure System Enhancement

side
in c
done
grai
and
or r
s x i s
cius
the
ciat
will
a v a

T
ra
om

ne
v

ec

n
ed

1 :.

he UCLA
ble prog
pleting

Full
d protec
irtually
ompilati

ely demo
ext mon
with th

be deve

Secu
ress
the
f unc
tion

al
on .

n s t r
ths,
e pr
lope
e d a

re

pr
ti
o

1
T

t
ot
d.

sy
Fi

oto
on
n a
sta
his

, o n i
. e s
he
oty

stem
rst,
type .
oper

n ind
ndard
syst

ng ka
the f
reraai
pe wi
A ge
e r e n c

prototy
a great

The b
ation
ividual
Unix p

em is t
r n e 1. b a
e a s i b i 1
ning so
11 be
n e r a 1

pe ha
deal

asic
has
file

rogra
he fi

s be
of

task
been

ba
ms o
rst,

en t
ener
is
de

sis
pera
and

o o 'D r a 11 n
i^y o
ft war
comp

a r c h i

f t
e de
lete
tect

h to
velo
d a
ure

he fo
gy ha
now

raonst
is

te wi
curr
s y 3 t
a P P r

p m e n t
nd d
pape

GUS Of
s been
essent

rated .
impleme
thout c
ently
em. :rt.
o a o h .
tasks

ocument
r is al

con-
spent
ially
Fine

nted ,
hange
only,
c o n -
Over

asso-
ation
ready

able
tion
veri
abst
abst
prog
tion
abou
the
prog
ence

The UCL
program

s for th
fication
ract spe
ract to
rams bei
effort

t how v e
nature o
ressed ,
s Insti

A ke
ver

e en
sy

cifi
CO

ng v
in

rifi
f th
a co
tute

rnel
if ica
tire
stem ,
catio
ncret
erif i

the
catio
e too
opera
has

has a
tion
kerne

wer
ns we
e co
ed co

cou
n of
Is wh
tive
devel

Iso se
activi
1 , sui
e com
re com
rrespo
mpose
ntry,
large
ich ar
arrang
oped ,

rved
ty.
tabl
plet
plet
nden
the
and
syst
e re
emen
sine

as th
Compl

e as i
ed la
e d ear
ce is
larges
it is
ems m u
quired
t with
e thei

e fo
ete
nput
te 1
iy
now
t p
unco
st b
. A

US
r XI

cus
cone
to

ast
in
well
ract
veri
e do
s th
C/In
VUS

for
rete
an
year
1978
und

ical
ng a
ne ,
is r
form
inte

cons
speci

intera
Com

, and
erway.

veri
great

as wel
esearc
ation
ract iv

ider-
fica-
ctive
plete

the
The

fica-
deal

1 as
h has
Sci-

e ve-

page

rification system is being employed in the proofs. The general
approach to the verification of large systems is described in the
technical report listed as reference 3.

P'1 '
Ni more detail in several

are included that reflect
The body of this report provides

areas. Specifically, three reports
some of the more significant results in each of the areas of dis-
tributed systems, networK security and the secure operating sys-
tem prototype.

\

page 5

References Fnhlished During the ReoortinF. Period

3. Kemnerer, D

Base Systems", UCLA Technical Report, 1978, 13 PP-

Downs, D., and G. PopeK, "A Kernel Design for -Secure Data
BPse Management System", Proceedings on Very rg
Bases, Tokyo, October 1977, PP 507-51U.

"A Proposal for the Formal Verification ^ ^he
 -' - - [. „-. fV,0 Iiri A secure Unix Operating System Security Properties of the UCLA f^"r^ ^n 810

F sDPS-78-001,
Kernel", UCLA Technical Report UCLA-ENG-fölu,

65 pp.

tions on Database Systems, (to appear).

, n „A r (Cline "Design Issues for Secure Computer
?T^o%lC oVJ^S^l in Advance. Ccu.30, Spring-

Verlay, Berlin, 1978, pp. 517-540.

, r onH r Kline "Encryption Protocols, Public Key Al-
Popek, G., andj

C- K1^^' o"°natures in Computer Networks",
gorithms and Digital Signatures *" ^ f Secure Com-
froceedings of the Conference on Fundamentals of
,uting, Atlanta, Ga., November 1977

nd C. Kline, "Issues in Kernel Design", Popek, G., a
tional Computer
1079-1086.

1978 Na-
Conference Proceedings, AFIPS Press, pp.

10

Popek, G., C. Kline and E. Walton, "ÜCLA Secure
Technical Rviort, February 1978, 20 pp.

Walker, B., "Verification of the UCLA Security
Defined Specifications", UCLA Technical
ENG-7809, SPDS-77-002, November 1977, 20b pp.

Unix", UCLA

Kernel:
Report

Data
UCLA-

Encryption Protocols, Public Key Algorithms and Digital Signatures
in Computer Networks«

by

Gerald J. Popek and Charles S. Kline
University of California at Los Angeles

Abstract

The general problem of secure communication in ^mputer
networks is considered, especially issues related ^ inteSration
of encryption protocols, the relationship between public key and
conventional encryption algorithms, and digital signatures-

conclusions reached in

The
these areas are as follows.

A)

B)

C)

D)

. crucial problem in integrating encryption into networks is
minimization of the mechanism which must be trusted. A
general protocol is presented which appears to accomplish general p
this goal and is
conventional encryption algorithms

suitable for either public key based or

Public key and conventional encryption algorithms are
functionally equivalent. in the sense that neither present
any advantages over the other, either in the way Lney
used, the functions they provide, or in
mechanism that must be trusted in their support.

are
the amount of

Both public key and conventional encryption aPP^cheJ t°
digital signatures depend critically on secure
authentication for their suitability, in ways not 6^™^
recognized. They appear equivalent with respect to safety.

the Neither the signature method outlined by Rabin nor
based protocols appears satisfactory. public

suit ab!
key

usual
A more

/ a r , " f) I ! a e n

1 . Introduction

r h 9

for Computer neewo;
There has he^i :onsiderable Lu1

ri^vplooment of encryption methods
Ictiiuy Tails into two major but related areas: the development
of strong encryption algorithms, and the design of the rules or
protocols by which an algorithm is actually used in an operating
network As an example of the relation between these two areas

public key algorithms have been suggested as V^1^.^01^
?o key distribution and digital signatures; issues which, it is

» This
Agency of
903-77-0211.

research was supported by the Advanced f863^. ^°je^
of Defense under Contract MUA the Department

page 2

claimed, would otherwise require additional protocols. Here we
concentrate on the protocol problems. We examine protocol
questions which arise at various levels of a system, from the
low, detailed level at which the various operating systems in a
network communicate, to the higher, user visible level involving
such services as digital mail. As a result a rather unique
perspective is provided, and we are led to some fairly surprising
conclusions.

The paper is written basically in a bottom up fashion. The
first section considers questions of how encryption "channels"
interact with network software. The next section outlines a
basic protocol for the use of encryption in a network,
independent of the nature of the encryption algorithm (public
key, conventional, etc). These two sections show how it is
possible to build a secure network base, on top of which many
extensions are directly possible. At that point attention turns
to some of the higher level, user visible issues, such as public
key algorithms and digital signatures. It is argued that none of
the currently proposed signature methods is satisfactory. We
propose an alternative which we believe satisfies the necessary
requirements. It is based on the existence of the
level protocols discussed in the earlier sections,
willing to accept the existence of secure lower
protocols may wish to skip to section six, where
of public keys and digital signatures can be found

secure lower
Those readers

level network
the discussion

2.. Levels of Integration

Encryption forms the basis for solutions to computer network
security problems. Basically, a single communications channel
can be multiplexed into a large number of separately protected,
secure communication channels by assigning a separate encryption
key pair for each logical communication channel. When a user
requests the establishment of a new communication, protection
policy checks can be performed, and, if successful, a key can be
distributed to each end of ^h=: communication channel.

78b]
rece

Several key distribution methods have been studied.[Popek
One method utilizes a key distribution center which

ives requests for communications, and distributes keys
rdinsly. Ths keys are tran; L11 e d u s " n " s I -J •\ < ■

d ist
part
encr
Orig
dist
savi
sect

jc, key3 which change only rarely. Other methods allow
ributed key management, with several, or even all, sites
icipating in key distribution. Recently, public key
yption algorithms [Rivest 77a] have become available,
inally, such algorithms were thought to simplify the key
ribution problem, but recent research suggests that no
ngs result.[Needham 77] This issue is discussed at length in
ion six.

One problem which must be resolved in designing a secure
network encryption mechanism, regardless of the nature of the
encryption algorithm or the key distribution method, is the level
of integration of the encryption facility. There are many

page 3

possible choicRs for the cndpoints of the encryption channel in a
computer network, each with its own tradeoffs. In a packet
switched network, one could encrypt each line between two
switches separately from all other lines. This is a low level
choice, and is often called link encryption. Instead the
endpoints of the encryption channels could be chosen at a higher
architectural level: at the computer systems, referred to as
hosts, which are connected to the network. Thus the encryption
system would support host-host channels, and a message would be
encrypted only once as it was sent through the network rather
than being decrypted and reencrypted a number of times, as
implied by the low level choice. In fact, one could even choose
a higher architectural level. Endpoints could be individual
processes within the operating systems of the machines that are
attached to the network. If the user were employing an
intelligent terminal, then the terminal is a candidate for an
endpoint, too. This view envisions a single encryption channel
from the user directly to the program with which he is
interacting, even though that program might be running on a site
other than the one to which the terminal is connected. This high
level choice of endpoints is sometimes called end-end encryption.

The choice of architectural level in which the encryption is
to be integrated has many ramifications for the overall
architecture. One of the more important is the combinatorics of
key control versus the amount of trusted software.

In general, as one consider
most systems, the number of iden
entities in the system tends to
For example, while there are 1
to the ARPANET, at a higher 1
thousand processes concurrentl
protected and controlled. The n
of course also high. This n
number of secure channels - that
distributed matched key pairs
l a r 2 er . \ 1 so , t h e r -i fc ■; at w h ich '"
d i s b r i b u t e d a a n b a d r am a t J. o a I L y i n c r

s higher a
tifiable an
increase, s
ess than a
cvel ther
y operatin
umber of te
umerical i

is the
required

nd higher levels in
d separately protected
ometiraes dramatically,
hundred hosts attached
e often are over a
g, each one separately
rminals and users is
ncrease means that the
number of separately

is correspondingly
3 b be senera -.^.l ■■'■ id

a s a a

r e s u 1
3 ■.' t ■., i

p r o t e
impor
folio
commu
encry
in th
diffe
host
conse
serio
resid

In r
t,
i r e
ctio
tant
wing
nica
pted
e s
rent
for

quen
us ,
ent.

eturn
there
:-r in :> 3 e

n o f
and m
way.

ted ex
link

witch
chann
exam

ce .
since

for the additional cost and
can be significant redu
corr'ec t f unc biprJ ng mu st
t h e c o rn ;n u n i c a 11 c n c h a n n e

ust be carefully considered
When the lowest level is

ists in cleartext form as i
to the next by the switch,
must be trusted not to

els. If a higher level is
pie, then errors in the
However, operating syste

the data exists as cleartex

complexity which may
ction in the amount of

1. This issue is very
It arises in the

chosen, the data being
t is passed from one
Therefore the software
intermix packets of

selected, from host to
switches are of no

m failures are still
t while it is system

In principle then, the highest level integration of

page 'I

encryption is most secure. However, it is still the case that
the data must be maintained in clear form in the machine upon
which processing is done. Therefore the more classical methods
of protection within individual machines are still quite
necessary, and the value of very high level end-end encryption
may be somewhat lessened. A rather appealing choice of level
that integrates effectively with kernel structured operating
system architectures is outlined in section four.

Another small but nontrivial drawback to high level
encryption should be pointed out. Once the data is encrypted, it
is difficult to perform meaningful operations on it. Many
front end systems provide such functions as packing, character
erasures, transmission on end of line or control character
detect, etc. If the data is encrypted before it reaches the
front end, then these functions cannot be performed. That is,
any processing of data flowing through the channel must be done
above the level at which encryption takes place.

3.. Encryption Protocols

the discipline
to control

amount and

Network communication protocols concern
imposed on messages sent throughout the network
virtually all aspects of data traffic, both in
direction. It is well recognized that choice of protocol has
dramatic impacts on the utility, flexibility and bandwidth
provided by the network. Since encryption facilities essentially
provide a potentially large set of logical channels, the
protocols by which the operation of those channels is managed

also can have significant impact.

There are several important questions which any encryption

protocol must answer: „v,.,™„i
1. How is the initial cleartext/ciphertext/cleartext channel

from sender to receiver 'nd back established?
2. How are cleartext addresses passed by the sender

'.■ ri o r y p 11 o n i' a c :. L i t i e s t o
which ciiear^xt. ua^a ca.n b
by the same means?
3. What facilities are provided
resynchronization of the protocol?
■". How .-3 . Low con1 : oi pei iviu .. .

,h } ne t>;o rk with ^
; inadvertantly or

around
providing a pat
Intentionally .i ;:'

for error recovery

the

I: 3 d

and

5 How ire cnanneis cioseu,J
e'. How do the encryption protocols interact with the rest
network protocols?
7. How much software is needed to
protocols. Does the security of
software?

of the

implement the encryption
the network depend on this

permits channels to be
the traffic flow rate to be

One wishes a protocol which
dynamically opened and closed, allows
controlled (by the receiver presumably), provides reasonable
error handling, and all with a minimum of mechanism upon which
the s-curity of the network depends. Clearly the more software
is involved the more one must be concerned about the safety 01

page 5

the overall network. The performance resulting from use of the
protocol must compare favorably with the attainable performance
of the network using other suitable protocols without encryption.
Lastly, one would prefer a general protocol which could also be
added to existing networks, disturbing the transmission
mechanisms already in place as little as possible. Each of these
issues must be settled independent of the level of integration of
encryption which is selected, the method of key distribution, or
the nature of the encryption algorithm employed.

To illustrate the ways in which these considerations
interact, in the next section we outline a complete protocol.
The case considered employs an end to end architecture in a way
that can be added to an existing network.

Ü.. Network Encryption Protocol Case StugLy:
Process-Process Encryption

We o
at the re
A major g
security
often inv
system ,
code. Th
network
flow cont
attempts
trust ing

utl in
lativ
oal i
of t

olve
s o m e t
is fa
proto
rol,
to

that

e here a general encryption protocol that ope
ely high level of process to process communica
s the minimization of the software on which
he system depends. Network communication prot
fairly large and complex parts of the oper
imes the primary source of complexity and araou
ct results from the variety of tasks which
col must perform, such as connection establish
error detection and correction. Thus, this d
eliminate as much as possible the necessi
software for secure operation.

rates
tion .

the
ocols
ating
nt of

the
ment,
esign
ty of

The design presented here utilizes process-process
encryption. In process-process encryption, encoding is performed
as data moves from the source process to the system's network
software. This approach minimizes the points where data exists
in cleartext form, and thus the mechanism which needs to be
trusted. While a higher level choice could be made, for example
a 11 owing the proc•:■ sses to per for.-' their own
themselves, such a choice does not assure that
the network is encrypted. Thus, process-process encryption seems
to be the highest safe choice. The details of the protocol are
applicable either to public key based or conventional algorithms.
"nv of the ksv distribution methods discussed ^r [Popek 78bl c^n

u p p or ted .

encryi
a 11 d

i o a
a s ■ nt

i P.

er

D 8

it.J. 0vRrview

In this protocol, when a user attempts to send data, a
system encrypt function encrypts that data and passes it to the
network management software, which is logically part of the local
operating system. The network software then attaches headers or
other information required by the network protocols and sends the
data to the communications facility. Upon reception by the
remote network software, the headers and other protocol
information are removed from the data and the data is passed, via
a system decrypt function, to the appropriate user process.

Initial establishment of the communication channel is also
provided in a secure way. When a user process attempts to
establish communication, the local network software is informed
by the system. The network software then communicates with the
network software at the remote site. When the two network
software packages have arranged for the new communication, the
system at each site is informed. At this point in time, the
system software attempts to obtain encryption keys for this
communication. This key distribution is accomplished either with
local key management software, or via a key distribution center.
If a conventional encryption algorithm was employed, then new
keys would be chosen and distributed. If a public key encryption
algorithm was utilized, then the public key of the recipient and
the private key of the sender would be retrieved.

In the public key case, an additional authentication
sequence is required, since the public keys may have been used
before. This authentication sequence effectively establishes a
sequence number to be included in each message to guarantee that
previous messages can not be recorded by an imposter and
replayed. The authentication sequence is not required in the
conventional encryption case since the new keys effectively form
an authentication and prevent any prior messages from being
useful.

After the keys have been chosen and d i P t r i b u t a d (using a
previously established secure key distribution channel), the
user processes are given capabilities to send and receive data.
The operating system calls employed should automatically encrypt
and decrypt the data with the appropriate keys. Thus, the

The above design allows existing network protocols in many
cases to be largely left undisturbed, and preserves much existing
network software. If desired, user processes can be blocked, in
a reliable way, from communicating with any other user processes
anywhere in the network unless the protection policy involved in
setting up the keys permits it. Each user's communication is
protected from every other user's communication. Perhaps most
important, the amount of trusted mechanism required in the system
nucleus, as we shall see, is quite limited.

1.2 The FnrrvDtion (^Qpneetion Pxotpcol

Th
describ
this pr
po int
how hos
kernel
communi
connect
network
role c
code to
not to

e det
ed a
oced u
of t
t net
fac i

catio
ion .
prot

f the
impl

have

ails of s
bove , ar
re , we fi
he opera
work prot
1 ities.
n channel
The host

ocol mana
NPM is q

ement the
security

ecure c
c now
rst vie
tins sy
ocol so
For b
betwee
networ

ger (NP
uite so
n e c. e s s
depend

ommun
p r e s e
w th
stem
f twar
rev it
n two
k sof
M) .
phist
ary p
on th

icat
nted
e o
nucl
e op

pro
twar
In g
icat
roto
e NP

ion esta
in more

peration
eus , or k
erates m
n this di
cesses wi
e will be
ensral pu
ed and re
cols, an

M.

blish
detai
from

e r n e 1
a k i n s
scuss
11 be
ref e

r pose
quire

imp

ment, briefly
1 . To outline

the vantage
, and then see

use of the
ion, a logical

known as a
rred to as the
networks, the

s considerable
ortant reason

In
of mate
involved
bid irect
employs
operatic
with eac
establis
and is d
exchangi
two host
these w i
desired,
clearbex
hosts .
used her

the discussion bei
hing encryption
, defines a sec
ional (duplex)
two pairs of keys,
nal mode has a
h other kernel in
hed concerns the
iscussed later. T
ng keys that will
s and for kernel-k
11 become apparent
the protocols can

t form of keys
For simplicity of

ow, it
keys , o
ure , o
channel
[1] Eac
secure

the net
method

he kern
be use

ernel c
as the
be t

only wi
explana

will
ne h
ne

be
h ke
ful

work

by
el-k
d fo
ontr
pro

r iv i
thin
tion

be understood that a
eld by each of the two
way (simplex) channel
tween two hosts then
rnel of each host in n
1 duplex channel establ

How these channels
which hosts are initial
ernel channels are used
r other channels betwee
ol messages.[2] The nee
tocol is outlined. If
ally altered to keep
the encryption units o
that requirement is

pair
hosts

A
efore
o r m a 1
i s h e d

are
ized ,

for
n the
d for
it is

the
f the

not

Wh
th
de
to
co
Th
al
ho
Pr

A
en ho

to
ha
ke
es
pe

rough
scr ib
conn

•; •' •' 0 t
e NPM
ready
st pr
e s u m a
t a b 1 i

com
s bee
rnel .
tabli
rform

connect
sts are
a proc

ed in tn
ect to
i o n"

e x c h a v.
exist

otocol
blv th

ion wil
initia

edure a
ore det
a forei

1 get
lized
nalog
ail 1
gn si

established i
, their NPMs wil
ous to the one
ater. Then, whe
te, the process

ys t : ;'

n
1 e
we
n a
oxe
c n i

the
stab
out
use

cute

fo
lis
lin
r P

shed .
m u n i c a t
n done.

