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'This technical report covers research carried out by the 
Secure Distributed Processing Systems group at UCLA,,under ÄRPA 
Contract MDA-903-77-C-0211 during the -^three quarters in the 
period July 1, 1977 to March 31, 1978. ^Significant advances have 
been made on all four contracted tasks, namely network security, 
data management security, high availability secure information 
management, and UCLA secure system enhancements. Below, we 
describe that progress and point to the list of references which 
represent the published work resulting from this supported 
research. h ß'H- 

Task i - Network Security 

A number of significant steps have been taken over the last 
three quarters. First, UCLA is participating in the larger ARPA 
sponsored network security experiment employing BCR units to 
demonstrate that end to end encryption of individual connections 
on the ARPANET is feasible. A BCR unit has been received at UCLA 
and checkout has begun. Coordination of UCLA's initial role as a 
server host in the BCR experiment, and subsequently potentially 
as a key distribution center, has been coordinated with other 
ARPA contractors. 

A major portion of the effort in network security has been 
devoted to the integration of encryption techniques into the pro- 
tocols of networks and the architecture of the operating systems 
which are connected. It was found feasible to extend the end of 
encrypted channels right to the process boundary in host systems, 
making network control software, as well as all other system 
software, irrelevant to system security, so long as an appropri- 
ate operating system kernel was installed in participating hosts. 
Thi^ developmant dramatically simplifies the structure of th-j 
network security mechanisms, obviating the need for BCR units at 
secure hosts, as well as any requirement for trusted network 
management software. A prototype of this integrated end to end 
network security architecture has been developed for the UCLA 
Secure Operating System Prototype. The implementation is now 
being improved to integrate it into the complete system. The fi- 
nal prototype is scheduled to be used in the Navy's ACCAT Guard 
-project later this year. 

The importance of this work is severalfold. First, it 
demonstrates that end to end security to the process level is 
very cheap to implement and operate, given the existence of 
secure  operating  systems.  Second, the approach is directly ap- 

/ 
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plicable to existing networks such as the ARPANET. 

Several architectural design and analysis efforts have also 
been in progress during this period, reported in references 6 and 
7. The first presents a general view of design issues in network 
security, and has been used by the Mitre Corp. in the development 
of their network security methods for military systems. The oth- 
er challenges much of the work on public key encryption methods, 
and shows that all digital signature methods previously proposed 
suffer from serious flaws.  A superior method is then outlined. 

Task XI - Data Management Security 

Data management systems typically employ considerably more 
software mechanism in the representation and management of the 
data they contain than do operating systems. As a result, the 
task of developing reliable enforcement controls potentially is 
significantly more difficult. Many have thought as a result that 
a kernel architecture approach to data management security was 
not feasible. If so, that would be quite unfortunate, since ker- 
nels severely limit the amount of software which must operate 
securely. At UCLA, we have succeeded in developing a general 
kernel based architecture, meaning that it is potentially feasi- 
ble to provide highly reliable security enforcement in data 
management systems through the correct installation of a very 
small amount of software. This result is very important, since 
without it, much of the code in a data management system would 
have to operate securely, and the cost of providing secure data 
management would then often be prohibitive. The design was pub- 
lished late in 1977 as reference 2, and in order to demonstrate 
its operational feasibility, the INGRES data management system is 
currently being altered to include the proposed kernel struc- 
tures. An important result of this test implementation, besides 
demonstrating feasibility, is that our approach is retrofittable 
to existing systems. The savings in existing software can he 
e n J r n o u s . 

Task III - High Availability Secure Information Management 

A significant new direction rf the research at UCLA '"■■■•-. been 
concerned with reliability, avdüabiii.cy, anc security in distri- 
buted systems. The core of this effort is the development of a 
highly available, secure distributed system base that can run in 
an integrated fashion on local networks, utilize existing equip- 
ment, and provide a base on top of which one can easily install 
such applications as distributed data management systems, elec- 
tronic office facilities, and the like. The base is to be en- 
tirely responsible for backup, recovery, security, and much of 
system management. It should be easily extensible in terms of 
hardware additions and deletions, all without software altera- 
tions or user knowledge. 

The design of this system base has progressed great  deal 
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over the past three quarters, and a preliminary design document 
was reviewed by other internationally known researchers. A more 
complete design report will be completed this summer, at which 
time prototype development will commence. 

In conjunction with this research direction, a number of 
other strong efforts have been completed. First is a complete 
protocol for coordination of resources in a distributed system, 
that permits arbitrary failures of nodes, links, and software 
modules, either during normal operation or recovery. Synchroni- 
zation suitable for sophisticated data management is provided, 
and the correctness of the entire protocol is proven. The work 
is reported in reference 5, and has been accepted for publication 
in the top journal of the field. 

Several other protocols have also been developed for coordi- 
nation of resources and detection of deadlock. These are now un- 
dergoing refinement and have been submitted for publication. 

To support the distributed system development, UCLA has par- 
ticipated in the development of the Local Network Interfaces 
(LNIs) principally developed by UCI and MIT, and three Interfaces 
are scheduled to be installed at UCLA this summer, creating a 
three node network for use in development and measurement experi- 
ments . 

Task IV UCLA Secure System Enhancement 
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rification system is being employed in the proofs. The general 
approach to the verification of large systems is described in the 
technical report listed as reference 3. 

P'1 ' 
Ni more  detail  in  several 

are included that reflect 
The body of this report  provides 

areas.   Specifically,  three  reports 
some of the more significant results in each of the areas of dis- 
tributed  systems, networK security and the secure operating sys- 
tem prototype. 

\ 
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Encryption Protocols, Public Key Algorithms and Digital Signatures 
in Computer Networks« 

by 

Gerald J. Popek and Charles S. Kline 
University of California at Los Angeles 

Abstract 

The general problem of secure communication in ^mputer 
networks is considered, especially issues related ^ inteSration 
of encryption protocols, the relationship between public key and 
conventional encryption algorithms, and digital signatures- 

conclusions reached in 

The 
these areas are as follows. 

A) 

B) 

C) 

D) 

. crucial problem in integrating encryption into networks is 
minimization of the mechanism which must be trusted. A 
general protocol is presented which  appears  to  accomplish general p 
this  goal  and  is 
conventional encryption algorithms 

suitable for either public key based or 

Public  key  and  conventional  encryption   algorithms   are 
functionally  equivalent.  in the sense that neither present 
any advantages over the other, either in the  way  Lney 
used,  the  functions  they  provide,  or  in 
mechanism that must be trusted in their support. 

are 
the amount of 

Both public key and conventional encryption aPP^cheJ t° 
digital signatures depend critically on secure 
authentication for their suitability, in ways not 6^™^ 
recognized.  They appear equivalent with respect to safety. 

the Neither the signature method outlined by Rabin nor 
based  protocols  appears satisfactory. public 

suit ab! 
key 

usual 
A more 

/ a r , " f) I ! a e n 

1 .  Introduction 

r h 9 

for  Computer  neewo; 
There  has  he^i  :onsiderable  Lu1 

ri^vplooment   of   encryption   methods 
Ictiiuy Tails into two major but related areas: the development 
of strong encryption algorithms, and the design of the rules or 
protocols by which an algorithm is actually used in an operating 
network As an example of the relation between these two areas 

public key algorithms have been suggested as V^1^.^01^ 
?o  key  distribution and digital signatures; issues which, it is 

»   This 
Agency   of 
903-77-0211. 

research was supported by the Advanced  f863^. ^°je^ 
of  Defense  under  Contract  MUA the   Department 
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claimed, would otherwise require additional protocols. Here we 
concentrate on the protocol problems. We examine protocol 
questions which arise at various levels of a system, from the 
low, detailed level at which the various operating systems in a 
network communicate, to the higher, user visible level involving 
such services as digital mail. As a result a rather unique 
perspective is provided, and we are led to some fairly surprising 
conclusions. 

The paper is written basically in a bottom up fashion. The 
first section considers questions of how encryption "channels" 
interact with network software. The next section outlines a 
basic protocol for the use of encryption in a network, 
independent of the nature of the encryption algorithm (public 
key, conventional, etc). These two sections show how it is 
possible to build a secure network base, on top of which many 
extensions are directly possible. At that point attention turns 
to some of the higher level, user visible issues, such as public 
key algorithms and digital signatures. It is argued that none of 
the currently proposed signature methods is satisfactory. We 
propose an alternative which we believe satisfies the necessary 
requirements. It is based on the existence of the 
level protocols discussed in the earlier sections, 
willing to accept the existence of secure lower 
protocols may wish to skip to section six, where 
of public keys and digital signatures can be found 

secure  lower 
Those readers 

level  network 
the discussion 

2.. Levels of Integration 

Encryption forms the basis for solutions to computer network 
security problems. Basically, a single communications channel 
can be multiplexed into a large number of separately protected, 
secure communication channels by assigning a separate encryption 
key pair for each logical communication channel. When a user 
requests the establishment of a new communication, protection 
policy checks can be performed, and, if successful, a key can be 
distributed to each end of ^h=: communication channel. 

78b] 
rece 

Several key distribution methods  have  been  studied.[Popek 
One  method  utilizes  a  key  distribution  center  which 

ives  requests  for  communications,  and  distributes   keys 
rdinsly.   Ths keys are tran; L11 e d u s " n " s I -J •\ < ■ 

d ist 
part 
encr 
Orig 
dist 
savi 
sect 

jc, key3 which change only rarely. Other methods allow 
ributed key management, with several, or even all, sites 
icipating in key distribution. Recently, public key 
yption algorithms [Rivest 77a] have become available, 
inally, such algorithms were thought to simplify the key 
ribution problem, but recent research suggests that no 
ngs result.[Needham 77] This issue is discussed at length in 
ion six. 

One problem which must be resolved in designing a secure 
network encryption mechanism, regardless of the nature of the 
encryption algorithm or the key distribution method, is the level 
of  integration  of  the  encryption  facility.   There  are many 
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possible choicRs for the cndpoints of the encryption channel in a 
computer network, each with its own tradeoffs. In a packet 
switched network, one could encrypt each line between two 
switches separately from all other lines. This is a low level 
choice, and is often called link encryption. Instead the 
endpoints of the encryption channels could be chosen at a higher 
architectural level: at the computer systems, referred to as 
hosts, which are connected to the network. Thus the encryption 
system would support host-host channels, and a message would be 
encrypted only once as it was sent through the network rather 
than being decrypted and reencrypted a number of times, as 
implied by the low level choice. In fact, one could even choose 
a higher architectural level. Endpoints could be individual 
processes within the operating systems of the machines that are 
attached to the network. If the user were employing an 
intelligent terminal, then the terminal is a candidate for an 
endpoint, too. This view envisions a single encryption channel 
from the user directly to the program with which he is 
interacting, even though that program might be running on a site 
other than the one to which the terminal is connected. This high 
level choice of endpoints is sometimes called end-end encryption. 

The choice of architectural level in which the encryption is 
to be integrated has many ramifications for the overall 
architecture. One of the more important is the combinatorics of 
key control versus the amount of trusted software. 

In general, as one consider 
most systems, the number of iden 
entities in the system tends to 
For example, while there are 1 
to the ARPANET, at a higher 1 
thousand processes concurrentl 
protected and controlled. The n 
of course also high. This n 
number of secure channels - that 
distributed matched key pairs 
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must  be  trusted  not  to 

els.  If a higher level is 
pie, then errors in the 
However,  operating  syste 

the data exists as cleartex 

complexity  which  may 
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1.   This issue is very 
It  arises  in  the 

chosen, the data being 
t is  passed  from  one 
Therefore the software 
intermix  packets  of 

selected,  from host to 
switches  are  of  no 

m  failures  are  still 
t while  it  is  system 

In principle  then,  the  highest  level   integration   of 
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encryption is most secure. However, it is still the case that 
the data must be maintained in clear form in the machine upon 
which processing is done. Therefore the more classical methods 
of protection within individual machines are still quite 
necessary, and the value of very high level end-end encryption 
may be somewhat lessened. A rather appealing choice of level 
that integrates effectively with kernel structured operating 
system architectures is outlined in section four. 

Another small but nontrivial drawback to high level 
encryption should be pointed out. Once the data is encrypted, it 
is difficult to perform meaningful operations on it. Many 
front end systems provide such functions as packing, character 
erasures, transmission on end of line or control character 
detect, etc. If the data is encrypted before it reaches the 
front end, then these functions cannot be performed. That is, 
any processing of data flowing through the channel must be done 
above the level at which encryption takes place. 

3..   Encryption Protocols 

the discipline 
to control 

amount  and 

Network communication protocols concern 
imposed on messages sent throughout the network 
virtually all aspects of data traffic, both in 
direction. It is well recognized that choice of protocol has 
dramatic impacts on the utility, flexibility and bandwidth 
provided by the network. Since encryption facilities essentially 
provide a potentially large set of logical channels, the 
protocols by which the operation of those channels is managed 

also can have significant impact. 

There are several important questions which  any  encryption 

protocol must answer: „v,.,™„i 
1. How is  the  initial  cleartext/ciphertext/cleartext  channel 

from sender to receiver 'nd back established? 
2. How are cleartext addresses passed by the sender 

'.■ ri o r y p 11 o n i' a c :. L i t i e s t o 
which ciiear^xt. ua^a ca.n b 
by the same means? 
3. What  facilities  are  provided 
resynchronization of the protocol? 
■".   How .-3 . Low con1 : oi pei iviu  .. . 

,h } ne t>;o rk with ^ 
; inadvertantly or 

around 
providing a pat 
Intentionally .i ;:' 

for  error recovery 

the 

I: 3 d 

and 

5   How ire cnanneis cioseu,J 
e'.      How do the encryption protocols interact with the rest 
network protocols? 
7.  How much software  is  needed  to 
protocols.   Does  the  security  of 
software? 

of the 

implement  the  encryption 
the  network depend on this 

permits  channels   to   be 
the traffic flow rate to be 

One wishes a protocol which 
dynamically opened and closed, allows 
controlled (by the receiver presumably), provides reasonable 
error handling, and all with a minimum of mechanism upon which 
the s-curity of the network depends. Clearly the more software 
is  involved  the  more one must be concerned about the safety 01 
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the overall network. The performance resulting from use of the 
protocol must compare favorably with the attainable performance 
of the network using other suitable protocols without encryption. 
Lastly, one would prefer a general protocol which could also be 
added to existing networks, disturbing the transmission 
mechanisms already in place as little as possible. Each of these 
issues must be settled independent of the level of integration of 
encryption which is selected, the method of key distribution, or 
the nature of the encryption algorithm employed. 

