SDPS-78-002
June 1978

7

SECURE DISTRIBUTED PROCESSING SYSTEMS:
QUARTERLY TECHNICAL REPORTS

Gerald J. Popek
Principal Investigator

R o e B o eiic i e 3 L ol e s e iy

SECURE SYSTEMS AND SOFTWARE
ARCHITECTURE GROUP

AT

APPROVED FOR PUBLIC RELEASE'
DISTRIBUTION U (LIMITED

|

X o

) (-)

g (>

% tad COMPUTER SCIENCE DEPARTMENT PesiTY OF AL

: i | & .f “‘1
i T School of Engineering and Applied Science 3 “r

University of California
’ =y

Los Angeles

83 11 25 085

T ptee e

The views and conclusions contained in this document are
those of the author and should not be interpreted as
necessarily representing the official policies, either
express or implied, of the Defense Advanced Research
Projects Agency or the United States Government.

B ol B 2l

o

SIS i N A b o o T et LR N S (b A L el

PR = e A G S |

SECURE DISTRIBUTED PROCESSING SYSTEMS
QUARTERLY TECHNICAL REPORT
1 July 1977 - 30 April 1978

Gerald J. Popek
Principal Investigator
Computer Science Department
School of Engineering and Applied Science
University of California at Los Angeles
(213) 825-6507

This research was sponsored by the
Defense Advanced Research Projects Agency

ARPA Contract No.: MDA-903-77-C-0211

ARPA Order No.,: 3396
Program Code No. 7P10

[_A.ccession For

NTIS GRA&T =
DTIC TARB g/
Unannounced 07
Justification |
By

_Distribution/

r _Ah\/_a_ai‘l.ability Codes
.Availmér.l-d”/or'
Dizt ' Special

i)ﬂ"f g | |

5 L

- Best
Available
Copy

" SECURE DISTRIBUTED PROCESSING SYSTEMS

Advanccd Research Projects Agency
Quarterly Technical Reports

July 1977 - March 1978

. “This technical report covers research carried out by the
Secure Distributed Processing Systems group at UCLA,under ARPA
Contract MDA-903-77-C-0211 during the ~three guarters in the
period July 1, 1977 to March 31, 1978. gSignif‘icant advances have
been made on all four contracted tasks, namely network security,
data management security, high availability secure information
management, and UCLA secure system enhancements. Below, we
describe that progress and point to the list of references which
represent the published work resulting from this supported

research.. S
— Ly

P&

¢

Task 1 - Network Security

A number of significant steps have been taken over the last
three quarters. First, UCLA is participating in the larger ARPA
sponsored network securi’y experiment employing BCR wunits to
demonstrate that end toc end encryption of individual connections
on the ARPANET is feasible. A BCR unit has been received at UCLA
and checkout has begun. Coordination of UCLA’s initial role as a
server host in the BCR experiment, and subsequently potentially
as a key distribution center, has been coordinated with other
ARPA contractors.

A major portion of the effort in network security has becen
devoted to the integration of encryption techniques into the pro-
tocols of networks and the architecture of the operating systems
wnich ar2 connzchted. It was found feasible to extend tnz end of
eaorypted channels right to the process boundary in®hosti syscens,
making network control software, as well as all other system
software, irrelevant to system security, so long as an appropri-
ate operating system kernel was installed in participating hosts.
Tnis devalopment :dramatically simpiifies +tha structurs of ©as
neiwork security mechanisms, obviating the need for BCK units at
secure hosts, as well as any requirement for trusted network
management software. A prototype of this integrated end to end
network security architecture has been developed for the UCLA
Secure Operating System Prototype. The implementation is now
being improved to integrate it into the complete system. The fi-
nal prototype is scheduled to be used in the Navy's ACCAT Guard
-project later this year.

The importance of this work is severalfold. First, it
demonstrates that end to end security to the process level is
very cheap to implement and operate, given the existence of
secure operating systems. Second, the approach is directly ap-

[

b s o b el e B o ol s R e e o wr-wumj

page 2

o

plicable to existing networks such as the ARPANET.

Several architectural design and analysis efforts have also
been in progress during this period, reported in references 6 and
7. The first presents a general view of design issues in network
sccurity, and has been used by the Mitre Corp. in the development
of their network security methods for military systems. The oth-
er challenges much of the work on public key encryption methods,
and shows that all digital signature methods previously proposed
suffer from serious flaws. A superior method is then outlined.

Task II - Data Management Security

Data management systems typically employ considerably more
software wmechanism in the representation and management of the
data they contain than do operating systems. As a rcsult, the
task of devcloping rcliable enforcement controls potentially is
significantly more difficult. Many have thought as a result that
a kernel architecture approach to data management security was
not feasible. If so, that would be quite unfortunate, since kecr-
nels severely 1limit the amount of software which must operatc
securely. At UCLA, we have succeeded in developing a general
kernel based architecture, meaning that it is potentially feasi-
ble to provide highly reliable security enforcement in data
management systems thirough the correct installation of a very
small amount of software. This result is very important, since
without it, much of the code in a data management system would
have to operate securely, and the cost of providing secure data
manzagement would then often be prohibitive. The design was pub-
lished late in 1977 as refercnce 2, and in order to dcmonstrate
its operational feasibility, the INGRES data management system 1is
currently being altered to include the proposed kernel struc-

tures. An important result of this test implementation, besides
demonstrating feasibility, is that our approach is retrofittable
to existing systems. The savings in existing software can be

B0 THE AP o

Task III1 - High Availability Secure Information Manacement

& signirfiecant new divechion of the resesnrch ot UOLA hewm haon
congernesd wibth relizpility, availability, ana securicy in distri-
buted systems. The core of this effort is the development of a
highly available, securc distributed system base that can run in
an integrated fashion on local networks, utilize existing equip-
ment, and provide a base on top of which one can easily install
such applications as distributed data management systems, elec-
tronic office facilities, and the like. The base is to be en-
tirely responsible for backup, recovery, security, and much of
system managcment. It should be easily extcnsible in terms of
hardware additions and deletions, all without software altera-

tions or user knowledge.

The design of this system base has progressed a great deal

e L

page 3

over the past three quarters, and a preliminary design document
was reviewed by other internationally known researchers. A more
complete design report will be completed this summer, at which
time prototype development will commence.

In conjunction with titis research direction, a number of
other strong efforts have been completed. First is a complete
protocol for coordination of resources in a distributed systen,
that permits arbitrary failures of nodes, links, and software

modules, either during normal operation or recovery. Synchroni-
zation suitable for sophisticated data management is provided,
and the correctness of the entire protocol is proven. The work

is reported in reference 5, and has been accepted for publication
in the top journal of the field.

Several other protocols have also been developed for coordi-
nation of resources and detection of deadlock. These are now un-
dergoing refinement and have been submitted for publication.

To support the distributed system development, UCLA has par-
ticipated in the development of the Local Network Interfaces
(LNIs) principally developed by UCI and MIT, and three Interfaces
are scheduled ¢to be installed at UCLA this summer, creating a
three node netvork for use in development and measurement experi-
ments.

Task IV - UCLA Secure Svstem Enhancement

The UCLA Scecure system prototype has been the focus of con-
siderable progress. First, a great deal of energy has been spent
in completing the prototype. The basic task is now essentially
done. Full function opcration has been demonstrated. Fine
grained protection on an individual file basis 1is 1implemented,
and virtually all standard Unix programs operate without change

or recompilation. This systcm is the first, and currently only,
exiisting andi Suna filoning Vkkesne L balgadiinnarathiingl sivacean. Tt con-
ciusiw&iy demonathates the (Teasibility of this amnproath. Ovar

the next months, the remaining software development tasks asso-
ciated with the prototype will be completed and documentation
will be developed. A general architecture paper is already
IHABNSEDUE. . @AREE S PR EREIEE Ye

The UCLA kernel has also served as the focus for consider-
able program verification activity. Complete concrete specifica-
tions for the entire kernel, suitable as input to an interactive

verification system, were completed late last year. Complete
abstract specifications were completed early in 1978, and the
abstract to concrete correspondence is now well underway. The

programs being verified compose the largest practical verifica-
tion effort in the country, and it is uncovering a great deal
about how verification of large systems must be done, as well as
the nature of the tools which are required. As this research has
procressed, a cooperative arrangement with USC/Information Sci-
ences Institute has developed, since their XIVUS interactive ve-

P —

R — T~ IR L e

il

feaai b g o R R sk Lol) L e 2 s TR EE T e TR [————
ISt e - - o e » -1
i
page U |
] iy :
rification system is being employed in the proofs. The general

approach to the verification of large systems is described in the
technical report listed as reference 3.

S

“"The body of this report provides more detail in several
areas. Specifically, three reports are included that reflect
some of the more significant results in each of the areas of dis-
tributed systems, network security and the secure operating sys-
tem prototype. .

ey — ey oy

ORI
=

ey A

St Rkl ol i et I SR ol i

|

page 5

References Published During the Reporting Period

1.

Badal, D., and G. Popek, "A Proposal for pistributed Con-
currency Control for Partially Redundant pistributed Data
Base Systems", UCLA Technical Report, 1978, 13 pp.

powns, D., and G. Popek, "A Kernel Design for 2 Secure Data
Base Management System", Proceedings on Very Large Data
Bases, Tokyo, October 1977, pp 507-514.

Kemmerer, D., "A Proposal for the Formal Verification of the
Security Properties of the UCLA Secure Unix Operating System
Kernel", UCLA Technical Report UCLA-ENG-7810, SpPS-78-001,

65 pp.

Menasce, D., and R. Muntz, "Locking and Deadlock Detection in
Distributed Databases", UCLA Technical Report, 1978.

Menasce, D., G. Popek and R. Muntz, "A Locking Protocol for
Resource Coordination in Distributed Systems", ACM Transac-
tions on Database Systems, (to appear).

Popek, G., and C. Kline, "Design Issues for Secure Computer
Networks", Operating Systems, An Advanced Course, Springer-

Verlay, Berlin, 1978, pp. 517-546.

Popek, G., and C. Kline, "Encryption Protocols, Public Key AY-
gorithms and pigital Signatures in Computer Networks",
Proceedings of the Conference on Fundamentals of Secure Com-

puting, Atlanta, Ga., November 1977.

Popek, G., and C. Kline, "Issues in Kernel Design", 1978 Na-
tional Computer Conference Proceedings, AFIPS Press, PP.

1079-1086.

Popek, G., C. Kline and E. Walton, wygCcLA Secure Unix", UCLA
Teahnical Rzaneh, February LeInt =20l par

10. Walker, B., wyerification of the UCLA Security Kernel: Data

T T o s

Defined Specifications", UCLA Technical Report UCLA-
ENG-7809, SPDS-77-002, November 1977, 206 pp.

A

Encryption Protocols, Publie Key Algorithms and Digital Signatures
in Computer Networks¥

by

Cerald J. Popek and Charles S. Kline
University of California at Los Angeles

Abstract

The general problem of secure communication in computer
netvworks 1is considered, especially issues related to integration
of encryption protocols, the relationship betveen public key and
conventional encryption algorithms, and digital signatures. The
conclusions reached in these areas are as follows.

&) A crucial problem in integrating encryption into networks 1is
minimization of the mechanism which must be trusted. A
general protocol is presented which appears to accomplish
this goal and 1is suitable for either public key based or
conventional encryption algorithms.

B) Publie key and conventional encryption algorithms are
funetionally equivalent, in the sense that neither present
any advantages over the other, either in the way they are
used, the functions they provide, or in the amount of
mechanism that must be trusted in their support.

c) Both publiec key and conventional encryption approaches to
digital signatures depend critically on secure
authentication for their suitability, in ways not generally
recognized. They appear equivalent with respect to safety.

D) Neither the signature method outlined by Rabin nor the usual
publiec key based protoecols appears satisfactory. A more

cuitadbie naotworik cdigibtal simanturs mathod i3 desarigbed.

1. Introduction

A Y e

. ’ . A - .
Tnera nan pean o amidE seblie R [2 QRN hal he

gdevoelopment oL enaryption mebthods for compucer neLworks.
Activity falls into two major but related areas: the development
of strong encryption algorithms, and the design of the rulcs or
protocols by whien an algorithm 1is actually used in an operating
network. As an example of the relation between these two areas,
public key algorithms have been suggested as a superior solution
to key distribution and digital signatures; issues whieh, it is

This research was supported by the Advanced Research Projects
Agency of the Department of Defense under Contract MDA

903-77-0211.

- ————

gl M o N e . - — =

A R

page 2
claimed, would otherwise requirc additional protocols. Here we
concentratc on the protocol problems. We c¢xamine protocol

questions which arisc at various levels of a system, from the
low, detailecd 1level at which the various operating systems in a
network communicate, to the higher, uscr visible levcl involving
such services as digital mail. As a result a rather unique
perspective is provided, and we are lcd to some fairly surprising
conclusions.

The paper is writtcn basically in a bottom up fashion. The
first scction considers questions of how encryption "channels"
interact with network software. The ncxt section outlines a
basic protocol for the wuse of encryption in a netvwork,
independent of the nature of thec encryption algorithm (public
key, conventional, etc). These two sections show how it is
possible to build a secure network base, on top of which many
extensions are dircctly possible. At that point attcntion turns
to some of the higher level, user visible issues, such as public
kcy algorithms and digital signatures. It is argued that none of
the currently proposed signature methods 1is satisfactory. We
proposc an alternative which we beclieve satisfies the necessary
rcquirements. It is based on the existence of the secure lower
level protocols discussed in the earlier sections. Those readers
willing to acccpt thc existcnce of secure lower level network
protocols may wish to skip to section six, where the discussion
of public keys and digital signaturcs can be found.

2. Levels of Integration

Encryption forms thec basis for solutions to computer network
security problems. Rasically, a single communications channel
can be multiplexed into a large number of separatcly protected,
secure communication channels by assigning a separate encryption
key pair for cach logical communication channel. ¥hen a uscr
requests the establishment of a new communication, protection
policy checks can be performed, and, if successful, a2 key can be

distributed Lo eanh end of the communication rhannel.

Several key distribution methods have been studied.[Popek

780b] One method utilizes a key distribution center which
rcceives requests for communications, and distributes keys
snelelofediiiniz| 188 Tha Lewvs are Lragsmithed using praviouslyvy 3 neambisd
secren keys whiech change only ravely Other wmethods =allow
distributed key management, with several, or even all, sites
participating in key distribution. Reccntly, public key
cncryption algorithms [Rivest 77a) have become available.
Originally, such algorithms were thought to simplify the key
distribution problem, but recent research suggests that no

savings rcsult.[Necdham 77] This issuc is discussed at length in
section six.

One problem which must be resolved in designing a secure
network encryption mechanism, regardlcss of the nature of the
encryption algorithm or the key distribution mcthod, is the level
of integration of the encryption facility. There arc many

ey o e

page 3

possiblc choices for the endpoints of the cncryption channel in a
computer network, each with 1its own tradeoffs. In a packet
switched network, one could encrypt each 1line betwcen two
switches scparatcly from all other lines. This is a low lcvel
choice, and 1is often called 1link cncryption. Instead the
endpoints of the cncryption channels could be chosen at a higher
architectural level: at the computer systeams, refcrred to as
hosts, which arc connectcd to the network. Thus the cneryption
system would support host-host channcls, and a message would Dbe
encrypted only oncec as it was sent through the network rather
than being decrypted and recncrypted a number of times, as
implied by the low level choice. In fact, onc could even choose

a highcr architectural level. Endpoints could be individual
processes within thc operating systems of the machinecs that are
attached to the network. If the wuscr wecre cmploying an

intelligent terminal, then the terminal is a candidate for an
cndpoint, too. This vicw envisions a single encryption channel
from the user directly to the program with which he is
interacting, even though that program might be running on a site
other than the one to which the terminal is connccted. This high
level choice of endpoints is sometimes called end-cnd encryption.

The choicc of architectural level in which thec encryption is
to be interrated has many ramifications for the overall
architecture. Onc of the morc important is the combinatorics of
key control versus the amount of trusted softwarc.

In general, as one considers higher and higher 1levels in
most systems, thec number of identifiablc and separately protected
cntitics in the system tends to increase, somctimes dramatically.
For example, while there are less than a hundred hosts attached
to thc ARPANET, at a higher 1lecvel there often are over a
thousand processes concurrently operating, each onc separatcly
protccted and controlled. The number of terminals and uscrs 1is
of course also high. This numerical incrcase means that the
number of sccure channcls - that is the number of separately

distributcd matched key pairs required - 1is correspondingly
LEVERER LT RS E=1RE B 0 Pkt REEETL (s ST onzraned nad
Sl upe i can bey doamabilc il iy S in C R RS

In return for the additional cost and complexity which may
result, there can be significant reduction 1in the amount of

TR e RS DS ST)t e L &M E e R R = snatrad fan o
pPot€ction of thel dcomaunicabtion channel. This issue 1is very
important and must be carcfully considercd. It arises in the
following way. When the lowest level is chosen, the data beéing

communicated exists in clcartext form as it is passed from one
encrypted link to the next by the switch. Thercfore the software
in the switch must be trusted not to intcrmix packets of
different channels. If a higher level is selccted, from host to
host for example, then errors in the switches are of no
consequence. However, operating system failures are still
serious, since thc data exists as cleartcxt while it is system
rcsident.

In principle then, the highest 1level integration of

g)

et T ST ettt

I o R

e sy

sy

page U

encryption is most secure. However, it is still the case that
the data must bec maintained in clear form in the machine upon
which processing is donc. Ther :fore the morc classical mcthods
of protection within individual machines are still quite
neccssary, and the value of very high 1level end-end encryption
may bc somevhat lessened. A rather appealing choice of level
that integrates effectively with kernel structured opcrating
system architectures is outlined in section four.

Another small but nontrivial drawback to high level
encryption should be pointed out. Once the data is encrypted, it
is difficult to pecrforn mcaningful operations on e Many

front end systems provide such functions as packing, character
erasures, transmission on end of 1line or control character
detect, etc. If the data is encrypted before it reaches the
front end, then these functions cannot be performed. That 1is,
any processing of data flowing through the channel must be done
zbove the level at which encryption takes place.

3. Encryption Protocols

Network communication protocols concern the discipline
imposed on messages sent throughout the network to control
virtually all aspects of data traffic, both in amount and
direction. It is wecll recognized that choice of protocol has

dramatic impacts on the utility, flexibility and bandwidth
provided by the network. Since encryption facilities essentially
provide a potentially large set of logical channels, the
protocols by which the operation of those channels is managed
also can have significant impact.

There are several important questions which any encryption
protocol must answver: L
1. How is the initial cleartext/ciphertcxt/cleartext channel
from sender to receiver and back established?
2. How are cleartext addresses passcd by the sender around the

snany ot don Paolliries to Lhe natwock withoutb ottt didlng al naniit
wninn gleapbkaxt datva ¢can 0w inadvertancly or inteationally leakad
by the same means?

3k What facilities are provided for error recovery and
resynchronization of the protocol?

L L L R R B C G R o B C L e

ol foemn ey aitipigeitd SOaIESdY

6. How do the encryption protocols interact with the rest of the
network protocols?

7. How much software is necded to implement the encryption
protocols. Does the security of the mnetwork depend on this
software?

One wishes a protocol which permits channels to be
dynamically opened and closcd, allows the traffic flow rate to be
controlled (by the receiver prcsumably), provides reasonable
error handling, and all with a minimum of mecchanism upon which
the security of the network depends. Clearly the more software
is involved the more one must be conccrned about the safety of

T I T T g

h___.__ ditr b gtrie v =T

R .

page 5

the overall network. The performance resulting from use of the
protocol mrust compare favorably with the attainable performance
of the network using other suitable protocols without encryption.
Lastly, one would prefer a general protocol which could also be
added to existing networks, disturbing the transmission
mechanisms already in place as little as possible. Each of these
issues must be settled independent of the level of integration of
encryption which is selected, the method of key distribution, or
the nature of the encryption algorithm employed.

To illustrate the ways in which these considerations
interact, in the next section we outline a complete protocol.
The case considered employs an end to end architecture in a way
that can be added to an existing network.

4., Network Encryption Protocol Case Study:
Process-Process Encrvption

We outline here a general encryption protocol that operates
at the relatively high level of process to process communication.
A major goal is the minimization of the software on which the
security of the system depends. Network communication protocols
often involve fairly large and complex parts of the operating
system, sometimes the primary source of complexity and amount of
code. This fact results from the variety of tasks wvhich the
network protocol must perform, such as connection establishment,
flow control, error detection and correction. Thus, this design
attempts to eliminate as much as possible the necessity of
trusting that software for secure operation.