Rath
sh the
ed wit

g e s m e a
ing cha
for est
e NPMs
;■ :■ :.'o \'r'.

e, sinc
The c

er, at
chann

h ker

sages
nnel .
a b 1 i s
even

with the foreig
This exchange wil

hing communication
tually agree that a

n 11
1 i
s i
con

s a
o i

?M
ncl
n
nee

llowi
h con
e he
roces
n "e

r. '•,. ö
113 in

ude a
the

.O!

ng way.
neetions
re, and
s wishes
stablish
r ?. q u ^ s t .
g their
ny host-
network,
has been

e so
on ten
this

el f
nel

far as the kerne
t of NPM exchang
point, the NPMs

or the process
function calls

1 i
es
mu

es.

S CO
is i
st a

T
The

rice
nvi
sk
his
se

rned ,
sible
the k

act
call

nothing
to the

ernel to
ion is
s grant

tion center secure channels.

page 8

capabilities to the user process so that subsequent requests
be made directly by the process.

can

In order to explain in more detail, the following; four
prototype kernel calls are described. The first two are involved
in setting up the encryption channel, and presumably would be
issued only by the NPMs. The second two are the means by which
user processes send and receive data over the connection.

GID(foreign-host , conne
This call supplie
would like to be us
established. The
accept ing it , and a
state = "init", th
associated with the
The entry <connecti
the kernel Key Tabl
sends <connection-i
The policy-info can
it should be the
identified by proce
the organization
might also be a
associated with t
there should alread
the other host ha
is made before send
key is not included
is received from a

ction-id, process-id, state) Give-id.
s to the kernel an id which the caller
ed as the name of a channel to be
kernel checks it for uniqueness before

Iso makes relevant protection checks. If
e kernel chooses the encryption key to be
id (or queries key controller for key),

on-id, key, process-id, state> is made in
e. Using its secure channel, the kernel
d, key, policy-info> to the foreign host.
be anything, but in the military case,
security level of the local process

ss-id. In a commercial case it night be
by which the user was employed. It
network-wide global name of the user
he process. If state = "complete", then
y be an entry in the Key Table (caused by
ving executed a GID) so a check for match
ing out the kernel-kernel message and a

The NPM process is notified when an id
foreign kernel .

CID(connection-id) Close id. The NPM and the appropriate
process at the local site are both notified that the call
has been issued. The corresponding entry in the
is deleted. Over the secure kernel-kernel
message is sent telling the other kernel to
corresponding Key Table entry. This call
executable only by NPMs or by the process whose
entry indLcates thac it Ls the process associate
id", to block potential denial of service problems

Key Table
channel , a
delete its
should be
K a y i a b 1 e

d v/ibh tbis

Encrypt(connection-id, data) Encrypt data and buffnr for NPM
iiii. e E

numoers, to the data, encrypts the data using the Key
corresponding to the supplied id (fails unless the process-
id associated with the connection-id matches that of the
caller) and places the data in an internal buffer. The NPM
is informed of the awaiting data.

Decrypt(connection-id, user-buffer) Decrypt data. This call
decrypts the data from the system buffer belonging to the
connection-id supplied using the appropriate key. The data
is moved into the user's buffer. The call fails unless the
process-id stored in the Key Table matches the caller and
any data integrity checks succeed (such as sequence
numbers) .

page 9

An important new kernel table is the Key Table.[1] It contains
some number of entries, each of which have the following
information:

<foreign-host, connection-id, key, sequence-no, local-process-id>

There is one additional kernel entry point besides the calls
listed above, namely the one caused by control messages from the
foreign kernel. There are two types of such messages: one
corresponding to the foreign GID call and the other corresponding
to a foreign CID. The first makes an incomplete entry in the
receiving kernel's Key Table, and the second deletes the
appropriate entry.

The following sequence of steps illustrates how a connection
would be established using the encryption connection protocol.
The host processors involved are numbered 1 and 2. Process A at
host 1 wishes to connect to process B at host 2.

1

2

3

Pro
MPM
loc
met
the
MPM
Hos
NPM
cal
rec
NPM
exe
unt
wha
NPM
con
NPM
req
In
••: a y
ove
ent
con

is
id'
in
int

cess
§1 , s
ally
hods
NPM.

§1 se
t-Hos
@2 re
1 to
ipien
§2 in
c u t e d
il NP
tever
§1 ex
necti
s , an
ueste
G x e c u
, m a
r its
ry
necti
■j 2 j --,

in pie I
the o
, an
the k
errup

A executes an establish connection call which informs
aying "conn from A to BÖ2". This message can be sent
in the clear. If confinement is important, other
can be employed to limit the bandwidth between A and

nds
t p
cei

r
t a
iti

a
M§1
in

ecu
on-
d p
d t

se
in
on-
3 Ü .''

ne
d
ern
ts

con
roto
ves
etr i
nd p
ates
t s
and

tern
tes
id i
roce
he c

trol
col
an i
eve
roce
ste

ite
NPM

al 1
GID(
s an
ss-i
onne

m
req
ndi
it,
sse
P 2

1
92
oca
con
ag

d i
et i

GI D

cure
it

id .

':; n
cha nne

tab

es
ui
ca
e

s
a
i

op
1
ne
re
s
on

1
le

sages
red.[2
tion o
xamine
the me
t site
n res
en the
name ra
ction-
ed upo
the lo

to
]
f me
s he
ssag
2,

pons
con

appi
id,
n co
cal

NPM§2 including whatever

ssage arr
ad er , det
e .
leading
e. This
nection,
n g s are r
process-

nnection
name of

:■ k e r n e 1S 1 ■■: e n :; r a t
in it? Key Table, a
to Kerneie2f who ma

and interrupts

ival , does an I/O
ermines that it is

to step 3 being
exchange continues
having established
equired .
id , "init") , where
id between the two
the process that

s s o r o b r. a L n r. a
n i s 3 a S s a m s s s a ,'T, e
kes corresponding
NPM§2, giving it

r ■-..■ D C 0 G '■ ;'

•T n n p r o (
? cor f e i ooT] d 1 n g G I D [o o n n ■■■ c 11 o n

wher s conn ect i o n-i d i s t he s
local to host 2. This call interrupts process-
eventually causes the appropriate entry to be made
el table at host 1. The making of that entry
NPM@1 and process-idö1.

[1] In some hardware encryption implementations, the keys are
kept internal to the hardware unit. In that case, the key entry
in the Key Table can merely be an index into the encryption
unit's key table.
[2] The host-host protocol messages would normally be sent en-
crypted using the NPM-NPM key in most implementations.

Process-id and process-id' can now use the channel
succeeding Encrypt and Decrypt calls.

page 10

by issuing

There are a number of places in the mechanisms just
described where failure can occur. If the network software in
either of the hosts fails or decides not to open the connection,
no kernel calls are involved, and standard protocols operste. A
GID may fail because the id supplied was already in use, a
protection policy check was not successful or because the kernel
table was full. The caller is notified. He may try again. In
the case of failure of a GID, it may be necessary for the kernel
to execute most of the actions of C1D to avoid race conditions
that can result from other methods of indicating failure to the
foreign site.

iL-3. Pi. scussion

The encryption mechanism just outlined contains no error
correction facilities. If messages are lost, or sequence numbers
are out of order or duplicated, the kernel merely notifies the
user and network software of the error and renders the channel
unusable. This action is taken on all channels, including the
kernel-kernel channels. For every case but the last, CIDs must
be issued and a new channel created via GIDs. In the last case,
the procedures for bringing up the network must be used.

This simple minded view is acceptable in part because the
expected error rate on most networks is quite low. Otherwise, it
would be too expensive to reestablish the channel for each error.
However, it should be noted that any higher level protocol errors
are still handled by that protocol software, so that most

managed by the NPM without affecting the
On highly error prone channels, additional

encryption level may still be necessary. See
a discussion of resynchronization of the

failures can be
encryption channel
protocol at the
Kent [Kent 76] for
sequencing supported by the encryption channel

.• rom t he pr 0 tec 110n viewp0int, one can c0nsider th -2
collection of NPMs across the network as forming a single
(distributed) domain. They may exchange information freely among
them. No user process can send or receive data directly to or
from :;n HPM, excapt via narrow bandwidth channels throush which
control information is sent to the NPM and status and error
information is returned. These channels can be limited by adding
parameterized calls to the kernel to pass the minimum amount of
data to the NPMs, and having the kernel post, as much as
possible, status reports directly to the processes involved. The
channel bandwidth cannot be zero, hov;ever.

LiL System Initialization Procedures

The task of bringing up the network software is composed of
two important parts. First, it is necessary to establish keys
for the secure kernel-kernel channels and the NPM-NPM channels.

page 1 1

Next, the NPM can initialize itself and its cornmunications with
other NPMs. Finally, the kernel can initialize its
communications with other kernels. This latter problem is
essentially one of mutual authentication, of each kernel with the
other member of the pair, and appropriate solutions depend upon
the expected threats against which protection is desired.

The initialization of the kernel-kernel channel and NPM-NPM
channel key table entries will require that the kernel maintain
initial keys for this purpose. The kernel can not obtain these
keys using the above mechanisms at initialization because they
require the prior existence of the N'PM-NPM and kernel-kernel
channels. Thus, this circularity requires the kernel to maintain
at least two key pairs.[1] However, such keys could be kept in
read only memory of the encryption unit if desired.

The init
proceeds as
networks, some
(encrypted wi
initialization
be establishe
ready for new
if desired ,
kernel-kernel
initialization
initialization
NPMs probably
a user wants t
perhaps close
closed.

ialization of the NPM-NPM communications then
it would if encryption were not present. In most
form of host-host reset command would be sent

th the proper NPM-NPM key). Once this NPM-MPM
is complete, the kernel-kernel connections could

d by the NPM. At this point, the system would be
connection establishment. It should be noted that,
the kernels could then set up new keys for the
and NPM-NPM channels, thus only using the
keys for a short time. To avoid overhead at

time, and to limit the sizes of kernel Key Tables,
should only establish channels with other NPMs when
o connect to that particular foreign site, and

the NPM-NPM channel after all user channels are

iL.Ü Symmetry

The case study just presented portrayed a basically
symmetric protocol suitable for use by Intelligent nodes, a
fairly general case. However, In some instances, one of the p-^ir
lacks algorithmic capacity, as illustrated oy simple hardware
terminals or simple microprocessors. Then a strongly asymmetric
protocol is required, where the burden falls on the more powerful
of the pair.

ii e
the

yptJ.o;! is not
user processes

A form of this problem might also occui
handled by the system, but rather by
themselves. Then for certain operations, such as sending mail,
the receiving user process might not even be present. (Note that
such an approach may not guarantee the encryption of all network

[1] In a centralized key distribution version, the only keys
which would be needed would be those for the key distributor
NPM-host NPM channel and for the key distributor kernel-host ker-
nel channel. In a distributed key management system, keys would
be needed for each key manager.

page 12

traffic.) Schroeder and Needhara have sketched protocols that are
similar in spirit to those presented here to deal with such
cases.

5_ • Datagrams

The case of electronic mail illustrates an important
variation to the protocols presented earlier. Assume that a user
at one site wishes to send mail to a user at another site.

Using conventional encryption algorithms, the first user
would request a connection to the second user, and a new key
would be chosen and distributed by the key controller for use in
the communication. That key is sent using the secret keys of the
two users.

However, since the second user may not be signed on at the
time, a daemon process is used to receive the mail and deliver it
to the user's "mailbox" file for his later inspection. It is
desirable that the daemon process not need to access the
cleartext form of the mail, for that would require the mail
receiver mechanism to be trusted. This feat can be accomplished
by sending the mail to the daemon process in encrypted form and
having the daemon put that encrypted data directly into the
mailbox file. The user can decrypt it when he signs on to read
his mail. In that way, the daemon only needs the ability to
append to a user's mailbox file.

In order for the user to know the new key used for this
mail, however, the key distribution algorithm used earlier must
be modified. Rather than sending the key for this connection to
both the sender and the receiver, the key controller sends the
key twice to the sender, one copy encrypted with the sender's
secret key and one copy encrypted with the receiver's. The
sender can prepend the copy of the key encrypted
receiver's secret key to the mail before transmission,

sns on. his own mail program will i e n t x a '.ii i n e

in the
When the

- 'i L1 b o :c
key, and

iroo Lem]
.o use ii

file, find the key message, decrypt it using his secret
then use the new key to decrypt the remaining text.

In the case of public key encryption algorithms, the mail
somewhat simplified since the rrs.-': [>:. ; :i" knows what key
ecryption (his secret key). However, authentication

is not possible since the recipient is not present when the
message is received. Thus, it may be a replay of a previously
sent message. This problem can be prevented in the conventional
encryption algorithm case via various protocols with the key
managers, for example, by timestamping the mail and having the
recipient keep track of recently used mail keys.

Both mechanisms outlined above do guarantee that only the
desired recipient of a message will be able to read it. However,
as pointed out, they don't guarantee to the recipient the
identity of the sender. This problem is essentially that of
digital signatures, and is discussed in the next section.

page 13

6.- Public Key Algorithms and Digital S i rr n a t. u r e s

The development of public key based encryption was greeted
by a great deal of interest, since the method appears to present
considerable advantages over conventional encryption methods,
especially with respect to key distribution and digital mail
signature s.

However, on closer examination, it seems that public key
algorithms possess no particular advantages over conventional
algorithms. The reasons for this conclusion are readily seen and
are outlined below.

6..1 Key Distribution

Let us examine each of the advantages claimed for public key
algorithms. The first is key distribution. Simply put, public
key advocates argue that an automated "telephone book" of public
keys can generally be made available, and therefore whenever user
x wishes to communicate with user y, x merely must look up y's
public key in the book, encrypt the message with that key, and
send it to y.[D.iffie 76] Therefore there is no key distribution
problem at all. Further, no central authority is required
initially to set up the channel between x and y.

Needham and Schrocder point out however that this viewpoint
is incorrect: some form of a central authority is needed and the
protocol involved is no simpler nor any more efficient than one
based on conventional algorithms.[Needham 773 Their argument may-
be summarized as follows. First, the safety of the public key
scheme depends critically on the correct public key
selected by the sender. If the key listed with a name
"telephone book" is the wrong one, then there is no security.
Furthermore, maintenance of the (by necessity machine supported)
book is non trivial because keys will change; either because of
the natural desire to replace a key p^. ir which his been

,a transmisaion, because ksy
\ a r i e t y 0 f w a y s .

being
in the

or

high ' trioun '■ o 0 1 ci at a t r •
compromiaed through a variety of ways. ihcjre must be some source
of carefully maintained "books" with the responsibility of
carefully authenticating any changes and correctly sending out
public keys (or entire conic? of the boo"" :) upon r e Q u s s t.

Need
desired
are e qu i
protocols
required
only obs
conventio
its coll
at UCLA o
construct
building

ham and Schroede
properties for
valent protocol

are equivalen
as well as in th
ervable differs
nal case, in add
ection of (conve
n secure opcrati
ing a secure
the correct one

r also exhibit
public key sys

s for convent
t both in ter
e mechanisms wh
nee is that the
ition to being
ntional) keys s
ng systems, it
central author
needed for publ

protocols to provide the
tems, and show that there
ional algorithms. The
ms of numbers of messages
ich must be trusted. The
central authority in the
trusted, must also keep
ecret. Based on the work
appears that the task of
ity is no harder than
ic key systems.

page I1*

6.2 Dleibal si ^natures

methods are often The second area in which public key
thoufiht to be superior to conventional ones is digital message
signatures! The method, assuming a suitable public key
aig^ithm! is for the sender to encode the mail by "decrypting
it with his private key and then send it. The receiver decodes
the message by "encrypting" with the sender's public key. The
usual view s that this procedure does not require a central
authority except to adjudicate an authorship challenge.
Hoover "two points should be noted. First, a central authority
is needed by the recipient for aid in deciphering the first
ttssage received from any given author (to get the corresponding

example).[Needham 77]

unadorned public key
The

Further, and more serious, the
signature protocol just described has an important flaw
author of signed messages can effectively disavow and repudiate
his signatures at any time, merely by causing his secret key to
Smade'public, or "compromised". When such a" .^ „^^ .'.

intention, all messages previously "signed^

safe
key.

as

the validity of a signature on a message is only as
the entire future history of protection of the private

—----■ protection resides in
Further, the ability to remove the . ^ , .s, . .t

precisely the individual (the author) who should nothold^that

right. That is, one important purpose of

indicate
message in

responsibility for the content
that cannot be later disavowed

a signature is to
of the accompanying

a way

peopli some peopx« may argue
conservative; that existing
reliable, that individuals have
repudiate their signatures,

that this concern is overly
signature methods are not very

considerable incentive not to
and so one is justified in

.L ,

characteristic is clearly unsatisfactory,
possible to devise suitable digital signature
not suffer from this problem.

especially if it is
methods which do

conventional The situation with respect to signatures "sins r_ ,. 7ßl
appears slightly better. Rabin [Rabin 78]

a method of digital signatures algorithms initially
proposes elsewhere in this volume nilbli^ kev
based on any strong conventional algorithm. LJke public key
Methods it too requires either a central authority or an explicit

page 15

agreement
going.[1]
Rabin* s

between the two parties involved to get matters
Similarly, an adjudicator is required for challenses.

method however uses a large number of keys, with kcyS| not
being reused from message to message. As a result, if a ^V'^ys

other signatures based on other keys are still
a real advantage over public key

are compromised,
sa f e However, that is not the
methods, since one could readily add a layer of P™^/1 "^ d^
public key method to change keys for each message as Rabin does
for conventional methods. One could even use a ^riant of
Rabin's scheme itself with public keys, although it is ea.y to

develop a simpler one.

or
of
to

However, all of the digital signature methods described
suggested above suffer from the problem of repudiation
signature via key compromise. Rabin's protocol or analogues
it merely limit 'the damage (or. equivalents, provide
selectivity!). It appears that the problem is intrinsic to any
Tpproach L which the validity of an author's signature depends
on secret information, which can potentially be^revealed, either
by the author or other interested parties,
would be desirable.