To illustrate the ways in which these considerations 
interact, in the next section we outline a complete protocol. 
The case considered employs an end to end architecture in a way 
that can be added to an existing network. 

Ü.. Network Encryption Protocol Case StugLy: 
Process-Process Encryption 

We o 
at the re 
A major g 
security 
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code.  Th 
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e here a general encryption protocol that ope 
ely high level of process to process communica 
s the minimization of the software on which 
he system depends. Network communication prot 
fairly large and complex parts of the oper 
imes the primary source of complexity and araou 
ct results from the variety of tasks which 
col must perform, such as connection establish 
error detection and correction. Thus, this d 
eliminate as much as possible the necessi 
software for secure operation. 

rates 
tion . 

the 
ocols 
ating 
nt of 

the 
ment, 
esign 
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The design presented here utilizes process-process 
encryption. In process-process encryption, encoding is performed 
as data moves from the source process to the system's network 
software. This approach minimizes the points where data exists 
in cleartext form, and thus the mechanism which needs to be 
trusted. While a higher level choice could be made, for example 
a 11 owing the proc•:■ sses to per for.-' their own 
themselves, such a choice does not assure that 
the network is encrypted. Thus, process-process encryption seems 
to be the highest safe choice. The details of the protocol are 
applicable either to public key based or conventional algorithms. 
"nv of the ksv distribution methods discussed ^r [Popek 78bl c^n 

u p p or ted . 

encryi 
a 11 d 
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a s ■ nt 
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er 
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In this protocol, when a user attempts to send data, a 
system encrypt function encrypts that data and passes it to the 
network management software, which is logically part of the local 
operating system. The network software then attaches headers or 
other information required by the network protocols and sends the 
data to the communications facility. Upon reception by the 
remote network software, the headers and other protocol 
information are removed from the data and the data is passed, via 
a system decrypt function, to the appropriate user process. 

Initial establishment of the communication channel is also 
provided in a secure way. When a user process attempts to 
establish communication, the local network software is informed 
by the system. The network software then communicates with the 
network software at the remote site. When the two network 
software packages have arranged for the new communication, the 
system at each site is informed. At this point in time, the 
system software attempts to obtain encryption keys for this 
communication. This key distribution is accomplished either with 
local key management software, or via a key distribution center. 
If a conventional encryption algorithm was employed, then new 
keys would be chosen and distributed. If a public key encryption 
algorithm was utilized, then the public key of the recipient and 
the private key of the sender would be retrieved. 

In the public key case, an additional authentication 
sequence is required, since the public keys may have been used 
before. This authentication sequence effectively establishes a 
sequence number to be included in each message to guarantee that 
previous messages can not be recorded by an imposter and 
replayed. The authentication sequence is not required in the 
conventional encryption case since the new keys effectively form 
an authentication and prevent any prior messages from being 
useful. 

After the keys have been chosen and d i P t r i b u t a d (using a 
previously established secure key distribution channel), the 
user processes are given capabilities to send and receive data. 
The operating system calls employed should automatically encrypt 
and decrypt the data  with  the  appropriate  keys.   Thus,   the 

The above design allows existing network protocols in many 
cases to be largely left undisturbed, and preserves much existing 
network software. If desired, user processes can be blocked, in 
a reliable way, from communicating with any other user processes 
anywhere in the network unless the protection policy involved in 
setting up the keys permits it. Each user's communication is 
protected from every other user's communication. Perhaps most 
important, the amount of trusted mechanism required in the system 
nucleus, as we shall see, is quite limited. 
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capabilities to the user process so that subsequent requests 
be made directly by the process. 

can 

In order to explain in more detail, the following; four 
prototype kernel calls are described. The first two are involved 
in setting up the encryption channel, and presumably would be 
issued only by the NPMs. The second two are the means by which 
user processes send and receive data over the connection. 

GID(foreign-host , conne 
This call supplie 
would like to be us 
established. The 
accept ing it , and a 
state = "init", th 
associated with the 
The entry <connecti 
the kernel Key Tabl 
sends <connection-i 
The policy-info can 
it should be the 
identified by proce 
the organization 
might also be a 
associated with t 
there should alread 
the other host ha 
is made before send 
key is not included 
is received from a 

ction-id, process-id, state) Give-id. 
s to the kernel an id which the caller 
ed  as  the  name  of  a  channel  to  be 
kernel checks it for uniqueness before 

Iso makes relevant protection checks. If 
e kernel chooses the encryption key to be 
id (or queries key controller for key), 

on-id, key, process-id, state> is made in 
e. Using its secure channel, the kernel 
d, key, policy-info> to the foreign host. 
be anything, but in the military case, 
security level of the local process 

ss-id. In a commercial case it night be 
by which the user was employed. It 
network-wide global name of the user 
he process. If state = "complete", then 
y be an entry in the Key Table (caused by 
ving executed a GID) so a check for match 
ing out the kernel-kernel message and a 

The NPM process is notified when an id 
foreign kernel . 

CID(connection-id) Close  id.     The  NPM  and  the  appropriate 
process  at  the  local site are both notified that the call 
has been issued.  The corresponding entry in the 
is  deleted.   Over  the  secure  kernel-kernel 
message is sent telling  the  other  kernel  to 
corresponding   Key   Table  entry.   This  call 
executable only by NPMs or by the process  whose 
entry  indLcates thac it Ls the process associate 
id", to block potential denial of service problems 

Key  Table 
channel ,  a 
delete  its 
should  be 
K a y  i a b 1 e 

d v/ibh tbis 

Encrypt(connection-id, data) Encrypt  data and  buffnr  for NPM 
iiii. e E 

numoers, to the data, encrypts the data using the Key 
corresponding to the supplied id (fails unless the process- 
id associated with the connection-id matches that of the 
caller) and places the data in an internal buffer. The NPM 
is informed of the awaiting data. 

Decrypt(connection-id, user-buffer) Decrypt data. This call 
decrypts the data from the system buffer belonging to the 
connection-id supplied using the appropriate key. The data 
is moved into the user's buffer. The call fails unless the 
process-id stored in the Key Table matches the caller and 
any data integrity checks succeed (such as sequence 
numbers) . 
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An important new kernel table is the Key Table.[1] It contains 
some number of entries, each of which have the following 
information: 

<foreign-host, connection-id, key, sequence-no, local-process-id> 

There is one additional kernel entry point besides the calls 
listed above, namely the one caused by control messages from the 
foreign kernel. There are two types of such messages: one 
corresponding to the foreign GID call and the other corresponding 
to a foreign CID. The first makes an incomplete entry in the 
receiving kernel's Key Table, and the second deletes the 
appropriate entry. 

The following sequence of steps illustrates how a connection 
would be established using the encryption connection protocol. 
The host processors involved are numbered 1 and 2. Process A at 
host  1 wishes to connect to process B at  host 2. 
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A executes an establish connection call which informs 
aying "conn from A to BÖ2".  This message can be sent 
in the clear.  If  confinement  is  important,  other 
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:■ k e r n e 1S 1 ■■: e n :; r a t 
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and  interrupts 

ival , does an I/O 
ermines that it is 

to step 3 being 
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id between the two 
the  process  that 
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NPM§2,  giving  it 
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wher s conn ect i o n-i d i s t he s 
local to host 2. This call interrupts process- 
eventually causes the appropriate entry to be made 
el table at host 1. The making of that entry 
NPM@1 and process-idö1. 

[1] In some hardware encryption implementations, the keys are 
kept internal to the hardware unit. In that case, the key entry 
in the Key Table can merely be an index into the encryption 
unit's key table. 
[2] The host-host protocol messages would normally be sent en- 
crypted using the NPM-NPM key in most implementations. 
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by issuing 

There are a number of places in the mechanisms just 
described where failure can occur. If the network software in 
either of the hosts fails or decides not to open the connection, 
no kernel calls are involved, and standard protocols operste. A 
GID may fail because the id supplied was already in use, a 
protection policy check was not successful or because the kernel 
table was full. The caller is notified. He may try again. In 
the case of failure of a GID, it may be necessary for the kernel 
to execute most of the actions of C1D to avoid race conditions 
that can result from other methods of indicating failure to the 
foreign site. 

iL-3. Pi. scussion 

The encryption mechanism just outlined contains no error 
correction facilities. If messages are lost, or sequence numbers 
are out of order or duplicated, the kernel merely notifies the 
user and network software of the error and renders the channel 
unusable. This action is taken on all channels, including the 
kernel-kernel channels. For every case but the last, CIDs must 
be issued and a new channel created via GIDs. In the last case, 
the procedures for bringing up the network must be used. 

This simple minded view is acceptable in part because the 
expected error rate on most networks is quite low. Otherwise, it 
would be too expensive to reestablish the channel for each error. 
However, it should be noted that any higher level protocol errors 
are still  handled  by  that  protocol  software,  so  that  most 

managed  by  the  NPM  without  affecting  the 
On highly error prone  channels,  additional 

encryption  level may still be necessary.  See 
a  discussion  of  resynchronization  of  the 

failures  can  be 
encryption channel 
protocol  at  the 
Kent [Kent 76] for 
sequencing supported by the encryption channel 

.• rom t he pr 0 tec 110n viewp0int, one can c0nsider th -2 
collection of NPMs across the network as forming a single 
(distributed) domain. They may exchange information freely among 
them. No user process can send or receive data directly to or 
from :;n HPM, excapt via narrow bandwidth channels throush which 
control information is sent to the NPM and status and error 
information is returned. These channels can be limited by adding 
parameterized calls to the kernel to pass the minimum amount of 
data to the NPMs, and having the kernel post, as much as 
possible, status reports directly to the processes involved. The 
channel bandwidth cannot be zero, hov;ever. 

LiL System Initialization Procedures 

The task of bringing up the network software is composed of 
two important parts. First, it is necessary to establish keys 
for the secure kernel-kernel channels and the  NPM-NPM  channels. 
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Next, the NPM can initialize itself and its cornmunications with 
other NPMs. Finally, the kernel can initialize its 
communications with other kernels. This latter problem is 
essentially one of mutual authentication, of each kernel with the 
other member of the pair, and appropriate solutions depend upon 
the expected threats against which protection is desired. 

The initialization of the kernel-kernel channel and NPM-NPM 
channel key table entries will require that the kernel maintain 
initial keys for this purpose. The kernel can not obtain these 
keys using the above mechanisms at initialization because they 
require the prior existence of the N'PM-NPM and kernel-kernel 
channels. Thus, this circularity requires the kernel to maintain 
at least two key pairs.[1] However, such keys could be kept in 
read only memory of the encryption unit if desired. 

The  init 
proceeds  as 
networks, some 
(encrypted  wi 
initialization 
be  establishe 
ready for new 
if  desired , 
kernel-kernel 
initialization 
initialization 
NPMs probably 
a user wants t 
perhaps  close 
closed. 

ialization of the NPM-NPM communications then 
it  would  if encryption were not present.  In most 
form of host-host reset command would be sent 

th  the  proper  NPM-NPM  key).   Once this NPM-MPM 
is complete, the kernel-kernel connections could 

d by the NPM. At this point, the system would be 
connection establishment. It should be noted that, 
the  kernels  could  then  set  up new keys for the 
and NPM-NPM channels, thus only using the 
keys  for  a  short  time.   To avoid overhead at 

time, and to limit the sizes of kernel Key Tables, 
should only establish channels with other NPMs when 
o connect to  that  particular  foreign  site,  and 

the  NPM-NPM  channel after all user channels are 

iL.Ü Symmetry 

The case study just presented portrayed a basically 
symmetric protocol suitable for use by Intelligent nodes, a 
fairly general case. However, In some instances, one of the p-^ir 
lacks algorithmic capacity, as illustrated oy simple hardware 
terminals or simple microprocessors. Then a strongly asymmetric 
protocol is required, where the burden falls on the more powerful 
of the pair. 

ii e 
the 

yptJ.o;! is not 
user  processes 

A form of this problem might also occui 
handled by the system, but rather by 
themselves. Then for certain operations, such as sending mail, 
the receiving user process might not even be present. (Note that 
such an approach may not guarantee the encryption of all  network 

[1] In a centralized key distribution version, the only keys 
which would be needed would be those for the key distributor 
NPM-host NPM channel and for the key distributor kernel-host ker- 
nel channel. In a distributed key management system, keys would 
be needed for each key manager. 
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traffic.) Schroeder and Needhara have sketched protocols that are 
similar in spirit to those presented here to deal with such 
cases. 

5_ • Datagrams 

The case of electronic mail illustrates an important 
variation to the protocols presented earlier. Assume that a user 
at one site wishes to send mail to a user at another site. 

Using conventional encryption algorithms, the first user 
would request a connection to the second user, and a new key 
would be chosen and distributed by the key controller for use in 
the communication. That key is sent using the secret keys of the 
two users. 

However, since the second user may not be signed on at the 
time, a daemon process is used to receive the mail and deliver it 
to the user's "mailbox" file for his later inspection. It is 
desirable that the daemon process not need to access the 
cleartext form of the mail, for that would require the mail 
receiver mechanism to be trusted. This feat can be accomplished 
by sending the mail to the daemon process in encrypted form and 
having the daemon put that encrypted data directly into the 
mailbox file. The user can decrypt it when he signs on to read 
his mail. In that way, the daemon only needs the ability to 
append to a user's mailbox file. 

In order for the user to know the new key used for this 
mail, however, the key distribution algorithm used earlier must 
be modified. Rather than sending the key for this connection to 
both the sender and the receiver, the key controller sends the 
key twice to the sender, one copy encrypted with the sender's 
secret key and one copy encrypted with the receiver's. The 
sender can prepend the copy of the key encrypted 
receiver's secret key to the mail before transmission, 

sns on. his own mail program will i e n t x a '.ii i n e 

in the 
When the 

- 'i L1 b o :c 
key, and 

iroo Lem ] 
.o use ii 

file,  find the key message, decrypt it using his secret 
then use the new key to decrypt the remaining text. 

In the case of public key encryption algorithms, the mail 
somewhat simplified since the rrs.-': [>:. ; :i" knows what key 
ecryption (his secret key). However, authentication 

is not possible since the recipient is not present when the 
message is received. Thus, it may be a replay of a previously 
sent message. This problem can be prevented in the conventional 
encryption algorithm case via various protocols with the key 
managers, for example, by timestamping the mail and having the 
recipient keep track of recently used mail keys. 