The design presented here utilizes process-process
encryption. In process-process encryption, encoding is performed
as data moves from the source process to the system's network
software. This approach minimizes the points where data exists
in cleartext form, and thus the mechanism which needs to be
trusted. While a higher level choice could be made, for example

20 lowing e nrogesses) oo panior: their own encoypbion wicthin
Laosm3elvas, sush & choice douss not assurs Vs il ek SUas BEEE
the network is encrypted. Thus, process-process encryption seems
to be the highest safe choice. The details of the protocol are
applicable either to public key based or conventional algorithms.

-~ . 3 LIRY [. . . N . It ‘ -~
any af bhe Yoy distribubiocon mebtbods discussed in o Aol G btean

22 supporced.

It is assumed that the reader is familiar with the ideas of
operating system security kernels.[Popek 78e¢] Briefly, security
kernel based systems attempt to 1isolate the security relevant
parts of the system and place them in a nucleus, running on the
bare hardware. In that way, the secure operation of the system
depends only on that software. By careful design and
implementation of & security kernel, it is possible to formally
verify the security properties of the system.[Popek 78al

b

aeoy

¥ Doy

4.1 Overview

In this protoeol, when a user attempts ¢to send data, a
system enerypt function enerypts that data and passes it to the
network management software, wnieh is logieally part of the local
operating system. The network software then attaehes headers or
other information required by the network protoeols and sends the
data to the eommunieations facility. Upon reeeption by the
remote network software, the headers and other protoeol
information are removed from the data and the data is passed, via
a system deerypt funetion, to the appropriate user proeess.

Initial establishment of the eommunieation ehannel is also
provided in a seeure way. When a user proeess attempts to
establish eommunieation, the local network software 1is 1informed
by the system. The network software then eommunieates with the
network software at the remote site. When the two netwvork
software paekages have arranged for the new eommunieation, the
system at eaeh site is informed. At this point in time, the
system software attempts to obtain encryption keys for this
communieation. This key distribution is aeeomplished either with
local key management software, or via a key distribution eenter.
If a eonventional eneryption algorithm was employed, then new
keys would be ehosen and distributed. If a publie key eneryption
algorithm was utilized, then the publie key of the reeipient and
the private key of the sender would be retrieved.

In the publie key =ease, an additional authentication
sequenee 1s required, sinee the publie keys may have been used
before. This authentieation sequenee effeetively establishes a
sequenee number to be ineluded in eaeh message to guarantee that
previous messages ean not be reeorded by an imposter and
replayed. The authentieation sequenee 1is not required in the
eonventional eneryption ease sinee the new keys effeetively forn
an authentieation and prevent any prior messages from being
useful.

VR) 3
Pl usily :scanlisned secure Ly ARy RO O T I 1 bt In = I RS h
user proeesses are given eapabilities to send and reeeive data.
The operating system ealls employed should automatieally enerypt
and dezcrypt the data with the apnrovriate Lkeys. Thus, the

. . . N al |y "8
AN e :.‘L.L.\“ At ana in ».:‘x.,‘)-,\,.,‘. T}

Byl Nglieiiie 0 cin i nl i aigh i Rir e ibang 2 Wil N

'

The above design allows existing network prectoeols in many
eases to be largely left undisturbed, and preserves much existing
network software. If desired, user proeesses ean be blocked, in
a reliable way, from eommunieating with any other user prceesses
anywhere in the network unless the protection poliey involved 1in
setting up the keys permits it. FEaeh user's eommunication is
proteeted from every other user's eommunieation. Perhaps most
important, the amount of trusted meehanism required in the systen
nueleus, as we shall see, is quite limited.

L W T e L —

4.2 The EFncryption Conneetion Protocol

The details of seeure communieation establishment, briefly
described above, are now presented in more detail. To outline
this procedure, we first view the operation from the vantage
point cof the operating systcm nuclcus, or kernel, and then sec
how host network protoeol software operates making use of the
kernel faeilities. For brevity, in this diseussion, a logical
communieation ehannel between two processes will be known as a
conneetion. The host nctwork software will be referred to as the
network protocol manager (NPM). In general purpose networks, the
role c¢f the NPM is quite sophisticated and requircs eonsiderable
code to implement the necessary protocols, an important reason
not to have seeurity depend on the NPM.

In the discussion below, it will be understood that a pair
of matching eneryption keys, one held by each of the two hosts
involved, defincs a seeure, onc way (simplex) channel. A
bidirectional (duplex) channel between two hosts therefore
employs two pairs of keys.[1] Each kerncl of each host in normal
operational modc has a securc full duplex ehannel established
with eaeh other kcrnel in the network. How these ehannels are
established <concerns the method by whieh hosts are initializcd,
and is diseussed later. The kcrnel-kernel ehanncls are used for
exchanging Kkeys that will be used for other channels between the
two hosts and for kernel-kernel eontrol messages.[2] The nced for
these will beeome apparent as the protoeol is outlined. If it is
desired, the protocols can be trivially altered to keep the
cleartext form of kcys only within the encryption units of the
hosts. For simplieity of explanation, that requirement 1is not
used here.

A connection will get cstablished in the following way.
When hosts arc initialized, their NPMs will establish connections
through a procedurc analogous to the one We outline here, and
described in more detail later. Then, when a user process wishes
to eonneet to a foreign site, the oprocess executes an vestablish
conn=achion® eyl b B] wostieli snforms tne #2M cb e e R
fac NPM excnaniges He3sAages witn tne foreiga NPM Gakiahy AbAlebs
already existing ehannel. This exchange will include any host-
host protocol for establishing communications in the network.
Presumably the MNPHs eventually agrec that a connection has been
1% 3 (5 4k 4 iy e g are s foeml e Sed e DO 0N S 3 Rt At AT § WY =) s
Lo commuaicace, since so far as the kernel is concerned, nothing
has been done. The eontent of NPM exchanges is invisible to the
kcernel. Rather, at this point, the NPMs must ask the kernel to
establish the channel for the proeesses. This action is

performed with kernel funetion ealls. Those calls grant

- = o

[1] The same key could be used for both directions in convention-
=1 encryption, but for conceptual clarity here it is not.

[2] In a centralized key distribution version, these kernel-
vernel seccure channels would be replaced by kernel-key distribu-
tion eentcr seeure channels.

capabilities to the user proeess so that subsequent requests can
be made directly by the process.

In order to explain in more dctail, the following four ;
prototype kernel ealls arc described. The first two are involved |
in setting up the eneryption ehanncl, and presumably would be
issued only by the NPMs. The second two arc the means by which
user processes send and rcceive data over the eonnection.

GID(forecign-host, conneetion-id, proeess-id, statc) Give-id.
This c¢all supplies to the kernel an id whieh the ealler
would like to be used as the name of a channel to be

established. The kernel checks it for uniqucness beforc ?
aceepting it, and also makes relevant protection checks. If
state = "init", the kerncl chooses the encryption key to be

associated with the id (or queries key controller for key). H
The entry <connection~id, key, process-id, state> is made in H
the kernel Key Table. Using its seeurc channcl, the kernel
sends <conneetion-id, key, policy-info> to the foreign host.
The policy-info can be anything, but in the mwmilitary case,
it should be the security 1level of the 1local process
identified by proeess~id. In a eommercial case it might be

the organization by whieh the user was employed. It
might also be a network-wide global name of the |user 1
associated with the proeess. If statc = "eomplete", thcn l

there should already be an entry in the Key Table (caused by L
the other host having exccuted a GID) so a check for match
is made bcfore sending out the kcrnel-kernel message and a |
key is not included. The NPM process is notified when an id
is received from a foreign kernel.

CID(connection-id) Close id. The NPM and the appropriate
proeess at the 1local site are both notified that the eall
has been issued. The corresponding entry in the Key Table
is deleted. Over the secure kernel-kernel channel, a
message is sent telling the other kernel to delete its !
corrcsponding Key Table entry. This c¢all should be j
i utablle Ko v yi N PM s oriby S hatinr o Tenall W o g8 ARely S Ta bl e i
entry inticates that ituis the process associacadl with ©hiS
id, to block potential denial of service problcms.

Encrypt(conneetion-id, data) Encrypt data and buffer for NPM.
Pl SgL" Akl — ARa @iETEdle® MRS R R SR] s WSRO B U
numbers, to the data, encrypts tne data using the Key
corresponding to the supplied id (fails unless the process-
id associated with the conncction-id matches that of the
caller) and places the data in an internal buffer. Thc NPM
is informed of the awaiting data.

Decrypt(connection-id, user-buffer) Decrypt data. This call
decrypts the data from the system buffer belonging to the ,
connection-id supplied using the appropriate key. The data !
is moved into the user's buffer. The call fails unless the
process~id stored in thc Key Table matehes the caller and
any data integrity ehccks succecd (such as sequenee
numbers) . I

page 9

An important new kernel table is the Kecy Table.[1] 1t contains
some number of entries, each of which have +the following
information:

<forcign-host, connection-id, key, sequence-no, local-process-id>

There is one additional kernel entry point besides the calls
listed above, namcly the one caused by control messages from the
foreign kerncl. There arc two types of such messages: one
corresponding to the foreign GID call and the other corresponding
to a foreign CID. The first makes an incomplete entry in the
receiving kernel's Key Table, and the second deletcs the
appropriate entry.

The following sequence of steps illustrates how a connection
would be established using thec encryption connection protocol.

The host processors involved are numbercd 1 and 2. Process A at

host 1 wishes to connect to process B at host 2.

1. Process A executes an establish connection call which informs
NPM81, saying "conn from A to B82". This message can be sent
locally in the clear. If confinement is important, other
mcthods can be cmployecd to limit the bandwidth between A and
the NPM.

2. NPM81 sends control messages to NPME@2 including whatever
Host-Host protocol required.[2]

3. NPM@2 receives an indication of message arrival, does an I/0
call to retricve it, examines header, dctermines that it is
recipicnt and processes the message.

4y, NPM@2 initiatcs step 2 at site 2, leading to step 3 being

. exccuted at site 1 in response. This exchangc continues
until NPM@1 and NPM22 open the connection, having established
whatever internal local name mappings are required.

5. NPM@1 executes GID(connection-id, process-id,"init"), where
connection-id is an agreed upon connection id between the two
NPMs, and process-id is the locezl name of the process that
requestcd the connection.

o, In cxecubing the GID, tha keraeldl senasnban lon o ol tatiing e
way, makes 288 By | AW dRe Kop Bpiig) @@ BE@Es S EEReeE
over its secure channel to Kernel€&2, wvho makes corrcsponding
cntry in its table and interrupts NPME2, giving it
connection-id.

T SMPMAD dizsumz copcesobading GED fconnection-dd, process-ig!,
LECION TR R fAe) hEr e G e O v ol-a 4 L S U e el ot d I DT O, ehs s - il d
is the one local to host 2. This <c¢all interrupts process-
id', and eventually causcs the appropriate entry to be made
in the kernel table at host 1. The making of that cntry

interrupts NPM@1 and process-id@1.

{1] In some hardware encryption implemcntations, the kecys are
kept intecrnal to the hardware unit. In that case, the kcy entry
in the Key Table can merely be an index into the encryption
unit's key table.

[2] The host-host protocol messages would normally be scnt en-
crypted using the NPM-NPM key in most implementations.

B

page 10

8. Process~id and process-id' can now use the channel by issuing
succeeding Encrypt and Decrypt calls.

There are a number of places in the mechanisms just
described where failure can oecur. If the network software in
either of the hosts fails or decides not to open the eonnection,
no kernel ealls are involved, and standard protoeols operste., A
GID may fail because the id supplied was already in use, a
protection poliey eheek was not suceessful or because the kernel
table was full. The ealler is notified. He may try again. In
the ease of failure of a GID, it may be neeessary for the kernel
to execute most of the actions of CID to avoid race conditions

that can result from other methods of indicating failure to the
foreign site.

4.3 Diseussion

The encryption mechanism just outlined eontains no error
correction facilities. If messages are lost, or sequence numbers
are out of order or duplieated, the kernel merely notifies the
user and network software of the error and renders the channel
unusable. This action is taken on all channels, including the
kernel-kernel channels. For every ease but the last, CIDs must
be issued and a new ehannel created via GIDs. In the last case,
the procedures for bringing up the network must be used.

This simple minded view is aeceptable in part because the
expected error rate on most networks is quite low. Otherwise, it
would be too expensive to reestablish the channel for each error.
However, it should be noted that any higher level protocol errors
are still handled by that protocol software, so that most
failures can be managed by the NPM without affecting the
encryption channel. On highly error prone channels, additional
protocol at the encryption 1level may still be necessary. See
Kent [Kent 76] for a diseussion of vresynehronization of the
sequencing supported by the encryption channel. :

T OIS O LI 1) o 1o SRR O v (s Ty Vo U R Gl Ty B e 1 consider the
colleetion of NPMs aeross the network as forming a single
(distributed) domain. They may exchange information freely among
them. No wuser proeess can send or receive data directly toior

o SR R sl eliain DRV S o ol v e i SlilE il MR G n el s R OI: E R e R
control iaformation is sent to tne NPM and status and error
information is returned. These channels can be limited by adding
parameterized calls to the kernel to pass the minimum amount of
data to the NPMs, and having the kernel ©post, as much as
possible, status reports directly to the proeesses involved. The

ehannel bandwidth eannot be zero, however.

4.4 System Initialization Proeedures

The task of bringing up the network software is eomposed of
two important parts. First, it is neeessary to establish keys
for the secure kernel-kernel channels and the NPM-NPM ehannels.

e e M e TR

page 11

Next, the NPM can initialize itself and its communications with
other NPMs. Finally, the kernel can initialize its
communications with other kernels. This latter problem is
essentially one of mutual authentication, of each kernel with the
other member of the pair, and appropriate solutions depend upon
the expected threats against which protection is desired.

The initialization of the kerncl-kernel channel and NPM-HNPM
channel key table entries will require that the kernel maintain
initial keys for this purpose. The kernel can not obtain these
keys wusing the above mechanisms at initialization because they
require the prior existence of the NPM-NPM and kernel-lkcrnel
channels. Thus, this circularity requires the kernel to maintzain
at least two key pairs.[1] Howecver, such keys could be kept 1in
read only memory of the encryption unit if desired.

The initialization of the NPM-NPM communications then
procecds as it would if encryption were not present. In most
networks, some form of host-host reset command would be sent
(encrypted with the proper NPM-NPM key). Once this NPM-NPM
initialization is complcte, the kernel-kernel connections could
be established by the NPM. At this point, the system would bec
ready for new connection establishment. It should bc noted that,
if desired, the kernels could then set up new keys for the
kernel-kernel and NPM-NPM channels, thus only using the
initialization keys for a short time. To avoid overhcad at
initialization time, and to limit the sizes of kernel Key Tables,
NPMs probably should only establish channels with othecr NPMs when
a user wants to connect to that particular foreign site, and
perhaps close the NPM-NPM channel after all user channels are
closed.

4.5 Symmetry

The case study Jjust presented portrayed a basically
symmetric protocol suitable for use by intellizent nodes, a
Sayi iy cuntein AN S 2 Hong aweals, 0 pebine LnsceqtRs b onk 7o Ay T
W5l BN 24 Cr o R Tl o I C DA T Ve, s el ustpacsdt by st ol 2 hp gl vans

terminals or simple microprocessors. Then a strongly asymmetric
protocol is required, where the burden falls on the more powverful
of the pair.

A form Of this probicm might also occur if RS D PRED | bl | e
handled by the system, but vrather by the wuser processes
themselves. Then for certain operations, such as scnding mail,
the recciving user process might not even be present. (Note that
such an approach may not guarantee the encryption of all network

{1) In a centralized key distribution version, the only keys
which would be needed would be thosc for the key distributor
NPM-host NPM channel and for the key distributor kernel-host kecr-
nel channel. In a distributed key management system, keys would
bc needed for each kcy manager.

Ty

page 12

traffic.) Schroedcr and Needham have sketched protocols that are

similar in spirit to thosec prescnted herc to decal with such
cascs.

5. Datagrams

The case of electronic mail 1illustrates an important
variation to the protocols presentcd carlicr. Assume that a user
at one sitc wishes to send mail to a uscr at another sitc.

Using conventional encryption algorithms, the first user
would rcquest a connection to the second uscr, and a new key
would be choscn and distributcd by the key controller for use in
the communication. That key is sent using the sccret keys of the
two users.

However, since the second user may not be signed on at the
time, a daemon process is used to receive the mail and deliver it
to the user's "mailbox" file for his later inspection. It 1is
desirable that the daemon process not need to access the
cleartext form of the mail, for that would requirc the mail
receiver mechanism to be trusted. This feat can be accomplished
by sending the mail to the daemon process in encrypted form and
having the daemon put that encrypted data directly into the
mailbox file. The uscr can decrypt it when he signs on to read
his mail. In that way, the dacmon only neceds the ability to
append to a user's mailbox file.

In order for thc uscr to know thec new key uscd for this
mail, however, the key distribution algorithm used carlicr must
be modified. Rather than sending the key for this connection to
both thc sender and thc recciver, the kcy controller sends the
key twice to the sendcr, one copy encrypted with the scnder's
secret kcy and one copy encrypted with the receiver's, The
sender can prepend the copy of the key encrypted in the
receiver's secret key to the mail before transmission. Vhen the
reninient signs on, uis own mail poderan wiil sxamine toe TYRELYLR) $Ie
Sl i ttne ey L bs S a o il &y b SR US S ERsnils sfelc nelCER Tl AN

then use the new key to dccrypt the remaining text.

In the case of public key encryption algorithms, the mail

vy Bk S e ol B i in WS ol S e AT c

the L conlinienll kKiegsnal U Rk

to use in decrypolon (his secret key). however, autheatication
s no DO s S b Le s nc el the S ccilpitenit is not present when the
message is received. Thus, it may be a replay of a previously
sent message. This problem can bc prevented in the conventional
cneryption algorithm case via various priotocolsEEy #EHEEt Hellk ety
managers, for examplec, by timcstamping the mail and having the
recipient keep track of recently uscd mail keys.

Both mechanisms outlined above do guarantec that only the
desired recipicnt of a message will bc able to read it. However,
as pointed out, they don't guarantee to the recipient the
identity of the sender. This problem is esscntially that of
digital signatures, and is discussed in the next section.

P e 5

page 13

6. Public Key Algorithms and Digital Signatures

The devclopment of publiec key based encryption was greeted
by a grcat deal of interest, since the method appears to prescnt
considerable advantages over conventional encryption mcthods,
especially with respcct to key distribution and digital mail
signatures.

However, on closer examination, it scems that public key
algorithms possess no particular advantages over conventional
algorithms. The reasons for this conclusion are rcadily scen and
are outlined below.

P
6.1 Key Distribution

Let us cxamine each of thc advantagcé claimed for public key
algorithms. The first is kecy distribution. Simply put, public
key advocatcs argue that an automated "tclephone book" of public
keys can generally bc made available, and therefore whenever user
x wishes to communicate with user y, x mercly must 1look up y's
public key in the book, encrypt the message with that key, and
send it to y.[Diffic 76] Thecrefore there is no key distribution
problem at all. Further, no central authority is required
initially to set up the channel between x and y.

Needham and Schroeder point out however that this vicwpoint
is incorrect: some form of a central authority is necded and the
protocol involved is no simpler nor any morc efficient than onc
based on conventional algorithms.[Necedham 773 Their argument may
be summarized as follows. First, the safety of the public kecy
scheme dcpends critically on the correct public key bcing
sclected by the scnder. If the key listed with a namc in the
"telephone book" 1is the wrong onc, then therc is no security.
Furthermore, maintenance of thc (by necessity machine supported)
book is non trivial because keys will change; cither because of

the natural desira to replace a key pair which has heen nsed for
bR kgl IS v R B RTET BT LeRS R I AT e CLall G ISR ey du hHiEah
ccapromised through a variety of ways. ihere musc be someg source
of carefully maintained "books" with the responsibility of

carcfully authenticating any changes and correctly sending out
public keys (or entire cobnies of 4“ha book) unmcn raguest.