Surely improvement

.6.1 A Reliable Digital Signature. Method.

A simple, obvious solution is to interpose some trusted
interpretive layer between the author and ^J^f^ f^
whatever their form. For example, suppose the list °f ^eys in
Rabin's algorithm were not known to the author, but instead were
contained in a secure Unit (hardware or software) "er the
author wished to send a signed message, he merely submitted the
message to the Unit, which selected the appropriate keys and then
used the standard algorithm. Each author has access to such a

Unit.

The
particul
ir-hsm inn
ha a d.i. sd
Source o
protocol
b e d o 1. i v

, ; I l

with the
(N R) .
earlier.

load
ar ,
o e B ■'•
s .1 11

f key
), a
e r a b 1

i r i n
Such

Not

ing
t h e
h Un
s f ac
s (a
nd
e in

of
n

i. 7,

to
nd
th

ea
ean
m u

r i i-
ma

e k
c;o

ch Uni
wh 1 c

t r
h ar
O C T • ■

equires some examinat
e used to select keys a
ct if mail challenges a

tch
cy

t e r n
an

e th

al
MR
at

c
ap
so

o m ra
pea
me

ing
list
ct,

unic
rs r
sccu

"st
for

seer
^ ■' u

a t i o
equi
re c

x ^
an
e

r, [i Q r e tn u s

n
re
ora

dar
ach
w a

pro
d t
mun

d message" in
author/recipic

V to the a pprop
and tha Sour !e(
tocols, a Netwo
o solve the pro
ication protoco

som
t

nt
^ i n
.-.)
rk
ble
1 a

ion
nd

e c
he
pai

Re
tns
mon

In
n s e r t
0 b'J

uü ued
Rabin
must

n i t s .

, i s t r y
•a ised
• the

[1] In his paper, Rabin describes an initialization method which
ivolves an 'explicit contract between each pair of parties that

wish to communicate with digitally signed messages. One can
easily instead add a central authority to play this role using
suitable authentication protocols, thus obviating any need for
two parties to make specific arrangements prior to exchanging

signed correspondence.

pace 16

components of the Network Registry is required. However, it
be very simple; low level link encryption would suffice.

can

For safety and efficiency, the NR functions presumably
should be decomposed and distributed throughout the network. In
particular, the failure or compromise of a local NR would then
only have local consequences. One can even construct local NR
components of the Network Registry in a decentralized way so that
compromise of more than one component would be required before a
message signature was affected.[1] The NR architecture issue,
while important, is to some degree a digression here and so we
put it aside.

The Registry concept is quite common in the paper world. A
local government's real estate recorder's office is probably the
most commonly known example.

A. A Au ':hent icat ion

We now make
that there exi
an individual is
the local Unit
ultimately requ
masquerade as a
required is some
terminal -- so
today. Perhaps
other personal c

an important observation. It is still necessary
st a guaranteed authentication mechanism by which
authenticated to the MR (presumably directly to

). Any reasonable comunication system of course
ires such a facility, for if one user can
nother, all signature systems will fail. What is
reliable way to identify a user sitting at a

me method stronger than the password schemes used
an unforgeable mechanism based on fingerprints or
haracteristics will emerge.

In part
satisfactorily (including performing user authentication), it
clearly must be distributed, and clearly must be able to
communcicate securely internally among the distributed
components. Given that such facilities exist, then the following
is an example of a simple implementation of digital signatures
which does not require a specialized protocol or encryption
algorithm:

1. The author authenticates with a local Network Registry

[1] See section 6.6.

page 17

a
component, creates a message, and hands the message to the MR
together with the recipient identifier and an indication that •
registered signature is desired.

2 A Network Registry (not necessarily the local component)
computes a simple characteristic function of the message, author,
recipient, and current time, encrypts the result with a key known
only to the Network Registry, and forwards the resulting
"signature block" to the recipient. The Nfi only retains the
encryption key employed.

3. The recipient, when the message is received, can ask the NR
if the message was indeed signed by the claimed author by
presenting the signature block and message. Subsequent
challenges are handled in the same way.

This simple protocol involves little additional mechanism
beyond that which was needed by the Network Registry anyway. It
does require that the Network Registry be involved in every
message signature and validation. However, recall that all of
the unadorned signature methods reviewed earlier require
involvement of some form of a Network Registry for at least the
first message between any two parties. Public key protocols must
check the "telephone book", and Rabin's method requires either a
contract or a Network Registry. Furthermore, when one adds a
more complete Network Registry on top of those other signature
methods to correct their repudiation problem, all methods involve
the NR for each message. Note that this protocol also does not
require the NR to maintain any significant storage for signature
blocks .

6.. .6 Performance and S a fe t v

Certain elementary precautions should be taken in the design
of the Network Registry to avoid unnecessary internal message
exchanges and to assure safety of the keys used to encrypt the
j^nahurs blocks. Performance enhdnos.nent s presumably wouici

involve distributing the signature ölock calculation. Safety
enhancements could include the use of different keys at each
distributed site, replicating sites, and employing a signature
block computation which requires the cooperation of multiple

try oh ■ '■' • H , -j.. '■ < •> - ' i ;■ ; ;■ D i ? r. t r a igh t f o r w 5 rd to bui 1 .; '.- nu
~,o they are not discussed further here-

From the preceding discussion, we conclude that the digital
signature algorithms proposed heretofore are unsatisfactory, and
the improvements required to correct their inadequacies make the
use of a specialized digital signature algorithm unnecessary.

We note here that the safety of signatures in this proposal
el^o depends on the future history of protection of keys as
before, in this case those held by the Network Registry.
However, there are several crucial differences between this case
and previous proposals. First, the authors of messages do not
retain the ability to repudiate signatures at will. Second, the

page 16

Network Registry can be structured so that failure or compromise
several of the components is necessary before signature of

validity is lost. In the
could lead to compromise.

previous methods, a single failure

1- Conclusions

more
The

We draw a number of specific conclusions, as well as
general perspectives from the preceding discussions,
specifics are as follows. First, public key encryption systems,
viewed in the context of the network protocols by which they must
be used, do not seem to provide any significant advantages over
conventioml encryption algorithms. Each important function that
has been recognized can be performed at least as easily by
conventional methods with, it appears, no more supporting
mechanism. Therefore, if strong conventional algorithms are
easier to develop, as has been speculated [Rivest 77b], research
would be better devoted to that area rather than public key
systems .

Second, it seems that the digital signature methods which
have been proposed, both public key and conventional algorithm
based, do not adequately protect recipients of signed documents
from repudiation of signatures by the author revealing the secret
key(s) employed. The difficulty appears intrinsic to the
approaches being taken. An alternative is available which
overcomes this problem however, that involves a small amount of
trusted software.

Third, the necessary underlying mechanism required to
support improved digital signature methods, as well as other user
visible secure network communcation protocols, is relatively well
understood, and an example is presented in this paper. The
example takes account of the important requirement that the
amount of trusted mechanism involved be minimized for the sake of

safety.

. w o r In more global terms, this discussion oi ne
has been intended to illustrate the current state of the art.
suggests the following general perspectives.

It

[f ane'? view of security of d
common carrier philosophy, then
secure, common carrier based, point
provided are reasonably well in
sophisticated implementation, there
careful engineering to be done.

However, this conclusion rests
that is not universally valid,
operating systems to support the i
required encryption protocol faclli
as a single protection domain. A s
Distribution Center or Registry
Fortunately, reasonably secure ope

a i .. ; n ne r.wo ■■.;.• .. s u .i .■ .■■.' '^ ■ •
gene ml principles by which
to point communication can be
hand. Of course, in any

will surely be considerable

on one important assumption
Either there exist secure

noividual processes and the
ties, or each machine operates
ccure implementation of a Key
is necessary in any case,
rating systems arc well on

page 19

th-ir way, so that this intrinsic dependency of network security
on" an appropriate operating system base should not seriously
delay common carrier security.

the of One could however, take a rather different view
nature of the network security problem: the goal rm-nt b- to
provide a high level extended machine for the user, in
explicit awareness of the network is required,
facility is trusted to securely move data from site to site as
necessary to support whatever data types and operations that are
relevant to the user. The facility operates securely and_ with
integrity in the face of unplanned crashes of any nodes in the
network. Synchronization of operations on user meaningful
objects (such as V/ithdrawal on CheckingAccount) is reliably
maintained. If one takes such a high level view of the goal of
network security, then the simple common carrier solutions
respond only to part of the network security problem and more

work remains.

which no
The underlying

81. Bibliography

[Diffie 76] Diffie, W. and M. Hellman, "New Directions in
Cryptography", IEEE Transactions on I_nfo r m a t i..on Ih^ory,

November 1976, 644-654.

RncrvDtion-bas_ed Protection Protocols for
n?er-Computer r.nmmun icat ion . Laboratory for

[Kent 76] Kent, S
Interactive U
Computer Science, KIT, TR 162, 1976.

[Meedham 77] Needham, R. and M. Schroeder, Security and
Authentication in Large Networks of Computers, Xerox Palo
Alto Research Center Technical Report, September 1977.

"A Model for [Popek 78a] Popek, G. J. and D. Färber,
Verification of Data Security i« Operating Systems",
r.nmmunications .of. the ACM, (to appear).

L f .pel-: Job] Popek, G. J. and C
Secure Computer Networks",
Course . R. Bayer, R. M
Springer-Verlag, 197 3

[Popek 7 ö c] Popek, G. J. and
Design", Proceedings .of
AFIPS Press, 1978

C

3. Kline, "Design Issues fc^
in Qperatine: Systems. M Advanced.

Graham, G. Seegmuller, ed..

S. Kline, "issues in Kernel
the National Computer Co_nXereji.ce,

[Rabin 77] Rabin, M., "Digital Signatures
Encryption Algorithms", .Proceedings oT
Foundations, of Secure Comoutinn;. Atlanta
3-5, 1577» Academic Press (to appear).

Using Conventional
the Con f erence .on.
Georgia, October

[Rivest 77a] Rivest,
for Obtaining
C

Shamir , A., and L,
Digital Signatures

Adleman, A Method
and Public- Key;

^DbosTTtT^T MIT Laboratory for Computer Science Technical
Memo LCS/?M82 Cambridge, Mass. 02139 April 4, 1977 (Revised

page 20

August 31, 1977)

[Rivest 77b] Rivest, R., private communications, 1977

-

A LOCKING PROTOCOL FOB RESOURCE COORDINATION IN DISTRIBUTED DATABASES»

Daniel A. Menasce:, Gerald J. Pop»k and Richard B. Muntz

Computer Science Departirent
University of California

Los Angeles, California 900?H

ABSTRACT- A locking protocol to coordinate access to a distributed database and to maintain systen

KEYWORDS AND PHRASES:
consistency.

concurrency, crash recovery, distributed databases, locking protocol.

Iptroduction

This paper is concerned with issues of
resource coordination in distributed systems, and
the maintenance of system consistency throughout
normal and abnormal conditions. A database is said
to be in a consistent state if all the data items
satisfy a set of established apgertions or
consistency, constraints. A database subject to
multiple access requires that accesses to it be
properly coordinated in order to preserve
consistency. Coordination of resources in a
distributed environment exhibits additional
complexity over resource coordination in
centralized environments due to:

1.

2.

possibility of crashes of participating
altes and or communication links.
Ocoiirrsnort of such failures can rer.der the
databass inconsistsnc if not appropriately
handled by the coordination algorithm.

network partitioning: in general, it is
not possible to distinguish between
ra»s3a?es which could not ba delivered du1?
to a crash or the recipient site and
undelivered messages due to network
partitioning. Therefore, network
partitioning in the more general sense
considered here is not simply a matter of

• This research was supported by the Advanced
Research Projects Agency of the Department of
Defense under Contract MDA 903-77-C-0211.

t Partially supported by the Conselho Nacional de
Desenvolvimento Cientifioo e Tecnologico, CNPq,

Brazil.

proper network topology design. It turns
out that detection of network partitioning
can only occur at network reconnection

time.

3. inherent communication delay: the time to
get a message through a computer
communication network may be arbitrarily
long, although finite. Therefore any
proposed solution should operate correctly
regardless of the delay experienced by any
message, and in general should be

efficient.

A protocol to coordinate concurrent access to
a distributed database using locking is presented
in 'bis paper. The algoribha hi.- as its cor» ?.

■d locking protocol with distributed
•alized controller with

local appendages
resource control.

centra
recovery procedures.

at each site coordinates all
with requests initiated by

site. Recovery is application programs at any
three- disjoint meohanisms; for

itroi'-'. :h~. centralized .i no

broken down into
ai"?,1.3 node reo i
reconstruction of
tables.

Among the properties of the proposed protocol

ve have:

£. jofrustness in the face of crashes of any-
participating site, as well as
communication failures, is provided. The
protocol can recover from any number of
failures which occur either during normal
operation or during any of the three
recovery processes.

■

b. padlock EoagaUaa sni fit tei^sUan
■ ethods oan be easily Integrated given the
centralized control characteristic of the
proposed algorithm.

Ä. jira^tfgrward intfi^alüm fit f^^
tasMiiÄ Bfitilia [I] IS HSnsltiM- Value
dependent lock specification at the
logical level is necessary to avoid the
problems of "phantom tuples" discussed by
Eswaran et al Ml. Other locking
disciplines may also be easily supported.

d . mntlnued lEiäi fiESXäUoa In ihe XäC£ äT
network rarUUSLOilA la S-Wvor^a. The
locking algorithm operates, and operates
correctly, when the network is
partitioned, either intentionally or by
failure -of -»«wunioation lines. Each
partition is .able to continue with work
local to It, and operation merges
gracefully when the partitions are
reconnected.

e. performance fif the algari&ffl &&■ J®&
^r^jP ooerations. It is shown in this
paper that for many topologies of
interest, the delay introduced by the
protocol is not a direct function of the
size of the network. The communication
cost is shown to grow in a relatively
slow, linear fashion with the number of
sites in the network.

f the correct one ration of the protocol in
the face of the failures mentioned before
can be proven in a straightforward way.

Several other approaches for synchronization
in distributed databases have been suggested in the
literature, but none deal satisfactorily with all
of these issues.

The Majority Consensus protocol proposed by
ThomasLS] requires the sites involved in a
transaction to agree by majority vote f0' " *°
uroceed. Timestamps on data items at each site
indicat; whether the item is current and therefore
whether a transaction based on It can be o.pproved.

This protocol is quits elegant, with
attractive behavior in the face of failures,
^ p ciaÜ for fully replicated databases
Unfortunately, for the cases considered in this
S r it rlUnts several drawbacks The lock ng

. ,. ; ,V,_.H,.'H-I- ^r transactions are fixea d^aclpllne and aohriduLing 01 >■' ■ J-^ ^ i-ir,,,
by the nature or the algorithm Uself, Uu,i^"S
flexibility (predicate locking cannot be supported
£r example). Performance can degrade severely
Sh Seakng syst« load in a thrashing ike
manner since several partially complete
t^nsactlons" which conflict lead to multiple

resuboission of each.

Synchronization in SDD-1 W 1= handled by
several different protocols designed to co-exist
with one another. The simpler ones can be used for
certain restricted classes of transactions known in
advance of system generation. f

ln »u°* "^
significant improvements in cost and delay over
fore general protocols results. Otherwise however,

ve reconmand our protocol since its performance la
absolutely better and issues such as robustness and
crash recovery, not handled by SDD-T. are

■considered fully.

A ring structured solution is proposed by
Ellis[6] It uses oequential propagation of
synchronization and update messages along a
statically determined circular ordering of the
nodes. Two round trips are required for each
update. This protocol, while in general much
slower than the others mentioned above, is quite
simple and Ellis has employed fonnal verification
procedures to show its correctness. Unfortunately
however, failures and error recovery are not
addressed by the protocol.

Other proposed schemes, called BCiffiäEi ÄSEi
strategies have been suggested in [3], 15] and I N.
Alsberg in [3] introduced some techniques aimed at
SovlSing a certain degree of resiliency to the
single primary, multiple backup strategies
discussed in [5] and [7]. The primary copy scheme
is primarily designed to maintain mutual
consistency of databases subject to somewhat
limited types of update operations, but it aoes
ir address explicitly the problem of internal
consistency of a distributed system supporting
general transactions.

The protocol presented in this paper is
described in an intuitive manner in section one
followed by a more detailed description in the two
subsequent' sections. An algorithmic «Pecif cation
of this locking protocol can be found in t2J. ^
informal proof of the correctness of the algorithm
is presented here. The proof is decomposed into
five major parts, one for normal operation three
for the recovery phases, and a last part that shows
the parts actually can be proved disjointly.

The paper concludes with a proposal for an
extension aimed at optimizing operation of the
SmS to adapt to highly skewed distributions
of activity. The extension applies nicely to
interconnected computer networks.

J_ - (^pntralized Lock
Intuitive pi;?nrlptlon

r.ontroller Protocol

v- are considering here is
n nodes of a computer network.

The database

Z^eTfLTZ „: ^^me-that- the network
^tocols are such that a copy of a message is kept
by its sender until an acknowledgment for it is
received. In other wor^s, there are no los

-> --'."j .1-] ■•-»"i "i.v-' nsv2 LO

retransmitted^any times until they get through the

ret. An implication of these aa3^Ptl0nshnJ
S
fi^fe

messages may be delayed by an arbitrary but finite
^o^t of tiL. Ve also assume that ^ssages roffl
a source site A are delivered to a destination site
B in the same order they were generated. Howler,
we make no assumptions about the order in which
messages from two distinct sources are received by
a third one Ve require that the network routing
Jrocefures"*; such that every pair of nodes can
communicate with each other if the necessary
physical connection is available.

User interaction with the database is done

Tooes Of ho« p^ce«eS. two are "f interest
Vor tUis locking protocol: the ■centralize loo
controller' or simply 'lock controller and the

•local lock controller*.