Both mechanisms outlined above do guarantee that only the 
desired recipient of a message will be able to read it. However, 
as pointed out, they don't guarantee to the recipient the 
identity of the sender. This problem is essentially that of 
digital signatures, and is discussed in the next section. 
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6.-  Public Key Algorithms and Digital S i rr n a t. u r e s 

The development of public key based encryption was greeted 
by a great deal of interest, since the method appears to present 
considerable advantages over conventional encryption methods, 
especially with respect to key distribution and digital mail 
signature s. 

However, on closer examination, it seems that public key 
algorithms possess no particular advantages over conventional 
algorithms. The reasons for this conclusion are readily seen and 
are outlined below. 

6..1 Key Distribution 

Let us examine each of the advantages claimed for public key 
algorithms. The first is key distribution. Simply put, public 
key advocates argue that an automated "telephone book" of public 
keys can generally be made available, and therefore whenever user 
x wishes to communicate with user y, x merely must look up y's 
public key in the book, encrypt the message with that key, and 
send it to y.[D.iffie 76] Therefore there is no key distribution 
problem at all. Further, no central authority is required 
initially to set up the channel between x and y. 

Needham and Schrocder point out however that this viewpoint 
is incorrect: some form of a central authority is needed and the 
protocol involved is no simpler nor any more efficient than one 
based on conventional algorithms.[ Needham 773 Their argument may- 
be summarized as follows. First, the safety of the public key 
scheme depends critically on the correct public key 
selected by the sender. If the key listed with a name 
"telephone book" is the wrong one, then there is no security. 
Furthermore, maintenance of the (by necessity machine supported) 
book is non trivial because keys will change; either because of 
the natural desire to replace a key p^. ir which his been 

,a  transmisaion,     because   ksy 
\ a r i e t y 0 f w a y s . 

being 
in     the 

or 

high       ' trioun '■ o      0 1       ci at a      t r • 
compromiaed through a variety of ways. ihcjre must be some source 
of carefully maintained "books" with the responsibility of 
carefully authenticating any changes and correctly sending out 
public keys (or entire conic? of the boo"" :) upon r e Q u s s t. 

Need 
desired 
are e qu i 
protocols 
required 
only obs 
conventio 
its coll 
at UCLA o 
construct 
building 

ham and Schroede 
properties for 
valent protocol 

are equivalen 
as well as in th 
ervable differs 
nal case, in add 
ection of (conve 
n secure opcrati 
ing a secure 
the correct one 

r also exhibit 
public key sys 

s for convent 
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e mechanisms wh 
nee is that the 
ition to being 
ntional) keys s 
ng systems, it 
central author 
needed for publ 

protocols to provide the 
tems, and show that there 
ional algorithms. The 
ms of numbers of messages 
ich must be trusted. The 
central authority in the 
trusted, must also keep 
ecret. Based on the work 
appears that the task of 
ity is no harder than 
ic key systems. 
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6.2 Dleibal si ^natures 

methods  are  often The second area in which public key 
thoufiht to be superior to conventional ones is digital message 
signatures! The method, assuming a suitable public key 
aig^ithm! is for the sender to encode the mail by "decrypting 
it with his private key and then send it. The receiver decodes 
the message by "encrypting" with the sender's public key. The 
usual view s that this procedure does not require a central 
authority except to adjudicate an authorship challenge. 
Hoover "two points should be noted. First, a central authority 
is needed by the recipient for aid in deciphering the first 
ttssage received from any given author (to get the  corresponding 

example).[Needham 77] 

unadorned   public key 
The 

Further, and more serious, the 
signature protocol just described has an important flaw 
author of signed messages can effectively disavow and repudiate 
his signatures at any time, merely by causing his secret key to 
Smade'public, or "compromised".  When  such  a" .^ „^^ .'. 

intention, all messages previously "signed^ 

safe 
key. 

as 

the validity of a signature on a message  is  only  as 
the  entire future history of protection of the private 

—----■ protection  resides  in 
Further, the ability to remove the      .  ^   ,  .s,  . .t 

precisely  the  individual  (the author) who should nothold^that 

right.  That is, one important  purpose of 

indicate 
message in 

responsibility  for  the  content 
that cannot be later disavowed 

a  signature  is  to 
of  the accompanying 

a way 

peopli some  peopx«  may  argue 
conservative;  that  existing 
reliable, that individuals have 
repudiate   their   signatures, 

that  this   concern   is   overly 
signature  methods  are  not  very 

considerable  incentive  not  to 
and  so  one  is  justified in 

.L , 

characteristic  is  clearly  unsatisfactory, 
possible to devise suitable digital signature 
not suffer from this problem. 

especially if it is 
methods  which  do 

conventional The situation with respect to signatures "sins    r_ ,.  7ßl 
appears slightly better.  Rabin [Rabin 78] 

a method of digital signatures algorithms  initially 
proposes elsewhere in this volume nilbli^ kev 
based  on  any  strong  conventional  algorithm.  LJke public key 
Methods it too requires either a central authority or an explicit 
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agreement 
going.[1] 
Rabin* s 

between  the  two  parties  involved  to  get  matters 
Similarly,  an adjudicator is required for challenses. 

method however uses a large number of keys, with kcyS| not 
being reused from message to message.  As a result, if a ^V'^ys 

other signatures based on other keys  are  still 
a real advantage over public key 

are compromised, 
sa f e However,  that  is  not the 
methods, since one could readily add a layer of P™^/1 "^ d^ 
public key method to change keys for each message as Rabin does 
for conventional methods. One could even use a ^riant of 
Rabin's scheme itself with public keys, although it is ea.y to 

develop a simpler one. 

or 
of 
to 

However, all of the digital signature methods described 
suggested above suffer from the problem of repudiation 
signature via key compromise. Rabin's protocol or analogues 
it merely limit 'the damage (or. equivalents, provide 
selectivity!). It appears that the problem is intrinsic to any 
Tpproach L which the validity of an author's signature depends 
on secret information, which can potentially be^revealed, either 
by the author or other interested parties, 
would be desirable. 

Surely improvement 

.6.1 A Reliable Digital Signature. Method. 

A simple, obvious solution is to interpose some trusted 
interpretive layer between the author and ^J^f^ f^ 
whatever their form. For example, suppose the list °f ^eys in 
Rabin's algorithm were not known to the author, but instead were 
contained in a secure Unit (hardware or software) "er the 
author wished to send a signed message, he merely submitted the 
message to the Unit, which selected the appropriate keys and then 
used the standard algorithm. Each author has access to such a 

Unit. 
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[1] In his paper, Rabin describes an initialization method which 
ivolves an 'explicit contract between each pair of parties that 

wish to communicate with digitally signed messages. One can 
easily instead add a central authority to play this role using 
suitable authentication protocols, thus obviating any need for 
two parties to make specific arrangements prior to exchanging 

signed correspondence. 
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components of the Network Registry is required.  However, it 
be very simple; low level link encryption would suffice. 

can 

For safety and efficiency, the NR functions presumably 
should be decomposed and distributed throughout the network. In 
particular, the failure or compromise of a local NR would then 
only have local consequences. One can even construct local NR 
components of the Network Registry in a decentralized way so that 
compromise of more than one component would be required before a 
message signature was affected.[1] The NR architecture issue, 
while important, is to some degree a digression here and so we 
put it aside. 

The Registry concept is quite common in the paper world. A 
local government's real estate recorder's office is probably the 
most commonly known example. 

A. A Au ':hent icat ion 

We now make 
that there exi 
an individual is 
the local Unit 
ultimately requ 
masquerade as a 
required is some 
terminal -- so 
today. Perhaps 
other personal c 

an important observation. It is still necessary 
st a guaranteed authentication mechanism by which 
authenticated to the MR (presumably directly to 

). Any reasonable comunication system of course 
ires such a facility, for if one user can 
nother, all signature systems will fail.  What is 
reliable way to identify a user sitting at a 

me method stronger than the password schemes used 
an unforgeable mechanism based on fingerprints or 
haracteristics will emerge. 

In part 
satisfactorily (including performing user authentication), it 
clearly must be distributed, and clearly must be able to 
communcicate securely internally among the distributed 
components. Given that such facilities exist, then the following 
is an example of a simple implementation of digital signatures 
which does not require a specialized protocol or encryption 
algorithm: 

1.  The  author  authenticates  with  a  local  Network  Registry 

[1 ] See section 6.6. 
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a 
component, creates a message, and hands the message to the MR 
together with the recipient identifier and an indication that • 
registered signature is desired. 

2 A Network Registry (not necessarily the local component) 
computes a simple characteristic function of the message, author, 
recipient, and current time, encrypts the result with a key known 
only to the Network Registry, and forwards the resulting 
"signature block" to the recipient. The Nfi only retains the 
encryption key employed. 

3. The recipient, when the message is received, can ask the NR 
if the message was indeed signed by the claimed author by 
presenting the signature block and message. Subsequent 
challenges are handled in the same way. 

This simple protocol involves little additional mechanism 
beyond that which was needed by the Network Registry anyway. It 
does require that the Network Registry be involved in every 
message signature and validation. However, recall that all of 
the unadorned signature methods reviewed earlier require 
involvement of some form of a Network Registry for at least the 
first message between any two parties. Public key protocols must 
check the "telephone book", and Rabin's method requires either a 
contract or a Network Registry. Furthermore, when one adds a 
more complete Network Registry on top of those other signature 
methods to correct their repudiation problem, all methods involve 
the NR for each message. Note that this protocol also does not 
require the NR to maintain any significant storage for signature 
blocks . 

6.. .6 Performance and S a fe t v 

Certain elementary precautions should be taken in the design 
of  the  Network  Registry  to avoid unnecessary internal message 
exchanges and to assure safety of the keys used  to  encrypt  the 
j^nahurs  blocks.   Performance  enhdnos.nent s  presumably  wouici 

involve distributing the  signature  ölock  calculation.   Safety 
enhancements  could  include  the  use  of different keys at each 
distributed site, replicating sites, and  employing  a  signature 
block  computation  which  requires  the  cooperation of multiple 

try oh ■ '■'    • H , -j.. '■ < •> - ' i ;■ ; ;■ D i ? r. t r a igh t f o r w 5 rd to bui 1 .; '.- nu 
~,o   they are not discussed further here- 

From the preceding discussion, we conclude that the digital 
signature algorithms proposed heretofore are unsatisfactory, and 
the improvements required to correct their inadequacies make the 
use of a specialized digital signature algorithm unnecessary. 

We note here that the safety of signatures in this proposal 
el^o depends on the future history of protection of keys as 
before, in this case those held by the Network Registry. 
However, there are several crucial differences between this case 
and previous proposals. First, the authors of messages do not 
retain  the ability to repudiate signatures at will.  Second, the 
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Network Registry can be structured so that failure or  compromise 
several  of  the  components  is  necessary  before signature of 

validity is lost.  In the 
could lead to compromise. 

previous  methods,  a single  failure 

1-   Conclusions 

more 
The 

We draw a number of specific conclusions, as well as 
general perspectives from the preceding discussions, 
specifics are as follows. First, public key encryption systems, 
viewed in the context of the network protocols by which they must 
be used, do not seem to provide any significant advantages over 
conventioml encryption algorithms. Each important function that 
has been recognized can be performed at least as easily by 
conventional methods with, it appears, no more supporting 
mechanism. Therefore, if strong conventional algorithms are 
easier to develop, as has been speculated [Rivest 77b], research 
would be better devoted to that area rather than public key 
systems . 

Second, it seems that the digital signature methods which 
have been proposed, both public key and conventional algorithm 
based, do not adequately protect recipients of signed documents 
from repudiation of signatures by the author revealing the secret 
key(s) employed. The difficulty appears intrinsic to the 
approaches being taken. An alternative is available which 
overcomes this problem however, that involves a small amount of 
trusted software. 

Third,  the  necessary  underlying  mechanism  required to 
support improved digital signature methods, as well as other user 
visible secure network communcation protocols, is relatively well 
understood,  and  an  example  is  presented  in this paper. The 
example takes account of the important requirement that the 
amount of trusted mechanism involved be minimized for the sake of 

safety. 

. w o r In more global terms, this discussion  oi  ne 
has been intended to illustrate the current state of the art. 
suggests the following general perspectives. 

It 

[f ane'? view of security of d 
common carrier philosophy, then 
secure, common carrier based, point 
provided are reasonably well in 
sophisticated implementation, there 
careful engineering to be done. 

However, this conclusion rests 
that is not universally valid, 
operating systems to support the i 
required encryption protocol faclli 
as a single protection domain. A s 
Distribution Center or Registry 
Fortunately, reasonably secure  ope 

a i .. ; n ne r.wo ■■.;.• .. s u .i .■ .■■.' '^ ■    • 
gene ml  principles  by which 
to point communication can be 
hand.   Of  course,  in  any 

will surely  be  considerable 

on one  important  assumption 
Either  there  exist  secure 

noividual  processes  and  the 
ties, or each machine operates 
ccure implementation of a  Key 
is necessary in any case, 
rating  systems  arc  well  on 
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th-ir way, so that this intrinsic dependency of network security 
on" an appropriate operating system base should not seriously 
delay common carrier security. 

the of One could however, take a rather different view 
nature of the network security problem: the goal rm-nt b- to 
provide a high level extended machine for the user, in 
explicit awareness of the network is required, 
facility is trusted to securely move data from site to site as 
necessary to support whatever data types and operations that are 
relevant to the user. The facility operates securely and_ with 
integrity in the face of unplanned crashes of any nodes in the 
network. Synchronization of operations on user meaningful 
objects (such as V/ithdrawal on CheckingAccount) is reliably 
maintained. If one takes such a high level view of the goal of 
network security, then the simple common carrier solutions 
respond only to part of the network security problem and more 

work remains. 

which  no 
The underlying 
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Iptroduction 

This paper is concerned with issues of 
resource coordination in distributed systems, and 
the maintenance of system consistency throughout 
normal and abnormal conditions. A database is said 
to be in a consistent state if all the data items 
satisfy a set of established apgertions or 
consistency, constraints. A database subject to 
multiple access requires that accesses to it be 
properly coordinated in order to preserve 
consistency. Coordination of resources in a 
distributed environment exhibits additional 
complexity over resource coordination in 
centralized environments due to: 

1. 

2. 

possibility of crashes of participating 
altes and or communication links. 
Ocoiirrsnort of such failures can rer.der the 
databass inconsistsnc if not appropriately 
handled by the coordination algorithm. 

network partitioning: in general, it is 
not possible to distinguish between 
ra»s3a?es which could not ba delivered du1? 
to a crash or the recipient site and 
undelivered messages due to network 
partitioning. Therefore, network 
partitioning in the more general sense 
considered here is not simply a matter of 

• This research was supported by the Advanced 
Research Projects Agency of the Department of 
Defense under Contract MDA 903-77-C-0211. 

t Partially supported by the Conselho Nacional de 
Desenvolvimento Cientifioo e Tecnologico, CNPq, 

Brazil. 

proper network topology design. It turns 
out that detection of network partitioning 
can only occur at network reconnection 

time. 