Needham and Schroeder also exhibit protocols to provide the
desired propertics for public key systems, and show that there
arc equivalent protocols for conventional =algorithms. The
protocols arc cquivalent both in terms of numbers of messagces
required as well as in the mechanisms which must be trusted. The
only observable difference is that the central authority in the
conventional case, in addition to bcing trusted, must also keep
its collection of (conventional) keys secrct. Based on the work
at UCLA on secure operating systems, it appears that the task of
constructing a secure ccntral authority is no harder than
building the correct one necded for public key systems.

#

Woy - - WL .S VLN et

T T

page 14

6.2 Digital Signatures

The seeond area in which publie kcy mecthods are often
thought to be superior to conventional ones is digital messoge
signatures. The mwmethod, assuming a suitable publie key
algorithm, is for the sender to eneodc the mail by "decrypting"
it with his private key and then send it. The receiver decodes
the message Dby "encrypting" with the sender's public key. The
usual view is that this procedure does not require a eentral
authority, exeept to adjudieate an authorship ehallenge.
However, two points should be noted. First, a eentral authority
is needed by the recipient for aid in deciphering thec first
messagec received from any given author (to get the eorresponding
public key, as above). Second, the central authority must keep
all old values of public keys in a reliable way to properly
adjudicate conflicts over old signatures (ccnsider the relevant
lifetime of a signature on a real estate deed for
example).[Needham 77]

Further, and more serious, the wunadorned public key
signature protocol just deseribed has an important flaw. The
author of signcd messages ean effectively disavow and repudiate
his signatures at any time, merely by eausing his secrct key to
be made public, or "ecompromiscd". When sueh an event occurs,
either by accident or intention, all mcssages previously "signed"
sing the given private key are invalidated, since the only proof
of wvalidity hnas been destroyed. Because the private key is now
known, anyone could have created any of the messages sent earlier
by the given author. None of the signatures can be relied upon.

Hence the validity of a signature on a message is only as
safe as the entire future history of protection of the privatc
key. Further, the ability to remove the proteetion resides in
precisely the individual (the author) who should not hold that
right. That is, one important purposc of a signature is to
indicate responsibility for the eontent of the aeeompanying
message in a way that cannot be later disavowed.

Some pzople wmay argue GiAE | BEekd cloRicieln i FRHOFANY
conservative; that existing signature methods are not very
reliable, that individuals nave considerable incentive not to
repudiate their signatures, and so ons is Jjustified in

3 IRE R LT ol mnie o QLT AN, S QRN eV A A SRR

2. . §] [
characteristic is clearly unsatisiactory, espscially if it 1is
possible to devise suitable digital signature methods which do
not suffer from this problem.

The situation with respect to signatures using eonventional
algorithms initially appears slightly better. Rabin {Rabin 78]
proposes elscwhere in this volume 2 method of digital signatures
based on any strong eonventional algorithm. Like public kcy
methods it too rcquires either a central authority or an explicit

page 15

agreement between the two parties involved to get mattcers
going.(1) Similarly, an adjudicator is required for challenges.
Rabin's method however uses a large number of keys, with kcys not
being reused from mcssage to messagc. As a result, if a few keys
are compromised, other signatures basced on other keys are still
safe. However, that is not a real advantage over public Kkey
methods, since onc could rcadily add a layer of protocol over the
public key method to changc keys for each messagc as Rabin does
for conventional methods. One could evcn use 2 variant of
Rabin's scheme itself with public keys, although it is casy to
develop a simplcr one.

However, all of the digital signaturc methods described or
suggested above suffer from the problem of recpudiation of
signaturc via key compromise. Rabin's protocol or analoguas to
it merely limit the damage (or, equivalently, provide
selectivity!). It appears that the problém is intrinsic to any
approach in which the validity of an author's signature depends
on secret information, which can potentially be revcaled, either
by the author or other intercsted parties. Surely improvecment
would be desirable. :

6.3 A Reliable Digital Signaturc Method

A simple, obvious solution is to interposec some trusted
interpretive layer Dbetvwcen the author and his signature keys,
whatever their form. For cxample, supposc the list of keys in
Rabin's algorithm were not known to the author, but instcad were
contained in a secure Unit (hardware or software). Whenecver the
author wished to send a signed mecssage, he merely submitted the
message to the Unit, which sclccted the appropriate keys and then
used the standard algorithm. Each author has access to such a
Unit.

The loading of cach Unit recquires some examination. In
particular, the means wvhich are usad to sclect keys and insert
vheq into eacn Unit pusht DR @ocrsod i oAl e e iz Ana] o = Do I Tal el -
nondied satisfactorily. that is, chere must be sowe grusted
Source of keys (and matching nstandard mecssage'" in the Rabin
pretocol), and the key list for each author/recipicent pair must
be deliverable in a correct, secrat way to the anpronriate Units.
T T et IR (U o b BV IGE-RA R e P U MBSk e A Enkie o Groe s, Ltosmihes

'

witnitheininteniial communication protocols, & Network gdegistiry
(NR). Such an NR appears required to solvc the problems raised
earlier. Note that some sccure communication protocol among the

- — -

[1] In his paper, Rabin describes an initialization method which
involves an cxplicit contract bectween each pair of parties that
wish to communicatc with digitally signed messages. One can
easily instead add a central authority to play this role, using
suitable authentication protocols, thus obviating any necd for

two parties to make specific arrangecments prior to exchanging
signed correspondence.

page 16

components of thc Network Registry is rcquired. Howcver, it can
be very simple; low level link encryption would suffice.

For safety and cfficiency, the NR functions presumably
should be decomposed and distributed throughout the network. 1In
particular, the failure or compromisc of a local NR would then
only have local consequences. Onc can even construct local HNR
components of the Network Registry in a decentralized way so that
compromise of more than one component would be rcquired before a
message signaturc was affected.[1] The NR architecture issuc,
while important, 1is to some degree a digression herc and so we
put it aside.

The Registry concept is quite common in the papcr vorld. A

local government's real estate rccorder's office is probably the
most commonly known example.

6.4 Auvihentication

We now make an important observation. It is still necessary
that there cxist a guaranteed authcntication mechanisnm by which
an individual is authenticated to the NR (presumably directly to
the 1local Unit). tny reasonable comunication system of course
ultimately requires such a facility, for if one user can
masquerade as another, all signature systcms will fail. What 1is
rcquired is some reliable way to identify a user sitting at a
terminal -~ some method stronger than the password schemes vsed
today. Pcrnaps an unforgeable mechanism based on fingerprints or
other personal characteristics will emcrge.

6.5 Simplification of the Proposed Sisnature Arohitecture:

Specialized Digital Signature Protocols Unpecessary

Once the necessity of a MNetwork Registry is recognized,
including a guaranteed authentication mechanism, it appears that

g R s Y iy -2 1 1
B el s o (GRS it A 5 S5 W2 e SR i B 1 Pt aad 1 Ll i1 ook

- 1

' be mAade FRAt ssead to panpve the azsd for specializes digilioal
signature protocols. Instead, any of a eollection of simple
methods will suffice.

It oarsieiikapr,. &n meder forv Lha Netwonis NREEUSLYy a0 OResRate
satiafactorily (including pertoraing user Rlncnenitiica caloE RN
clearly must be distributed, and clcarly must be able to
communcicate securely internally among the distributed
components. Given that such facilities exist, then the following
is an example of a simple implcmentation of digital signatures
which does not requirc a specialized protocol or cneryption
algorithm:

Uo The author authenticates with a 1local Network Registry

[1] See section 6.6.

1.

page 17

component, crcates a message, and hands the message to the NR
together with the recipicnt identificr and an indieation that a
registered signature is desired.

2. A Nctwork Registry (not necessarily the local component)
eomputes a simple eharacteristic function of the message, author,
recipient, and current time, encrypts the result with a key known
only to the MNetwork Registry, and forwards the resulting
nsignaturc block" to the rececipicnt. "The NR only retains the
encryption key employed.

3. The reeipient, whecn the message is rcecived, can ask the NR
if the message was indeed signed by the claimed author by
prescnting the signature block and messagc. Subsejquent
challenges are handled ir the samc way.

This simple protocol involves 1little additional meehanism
beyond that which was nceded by the Network Registry anywvay. It
does requirec that the Network Registry bec involved in every
message signature and validation. However, recall that all of
the unadorned signature methods revicwed earlier require
involvement of some form of a Network Registry for at least the
first mecssage between any two parties. Public key protoeols must
ehcek the "telephone book", and Rabin's method requires either a
eontract or a Network Registry. Furthermore, when one adds 2
more complecte Network Registry on top of those other signature
methods to correct their repudiation problem, all methods involve
the NR for cach message. MNote that this protocol also does not
rcquire the NR to maintain any significant storage for signature
blocks.

6.6 Performancc and Safety

Certain slementary precautions should be taken in the design
of the Network Registry to avoid unneeessary internal message
exchanges and to assure safety of the keys used to encrypt the

N R OIS il SE Parforaanze oenpinceacnts presumanly Skl
Ainsamse N 5o hntRsn g T ng oy TG S (TR Yoo 2 A N @R TaLIR & Suivny
enhancements could include the usc of differcnt kcys at cach
distributed site, replicating sites, and employing a signature
block computation which requires the eooperatiorn of multiple
Ll X3 Sl Dlg) i b it AR SRR B S D F W Qe d R (g B0 1R B el

SO bin2yaNg el [04 AT AR 7 (O (Bl T SA™s

From the preceding discussion, wc conclude that the digital
signature algorithms proposcd heretofore arc unsatisfactory, and
the improvements required to eorrect thecir inadequaeies make the
use of a specialized digitzl signature alporithm unnecessary.

We note herc that the safety of signatures in this proposal
also depends on the future history of protcction of kcys as
before, in this case thosc held by the Network Registry.
However, there are several erueial differences between this casc
and previous proposals. First, the authors of messages do not
retain the ability to repudiatc signaturcs at will. Second, the

e R R T R TR TR By

cmaniadehiad

ey

page 18

Network Recgistry can be structured so that failurc or compromise
of several of the —componecnts 1is necessary before signature
validity is lost. 1In the previous mecthods, a single failure
could lead to compromise.

1. Conclusions

We draw a number of specific conclusions, as well as more
general pcrspectives from the prececding discussions. The
specifics are as follows. First, public kcy encryption systcms,
viewed in the context of the network protocols by which thecy must
bc used, do not secm to provide any significant advantages over
conventional encryption algorithms. Each important function that
has been recognized can be pecrformed at lcast as easily by
conventional mcthods with, it appears, mno more supporting
mechanism. Therefore, if strong conventional algorithms are
easier to dcvclop, as has becn speculated [Rivest 77b], rcsearch
vwould be better devoted to that area rathcr than public key
systems.

Second, it seccms that the digital signature wmcthods which
have been proposcd, both public key and conventional algorithm
based, do not adegquately protect recipients of signed documcnts
from rcpudiation of signatures by the author revealing the secret
kcy(s) employed. The difficulty appears intrinsic to the
approaches being takcn. An altcrnative is available which
overcomes this problem however, that involves a small amount of
trustced software.

Third, the neccssary underlying mcchanism requircd to
support improved digital signature methods, as well as other user
visible secure network communcation protocols, is relatively well
understood, and an cxample 1is prescnted in this papcr. The
cxample takes account of the important rcquirement that the
amount of trusted mechanism involved be minimized for the sake of
safety.

In more giobal terms, this discussion ol network seourity
has been intcended to illustrate the current state of the art. It
suggests the following general pcrspectives.

ISR G SR Saivl Rl s U AT) i et O S AR R a e iR
common carrier philosophy, tnen general principles Dby wnicn
securc, common carrier based, point to point communication can be
provided are rcasonably well in hand. Of coursc, in any

sophisticated implementation, there will surely be considerable
careful engincecring to be done.

However, this conclusion rests on onc important assumption
that is not universally valid. Either there exist secure
operating systems to support the inaividual ©processcs and the
rcquired encryption protocol facilities, or cach machine operates
as a singlc protcction domain. A secure implemcntation of a Key
Distribution Centecr or Registry is necessary in any case.
Fortunately, reasonably sccurc operating systcms are well on

Ll e & i

Ll el

i s

page 19

their way, so that this intrinsie dependency of network sceurity
on an appropriate operating system base should not seriously
delay eommon carrier security.

One could however, take a rather different view of the
nature of the nctwork security problem: the goal might be to
provide a high level extended mazehine for the user, in wvhieh no
explicit awareness of the network is rcquired. The underlying
facility is trusted to seeurely move data from site to site as
necessary to support whatever data types and operations that are
relevant to the user. The facility operates securely and with
integrity in the faee of unplanned crashes of any nodcs in the
netvork. Synchronization of operations on user meaningful
objects (sueh as Withdrawal on Cheekinglccount) iz reliably
zaintained. If one takes sueh a high jevel vicw of the goal of
network security, then the simple common carrier solutions
respond only to part of the network security problem and more
work remains.

8. Bibliography

RD IR e ARSI D01 c SN} R Al d IR M Hellman, "“Kew Directions in
Cryptography", TEEE Transaetions on Information Theory,
November 1976, 64L-654.

[Kent 76] Kent, S., Eneryption-based Proteetion Protoeols for
Interaetive User-Computer Communication, Laboratory for
Computcr Science, MIT, TR 162, 1976.

[Needham 77] Needham, R. and M. Sehroeder, Security and
Authentieation in Large Networks of Computers, Xerox Palo
Llto Researeh Center Teehnieal Report, Septecmber 1977.

[Popek 78al popek, G. J. and D. Farber, "A Model for
Verifieation of Data Sccurity irn Operating Systems",
Communications of the ACM, (to appear).

[ipek EEME Fepal 1 G L andiC. 3, Kline, "Desiga Issuss fob
Seeure Computer Networks", in Operating Systems, An Advanced
Course, R. Bayer, R. M. Graham, G. Seegmuller, ed.,

Springer-Verlag, 1973

[Popek 7éel ropek, G. J. and GRS N e s T Sishy e SERATa s iec e L
Design", Proceedinzs of the National Computer Conferencee,
AFIPS Press, 1978

[Rabin 771 Rabin, M., "Digital Signaturcs Using Conventional
Encryption Algorithms", Proeceedings of the Conferenee on
Foundations of Seeure Computine, Atlanta Gcecorgia, October
3-5, 1977, Academic Press (to appear).

[Rivest 77a] Rivest, R. L., Shamir, A., and L. Adlcman, A Method
for Obtaining Digital Signatures and Public-Key
Crvyptosystems, MIT Laboratory for Computcr Seilenee Teehnicel
Memo LCS/TM82 Cambridge, Mass. 02139 April 4, 1977 (Revised

.page 20

i
. August 31, 1977)
[Rivest 77b] Rivest, R., private communications, 1977.
1
| i
1 |
i ?l

=

A LOCKING PROTOCOL FOR RESOURCE COORDINATION IN DISTRIBUTED DATABASES®

Daniel A. Menasce?, Gerald J. Popek and Richard R. Muntz

Computer Science Department
Univeraity of California
Los Angeles, California 90024

ABSTRACT: A locking protocol to coordinate mccess to a distributed database and to maintain system
consistency throughout normal and abnormal conditions is presented in this paper. The protozol is
robust in the face of failures of any participating site and in the face of network partitioning.
The proposed protocol supports the integration of virtually any locking discipline including
predicate locking pethods. A cost and delay analysis of the protocol as well as a proof of its
correctness is included in this work. The paper concludes with a propocal for an extension ained
at optimizing operatien of the protocol to adapt to highly skewed distributiors of activity.

KEYWORDS AND PHRASES: concurrency, crash recovery, distributed databases, locking protocol,

consistency.
Introduction proper network topology design. It turns
out that detection of network partiticning
Tnis paper 1s concerned with issues of can only occur at network reconnection
resource coordination 2in distributed systems, and time.
the maintenance of system consistency throughout
' normal and abnormal conditions. A database is said 3. 4inherent comzunication delay: the time to
to be in a consistent state if all the data items get a message through a computer
satisfy a set of established assertions or communication network may be arbitrarily
consistency constraints. A database subject to long, although finite. Therefore any
multiple access requires that accesses to it be proposed solution should operate correctly
properly coordinated in order to preserve regardless of the delay experienced by any
consistency. Coordination of resources in a message, and in general should be
distributed environment exhibits additional efficient.
complexity over resource coordination in

centralized environments due to:
A protocol to coordinate concurrent access to

1. possibility of crashes of participating a distributed database using locking is presented
i sites ard cr communicatisn links. in this paper. The alzoritham has as {ts aore .a
anrrenos of sush failupas cun pepder ohe contralinzd looking noptoenl wish disrributed
¢atabasz inccnsistent if nob appropriately recovery progegures. centralized contrsiler with
handled by the coordination algorithm. local appendages at each site coordinates all
resource control, with requests initiated by
2. network partitioning: in general, it is application programs at any site. Recovery is
not. possible to distinzuish between broken dewn into three disjoint mecharists; for
pessazaa whicn oould noh b dativerad du- ainelel nadptirecfivery, gz of parcitions and
to a crasn oif ihe reciplent sitc and reoonotruction of the centraliued cpntabit s hint
undelivered messages due to network tables.
partitioning. Therefore, network
partitioning in the more general sense Among the properties of the proposed protocol
considered here is not simply a matter of we have:
————————— a. robustness in the face of crashes of any
® This research was supported by the Advanced participating site, as well as
Rescarch Projects Agency of the Department of communication failures, is provided. The
Defense under Contract MDA 903-77-C-0211. protocol can recover from any number of
failures which occur either during nornal
4 Partially supported by the Conselho Nacional de operation or during any of the three
Desenvolvimento Cientifico e Tecnologico, CNPq, recovery processes.
Brazil.

L Y

b. deadlock and or detection
nethods oan be easily intcgrated given the
centralized control charaeteristic of the
proposed algorithm.

£. IE tforward intearation of rredicate
lockinz methods [1) is permitted. Value
dependent lock specifieation at the
logical level 1s neccssary to avoid the
problems of nphantom tuples" discussed by
Eswaran et al [1]. Other 1locking
diseiplines may also be easily mupported.

g. continued local operation 4n the face of

nework partitioning is asupported. The
locking algorithm operates, and operates
correctly, when the network is
partitioned, either intentionally or by
failure --of —scmmunioation lines. Eaeh

partition is mble to continue with work
local to it, and operation merges
gracefully when the partitions are
reeonneeted.

e. performanee of the algorithm does not
degrade operations. 1t is shown in this
paper that for many topologies of
intercst, the delay introduced by the
protoeol is not a direct funetion of the
aize of the network. The eomnunication
eost is shown to grow in a relatively
slow, linear fashion with the number of
sites in the network.

2 the correct operation of the protocol in
the face of the failures m=ntioned before
can be proven in a straightforward way.

Several other approaehes for synehronization
in distributed databases have been suggested in the
literature, but none deal satisfactorily with all
of these issues.

The Majority Consensus protocol proposed by
Thomas({8] requires the sites 4nvolved in a
transaction to agree by majority vote for it ¢to
proceed. Timestamps on data jtems at each site
indicate whether the item is current and therefore
whether a transaetion bhaned on it can be approved.

Tnis protocol S quice elegant, with
attraetive behavior in the faee of failures,
especially for fully replicated databases.

Unfortunately, for the eases considered in this
paper, it presants aeveral drawbacks. The locking
diyaipline nnd aenaduling of transactlons are fixed
by thz nature o the =algocitnm Ot Sl | L Rk B
flexibility (predieate locking eannot be supported
for example). Performance can degrade severely
with increasing systea joad in a thrashing 1ike
manrer, since several partially eompletc
transactions which eonfliet lead to multiple

resubmission of eaeh.

Synchronization in spD-1 [4] 4s handled Dby
several different protocols designed to co-exist
with onc another. The simpler ones can be used for
ecertain restricted elasses of transactions known in
advance of system generation. In such cases
significant improvements 1in cost eand delay over
more general protocols results. Otherwise however,

we reeommend our protoeol sinee its performance is
absolutely better and issues such as robustness and
.crash reeovery, not handled by SDD-1, are
wconsidered fully.

A ring struetured solution 1s proposed by
El1lis{6]. 1t uses sequential propagation of
asynchronization and update messages along a
statically determined circular ordering of the
nodes. Two round trips are required for each
update. This protoeol, while in general mueh
slower than the others mentioned above, is quite
simple and El1is has eaployed formal verifieation
procedures to show its correctness. Unfortunately
however, failures and error recovery are not
addressed by the protocol.