As a first approxination assume that there is
only one lock controller or LC for the entire
network This process is responsible among other
things for examining lock and lock release requests

fj« the APs, and deciding whether ^ »Stains
Kranted or not. For this purpose, the LC naintains
a tabfe called the LOCK table, which is a se of
all the active locks. Each entry in this table is
a 3.tuple of the fort. (H.T.P) v^ere H is a unique
host identification, T is a unique transaction
Identifier within ea^h site and P is a description
of the losical portion of the database to be locked
Is veil as the lock node (e.g.. read, write, etc).
in a relational database, the lock »P"^ ^
iay for example be a predicate lock as described by

Eswaran et al [1]■

At every site, except for the one where the LC

is located, there is a local l°ck^f^16^
n r Those processes are responsible for
ia^tainlnTa ?ocal copy of the LOCK table Any
LLC ia b^OBe the lock controller whenever there
<T a crash in the system which makes the LC
un- -laMe The recovery process is explained
la ;* in detail. Each time a transaction takes an
a on he local copy of the LOCK table is «amjned
t^ deterr-ine whether the action can be Performed or
not Therefore, there are two reasons for keeping
a iocal copy of the LOCK table, namely: resilience
to failures and local action checking.

It is convenient at this point to introduce
the notion of logical partition or logical

St-k suSh S^ery-p^ sites in the
component can communicate with one an°ther. It can
be reaiily seen that the composition of a Physical
exponent' is not under the control of the locking

protocol, since nodes and o™ioatl0".^J*"
independently of the protocol operation. Such a
lack of control could make the operation of the
criocol in the face of crashes, rather complex
^e coSpt of logical .caponeat is introduced to
fi.."" protocol indep«nd5nce rr^r, unexpected
changes in the composition of each P^""i
component. To this end. each LC keeps a list of
sU s whi h he thinks are still up, called the up
list! A logical cmmml i* defined as being the
tS^rd^tedbythenodes^hicharein^th.

"^es'which ar^'actually up. Independence from the
c^posiiion of physical components is thus achieved
by Controlling the way by which the ^"er list
maps into the former, in a way which Is explained

later in the paper.

Since one of our stated goals is ^ allow
w=,i nnprations to continue in face of network
pa" tioS an to allow partitions to merge
Tra efuUy^ it is necessary for each Petition to
have its L LC. There is one LC for each logical

cocponent.

The operation of the looking protocol under no

-crash conditions cen be intuitively explained as
foUows. The LC receives lock and lock release
.requests from the application programs Each
•request is sent to all LLCs in the component The
request is stored in a pending list at each LLC
»He and an acknowledgment Is sent back to the LC
After the acknowledgment from all sites in the
component is received (excluding those which
crashed in the meantime) a confirmation for the
request is sent by the LC to all LLCs causing the
request to be deleted from the pending list and

appended to the LOCK table.

a LC if it
table or if

ponent. We
ine for each
e the data
p is said to
up list for
etermlned by
organization
see [9] and

A lock request nay be rejected by
conflicts with other locks in the LOCK
the request is not lasal to the com
assume that the LC is able to determ
lock, P, the set, LOC(P), of sites wher
to be locked are stored. Thus, a lock
be local if LOC(P) is contained in the
the component. The set LOC(P) can be d
the LC by checking some catalogs. The
of those catalogs is not relevant here;
[10] for discussions of that subject.

Every time that a site or a set of sites drop
out of the up list, all the locks which are not
local any more are released and all the
transactions which had at least one lock released
vill be aborted or backed up. In this way complete
locality of operations is enforced by the CLC

protocol.

If the LC crashes or becomes unavailable a
recovery mechanism called LSiOcal C^cneni
^covery (L£R) takes place. As soon as an LC-crash
iT^tected by any process engaged in a
conversation or exchange of messages wi.h the lock
controller, a new process is nominated to be the
new LC There is a globally known circular
ordering of the sites from which the nominee is
«ecS. If the nominee is up " ^cepts the
nomination by sending a message which circulates
through all the sites in the component The
purpose of this message is also to collect all the
requests which have been received by all the sites
bu? which are still in the pending list for at
Ipast one site. Those requests will be
en rpor^ed into the LOCK table at every site in a
subsequent phase of the recovery process In
^nmary, the LOR B«ohanlsm amounts to electing a

neH LC for the ooraDonent and bringing all tne -■. ■■■
tables to the same valu^ before "oraal °P^a"^" "
resumed. Various race conditions are dealt with by
the details of the recovery protocol.

It is the responsibility of each LC to

periodically monitor the connection h^'^"^

^onneition11 bltwe^ Zo ^^ logically
disconnected component is detected, a LeSiSSl
j^nent Mers« (LSM) mechanism is started LCM is
always done pairwise between components and in this
frocess the LC of one of the components plays an
active role while the other plays a passive one
We first phase of LCM is composed of an
fnterconnectlon protocol by ^ich two JXs *re
logically connected in such a way that one of them
is designated active and the other Pass^; ..^

protocol also enforces the Pairwise "^V^^cal
and is -rtiown to be deadlock free. After a loglca
connection has been established both LCs clear all

Cutstanding requests and reject further ones. In
the subsequent phase, the union of the LOCK tables
of the two cotnponents is made and the new LOCK
table is sent to all the sites in both components
in the form of a message which circulates through
then. This message signals the completion of the
merge. The active LC becomes the lock controller
for the new logical component.

When a site which was down recovers, it is
made active by the gingle Mfldg lesoverx (SKR)
mechanism which basically amounts to the
acquisition by that site of a new copy of the LOCK
table.

The three recovery mechanisms described above
dc net interact with each other, as will be shown
later. This property is important because it
allows us to decompose the correctness proofs into
a proof of disjolntness and then proofs for each
recovery procedure separately.

The recovery mechanisms will be shown to be
robust in the face of additional failures. In
order to achieve this goal, each mechanism is
designed in such a way that a partial execution of
any of the recovery algorithms does not destroy any
of the properties we want to prove about them.

It is important to emphasize at this point
that, since all the lock requests are examined by
ar. LC in each logical component, locks granted by
LCs do not conflict with one another. This fact
enables us to consider the operation of the
algorithm for normal operation and for recovery as
if there were only one lock per logical component.
The reader is encouraged to keep this in mind as he
reads through this paper.

3. When all the HA nesoages have been
received by S, M Is moved to
final_buffer(S) and removed from
temp_buffer(S) and a "CONFIRM MESSAGE" or
CM message is broadcast to all
destinations.

14. The receipt of a CM message at destination
Di causes M to be moved into
final_buffer(Di) and removed from
terap_burfer(Di).

A variant of this approach with additional
acknowledgment messages, called a two-phase- cocmit
protocol, is described in [11] and [12].

Several other details are also worth keeping
in mind. As mentioned before, each LC keeps a list
of the sites in the component which are up. A node
1 is removed from this list by the LC each time
that the underlying network protocols fail to
deliver a message to site i (after timeout and
retransmission occurred a certain number of times) .
An up list is also modified by the execution of any
of the three recovery mechanisms. A copy of the up
list is also kept by each LLC. Every update to the
up list by the LC is transmitted to all LLCs in the
component. Note that no additional message traffic
is generated by those updates aince they can
"piggyback" on other messages. The reason for
keeping iocal copies of the up list is merely a
matter of performance, since the up list determines
to some extent the set of nodes which should
participate in the LCK or LCM recovery mechanisms,
as will be seen later. Also, every time that a
change in the up list causes certain locks not to
be local any more, all non-local locks are released
and the affected transactions aborted.

g - Lock and Release Granting Algor^th!ns

This section describes informally the
algorithms used to grant new locks and to release
existing ones. One would like those algorithms to
have the property that a lock is either granted or
released if and only if It is known to all the
sites. The basic structure of both algorithms can
be abstracted in what we call the Assured
Comaunicatlon Protocol (ACP) which exhibits the
desired property outlined below.

Let there be' a sender S, who wishes to send a
nessage M, originated at an external source ES, to
£ destinations DI, D2, Dn. Each site i keeps
two message buffers: temp_buffer(i) and
final_buffer(i). ACP is nuch that message M will

burfor(S) iff H is either in
final_buffer(DJ.) for all
can be described by the

or . '■ ' • in . Lna
terp_bui icrvDi)
destinations Di. ACP
following set of rules:

1. S receives a "MESSAGE REQUEST" or MR
message froc ES and broadcasts an "ACCEPT
MESSAGE" or AM message, which contains M,
to all Di's, i=1,...,n. The message M is
placed in temp_buffcr(S).

2. When an AM message Is received by a
destination Di, the message M is placed in
temp_buffer(Dl) and a "MESSAGE ACCEPTED"
or MA message is sent back to S.

£-1 - Lock Granting Algorithm

Application programs issue lock requests by
sending a "LOCK REQUEST" or LR message to the LC.
This message contains the lock or 3-tuple which the
user would like to be entered in the LOCK table.
The LC decides whether the lock can be granted or
not. If the requested lock conflicts with other
active locks a scheduling decision must be taken by
the LC as to whether to preempt nny transaction or
to risk? the requester wait. That ^c;..-!ijr\ is not
the concern of this paper. If there are no
conflicts and the lock is local to the component
the LC must notify every LLC in its component that
a new entry should be appended to their LOCK
tables. Actually, instead of inserting the lock
directly into the LOCK table, an LLC appends it to
a list of pending look requests, called an .L-üat..
The reason for this is to prevent copies of the
LOCK table from becoming inconsistent if the LC

crashes.

The basic structure of the Lock Granting and
Lock Releasing algorithms is the same as that of
the ACP protocol, where AP, LC, LLCi and LOCK table
correspond to ES, S, Di and final_buffer in ACP,
respectively. Also, the message M in ACP should be
considered as a lock request for the Lock Granting
algorithm and as a release request for the Lock
Releasing one. For the Lock Granting Algorithm, in
particular, temp_buffer corresponds to an L-list.

-

2,'Z - -Lock peleaalng Alg.°rlttW

A similar procedure Is followed when an AP
Issues a lock release request, by send!.:-^ to the LC
a "RELEASE REQUEST" or RL message. Each site keeps
a list of pending release requests or an B-llaL for
the saae reasons we introduced the L-list. The R-
list corresponds to temp_buffer in the ACP
protocol.

2.-1 - Some pefinitions .and fxaofs

We will show here that, if no crash occurs,
the Lock Granting and Lock Releasing algorithms
have the property that a lock is only granted or
released if all the sites in the component know
about the request. In order to make this statement
nore precise consider the following definitions.
Let LT(i), L(i) and R(i) be the LOCK table, L-list
and R-list at site i respectively.

lock PEFIMTION 1 (Lock peouest Presence): A
request or a lock is said to be present at site fl
i, if the lock is either in LT(i) or if it
L(i).

is in

PEFIN'ITION 2 (Release Request Presence): A look
release request is said to be present at site # i
if it is either in R(i) or if is not in LT(i).

The proof for the following two assertions, as
well as for all other assertions in this paper, can
be found in [2].

ASSEFTION 1: If a lock is in LT(i) for some
i=1,...,n and in the L-list for at least one site,
then this look is present in every other site of
the ccnponent.

ASSERTION 2.- Let x be a lock and y its associated
release request. If x is in LT(i) for at least one
site in a logical component but not in all of them
and y is in at least one R-list, then y is present
in every other site.

Assertions 1 and 2 together lead
the following result.

directly to

THEOREM 1: Let C be a logical component, LC its
lock controller and U the set of sites In C. If no
crashes aver occur than a lock request is only
granted by tha LC after it la present at all the
sites in U and a lock is only released if the
associated release request is present at every site

in U.

3 - Qraa'n jjacovgra

So far we have described the protocol for
requesting locks and releasing them, assuming that
no crash occurred. Communication links,
processors, operating systems and processes are
some examples of sources of crashes.

The three already mentioned recovery
mechanisms will be presented here. These
mechanisms will be proven to be robust with respect
to additional failures. To be robust, the
protocols must preserve logical component internal
and mutual consistency as defined below, if any

changes have been made to any permanent information
(like LOCK tables, up lists or LC id's) at any
node.

PEFINITION 1 (l.T-gonslstencv): The set of LOCK
tables of a Logical Component is said to be LT-
consistent if assertions 1 and 2 hold at any time.

PEFINITION i (logical Component Internal
Consistency): A logical component Is said to be
Internally consistent if the set of its LOCK tables
is LT-consistent and if there is one and only one
LC, whose identity is known to every node in the
component.

PEFINITION 5, (Logical Component Mutual
Consistency): A set of logical components is said
to be mutually consistent if all of them are
internally consistent and if there is no look
present at any LOCK table of one of them which
conflicts with another such lock of any other
component.

Pefinition 5 covers the previous two, and
specifies the property which is required of
recovery.

The recovery protocols have been designed so
that all crashes which can occur during a recovery
phase fall into one of the two disjoint classes,
which we call terminal and transparent failures.

A terminal crash causes the entire recovery
mechanism to be aborted and restarted. The
possible conditions under which terminal crashes
occur are shown to leave the protocol in a robust
state, as defined above. A transparent crash is
defined to be one which does not affect the
continued correct operation of the recovery
process.

Therefore, if all crashes can be shown to be
either terminal or transparent, the recovery
protocols are robust. As we will see, for each of
the recovery mechanisms, we can identify a point
before which the recovery c?.;i be considered as not
having happened at all and after which it is
considered to be successfully carried out. This
point is called the 'completion point'. Crashes
before the completion point, if they have any
effect at all, are shown to be terminal. Crashes

to be
nsparent.

The three proposed recovery mechanisms will be
shown to occur disjointly in time. In other words,
a merge of two logical components only takes place
if t h B 1 r r. ? ^ si s t n t c both are ■
recovering from a Logical Component : ,
site only becomes attached to a logical component
if this component is in its normal state. These
important properties will allow us to state and
prove separate theorems concerning each one of
them.

2..1 - logical Component Recovery (L£E)

We will now show how an LLC may become an LC
if the LC crashes. A crash of the LC can be
detected by any process engaged in a conversation
or exchange of messages with it. As an example, an

JJ> may tlmo-out «hlle «altlng for a reply from the
LC for a look or lock release request. In every
cpse, the process which detects a crashed LC is
responsible for nociinating a new LC. For this
purpooe, we will assume that the distinct sites or
nodes in the underlying network are arranged in a
linear order such that node #1 precedes node
#(1*1) nod n. Let this order be called the
XßEÜUUsm £nl£r. So, whenever a process detects a
failed LC it nominates the next node which is up in
the nonination order to the position of LC. This
BOOlnation is accomplished by the issue of an
"ACCEPT NOMINATION'' or AN message by the nominator.
If this message is not acknowledged after a certain
number of times it has been retransmitted, the
nominator assumes that the nominee is down and
sends an AN message to the next site in the
nomination order. However, it may be the case that
the originally nominated node was not down, as
assumed by the nominator, but that due to certain
conditions In the network its reply was seriously
delayed. So, it seems that more than one LC could
be nominated in this process! Let us neglect this
issue for the moment, while we describe the
recovery procedure, and show later how such an
undesirable situation can be easily avoided. The
nominee is first responsible for checking that the
old LC Is actually dead (since the nomination m=iy
have come from an errant AP). Thsn the nominee
must notify every other site that it has accepted
the nomination. Moreover, the nominee must make
sure that all the copies of the LOCK table be made
equal to the one held by the crashed LC. From now
on, we will refer to the crashed LC as the 'old LC
and to the nominee as the 'new LC.

The process by which the new LC becomes the
actual LC can be divided into two phases: a
'notification phase' and a 'LOCK table update

phase'.

In the notification phase all the nodes in the
component, as indicated by the up list U, are
informed of the identity of the new LC. Also, in
this phase enough information Is gathered in order
to appropriately update the LOCK tables in the
subsequent phase. The necessary infermation is
described by the sets L and R as defined below.

nRFTNiTioN £ tagt L - .ael fil lesks ia ia aiisi Ja
£.11 US)'

L s 1 X I X is In L'.i) for some i in U and
x is present in all sites in U)

, a lock x is in L if it is present at every
ut it is In at least one L-llSt, which

So
site bu1

iaipUea that ill
I iCK" oessase f^ci the old
not receive a "CONFIRM LOCK

J, but at
message.

least one

KmniQa i Cast ä - «t fil is^ & *» äsism
from ill Lla):

R = { x ! x is in R(i) for some i in U and
x la present in all sites in U)

So, if a release request is in R, then ^1 the
sites in U have already received an ACCEPT

RELEASE" message from the old LC.

The new LC, upon nomination, vlll issue a
liessage called "NOMINATION ACCEPTED". This message
will circulate onoe through the set of all sites in
U (including the site where the new LC runs) in a
predetermined order.

In order for the set L to be constructed, two
sets, LI and L2, are formed during the NA cycle.
LI is the set of locks which are present at all
sites, while 12 is the set of locks which are in
all the LOCK tables. By definition 6, the set L is
the difference between LI and L2.

The set R is also made out of two sets Fl and
R2. Rl is the set of lock release request; which
are not present in at least one site, and P? is the
set of lock release requests in the R-list of at
least one site. The difference P? - Rl is the set
of locks which are present at every site, which by

definition 7 is the set R.

Every node, other than the newLC, in the NA
cycle receives partially constructed sets LI, 12,
Rl and R2, adds its contributions to then and
places the new versions of the sets into the NA
message which is forwarded to the next node in the
cycle When the NA message returns to the newLC,
the sets L and R are completed. Also, the up list
U for the new LC will be initialized with the sites
which participated in the above described cycle.

After the notification phase is over, the new
LC will send a message to every LLC asking them to
update their LOCK tables. This message is called
an "UPDATE TABLE" or UT message, and it carries

within it the sets L and R.

Having updated the LOCK table, each LLC
a "TABLE UPDATED" message or TU message to
LC. After receiving a TU from every up si
new LC becomes the actual LC by notifying
LLCs that they can resume their normal ac
For this purpose the LC broadcasts a "RESUV.r
ACTIVITY" or FNA message. The new value fo
the set of sites from which the LC receiv
message. This new value for U is included
RNA message, thus allowing every node in U
the composition of the set U.

sends
the new
te the
all the
tivity.
NORMAL

T U is
ed a TU
in the
to know

and Let us now describe how we can guarantee,
lr effect, prove that only orv LC will eaers« •-;
th» notification process. Reoall .nif.
nominator will nominate the first up node in the
nomination sequence. Let us make the following

definition:

, »qusnee, il 1 ,•■■! i ■ » '•-

T[j,lO)! A tri-'l

tit« whiuh .m iCCtPl

NOMINATION" message has been unauccessfully sent by
a nominator j, before j sent an AN message to site

«k.

For every AN message sent from site *J to site
fk we include the sequence T[J,k] as pari of it.
This sequence will also be included as part of the
"NOMINATION ACCEPTED" message which circulates
through the set of sites. The purpose of this is
to allow any site to resolve any conflict that can
arise due to the race conditions discussed earlier
in the paper. Namely, it is possible that core
than one LC was nominated and consequently more

than one NA neasage (from distinct oouroes) vould
be circulating. ConfliotB are resolved by giving
preference to the last LC to be nominated. NA
messages originated by other nominated LCs arc
killed when they are detected to belong to the

leproper LC.