3. inherent communication delay: the time to 
get a message through a computer 
communication network may be arbitrarily 
long, although finite. Therefore any 
proposed solution should operate correctly 
regardless of the delay experienced by any 
message, and in general should be 

efficient. 

A protocol to coordinate concurrent access to 
a distributed database using locking is presented 
in 'bis paper. The algoribha hi.- as its cor» ?. 

■d locking protocol with distributed 
•alized controller with 

local appendages 
resource control. 

centra 
recovery procedures. 

at each site coordinates all 
with requests  initiated  by 

site. Recovery is application programs at any 
three- disjoint meohanisms; for 

itroi'-'. :h~. centralized .i no 

broken down into 
ai"?,1.3 node reo i 
reconstruction of 
tables. 

Among the properties of the proposed protocol 

ve have: 

£. jofrustness in the face of crashes of any- 
participating site, as well as 
communication failures, is provided. The 
protocol can recover from any number of 
failures which occur either during normal 
operation or during any of the three 
recovery processes. 



■ 

b.   padlock   EoagaUaa  sni   fit    tei^sUan 
■ ethods oan be easily Integrated given the 
centralized control characteristic of the 
proposed algorithm. 

Ä.   jira^tfgrward intfi^alüm  fit  f^^ 
tasMiiÄ Bfitilia [I] IS HSnsltiM- Value 
dependent lock specification at the 
logical level is necessary to avoid the 
problems of "phantom tuples" discussed by 
Eswaran et al Ml. Other locking 
disciplines may also be easily supported. 

d . mntlnued lEiäi fiESXäUoa In ihe XäC£ äT 
network rarUUSLOilA la S-Wvor^a. The 
locking algorithm operates, and operates 
correctly, when the network is 
partitioned, either intentionally or by 
failure -of -»«wunioation lines. Each 
partition is .able to continue with work 
local to It, and operation merges 
gracefully when the partitions are 
reconnected. 

e. performance fif the algari&ffl &&■ J®& 
^r^jP ooerations. It is shown in this 
paper that for many topologies of 
interest, the delay introduced by the 
protocol is not a direct function of the 
size of the network. The communication 
cost is shown to grow in a relatively 
slow, linear fashion with the number of 
sites in the network. 

f the correct one ration of the protocol in 
the face of the failures mentioned before 
can be proven in a straightforward way. 

Several other approaches for synchronization 
in distributed databases have been suggested in the 
literature, but none deal satisfactorily with all 
of these issues. 

The Majority Consensus protocol proposed by 
ThomasLS] requires the sites involved in a 
transaction to agree by majority vote f0' " *° 
uroceed. Timestamps on data items at each site 
indicat; whether the item is current and therefore 
whether a transaction based on It can be o.pproved. 

This  protocol  is  quits  elegant,  with 
attractive  behavior in the face of failures, 
^ p ciaÜ   for  fully  replicated   databases 
Unfortunately, for the cases considered in this 
S  r it rlUnts several drawbacks  The lock ng 

. ,.    ;  ,V,_.H,.'H-I- ^r transactions are fixea d^aclpllne and aohriduLing 01   >■' ■ J-^ ^      i-ir,,, 
by the nature or the algorithm Uself, Uu,i^"S 
flexibility (predicate locking cannot be supported 
£r example). Performance can degrade severely 
Sh Seakng syst« load in a thrashing ike 
manner since several partially complete 
t^nsactlons" which conflict lead to multiple 

resuboission of each. 

Synchronization in SDD-1 W 1= handled by 
several different protocols designed to co-exist 
with one another. The simpler ones can be used for 
certain restricted classes of transactions known in 
advance of system generation. f

ln »u°* "^ 
significant improvements in cost and delay over 
fore general protocols results. Otherwise however, 

ve reconmand our protocol since its performance la 
absolutely better and issues such as robustness and 
crash recovery, not handled by SDD-T. are 

■considered fully. 

A ring structured solution is proposed by 
Ellis[6] It uses oequential propagation of 
synchronization and update messages along a 
statically determined circular ordering of the 
nodes. Two round trips are required for each 
update. This protocol, while in general much 
slower than the others mentioned above, is quite 
simple and Ellis has employed fonnal verification 
procedures to show its correctness. Unfortunately 
however, failures and error recovery are not 
addressed by the protocol. 

Other proposed schemes, called BCiffiäEi ÄSEi 
strategies have been suggested in [3], 15] and I N. 
Alsberg in [3] introduced some techniques aimed at 
SovlSing a certain degree of resiliency to the 
single primary, multiple backup strategies 
discussed in [5] and [7]. The primary copy scheme 
is primarily designed to maintain mutual 
consistency of databases subject to somewhat 
limited types of update operations, but it aoes 
ir address explicitly the problem of internal 
consistency of a distributed system supporting 
general transactions. 

The protocol presented in this paper is 
described in an intuitive manner in section one 
followed by a more detailed description in the two 
subsequent' sections. An algorithmic «Pecif cation 
of this locking protocol can be found in t2J. ^ 
informal proof of the correctness of the algorithm 
is presented here. The proof is decomposed into 
five major parts, one for normal operation three 
for the recovery phases, and a last part that shows 
the parts actually can be proved disjointly. 

The paper concludes with a proposal for an 
extension aimed at optimizing operation of the 
SmS to adapt to highly skewed distributions 
of activity. The extension applies nicely to 
interconnected computer networks. 

J_ - (^pntralized Lock 
Intuitive pi;?nrlptlon 

r.ontroller  Protocol 

v- are considering here  is 
n nodes of a computer network. 

The database 

Z^eTfLTZ „: ^^me-that- the network 
^tocols are such that a copy of a message is kept 
by its sender until an acknowledgment for it is 
received.  In other wor^s, there are no los 

-> --'."j .1-] ■•-»"i "i.v-' nsv2 LO 

retransmitted^any times until they get through the 

ret. An implication of these aa3^Ptl0nshnJ
S
fi^fe 

messages may be delayed by an arbitrary but finite 
^o^t of tiL. Ve also assume that ^ssages roffl 
a source site A are delivered to a destination site 
B in the same order they were generated. Howler, 
we make no assumptions about the order in which 
messages from two distinct sources are received by 
a third one Ve require that the network routing 
Jrocefures"*; such that every pair of nodes can 
communicate with each other if the necessary 
physical connection is available. 

User interaction with the database is done 



Tooes     Of ho« p^ce«eS. two are "f interest 
Vor    tUis    locking protocol: the ■centralize loo 
controller' or simply 'lock controller  and the 

•local lock controller*. 

As a first approxination assume that there is 
only one lock controller or LC for the entire 
network This process is responsible among other 
things for examining lock and lock release requests 

fj« the APs, and deciding whether ^ »Stains 
Kranted or not. For this purpose, the LC naintains 
a tabfe called the LOCK table, which is a se of 
all the active locks. Each entry in this table is 
a 3.tuple of the fort. (H.T.P) v^ere H is a unique 
host identification, T is a unique transaction 
Identifier within ea^h site and P is a description 
of the losical portion of the database to be locked 
Is veil as the lock node (e.g.. read, write, etc ). 
in a relational database, the lock »P"^ ^ 
iay for example be a predicate lock as described by 

Eswaran et al [1]■ 

At every site, except for the one where the LC 

is located, there is a local l°ck^f^16^ 
n r Those processes are responsible for 
ia^tainlnTa ?ocal copy of the LOCK table Any 
LLC ia b^OBe the lock controller whenever there 
<T a crash in the system which makes the LC 
un- -laMe The recovery process is explained 
la ;* in detail. Each time a transaction takes an 
a on he local copy of the LOCK table is «amjned 
t^ deterr-ine whether the action can be Performed or 
not Therefore, there are two reasons for keeping 
a iocal copy of the LOCK table, namely: resilience 
to failures and local action checking. 

It is convenient at this point to introduce 
the  notion  of  logical partition or logical 

St-k suSh S^ery-p^ sites in the 
component can communicate with one an°ther. It can 
be reaiily seen that the composition of a Physical 
exponent' is not under the control of the locking 

protocol, since nodes and o™ioatl0".^J*" 
independently of the protocol operation. Such a 
lack of control could make the operation of the 
criocol in the face of crashes, rather complex 
^e coSpt of logical .caponeat is introduced to 
fi.."" protocol indep«nd5nce rr^r, unexpected 
changes in the composition of each P^""i 
component. To this end. each LC keeps a list of 
sU s whi h he thinks are still up, called the up 
list! A logical cmmml i* defined as being the 
tS^rd^tedbythenodes^hicharein^th. 

"^es'which ar^'actually up. Independence from the 
c^posiiion of physical components is thus achieved 
by Controlling the way by which the ^"er list 
maps into the former, in a way which Is explained 

later in the paper. 

Since one of our stated goals is ^ allow 
w=,i nnprations to continue in face of network 
pa" tioS an to allow partitions to merge 
Tra efuUy^ it is necessary for each Petition to 
have its L LC. There is one LC for each logical 

cocponent. 

The operation of the looking protocol under no 

-crash conditions cen be intuitively explained as 
foUows. The LC receives lock and lock release 
.requests from the application programs Each 
•request is sent to all LLCs in the component The 
request is stored in a pending list at each LLC 
»He and an acknowledgment Is sent back to the LC 
After the acknowledgment from all sites in the 
component is received (excluding those which 
crashed in the meantime) a confirmation for the 
request is sent by the LC to all LLCs causing the 
request to be deleted from the pending list and 

appended to the LOCK table. 

a LC if it 
table or if 

ponent. We 
ine for each 
e the data 
p is said to 
up list for 
etermlned by 
organization 
see [9] and 

A lock request nay be rejected by 
conflicts with other locks in the LOCK 
the request is not lasal to the com 
assume that the LC is able to determ 
lock, P, the set, LOC(P), of sites wher 
to be locked are stored. Thus, a lock 
be local if LOC(P) is contained in the 
the component. The set LOC(P) can be d 
the LC by checking some catalogs. The 
of those catalogs is not relevant here; 
[10] for discussions of that subject. 

Every time that a site or a set of sites drop 
out of the up list, all the locks which are not 
local any more are released and all the 
transactions which had at least one lock released 
vill be aborted or backed up. In this way complete 
locality of operations is enforced by the CLC 

protocol. 

If the LC crashes or becomes unavailable a 
recovery  mechanism  called  LSiOcal  C^cneni 
^covery (L£R) takes place. As soon as an LC-crash 
iT^tected  by  any  process engaged  in a 
conversation or exchange of messages wi.h the lock 
controller, a new process is nominated to be the 
new LC   There is a globally known  circular 
ordering of the sites from which the nominee is 
«ecS. If the nominee is up " ^cepts the 
nomination by sending a message which circulates 
through all the sites in the component   The 
purpose of this message is also to collect all the 
requests which have been received by all the sites 
bu? which are still in the pending list for at 
Ipast  one  site.   Those  requests  will  be 
en rpor^ed into the LOCK table at every site in a 
subsequent phase of the recovery process   In 
^nmary, the LOR B«ohanlsm amounts to electing a 

neH LC for the ooraDonent and bringing all tne -■. ■■■ 
tables to the same valu^ before "oraal °P^a"^" " 
resumed. Various race conditions are dealt with by 
the details of the recovery protocol. 

It is the responsibility of each LC  to 

periodically monitor the connection h^'^"^ 

^onneition11 bltwe^ Zo ^^ logically 
disconnected component is detected, a LeSiSSl 
j^nent Mers« (LSM) mechanism is started LCM is 
always done pairwise between components and in this 
frocess the LC of one of the components plays an 
active role while the other plays a passive one 
We first phase of LCM is composed of an 
fnterconnectlon protocol by ^ich two JXs *re 
logically connected in such a way that one of them 
is designated active and the other Pass^; ..^ 

protocol also enforces the Pairwise "^V^^cal 
and is -rtiown to be deadlock free.  After a loglca 
connection has been established both LCs clear all 



Cutstanding requests and reject further ones. In 
the subsequent phase, the union of the LOCK tables 
of the two cotnponents is made and the new LOCK 
table is sent to all the sites in both components 
in the form of a message which circulates through 
then. This message signals the completion of the 
merge. The active LC becomes the lock controller 
for the new logical component. 

When a site which was down recovers, it is 
made active by the gingle Mfldg lesoverx (SKR) 
mechanism which basically amounts to the 
acquisition by that site of a new copy of the LOCK 
table. 

The three recovery mechanisms described above 
dc net interact with each other, as will be shown 
later. This property is important because it 
allows us to decompose the correctness proofs into 
a proof of disjolntness and then proofs for each 
recovery procedure separately. 

The recovery mechanisms will be shown to be 
robust in the face of additional failures. In 
order to achieve this goal, each mechanism is 
designed in such a way that a partial execution of 
any of the recovery algorithms does not destroy any 
of the properties we want to prove about them. 

It is important to emphasize at this point 
that, since all the lock requests are examined by 
ar. LC in each logical component, locks granted by 
LCs do not conflict with one another. This fact 
enables us to consider the operation of the 
algorithm for normal operation and for recovery as 
if there were only one lock per logical component. 
The reader is encouraged to keep this in mind as he 
reads through this paper. 

3. When all the HA nesoages have been 
received by S, M Is moved to 
final_buffer(S) and removed from 
temp_buffer(S) and a "CONFIRM MESSAGE" or 
CM message is broadcast to all 
destinations. 

14. The receipt of a CM message at destination 
Di causes M to be moved into 
final_buffer(Di) and removed from 
terap_burfer(Di). 

A variant of this approach with additional 
acknowledgment messages, called a two-phase- cocmit 
protocol, is described in [11] and [12]. 

Several other details are also worth keeping 
in mind. As mentioned before, each LC keeps a list 
of the sites in the component which are up. A node 
1 is removed from this list by the LC each time 
that the underlying network protocols fail to 
deliver a message to site i (after timeout and 
retransmission occurred a certain number of times) . 
An up list is also modified by the execution of any 
of the three recovery mechanisms. A copy of the up 
list is also kept by each LLC. Every update to the 
up list by the LC is transmitted to all LLCs in the 
component. Note that no additional message traffic 
is generated by those updates aince they can 
"piggyback" on other messages. The reason for 
keeping iocal copies of the up list is merely a 
matter of performance, since the up list determines 
to some extent the set of nodes which should 
participate in the LCK or LCM recovery mechanisms, 
as will be seen later. Also, every time that a 
change in the up list causes certain locks not to 
be local any more, all non-local locks are released 
and the affected transactions aborted. 

g -  Lock and Release Granting Algor^th!ns 

This section describes informally the 
algorithms used to grant new locks and to release 
existing ones. One would like those algorithms to 
have the property that a lock is either granted or 
released if and only if It is known to all the 
sites. The basic structure of both algorithms can 
be abstracted in what we call the Assured 
Comaunicatlon Protocol (ACP) which exhibits the 
desired property outlined below. 