Other proposed schemes, called primary oDy
strategies have been suggested in (3], (5] and [7].
Alsberg in [3] introdueed some techniques aimed at
providing a certain degree of resilieney to the
single primary, multiple backup strategies
diseussed in [5) and (7). The primary copy scheme
i1s primarily designed to maintain mutual
consisteney of databases subjeet to somewhat
limited types of update operations, but it does
not address explicitly the problem of internal
eonsisteney of a distributed systen supporting
general transaetions.

The protocol presented 1in this paper is
deseribed in an intuitive manner in seetion one,
followed by a more detailed deseription in the two
subsequent seetions. An algorithmie speeifieation
of this locking protocol can be found in ([2]. An
informal proof of the correetness of the algorithm
is presentcd here. The proof 1is deeomposed into
five major parts, onc for normal operation, three
for the recovery phases, and a last part that shows
the parts actuaily can be proved disjointly.

The paper concludes with a proposal for an
extension aimed at optimizing operation of the
algorithm to adapt to highly skewed distributions
of activity. The extension applies niecly to
interconneeted computcr networks.

i B Centralized Loek Controller Protoeocl -~
Jntuitive Degerdption

Tpe databaue wWe a0 conaiderine nzre is
distributed awmong n nodes of a eomputer nebwork,
numbered from 1 to n. We assume that the network
protocols are such that a copy of a message is kept
by its sender until an aeknowledgrent for it 1is
rreuived, 1 cthap words, there are no lost
pendase s, Yowoeyer, @gosniIe’ @4y e to he
retransmitted many times until they get throuzh the
net. An implication of these assuzptions 4s that
messages may be delayed by an arbitrary but finite
amount of time. We also assume that measages froom
a source site A arc delivered to a destination site
B in the same order they were generated. However,
we make no assumptions about the order in whieh
messages from two distinct sources are reeeived by
a third one. We require that the network routing
procedures be such that every pair of nodes can
conmunicate with each other if the necessary
physical conncction is available.

User interaction with the database 4is done

L s i el e i i e <= i SR Wl)
F L vy A SO S MBI 38 B e

through application prograna, AP8, ~hioh
cozmunicate with the Data Bagse Management
processes. Of those processes, two are of interest
for this locking protocol: the 'centralized lock
controller' or simply *1ock controller’ and the
'1ocal lock controller'.

As a first approximation assume that there 1is
only one lock controller or LC for the entire
network. This process is responsible among other
things for examining lock and lock release requests
from the APs, and deciding whether they should be
granted or not. For this purpose, the LC maintains
a tzhle called the LOCK table, which is a set of
all the active locks. Each entry in this table is
a 3-tuple of the form (H,T,p) where H is a unique
host identification, T is a unique transaction
jdentifier within each site and P is a description
of the logical portion of the database to be locked
as well as the lock mode (e.g., read, write, ete.).
In a2 relational database, the lock specification
may for example be a predicate lock as described by
Eswaran et al [1].

At every site, except for the one where the LC
is 1located, there is a local lock controller or
LLC. Those processes 8re responsible for
caintaining a local copy of the LOCK table. Any
LLC may become the lock controller whenever there
is a crash in the systen which makes the LC
unzvailadble. The recovery process is explained
later in detail. Each time a transaction takes an
action the local copy of the LOCK table is examined
to deterwine whether the action can be performed or
not. Therefore, there are two reasons for keeping
a local copy of the LOCK table, namely: resiliencc
to fzilures and local action checking.

It is convenient at this noint to introduce
the notion of logical partiticn or logical
component, as opposed to that of a pbysical
component. A physical component is a maximal
subnetwork such that every pair of sites in the
componernt can communicate with one another. It can
be reaiily seen that the composition of a physical
component is not under the control of the locking
protocol, since nodes and communication links fail
independently of the protocol operation. Such a
lack of control could make the operation of the
protocol, in the face of crashes, rather complex.
The ooncept of lozical cepon2nt i3 introduc=sd to
o indepand 2nce Irom unaxpeeted
changes in the composition of each physiecal
component. To this end, each LC keeps a list of
sites which he thinks are still up, called the up
list. A lozical component is defined as being the
sutnetwork indicated by the nodes which are in the
B ACE Thia list may 1@ bunind the 143t of
a.tes waich are actually up. Independence rrom B
composition of physical components is thus achieved
by controlling the way by which the 1latter 1list
maps into the former, in a way which is explained
later in the paper.

miva Iha pro%ocal

Since one of our stated goals is to allow
local operations to continue in face of network
partitioning and to allow partitions to merge
grazefully, jt is necessary for each partition to
have its own LC. There is one LC for each logical
component.

The operation of the locking protocol under no

.orash conditions cen be jntuitively expleined as
follows. The LC receives lock and lock release
irequests from the application prograns. Each
‘request is sent to all LLCs in the component. The
request 1is stored in a pending list at each LLC
site and an acknowledgment is sent back to the LC.
After the acknowledgment from all sites in the
component is received (excluding those which
crashed in the meantime) a confirmation for the
request is sent by the LC to all LLCs causing the
request to be deleted from the pending 1ist and
appended to the LOCK table.

A lock request may be rejected by a LC if it
conflicts with other locks in the LOCK tabtle or if
the request is not local to the component. Ve
assume that the LC is able to determine for each
lock, P, the set, LOC(P), of sites where the data
to be locked are stored. Thus, a lock P is said to
be local if LOC(P) is contained in the up list for
‘the component. The set LOC(P) can be determined by
the LC by checking some catalogs. The organization
of those catalogs is not relevant here; see€ [9]) and
{10] for discussions of that subject.

Every time that a site or a set of sites drop
out of the up 1list, all the locks which are not
local any more are released and all the
transactions which had at least one lock released
will be aborted or backed up. In this way complcte
locality of operations 1is enforced by the CLC
protocol.

If the LC crashes or becomes unavailable a
recovery mechanism called Logical Compeonent
Recovery (LCR) takes place. As soon as an LC-crash
is detected by any process engaged in a
conversation or exchange of messages with the lock
controller, a new process is nominated to be thc
new LC. There is a globally known circular
ordering of the sites from which the nominee is
selected. If the nominee is up it accepts the
nomination by sending a message which circulates
through all the sites in the component. The
purpose of this message is also to collect all the
requests which have been received by all the sites
but which are still in the pending 1ist for at
least one site. Those requests will be
incorporated into the LOCK table at every site in a
subsequent phase of the recovery process. In
~nomary, the LCR machanism amounts to electing A

new LC for toe comnonzat and Yeinging all the LOUS

tables to th2 same valus patore norzal operatlion s
resumed. Various race conditions are dealt with by

the details of the recovery protocol.

It is the responsibility of each LC to
periadically praitor the connaction bohuesn 3¢ antl
s node aot in its o up 145% O g 8 pnyzica

connection between two previously logically
disconnected component is detected, a Logical

Component Merge (LCM) mechanism 1s startcd. LCM is
always done pairwise between components and in this
process the LC of one of the components plays an
active role while the other plays a passive one.
The first phase of LCM is composed of an
interconnection protocol by which two LCs are
logically connected in such a way that one of them
is designated active and the other passive. This
protocol also enforces the pairwise merge condition
and is shown to be deadlock free. After a logical
connection has been established both LCs clear all

outstanding requests and reject further ones. In
the subsequent phase, the union of the LOCK tables
of the two components is made and the new LOCK
table is sent to all the sites in both components
in the form of a message which circulates through
them. This message signals the completion of the
merge. The active LC becomes the lock controller
for the new logical component.

When a site which was down recovers, it |is
made active by the Single Node Recovery (SHR)
wechanism which basically amounts to the
acquisition by that site of a new copy of the LOCK
table.

The three recovery mechanisms described above
de not interact with each other, as will be shown
later. This property is important because it
allows us to decompose the correctness proofs into
a proof of disjointness and then ‘proofs for each
recovery procedure separatcly.

The recovery mechanisms will be shown to be
robust in the face of additional failures. 1In
order to achieve this goal, each mechanism is
desigred in such a way that a partial execution of
any of the recovery algorithms does not destroy any
of the properties we want to prove about them.

It is important to emphasize at this point
that, since all the lock rcquests arc examined by
arn LC in each logical component, locks granted by
LCs do not conflict with one another. This fact
ernables us to consider the operation of the
algorithn for normal operation and for recovery as
if there were only one lock per logical component.
Tne reader is encouraged to keep this in mind as he
reads through this paper.

2 - Lock and Release Granting Algorithms

Tnis section describes informally the
algorithms used to grant new locks and to release
existing ones. One would like those algorithms to
have the property that a lock is either granted or
relcased if and only if it is known to all the
sites. The basic structure of both algorithms can
be abstracted in what we call the Assured
Cozwunication Protocol (ACP) which exhibits the
denirad propaprty outlined below.

Lzt there be a sender §, who wlshes to s2nd a
ressage M, originated at an external source ES, to
L. destinations D1, D2, ..., Dn. Each site 1 Kkeeps
two message buffers: temp_buffer(i) and
finzl buffer{i). ACP is such that nmessage M will
e BRI s TG S En 200) IR TSI SR p i bhar in
e Sadiastly) or ¢ UGN e n (DY) O 0L
destirations Di. ACP can be described by the
following set of rules:

1. S receives a "MESSAGE REQUEST" or MR
message from ES and broadcasts an "ACCEPT
MESSAGE" or AM message, which contains M,
to all Di's, i=1,...,n. The message M is
placed in temp_buffer(S).

2. When an AM message 4is received by a
destination Di, the message M is placed in
temp_buffer(Di) and a "MESSAGE ACCEPTED"
or MA message is sent back to S.

3. Wnen all the MA measages have been
received by S, M is moved to
final_buffer(s) and removed from
temp_buffer(S) and a "CONFIRM MESSAGE" or
CM message is broadcast to all
destinations.

4, The receipt of a CM message at destination
Di causes M to be moved into
final_buffer(Di) and removed from
temp_buffer(Di).

A variant of this approach with additional
acknowledgment mcssages, called a two-phase cocrmit
protocol, is described in [11] and [12].

Several other details are also worth Kkeeping
in mind. As mentioned before, each LC keeps a list
of the sites in the component which are up. A node
i 4is removed from this list by the LC each time
that the underlying network protocols fail to
deliver a message to site 1 (after timeout and
retransmission occurred a certain number of times).
An up list is also modified by the execution of any
of the three rccovery mechanisms. A copy of the up
1ist is also kept by each LLC. Every update to the
up list by the LC is transmitted to all LLCs in the
component. Note that no additional message traffic
is generated by those updates since they can
"piggyback" on other messages. The reason for
keeping local copiea of the up 1list is werely a
matter of performance, since the up list determines
to some extent the set of nodes which should
participate in the LCR or LCM recovery mechanisus,
as will be seen later. Also, every time that a
change in the up list causes certain locks not to
be local any more, all non-local locks are released
and the affected transactions aborted.

2.1 - Lock Granting Algorithm

Application programs issue lock requests by
sending a "LOCK REQUEST" or LR message to the LC.
This message contains the lock or 3-tuple which the
user would 1like to be entered in the LOCK table.
The LC ddcides whether the lock can be granted or
not. If the requested lock conflicts with other
active locks a scheduling decision must be taken by
the LN as to whether to proemot any transaction or
tn make the raguegter wait. That dacision o
the concern of this pap=r. 1 thers are 0o
conflicts and the lock is local to the component
the LC must notify every LLC in its component that
a new entry should be appended to their LOCK

tables. Actually, instead of inserting the lock
direstly 4pto the LOCK teblz, an LLC appands Lt to
a list of pending lock reguests, called an L-lagt.

The reason for this is to prevent copies of the
LOCK table from becoming inconsistent if the LC
crashes.

The basic structure of the Lock Granting and
Lock Releasing algorithms is thc same as that of
the ACP protocol, where AP, LC, LLCi and LOCK table
correspond to ES, S, Di and final_buffer in ACP,
respectively. Also, the mcssage M in ACP should be
considered as a lock request for the Lock Granting
algorithm and as a relcase request for the Lock
Releasing one. For the Lock Granting Algorithm, in
particular, temp buffer corresponds to an L-list.

s e e oy

s

e

2.2 - dack Releasing Algorithm

A similar procedure is followed when an AP
issues a lock release request, by sendinz to the LC
a "RELEASE REQUEST" or RL message. Each site keeps
a 1ist of pending release requests or an R-llst for
the same reasons we introduced the L-1ist., The R-
1list corresponds to temp_buffer in the ACP
protocol.

2.3 - Some Definjtions and Proofs

we will show here that, if no crash occurs,
the Lock Granting and Lock Relcasing algorithms
have the property that a lock is only granted or
released 4if all the sites in the component know
about the request. In order to make this statement
more precise consider the following definitions.
Let LT(4), L(i) and R(i) be the LOCK table, L-1ist
and R-1ist at site i respectively.

DEFINITION 1 (Lock Request Presence): A lock
request or a lock is said to be present at site ¢
i, if the lock is either in LT(i) or if it is in
L(1).

DEFINITION 2 (Release Request Presence): A lock
release request 1is said to be present at site ¢ 1§
if it is either in R(1) or if is not in LT(i).

The proof for the following two assertions, as
well as for all other assertions in this paper, can
be found in [2].

ASSEPTION 1: If a lock 4s in LT(i) for some
i=1,...,n and in the L-1list for at least one site,
then this lock is present in every other site of
the cocmponent,

ASSEPTION 2: Let x be a lock and y its associated
release request. If x is in LT(i) for at least one
site in a logical component but not in all of them
and y is in at least one R-1ist, theny is present
in every other site.

Assertions 1 and 2 together lead directly to
the following result.

THEOREM 1: Let C be a logical component, LC its
1nek controller and U the set of sites in C. If no
craahay aver oceur th=a a loek regquest in oonly
granted by the LT after it is pressnt at all the
sites in U and a lock 4is only released if the
associated release request is present at cvery site
in U.

3 - Groa3h fzeovery

So far we have described the protocol for
requesting locks and releasing then, assuming that
no crash occurred. Communication links,
processors, operating systems and processes arc
some examples of sources of crashes.

The three already mentioned recovery
mechanisms will be presented here, These
mechanisms will be proven to be robust with respect
to additional failures. To be robust, the
protocols must preserve logical component internal
and mutual consistency as defined below, if any

ay—— it - — ORRORT—— N —

changes have been made to any permanent information
(1ike LOCK tables, up 1lists or LC id’s) at any
node.

DEFINITION 3 (LI-consistency): The set of LOCK
tables of a Logical Component is sald to be LT-
consistent if assertions 1 and 2 hold at any time.

DEFINITION & (Logical Comporent Internal
Consistency): A logical component 1is said to be
internally consistent if the set of its LOCK tables
is LT-consistent and if there is one and only one
LC, whose identity is known to every node in the
component .

DEFINITION 3 (Logical Component Mutual
Consistency): A set of logical cozponents is said
to be mutually consistent if all of them are
internally consistent and if there is no lock
present at any LOCK table of one of them which
conflicts with another such lock of any other
component .

Definition 5 covers the previous two, and
specifies the property which 4s required¢ of
recovery.

The recovery protocols have been designed so
that all crashes which can occur during a recovery
phase fall into one of the two disjoint classes,
which we call terminal and transparent failures.

A terminal crash causes the entire recovery
mechanism to be aborted and restarted. The
possible conditions under which terminal crashes
occur are shown to leave the protocel in a robust
state, as defined above. A transparent crash is
defined to be one which does not affect the
continued correct operation of the recovery
process.

Therefore, if all crashes can be shown to be
either terminal or transparent, the recovery
protocols are robust. As we will see, for each of
the recovery mechanisms, we can identify a point
before which the recovery c2:1 be considered as not
having happenced at all and after which it is
considered to be successfully carried out. This
point is called the ‘completion point'. Crashes
before the completion point, if they have any
effrct at all, are shown to be terminal. Crashes
after the complebion point are ho, ta te

traasparent.

The three proposed recovery mechanisms will be
shown to occur disjointly in time. In other words,
a merge of two logical components only takes place
{f bath ar2 4in their normal state or are net
recoy2ring Srea a bog ¢
site only becomes attached to a logical compenant
if this component is in its normal state. These
important properties will allow us to state and
prove separate theorems concerning each. one of

them.

s et A

sical Chaponan Ba. Als),

3.1 - Logical Component Recovery (LCR)

We will now show how an LLC may become an LC
if the LC crashes. A crash of the LC can be
detected by any process engaged in a conversation
or exchange of messages with it. As an example, an

— Ak

SR

AP may time-out shile waiting for a reply from the
LC for a lock or lock release request. In every
case, the process which detects s crashed LC 1is
responsible for nominating a new LC. For this
purpose, we will assume that the distinct aites or
rodes in the underlying network are arranged in 8
linear order such that node 41 precedes node
#(is1) mod n. Let this order be called the
nogination order. So, whenever a process detects a
failed LC it nominates the next node which is up in
the nomination order to the position of LC. This
nocination is accomplished by the issue of an
wACCEFT NOMINATION" or AN message by the nominator.
1f this mesasage is not acknowledged after a eertain
nucber of times it has been retransmitted, the
noginator assumes that the nominee is down and
sends an AN message to the next site in the
nonination order. However, it may be the case that
the originally nominated node was not down, B8s
assuned by the nominator, but that due to certain
conditions in the netwvork its reply was seriously
delayed. So, it seems that more than one LC could
be nowminated in this process! Let us neglect this
issue for the moment, while we describe the
recovery procedure, and show later how such an
undesirable situation can be easily avoided. The
nominee is first responsible for checking that the
old LC is actually dead (since the nomination may
have come from an errant AP). Then the nominee
pust notify every other site that it has accepted
the nomination. Moreover, the nominee must make
sure that all the copies of the LOCK table be made
equal to the one held by the crashed LC. From now
on, we will refer to the crashed LC as the ’old LC'
and to the nominee as the 'new CR

The process by whieh the new LC becomes the
actual LC can be divided dinto two phases: a
tnotification phase’ and a 'LOCK table update
phase’.

In the notification phase all the nodes in the
component, as indicated by the up 1list U, are
informed of the identity of the new LC. Also, in
this phase enough information is gathered in order
to appropriately update the LOCK tables in the
subsequent phase. The necessary infcermation is
described by the sets L and R as defined below.

DEFINITION 6 (set L - set of locks to be added to

TR -

2

L= { x| xis in L(i) for some 1 in U and
x is present in all sites in U }

So, a lock x is in L if it is present at every
aite but it i3 in at 1least on2 L-1list, which
aiina that all e uitey wooaived n tanoEaT

a4

1034 messaze from the old Lo, Lub a% leasl onw Gl

not receive a "CONFIRM LOCK" message.

DEFINITION T (set R - set of locks Lo be deleted
froz all LIs):

R={x! xis in R(1) for some 1 in U and
x is present in all sites in U }

So, if & release request is in R, then 8ll the
sites in U have already received an "ACCEPT
RELEASE" measage from the old LC.

The new LC, wupon nomination, will dssue a
wessage called "NOMINATION ACCEPTED". This message
will circulate once through the set of all sites in
U (ineluding the site where the new LC runs) in a
predetermined order.

In order for the set L to be constructed, two
sets, L1 and L2, are formed during the NA cycle.
L1 is the set of locks which are present at all
sites, while L2 is the set of locks which are in
all the LOCK tables. By definition 6, the set L is
the difference between L1 and L2.

The set R is also made out of two sets Rl and
R2. R1 is the set of lock release requests which
are not present in at least one site, and R2 is the
set of lock release requests in the E-list of at
least one site. The difference R2 - R is the set
of locks which sre present at every site, which by
definition 7 is the set R.

Every node, other than the newlC, in the NA
cycle receives partially constructed sets L1, L2,
R1 and R2, adds its eontributicns to them and
places the new versions of the sets into the NA
message which is forwarded to the next node in the
cycle. when the NA message returns to the newlLC,
the sets L and R are completec. Also, the up list
U for the new LC will be initialized with the sites
which participated in the above described eycle.

After the notification phase is over, the new
LC will send a message to every LLC asking them to
update their LOCK tables. This message 1is called
an "UPDATE TABLE" or UT message, and it carries
within it the sets L and R.

Having updated the LOCK table, each LLC sends
a "TABLE UPDATED" message or TU message to the new
LC. After receiving a TU fron every up site the
new LC becomes the aetual LC by notifying all the
LLCs that they can resune their normal activity.
For this purpose the LC broadcasts a nRESUME NORMAL
ACTIVITY" or ENA message. The new value for U is
the set of sites from which the LC received a2 TU
message. This new value for U is included in the
RNA message, thus allowing every node in U to know
the composition of the set U.