In many Instances, In the CLC protocol, we
require a certain message to circulate through a
set of nodes, as it is the case of the NA message.
Let us call such messages 'circular messages'.
They always have- a source or generator who is
responsible for sending It through a cycle. The
underlying network protocols assure us that
messages will not get lost while going from one
site to another by the use of time-out and
reträr.srissior. schsaes. However, a circular
message car. still be lost if a node in the cycle
crashes after receiving it but before being able to
forward it. The loss of a circular message can be
prevented by having each node in the cycle send to
the circular message generator a copy of it, but
only after it was forwarded to the next node in the
sequence. Now, the sour-e is able to detect a
cycle interruption and it can appropriately resume
it by sending the last copy of the message to the
appropriate site. This source acknowledgment
sche-e at the CLC protocol level will be assumed
to exist whenever a circular message is necessary.

It should be noted that if an application
prcgrar issues a lock or release request and the IX
fails before the request is prerent at every site,
the request will never appear in the local LOCK
table even after the LCR is completed. Therefore,
A?s should timeout for requests and resubmit them.

3.1 - proofs About LCH

Ve would like to prove now that the
notification phase ends with one and only one LC
having been successfully nominated, and that all
sites'know the correct new LC identification. As a
first step we state assertions 3 and 1 which are
concerned with the behavior of LCR given that no
additional crashes occur.

ASSEFTION 1: Given that no additional crashes occur
during LCR, thpre will bs one and only one LC whos»

icnovn to all sites .,.,1 the
of i.'.1? notification phas«.

is

The proof for this assertion is based on the
operation of the trial sequence mechanism described

above.

::■•;:-., let ■■■■ ^looallv acc°-Pt»l iook (raiensi)
request be one which is in all L-lists (R-liats) of
a logical component.

ASSERTION is Given that no additional crash occurs,
the following is true at the end of the LCR
mechanism. All the copies of the LOCK table for a
logical component are identical to the value that
the LOCK table of the crashed LC would have If all
the globally accepted requests were allowed to
complete before the crash of the LC.

The proof for this assertion considers a
snapshot of all LOCK tables when a crash occurs.
It is first assumed that there are no globally

accepted requests. In this ense, the union of the
LOCK table of the crashed LC, LT(oldLC), with the
LOCK table of a given site i, LT(i), is considered.
It can be shown that all the looks in LT(oldI,C)
but not in LT(i) will be included in LT(i) by LCP.
Also, all the looks in LT(1) but not in LT(oldLC)
are removed from LT(i) by LCR. Finally, all the
locks in LT(i) and LT(oldLC) are not affected by
the LCR mechanism. If there are globally accepted
requests they will be included In the sets L and R
by definition of these sets. Therefore, the LOCK
table of all the sites in the component will be
updated in exactly the sane way that LKoldLC)
would have been if all globally accepted requests
had completed. Given these assertions we prove
the robustness of the LCR mechanism.

THEOREM 2: The Logical
algorithm is robust.

Component Recovery (LCR)

Proof: The completion point for this algorithm
occurs when the LC has already sent all the RNA
messages. The only terminal crash is a newLC
failure before this point. This crash when
detected will cause another LC to be nominated
and the LCR mechanism to be restarted. This
crash can occur at three different points;

I) before any LOCK table has been updated.
II) after some but not all LOCK tables have
been updated.
iii) after all LOCK tables have been updated.

In case i) it is clear that the partially
executed LCR has no effect at all. In case iii)
all LOCK tables will be identical, therefore
Internal consistency for the component in
question is trivially satisfied. Case ii)
requires us to show that the set of LOCK tables
of a component is LT-consistent. We enunciate
and prove this statement as the following lemma.

LEKMA 1: Given a logical component where the set
of LOCK tables is LT-consistent, then the update
of the LOCK table as indicated by the sets L and
F in some but not all of the nodes of the
component preserves LT-consistency.

Proo'f: Let 1 be a site for which the LOCK
table has been updated. The LOCK table is
updated in two steps. In the first one, all
the loci« in the set L are added to LT(i).
Addition of a look x at am site but not in
ail doeis not violate assertion 1 since, x is,
by assumption, a member- of the set L and
therefore is present at every site. The
second step is the removal from LT(i) of all
the locks in the set R. ReEoval of 2 look
fro-i a LOCK table at 1 /v.1 ?n site still r;i'.:j3
it present at this site. Since, by
assumption, the LOCK table has not yet been
updated at all sites, the locks removed from
LT(i) are in the LOCK table of at least one
site and are present at all sites. Thus,
assertion 2 is also valid and the proof is
complete.

Now, it remains for us to analyze the
transparent failures. Those are all the
failures other than the newLC crash already
discussed. We can have either a process or
processor failure which simply knocks out one of
the sites in the component, or the component can

be partitioned into two or nore oomponenta. In
either case, a set of one or more nodes are
isolated frora the set of nodes which participate
in the LCR oechanism. The nodes in this set
will not be considered any more for the rest of
the LCR alBorlthtn. However, we have to show
that no inconsistencies are generated by n node
dropping out during the execution of LCR.

For this purpose, we will examine all the
possible instants at which a node j may crash.

CA?E 1: during th'; 'nomination phase'

Here we have to show that the sets L and R
Will not be perturbed by any contributions

alrfciiy made to then by node j. Node J can
crash at three possible instants.

CASE 1.1: before the NA message first reaches

In this case node J is simply removed from
the cycle without contributing to the formation

of either L or R.

CASE 1.2: after the NA message reaches it and
before it is forwarded to the next node in the

^^ Here, the node which sent the NA message to
node J will timeout, detect its crash and send
the NA message to the node which follows node j
ir. the sequence. Again no contributions have

been made to the sets L or R.

CASE 1.3: after the NA message has been

forwarded , ^ .
A crash of node j at this point is

e-uivalent to a crash of a node during the -LOCK
table update' phase since node j already played
its role in the 'notification phase'.
Therefore, this case reduces to the next one to
b° examined. The reader should notice that the
robustness of this recovery mechanism relies
heavily on the fact that elements are only added
to the sets L or R if the appropriate requests
are present at all sites (intersection approach)
as opposed to considering requests which are
present in at least one site (union approach).

CASE 2: during the 'LOCK table update phis-'
.', crash of i noda during thia phase will

have n0 effect upon other nodes, resulting only
in'the removal of'this node from the up list of
the logical component which is recovering

Exatainatlon of all these c^ses completer

this proof. [1

The above result allows us to relax the
assumption made in assertion D that no additional
crashes occur during LCR and state the following

assertion.

ASlinmS.: At the end of the LCR mechanism, all
Sr^pies of the LOCK table for a logical
component are Identical to the value that the LOCK
table of the crashed LC would have if all the
globally accepted requests were allowed to complete

right before the crash of the LC.

Finally we prove that every logical component

is internally consistent.

THEOREM 3: Every logical component la internally

consistent

Proof: Let C be any logical component. We have

to prove that:

1) the set of LOCK tables of C is LT-

conslstcnt
ii) there is one and only one LC for C.

Statement i) is clearly true for normal
operation of component C since assertions 1 and
2 were demonstrated for this case. Now, by
assertion 5 all the copies of the LOCK table are
identical at the end of LCR. So, in this case
LT-consistency is trivially satisfied.

Statement ii) was proved to be correct in
assertion 3 for the case in which no additional
crashes occur during LCR. But, by theorem 2,
LCR is robust. This allows us to consider the
effect of LCR as if no additional crashes occur
during its execution, and concludes the proof

[].

2..1 - gingle Mde pgcoverx.

So far we have described how the system
recovers from a logical component crash. We show
now how a node which is down beoorr.es active again,
or in other words, how it gets logically connected
to a logical component. Let node j be such a node.
The first step to become active is to find out who
is the LC. This step is carried out by sending the
"WHO IS THE LC ?" or WLC message to any up node.
Then, node j sends a message called "HI THERE" or
HT to the LC telling him that node J is alive
a^ain If the LC is not undergoing any kind of
c^ash'recovery it will send its LOCK table and its
up list to node j. An "ACCEPT LOCK" or "ACCEPT
RELEASE" message is sent to node J by the LC for
every lock or release lock request for which not
all the LA or RA messages have been received.

2.j). - pobustness of gN?

THEOREM U: The Single Node Recovery (SNR) algorithm

la robust.

Proof: Let j bo the recovering node and let LCi
be the LC to which node j is trying to connect
with The proof is extremely simple since the
only two crashes of interest are: a) LLCj crash
and b) LCI crash. Case a) is clearly a terminal

crash
•»-.rl

Caa? b) is also a teroinai
of LCi, before it is able
table to LLCJ, prevents the LOCr. table

3

the
case.
crash

from bel^T rcoeived'by node j, thereby implying
In SNR having to be restarted. This completes

the proof. [)

3..5. - f.Qglcal £2EU2onent JMerRS

As a result of the Logical Component Recovery
algorithm an LC will be elected in each logical
component of the network. Transactions which are
local to a component will continue to be serviced
as if no disconnecting crash had occurred. On the
other hand, transactions which span more than one

oomponant will have to wait until the «o-ponontB
involved «re brought together again. It in the
responsibility of each LC to detect when two
coaponents are physically connected again and to
take the necessary steps to merge them into one
logical component. The nerge of logical oomr^enls
will always be done on a pairwlse basis The who e
Logical Component Merge mechanism is divided Into
tvo phases, namely a 'reconnectlon detection'

phase and a 'merge' phase.

In the 'reconnectlon detection' phase, each LC

Sends periodically a "WERE YOU ALIVE" or «A
message to every node not in Its up list. The
purpose of this message is to detect the existence
of sites which were not reachable before but which
were up. For the purposes of the description that
follows let the two logical components to be
„erged be called C1 -and C2. Let LCI and LC2 be
their respective LCs and U1 and 02 their respective
uolists. LCI will take an active role during the
whole recovery phase, while LC2 will take a passive
one As we will see, a crash of LC1 while the
recovery mechanisn is in progress will result in
abort, while a crash of LC2 after the 'reconnectlon
detection' phase is tolerated. Assume «ow that
site ti in C2 received a WYA message from LCI. A

component is said to be in NORMAL status if It is
not undergoing any kind of ^"h recovery
m-chanism. If component C2 is in its NORMAL
^taS" «ite *J sends a "YES I ™" °r HW -ssage
to LCI. This message carries within it tne

identification of LC2.

At this point LCI has to establish a logical
connection with LC2. This connection is "lied a
primary-secondary or P-S connection type with LCI
being the primary and LC2 the secondary. Since we
require that LCH be done in a pairwlse basis, the
following conditions must be enforced by the
protocol that establishes a P-S connection:

Cl: an LC cannot be primary (secondary) for more

than one P-S connection.

C2: an LC cannot be primary and secondary

simultaneously.

The P-S connection is attempted by having LCI
sand a "LET US MERGE11 or LUM message to LC2^ in"

ed to Uv
sfitus 3f LCI is now ih.=—.
status of LC2 is NORMAL, which means tnat neither
Logical Component Merge nor Logical Component
Reoov-ry is being attempted, LC2 sends a "MERGE
ACCEPTED" or MA message to LCI and changes its
internal state to SECONDARY. Upon receipt of the
MI n^snasa the connection is considered to be
-o-^oi'uLlv eatabliahed by LCI. If the status of
LC2 not NORMAL then a "MERGE ATTEMPT REJECTED"
or MAR message is sent to LCI which will either
retry later or will try a connection with another

LC.

The above interconnection strategy could
clearly allow undesirable race conditions to occur,
such as having two LCs trying to play the role o
primary, leading the system into deadlock
Tituatiins. To avoid this problem we assign a
site dependent priority to each LC (no two sites
have the same priority). LUM messages from lower
priority LCs are rejected. LUM messages fr«

higher priority LCs, If received

connection has not yet been coopleted i.e. the MA
message has not been received, cause the connect on
being attempted to be broken. To this end the
primary sends a "CLOSE CONNECTION" or CC message to

Its intended secondary.

That the protocol outlined above satisfies
conditions Cl and C2 is proved in section H. 1.
Figure 1 shows a state transition diagram
describing the interconnection protocol. This

while the

FIOä i - srai TwiciTioi DIALäV RK P-S onjEcntn ESTA-

BUSfWT. »rue W si» IKIIOTIS («ami* or«icssux
«1 A MINUS (-) S1CN INDICAUS TRW*ISSI.T. W » *Sifc]£. 1«
sia, < iwiCAro ma 1W ns«a I« ""'» WICIWTIS TOT.

« uxm psicpiTr silt, WILE > imi^n.5 « Mia£s wiwi"
SCUtt. Tt£ DOOP Sia. (») I«1C*TES TXT H> «IIW IS Ulif.
DUE TO » ST«n. 1WHS1IIDH.

protocol is the same for every node. Nof 1*^*
ere STATUSes, while arc labels are of the forn R/T
where R is the message whose arrival triggers the
transition and T is a sequence of actions
(transmission of messages) which occur as a
consequence of the transition.

After a P-S connection has been established

between LCI and LC2, they will not f «P^"* ^
new lock or lock release requests from nodes in

their components and «ill complefca all ^^^
ones. An outstanding rsques- is one tot -'■-■' ^
AL or AR messages have been already ser.o but not
all the corresponding LA or RA messages have been
received. After all outstanding requests have been
completed by LC2 it sends to LCI a "READY TO MERGE
nr MM message containing as arguments the uplist
U2 and the LC.;K tabl^ at LC? which row is .ha sa.«
for all nodes in C2. The receipt ot the RT..
message by LCI marks the end of the -reconnecUon

detection' phase.

The 'merge' phase will construct the union of
the LOCK tables at both components Notice that up
to this point no permanent change ^ been done Jo
any LOCK table, nor up list of any node. ^1 sends
a «SUBSTITUTE YOUR TABLE" or Sn messaee for a
cycle through the set of nodes in TEMPJ3 = U1 U U2.
TTC SYT menage is the agent which confirms h
merge of the two components by taking within it the

new LOCK table for the component. ^f. ^ UJ
lists are updated and LCI becomes the new LC of

the new logical oooponenl.

J.fi - Robustness si l£ü

THEOREM 5: The Logical Component Merge (LCM)
Algorithm is robust.

Proof: The completion point for the LCM
algorithm is the point where the SYT message has
already been received and accepted by one LLC.

Let LT(i). U(i) and LC(i) be respectively the
LOCK table at site i, the up list at site i and
the LC identification as known by site i. It Is
worth observing that changes to the values of
LT(i), U(i) and LC(i) at any site i other than
the LC-1 site are only done upon receipt of the
SYT message.

Let us examine the possible cases of
crashes before the completion point:

CASE 1: crashes during the -reconnection
detection' phase

A crash of either LCI or LC2 in this phase
will cause LC« to be aborted and a LCR to be
started at the component who had an LC-crash.
Since no LOCK table nor up list has been changed
so far, this is a terminal crash. Since LCI and
LC2 are the only processes involved in this
phase, we conclude that this phase is robust.

CASE 2: crashes during the 'merge' phase

A crash of LCI during this phase will
interrupt LCM and start LCB for component C1.
As no permanent changes have been done already,
this is a terminal crash. A crash of any other
node (including LC2) clearly does not affect any
other node nor the mutual consistency of the
merged logical component [].

M. - pisiointness sL IM £ecovery. /iRorithms

We show here that there is no interaction
between the three recovery algorithms. To that
effect one has to show that:

•.■'■ LCM is don* pair',
b) LCR, LCM And SNR itually exclusive.

To verify condition a) we only need to show
that conditions C1 and C2 stated in section 3.5 are
satisfied by the P-S connection protocol. This

pioatio
.cwn to

i is riD.i0 in 3--?r

holj in jecMon
■ 'on Conditior b)

jt.j_ - tij.'. lointness sL LCMs.

Consider a directed graph G whose vertex-set
Is the set of LCs and which has two distinct types
of ar«, namely e-arcs and a-arcs There Is an e-
erc tro* vertex i to vertex j ^ t^6.13 *"
established P-S connection between vertices i and
], vertex 1 being the primary. Equivalently, an
e^arc from vertex i to vertex J Is said to be
created in C whenever vertex 1 enters the
CONNECTION ESTABLISHED state (see figure 1). There

Is en B-aro from vertex i to vertex J if vertex 1
Is attempting a P-S connection to vertex J. Such
an a-arc is created as soon as vertex 1 enters the
ATTEMPT state (see figure 1). The graph G
displays the pattern of established and attempted
connections. Let e-G be the subgraph obtained from
C by considering only e-arcs of C and a-G be the
one obtained by taking only the a-arcs.

Conditions C1 and C2 can now be rephrased as

follows:

C1.1: 0 <= indegreeU) <= 1 and 0 < =
outdegree(v) <= 1 for all v in e-0.

C2.1: indegree(v) • outdegree(v) = 0 for all v

in e-G.

Every a-arc will either be deleted from G when
the attempted connection is broken or will become
an e-arc if the connection is successfully
established. So, we want to prove the following:

THEOREM 6: Given a graph G whose e-graph satisfies
conditions C1.1 and C2.1, the new e-graph obtained
from G as new connections are established also
satisfies those conditions.

Proof: It can easily be seen, fror:, the protocol
specification, that condition C1.1 is satisfied
not only by the initial e-graph but also by the
graph G, since:

a) if there is already a connection between
vertices i and j or one is being attempted,
no new connection is attempted by neither
vertex i nor vertex J.
b) if a connection has already been
established or is being attempted, the
secondary will reject all further attempts.

So. it remains for us to examine all the
possibü cases in which condition "-1 could
conceivably be violated in G and show that the
resulting e-graph obtained when one or more a-
arcs become e-arcs still satisfies this
condition. There are four possible cases, two
of which oan never happen due to the protocol
specification, vhile the reBialnlng two have to
be examined. Give.-: any three vertices a, b and
c, the four possible cases are:

a) (a,b) and (b,c) are e-arcs.
b) (a,b) is an e-aro and (b,c) is an a-arc.
CA (n.b) is an a-aro and (b.o) Js a:- e-arc.
d) la.bj and (b,o) are a-aros.

Cases a) and b) are the impossible ones.
In case c) the attempted connection between a
and b will fail since there is an established
connection from b to c (see the self loop at the
CONNECTION ESTABLISHED state of the diagram of

figure 1). Therefore, arc ^.b^^ '^HPT
In case d) nodes a and b are in the ATTEMPT
•»täte If (a,b) becomes an e-arc we can see
'that the transition labeled LUM/CC;MA from state
ATTEMPT to the state SECONDARY is taken at
vertex b, causing the attempted connection (b.o)

to be broken. Therefore arc <o1b) boeonee on
e-aro while arc (b,p) disappears. On the other
hand, if (b,c) bicones an e-arc in the first
place we are back to case c) which was already

examined. []

Ve take the opportunity here to prove that the
P-S connection protocol is such that all the o-arcs
in G will, in a finite time, (of the order of
magnitude of the transnlsslon delay time in the
network) either disappear or becorae e-arcs. In
other words, the P-S connection protocol is

deadlock free.

THEOREM 7: The F-S connection protocol is deadlock

free.