Let there be' a sender S, who wishes to send a 
nessage M, originated at an external source ES, to 
£ destinations DI, D2, .... Dn. Each site i keeps 
two message buffers: temp_buffer(i) and 
final_buffer(i). ACP is nuch that message M will 

burfor(S) iff H is either in 
final_buffer(DJ.) for all 
can be described by the 

or . '■  ' • in . Lna 
terp_bui icrvDi) 
destinations Di. ACP 
following set of rules: 

1. S receives a "MESSAGE REQUEST" or MR 
message froc ES and broadcasts an "ACCEPT 
MESSAGE" or AM message, which contains M, 
to all Di's, i=1,...,n. The message M is 
placed in temp_buffcr(S). 

2. When an AM message Is received by a 
destination Di, the message M is placed in 
temp_buffer(Dl) and a "MESSAGE ACCEPTED" 
or MA message is sent back to S. 

£-1 - Lock Granting Algorithm 

Application programs issue lock requests by 
sending a "LOCK REQUEST" or LR message to the LC. 
This message contains the lock or 3-tuple which the 
user would like to be entered in the LOCK table. 
The LC decides whether the lock can be granted or 
not. If the requested lock conflicts with other 
active locks a scheduling decision must be taken by 
the LC as to whether to preempt nny transaction or 
to risk? the requester wait. That ^c;..-!ijr\ is not 
the concern of this paper. If there are no 
conflicts and the lock is local to the component 
the LC must notify every LLC in its component that 
a new entry should be appended to their LOCK 
tables. Actually, instead of inserting the lock 
directly into the LOCK table, an LLC appends it to 
a list of pending look requests, called an .L-üat.. 
The reason for this is to prevent copies of the 
LOCK table from becoming inconsistent if the LC 

crashes. 

The basic structure of the Lock Granting and 
Lock Releasing algorithms is the same as that of 
the ACP protocol, where AP, LC, LLCi and LOCK table 
correspond to ES, S, Di and final_buffer in ACP, 
respectively. Also, the message M in ACP should be 
considered as a lock request for the Lock Granting 
algorithm and as a release request for the Lock 
Releasing one. For the Lock Granting Algorithm, in 
particular, temp_buffer corresponds to an L-list. 
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2,'Z - -Lock peleaalng Alg.°rlttW 

A similar procedure Is followed when an AP 
Issues a lock release request, by send!.:-^ to the LC 
a "RELEASE REQUEST" or RL message. Each site keeps 
a list of pending release requests or an B-llaL for 
the saae reasons we introduced the L-list. The R- 
list corresponds to temp_buffer in the ACP 
protocol. 

2.-1 -  Some pefinitions .and fxaofs 

We will show here that, if no crash occurs, 
the Lock Granting and Lock Releasing algorithms 
have the property that a lock is only granted or 
released if all the sites in the component know 
about the request. In order to make this statement 
nore precise consider the following definitions. 
Let LT(i), L(i) and R(i) be the LOCK table, L-list 
and R-list at site i respectively. 

lock PEFIMTION 1 (Lock peouest Presence): A 
request or a lock is said to be present at site fl 
i, if the lock is either in LT(i) or if it 
L(i). 

is in 

PEFIN'ITION 2 (Release Request Presence): A look 
release request is said to be present at site # i 
if it is either in R(i) or if is not in LT(i). 

The proof for the following two assertions, as 
well as for all other assertions in this paper, can 
be found in [2]. 

ASSEFTION 1: If a lock is in LT(i) for some 
i=1,...,n and in the L-list for at least one site, 
then this look is present in every other site of 
the ccnponent. 

ASSERTION 2.- Let x be a lock and y its associated 
release request. If x is in LT(i) for at least one 
site in a logical component but not in all of them 
and y is in at least one R-list, then y is present 
in every other site. 

Assertions 1 and 2 together lead 
the following result. 

directly to 

THEOREM 1: Let C be a logical component, LC its 
lock controller and U the set of sites In C. If no 
crashes aver occur than a lock request is only 
granted by tha LC after it la present at all the 
sites in U and a lock is only released if the 
associated release request is present at every site 

in U. 

3 - Qraa'n jjacovgra 

So far we have described the protocol for 
requesting locks and releasing them, assuming that 
no crash occurred. Communication links, 
processors, operating systems and processes are 
some examples of sources of crashes. 

The three already mentioned recovery 
mechanisms will be presented here. These 
mechanisms will be proven to be robust with respect 
to additional failures. To be robust, the 
protocols must preserve logical component internal 
and mutual consistency as defined below, if any 

changes have been made to any permanent information 
(like LOCK tables, up lists or LC id's) at any 
node. 

PEFINITION 1 (l.T-gonslstencv): The set of LOCK 
tables of a Logical Component is said to be LT- 
consistent if assertions 1 and 2 hold at any time. 

PEFINITION i (logical Component Internal 
Consistency): A logical component Is said to be 
Internally consistent if the set of its LOCK tables 
is LT-consistent and if there is one and only one 
LC, whose identity is known to every node in the 
component. 

PEFINITION 5, (Logical Component Mutual 
Consistency): A set of logical components is said 
to be mutually consistent if all of them are 
internally consistent and if there is no look 
present at any LOCK table of one of them which 
conflicts with another such lock of any other 
component. 

Pefinition 5 covers the previous two, and 
specifies the property which is required of 
recovery. 

The recovery protocols have been designed so 
that all crashes which can occur during a recovery 
phase fall into one of the two disjoint classes, 
which we call terminal and transparent failures. 

A terminal crash causes the entire recovery 
mechanism to be aborted and restarted. The 
possible conditions under which terminal crashes 
occur are shown to leave the protocol in a robust 
state, as defined above. A transparent crash is 
defined to be one which does not affect the 
continued correct operation of the recovery 
process. 

Therefore, if all crashes can be shown to be 
either terminal or transparent, the recovery 
protocols are robust. As we will see, for each of 
the recovery mechanisms, we can identify a point 
before which the recovery c?.;i be considered as not 
having happened at all and after which it is 
considered to be successfully carried out. This 
point is called the 'completion point'. Crashes 
before the completion point, if they have any 
effect at all, are shown to be terminal. Crashes 

to be 
nsparent. 

The three proposed recovery mechanisms will be 
shown to occur disjointly in time. In other words, 
a merge of two logical components only takes place 
if t h B 1 r r. ? ^ si s t n t c both are ■ 
recovering from a Logical Component : , 
site only becomes attached to a logical component 
if this component is in its normal state. These 
important properties will allow us to state and 
prove separate theorems concerning each one of 
them. 

2..1 -  logical Component Recovery (L£E) 

We will now show how an LLC may become an LC 
if the LC crashes. A crash of the LC can be 
detected by any process engaged in a conversation 
or exchange of messages with it. As an example, an 



JJ> may tlmo-out «hlle «altlng for a reply from the 
LC for a look or lock release request.  In every 
cpse, the process which detects a crashed LC is 
responsible for nociinating a new LC.  For this 
purpooe, we will assume that the distinct sites or 
nodes in the underlying network are arranged in a 
linear order such that node #1 precedes node 
#(1*1) nod n.  Let  this order be called the 
XßEÜUUsm £nl£r.  So, whenever a process detects a 
failed LC it nominates the next node which is up in 
the nonination order to the position of LC.  This 
BOOlnation is accomplished by the issue of an 
"ACCEPT NOMINATION'' or AN message by the nominator. 
If this message is not acknowledged after a certain 
number of times it has been retransmitted, the 
nominator assumes that the nominee is down and 
sends an AN message to the next site in the 
nomination order.  However, it may be the case that 
the originally nominated node was not down, as 
assumed by the nominator, but that due to certain 
conditions In the network its reply was seriously 
delayed.  So, it seems that more than one LC could 
be nominated in this process!  Let us neglect this 
issue  for the moment, while we describe the 
recovery procedure, and show later how such an 
undesirable situation can be easily avoided. The 
nominee is first responsible for checking that the 
old LC Is actually dead (since the nomination m=iy 
have come from an errant AP).  Thsn the nominee 
must notify every other site that it has accepted 
the nomination.  Moreover, the nominee must make 
sure that all the copies of the LOCK table be made 
equal to the one held by the crashed LC. From now 
on, we will refer to the crashed LC as the 'old LC 
and to the nominee as the 'new LC. 

The process by which the new LC becomes the 
actual LC can be divided into two phases: a 
'notification phase' and a 'LOCK table update 

phase'. 

In the notification phase all the nodes in the 
component, as indicated by the up list U, are 
informed of the identity of the new LC. Also, in 
this phase enough information Is gathered in order 
to appropriately update the LOCK tables in the 
subsequent phase. The necessary infermation is 
described by the sets L and R as defined below. 

nRFTNiTioN £ tagt L - .ael fil lesks ia ia aiisi Ja 
£.11 US)' 

L s 1 X I X is In L'.i) for some i in U and 
x is present in all sites in U ) 

, a lock x is in L if it is present at every 
ut it is In at least one L-llSt, which 

So 
site bu1 

iaipUea that ill 
I  iCK" oessase f^ci the old 
not receive a "CONFIRM LOCK 

J, but at 
message. 

least one 
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from ill Lla): 

R = { x ! x is in R(i) for some i in U and 
x la present in all sites in U ) 

So, if a release request is in R, then ^1 the 
sites in U have already received an ACCEPT 

RELEASE" message from the old LC. 

The new LC, upon nomination, vlll issue a 
liessage called "NOMINATION ACCEPTED". This message 
will circulate onoe through the set of all sites in 
U (including the site where the new LC runs) in a 
predetermined order. 

In order for the set L to be constructed, two 
sets, LI and L2, are formed during the NA cycle. 
LI is the set of locks which are present at all 
sites, while 12 is the set of locks which are in 
all the LOCK tables. By definition 6, the set L is 
the difference between LI and L2. 

The set R is also made out of two sets Fl and 
R2. Rl is the set of lock release request; which 
are not present in at least one site, and P? is the 
set of lock release requests in the R-list of at 
least one site. The difference P? - Rl is the set 
of locks which are present at every site, which by 

definition 7 is the set R. 

Every node, other than the newLC, in the NA 
cycle receives partially constructed sets LI, 12, 
Rl and R2, adds its contributions to then and 
places the new versions of the sets into the NA 
message which is forwarded to the next node in the 
cycle When the NA message returns to the newLC, 
the sets L and R are completed. Also, the up list 
U for the new LC will be initialized with the sites 
which participated in the above described cycle. 

After the notification phase is over, the new 
LC will send a message to every LLC asking them to 
update their LOCK tables. This message is called 
an "UPDATE TABLE" or UT message, and it carries 

within it the sets L and R. 

Having updated the LOCK table, each LLC 
a "TABLE UPDATED" message or TU message to 
LC.  After receiving a TU from every up si 
new LC becomes the actual LC by notifying 
LLCs that they can resume their normal ac 
For this purpose the LC broadcasts a "RESUV.r 
ACTIVITY" or FNA message. The new value fo 
the set of sites from which the LC receiv 
message. This new value for U is included 
RNA message, thus allowing every node in U 
the composition of the set U. 

sends 
the new 
te the 
all the 
tivity. 
NORMAL 

T U is 
ed a TU 
in the 
to know 

and Let us now describe how we can guarantee, 
lr effect, prove that only orv LC will eaers« •-; 
th» notification  process.   Reoall   .nif. 
nominator will nominate the first up node in the 
nomination sequence.  Let us make the following 

definition: 

, »qusnee,  il 1 ,•■■! i ■ » '•- 

T[j,lO)! A tri-'l 

tit« whiuh .m iCCtPl 

NOMINATION" message has been unauccessfully sent by 
a nominator j, before j sent an AN message to site 

«k. 

For every AN message sent from site *J to site 
fk we include the sequence T[J,k] as pari of it. 
This sequence will also be included as part of the 
"NOMINATION ACCEPTED" message which circulates 
through the set of sites. The purpose of this is 
to allow any site to resolve any conflict that can 
arise due to the race conditions discussed earlier 
in the paper. Namely, it is possible that core 
than one LC was nominated and consequently more 



than one NA neasage (from distinct oouroes) vould 
be circulating. ConfliotB are resolved by giving 
preference to the last LC to be nominated. NA 
messages originated by other nominated LCs arc 
killed when they are detected to belong to the 

leproper LC. 

In many Instances, In the CLC protocol, we 
require a certain message to circulate through a 
set of nodes, as it is the case of the NA message. 
Let us call such messages 'circular messages'. 
They always have- a source or generator who is 
responsible for sending It through a cycle. The 
underlying network protocols assure us that 
messages will not get lost while going from one 
site to another by the use of time-out and 
reträr.srissior. schsaes. However, a circular 
message car. still be lost if a node in the cycle 
crashes after receiving it but before being able to 
forward it. The loss of a circular message can be 
prevented by having each node in the cycle send to 
the circular message generator a copy of it, but 
only after it was forwarded to the next node in the 
sequence. Now, the sour-e is able to detect a 
cycle interruption and it can appropriately resume 
it by sending the last copy of the message to the 
appropriate site. This source acknowledgment 
sche-e at the CLC protocol level will be assumed 
to exist whenever a circular message is necessary. 

It should be noted that if an application 
prcgrar issues a lock or release request and the IX 
fails before the request is prerent at every site, 
the request will never appear in the local LOCK 
table even after the LCR is completed. Therefore, 
A?s should timeout for requests and resubmit them. 

3.1 - proofs About LCH 

Ve would like to prove now that the 
notification phase ends with one and only one LC 
having been successfully nominated, and that all 
sites'know the correct new LC identification. As a 
first step we state assertions 3 and 1 which are 
concerned with the behavior of LCR given that no 
additional crashes occur. 

ASSEFTION 1: Given that no additional crashes occur 
during LCR, thpre will bs one and only one LC whos» 

icnovn to all sites .,.,1 the 
of i.'.1? notification phas«. 

is 

The proof for this assertion is based on the 
operation of the trial sequence mechanism described 

above. 