Let us now describe how we can guarantee, and
in eff2ct, prove tha' oaly on2 1.0 will soeege from
tnz Yesmdrlie] e R} e Al H2 e lti - N5
noainator will noainate the firat up nole in the
nomination sequence. Let us wake the following
definition:

DECINTTION 8
~ = 8y ¥

(trial sequenze, THik}Y: A trinl
agay ihJL e, z Bane il RE2 s -

ilu-ty oF {Le npueabera for wnadnoan ACOZPT
NOMINATION" message has been unsuccessfully sent by
a nominator j, before § sent an AN message to site

tk.

For every AN message sent from site #j to site
#x we include the seguence T{j,k] as pari of it.
This sequence will also be included as part of the
PNOMINATION ACCEPTED" message which circulztes
through the set of sites. The purpose of this is
to allow any site to resolve any conflict that can
arise due to the race concitions discussed earlier
in the paper. Namely, it is possible that more
than one LC was nominated and eonsequently more

S arustt—r v e————y

L sl

T P .

than onc NA message (from distinct souroes) aould
be circulating. Conflicts are resolved by giving
preference to the last LC to be nominated. NA
messages originated by other nominated LCs arc
killed when they are detected to belong to the
improper LC.

In zany instances, in the CLC protocol, we
reguire a certain mcssage to circulate through a
set of rodes, as it is the case of the NA message.
Let us call such messages ‘ecircular messages'.
They always have a source or gencrator who is
respansible for sending it through a cycle. The
underlying network protocols assure us that
messazes will not get lost while going from one
site to another by the use of time-out and
retranszission schemes. However, a circular
messaze can still be lost if a node in the cycle
crashes after receiving it but before being able to
forward it. The loss of a circular message can be
prevented by having cach node in the cycle send to
the circular message generator a copy of it, but
cnly a2fter it was forwarded to the next node in the
scquence, Now, the sourze 1is able to detect a
cycle interruption and it can appropriatcly resume
it by sending the last copy of the messagec to the
apprepriate site. This source acknowledgmznt
scheme at the CLC protocol level will be assumed
to ex:ist whenever a circular message ls necessary.

1t should be noted that if an application
progra- issues 2 lock or release request and the LC
fails before the reguest is present at every site,
the reguest will never appear in the local LOCK
table even after thc LCR is completed. Therefore,
APs should timeout for recquests and resubmit them.

3.2 - Proofs About LCR

we would 1like to prove now that the
notification phase ends with onc and only one LC
havinzg becn successfully nominated, and that all
sites know the correct new LC identification. As a
first step we state assertions 3 and Y4 which arc
concerned with the bchavior of LCR given that no
additional crashes occur.

ASSEPTION 3: Given that no additional crashes occur
durirz LOR, there will be ore and only one LC whose
g it o BT 6 Ll | o R 2 g S “ha
comaunzns &5 the end of tae pohirscation phasza,

The proof for this assertion is based on the
operation of the trial sequence mechanisa described
above.

ten, iet i Mlonallv muosoned lock (reieass)
request be one which is 1n all L-lists (R-1ists) of
a logical component.

ASSEPTIQN b4: Given that no additional crash occurs,
the following is true at the end of the LCR
mechanism. All the copics of the LOCK table for a
locgical component are jdentical to the value that
the LOCK table of the crashed LC would have if all
the globally accepted requests were allowed to
complete before the crash of the LC.

The proof for this assertion considers a
spapshot of all LOCK tables when a crash occurs.
It is first assumed that there are no globally

accepted requests. In this case, the union of the
LOCK table of the crashed LC, LT(oldLC), with the
LOCK table of a given site i, LT(i), is considered.
It can be shown that all the locks in LT(oldLC)
but not in LT(i) will be included in LT(i) by LCR.
Also, all the locks in LT(1) but not in LT(oldLC)
are removed from LT(1) by LCK. Finally, all the
locks in LT(i) and LT(oldLC) are not affected by
the LCR mechanism. If there are globally acccpted
requests they will be included ir the sets . and E
by definition of these sets. Therefore, the LOCK
table of all the sites in thc component will be
updated in exactly the same way that LT(oldLC)
would have becen if all globally accepted requests
had complcted. Given these assertions we prove
the robustness of the LCR mechanism,

THEOREM 2: The Logical Component Recovery (LCR)
algorithm is robust.

Proof: The completion point for this algorithn
occurs when the LC has already sent all the RNA
messages. The only terminal crash is a newlC
failure beforc this point. This crash when
detocted will cause another LC to be nominated
and the LCR mechanism to be restarted. This
crash can occur at three different points:

i) before any LOCK table has been updated.

ii) after some but not all LOCK tables have

been updated.

ii1) after all LOCK tables have been upzated.

In case i) it is clear that the partially
executed LCR has no effect at all. In case iii)
all LOCK tables will be identical, therefore
internal consistency for the component in
question 4is trivially satisfied. Case ii)
requires us to show that the set of LOCK tables
of a component is LT-consistent. We enunciate
and prove this statement as the following lemza.

LEMMA 1: Given a logical component where the set
of LOCK tables is LT-consistent, then the upcate
of the LOCK table as indicated by the sets L and
R 4in some but not all of the nodes of the
component preserves LT-consistency.

Pro&f: Let 1 be a site for which the LOCK
table has been updated. The LOCK table is
updated in two steps. In the first one, all
the loeks in the set L are pddad to LT{1).
Andition of a doeck x ab ane mits bud nok 343
a1l does not violate asss-tion 1 sines, x is,
by assumption, a member: of the set L and
thereforc is present at every site. The
second step is the removal from LT(i) of all
the locks in the set R. Feroval of 2 lock
from a2 Lul¥ tabla ar aifiven aicpmbill makss
it present at tnis 510t Singe, by
assumption, the LOCK tablc has not yet been
updated at all sites, the locks removed from
LT(1) are in the LOCK table of at least one
site and are present at all sites. Thus,
assertion 2 is also valid and the proof is

complete.

Now, it remains for us to analyze the

transparent failures. Those are all the
failures other than thc newLC crash already
discusscd. We can have either a process or

processor failure which simply knocks out one of
the sites in thc component, or the component can

be partitioned into two or more ocomponents. In
either case, a set of one or more nodes are
jsolated from the set of nodes which participate
in the LCR mechanism. The nodes in this set
will not be considered any more for the rest of
the LCR algoritha. However, we have to show
that no inconsistencies are generated by a node
dropping out during the execution of LCR.

For this purpose, we will examine all the
possible instants at which a node j may crash.

CASE 1: during the 'nomination phase’

Here we have to show that thc sets L and R
will not be perturbed by any contributions
aiready made to them by node J. Node J can
crash at three possible instants.

CASE 1.1: before the NA message first reaches
it.

In this case node j is simply removed from
the cycle without contributing to the formation
of either L or R.

CASE 1.2: after the NA message reaches it and
before it is forwarded to the next node in the
segquence.

Here, the nodc which sent the NA message to
node J will timeout, detect its crash and send
tre NA messaze to the node vhich follows node J
ir. the sequence. Again no contributions have
been made to the sets L or R.

CASE 1.3: after the NA message has been
forwarded

A crash of node J at this point is
ejuivalent to a crash of 2 node during the 'LOCK
table update’ phase since node j already played
its role in the ‘notification phase’.
Therefore, this case reduces to the next one to
be examined. The reader should notice that the
robustness of this recovery mechanism relies
heavily on the fact that elements arc only added
to the sets L or R if the appropriate requests
are present at all sites (intersection approach)
as opposed to considering requests which are
present in at least one site (union approach).

ci3: 21 during the 'LOCK table update phasa’

A oarasn of o nota dueing Lhin vhate Will
have no effect upon other nodes, resulting oualy
in the removal of this node from the up list of
the logical component which is recovering

txamiration of all these cases corpletes
svig omeant, [

The above result allows us to relax the
assuzption made in assertion 4 that no additional
erashes occur during LCR and state the following
assertion.

ASSERTION 5: At the end of the LCR mechanism, all
the copies of the LOCK table for a logical
coznonent arc ijdentical to the value that the LOCK
table of the crashed LC would have if all the
globally accepted requests werc allowed to complete
right before the crash of the LC.

Finally we prove that every logical component
is internally consistent.

THEOREM 3: Every logical component ia internally
consistent

Proof: Let C be eny logical component. We have
to prove that:

1) the set of LOCK tables of C 4is LT-
consistent
11) there is one and only one LC for C.

Statement i) is clearly true for normal
operation of component C since assertions 1 and
2 were demonstrated for this case. Now, by
assertion 5 all the copies of the LOCK table are
jdentical at the end of LCR. So, in this case
LT-consistency is trivially satisfied.

Statement 1i) was proved to be correct in
assertion 3 for the case in which no additional
erashes occur during LCR. But, by theorez 2,
LCR is robust. This allows us to consider the
effect of LCR as if no additional crashes occur
during its execution, and concludes the proof

(3.

3.3 - Single Node Recovery

So far wc have described how the systex
recovers from a logical component crash. We show
now how a node which is down becomes active again,
or in other words, how it gets logically connected
to a logical component. Let node j be such a node.
The first step to become active is to find out who
is the LC. This step is carried out by scnding the
nyHO IS THE LC ?" or WLC message to any up node.
Then, node j sends a mecssage called "HI THERE" or
HT to the LC telling him that node j is alive
again. If the LC is not undergoing any kind of
crash recovery it will send its LOCK table and its
up list to node J. An "ACCEPT LOCK" or "ACCEPT
RELEASE" message 1is sent to node j by the LC for
every lock or rclease lock request for which not
all the LA or RA messages havc been received.

3.4 - Robustness of SNR

THEOREM 4: The Single Node Recovery (SNR) algorithm
is robust.

Proof: Let j be ine peaoveriag node and 12T Lo
be the LC to which node j is trying to connect
with. The proof is extremely simple since the
only two crashes of interest are: a) LLCJ ecrash
and b) LCi crash. Case a) is clearly a terminal
epas2, Case b) is also a teroinal crngh sinee a
crash of LCi, befors it is able secdl Lha
LOCK table to LLCJ, preveats the LOCK table
from being received by node j, thereby implying
in SNR having to be restarted. This completes

the proof. [}

3.5 - Logieal Component Merge

As a result of the Logical Component Recovery
algorithm an LC will be elected in each logical
component of the network. Transactions which are
local to a component will continue to be serviced
as if no disconnccting crash had occurred. On the
other hand, transactions which span more than one

E;

b s

oomponent will have to wait until the oomponents
involved are brought together again, It is the
responsibility of each LC to detect when two
components are physically connected again and to
take the necessary steps to merge them into one
logical component. The merge of logical components
will always be done on a pairwise basis. The whole
Logical Component Merge mechanism is divided into
two phases, namely & ‘reconnection detection’
phase and a '*merge’ phase.

In the 'reconnection detection' phase, each LC
sends periodically & nJERE YOU ALIVE" or WYA
message to evcry node not in its up 1list. The
purpose of this message is to detect the existence
of sites which were not reachable before but which
were up. For thc purposes of the description that
follows, let the two logical components to be
merged be called Ci -and C2. Let LC1 and LC2 be
their respective LCs and U1 and U2 their respective
uplists. LC1 will take an active role during the
whole recovery phase, while LC2 will take a passive
one. As we will see, a crash of LC1 while the
recovery mechanism is in progress will result in
abort, while a crash of LC2 after the 'reconnection
detection' phase 1s tolerated. Assume now that
site #j 1in C2 received a WYA message from LC1. A
cozponent is said to be in NORMAL status if it 1is
not undergoing any kind of ecrash recovery
mechanism. If component C2 1is in its NORMAL
status, Site #j sends a "YES I WAS" or YIW message
to LC1. This message carries within it the
jidentification of LC2.

At this point LC1 has to establish a logical
connection with LC2. This connection is called a
pricary-secondary or P-S connection type with LC1
being the primary and LC2 the secondary. Since we
require that LCM be done in a pairwise basis, the
following conditions rust be enforced by the
protocol that establishes a P-S connection:

C1: an LC cannot be primary (sccondary) for more
than one P-S connection.

C2: an LC cannot be primary and secondary
simultaneously.

The P-S connection is attempted by having LC1
amnd a "LET US MERGE" or LUM messaze to LC2. The
siacus of LCY 13 nbw shangad to ATTEMOT. ir th=
status of LC2 i3 NORMAL, which means that neither
Logical Component Merge nor Logical Component
Recovery is being attempted, LC2 sends a "MERGE
ACCEPTED" or MA message to LC1 and changes its
{nterral state to SECONDARY. Upon receipt of the
vy mewaags the coonscition {a consldarad to be
succe3afully entablished by 1.C1. 17 the status of
LC2 is not NORMAL then a "MERGE ATTEMPT REJECTED"
or MAR message 1is sent to LC1 which will either
retry later or will try a connection with another
LC.

The above interconnection strategy could
clearly allow undesirable race conditions to occur,
such as having two LCs trying to play the role of
pricary, leading the system Iinto deadlock
situations. To avoid this problem, Wwe assign a
site dependent priority to each LC (no two sites
have the same priority). LUM messages from lower
priority LCs are rejected. LUM messages from
higher priority LCs, if received while the

connection has not yet been completed, i.e. the MA
message has not been received, cause the conncction
being attempted to be broken. To this end the
primary sends & #CLOSE CONNECTION" or CC mcssage to
its intended seccndary.

That the protocol outlincd above satisfies
conditions C1 and C2 1is proved in section .1,
Figure 1 shows & state transition diagram
describing the interconnection protocol. This

HORRAL
e] A
W L _{
AR AL

ATTERPT SLCONDAFY

sl -
CONKELTICA
ESTAELISHED

AV-He

FIGRE 1 - STATE TRNGITION DINGY FE F-S CORECTIUN ESTA-
BLISMIT. & pus (+) SIth INGICATES RECEPTION OF A MESSAGE
2D A MINS (<) SIGN INDICATES TRAMISSIOR OF A MESIAL, T
§1Gh < [NDICATES THAT THE MLSSAE [N QLESTION OFIGIMATES FRON
A LD¥EK PRIGRITY SITE, WHILE > INDICTATES A HIGER PRIGPITY
sourcE. THE DOUAR S1G () INDICATES THAT NO ACTION IS TAXEM
DLE TO A STATE TRANGITION,

protocol is the same for every noce. Node labels
are STATUSes, while arc labcls are of the form R/T
where R is the message whose arrival triggers the
transition and T is a sequence Of actions
(transmission of messages) which occur 2s a
consequence of the transition.

After a P-S connection has been established
between LC1 and LC2, they will not accept any more
new lock or lock release rcquests from nodes in
their componantz aad will complaca all outatarding
onza. An outaranaing raquest i3 onz for i seniakl
AL or AR messages have been already sernt but not
all the corresponding LA or RA messages have becn
received. After all outstanding rcquests have been
completed by LC2 it sends to LC1 a "READY TO MERGE"
or RTM uesa’ge containirs as arguments the uplist
U2 and taz LOCK wablz al LC2 which row i3 th Sa.a2
for all nodes in C2. The receipt of the RIX
message by LC1 marks the end of the *reconnection
detection' phasc.

The 'merge' phase will construct the union of
the LOCK tables at both components. Notice that up
to this point no permanent change has been done to
any LOCK table, nor up 1ist of any node. LC1 sends
a "SUBSTITUTE YOUR TABLE" or SYT mcssage for a
cycle through the set of nodes in TEMP_U = U1 U U2.
The SYT message is the agent which confirms the
merge of the two components by taking within it the
new LOCK table for the component. Also, the up
‘1ists are updated and LC1 becomes the new LC of

IR

the ncw logical ocmponent.

3.6 - Robustness of LCM

THEOREM 5: The Logical Component Mergc (LCM)
Algorithm is robust.

Proof: The completion point for the LCM
algorithm is the point where the SYT message has
already been received and accepted by one LLC.

Let LT(1), U(1) and LC(i) be respectively the
LOCK table at site i, the up list at site i and
the LC identification as known by site 1. It is
worth observing that changes to the values of
LT(1), U(i) and LC(i) at any site i other than
tre LC-1 site are only done upon receipt of the
SYT message.

Let us examine the possible cases of
crashes before the coopletion point:
*reconnection

CASE 1: crashes during the

detection' phase

A crash of either LC1 or LC2 in this phase
will cause LCM to be aborted and a LCR to be
started at the component who had an LC-crash.
Since no LOCK table nor up 1ist has been changed
so far, this is a terminal crash. Since LCY and
LC2 are the only processes involved in this
phase, we conclude that this phase is robust.

CASE 2: crashes during the ‘merge’ phase

A crash of LC1 during this phase will
interrupt LCM and start LCR for component C1.
As no permanent changes have been done already,
this is a terminal crash. A crash of any other
node (including LC2) clearly does not affect any
other node nor the mutval consistency of the
merged logical component 1.

4. - Disjointness of the Recovery Algorjthms

We show here that there is no interaction
between the three recovery algorithms. To that
effect one has to show that:

Y LoM i3 done pairkine
n) LL2, LCM and LHR are nutually exclusive,

To verify condition a) we only need to show
that conditions C1 and C2 stated in section 3.5 are
satisfied by the P-S connection protocol. This
gamiftantion ig donw {n sactlon B.1. Condition b)
wn Lo hapldl lo-westion 4.2,

4.1 - Disjointness of LCHs

Consider a directed graph G whose vertex-set
ijs the set of LCs and which has two distinct types
of arcs, namely e-arcs and a-arcs. There is an e-
arc frem vertex 1 to vertex J if there is an
established P-S connection between vertices i and
j, vertex 1 being the primary. Equivalently, an
e-arc from vertex i to vertex J is said to be
created in G whenever vertex i enters the
COKNECTION ESTABLISHED state (see figure 1). There

is en a-arc from vertex 1 to vertex J if vertex i
is attempting a P-S connection to vertex J. Such
an a-arc is created as soon as vertex { enters the
ATTEMPT state (see figure 1). The graph G
displays the pattern of established and attempted
connectiona. Let e-G be the subgraph obtained from
G by considering only e-arcs of G and a-G be the
one obtained by taking only the a-arcs.

Conditions C1 and C2 can now be rephrased as
follows:

C1.1: 0 <= indegree(v) <= 1 and 0 <=
outdegree(v) <= 1 for all v in e-G.

c2.1: indegree(v) * outdegree(v) = 0 for all v
in e-G.

Every a-arc will either be deleted from G when
the attempted connection is broken or will become
an e-arc if the cornnection is successfully
established. So, we want to prove the following:

THEOREM 6: Given a graph G whose e-graph satisfies
conditions C1.1 and C2.1, the new e-graph obtained
from G as new connections are established also
satisfies those conditions.

Proof: It can easily be seen, frow the protocol
specification, that condition C1.1 is satisfied
not only by the initial e-graph but also by the
graph G, since:

a) if there is already a connection between
vertices i and j or one is being attempted,
no new connection 1is attempted by neither
vertex i nor vertex J.

b)1 faa connection has already been
established or is being attempted, the
secondary will reject all further attempts.

So, it remains for us to examine all the
possible cases in which condition C2.1 could
conceivably be violated in G and show that the
resultihg e-graph obtained when one or more a-
arcs become e-arcs still satisfies this
condition. There are four possible cases, two
of wnish can never happen dus to the protocol
apecification, while the reazining twe hava b

be exuminad. Givea any threz vertiees &, b and

c, the four possible cases are:

a) (a,b) and (b,c) are e-arcs.
b) (a,b) is an e-arc and (b,e) is an a-arc.
R AT Y L ae S (DR DR ISR SR s S G

¢) {=z,b) and (b,c) are a-ares.

Cases a) and b) are the impossible ones.
In case c¢) the attempted connection between a
and b will fail sincc there is an established
connection from b to ¢ (sec the self loop at the
CONNECTION ESTABLISHED state of the diagram of
figure 1). Therefore, arc (a,b) will disappear.
In case d) nodes a and b are in the ATTEMPT
atate. I1f (a,b) becomes an e-arc we can see
that the transition labeled LUM/CC;MA froa state
ATTEMPT to the state SECONDARY is taken at
vertex b, causing the attempted connection (b,c)

to be broken. Therefore arc {(a,b) bocomes ean
e-arc while are (b,c) disappears. On the other
hand, if (b,c) bacomes an e-arc in the first

place we are back to case ¢) which was already
examnined. (]

We take the opportunity here to prove that the
P-S connection protocol is such that all the a-arcs
in G will, in a finite time, (of the corder of
magnitude of the transsission delay time in the
network) either disappear or become e-arcs. In
other words, the P-S connection protocol i3
deadlock free.