Proof: We must prove that there can be no long
lasting cycles in G. The Interesting case is,
of course, that of cycles made out only of a-
arcs, since as shown in the previous theorem,
any a-arc adjacent to an e-arc will disappear in

a finite time.

Consider a cycle in a-G and two adjacent
a-arcs (a,b) and (b.c) in the cycle. Vertices a
and b are in the ATTEMPT state. There are only
two possible cases to consider:

CASE 1: tPRIORm(a) > PRIORITYCb)]: In this
case, if the "MERGE ACCEPTED" message fron
vertex c is received by b before the "LET US
MERGE'" message froa a then (b,c) becomes an e-
arc and (a,b) disappears.

CASE 2; [PRIORITY(a) < FRIORITy(b)]: Here, arc
(a,b) will disappear since a has lower priority

than b.

In any event, the cycle will be eventually
broken. Note also, that vertex c could be the
saae as a and the above analysis is still valid.

[]

__aa?Lü.'üui^_

—^n

DM., ', ' wrfc.. to. \b

■no T«r •SKITO
«IF W

 1

«K'A. LC in
•j^f »acT- ,

ajicscKf, LC. 1:1

1—
1 1 i

■asii (ffifv /CTivnr

Flttft 2 - Hl£ 5TATI TlWSITIOi DiWW. I.€ reuiWNO
llti>TICHiil>'i AÄ OtJiiwn,:

. UJ • 111 U IC >»Ef€ ID ü IN IE.

. Ui is ccKTmica I» Ul.
, LCi is w Li.

The state [NORMAL, LCj, Uj] is state which
resulted from a successful merge of cocponent C1
with another component, for instance C2. The state
[NORMAL, LCi, Ui] is a state which resulted from a
successful Logical Component Recovery.

By inspection of the diagram, we observe that
a node can only go from one normal state to a
different normal state after one and only one
recovery mechanism has been completed. Therefore,
there is no interaction among the three recovery

mechanisms.

Ä.2 filltCE. LCM and SM

Vo first da-'ln» a nods ataSS i'Li;!S-j_.-.ii
diaeraa as a directed graph whose vertices are
states of a network node and whose arcs represent
transitions between states. The state of a node i
is the 3-tuple [STATUS(i), LC(i), U(i)], where
LC(i), U(i) are as defined before, STATUS(i)ls
t,. , ,..,,., 0«- >:,„ scraponar.t to which site is
attached as vioved by site 1. NORMAL status
indicates that neither LCR nor LCM is in progress;
PECOVFPY meann that LCR is taking place and
QUIESCENT indicates that LC(i) Is rejecting further
requests. The labels on the arcs specify the
conditions upon which a transition between two
states occurs. These conditions can either be a
crash detection or a message arrival. The diagram,
shown in figure 2, shows all possible state
transitions for a node, other than LCI, which is in
a component 01, with LC equal to LCI and up list
equal to UI. From every state there is a
transition to the DOWN state. These transitions are
not represented In the diagram for obvious reasons.

5. - logical Component Mutual ggnslstency.

Let ua Bhow here that the CLC protocol
(including the recovary mechanisms) ia nuoh tha
the set of Logical Components into which the
network is partitioned is mutually consistent.

THEOREM 8: The set of logical components into which
the :istwor-k is partitioned is mutually oonsis^at,

Proof: By theorem 3 each one of the
components is internally CLisistcnt. I
for us to prove that there can be
present at any LOCK table of any compon
conflicts with another such lock of a
component. This theorem is trivially
there is only one logical component.
net partitioning does not destroy this
eince locks are only granted if they a
to a component, which implies that th
conflict with any other lock granted
other component. []

logical
t remains
no lock
ent which
,ny other
true when

Further
property

re local
cy do not

at any

i.. - pntabaae fienai

We show here that given a deadlock free,
consistency preserving looking Beohanlsa for a
rPntr?.U7.ed is^bn^ (££2), the CLC Protocol can be
tsed to Lplement an equivalent robust, deadlock
free, consistency preserving locking mechanlsin for
a rtUrlbuted <i?J3&&Z (JM) ■ * database is said
to trtTa consistent state if all the data items
satisfy a set of assertions or consistency
constraints. A transaction is a sequence of
accesses which take the database from a consistent
state into another consistent state. Thus, a
transaction is the unit of consistency Let us
define an access as the pair (P,a) where P is a
loKicai description of the portion of the database
to be accessed and a is an access node (e.g.
read,write,delete,etc.). If BII the locks are
granied by a process which has o«DPlete knowledge
of every other active locks (as Is the case with
the LC) and if every access is checked against the
LC copy of the LOCK table (this condition will be
relaxed later), to see whether the transaction
holds the necessary locks , then the lock
scheduler' for a CDB described by Eswaran [can
be implemented in a straightforward manner with the
us» of the CLC protocol. Such a looking mechanism
has the properties of being robust and preserving
Jhe consislency of the DB. Notice that deadlock
prevention or detection mechanisms can be carried
out by the LC since it has complete «ntrol over
all activities in its component. Recall that if
the network is partitioned into ^e than one
component, locks granted in one of them do not
conflict with locks active in others. Therefore,
distinct LCs manage disjoint sets of "resouro«s«
where a resource here means an individually
Sckable data item in the DB. So a deadlock
prevention or detection policy can be implemented
In each LC independently of all the others.

requirement that every access be checked
the LOCK table at the LC-site can be
in favor of having the access checking done

In order for this to be possible a lock
considered to be active at a given site i
time interval T2 contained in the time
T1 during which the lock is active at the
otherwise some portions of the DB could be

The
against
relaxed
locally
must be
for a
interval
LC-site,
loc.V.ei

d;.:igra.T

for dlfferer In conflicting nodes
ior,.5 :;.,,...* 3 shows a double tiaia ■,'<i-1

dlapiaying-tine at the LC-site and at a

.! « un 1.". M H II Jem. n II r.t I« Wl«. «If M M W«
n BMIWC r. ■ KIM •• M »mn«. Mn >'■

piven site i where a look request is originated.
T1 starts when the "CONFIRM LOCK" raessase is »nt

to -every site In the component end ends with the
broadcast of the «CONFIRM RELEASE" message T2
starts with the arrival of a ^message at site 1
Although a look is only removed from a LOCK table
Sen Ihe corresponding "CONFIRM RELEASE" message
drives, it can be flagged as -waiting for removal-
-a soon as a "RELEASE LOCK" message is sen. from
the LC to site i. For access checking purposes.
all flagged locks must be considered as nor. active.
The extra precaution that must be taken in this
case 'is to unflag all flagged locks after LC. has

taken place.

1. PFRFORMAHCE EESyi/r?.

Some of the results of the cost and delay
analysis for the CLC protocol [2] are presented
here The update model used in this analysis is
such' that some of the previously defined messages
are grouped into a single physical message These
results indicate that the average update delay
Dupdt, does not depend directly on the s ze of the
network for many network topologies of interest and

its expression is given by

Dupdt = 2»T + 3ftTMAX + W

where T is the average message delay introduced by
tSe network between two distinct sites, TMAX is the
average maximum delay between a sender and several
destinations and W is the average waiting time for
a look request to be granted at the LC.

Lower and upper bounds for the average

recovery delay, R, are given by

R >= (n+l)»! + B'TMAX
and

R < [a»(n-2) + n + 1]»T + S^TMAX

where n is the number of sites in the network and &
is the ratio Tout/T where Tout is the time after
which a nominator assumes that the nominee is down
and sends another "ACCEPT NOMINATION" message to
the next site in the nomination order.

The average communications

incurred by an update is

cost, Cupdt,

. rid r- 1PM

where M is the average communications cost per
Message. Lower and upper bounds for the recovery

cost Crec are given by

Creo >= (3»n ■• 2)»M
and

Crec < (6»n - ^"H

£. - F-y tens ion

It has been observed in most of the «isting

distributed systems that a lar6e Pe^entage
o
of

t^t
generated transactions is IfifiäL, in the sense that
geneiaucu w ,,,,,.. ,= t-i«<-v a Eiven transaction the resources needed to satisfy a given v.
are either located at the site of origin of the
transaction or in neighboring sites. This
observation suggests that ^nifieant savings in
terms of comf rications cost and delay can be
acMeved if one optimizes the operation of the

algorithm to adapt to euch e highly -ekewed
distribution of activity. To Illustrate the point,
consider a set of interconnected computer networks.
He believe that in such a case, most of the
operations will be confined to one coaputer network
while relatively few operations will cross network

boundaries.

Tnis section outlines an extension to the Cl,C
protocol that penults the forms of performance
optimization needed for the cases discussed above.
The extension, which we call an HCLC (for
Hierarchical CLC) protocol, consists of a
hierarchical organisation of resource controllers.
A tree of controllers is provided where the root is
considered to be at level 0 and all the children of
a controller at level i are at level i+1 in the

hierarchy.

Each controller (except for the leaves) serves
as an LC for its children. Also, each controller
(except for the root of the hierarchy) acts as an
U C for its parent. Therefore, each controller has
to maintain two distinct LOCK tables, which we call
parent-LT and chlld-LT. The parent-LT for the root
controller contains one lock for the whole DB in
exclusive mode. The child-LT for a leaf Is empty.

An intuitive description of the normal
operation of the HCLC protocol can be easily
understood in the light of an example. Figure H

IKL 0 IMU LFtS

Kl'o ptirent-LT is «earched for a lock y -which
covers x. A lock xl Is said to jgvgr a lock x2 if
the portion of the DE specified by x2 is contained
in the portion of the DB addressed by xl and if the
lock mode specified by xl is not weaker than the
lock mode in x2. The existence of a lock such as y
in parent-LT(Kl) indicates that Kl currently has
control over the resources requested by API. If y
is found, the lock request x can be granted and to
this end Kl Interacts with K3 and K'l In the same
way as an LC interacts with the LLCs in its
component. On the other hand, if y cannot be
found, the lock request x is submitted by Kl to KO.
KG will act with respect to Kl and K2 in the saze
way that Kl did with respect to K3 and Kl. The
difference in this case Is that since KO is the
root there is a lock in parent-LT(KO) for the whole
DE In exclusive mode. This lock covers any other

lock.

In an HCLC protocol, locks may be released
•either cxnlicitlv or pytomatieallv. Locks In
ohild-LT(Ki), for 1=1,2, are released explicitly
upon request from APs using the same mechanism
described in the CLC protocol. Locks in parent-
LT(Ki), for 1=1,2, can be released automatically as
soon as there are no locks in the corresponding
child-LTs which depend upon them. To this end,
each lock y, in parent-LT(K), for any controller K,
has associated with it a list of locks in child-
LT(K) covered by y. Also, each lock x in a child-
LT(K) -points to the lock y in parent-LT(K) which
covers x. When a lock x is explicitly released
from child-LT(KI) the lock list for its
corresponding lock, y, in parent-LT(Kl) is
appropriately updated. Whenever this list becomes
empty, a release request may be automatically
generated by Kl and submitted to KO. In general,
the automatic release of locks can be propagated up

to the root.

This hierarchical protocol can be easily
adjusted by policy decisions both to delay such
releases, and to establish early locks at higher
levels in anticipation of local look requests.
Lock management analogous to LRU-like memory
management policies are obvious policy candidates.

For the set of interconnected computer
networks, a thres-level hierarchy could be
conätrueted aa follows, Thc-r? is o->e LC per
oooputsr network, all of them at levsl 1. Their
children, at level 2, are their corresponding LLCs.
Finally, the root is any site acting as a global
controller for the entire collection of computer

networks.

f iü«: ii - iiiswa« if Lä cunaufH, -vi M> ti'i

shows a three-level hierarchy. Application
programs interact with lock controllers Kl and K2
at one level above the leaves (since the leaves are
LLCs) This interaction is the same as the AP-LC
interaction In the CLC protocol. Aot"al?;y'
application programs are not aware of the fact that
the controllers are hierarchically organized. Let
a lock request, x, from API be submitted to Kl. If
x conflicts with any other look in child-LT(Ki;
then the lock request is treated in the same way as
in the CLC protocol. If there is no conflict.

An Interesting property of the proposed
extension is that there is always one controller
which is able to detect the existence of a cycle in
the look-request graph. This controller is the
common ancestor, with the largest level number, to
all the controllers where requests in the cycle
where originated. In the example of figure 1, the
common ancestor to Kl and K2 is KO.

Crash recovery algorithms for the HCLC
protocol must include mechanisms to reconstruct the
hierarchy, in addition to the recovery mechanisms

present in the CLC protocol.

~^w^

9.. - foncluston

This paper outlines what we believe to be a
fairly general »olution to synohronlzatlon lB9ues
[n distributed systens in the face of asynchronous
inpJ nncd failures. The algorithms and protoco
for normal operation and recovery are robust with
respect to lue criteria set up at the ^g nning o
this report. Wo are unaware of any other
Snchronization protocols which simultaneously

satisfy each of those requirements.

The work is primarily s"1^"6, f°rr

cnvironments in which the cost, including de ay of

is co=pl"te. Locally distributed systems often
provWe examples of such an -viroamenU
Geocraphically distributed networks also fall into
Shis category if the amount of work to be performed
after lock4 1» »ienificant relative to the

communications cost.

The protocols are also best suited for usage
behavior that cannot be directly characterized in
advance" It is assumed that query and update
activity will be largely ad hoc in nature - the
"ore general case which has been receiving
increasing attention in recent years.

The presentation of any substantial Protocol
would not be complete without an outline of a proo
that the protocol is correct with respec. to its
SesireS properties. A significant portion of this
docTent is therefore devoted to that purpose
Further analysis using automated tools is also

underway.

In conclusion, these protocols should help

deffl0nstrate the practicality of integrated
croperation of activities in distributed systems.

6.

Research Study Report, CAC Doc. 162 (JTSA Doc.
SS Center for Advanced Computation.
university of Illinois at Urbana-Champaign. Hay

1975.

C A Ellis CONSISTENCY AND CORRECTNESS OF
DufaCATE DATABASE SYSTEMS, ACM/SICOPS
Snerating Systems Review, Volume 11, Number 5,
Soceedlngs of the Sixth Symposium on Operating

Systems Prinniples, November 1977-

7 E Grapa, CHARACTERIZATION OF A DISTRIBUTED
7- DATABASE SYSTEM, Ph.D. dissertation. Report J

UIUCDCS-F-76-831, tepartaent oj Computer
Science, University of Illinois, Urban.,

October 1976.

6 R.H. Thomas, A SOLUTION TO THE "PD"E "OBLEM
FOR MULTIPLE COPY DATA BASES VHICH UScS
DSTRIBS CONTROL. Bolt Beranek and Ne^an

Technical Report # 33X0, July 1976.

VI W Chu, PERFORMANCE OF FILE RECTORY SYSTEMS

DATABASES IN STA^«
Proceedings of the National
Conference. 1976. pp 577-587.

H. Stonebraker. E. Neuhold. A DISTRIBUTED DATA
VERSION OF INGRES. ^-tronics Resea ch
Laboratory. UC, Berkeley. Memo t ERL - M612,
September 1976.

Wmhmc SrsiEHS, PP. 39«-«ei, Sprlnger-lerLe
Berlin Heilderberg. 1978.

1? B Lampson. H. Sturgis, CRASH RECOVERY IN A
12- 'DISTRIBUTED DATA 'STORAGE SYSTEM, Xerox Palo

Alto Research Center Technical ^port 976.
(also accepted for publication in the CACH)

9.

10

'■ K/l T™™^™* R"^ PISTES. ^ND
ScATE LOCKS N A DATABASE SYSTEM,
SScations 'of the ACM. Volume 19. Kumber
11, (levember 1976 ■

- .. , Mpnasoe G J. Popek and R.R. Huntz. A 2' [oaxSc PROTOCOL FOR RESOURCE COORDINATION IN
DISTRIBUTED SYSTEMS. Computer Sc^e

Department. UCLA, Technical ^port # UCLA-
ENO-7808. Sr.PS-77-001 (DSS MDA 903-77-0-02113,
October 1977•

P A Alsberg, G. Belford, J.D. Day and E.
C^pa! MSTY COPY RESILIENCY TECHNIQUES Center
for Advanced Computation. University of
Illinois at Urbana-Champaign. CAC Document
number 202. May 1976.

Zfica, Cambridge. Massachusetts. Technical
Report # CCA-77-09, December 1977.

5. S.R. Bunch. AUTOMATED BACKUP, in Preliminary

3-

iivlii SECURE: Mix*

DRAFT

Gerald J. Popek, Charles S. Kline, Evelyn J. Walton

University of California at Los Angeles

0. Abstract

UCLA Unix is a wholly new operating system whose architecture and implementation

are oriented toward highly reliable security and integrity enforcement while support-

ing a wide degree of system functionality. The system, now operational, demonstrates

that it is possible to provide a convenient, efficient secure operating system on

conventional, third generation hardware architectures. This paper reports on the

development of UCLA Unix. Much of the discussion is concerned with the software ar-

chitecture which evolved, since a number of innovations are included with surprising-

ly little mechanism. The methods employed to build and verify the system are also

described, and the impact of the requirement to support fully the standard Unix

operating system functionality is discussed.

1. Introduotlon

Tnere has been considerable interest for some time in developing an operating

system which could be conclusively shown secure, in the sense that the information

stored on behalf of a heterogeneous user population «as safely protected from unau-

thorized access or modification, even in the face of skilled attempts to do so. Ear-

»'Tnis'research was supported by the Advanced Research Projects Agency of the Depart-

ment of Defense under Contract MDA 903-77-0211.

page -2

ly attempts to attain this goal consisted largely of auditing an existing syston by

attempts at circumventing the controls, and then revising the implementation code to

block any successful paths that were found. Unfortunately, this approach failed in

producing a secure system, largely because third generation operating systems contain

so many errors that "penetration audits» followed by patches inevitably led to a sys-

tem whose controls were still easily penetrated.

From a viewpoint of principle however, there was an even more fundamental limi-

tation to the early approaches, frequently mentioned; testing proves the presence but

not the absense of bugs. Therefore, a more strictly constructive method was re-

quired, by which it would be possible conclusively to demonstrate the correctness of

the security controls. It was hoped that this goal would result in a much superior

system in other respects as well. The experience to be reported here strongly bears

out that expectation.

UCLft Unix is a kernel based system architecture developed in a manner by which

program verification techniques could be (and have been) applied. The system inter-

face is essentially identical to Unix as released by Bell Laboratories [Ritchie 7^],

and the software presently runs on DEC PDP-1lM5s and PDP-ll/TOs. The kernel struc-

tifes and verification proceriures, together with the choice of language, prov.uis a

powerful means by which the system's security and integrity can be demonstrated and

assessed. Support of the Unix interface illustrates the robustness and functionality

of the resulting system.