::■•;:-., let ■■■■ ^looallv acc°-Pt»l iook (raiensi) 
request be one which is in all L-lists (R-liats) of 
a logical component. 

ASSERTION is Given that no additional crash occurs, 
the following is true at the end of the LCR 
mechanism. All the copies of the LOCK table for a 
logical component are identical to the value that 
the LOCK table of the crashed LC would have If all 
the globally accepted requests were allowed to 
complete before the crash of the LC. 

The proof for this assertion considers a 
snapshot of all LOCK tables when a crash occurs. 
It is first assumed that there are no globally 

accepted requests. In this ense, the union of the 
LOCK table of the crashed LC, LT(oldLC), with the 
LOCK table of a given site i, LT(i), is considered. 
It can be shown that all the looks in LT(oldI,C) 
but not in LT(i) will be included in LT(i) by LCP. 
Also, all the looks in LT(1) but not in LT(oldLC) 
are removed from LT(i) by LCR. Finally, all the 
locks in LT(i) and LT(oldLC) are not affected by 
the LCR mechanism. If there are globally accepted 
requests they will be included In the sets L and R 
by definition of these sets. Therefore, the LOCK 
table of all the sites in the component will be 
updated in exactly the sane way that LKoldLC) 
would have been if all globally accepted requests 
had completed. Given these assertions we prove 
the robustness of the LCR mechanism. 

THEOREM 2: The Logical 
algorithm is robust. 

Component Recovery (LCR) 

Proof: The completion point for this algorithm 
occurs when the LC has already sent all the RNA 
messages. The only terminal crash is a newLC 
failure before this point. This crash when 
detected will cause another LC to be nominated 
and the LCR mechanism to be restarted. This 
crash can occur at three different points; 

I) before any LOCK table has been updated. 
II) after some but not all LOCK tables have 
been updated. 
iii) after all LOCK tables have been updated. 

In case i) it is clear that the partially 
executed LCR has no effect at all. In case iii) 
all LOCK tables will be identical, therefore 
Internal consistency for the component in 
question is trivially satisfied. Case ii) 
requires us to show that the set of LOCK tables 
of a component is LT-consistent. We enunciate 
and prove this statement as the following lemma. 

LEKMA 1: Given a logical component where the set 
of LOCK tables is LT-consistent, then the update 
of the LOCK table as indicated by the sets L and 
F in some but not all of the nodes of the 
component preserves LT-consistency. 

Proo'f: Let 1 be a site for which the LOCK 
table has been updated. The LOCK table is 
updated in two steps. In the first one, all 
the loci« in the set L are added to LT(i). 
Addition of a look x at am site but not in 
ail doeis not violate assertion 1 since, x is, 
by assumption, a member- of the set L and 
therefore is present at every site. The 
second step is the removal from LT(i) of all 
the locks in the set R. ReEoval of 2 look 
fro-i a LOCK table at 1 /v.1 ?n site still r;i'.:j3 
it present at this site. Since, by 
assumption, the LOCK table has not yet been 
updated at all sites, the locks removed from 
LT(i) are in the LOCK table of at least one 
site and are present at all sites. Thus, 
assertion 2 is also valid and the proof is 
complete. 

Now, it remains for us to analyze the 
transparent failures. Those are all the 
failures other than the newLC crash already 
discussed. We can have either a process or 
processor failure which simply knocks out one of 
the sites in the component, or the component can 



be partitioned into two or nore oomponenta. In 
either case, a set of one or more nodes are 
isolated frora the set of nodes which participate 
in the LCR oechanism. The nodes in this set 
will not be considered any more for the rest of 
the LCR alBorlthtn. However, we have to show 
that no inconsistencies are generated by n node 
dropping out during the execution of LCR. 

For this purpose, we will examine all the 
possible instants at which a node j may crash. 

CA?E 1: during th'; 'nomination phase' 

Here we have to show that the sets L and R 
Will not be perturbed by any contributions 

alrfciiy made to then by node j.  Node J can 
crash at three possible instants. 

CASE 1.1: before the NA message first reaches 

In this case node J is simply removed from 
the cycle without contributing to the formation 

of either L or R. 

CASE 1.2: after the NA message reaches it and 
before it is forwarded to the next node in the 

^^ Here, the node which sent the NA message to 
node J will timeout, detect its crash and send 
the NA message to the node which follows node j 
ir. the sequence. Again no contributions have 

been made to the sets L or R. 

CASE 1.3: after the NA message has been 

forwarded , ^  . 
A crash of node j at this point is 

e-uivalent to a crash of a node during the -LOCK 
table update' phase since node j already played 
its role in the 'notification phase'. 
Therefore, this case reduces to the next one to 
b° examined. The reader should notice that the 
robustness of this recovery mechanism relies 
heavily on the fact that elements are only added 
to the sets L or R if the appropriate requests 
are present at all sites (intersection approach) 
as opposed to considering requests which are 
present in at least one site (union approach). 

CASE 2: during the 'LOCK table update phis-' 
.', crash of i noda during thia phase will 

have n0 effect upon other nodes, resulting only 
in'the removal of'this node from the up list of 
the logical component which is recovering 

Exatainatlon of all these c^ses completer 

this proof. [1 

The above result allows us to relax the 
assumption made in assertion D that no additional 
crashes occur during LCR and state the following 

assertion. 

ASlinmS.: At the end of the LCR mechanism, all 
Sr^pies of the LOCK table for a logical 
component are Identical to the value that the LOCK 
table of the crashed LC would have if all the 
globally accepted requests were allowed to complete 

right before the crash of the LC. 

Finally we prove that every logical component 

is internally consistent. 

THEOREM 3: Every logical component la internally 

consistent 

Proof: Let C be any logical component. We have 

to prove that: 

1) the set of LOCK tables of C is LT- 

conslstcnt 
ii) there is one and only one LC for C. 

Statement i) is clearly true for normal 
operation of component C since assertions 1 and 
2 were demonstrated for this case. Now, by 
assertion 5 all the copies of the LOCK table are 
identical at the end of LCR. So, in this case 
LT-consistency is trivially satisfied. 

Statement ii) was proved to be correct in 
assertion 3 for the case in which no additional 
crashes occur during LCR. But, by theorem 2, 
LCR is robust. This allows us to consider the 
effect of LCR as if no additional crashes occur 
during its execution, and concludes the proof 

[]. 

2..1 -  gingle Mde pgcoverx. 

So far we have described how the system 
recovers from a logical component crash. We show 
now how a node which is down beoorr.es active again, 
or in other words, how it gets logically connected 
to a logical component. Let node j be such a node. 
The first step to become active is to find out who 
is the LC. This step is carried out by sending the 
"WHO IS THE LC ?" or WLC message to any up node. 
Then, node j sends a message called "HI THERE" or 
HT to the LC telling him that node J is alive 
a^ain If the LC is not undergoing any kind of 
c^ash'recovery it will send its LOCK table and its 
up list to node j. An "ACCEPT LOCK" or "ACCEPT 
RELEASE" message is sent to node J by the LC for 
every lock or release lock request for which not 
all the LA or RA messages have been received. 

2.j). - pobustness of gN? 

THEOREM U: The Single Node Recovery (SNR) algorithm 

la robust. 

Proof: Let j bo the recovering node and let LCi 
be the LC to which node j is trying to connect 
with The proof is extremely simple since the 
only two crashes of interest are: a) LLCj crash 
and b) LCI crash. Case a) is clearly a terminal 

crash 
•»-.rl 

Caa? b) is also a teroinai 
of LCi, before it is able 
table to LLCJ,  prevents the LOCr. table 

3 

the 
case. 
crash 

from bel^T rcoeived'by node j, thereby implying 
In SNR having to be restarted. This completes 

the proof. [) 

3..5. - f.Qglcal £2EU2onent JMerRS 

As a result of the Logical Component Recovery 
algorithm an LC will be elected in each logical 
component of the network. Transactions which are 
local to a component will continue to be serviced 
as if no disconnecting crash had occurred. On the 
other hand, transactions which span more than one 



oomponant will have to wait until the «o-ponontB 
involved «re brought together again. It in the 
responsibility of each LC to detect when two 
coaponents are physically connected again and to 
take the necessary steps to merge them into one 
logical component. The nerge of logical oomr^enls 
will always be done on a pairwlse basis The who e 
Logical Component Merge mechanism is divided Into 
tvo phases, namely a 'reconnectlon detection' 

phase and a 'merge' phase. 

In the 'reconnectlon detection' phase, each LC 

Sends periodically a "WERE YOU ALIVE" or «A 
message to every node not in Its up list.  The 
purpose of this message is to detect the existence 
of sites which were not reachable before but which 
were up. For the purposes of the description that 
follows let the two logical components to be 
„erged be called C1 -and C2. Let LCI and LC2 be 
their respective LCs and U1 and 02 their respective 
uolists.  LCI will take an active role during the 
whole recovery phase, while LC2 will take a passive 
one   As we will see, a crash of LC1 while the 
recovery mechanisn is in progress will result in 
abort, while a crash of LC2 after the 'reconnectlon 
detection' phase is tolerated.  Assume «ow that 
site ti    in C2 received a WYA message from LCI. A 

component is said to be in NORMAL status if It is 
not  undergoing  any  kind  of ^"h recovery 
m-chanism.  If component C2 is in its NORMAL 
^taS"  «ite *J sends a "YES I ™" °r HW -ssage 
to LCI.  This message carries within it  tne 

identification of LC2. 

At this point LCI has to establish a logical 
connection with LC2. This connection is "lied a 
primary-secondary or P-S connection type with LCI 
being the primary and LC2 the secondary. Since we 
require that LCH be done in a pairwlse basis, the 
following conditions must be enforced by the 
protocol that establishes a P-S connection: 

Cl: an LC cannot be primary (secondary) for more 

than one P-S connection. 

C2: an LC cannot be primary and secondary 

simultaneously. 

The P-S connection is attempted by having LCI 
sand a "LET US MERGE11 or LUM message to LC2^ in" 

ed to Uv 
sfitus 3f LCI is now ih.=—. 
status of LC2 is NORMAL, which means tnat neither 
Logical Component Merge nor Logical Component 
Reoov-ry is being attempted, LC2 sends a "MERGE 
ACCEPTED" or MA message to LCI and changes its 
internal state to SECONDARY. Upon receipt of the 
MI n^snasa the connection is considered to be 
-o-^oi'uLlv eatabliahed by LCI. If the status of 
LC2 not NORMAL then a "MERGE ATTEMPT REJECTED" 
or MAR message is sent to LCI which will either 
retry later or will try a connection with another 

LC. 

The above interconnection strategy could 
clearly allow undesirable race conditions to occur, 
such as having two LCs trying to play the role o 
primary, leading the system into deadlock 
Tituatiins. To avoid this problem we assign a 
site dependent priority to each LC (no two sites 
have the same priority). LUM messages from lower 
priority LCs are rejected. LUM messages fr« 

higher priority LCs, If  received 

connection has not yet been coopleted i.e. the MA 
message has not been received, cause the connect on 
being attempted to be broken. To this end the 
primary sends a "CLOSE CONNECTION" or CC message to 

Its intended secondary. 

That the protocol outlined above satisfies 
conditions Cl and C2 is proved in section H. 1. 
Figure 1 shows a state transition diagram 
describing  the interconnection protocol.  This 

while      the 
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protocol is the same for every node. Nof 1*^* 
ere STATUSes, while arc labels are of the forn R/T 
where R is the message whose arrival triggers the 
transition and T is a sequence of actions 
(transmission of messages) which occur as a 
consequence of the transition. 

After a P-S connection has been established 

between LCI and LC2, they will not f «P^"* ^ 
new lock or lock release requests from nodes in 

their components and «ill complefca all ^^^ 
ones.  An outstanding rsques- is one tot -'■-■' ^ 
AL or AR messages have been already ser.o but not 
all the corresponding LA or RA messages have been 
received. After all outstanding requests have been 
completed by LC2 it sends to LCI a "READY TO MERGE 
nr MM message containing as arguments the uplist 
U2 and the LC.;K tabl^ at LC?  which row is .ha sa.« 
for all nodes in C2.  The receipt ot   the RT.. 
message by LCI marks the end of the -reconnecUon 

detection' phase. 

The 'merge' phase will construct the union of 
the LOCK tables at both components Notice that up 
to this point no permanent change ^ been done Jo 
any LOCK table, nor up list of any node. ^1 sends 
a «SUBSTITUTE YOUR TABLE" or Sn messaee for a 
cycle through the set of nodes in TEMPJ3 = U1 U U2. 
TTC SYT menage is the agent which confirms h 
merge of the two components by taking within it the 

new LOCK table for the component. ^f. ^ UJ 
lists are updated and LCI becomes the new LC of 



the new logical oooponenl. 

J.fi - Robustness si l£ü 

THEOREM 5:  The Logical Component Merge  (LCM) 
Algorithm is robust. 

Proof: The completion point for the LCM 
algorithm is the point where the SYT message has 
already been received and accepted by one LLC. 

Let LT(i). U(i) and LC(i) be respectively the 
LOCK table at site i, the up list at site i and 
the LC identification as known by site i. It Is 
worth observing that changes to the values of 
LT(i), U(i) and LC(i) at any site i other than 
the LC-1 site are only done upon receipt of the 
SYT message. 

Let us examine the possible cases of 
crashes before the completion point: 

CASE 1: crashes during the -reconnection 
detection' phase 

A crash of either LCI or LC2 in this phase 
will cause LC« to be aborted and a LCR to be 
started at the component who had an LC-crash. 
Since no LOCK table nor up list has been changed 
so far, this is a terminal crash. Since LCI and 
LC2 are the only processes involved in this 
phase, we conclude that this phase is robust. 

CASE 2: crashes during the 'merge' phase 

A crash of LCI during this phase will 
interrupt LCM and start LCB for component C1. 
As no permanent changes have been done already, 
this is a terminal crash. A crash of any other 
node (including LC2) clearly does not affect any 
other node nor the mutual consistency of the 
merged logical component []. 

M. - pisiointness sL IM £ecovery. /iRorithms 

We show here that there is no interaction 
between the three recovery algorithms. To that 
effect one has to show that: 

•.■'■ LCM is don* pair', 
b) LCR, LCM And SNR itually exclusive. 

To verify condition a) we only need to show 
that conditions C1 and C2 stated in section 3.5 are 
satisfied by the P-S connection protocol.  This 

pioatio 
.cwn  to 

i    is riD.i0 in 3--?r 

holj  in jecMon 
■ 'on Conditior b) 

jt.j_ - tij.'. lointness sL LCMs. 