THEOREM 7: The P-S conncction protocol is deadlock
free.

Proof: We must prove that there can be no long
lasting cycles in G. The interesting case is,
of course, that of cycles made out only of a-
arcs, since as shown in the previous theoren,
any a-arc adjacent to an e-arc will disappear in
a finite time.

Consider a cycle in a-G and two ad jacent
a-arcs (a,b) and (b,c) in the cyclc. Vertices a
snd b are in the ATTEMPT state. There are only
two possible cases to consider:

CASE 1: [PRIORITY(a) > PRIORITY(b)]): In this
case, if the "MERGE ACCEPTED" message frou
vertex ¢ is received by b before the "LET us

MERGE" message from a then (b,c) becomes an e-
arc and (a,b) disappears.

CASE 2: [PRIORITY(a) < PR1ORITY(b)]): Here, arc
(a,b) will disappear since a has lower priority
than b.

In any event, thc cycle will be evcntually
broken. Note also, that vertex c could be the
same as a and the above analysis is still valid.

£]

4.2 - Disjointness of LCE, LCH and SNR

! ¥4 3 trpns Lidon

dasiine 3

£ oyl e RUN AT
dlogras as 2 directed graph whoae vertices are
states of a network node and whose arcs represent
transitions beiween states. The state of a node i
is the 3-tuple [STATUS(1), LC(1), U(1)], where
LC(1), U(1) are as Aafined before, §TATUS(L) 1s
bna owiatua of the amaponsnt o whisn slte I
abtasned as viewed by oslte 1. dIAMAL statuas
indicates that neither LCR nor LCM is in progress;
RECOVEPY meann that LCE 1s taking place and
QUIESCENT indicates that LC(1) is rejecting further
requests. The 1labels on the arcs apecify the
conditions upon which a transition between two
states occurs. These conditions can either be a
erash detection or a message arrival. The diagram,
shown 4in figure 2, shows all possible state
transitions for a node, other than LC1, which is in
a component C1, with LC equal to LCY and up list
equal to U1. From every state there is a
transition to the DOWN state. These transitions are
not represented in the diagram for obvious reasons.

o (R oL LD, W }
O TR "SECTITN
YOP Thal™
r RS KT l

conF RS

NRAC WU i QIENEN, L, U

Whcrasy *ACCEPT HPIRTIOY, THPIRT N XTPTEY

FIGFE 2 - AE STATE TRYSITIO DINRAY, Tre souoming
RELATICNS1IPS ARE QSERVED

L= U W wese L2 15 v LT
o Ur 1s conranee i UL,
L AC s v L

The state [NORMAL, LCj, UJ] 4s state which
resulted from a successful mcrge of cozponent C1
with another component, for instance C2. The state
[NORMAL, LCi, Ui] is a state which resulted from a
successful Logical Component Recovery.

By inspection of the diagram, we observe that
a node can only go from ore normal state to a
different normal state after one and only one
recovery mechanism has been completed. Therefore,
there is no interaction among the three recovery
mechanisms.

5. - Logiczl Component Mutual Consistency

Lat, us atow here that the CLC protocol
(ineluding | tha recdvery snchaniamg) iy nueh thar
tne st of Logical Componenta 1ato which ne

network is partitioned is mutually consistent.

THEOREM &: The set of logical components into which
[

naetwork ia partitioned ls autuatly consisient.,
Proof: By theorcm 3 each one of thc logical
components is intcrnally cunsistent. It remains

for us to prove that there can be no lock
present at any LOCK table of any component which
conflicts with another such lock of any other
component. This theorcm is trivially true when
there is only one logical component. Further
net partitioning does not destroy this property
since locks are only granted if they are local
to a component, which implies that they do not
conflict with any other lock granted at any
other component. []

ey —

N W e T LR S g L | A Y -
AT T Pl M YT sty b et o = gon in n

6. - Database Consistency

We show here that given a deadlock frec,
consistency preaerving locking wechanisam for a
gentralized database (CpR), the CLC protocol can be
used to implcment an equivalent robust, deadlock
free, consistency preserving locking mechanisz for
a distributed datebase (DDR). A database is said
to be in a consistcnt state if all the data items
satisfy a set of asscrtions or consistency

constraints. A transaction is a sequence of
accesses which take the database from a consistent
state into another consiatent state. Thus, @&

transaction is the unit of consistency. Let us
define an access as the pair (p,a) where P is a
logical description of the portion of the database
to be accessed and & is an access mode (e.g.
read.write,delete,etc.). If 8ll the 1locks are
granted by a process which has aomplete knowledge
of every other active locks (as is the case with
the LC) and if every access is checked against the
LC copy of the LOCK table (this condition will be
relaxed later), to see whether the transaction
holds the nccessary locks then the 'lock
scheduler' for a CDB described by Eswaran [1] can
be implemented in a straightforward manner with the
use of the CLC protocol. Such a locking mechanism
has the properties of being robust and preserving
the consistency of the DB. Notice that deadlock
prevention or detection mechanisms can be carricd
out by the LC since jt has complete control over
all activities in its component. Recall that if
the network is partitioned into more than one
cozponent, locks granted in one of them dc not
conflict with locks active in others. Therefore,
distinet LCs manage disjoint sets of "resources”,
where a resource here means an individually
Jockable data item in the DB. So, a deadlock
prevention or detection policy can be implemented
in each LC independently of all the others.

The requirement that every access be checked
against the LOCK table at the LC-site can be
relaxed in favor of having the access checking done
locally. In order for this to be possible a lock
must be considered to be active at a given site i
for a time dinterval T2 contained in the time
interval T1 during which the lock is active at the
LC-site, otherwise some portions of the DB could be
loakad in conflicting modes for different
tpanaactions. Fogure 3 cshows a double tim- axis
diagran displaying t1ae at the LC-site and at a

I fi |
B — _-.I'r —_— '_jr—-"_
i \
{ | b

s S - S

1 —n—

¥ L1

FILAL 5o 10 1h T4 T INTIVA DOING wiOM 8 LA 1% IR T K KTV

A1 Tt ST w4 M AL 18 XTI, T2 18 B T DG WO THE wt O
15 Co 1AL T B ACTIAL 87 DL HALSTI ST B1.

given site i where a lock request is originated.
T1 starts when the "CONFIRM LOCK" message is ernt

to every site 4n the component and ends with the
broadcast of the "CONFIRM RELEASE" message. T2

.starts vwith the arrival of a CL mcssage at site i,

Although a lock is only removed from 2 LOCK tzble
when the corrcaponding "CONFIRYM RELEASE" message
arrives, it can be flagged as ‘waiting for removal'
as soon as & "RELEASE LOCK" messaze is sent from
the LC to site i. For access checking purposes,
all flagged locks must be considered as norn active.
The extra precaution that must be taken in this
case is to unflag all flagged locks after LCE has
taken place.

7. PERFORMANCE RESULTS

Some of the rcsults of the cost and delay
analysis for the CLC protocol [2] are presentcd
here. The update model used in this analysis is
such that some of the previously defined messagcs
are grouped into a single physical message. These
results indicate that the average update delay,
Dupdt, does not depend directly on the size of the
network for many network topologics of interest and
its expression is given by

Dupdt = 2%T + 3¥TMAX + L

where T is the average message delay introduced by
the network between two distinct sites, TMAX is the
average maximum delay between a sender and several
destinations and W is the average waiting time for
a lock request to be granted at the LC.

Lower and upper bounds for the average
recovery delay, R, are given by

R 5= (n+1)*T + JETMAX
and
R < [a*(n-2) + n + 11T + JRTMAX

where n is the number of sites in the network and a
is the ratio Tout/T where Tout is the time after
which a nominator assumes that the nominee is down
and c=ends another nACCEPT NOMINATION" message to
the next site in the nomination order.

The average comzunications cost, Cupdt,
incurred by an update is

cupdt = (%2 - 1)

where M is the average communications cost per
message. Lower and upper bounds for the recovery
cost Crec are given by

Crec b= {5¥n - 2}
ani
<

{
Crec (6%n - L)¥M

8. - Extension

It has been observed in most of the existing
distributed systems that a large percentage of the
generated transactions is local, in the scnse that
the resources needed to satisfy a given transaction
are either located at the site of origin of the
transaction or in neighboring sitcs. This
observation suggests that significant savings in
terms of comryrications cost and delay can be
achieved if one optimizes the operation of the

P Pt AN, eI 1< e

algorithom to adapt to euch e highly tkewed
distribution of activity. To illustrate the point,
consider a set of interconnected coaputer networks.
We believe that in such a case, most of the
operations will be confined to one coaputer network
while relatively few operations will cross network
boundaries.

Tnis section outlines an extension to the CLC
protocol that permits the forms of performance
optimization needed for the cases discussed above.
Trhe extension, which we call an HCLC (for
Hierarchical CLC) protocol, consists of a
hierarchical organization of resource controllers.
A tree of controllers is provided whcre thc root is
considered to be at level 0 and all the children of
a contrcller a% level i are at level 1i+1 in the

hierarchy.

Each controller (except for the leaves) serves
as an LC for its children. Also, each controller
(except for the root of the hierarchy) acts as an
LLC for its parent. Therefore, each controller has
to paintain two distinet LOCK tables, which we call
parent-LT and child-LT. The parent-LT for the root
controller cortains one lock for the whole DB in
exclusive mode. The child-LT for a leaf is empty.

An intuitive description of the normal
operation of the KCLC protocol can be easily
understood in the light of an example. Figure 4

LV © el LEVE1R3

(o)

k\mhf*’ N

WL

po——

Elu o - A LI LTWUERS, i6L ao B
A NPLICATION FRUGNS,

shows a three-lcvel hierarchy. Application
programs interact with lock controllers K1 and K2
at one level above the leaves (since the leaves are
LLCs). This interaction is thc same as the AP-LC
interaction in the CLC protocol. Actually,
application programs are not aware of the fact that
the controllers are hierarchically organized. Let
a lock request, x, from AP1 be submitted to Ki. If
x conflicts with any other lock in child-LT(K1)
then the lock request is treated in the same way as
in the CLC protocol. If there is no conflict,

A AL MR AL TR Y s s

Ki's parent-LT is searched for =a lock y which
covers x. A lock x1 is said to gover a lock x2 if
the portion of the DB specified by x2 is contained
in the portion of the DB addressed by x1 and 1if the
lock mode specified by x1 is not weaker than the
jock mode in x2. The existence of a lock such as y
in parent-LT(K1) indicates that KI currently has
control over the resources reqguested by AP1. If y
is found, the lock request x can he granted and to
this end K1 interacts with K3 and K4 in the same
way as an LC interacts with the LLCs in its
component. On the other hand, 1if y cannot be
found, the lock request x is submitted by K1 to KO.
KO will ect with respect to Kt and K2 in the sace
way that K1 did with respect to K3 and Ki. The
difference in this casc 4s that since KO is the
root there is a lock in parent-LT{KO) for the whole
DE in exclusivc mode. This lock covers any other
lock.

In an HCLC protocol, locks may be released
.either explicitly or automaticelly. Locks 1in
child-LT(Ki), for i=1,2, are released explicitly
upon request from APs using the same mechanism
described in the CLC protocol. Locks in parent-
LT(Ki), for i=1,2, can be rcleasad automatically as
soon as there are no locks in the corresponding
child-LTs which depend upon thea. To this end,
each lock y, in parent-LT(K), for any controller K,
has associated with it a list of locks in child-
LT(K) covered by y. Also, each lock x in a child-
LT(K) -points to the lock y in parent-LT(K) which
covers x. When a lock x is explicitly released
f.om child-LT(K1) the lock 1list for its
corresponding lock, 'y, in parent-LT(K1) is
appropriately updated. wWhenever this list becomes
empty, a release request may be automatically
generated by K1 and submitted to KO. In general,
the automatic release of locks can be propagated up
to the root.

This hierarchical protocol can be easily
adjusted by policy decisions both to delay such
releases, and to establish early locks at higher
ljevels in anticipation of local lock requests.
Lock management analogous to LRU-like memory
managemgnt policies are obvious policy candidates.

For the set of interconnected computer
networks, a threa-lecvel hierarchy could be
ecanstructed m3 tolloss, Thers in one LT p=v
compuier network, all of tnem atlYevied Bl SN D2
children, at level 2, are their corresponding LLCs.
Finally, thc root is any site acting as a global
controller for the entire collection of computer

networks.

An interesting property of the proposed
extension is that there is always one controller
which is able to detect the existence of a cycle in
the lock-request graph. This controller is the
common ancestor, with the largest lcvel number, to
all the controllers where rcquests in the cycle
where originated. 1In the example of figure 4, the
common ancestor to K1 and K2 is KO.

Crash recovery algorithms for the HCLC
protocol must include mechanisms to reconstruct the
hierarchy, in addition to the recovery mechanisms
present in the CLC protocol.

]
4
L
1

9. - Conclusion

This paper outlines what we believe to be &
fairly general solution to synchronization iasues
in distributed systems in the face of asynchronous
unplanned failures. The elgorithms and protocols
for normal operation and recovery are robust with
respect to the eriteria set up at the beginning of
this report. We are unaware of any other
synchronization protocols which simultaneously
satisfy each of those requirements,

The work is primarily suitable for
environzents in which the cost, including delay, of
sending mnessages is not high relative to the
operations which are to be performed once locking
is cozplete. Locally distributed systems often
provide examples of such an enviroament.
Geographically distributed networks also fall into
this category if the amount of work to be performed
after locking 1is significant relative to the
communications cost.

The protocols are also best suited for usage
behavior that cannot be directly characterized in
advance. It |is assumed that query and update
activity will be largely ad hoc in nature - the
more general case which has been recelving
increasing attention in recent years.

The presentation of eny substantial protocol
would not be complete without an outline of a proofl
that the protocol is correct with respect to its
desired properties. A significant portion of this
document is therefore devoted to that purpose.
Further analysis using automated tools is also
underway.

In conclusion, these protocols should help
denonstrate the practicality of integrated
cooperation of activities in distributed systems.

FEERENC

1. K.p. Eswaran, J.N. Gray, R.A. Lorie and I.L.
Traiger, THE NOTIONS OF CONSISTENCY AND
PREDICATE LOCKS 1IN A DATABASE SYSTEM,
Communications of the ACM, Voluze 19, Number
11, Yovembar 1976. ,

2. D.&a. Msnasce, G.o. Popek and K.R. iuntz, A
LOCKING PROTOCOL FOR RESOURCE COORDINATION IN
DISTRIBUTED SYSTEMS, Computer Science

Department, UCLA, Technical Report ¢ UCLA-
ENG-7808, SCPS-77-001 (DSS MDA 903-77-C-0211),
fatonar 1977,

3. P.h. Alsberg, G. Belford, J.D. Day and E.
Grapa, MULTY COPY RESILIENCY TECHNIQUES, Center
for Advanced Computation, University of
Illinois at Urbana-Champaign, CAC Document
Number 202, May 1976.

4. P.A. Bernstein, D.W. Shipman, J.B. Rothnie and
N. Goodman, THE CONCURRENCY CONTROL MECHANISHM
OF SDD-1: A SYSTEM FOR DISTRIBUTED DATABASES
(THE GENERAL CASE), Computer Corporation of
America, Cembridge, Massachusetts, Technical
Report # ccA-77-09, December 1977.

5. S.R. Bunch, AUTOMATED BACKUP, in Preliminary

10.

11.

12.

Research Study Report, CAC poc. 162 (JTSA Doc.
5509), Center for Advanced Computation,
University of Illinocis at Lrbana-Champaign, May
1975.

C.A. Ellis, CONSISTENCY AND CORRECTNESS OF
DUPLICATE DATABASE SYSTEMS, ACM/SIGOPS
Operating Systems Review, Volume 11, Number 5,
Proceedings of the Sixth Symposium on Operating
Systems Principles, November 1977.

E. Grapa, CHARACTERIZATION OF A DISTRIBUTED
DATABASE SYSTEM, Fh.D. dissertation, Report {
UIUCDCS-R-76-831, Department of Computer
Science, University of I1linois, Urbana,
October 1976.

R.H. Thomas, A SOLUTION TO THE UPDATE PROBLEM
FOR MULTIPLE COPY DATA BASES WHICH USES
DISTRIBUTED CONTROL, Bolt Beranek and Newnan
Technical Report # 3340, July 1976.

W.W. Chu, PERFORMANCE OF FILE DIRECTORY SYSTEMS
FOR DATABASES IN STAR AND DISTPIBUTED NETWORKS,
Proceedings of the National Computer
Conference, 1976, pp 577-587.

M. Stonebraker, E. Neuhold, A DISTRIEUTED DATA
VERSION OF INGRES, Electronics Research
Laboratory, UC, Berkeley, Memo ¢ ERL - M612,
September 1976.

J.N. GCray, Operating Systems: an Advanced
Course, Chapter 3.F: NOTES ON DATA BASE
OPERATING SYSTEMS, pp. 394-481, Springer-Verlag
Berlin Heilderberg, 1978.

B. Lampson, H. Sturgls, CRASH RECOYERY IN A
DISTRIBUTED DATA STORAGE SYSTEM, Xerox palo
Alto Research Center Technical Report, 1976.
(also accepted for publication in the CACM)

B L Ly o

W PRI g

o 2l
s

UCLA SECURE UNIX#*

DRAFT

Gerald J. Popek, Charles S. Kline, Evelyn J. Walton

University of California at Los Angeles

o
pl
=

Abstrac

UCLA Unix is a wholly new operating system whose architccture and implementation
are oriented toward highly reliablc security and integrity enforcement while support-
ing a widc degree of system functionality. The system, now operational, dcmonstrates
that it is possible to provide a convenient, efficicent secure operating system on
conventional, third generation hardware architectures. 7This papsr reports on the
development of UCLA Urix. tuch of the discussion is concerned with the software ar-
chitecture which evolved, since a number of innovations are included with surprising-
ly little mechanisna. The methods employed to build and verify the system are alsc
deseribed, and the impact of the requirement to support fully the standard Unix

opecrating system functionality is discussed.

1. Introduction

Tnere has becn considerable interest for some time in decveloping an operating
system which could be conclusively shown secure, in the sense that the information
stored on behalf of a hetcrogencous user population was safely protccted freom unsu-

thorized access or modification, even in the facc of skilled attcmpts to do so. Ear-

% Thie research vas supported by the Advanced Rescarch Projects Agency of the Depart-
ment of Defense under Contract MDA 903-77-0211.

TR . v S

L._____L_;VJ__-_._M_;..__.“ e i bbb e b o el i L e T = TR

T . W T T YT

page ‘2

ly attempts to attzin this goal consisted largely of auditing an existing system by
attempts at circumventing the controls, and then revising the implementation code to
block any successful paths that were found. Unfortunately, this approzch failed in
producing a secure system, largely because third gencration operating systems contain
S0 many crrors that "penetration audits" followed by patches incvitably led to a sys-

tem whose controls were still easily penetrated.

From a viewpoint of principle however, there was an even morc fundamental limi-
tation to the early approaches, frequently mentioned; testing proves the presence but
not the absenze of bugs. Therefore, a more strictly constructive methcd was re-
quired, by which it would be possible conclusively to demonstrate the correctness of
the security controls. It was hoped that this goal would result in a much superior
system in other rcspects as well. The experience to be reported here strongly bears

out that cxpectation.

UCLA Unix is a kernel based system architccturce developed in a manner by which
program verification techniques could be (and have been) applied. The system inter-
face is cssentially identical to Unix as rcleased by Bell Laboratories [Ritchie 741,
and the softwarc presently runs on DEC PDP-11/45s and PDP-11/70s. The kerncl strua-
Lupes Bod vBoificaiicn protstures, tozether with khne einioe of ANEUAL 2 ikt ke
powerful means by which the system's security and integrity can be demonstrated and
assessed. Support of the Unix interface illustrates the robustness and functionality

GIANCH B8 e SuilL in s sy St am.

However, the kernel and verification goals imposed significant constraints on
the size, complexity and general architecture of the system. The result therefore is
quitc different from what would have been expected otherwise. Nevertheless, in re-
trospect, we arc unaware of any decision forced by these goals which has not also had
the effcet of simplifying the system's structure and improving overall reliability

and integrity. Tnere has becn no significant performance penalty cither. The pri-

T—

r..—qwﬂ _)

page 3

mary cost in obtaining a secure operating system appears to be found in the care re-

quired during design and development.