However, the kernel and verification goals imposed significant constraints on

the size, complexity and general architecture of the system. The result therefore is

quite different from what would have been expected otherwise. Nevertheless, in re-

trospect, we are unaware of any decision forced by these goals which has not also had

the effect of simplifying the system's structure and improving overall reliability

and integrity. There has been no significant performance penalty cither. The pri-

pape 3

mary cost in obtaining a secure operating system appears to be found in the care re-

quired during design and development.

One important fallout of the system design is considerably enhanced system in-

tegrity. Improvement results from the significant reduction in common mechanism

operating on behalf of all users, a characteristic that was necessary to make verifi-

cation and certification of the system practical.

In the next sections we outline the UCLA Unix architecture, together with expla-

nations for the design choices. Verification and the programming language are also

discussed, and illustrative examples of the effects of Unix functionality on the

system's operation arc given.

2. Overall Architecture, of UCLA Unix.

The UCLA Unix architecture contains a number of major modules, whose relation to

one another is suggested by figure 1. The kernel should be thought of as an operat-

ing system nucleus which provides about a dozen primitive operations callable from

user processes. That is, the kernel implements a number of abstract types and the

valid operations on each type. It is the only module in the ?votem empowered to exe-

cute hardware privileged instructions.

One of the abstract types implemented by the kernel is prooesg.. A process con-

tains two address spaces (supervisor and user' mode on the large POP-lls). An operat-

ing system interface package resides in one address space. In the other, application

code is run. When an application program makes an operating system call, control

passes to the o.s. package which interprets the call. If necessary, the package is-

sues kernel calls or uses kernel facilities to send messages to other processes to

accomplish the needed action. All such calls or messages are controlled by the ker-

nel. Each process is a separate protection domain. The access rights of the domain

page [\

arc represented by capabilities: a C-list for each process is maintained by the ker-

nel.

There are several processes that are special, in that they perform system relat-

ed functions. Overall system security depends on the correct operation of two of

them.« One, called the policy manager, is the only process capable of altering pro-

tection data, and is thus the site where various security policies may be implement-

ed. Type extensions to kernel objects, including file systems, typically would also

be supported here. In the UCLA system, security policy plus suitable primitives for

the Unix file system to support protection of individual files are built in the poli-

cy manager process. The second, "initiator", process initially owns all terminals

(i.e. has capabilities for all of them) and is responsible for user authentication.

It tells the policy manager what user is to be associated with a given process.

There is one further process which differs from the typical processes employed

for applications programming. However, this one, a scheduler, is not relevant to

data security. It contains short term resource management policy for cpu and main

memory: process scheduling, page replacement strategies and the like. UCLA Unix is a

demand paged system; when a process page faults, the scheduler is informed by the

kernel so that an appropriate swab call may be issued at some later time by the

scheduler. All of its security relevant actions are accomplished through kernel in-

structions, however.

Thus in normal operation a user first logs into the initiator. That process

then sends a message to the policy manager, who initializes a process for the user

and moves the user terminal to the new process by issuing appropriate capabilities.

Process initialization as well as normal computation take place within the domain of

»"one'might say thoy are within the "security perimeter." Their size is not large

compared to the kernel described here.

I- . i. I I II I II tlftlT

pan;e 5

the given process. Additional resource requirements or file activity is accomplished

through messages to the policy manager. Process switching occurs whenever a given

process invokes the scheduler process, or when an appropriate clock interrupt forces

such an invoke. The scheduler can then run whatever process it wishes. Page faults

also force an invoke of the scheduler, so that it can initiate appropriate page swap-

ping.

3.. The UCLA Kernel and Abstract Types

The kernel can alternately be viewed as a basic, stripped down operating system

or as an implementor of a number of abstract types, together with the operations on

those types. One of its more notable features is the fact that a significant number

of facilities, normally found in large systems, are included in it despite its very

small size and straightforward structure. The basic kernel consists of approximately

760 lines of Pascal code, not including I/O support. The PDP-11 does not have any

channels, so that the functions of channel programs must be written as cpu code. 1/0

support in the UCLA kernel is composed of two portions: a device independent internal

interface of approximately 300 lines, and as many device dependent drivers as are re-

quired by devices present on a given machine configuration. These are quite small,

arid for the UCLA insüa.LLaüion, supporting many peripherals, approximately 300 Unas

of code are required altogether. These numbers are relevant because the entire ker-

>:.\ . _■>■ [,.-. rmbjsoted to progra'n verification procedures. Given current v r.i.'Ticati.on

capabilities, this quantity of code is not unreasonable (assuming a clean structure).

The UCLA kernel implements a fixed number of types, the four listed below. Type

extensibility as illustrated by CAL-TS3 or Hydra is not provided, although simple ex-

tensions are now under way to provide a limited form of this facility. The imple-

mented types, together with the permitted operations, are discussed below.

page 6

3..J. Processes

The process object is defined to consist only of the usual state variables plus

one small page. It does not include the process virtual memory. As a result, kernel

calls such as Invoke can be quite simple, merely moving data from tables to cpu re-

gisters and vice versa. All process relevant kernel calls are controlled by capabil-

ities. It is not possible to issue or receive a Notify for example unless in each

case a capability is present in the process' C-list.

The process abstraction has been carefully developed to permit a large number of

processes to be alive: 500 on a PDP-11 would not be unreasonable. To do so, it is

necessary that very little locked down memory be required per process, despite the

fact that there are asynchronous events taking place (such as I/O completions and No-

tifies) which can occur when all the memory of a process is swapped out. The process

must be notified of these events. However, the obvious solution, kernel queues, are

undesirable since they increase verification difficulties and lead to overflow prob-

lems when queue space is exhausted. The UCLA kernel avoids this problem by a number

of methods, including a generalized page faulting structure and efforts to keep as

much per process information as possible in swappable pages allocated to the given

process. As a recult, less than 20 words of main storage :\vu. be res-T'/ed fo

tive process.

The operations available for objects of type process are as foliows.

a. Invoke

b. Initialize

c. Map-relocation-rcgister

d. Notify

e. Sleep

Invoke moves the state variables of a process into the cpu registers, after first

saving those of the currently running process, mostly into one of that process's

page 7

pages. Initialize clears the state variables of a process and creates those few

capabilities needed for the process to bootstrapp itself. The Kap call is the means

by which a process can adjust its own virtual memory. The call sets the mapping

between blocks in the process address space and entries in his C-list (which presum-

ably point at pages). Notify is the mechanism by which one process can interrupt a

set of other processes, also passing a very small amount of data. Sleep invokes the

scheduler.

3.-Z Pages

Pages are the abstract storage unit supported by the kernel. All pages have a

fixed home location on secondary storage, which is not deallocated when the page is

swapped into main memory. There are 3 page sizes in the current implementation, with

memory frame sizes currently set at sysgen time to minimize kernel complexity. In

order to access a page, a process must first obtain a capability for the page. Then

the Map call is used to specify where in the process' virtual address space the page

specified by the capability is to appear. At that point the process can attempt to

refer to the page. If it is in core, the hardware register will be loaded and the

reference will succeed. If not, the process will page fault as described in section

,.7. ;i-ice each page is a separate object, controlled sharing of individual pages is

easily done.

Tcz only operations on pages are:

a. Swap-in

b. Reflect

Swap-in copies the secondary storage version of a page into main memory, changing the

name of the object associated with that destination page frame to the new page. The

secondary storage copy is preserved. Reflect updates the secondary storage version

to match main memory. Neither of these operations gives the caller access to the

wpurtiiiwwiWflWffaiff m

page 8

contents of the page, so that the operation can be issued by untrusted code.

3..3. Devices

1/Os to all devices, including terminals, are controlled by the same capability

mechanism as all other operations. However, devices such as terminals are treated as

two devices: an input part and an output part. Two capabilities are therefore re-

quired to read and write a terminal, but as a result more robust security policies

can be supported.

Completion interrupts arc handled just like any other process notification. All

those processes with capabilities to receive interrupts from the device, and with in-

terrupts enabled, will receive a notification when the device generates it.

The device operations are as follows.

a. Start-i/o

b. Completion-interrupt

Start-i/o initiates all I/Os except swaps. The Completion-interrupt is the hardware

generated call which typically signals completion of a previously started I/O. As an

entry point into the kernel, it is little different from any other call.

3..ii Capabilities

IhD capability is .no basic kernel representation of protection information:

which objects a process is entitled to access. Each process has associated with it a

C-list containing those capabilities, stored in pages that can be swapped, but which

are directly accessible only to the kernel.«

"Tn"pölicy manager is given read access to capability pages so
»ep separate track of which capabilities for pages ma file i

that it need not « Thp nnlirv manager is given restu üUUCöO KU ^a^a^^^^^j ^-.c,-- — .. „
keep" separate track of which capabilities for pages in a file are outstanding. See

the discussion of the policy manager for futher information,

PWI nii.j.iiim....-...iiu —

page 9

Each capability consists of four fields. First is the name of the object to

which this capability refers. Second are the access rights provided. Next is a

"guess" value which the kernel uses to attempt to quickly find the entry in a kernel

table which maps the object indicated by the capability to a physical location. In

the case of pages, the guess is the index into the kernel page table to the slot

where that page entry last appeared. It in fact may have been moved by subsequent

Swaps and Reflects, so if the entry docs not match, a search of the table is re-

quired. That event is rare however. The last field in the capability is of no

relevance to the kernel, but can be set via the Grant call. The Policy Manager uses

it to record the file to which the page or device belongs.

The operations on capabilities are quite limited: they can be Granted and re-

voked. Revocation is accomplished by granting the null capability into the C-list

slot that contains the capability to be revoked. Thus there is no means by which

processes can directly pass capabilities. While this fact limits what can be done

with capabilities, it also greatly simplifies many issues and avoids a number of the

criticisms of certain capability systems, especially the danger of not knowing how

access to an object has propagated. As a result, the kernel can more accurately be

viewed as containing no security policy. All such decisions regarding rights

transfer, including initial granting of rights, are made only by cue software running

in the process which has the ability to issue Grants. The Policy Manager is the only

such process in UCLA Unix.

The only operation on capabilities is

a. Grant/revoke

It adds a specified capability to a specified slot in a specified process' C-list.

This call is restricted to the policy manager, who implements security policy.

The C-list composes a local name space for the process. This name space has two

effects. First, through message exchanges with the policy manager, the user has com-

 *r„^r*n^~^w^w^m*'mmP*m*mm*t'>iM*'V*m\. u uu H IUIMUJIII •
 ' ' ■■--•

page 10

plcte control ever which C-list slot contains a given capability, thereby permitting

local management over the name space, Fabry [Fabry 74] points out the significant

advantages of this facility. Second, kernel names are not visable to user code. In-

stead, the capability contains that name. Therefore user code, being unaware of the

actual object names, cannot use them for a confinement channel.

3..^ Types and Qpsratina: Systems

Other authors [Schroeder 77] have noted that the usual views of abstract types

to be found in programming languages are not quite suitable for operating systems be-

cause of finite resources and circular dependencies. In Multics, for example, the

process manager depends on the page abstraction, since the manager is contained in

pages, while the page manager is a process and hence depends on the process manager.

In a revised design for Multics, abstract types are used in a sophisticated, multiple

layered manner to solve these problems.[Schroeder 77] However, as noted by Gaines

[Gaines 77], the method required need not involve a sophisticated solution at all,

and is largely composed of static allocations.

This is the approach embodied in the UCLA kernel. Processes, pages, and devices

are • ■■lth->r -.-ir^i;.WJ nor dastroyad. There are as many pagea as there is space on

secondary storage for them. The number of processes is fixed by the size of the ker-

nel process table. Devices are added at system generation time. This static view is

not really a limitation, since the i-oiicy Manager reuses process "bodies" and pageö

by reinitializing them via kernel calls. Many systems include these size limitations

anyway, although perhaps not so explicitly. As a result, the kernel type structure

is exceedingly simple, and yet robust enough for fairly general operating system ac-

tivity, as illustrated in section 6 on Unix Functionality. Further, the entire ker-

nel is small enough to be locked down in main memory, in space removed from page

management, blocking circular dependencies.

page 11

3.'6. Kernel Names

The na;nes for kernel supported objects were designed to maintain several impor-

tant properties with the mininum of mechanism: a) unique names for all objects, b)

clear knowledge of object types at all times, and c) avoidance as much as possible of

complex name to location mappings, which must be maintained by kernel code if object

protection is to be at all meaningful. Since these names are not visable to normal

user processes, who see only C-list indexes, considerable design fr-i'dom was present.

Therefore, names were chosen to represent the home location of the object; a page

name consists of the disk device and block number. Hence no disk map need be main-

tained or interrogated by the kernel.

3..1 Paging., Segtnentatioh and Scheduling,

UCLA Unix, unlike standard Unix, is a demand paging system. All user disk I/O,

including swapping of the process virtual memory space and file activity, occurs via

the paging mechanism.-

Page faulting is invisable to all processes except the scheduler, who is noti-

fied by the kernel when a fault occurs, so that it can start a swap. There are actu-

ally two "faults" involved in accessing pages. The most significant,, just described,

occurs when a page is not core resident. The other, called a register fault, occurs

wh^n the . ■'■'.- is roöident but the relftvant page rsg.i •■:.■:■ is null. This case is han-

dled in a highly efficient way: the user map table is checked by the kernel to see

which capability (and therefore which page) is desired. The appropriate value is

then placed in the register and user execution continues.

The preceding outline indicates how the UCLA system provides a complete virtual

* A logical disk can alternately be treated as a device, and Start-I/Os issued to it.
However, a disk treated in this manner cannot also hold pages.

p- . «»I _:—:.-•_ , 1.^.— 'iTWWiiiMr^mTOTCiinTrMr^^

pzge 12

memory and file system with only a simple set of paging primitives in the kernel.

This simplicity vfas achieved by two major decisions. First, the virtual memory fa-

cilities were decomposed into that which had to operate correctly in order to main-

tain the security and integrity of the system (Swap, Reflect, and Completion-

interrupt) and the rest of the virtual memory mechanism (page replacement algorithm,

interaction with cpu scheduling, etc.). This decision had a significant effect on

the system's resulting simplicity. Second, file activity and process memory swapping

were combined into one mechanism. In standard Unix, main memory is broken into two

areas: one to hold user process images, and the other for I/O buffers. Each area is

managed separately. The I/O buffers are replaced in LRU order, while scheduling of

process images is handled differently. All disk I/O buffers are the same size, while

process images vary. The code used to handle I/O buffers is in large part different

from that used to handle the movement of process images, and significant p^rts of

both collections of code are important to the system's security and integrity.

In UCLA Unix, only one mechanism, paging, exists, and much of its support h?s

been moved out into a scheduler which can not affect the integrity of the system. As

explained earlier in the section on capabilities, the user domain also carries some

of the responsibility for virtual memory management. By placing some of the respon-

sibilities in the domain for which the action is being taken, error propagation is

further limited. Application code is of course unaware of that responsibility, since

the o.s. interface is performing the task.

3.-S. Firmware Implementation

The UCLA kernel has been developed to be a candidate for firmware implementa-

tion. To be practical, it is helpful if each call behaves as much as possible as a

separate instruction, with no need to be interrupted in execution, nor to issue I/O

calls for which the results affect the instruction's behavior, since I/O is typically

pap,e 13

slov/ relative to microprogram cycle speeds. These critcrii are met by ths UCLA ker-

nel. Therefore it differs significantly from architectures such as Multics or relat-

ed work.[Millen 76][Organick 71] In both of those systems all of the operating sys-

tem, including inner rings in Multics and kernel software in the case of Mitre, must

be considered as part of the user process. Any process can be suspended in the mid-

dle of execution in the inner rins or kernel mode, respectively. Neither of those

systems lend themselves to firmware considerations, the Mitre work because of the ar-

chitecture, and Multics because of its size and architecture.

3..5. Verification Irroacts

Verification of a full scale operating system is a multistep process, and the

methods employed at UCLA are outlined by Popek [Popek 78], with more detail available

from Kemmerer [Kemmerer 78]. The effect that the verification and certification goals

had on the system architecture was exceedingly positive,. Often a design choice

presented itself, without any clear basis for resolution except maximizing verifica-

tion ease. In retrospect this criterion was quite effective in making decisions and

avoiding design pitfalls. Further, when it became clear subsequent to implementation

of certain parts of the system that verification would bs difficult, those portions

were redeveloped, r. jood example of this case is outlined in section ':'i.'1-': below.

3.« 9.. 1 Ssouential Code

The current state of verification tools do not permit proof of parallel pro-

grams. Since semi-automated aids are in our view essential, this constraint implied

a kernel design and implementation in which each call ran from start to completion

without interruption, including the interrupt handlers. The UCLA kernel is built in

this way, and so most of it can be proven by standard verification methods.

The cost of this design choice results from delayed servicing of interrupts

page 1't

which arrive while a kernel call is in progress. To minimize this problem, each call

is designed to run very quickly, approximately one millisecond or less. To do so, no

kernel call may do 1/0 of its own while in the midst of execution, since virtually

all devices respond rather slowly relative to this criterion. V;hile millisecond de-

lays in interrupt servicing may not be suitable for heavy real time activity, it ap-

pears quite acceptable for interactive systems, which is the nature of Unix.

3..S..1 1/0 Interface

The PDP-11 does not have any significant channels; instead the device registers

are wired into physical address locations and "channel" functions are executed by cpu

code. Since all devices address main memory (and secondary storage) in terms of ab-

solute addresses, I/O management is therefore necessarily a kernel responsibility.

That is unfortunate, for several reasons. First, device semantics are quite complex

and difficult to interface with the semantics of the programming language in which

kernel code is written. Next, devices are probably the single largest source of

changes to the kernel, since as new types of devices are added, additional verified

kernel code is required to manage the device's actions. To minimize the impact of

these problems, kernel 1/0 code was redesigned to provide a device independent level

of I/O abstraction within the kernel. Code above that level is not concerned with

any of the device details. Code below it implements device dependent issues, includ-

ing any device dependent protection controls. The I/O abstraction level appears

similar to a channel interface, with well defined opcode and operands.

This I/O abstraction level is quite important, likely more so than the process

abstractions mentioned by other authors, since at least half of the operating system

kernel is concerned with I/O.CSchroeder 77][MiUen 76] As a result of its use. device.

wo^n -i^ipfrH to the low level drivers. See Walker for more semantics have been isoiateo zo tnt J-^W

information.[Walker 77]

page 15

iL. The Policy Maili&g£

The Policy Manager is the major security relevant process in UCL.1 Unix. It is

responsible for implementing a shared file system, for maintaining whatever security

policy is to be supported by the system, and for part of the action of process ini-

tialization, which occurs every time a Unix fork operation takes place. Each of

these issues is discussed below. Long terra resource allocation can also be imple-

mented in this process, but currently is not.

Ü.JL The File System and Protection Policy

User code must sec a file structure which is identical to the Unix tree of

directories. Hov/ever, one should not immediately conclude that the entire directory

structure and other file support should be implemented in trusted code. In fact, one

can make the following argument, largely independent of the security policy to be en-

forced.