Consider a directed graph G whose vertex-set 
Is the set of LCs and which has two distinct types 
of ar«, namely e-arcs and a-arcs There Is an e- 
erc tro* vertex i to vertex j ^ t^6.13 *" 
established P-S connection between vertices i and 
], vertex 1 being the primary. Equivalently, an 
e^arc from vertex i to vertex J Is said to be 
created in C whenever vertex 1 enters the 
CONNECTION ESTABLISHED state (see figure 1). There 

Is en B-aro from vertex i to vertex J if vertex 1 
Is attempting a P-S connection to vertex J. Such 
an a-arc is created as soon as vertex 1 enters the 
ATTEMPT state (see figure 1). The graph G 
displays the pattern of established and attempted 
connections. Let e-G be the subgraph obtained from 
C by considering only e-arcs of C and a-G be the 
one obtained by taking only the a-arcs. 

Conditions C1 and C2 can now be rephrased as 

follows: 

C1.1:  0 <=  indegreeU)  <=  1  and  0  < = 
outdegree(v) <= 1 for all v in e-0. 

C2.1: indegree(v) • outdegree(v) = 0 for all v 

in e-G. 

Every a-arc will either be deleted from G when 
the attempted connection is broken or will become 
an e-arc if the connection is successfully 
established. So, we want to prove the following: 

THEOREM 6: Given a graph G whose e-graph satisfies 
conditions C1.1 and C2.1, the new e-graph obtained 
from G as new connections are established also 
satisfies those conditions. 

Proof: It can easily be seen, fror:, the protocol 
specification, that condition C1.1 is satisfied 
not only by the initial e-graph but also by the 
graph G, since: 

a) if there is already a connection between 
vertices i and j or one is being attempted, 
no new connection is attempted by neither 
vertex i nor vertex J. 
b) if a connection has already been 
established or is being attempted, the 
secondary will reject all further attempts. 

So. it remains for us to examine all the 
possibü cases in which condition "-1 could 
conceivably be violated in G and show that the 
resulting e-graph obtained when one or more a- 
arcs become e-arcs still satisfies this 
condition. There are four possible cases, two 
of which oan never happen due to the protocol 
specification, vhile the reBialnlng two have to 
be examined. Give.-: any three vertices a, b and 
c, the four possible cases are: 

a) (a,b) and (b,c) are e-arcs. 
b) (a,b) is an e-aro and (b,c) is an a-arc. 
CA (n.b) is an a-aro and (b.o) Js a:- e-arc. 
d) la.bj and (b,o) are a-aros. 

Cases a) and b) are the impossible ones. 
In case c) the attempted connection between a 
and b will fail since there is an established 
connection from b to c (see the self loop at the 
CONNECTION ESTABLISHED state of the diagram of 

figure 1). Therefore, arc ^.b^^ '^HPT 
In case d) nodes a and b are in the ATTEMPT 
•»täte If (a,b) becomes an e-arc we can see 
'that the transition labeled LUM/CC;MA from state 
ATTEMPT to the state SECONDARY is taken at 
vertex b, causing the attempted connection (b.o) 



to be broken. Therefore arc <o1b) boeonee on 
e-aro while arc (b,p) disappears. On the other 
hand, if (b,c) bicones an e-arc in the first 
place we are back to case c) which was already 

examined. [] 

Ve take the opportunity here to prove that the 
P-S connection protocol is such that all the o-arcs 
in G will, in a finite time, (of the order of 
magnitude of the transnlsslon delay time in the 
network) either disappear or becorae e-arcs. In 
other words, the P-S connection protocol is 

deadlock free. 

THEOREM 7: The F-S connection protocol is deadlock 

free. 

Proof: We must prove that there can be no long 
lasting cycles in G. The Interesting case is, 
of course, that of cycles made out only of a- 
arcs, since as shown in the previous theorem, 
any a-arc adjacent to an e-arc will disappear in 

a finite time. 

Consider a cycle in a-G and two adjacent 
a-arcs (a,b) and (b.c) in the cycle. Vertices a 
and b are in the ATTEMPT state. There are only 
two possible cases to consider: 

CASE 1: tPRIORm(a) > PRIORITYCb)]: In this 
case, if the "MERGE ACCEPTED" message fron 
vertex c is received by b before the "LET US 
MERGE'" message froa a then (b,c) becomes an e- 
arc and (a,b) disappears. 

CASE 2; [PRIORITY(a) < FRIORITy(b)]: Here, arc 
(a,b) will disappear since a has lower priority 

than b. 

In any event, the cycle will be eventually 
broken. Note also, that vertex c could be the 
saae as a and the above analysis is still valid. 

[] 
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The state [NORMAL, LCj, Uj] is state which 
resulted from a successful merge of cocponent C1 
with another component, for instance C2. The state 
[NORMAL, LCi, Ui] is a state which resulted from a 
successful Logical Component Recovery. 

By inspection of the diagram, we observe that 
a node can only go from one normal state to a 
different normal state after one and only one 
recovery mechanism has been completed. Therefore, 
there is no interaction among the three recovery 

mechanisms. 

Ä.2 filltCE. LCM and SM 

Vo first da-'ln» a nods ataSS i'Li;!S-j_.-.ii 
diaeraa as a directed graph whose vertices are 
states of a network node and whose arcs represent 
transitions between states. The state of a node i 
is the 3-tuple [STATUS(i), LC(i), U(i)], where 
LC(i), U(i) are as defined before, STATUS(i)ls 
t,. , ,..,,., 0«- >:,„ scraponar.t to which site is 
attached as vioved by site 1. NORMAL status 
indicates that neither LCR nor LCM is in progress; 
PECOVFPY meann that LCR is taking place and 
QUIESCENT indicates that LC(i) Is rejecting further 
requests. The labels on the arcs specify the 
conditions upon which a transition between two 
states occurs. These conditions can either be a 
crash detection or a message arrival. The diagram, 
shown in figure 2, shows all possible state 
transitions for a node, other than LCI, which is in 
a component 01, with LC equal to LCI and up list 
equal to UI. From every state there is a 
transition to the DOWN state. These transitions are 
not represented In the diagram for obvious reasons. 

5. - logical Component Mutual ggnslstency. 

Let ua Bhow here that the CLC  protocol 
(including the recovary mechanisms) ia nuoh tha 
the set of Logical Components into which the 
network is partitioned is mutually consistent. 

THEOREM 8: The set of logical components into which 
the :istwor-k is partitioned is mutually oonsis^at, 

Proof: By theorem 3 each one of the 
components is internally CLisistcnt. I 
for us to prove that there can be 
present at any LOCK table of any compon 
conflicts with another such lock of a 
component.  This theorem is trivially 
there is only one logical component. 
net partitioning does not destroy this 
eince locks are only granted if they a 
to a component, which implies that th 
conflict with any other lock granted 
other component. [] 

logical 
t remains 
no lock 
ent which 
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We show here that given a deadlock free, 
consistency preserving looking Beohanlsa for a 
rPntr?.U7.ed is^bn^  (££2), the CLC Protocol can be 
tsed to Lplement an equivalent robust, deadlock 
free, consistency preserving locking mechanlsin for 
a rtUrlbuted <i?J3&&Z  (JM) ■ * database is said 
to trtTa consistent state if all the data items 
satisfy  a  set  of assertions or consistency 
constraints.  A transaction is a sequence  of 
accesses which take the database from a consistent 
state into another consistent state.  Thus, a 
transaction is the unit of consistency  Let us 
define an access as the pair (P,a) where  P is a 
loKicai description of the portion of the database 
to be accessed and a is an access node (e.g. 
read,write,delete,etc.).  If BII the locks are 
granied by a process which has o«DPlete knowledge 
of every other active locks (as Is the case with 
the LC) and if every access is checked against the 
LC copy of the LOCK table (this condition will be 
relaxed later), to see whether the transaction 
holds  the  necessary locks , then the  lock 
scheduler' for a CDB described by Eswaran [   can 
be implemented in a straightforward manner with the 
us» of the CLC protocol. Such a looking mechanism 
has the properties of being robust and preserving 
Jhe consislency of the DB.  Notice that deadlock 
prevention or detection mechanisms can be carried 
out by the LC since it has complete «ntrol over 
all activities in its component. Recall that if 
the network is partitioned into ^e than one 
component, locks granted in one of them do not 
conflict with locks active in others.  Therefore, 
distinct LCs manage disjoint sets of "resouro«s« 
where a resource here means  an  individually 
Sckable data item in the DB.  So a deadlock 
prevention or detection policy can be implemented 
In each LC independently of all the others. 

requirement that every access be checked 
the LOCK table at the LC-site can be 
in favor of having the access checking done 

In order for this to be possible a lock 
considered to be active at a given site i 
time interval T2 contained in the time 
T1 during which the lock is active at the 
otherwise some portions of the DB could be 

The 
against 
relaxed 
locally 
must be 
for a 
interval 
LC-site, 
loc.V.ei 

d;.:igra.T 

for dlfferer In  conflicting  nodes 
ior,.5   :;.,,...*    3 shows a double tiaia ■,'<i-1 

dlapiaying-tine at the LC-site and at a 
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piven site i where a look request is originated. 
T1 starts when the "CONFIRM LOCK" raessase is »nt 

to -every site In the component end ends with the 
broadcast of the «CONFIRM RELEASE" message T2 
starts with the arrival of a ^message at site 1 
Although a look is only removed from a LOCK table 
Sen Ihe corresponding "CONFIRM RELEASE" message 
drives, it can be flagged as -waiting for removal- 
-a soon as a "RELEASE LOCK" message is sen. from 
the LC to site i. For access checking purposes. 
all flagged locks must be considered as nor. active. 
The extra precaution that must be taken in this 
case 'is to unflag all flagged locks after LC. has 

taken place. 

1. PFRFORMAHCE EESyi/r?. 

Some of the results of the cost and delay 
analysis for the CLC protocol [2] are presented 
here The update model used in this analysis is 
such' that some of the previously defined messages 
are grouped into a single physical message These 
results indicate that the average update delay 
Dupdt, does not depend directly on the s ze of the 
network for many network topologies of interest and 

its expression is given by 

Dupdt = 2»T + 3ftTMAX + W 

where T is the average message delay introduced by 
tSe network between two distinct sites, TMAX is the 
average maximum delay between a sender and several 
destinations and W is the average waiting time for 
a look request to be granted at the LC. 

Lower and upper bounds for  the  average 

recovery delay, R, are given by 

R >= (n+l)»! + B'TMAX 
and 

R < [a»(n-2) + n + 1]»T + S^TMAX 

where n is the number of sites in the network and & 
is the ratio Tout/T where Tout is the time after 
which a nominator assumes that the nominee is down 
and sends another "ACCEPT NOMINATION" message to 
the next site in the nomination order. 

The average  communications 

incurred by an update is 

cost,  Cupdt, 

. rid r- 1PM 

where M is the average communications cost per 
Message. Lower and upper bounds for the recovery 

cost Crec are given by 

Creo >= (3»n ■• 2)»M 
and 

Crec <  (6»n - ^"H 

£. - F-y tens ion 

It has been observed in most of the «isting 

distributed systems that a lar6e Pe^entage
o
of

t^t 
generated transactions is IfifiäL, in the sense that 
geneiaucu w ,,,,,.. ,= t-i«<-v a Eiven transaction the resources needed to satisfy a given v. 
are either located at the site of origin of the 
transaction or in neighboring sites. This 
observation suggests that ^nifieant savings in 
terms of comf rications cost and delay can be 
acMeved if one optimizes the operation of the 



algorithm to adapt to euch e highly -ekewed 
distribution of activity. To Illustrate the point, 
consider a set of interconnected computer networks. 
He believe that in such a case, most of the 
operations will be confined to one coaputer network 
while relatively few operations will cross network 

boundaries. 

Tnis section outlines an extension to the Cl,C 
protocol that penults the forms of performance 
optimization needed for the cases discussed above. 
The extension, which we call an HCLC (for 
Hierarchical CLC) protocol, consists of a 
hierarchical organisation of resource controllers. 
A tree of controllers is provided where the root is 
considered to be at level 0 and all the children of 
a controller at level i are at level i+1 in the 

hierarchy. 

Each controller (except for the leaves) serves 
as an LC for its children. Also, each controller 
(except for the root of the hierarchy) acts as an 
U C for its parent. Therefore, each controller has 
to maintain two distinct LOCK tables, which we call 
parent-LT and chlld-LT. The parent-LT for the root 
controller contains one lock for the whole DB in 
exclusive mode.  The child-LT for a leaf Is empty. 

An intuitive description of the normal 
operation of the HCLC protocol can be easily 
understood in the light of an example.  Figure H 
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Kl'o ptirent-LT is «earched for a lock y -which 
covers x. A lock xl Is said to jgvgr a lock x2 if 
the portion of the DE specified by x2 is contained 
in the portion of the DB addressed by xl and if the 
lock mode specified by xl is not weaker than the 
lock mode in x2. The existence of a lock such as y 
in parent-LT(Kl) indicates that Kl currently has 
control over the resources requested by API. If y 
is found, the lock request x can be granted and to 
this end Kl Interacts with K3 and K'l In the same 
way as an LC interacts with the LLCs in its 
component. On the other hand, if y cannot be 
found, the lock request x is submitted by Kl to KO. 
KG will act with respect to Kl and K2 in the saze 
way that Kl did with respect to K3 and Kl. The 
difference in this case Is that since KO is the 
root there is a lock in parent-LT(KO) for the whole 
DE In exclusive mode. This lock covers any other 

lock. 

In an HCLC protocol, locks may be released 
•either cxnlicitlv or pytomatieallv. Locks In 
ohild-LT(Ki), for 1=1,2, are released explicitly 
upon request from APs using the same mechanism 
described in the CLC protocol. Locks in parent- 
LT(Ki), for 1=1,2, can be released automatically as 
soon as there are no locks in the corresponding 
child-LTs which depend upon them. To this end, 
each lock y, in parent-LT(K), for any controller K, 
has associated with it a list of locks in child- 
LT(K) covered by y. Also, each lock x in a child- 
LT(K) -points to the lock y in parent-LT(K) which 
covers x. When a lock x is explicitly released 
from child-LT(KI) the lock list for its 
corresponding lock, y, in parent-LT(Kl) is 
appropriately updated. Whenever this list becomes 
empty, a release request may be automatically 
generated by Kl and submitted to KO. In general, 
the automatic release of locks can be propagated up 

to the root. 

This hierarchical protocol can be easily 
adjusted by policy decisions both to delay such 
releases, and to establish early locks at higher 
levels in anticipation of local look requests. 
Lock management analogous to LRU-like memory 
management policies are obvious policy candidates. 