One important fallout of the system design is considerably cnhanced system in-
tegrity. lmprovement results from the significant reduction in common mechanism
operating on behalf of all users, a characteristic that was necesuary to make verifi-

cation and certification of the system practical.

In the next sections we outline the UCLA Unix architecture, together with expla-
nations for the design choices. Verification and the programming language are also
discussed, and illustrativc examples of the cffects of Unix functionality on the

system's operation are given.

2. Overall Architccture of UcLs Unix

The UCLA Unix architecture contains a number of major modules, whose relation to
one another is sugrested by figure 1. The kernel should be thouzht of as an operat-
ing system nucleus which provides about a dozen primitive operations callable from
user processes. That 1is, the kernel implements a number of abstract types and the
valid operations on cnch type. 1t is the only module in the svstenm empowerad to exe-

[3 ety . . i 1l = 3 st ARy >
cube sapdwars privilzvad lastoudtioons.

Onz of the abstract types implementeat by the kernel is progass. A proc=ss con-
Lains Lwo address spaces (supervisor and user mode on the large PoP-11s). An aparat-
ing system interface package esides in one address space. In the other, application
code 1is run. Vhen an application program makes an operating system call, control
passes to the o.s. package which interprets the call. If necessary, the package is-
suas kernel calls or uses kernel facilitics to send messages to other processes to

accomplish the needed action. A11 such calls or messages arc controlled by the ker-

nel. Each process is a separate protection domain. The access rights of the domain

page M

are represcnted by capabilities: a C-list for cach process is maintained by the ker-

nel.

There are scveral processes that are special, in that they perform system reclat-
cd functions. Overall system security depends on the correct operation of two of
them.¥ One, called the policy manager, iz the only process capable of altering pro-

tection data, and is thus the sitc whecre various sccurity policies may be implcment-

ed. Tyoe extensions to kernel objecets, including file systens, typically would also

be supported herc. In the UCLA system, security poliey plus suitable primitives for

the Unix file system to support protection of individual files are built in the poli-

cy manager process. The second, "initiator", process initially owns all tcrminals

(i.e. has capabilities for all of them) and is responsible for uscr authentication.

It tells the policy mz2nager what user is to be associated with a given process.

Thore is one further process which differs from the typical processes enployed

for applications programming. However, this one, a scheduler, is not relevant to

data sccurity. It contains short term resource management policy for cpu and main

memory: process scheduling, page replacement strategics and the like. UCLA Unix is a

demand paged system; whcen a process p2ge faults, the scheduler 1is informed by the

Berretyall o that ap ooprooriate swan onll oay b2 { seued-ab somalpber bims by the

scheduler. All of its security relevant actions are accomplished through kernel in-

structions, however.

Thus in normal operation a user first logs into the initiator. That process

then sends a message to the policy manager, who initializes a process for the uscr

and moves thc user tcrminal to the new process by issuing appropriate capabilitics.

Process initialization as well as normal computation take place within the domain of

¥ Onc mipht say they are within the "security perimeter." Their size is
comparcd to the kernel described here.

not largce

- — Ny Y

F’Tﬂﬁmwmcm‘ Y g p——

page 5

the given process. Additional resource requirements or file activity is aecomplished
throuzh messages to the policy manager. Proeess switching oeeurs whensver a given
process invokes the scheduler process, or when an appropriate elock interrupt forees
such an invoke. The scheduler ean then run vhatever process it wishes. Page faults
also foree an invoke of the seheduler, so that it can initiate appropriate page swap-

ping.,

3. The UCLA Kernel and Abstraet Types

The kernel can alternately be viewed as a basic, stripped down operating system
or as an implementor of a number of abstract types, together with the operations on
those types. One of its more notable features is the faet that a significant number
of faeilities, normally found in large systems, are ineluded in it despite its very
small size and straightforward strueture. The basie kernel eonsists of approximately
760 1lines of Pascal code, not including I/0 support. The PDP-11 does not have any
ehannzls, so that the funetions of ehannel programs must be written as epu eode. 1/0
support in the UCLA kerrel is eomposed of two portions: a deviee independent internal
interfaee of approximately 300 lines, and as many device dependent drivers as are re-
quired by deviees present on a given machine eonfiguration. These are quite sm2ll,
Al T e At s 2l ations ksunponbingniny pEElpoanals, approdicately 500 lines
of code are required altogether. These numbers are relevant beeause the entire ker-

I e 4 ~ vy - T A H v . ey 2 Ny e op e - 3
N A g winll @) SRyirEneth 0 R TR O el YRRGLINER ., Cawon nunroand vETLL k) N

b e I

capabilities, this quantity of eode is not unreasonable (assuming a elean structure).

The UCLA kernel implements a fixed number of types, the four listed below. Type
extensibility as illustrated by CAL-TSS or Hydra is not provided, although simple ex-
tensions are now under way to provide a limited form of this faeility. The imple-

mented types, together with the permitted operations, are discussed below.

s il aiid

SRR At e . i i i

3.1 Processes

The process object is defined to eonsist orly of the usual state variables plus
one small page. It does not include the process virtual memory. As a result, kernel
calls such as Invoke can be quite simple, merely mcving data from tables to cpu re-
gisters and viee versa. All process relevant kernel calls are controlled by capabil-
ities. It is not possible to issue or rcecive a2 Notify for example unless in each

case a eapability is present in the process' C-list.

The process abstraction has been carefully developed to permit a large number of
processes to be alive: 500 on a PDP-11 would not be unreasonable. To do so, it is
necessary that very little locked down memory be required per process, despite the
fact that there are asynchreonous events taking place (such as 1/0 eompletions and No-
tifies) which ean occur when all the memory of & process is swapped out. The process
must be notified of these cvents. However, the obvious solution; kernel queues, are
undesirable since they increase verifieation diffieulties and lead to overflow prob-
lems when queusz space is exhausted. The UCLA kernel avoids this problem by a number
of methods, including a generalized page faulting strueture and cfforts to keep as
much per proeess information as possible in swappable pages allocated to the given

Skl | Ifa g s o hase Eolnn 30 wopdd Qf Mall storave Ui vzl ey o R e R N6

tive process.

e e

] s 1 - > 3 4 . . N7 - .
6O S e R R) [Jog B | B 200 ;

a. Invoke

b. Initialize

¢. Map-relocation-register
d. Notify

e. JSleep

Invoke moves the state variables of a process into the epu

saving those

of the currently running proeess, mostly into one of that process's

registers,

3 Yl &

after

first

- — o —

Vi TS T prag— g

page 7

pages. Initializc clears the statec variables of a process and creates thosc few
rapabilities needed for the process to bootstrapp itself. The tap call is the means
by which a process can adjust its owun virtual memory. The call sets the mapping
between blocks in the process address space and cntries in his C-list (which presum-
ably point at pages). Notify is the mechanism by which one process can interrupt a
set of other processes, also passing a very small amount of data. Sleep invokes the

scheduler.

Lo
!

1

%
3
<
L

Pages are thz abstract storage unit supported by the kernel. All pages have a
fixed home location on secondary storage, which is not deallocated when the page is
swapped into main memory. There are 3 page sizes in the current implementation, with
memory frame sizes currcently set at sysgen time to minimizc kernel complexity. In
order to aecess a page, a process nust first obtain a capability for the page. Then
the Map call is used to specify where in the process' virtual address space the page
specified by the capability is to appear. At that point thc process can attempt to
refer to the page. 1f it is in core, the hardware register will be loaded and the
reference will succeed. If not, the process will page fault as deseribed in saction
1%, Nince eacn nage Ls o sapacate objsct, controlled sharing of Lndividual pazes is

easily done.

snlysopenatdonisca Dares hue

a. Swap-in

b. Reflect
Swap-in copies the secondary storage version of a page into main memory, changing the
name of the objcet associated with that destination page frame to the new page. The
secondary storage copy is preserved. Reflect updates the sccondary storage version

to maten main memory. Neither of these operations gives the caller access to the

mechanism as all other operations.

page 8

contents of the page, so that the operation can be issued by untrusted code.

3.3 Devices

1/0s to all devices, including terminals, arc controlled by the sanme capability

However, dcvices such as terminals are treated as

two devices: an input part and an output part. Two capabilitics are therefore re-

quired to read and write a terminal, but as a result more robust security policies

can be supported.
Completion interrupts arc handled just likc any other process notification. All

those processes with capabilities to reccive interrupts from the device, and with in-

terrupts cnabled, will reccive a notification when the device generates it.

The device operations arc as follows.
a. Start-i/o

b. Completion-interrupt

Start-i/o initiates all I/0s except swaps. The Completion-intecrrupt is the hardware

generated call which typically signals completion of a previously started 1/0. As an

entry point into the kernel, it is little different from any other call.

3.4 Capabilities

he capability is tae basic kernel repressatation oi proteztion information:

vwhich objects a proccss is entitled to access. Each process has associatcd with it a

C-list containing those capabilities, stored in pages that can be swapped, but which

are directly accessible only to the kernel . ®

% Tne policy manager is given read access to capability pages so that it need not

keep separate track of which capabilities for pages in a file arec outstanding. See
the discussion of the policy manager for futher information.

e G T

T ——— N

page 9

Each capability consists of four fields. First is the name of the objcct to
which this capability refers. Second are the access rights provided. Next is a
"guess" value which the kernel uses to attempt to quickly find the entry in a kernel
table which maps the object indicated by the capability to a physical location. In
the case of pages, the guess is the index into the kernel page table to the slot
where that rpagze entry last appeared. It in fact may have been moved by subsequent
Swaps and Reflects, so if the entry does not match, a search of thc table is re-
quirced. That event 1is rare however. The last field in the capability is of no
relevance to the kerncl, but can bec set via the Grant call. The Policy Manager uses

it to record the file to which the page or device belongs.

The operations on capabilities are quite limited: thcy can be Granted .and re-

- voked. Revocation is accomplished by granting the null capability into the C-list
slot that contains the capability to be rcvoked. Thus there is no means by which
processes can directly pass capabilities. ¥hile this fact limits what can bc'done

with capabilities, it also greatly simplifies many issues and avoids a number of the
criticisms of certain capability systems, especially the danger of not knowing how
access to an object has propagated. As a result, the kernel can more accuratcly be
viewed as containing no security policy. A1l such decisions regardineg rights
pognsiEr, incloding ikitial grantiod of rizghts, acs mear only by the softwere running

in the process which has the ability to issue Grants. The Policy Manager is the only

auch oroc2as in USLE Unix,

The only operation on capebilities is
a. Grant/revoke
It adds a specified capability to a specified slot in a specified process' C-list.

This call is restricted to the policy manager, who implements security policy.

The C-list composes a local name space for the process. This name space has two

effecets. First, through message exchanges with the policy manager, the user has com-

page 10

plete control over which C-list slot contains a given capability, thereby permitting
local management over the name space. Fabry [Fabry 7471 points out the significant
advantages of this facility. Second, kernel names are not visable to user code. In-
stead, the capability contains that name. Thereforec user code, being unawarc of the

actual object names, cannot use them for a confinement channel.

3.5 Types and QOperating Systems

Other authors [Schroeder 77] have noted that the usual views of abstract types
to be found in programming languazes are not quite suitable for operating systems be-
cause of finite rcsources and circular dependencies. In Multics, for cxample, the
process manager depends on the page abstraction, since thec manager is contained in
pages, while the page manager is a process and hence depends on the process manager.
1n a revised design for Multics, abstract typecs are used in 2 sophisticated, multiple
layerad manner to solve thesc problems.[Schroeder 77] However, as noted by Gzines
[Gaines 77], the method rcquired necd not involve a sophisticated solution at all,

and is largely composed of static allocations.

This is the approach embodied in the UCLA kecrnel. Proccsses, pages, and devices
. B Nbal=r RoET § M dazgirovad, e el @ RS R A T QSR 18 Fanea s o A

sccondary storage for them. The number of processes is fixed by the size of the ker-
nel process table. Devices are added at system generation time. This static view is
ot realiy 2 limitation, since the Pollicy Manager reuses process "bodies" and pages
by reinitializing them via kernel calls. Many systems includc these size limitations
anyway, although perhaps not so explicitly. As a result, the kernel type structurc
is evcecdingly simple, and yct robust enough for fairl& general operating system ac-
tivity, as illustrated in section 6 on Unix Functionality. Further, the entire ker-

nel is small enouzh to bec locked down in main memory, in spacc removed from page

managencnt, blocking circular dcpendencies.

page 11

3.6 Kernel Names

Tne names for kernel supported objects were designed to maintain several impor-
tant properties with the minimum of mechanism: a) unique names for all objecets, b)
clear knowledge of object typecs at 2ll times, and ¢) avoidance as much as possible of
complex name to location mappings, which must be maintained by kernel code if object
protection is to be at all meaningful. Since these names are not visable to normal
user processss, who see only C-list indexes, considerable design fr::zdom was present.
Thercfore, names were chosen to represent the home location of the objecct; a page
name consists of the disk device and block number. Hence no disk map neced be main-

tained or interrogated by the kernel.

3.7 Pacing, Sezmentation and Scheduling

UCLA Unix, unlike standard Unix, is a2 demand paging system. A1l uscr disk 1/0,
including swapping of the process virtual memory space and file activity, occurs via

the paging mechanism.#

Page faulting is invisable to all processes except the scheduler, who is noti-

(32

n

fied by the kerrel when a fault ocours, so that it can start a swap. Thare are actu-

{

.

ally tws Yiaulces" involvad in szccessing pages. 1h2 most

significant, just described,

(&)

occurs when a page is not core resident. The other, called a register fault, occurs

dled in a highly efficient way: the user map table is checked by the kernzl to sce
which capability (and thercforc which page) is desired. The appropriatec value is

then placed in the register and user execution continues.

The preceding outline indicates how the UCLA system provides a complete virtual

¥ A lozical disk can alternately be treated as a device, and Start-I1/0s issued to it.
However, a disk treated in this manner cannot also hold pages.

ot (7 O D

page 12

memory and file system with only a simple set of paging primitives in the kernel.
This simplicity was achieved by two major dccisions. First, the virtual memory fa-
cilities were decomposed into that which had to operate correctly in order to main-
tain the security and integrity of the system (Swap, Reflect, and Completion-
interrupt) and the rest of the virtual memory mechanism (page replacement algorithm,
interaction with cpu scheduling, etc.). This decision had a significant effect on
the system's resulting simplicity. Second, file activity and process memory swapping
were combined into one mechanism. In standard Unix, main memory is broken into two
areas: one to hold user process images, and the other for I/0 buffers. Each area is
managed separately. The I/0 buffers are replaced in LRU order, while scheduling of
process images is handled differently. All disk I1/0 buffers are the same size, while
process 1images vary. The code used to handle I/0 buffers is in large part diffcrent
from that used to handle the movement of process images, and significant parts of

botn collections of code are important to the system's security and intcgrity.

In UCLA Unix, only one mechanism, paging, cxists, and much of its support hasg
been moved out into a scheduler which can not affect the integrity of the system. As
explained earlier in the section on capabilities, the user domain also carries some
of the responsibility for virtual memory management. By placing some of the respon-

= . e . PPN, o2 . e
2i21likies in the denain for which the action is being taken,

BGEA DGO ZAELOTI S
further limited. Application code is of course unaware of that responsibility, since

the o.s. interface is performingz the task.

3.2 Firmware Implementation

The UCLA kernel has been developed to be a candidate for firmware implementa~
tion. To be practical, it is helpful if each call behaves as much as possible as a
separate instruction, with no nced to be interrupted in execution, nor to issue I/0

calls for which the results affect the instruction's behavior, since I/0 is typically

R TIRRIRY ST g S T, T 1 ¢ (O IR OOy YT T R N —_—— ey ATy b el . T o T

5 TN aNAr

page 13

slow relative to microprogram cycle specds. Thcse criteria are met by the UCLA ker-
nel. Therefore it differs significantly from architecturcs such as Multics or relat-
ed work.[Millen 76][Organick 71) In both of those systems all of the operating sys-
tem, including inner rings in Multics and kernel software in the case of Mitre, must
be considered as part of the user process. Any process can be suspended in the nid-
dle of execution in the inner ring or kernel modc, respectively. Neither of thosc
systems lend themselves to firmware considerations, the Mitre work because of the ar-

chiteccture, and Multics because of its sizc and architccture.

3.9 Verification lmpacts

Verification of a full scale opcrating system is a multistep process, and the
mcthods cmployed at UCLA are outlined by Popek [Popek 78], with morc detail available
from Xemmerer [Kemmcrer 78). The effect that the verification and certification goals
had on the system architccture was cxcecedingly positive. Often a design choice
prescnted itself, without any clecar basis for resolution except maximizing verifica-
tion case. In retrospect this criterion was quitec cffective in making dccisions and
avoiding design pitfalls. Further, vwhen it becamec clear subsequent to implementation
of certain parts of the system that verification would be difficult, those portions

g IR BN 2 Y s =1 2 3 2 .- = 3 ’) Yo {0
¥ e et o SHEEE o) P s A i es B GRS RS .

3.0.1 Saguential Code

The current state of verification tools do not permit proof of parallel pro-
grams. Since semi-automated aids are in our view esscntial, this constraint implied
a kernel design and implementation in which each call ran from start to completion
without interruption, including the interrupt handlers. The UCLA kernel is built in

this way, and so most of it can be proven by standard verification methods.

The cost of this design choice results from declayed servicing of interrupts

e

o

page 14

which arrive while a kernel eall 1is in progress. To minimize this problem, eaeh call
is designed to run very quickly: approximately one millisecond oé less. To do so, no
kernel call may do 1/0 of its own vwhile in the midst of execution, since virtually
all devices respond rather slowly relative to this criterion. While millisecond de-
lays in interrupt servicing may not be suitable for heavy real time aetivity, it ap-

pears quite acceptable for interactive systems, which is the nature of Unix.

3.9.2 1/0 Interface

The PDP-11 does not have any significant channels; instead the device registers
are wired into physical address jocations and "channel' functions are executed by cpu
code. Since all deviees address main memory (and secondary storage) in terms of ab-
solute addresses, I/0 management is therefore necessarily a kernel responsibility.
That is unfortunatc, for several reasons. First, device semantics are quite complex
and difficult to interface with the semantics of the programming language in which
xernel code is written. Next, deviees are probably the single largest source of
ehanges to the kernel, since as new types of devices are added, additional verified
kernel eode is required to manage the device's actions. To minimize the impact of
these problems, kernel 1/0 code was redesigned to provide a device independent level

IS

i L Ve ANl I
RO BACARIK T e e 0

26 =bstraction within tha keenel. (ode sbove ey Sl a8 | A
any of the deviee details. Code below it implements device dependent issues, includ-
ing any device depandent protection controls. The I/0 abstraction level appears

simiizr o a chapnzl lekarrace, with well defined opcodes and operands.

This 1/0 abstraction level is quite important, likely more SO than the process
abstractions mentioned by other authors, since at least half of the operating system
kernel is eoncerned with I/0.[Schroeder 771{dillen 76) As a result of its use, device
semantice have been isolated tc the low level drivers. See VWalker for more

information.[Walker 77]

-

|

1
o
>
La hag b i
I R T oy L T T TNy) g S STEp T S P U, MO ety] SV b o i [I e e

page 15

4. The Poliey Manacepr

The Poliey Manager is the major seeurity relevent process in UCLA Unix. It is
responsible for implementing a shared file system, for maintaining whatever security
policy is to be supported by the system, and for part of the aetion of proeess ini-
tialization, which oeeurs every time a Unix fork operation takes place. ©Each of
these issves is discussed below. Lonz term resouree alloeation can also be imple-

mented in this process, but currently is not.

4.1 The File System and Proteetion Poliey

User eode must sce a file structure which is identiezl ¢to the Unix tree of
directories. However, one should not immediately conclude that the entire directory
structure and other file support should be implemented in trusted eode. In faet, one
ean make the following argument, largely indepcndent of the seeurity poliey to be en-

forced.