Most code to be run in the user domain strictly should not be trusted to be

correct, at least not to the same standards as the verified secure kernel and policy

manager. However, all names, including file names, are either issued, interpreted or

transmitted through that code. Therefore it makes little sense to verify the •'■Lv;-

tory naming scheme of a file system when significant amounts of unverified code issue

the names or are in the path leading to the file system. The best one can do, it ap-

pears, is to provide the user with a reliable means to specify a uroc:o:;ö profilg

which characterizes the categories of files to which the process is to be allowed ac-

cess. Profile specification and alterations, together with the association of labels

with the file on which categories are based, must therefore be done in a guaranteed

reliable way if the verified protection and integrity of the entire operating system

is to have any meaning. That necessary secure terminal facility is discussed in sec-

tion 7 below.

page 16

The file protection labels provided in UCLA Unix consist of a very large variety

of "colors". Each file can be labelled v/ith some number of them. Each user (princi-

pal in Saltzer's tertninolosy [Saltzer 75]) has a fixed color list associated with

him. It is understood that a user potentially can access a file only if his color

list covers that of the file. The actual profile for a running process can be set to

any subset of the user's color list. There is a separate profile for read and write.

Since there are a large number of colors, many of the usual protection policies

can be implemented using them. Public files are labelled with the color public and

all users have that color in their list. Denning has noted that military security

policy is essentially a lattice, and that the relations of sets and subsets provides

just the lattice required. Individual file names are had by assigning a given color

to a single file. This color system is still evolving as experience is gained with

the user protection interface, especially in the area of control over changes to

color lists. Additional detail is provided by Urban [Urban 78].

Given the preceding view of file system protection, one can profitably decompose

its implementation into two parts, one a common mechanism relevant to security and

integrity, the other executable in the domain of the requesting user process. The

common mechanism can support 3 Pimple, flat file system'. Files are the only signi-

ficant data type, and a color list is one of the attributes of a file. The simple

file system mechanism must include complete space management: disk free lists and

maps Erjecifying v/hich pages belong to which files, together with software to manage

these data structures.

Many of the facilties normally thought of as part of the file system can be

provided by software in the individual process domains as part of the o.s. interface:

directory structure, maintenance, and searching; end of file indicators and other

file status information such as usage locks. Directories are then contained in

files, and access to directories is controlled in the same way as access to any other

page I?

files. Assuming that the common mechanism in the policy manager is verified correct,

users can affect one another only through the use of files to which they share ac-

cess.

iL-£ Process Initialization and Forking

The policy manager must also be involved when new processes are created, since a

kernel process body must be Initialized and appropriate capabilities need to be

granted to the new process. As much as possible however, one wishes process

bootstrapping to take place within the domain of the new process. In UCLA Unix, the

normal procedure for process forking is as follows. The requesting process sends a

message to the Policy Manager requesting the new process as a member of the same user

family. The Policy Manager records the user to be associated with the new process

and issues a kernel Initialize call, which zeroes a process body, grants tv;o capa-

bilities to that process, and sets the program counter and status to standard values.

The capabilities point to a standard boot, code page and a scratch data page respec-

tively.* A third capability is granted by the policy manager upon process request to

give the process the ability to communicate with its forking parent. From here on,

initialization takes place wholly in the domain of the new proces. The process be-

rirs bv attimptina; to execute its boot code, which may cause s page fault. These are

handled normally. Eventually the boot code will load the o.s. interface and presum-

ably a Unix Shell into its address spaces.

iL.3. Other Policy Manager Responsibilities

In UCLA Unix, the Policy Manager is also responsible for control over access to

the other kernel supported objects besides pages: processes and devices. Devices ap-

* The boot code is actually the Kernel Interface Subsystem discussed in section 5.

page 18

pear as special files and inter-process communication takes place through pages which

appear as part of a file. Therefore, colors are uniformly employed for access con-

trol in these cases too.

An ARPANET connection is provided in UCLA Unix; access to it must be controlled

and support for initial network connection activities is required. Access control is

done by making each host a special file and using colors. See section 8 below for a

discussion of initial connection protocols.

5.. The Kernel Interface Subsystem

Since the kernel is an operating system nucleus of minimum size and complexity,

one can properly expect that it is not a convenient base to build on. Traditional

systems provide a good deal of "extension" for convenience. While at first glance

the o.s.interface has this responsibility, it should be noted that a considerable

amount of code is written to run directly on top of the kernel: the o.s. interface,

the network manager, process initialization, and the scheduler, for example. Each of

these need basically the same extensions: capability management, inter-process com-

munication support, virtual memory code, and some file system interfaces. Therefore

we have developed an intermediate interface between the o.s. interface and the ker-

nel. L'he software 'which implements it provides a much more convenient interface to

the kernel and is called the Kernel Interface Subsystem (KISS). As an extension

nschanism, tha KISS malnagea tha entire environment of the process. In rrenaral, no

other code in the process makes kernel calls, sends messages to the scheduler or pol-

icy manager, etc. Thus this software package has primary responsibility for main-

taining a convenient "virtual machine" for the user process.

The KISS of course runs as part of the user process domain, and is architectur-

ally contained in the same address space of the process as the o.s. interface. The

KISS can be viewed as an inner ring in the sense of Multics, and if appropriate

page 19

hardware were available, that would be an effective means of implementation.

6.. The- Unix Interface

The operating system interface has the responsibility of providing a user pro-

gram interface which is as much .is possible identical to standard Unix.« It handles

user system calls either by performing them itself if possible, or making the ap-

propriate kernel calls or service requests to the policy manager to get the desired

action accomplished. Much of the Unix o.s. interface is actually lifted from the

standard Unix operating system. Most of the changes consist of wholesale deletions

of functions, resulting from the fact that many of those functions are redundant

given the available kernel facilities and the fact that, the o.s. interface is essen-

tially a single user system. All scheduling support could be removed, since schedul-

ing is done in a separate process. A more drastic change concerns I/O buffering. In

standard Unix, buffers contain significant structure to aid in multiuser and LRU

operation. In UCLA Unix, most of that function disappears since it is done by the

paging mechanism supported by the kernel and scheduler. I/O support is replaced in

the o.s.interface by code that requests file opens and relevant page capabilities

from the Policy Manager, and issues Map calls to add those pages to the interface's

virtual msmory. :"r :-r\ ■. <> c•
Interface merely tries to reference data on th-1 p to

move it to the user, and the usual page faulting and swapping action takes place.

ty Q "^H H XV. interface largely consists of the FUSS, changes to c!

interface/KISS boundary, ips support, and maintenance of the process hierarchy. This

last issue is discussed below.

* There are certain actions possible in standard Unix which will be blocked by the

security policy of the secure system.

Manmlwuuii-wiwwiiMM» - >'

page 20

6..J. The File System

The Unix interface has a significant portion of the responsibility for making

the user view of the file system equivalent to standard Unix. This task consists of

all directory support, including searching, working directory control and the like.

Once the desired logical file name is found in a directory, a file open request of

the policy manager can be made using that name.* Directory searches are done by first

opening the containing file, like any other. It is the responsibility of the Unix

interface to manage its open files in such a way as to keep the working directory

open most of the time to minimize search costs.

.6.2. Forking and Process Hierarchies

In standard Unix, a given user can have a process family active for him. The

family is hierarchical in the sense that parents have certain rights over children.

However, intra-family protection is not really effective, since any member of a fami-

ly can convince any other member to destroy itself, and to take other undesirable ac-

tions, via standard Unix functions.

Therefore process hierarchies should not be supported by kernel code, and so in

LiCLr Unix members of a oroc.^-.m family cooperate among themselves to effect family

behavior. Of course, the support for process families is provided in the o.s. inter-

face, so that user software need not be concerned. This design choice simplified the

kernel, and in lig'nt of the observations made above,, had little or no effect on the

actual protection functionality provided.

In the implementation, each process of a family has a capability for a shared

page, set up by family members. In that page, data structures are maintained by the

* The logical file name is essentially an inode number.

page 21

o.s. interface so that intra-family relationships are properly supported. In doing

so, the kernel notification facility is used to great advantage. Unix typically per-

forms a great deal of "one to n" notification: one process issuing a signal intended

for the rest of the family. The kernel Notify call is designed to support this

behavior efficiently, as veil as to be adaptable for other uses.

2.. Secure User Interface

In order for any user to have assurance that the protection controls of a system

are operating in the manner desired, it is crucial that he be sure of the values to

which protection policy data has been set. Further, when login takes place, there is

an issue of mutual authentication: the user wishes to be sure that he is interacting

with the secure system interface, not some clever user simulation of it vihich col-

lects passwords. For both of these reasons, UCLA Unix contains a small dialog;uer

process to which the user terminal can be reliably connected. The user causes his

terminal to be switched to the dialoguer by typing a predefined sequence of break

characters.* The kernel supports the terminal switch through maintenance of terminal

modes. A terminal can be thawed or froren. Capabilities are granted by the Policy

Manager giving access to terminals only when thawed, or only when frozen. When the

break sequence is detected, or when ?. line drop occurs, the line is nri:'-:^ frozen.

The Policy Manager grants frozen access only to the dialoguer, thawed access in all

other cases. In this way, the user can move his terminal to the dialoguer, accom-

piiah whatever change is desired, such as changing process profiles, and then move

the terminal back, all without disturbing the state of computation of the process at

all so that it can be continued.

ß Kernel recognition of the break sequence is not expensive since POP-11 hardware re-
quires character by character terminal input handling anyway.

page 22

8.. Th3 Scheduler

Whenever it is time for a process invocation decision to be made, the Scheduler

is invoked, either directly by a user process (i.e. when it v/ishes to sleep) or by a

clock interrupt. The kernel posts a considerable amount of data to the scheduler

process, so that it can make sophisticated resource allocation decisions, about both

memory and the cpu. Centralizing both classes of resource control permits effective

coordination of allocation decisions and therefore potentially higher performance. A

large class of scheduling policies can be implemented in this process. Some of them

have confinement implications but provide better performance potential than those

which do not. This architecture permits the system operator to make the

confinement/performance tradeoff, since there is no kernel effect from scheduling

policy changes.

The one potential drawback of a separate scheduler process is that it doubles

the actual number of process invocations over what is really needed. This overhead

is of little consequence if context switches are relatively cheap, and this will be

the case for UCLA Unix.*

3.. Secure Computer Networks

When security is of concern in a computer network, encryption of the lines is

generally a necessity, because those lines are not considered safe from tapping or

spoofing. However, the usual approach is to encrypt and decrypt the data external to

the central machine and its operating system.

« Context switches on the PDP-11 are in general fairly slow. Therefore, the
scheduler is actually to be run, still as a separate process, in kernel mode of the
hardware. This avoids the necessity of extensive state saving and restoring, but re-
quires the scheduler to be written in a language for which it can be demonstrated
that kernel data structures are not touched. The implemented scheduler is written in
UCLA Pascal. Moving it into kernel mode was not yet complete when this paper was au-

thored .

page 23

It should be recognized that the software resident vdthin the oporatins system

responsible for managing the netv;orr: is both complex and relevant to security and in-

tegrity. In standard Unix with an ARPANET Network Control Program (NCP), the NCP,

operating as a common mechanism, is of comparable size and complexity to the whole

operating system.* Typically, one wishes to protect each network connection separate-

ly from each other connection, but the NCP manages them all, including moving data

from user buffers through the NCP and out to the network interface device.

Given the availability of a secure operating system, one can entertain the idea

of extending the "ends" of the encryption path deep into the operating system. For

example, the user process, as it hands data over to the NCP, could be forced to cause

the data to be encrypted, so the network software is treated merely as part of the

insecure transmission channel. That data would not be decrypted until the receiving

NCP handed it over to the destination user. If each connection were encrypted with a

separate key, then NCP errors and misdelivery within the host operating system would

not affect security. If suitable error correction is incorporated with the encryp-

tion, then integrity problems can also be detected.

The main problem in this approach is the initial connection establishment proto-

col: how to permit users to supply the NCP with parameter? telling which site and

what type ox connsction should be established, without large confinement channels in

the system. For a discussion of these and related issues, see Kline [Kline 78J.

'{•;oa ^sthbd of solution outlined there has been implemented in UCW Unix. The addi-

tional kernel code to support secure network operation was quite small. Further,

most of the original NCP was kept unmodified, although its lower level was altered to

match the kernel interface.*

a The NCP being considered was developed at the Univ. of Illinois,
* The Illinois NCP "kernel" was rewritten.

page 2*1

IQ. Programming: Lan-^uag-.o Issues

The programming language employed in software development is usually recognized

to have a significant effect on that effort; however v;hen the goal of development in-

cludes verification, the effect is heightened. The specific language issues break

down here into two groups: those concerned with systems programming, and those con-

cerned with the scale of the verification steps.

Systems programming issues arise in the same way that, they occur in most high

level systems programming languages. It is necessary to be able to express details

of the hardware in the high level language, such as interrupt vectors, hardware dev-

ice registers, or special instructions. These facilities must be available in the

programming language, but in a way that minimizes the effect on the semantics of the

rest of the language.

Virtually all the security and integrity relevant code in UCLA Unix is written

in a slightly altered Pascal. Obvious verification problems were removed from the

language, such as pointers, variant records, and various sources of aliasing.[Lampson

77] I/O facilities were also deleted, since we were building I/O mechanisms, among

other functions. The runtime package needed to support Pascal I/O would have been

usiless baggage, and since it typically would be written in assembly code thsrs would

be little chance of ever verifying properties of its operation.

Tz -..--i? aiöo necessary however to add features r.o Pascal to permit systems pro-

gramming, as remarked above. Very few additions were actually necessary, and were

limited to the following:

) the ability to declare a variable to be stored at a fixed physical location (to

initialize interrupt vectors, access device control registers, etc.),

b) assembly language procedures (so that special hardware instructions could be ex-

pressed as a procedure call),

a

page 25

c) the ability to have procedures which take array parameters whose lergth is deter-

rained at call time (to remedy the most significant limitation of Pascal).

We also developed an extensive library system to support independent compilation of

program modules, and yet force type integrity across module boundaries. The compiler

and library system force recompilation of modules when needed for compatibility with

another module which has been altered. This facility is needed since the verifica-

tion work depends on type enforcement. The language, compiler, and library system

arc discussed by Walton.[Walton 76]

There are many issues concerned with the scale of the verification effort. It

is believed that over half of the original verification effort could bs avoided if

the language contained more reasonable controls over aspects of program behavior.

One of the more obvious examples concerns the integrity of global variables. An im-

portant portion of the assertions to be verified state that most of the kernel vari-

ables have not been altered by the routine being considered. (After all, much of the

statement of security concerns what is not to happen.) These assertions, in the form

of a large invariant, could be simply handled by scope controls in the language, such

as the Import/Export lists of Euclid [Lampson 77]- Then compile time enforcement

could be employed and the verification task correspondngly simplified. UCLA Pascal

has '•.y-'i'r. modified '>? provide tmport Lists.

Another example where the verification task can be eased concerns array bounds

•"'!. - :'-;.L;;'2;. in 0-;.;^:;l , man"-' subscripts 2:■.:^ ■■';,:^ly be cut of ran^e, and therftr'orc po-

tentially reference data other than the given array, violating type rules. There are

four reasonable ways to deal with this problem: Subscript checking could be done by

hardware, by runtime software generated by the compiler, by runtime software expli-

citly inserted by the programmer, or it could be verified in many cases that sub-

scripts do not get out of range. The PDP-11 hardware base does not provide any rea-

sonable way to itself check subscript references.* Trie UCLA Pascal compiler does not

f

page 26

implement array checking code. Therefore a combination of the remaining choices were

taken. The resulting assertions which need to be proven compose a significant frac-

tion of the total verification to be done. Clearly here is a fertile area for

language support or enhanced verification tools.

11. Architectural Observations

UCLA Unix comprises the first verifiably secure, full functionality operating

system with a fine grain of protection. The experience gained in its design and

development lead us to several conclusions. Most obvious, secure operating systems

are feasible to develop, although the development cost is likely to be considerably

greater than if higly reliable security and integrity were not such a serious goal.

However, the result is a system which appears to exhibit considerably enhanced relia-

bility and integrity, and because of the strict modularity, is easier to modify.

Performance does not appear to be adversely affected by the architectural constraints

imposed by the various goals. That is, the net result of the security goal seems to

be a better system in general.

It should be noted however that one of the central ideas to the success of the

work, kernel structured architectures, requires considerable rethinking of the usual

ooeratinf jystem architecture views if it is to be effectively employed. Mu=n cf the

standard operating system wisdoms must be reexamined, or the result will be a "ker-

r.el" that is in fact overly complex and x;ot suitable for a rigorous demonstration of

correct security and integrity enforcement.

In conclusion, it appears that the goal of obtaining secure operating systems,

at least for centralized, medium scale machines, has been largely reduced to (high

» The new, upward compatible DEC VAX/780 does,

page 27

quality) engineering, with the most significant progress required in program verifi-

cation.

t

Fabry, R., "Capability Based Addressing," Communications of the ACM, Vol. 17, Mo. 7,

July 1974, pp. 405-412.

Gaines ■ R. S. Private communication, 1977«

Kemmerer, R., "Verification of the UCLA Security Kernel: Abstract Model, Mapping,

Theorem Generation and Proof," PhD Thesis, UCLA Computer Science Depart-

ment, 1978 (forthcoming).

Kline, C. S., "Protection Mechanisms for Operating Systems and Networks," PhD Thesis,

ÜCLA Computer Science Department, 1978 (forthcoming).

Lampson, B. et.al., "Report on the Programming Language Euclid," SIGPLAN Notices Vol.

12, No. 2, February 1977.

Fällen, J., "Security Kernel validation in Practice," Communications of the ACM, Vol.

19, No. 5, May 1976 PP- 243-250.

Grganick. E., "The Multics System, an Examination of its Structure, MIT Press 1971.

pope.. G., and D. Färber, "A r;oael for Verification of Data Security in Operating

Systems," Communications of the ACM, 1978 (to appear).

Ritchie, D. and K. Thompson, "The Unix Timesharing System," Communications of the

ACM, Vol. 17, Mo. 7, July 1974, pp. 365-375.

Saltzer, J., and M. Schroeder, "The Protection of Information in Computer Systems,"

Proceedings of the IEEE, 1975.

page 28

Schrocder, M., D. Clark, J. Saltzer, "The Multics Kernel Design," Proceedings of the

Sixth Symposium on Operating Systems Principles, W. Lafayette, Indiana,

Nov. 1977.

Walker, E., "Verification of the UCLA Security Kernel: Data Defined Specifications,"

Masters Thesis, UCLA Computer Science Dept. November 1977.

Walton, E., "The UCLA Pascal Translation System," UCLA Computer Science Dept. Techni-

cal Report, January 1976.

Urban, M., "A Policy Manager for UCLA Secure Unix," Masters Thesis, UCLA Computer

Science Dept., 1978 (forthcoming).