Yost eode to be run in the user domain strictly should not be trusted to be
eorreet, at least not to the same standards as the verified secure kernel and policy
manager. However, all names, including file names, are either issued, interpreted or
D skt eED Bous hiftaa U oile S Re nogo Raltin 3 e s U LB s an S Bt ollye o iyt ReRU I nee
tory naming seheme of a file system when signifieant amounts of unverified éodé issue
the names or are in the path leading to the file system. The best one ean do, it ap-

SeEcin, LS R0 provide tag usare wibbh o roelisble means to specify a process profile

vhich eharaeterizes the categories of files to which the proeess is to be allowed ae-
cess. Profile speeifieation and alterations, together with the assoeiation of labels
with the file on whieh eategories are based, must therefore be done in a guaranteed
reliable way if the verified protection and integrity of the entire operating system
is to have any meaning. That necessary secure terminal facility is diseussed in sec-

tion 7 below.

pe e o[Ot g Lol o . e pp e Pha e ke S e R TR o _ e e

page 16

The filc protection labels provided in UCLA Unix consist of a very large variety
of "colors". Each file can be labelled with some number of them. Each user (princi-
pal in Saltzer's terminology [Saltzer 75]) has a fixed color 1list associated with
him, It 1is understood that a user potentially can access a file only if his color
list covers that of the file. The actual profile for a running process can be set to

any subset of the user's color list. There is a separate profile for read and write.

Since there are a large number of colors, many of the usual protection policics
can be implemented using them. Public files are labelled with the color public and
all users have that color in their list. Denning has noted that military security
policy is essentially a lattice, and that the relations of sets and subsets provides
just the lattice required. Individual file names are had by assigning a2 given color
to a single file. This color system is still evolving as experience is gained with
the user protection interface, especially in the arca of control over changes to

color lists. Additional detail is provided by Urban [Urban 78].

Given the precceding view of file system protection, onc can profitably decompose
its implementation into two parts, one a common mechanism relevant to security and
integrity, the other executable in the domain of the requesting user process. The
common mechanism can support 3 simple, flab file system. [Files are the only signi-
fizant data type, and a color list is one of the attributes of a frile. The simple
file system mechanism must include complete space management: disk free lists and

o AT Far G 8 o s P T) P Lo Lo 0 %k . o .) i £ oo = i s - . - g b
g poneifuing wnlohn pazas belonz bo wnieh Tilews, togefhopr wibth sorssaps Lo naoag:

WETPIA L RS

these data structures.

Many of the faciltics normally thought of as part of the file system can be
provided by software in the individual process domains as part of thec o.s. interface:
dircetory structure, maintcnance, and scarching; end of file indicators and other
file status information such as usage locks. Directories are then contained in

files, and access to directories is controlled in the same way as acccess to any other

o e e e B
r

page 17

files. Assuming that the common mechanism in the policy menager is verified correct,
users can affect one another only through the use of files to which they share ac-

cess.

4.2 Process Initialization and Forking

Th

o

policy manager must also be involved when new processes are created, since a
kernel process body must be Initialized and appropriate capabilities neced to be
granted to the new process. As much as possible howcver, onc wishes process
bootstrapping to take placc within the domain of the new process. In UCLA Unix, the
normal procedure for process forking is as follows. The requesting process sends a
message to the Policy Manager requesting the new process as a member of the same user
family. The Policy Manazcr records the uscr to be associated with the new process
and issues a kernel Initialize call, which zeroes a process body, grants tvo capa-
bilities to that process, and sets the program counter and spatus to standard values.
The capabilities point to a standard boot. code page and a scratch data page respec-
tively.¥ A third capability is granted by the policy manager upon process request to
give the process the ability to communicate with its forking parent. From here on,
initialization takes placc wholly in the domain of the new proces. The process be-

gt by b bEmpting tol acecube dlis booticade mndttin i Caugel &
nandled normally. Eventually the boot code will load the o.s. intcrface and presum-

ably a2 Unix Shell into its address spaces.

4.3 Other Policy Manzzer Responsibilities

In UCLA Unix, the Policy Manager is 2lso responsible for control over access to

the other kernel supported objects besides pages: brocesscs and devices. Devieces ap-

-t - . -

The boot code is actually the Kernel Interface SubSystem discussed in section 5.

'Fr—~—---~mTMV*ﬁ~wwﬂwmmﬁ

page 18

pear as speeial files and inter-process communieation takes place through pages whieh
appsar as part of a file. Therefore, colors are uniformly employed for access eon-

trol in these eases too.

Ln ARPANET eonnection is provided in UCLA Unix; aceess to it must be controlled
and support for initial network eonneetion activities is required. Aceess eontrol is
done by mzking each host a special file and using'éélprs. See seetion 8 below for a

discussion of initial eonnection protocols.

5. The Kernel Interface SubSystenm

Sinee the kernel is an operating system nueleus of minimum size and eomplexity,
one ean properly expect that it is not a convenient base to build on. Traditional
systems provide a good deal of "extension" for eonvenienee. lhile at first glanee
the o.s.interface has this responsibility, it should be noted that a eonsiderable
amount of code is written to run directly on top of the kernel: the o.s. interfaee,
the network manager, proeess initialization, and the seheduler, for example. Each of
these need basically the same extensions: eapability manégement, inter-process eom-
munieation support, virtual memory eode, and some file system interfaees. Therefore
we have developad an intermediate interface betwesen the o.s. interfaee and the ker-
(I fna soltware wnien implements it provides a much mors cenveanisnt interiace o
the kernel and is ealled the Kernel Interface SubSystem (KISS). As an extension

nonanism L phal KISS amAaaccalbhsl gntine sovidoancot ot the prakaks. In ccEnseal (Ino
other code in the process makes kernel ealls, sends messages to the seheduler or pol-

icy manager, etc. Thus this software package has primary responsibility for main-

taining a convenient "virtual maehine" for the user proeess.

The KISS of eourse runs as part of the user proeess domain, and is architectur-
ally contained in the same address space of the process as the o.s. interface. The

KISS can be viewed as an inner ring in the sense of Multies, and if appropriate

, g
b S L o 1 i) & 3 o 'y alth hak 1
Rt b e b e b e S e SRRk e et b B e e L T Sl i

s g

T g wwecs v

page 19

hardware were availablc, that would be an effective mcans of implementation.

6. The Unix lnterface

The operating system interface has the responsibility of providing a user pro-
gram interface which is as much as possible jdentical to standard Unix.* It handles
user system calls either by performing them itself if possible, or making the ap-
propriate kernel calls or service requests to the policy mansger to get the desired
action accomplished. Much of the Unix o.s. interface is actually lifted from the
standard Unix operating system. Ulost of the changes consist of wholesale deletions
of functions, resulting from the fact that many of those functions are redundant
given the available kernel facilities and the fact that the o.s. interface is essen-
tially a single user system. All scheduling support could bc removed, since schedul-
ing is done in a separate process. A more drastic change concerns I/0 buffering. In
standard Unix, buffers contain significant structure to aid in wmultiuser and LRU
operation. In UCL! Unix, most of that function disappears since it is done by the
paging mechanism supported by the kernel and scheduler. I/0 support is replaced in
the o.s.interface by code that requests file opens and relevant page capabilities
from tne Policy Manager, and issues Map calls to add those pages to the interface's

i LRI S e Hrvy, ey bha o interfacs meraly trias to eeferance dabn oathe bege D

move it to the user, and the usual page faulting and swapping action takes place.

Meulonda in the dntevfacar lapgely acasisbs’ =0 (bthe WIS, changal e AR

24 -

interface/KISS boundary, ipc support, and maintenance of the process hierarchy. This

last issue is discussed below.

e o e -

¥ There are certain actions possible in standard Unix which will be blocked by the
security policy of the secure system.

LR o A P AT e B o g . I A S T

pns - Yy e i T TSR YIS % - o v iy

page 20

6.1 The File System

The Unix interface has a significant portion of the responsibility for making
the user view of the file system equivalent to standard Unix. This task consists of
all directory support, including searching, working directory control and the like.
Once the desired logical file name is found in a directory, a file open request of
the policy manazger can be made using that name.¥* Directory searches are done by first
opening the containing file, like any other. It is the responsibility of the Unix
interface to manage its open files in such a way as to keep the working directory

opazn most of the time to minimize search costs.

6.2 Forking and Process Hierarchies

In standard Unix, a given user can have a process family active for him. The
family is hierarchical in the sense that parents have certain rights over children.
However, intra-family protection is not really effective, since any member of a fami-
ly can convince any other member to destroy itself, and to take other undesirable ac-

tions, via standard Unix functions.

Therefore process hierarchies should not be supported by kernel code, and so in

gaatian

IS "y L
By toL)y

LA lUnix, memhers of a procass family cosuerabs among thens2lves to offect
behavior. Of course, the support for process families is provided in the o.s. inter-
face, so that user software need not be concerned. This desizn choiec= simplified the
erasl, and in Limat ol the observations made above, had little or no efteect on the

actual protection functionality provided.

In the implementation, each process of a family has a capability for a shared

page, set up by family members. In that page, data structures are maintained by the

* The logical file name is essentially an inode number.

e sasd 4 LAl

page 21

o.5. interfacc so that intra-family relationships are properly supported. In doing
50, the kernel notification facility is uscd to great advantage. Unix typically per-
forms a great deal of "one to n" notification: onc process issuing a signal intended
for the rest of the family. The kernel Notify call is designed to support this

behavior efficiently, as well as to be adaptable feor other uscs.

1. Secure User Interfece

In order for any user to have assurancc that the protection controls of a system
are operating in the manner desired, it is crucial that he be sure of thc values to
vhich protcction policy data has been set. Further, when login takes placc, there is
an issue of mutual authentication: the user wishes to be sure that he is intcracting
with thc secura system interfacs, not some clever user simulation of it which col-
lects passwords. For both of these reasons, UCLA Unix contains a small dialoguesr
process to which the user terminal can be reliably connected. The user causes his
terminal to be switched to the dialoguer by typing a predefined sequence of break

characters.* The kernel supports the terminal switch through maintcnance of terminal

modes. A terminal can be thawed or frozen. Capabilities are granted by the Policy

Manager giving access to terminals only when thawed, or only when frozen. khen the

ol T H ks e oy l—""."i Sergs

e L. . i

heeals sebusace iy dotactsd, or whan 2 line drop cfours,
The Policy Manager grants frozen access only to the dialoguer, thaved access in all
other cases. In this way, the user can move his terminal to the dialoguesr, accom-
plisn whatever cnaags is desired, such as changing process profiles, and then @ove

the terminal back, all without disturbing the state of computation of the process at

all so that it can be continuad.

¥ Kernel recognition of the breazk scquence is not expensive since PDP-11 hardware rc-
quires character by charactcr terminal input handling anyvay.

page 22
8. The Scheduler

Whenever it is time for a process invocation decision to bec made, the Scheduler

is invoked, cither directly by a uscr process (i.e. when it wishes to sleep) or by a

E clock interrupt. The kernel posts a considerable amount of data to the scheduler
| process, so that it can make sophisticated resource allocation decisions, about both
riemory and the cpu. Centralizing both classes of resource control permits effective
coordination of allocation deccisions and therefore potentially higher performance. A
large class of scheduling policies can be implemented in this proccss. Some of them
have confinement implications but provide better performance potential than those
wnich do not, This architecture permits the system operator to make the
confinement/performance tradcoff, since therc is no kernel cffect from scheduling

policy changes.

1 The onc potential drawback of a scparate scheduler process is that it doubles
; the actuzl number of process invocations over what is really nceded. This overhead

is of little consequence if context switches are relatively cheap, and this will be

the case for UCLA Unix.*®

9. Secure Comnputer Networks

When security is of concern in a computer network, encryption of the 1lines is

cnerally a necessit becausc those lines are not corsidered safe from tappinz or
J

e

spooling. Howzver, the usual approacih is to encrypt and decrypt the data c«ternal to

the central machine and its operating system.

s e o 2o v - -

% Context switches on the PDP-11 are in general fairly slow. Therefore, the
scheduler is actually to be run, still as a scparate process, in kernel modc of the
hardware. This avoids the nccessity of cextensive state saving and restoring, but re-
quires the scheduler to be written in a language for which it can be demonstrated
that kernel data structurcs arc not touched. The implemented scheduler is written in
UCLA Pascal. Moving it into kerncl mode was not yet complcte when this paper was au-
thored.

P

e

I

page 23

It should bec rcecognized that the softwarc resident within the operating system
rcsponsible for managing the network is both complex and relevant to security and in-
tegrity. In standard Unix with an ARPANET Network Control Program (ncp), the NCP,
operating as a cocmmon mechanism, is of comparable size and complexity to the whole
operating system.* Typically, one wishecs to protect each network connection separate-
ly from each other connection, but the NCP manages them all, including moving data

from user buffers through the NCP and out to the network interface device.

Given the availability of a secure operating syspem, one can entcrtain the idea
of extcnding the "ends" of the encryption path deep into the operating system. For
cxample, the user process, as it hands data over to the KCP, could be forced to cause
the data to be cncrypted, so the nctwork software is treated merely as part of the
insecurc transmission channz=l. That data would not be decrypted until the receiving
NCP handed it over to thec destination user. If cach connection were cnerypted with a
separate key, then NCP crrors and misdelivery within the host operating system would
not affect security. If suitable error correction is incorporatcd with the encryp-

tion, then integrity problems can also be dctected.

The main problem in this approach is the initial connection cstablishment prote-
col: how to permit users to supply the NCP with parameters telling which site and
what typs ol connzotion shcula o2 establishsd, witacuc iagge coniinement crianacls in
the system. For a discussion of these and related isvues, sec Kline [Kline 78].
Hhelmataouor sobubiiont okiginiaad tasngiiggatpeatitolenaaiedt S UCES Sl The addi-
tional kernel code to support secure nctwork operation was quite small. Further,
most of the original NCP was kept unmodified, although its lower level was altered to

match the kerncl interface.®

The NCP being considercd was decveloped at the Univ. of Illinois.
The Illinois NCP "kernel" was rewritten.

page 24

10. Programmins Lanzuvage Issues

The programming language employed in software development is usually recognized

to have a significant effect on that effort; however vhen the goal of development in-

cludes verification, the effect is heightened. The spscific language issues break
down here into two groups: those concerned with systems programming, and those con-

I

cernad witn Lthe scale of the verification steps.

Systems programming issues arise in the same way that they occur in most high

level systems programming languages. It is necessary to bc able to express details

of the hardware in the high level language, such as interrupt vectors, hardware dev-
ice registers, or special instructions. These facilities must be available in the

programming language, but in a way that minimizes the effect on the semantics of the

rest of the language.

Virtually all the security and integrity relevant code in UCLA Unix is written
: in a slightly altered Pascal. Obvious verification problems were removed from the
language, such as pointers, variant records, and various sources of aliasing.[Lampson
771 I/0 facilitics were also dcleted, since we vere building I/0 mechanisms, among
other functions. The ruatime package needed to support Pascal I/0 would have been
3 wsplose bagrame, and sines it typically wonld B writton in asszenbly coda thorn ot

be little chance of ever verifying propertics of its operation.

b T s o B B s b Yo s i Eo e 4 g TR lies S Re O Pogonl o veralil

gramming, as remarked above. Very few additions were actually nccessary, and were

limited to the following:

1 a) the ability to declare a variable to be stored at a fixed physical location (to

E initialize interrupt vectors, access device control registers, ete.),

i 5

5 b) assembly languare procedures (so that special hardware instructions could be ex-
F

pressed as a procedure call),

page 25

c¢) the ability to have procedures which take array paramecters whosc length is deter-
mined at call time (to remedy the most significant limitation of Pascal).

We also developed an extcensive library system to support independent compilation of

prozram wodules, and yet force type integrity across module boundaries. The compiler

and library system forcec recompilation of modules when nceded for compatibility with

another module which has been altered. This facility is necded since the verifica-

tion work depends on type enforcement. The language, compiler, and library system

are discussed by Valton.[Walton 76]

There are many issues concerned with the scale of the verification effort. It
is believed that over half of the original verification cffort could be avoided if
the language contained more reasonable controls over aspects of program behavior.
One of the more obvious examples concerns the integrity of global variables. An im-
portant portion of the assertions to be verified state that most of the kernel vari-
ables have not been altered by the routine being considered. (After all, much of the
statement of security concerns what is not to happen.) These asscrtions, in the form
of a large invariant, could be simply handled by scope controls in the language, such
2s the Import/Export lists of Euclid [Lampson 77]. Then complle time enforcement
could be employed and the veﬁification task correspondngly simplified. UCLA Pascal

o e Wl T: Sy o A A R
e =a2n nodiiti=l o D) 52 T G-l R e S

Another example where the verification task can be eased concerns array bounds

. PRI, A er Ea i e s e ey T e ot Al manea ey ne
L Pl] By . [+ 3 PEORELE M e . ot B § 2

L SEROW [RS R SR S -

tentially rcference deta other than the given array, violating type rules. There are
four reasonable ways to deal with this proﬁlcm: Subscript checking could be dones by
hardwzre, by runtime software generated by the compiler, by runtime software cxpli-
citly inserted by the programmer, or it could be verified in many cases that sub-
seripts do not get out of range. The PDP-11 hardwarc base does not provide any rea-

sonable way to itself check subscript referenccs.* The UCLA Pascal compiler does not

page 20

implement array checking code. Therefore a combination of the remaining choices were
taken. The resulting assertions which need to be proven cOmMpoS3€ a significant frac-
tion of the total verification to be done. Clearly here is a fertile area for

language support or enhanced verification tools.

11. Architectural Observations

ST AR A AL

UCLA Unix comprises the first verifiably secure, full functionality operating
system with a fine grain of protection. The experience gained in its design and
development lead us to several conclusions. Most obvious, secure operating systems
are feasible to develop, although the development cost is likely to bc considerably
greater than if higly reliable security and integrity wcre not such a serious gecal.
However, the result is a system which appears to cxhibit considerably enhanced relia-
bility and integrity, and because of the strict modularity, is easier to modify.
Performance does not appear to be adversely affected by the architectural constraints
inposed by the various goals. That is, the net result of the security goal seems to

be a better system in general.

It should be noted however that one of the central ideas to the success of the
vork, kernel structured architectures, requires considerable rethinking of the usuz2l
aparating systam architecture viAnalis re it eatolbaneirectively eaployed.
stzndard operating system wisdoms must be reexamined, or the result will be a "ker-

o i

nali wegid jandn fact gverly camplex i not suitanis foroa clzorous deponshyptinn O

-

correct security and integrity enforcement.

in conclusion, it appears that the goal of obtaining secure operating systens,

at least for centralized, medium scale machines, has been largely reduced to (high
]

- - o o=

- o o e e e o o

SSRGS O

_ el & o i ot o o i

page 27

quality) engineering, with the most significant progre&s required in program verifi-

cation.

12. Eibliograpnv

Fabry, R., "Capability Based Addressing," Communications of the pCH, Vol. 17, No. T,

July 1974, pp. U03-H12.
Gaines., R. S. Private communication, 1977.

Kemmerer, R., "Verification of the UCLA Security Kernecl: Abstract Model, Mapping,

Theorem Generation and Proof," PhD Thesis, UCLE Computer Science Depart-

ment, 1976 (forthcoming).

Kline, C. S., "Protection Mechanisms for Operating Systems and Networks," PhD Thesis,

UCLA Computer Science Department, 1978 (forthcoming).

Lampson, B. et.al., "Report on the Programming Language Euclid," SIGPLAN Notices Vol.

12, No. 2, February 1977.

Millen, J., "Security Kernel validation in Practice," Communications of the ACM, Vol.

G s L ey VAP IA o) Fra, AR
1%, Bws 95 L85 WHRONDD. t3=-220.

Ly

Organick, E., "The Multics System, an Examination of its Structure, MIT Press 1971.

ropek, G., and D. rferber, "A voael for Verification of Data Security in Operating

Systems," Communications of the acM, 1978 (to appear) .

Ritchie, D. and K. Tnompson, "Phe Unix Timesharing Systen," Communications of the

ACYM, Vol. 17, No. 7, July 1974, pp. 305-375.

Saltzer, J., and M. Scnroeder, "The Protection of Information in Computer Systens,"

Proceedings of the IEEE, 1975.

e

page 28

’ Schroeder, M., D. Clark, J. Saltzer, "The Multics Kernel Design," Proceedinms of the

< sixth Symposium on Operating Systems Principles, U. Lafayette, Indiana,

Nov. 1977.

Wallker, B., "Verification of the UCLA Security Kernel: Data Defined Specifications,”

Masters Tnesis, UCLA Computer Sciecnce Dept. Novembar 1977.

Walton, E., "The UCLA Pascal Translation System," UCLA Computer Science Dept. Techni-

cal Report, January 1976.

UCLA Computer

Urban, M., "A Policy Manager for UCLA Secure Unix," Masters Thesis,

Scicace Dept., 1978 (forthcoming) .

|
T .
l
1‘