For the set of interconnected computer 
networks, a thres-level hierarchy could be 
conätrueted aa follows, Thc-r? is o->e LC per 
oooputsr network, all of them at levsl 1. Their 
children, at level 2, are their corresponding LLCs. 
Finally, the root is any site acting as a global 
controller for the entire collection of computer 

networks. 

f iü«: ii - iiiswa« if Lä cunaufH, -vi M> ti'i 

shows a three-level hierarchy. Application 
programs interact with lock controllers Kl and K2 
at one level above the leaves (since the leaves are 
LLCs) This interaction is the same as the AP-LC 
interaction In the CLC protocol. Aot"al?;y' 
application programs are not aware of the fact that 
the controllers are hierarchically organized. Let 
a lock request, x, from API be submitted to Kl. If 
x conflicts with any other look in child-LT(Ki; 
then the lock request is treated in the same way as 
in  the CLC protocol.  If there is no conflict. 

An Interesting property of the proposed 
extension is that there is always one controller 
which is able to detect the existence of a cycle in 
the look-request graph. This controller is the 
common ancestor, with the largest level number, to 
all the controllers where requests in the cycle 
where originated. In the example of figure 1, the 
common ancestor to Kl and K2 is KO. 

Crash recovery algorithms for the HCLC 
protocol must include mechanisms to reconstruct the 
hierarchy, in addition to the recovery mechanisms 

present in the CLC protocol. 
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9..  -  foncluston 

This paper outlines what we believe to be a 
fairly general »olution to synohronlzatlon lB9ues 
[n distributed systens in the face of asynchronous 
inpJ nncd failures. The algorithms and protoco 
for normal operation and recovery are robust with 
respect to lue criteria set up at the ^g nning o 
this report. Wo are unaware of any other 
Snchronization protocols which simultaneously 

satisfy each of those requirements. 

The  work  is  primarily   s"1^"6,  f°rr 

cnvironments in which the cost, including de ay of 

is co=pl"te. Locally distributed systems often 
provWe examples of such an -viroamenU 
Geocraphically distributed networks also fall into 
Shis category if the amount of work to be performed 
after lock4 1» »ienificant relative to the 

communications cost. 

The protocols are also best suited for usage 
behavior that cannot be directly characterized in 
advance" It is assumed that query and update 
activity will be largely ad hoc in nature - the 
"ore general case which has been receiving 
increasing attention in recent years. 

The presentation of any substantial Protocol 
would not be complete without an outline of a proo 
that the protocol is correct with respec. to its 
SesireS properties. A significant portion of this 
docTent is therefore devoted to that purpose 
Further analysis using automated tools is also 

underway. 

In conclusion, these protocols should help 

deffl0nstrate the practicality of integrated 
croperation of activities in distributed systems. 
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0. Abstract 

UCLA Unix is a wholly new operating system whose architecture and implementation 

are oriented toward highly reliable security and integrity enforcement while support- 

ing a wide degree of system functionality. The system, now operational, demonstrates 

that it is possible to provide a convenient, efficient secure operating system on 

conventional, third generation hardware architectures. This paper reports on the 

development of UCLA Unix. Much of the discussion is concerned with the software ar- 

chitecture which evolved, since a number of innovations are included with surprising- 

ly little mechanism. The methods employed to build and verify the system are also 

described, and the impact of the requirement to support fully the standard Unix 

operating system functionality is discussed. 

1.  Introduotlon 

Tnere has been considerable interest for some time in developing an operating 

system which could be conclusively shown secure, in the sense that the information 

stored on behalf of a heterogeneous user population «as safely protected from unau- 

thorized access or modification, even in the face of skilled attempts to do so. Ear- 

»'Tnis'research was supported by the Advanced Research Projects Agency of the Depart- 

ment of Defense under Contract MDA 903-77-0211. 
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ly attempts to attain this goal consisted largely of auditing an existing syston by 

attempts at circumventing the controls, and then revising the implementation code to 

block any successful paths that were found. Unfortunately, this approach failed in 

producing a secure system, largely because third generation operating systems contain 

so many errors that "penetration audits» followed by patches inevitably led to a sys- 

tem whose controls were still easily penetrated. 

From a viewpoint of principle however, there was an even more fundamental limi- 

tation to the early approaches, frequently mentioned; testing proves the presence but 

not the absense of bugs. Therefore, a more strictly constructive method was re- 

quired, by which it would be possible conclusively to demonstrate the correctness of 

the security controls. It was hoped that this goal would result in a much superior 

system in other respects as well. The experience to be reported here strongly bears 

out that expectation. 

UCLft Unix is a kernel based system architecture developed in a manner by which 

program verification techniques could be (and have been) applied. The system inter- 

face is essentially identical to Unix as released by Bell Laboratories [Ritchie 7^], 

and the software presently runs on DEC PDP-1lM5s and PDP-ll/TOs. The kernel struc- 

tifes and verification proceriures, together with the choice of language, prov.uis a 

powerful means by which the system's security and integrity can be demonstrated and 

assessed. Support of the Unix interface illustrates the robustness and functionality 

of the resulting system. 

However, the kernel and verification goals imposed significant constraints on 

the size, complexity and general architecture of the system. The result therefore is 

quite different from what would have been expected otherwise. Nevertheless, in re- 

trospect, we are unaware of any decision forced by these goals which has not also had 

the effect of simplifying the system's structure and improving overall reliability 

and integrity.  There has been no significant performance penalty cither. The pri- 
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mary cost in obtaining a secure operating system appears to be found in the care re- 

quired during design and development. 

One important fallout of the system design is considerably enhanced system in- 

tegrity. Improvement results from the significant reduction in common mechanism 

operating on behalf of all users, a characteristic that was necessary to make verifi- 

cation and certification of the system practical. 

In the next sections we outline the UCLA Unix architecture, together with expla- 

nations for the design choices. Verification and the programming language are also 

discussed, and illustrative examples of the effects of Unix functionality on the 

system's operation arc given. 

2.  Overall Architecture, of  UCLA Unix. 

The UCLA Unix architecture contains a number of major modules, whose relation to 

one another is suggested by figure 1. The kernel should be thought of as an operat- 

ing system nucleus which provides about a dozen primitive operations callable from 

user processes. That is, the kernel implements a number of abstract types and the 

valid operations on each type. It is the only module in the ?votem empowered to exe- 

cute hardware privileged instructions. 

One of the abstract types implemented by the kernel is prooesg.. A process con- 

tains two address spaces (supervisor and user' mode on the large POP-lls). An operat- 

ing system interface package resides in one address space. In the other, application 

code is run. When an application program makes an operating system call, control 

passes to the o.s. package which interprets the call. If necessary, the package is- 

sues kernel calls or uses kernel facilities to send messages to other processes to 

accomplish the needed action. All such calls or messages are controlled by the ker- 

nel.  Each process is a separate protection domain. The access rights of the domain 
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arc represented by capabilities: a C-list for each process is maintained by the ker- 

nel. 

There are several processes that are special, in that they perform system relat- 

ed functions. Overall system security depends on the correct operation of two of 

them.« One, called the policy manager, is the only process capable of altering pro- 

tection data, and is thus the site where various security policies may be implement- 

ed. Type extensions to kernel objects, including file systems, typically would also 

be supported here. In the UCLA system, security policy plus suitable primitives for 

the Unix file system to support protection of individual files are built in the poli- 

cy manager process. The second, "initiator", process initially owns all terminals 

(i.e. has capabilities for all of them) and is responsible for user authentication. 

It tells the policy manager what user is to be associated with a given process. 

There is one further process which differs from the typical processes employed 

for applications programming. However, this one, a scheduler, is not relevant to 

data security. It contains short term resource management policy for cpu and main 

memory: process scheduling, page replacement strategies and the like. UCLA Unix is a 

demand paged system; when a process page faults, the scheduler is informed by the 

kernel so that an appropriate swab call may be issued at some later time by the 

scheduler. All of its security relevant actions are accomplished through kernel in- 

structions, however. 

Thus in normal operation a user first logs into the initiator. That process 

then sends a message to the policy manager, who initializes a process for the user 

and moves the user terminal to the new process by issuing appropriate capabilities. 

Process initialization as well as normal computation take place within the domain of 

»"one'might say thoy are within the "security perimeter." Their size is not large 

compared to the kernel described here. 
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the given process. Additional resource requirements or file activity is accomplished 

through messages to the policy manager. Process switching occurs whenever a given 

process invokes the scheduler process, or when an appropriate clock interrupt forces 

such an invoke. The scheduler can then run whatever process it wishes. Page faults 

also force an invoke of the scheduler, so that it can initiate appropriate page swap- 

ping. 

3.. The UCLA Kernel and Abstract Types 

The kernel can alternately be viewed as a basic, stripped down operating system 

or as an implementor of a number of abstract types, together with the operations on 

those types. One of its more notable features is the fact that a significant number 

of facilities, normally found in large systems, are included in it despite its very 

small size and straightforward structure. The basic kernel consists of approximately 

760 lines of Pascal code, not including I/O support. The PDP-11 does not have any 

channels, so that the functions of channel programs must be written as cpu code. 1/0 

support in the UCLA kernel is composed of two portions: a device independent internal 

interface of approximately 300 lines, and as many device dependent drivers as are re- 

quired by devices present on a given machine configuration. These are quite small, 

arid for the UCLA insüa.LLaüion, supporting many peripherals, approximately 300 Unas 

of code are required altogether. These numbers are relevant because the entire ker- 

>:.\ . _■>■ [,.-. rmbjsoted to progra'n verification procedures. Given current v r.i.'Ticati.on 

capabilities, this quantity of code is not unreasonable (assuming a clean structure). 

The UCLA kernel implements a fixed number of types, the four listed below. Type 

extensibility as illustrated by CAL-TS3 or Hydra is not provided, although simple ex- 

tensions are now under way to provide a limited form of this facility. The imple- 

mented types, together with the permitted operations, are discussed below. 
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3..J. Processes 

The process object is defined to consist only of the usual state variables plus 

one small page. It does not include the process virtual memory. As a result, kernel 

calls such as Invoke can be quite simple, merely moving data from tables to cpu re- 

gisters and vice versa. All process relevant kernel calls are controlled by capabil- 

ities. It is not possible to issue or receive a Notify for example unless in each 

case a capability is present in the process' C-list. 

The process abstraction has been carefully developed to permit a large number of 

processes to be alive: 500 on a PDP-11 would not be unreasonable. To do so, it is 

necessary that very little locked down memory be required per process, despite the 

fact that there are asynchronous events taking place (such as I/O completions and No- 

tifies) which can occur when all the memory of a process is swapped out. The process 

must be notified of these events. However, the obvious solution, kernel queues, are 

undesirable since they increase verification difficulties and lead to overflow prob- 

lems when queue space is exhausted. The UCLA kernel avoids this problem by a number 

of methods, including a generalized page faulting structure and efforts to keep as 

much per process information as possible in swappable pages allocated to the given 

process. As a recult, less than 20 words of main storage :\vu. be res-T'/ed fo 

tive process. 

The operations available for objects of  type process are as foliows. 

a. Invoke 

b. Initialize 

c. Map-relocation-rcgister 

d. Notify 

e. Sleep 

Invoke moves the state variables of a process into the cpu registers, after first 

saving those of the currently running process, mostly into one of that process's 
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pages. Initialize clears the state variables of a process and creates those few 

capabilities needed for the process to bootstrapp itself. The Kap call is the means 

by which a process can adjust its own virtual memory. The call sets the mapping 

between blocks in the process address space and entries in his C-list (which presum- 

ably point at pages). Notify is the mechanism by which one process can interrupt a 

set of other processes, also passing a very small amount of data. Sleep invokes the 

scheduler. 

3.-Z Pages 

Pages are the abstract storage unit supported by the kernel. All pages have a 

fixed home location on secondary storage, which is not deallocated when the page is 

swapped into main memory. There are 3 page sizes in the current implementation, with 

memory frame sizes currently set at sysgen time to minimize kernel complexity. In 

order to access a page, a process must first obtain a capability for the page. Then 

the Map call is used to specify where in the process' virtual address space the page 

specified by the capability is to appear. At that point the process can attempt to 

refer to the page. If it is in core, the hardware register will be loaded and the 

reference will succeed. If not, the process will page fault as described in section 

,.7. ;i-ice each page is a separate object, controlled sharing of individual pages is 

easily done. 

Tcz  only operations on pages are: 

a. Swap-in 

b. Reflect 

Swap-in copies the secondary storage version of a page into main memory, changing the 

name of the object associated with that destination page frame to the new page. The 

secondary storage copy is preserved. Reflect updates the secondary storage version 

to match main memory.  Neither of these operations gives the caller access to the 
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contents of the page, so that the operation can be issued by untrusted code. 

3..3. Devices 

1/Os to all devices, including terminals, are controlled by the same capability 

mechanism as all other operations. However, devices such as terminals are treated as 

two devices: an input part and an output part. Two capabilities are therefore re- 

quired to read and write a terminal, but as a result more robust security policies 

can be supported. 

Completion interrupts arc handled just like any other process notification. All 

those processes with capabilities to receive interrupts from the device, and with in- 

terrupts enabled, will receive a notification when the device generates it. 

The device operations are as follows. 

a. Start-i/o 

b. Completion-interrupt 

Start-i/o initiates all I/Os except swaps. The Completion-interrupt is the hardware 

generated call which typically signals completion of a previously started I/O. As an 

entry point into the kernel, it is little different from any other call. 

3..ii Capabilities 

IhD capability is .no basic kernel representation of protection information: 

which objects a process is entitled to access. Each process has associated with it a 

C-list containing those capabilities, stored in pages that can be swapped, but which 

are directly accessible only to the kernel.« 

"Tn"pölicy manager is given read access to capability pages so 
»ep separate track of which capabilities for pages ma file i 

that it need not « Thp nnlirv manager is given restu üUUCöO KU ^a^a^^^^^j  ^-.c,-- — .. „ 
keep" separate track of which capabilities for pages in a file are outstanding. See 

the discussion of the policy manager for futher information, 
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Each capability consists of four fields. First is the name of the object to 

which this capability refers. Second are the access rights provided. Next is a 

"guess" value which the kernel uses to attempt to quickly find the entry in a kernel 

table which maps the object indicated by the capability to a physical location. In 

the case of pages, the guess is the index into the kernel page table to the slot 

where that page entry last appeared. It in fact may have been moved by subsequent 

Swaps and Reflects, so if the entry docs not match, a search of the table is re- 

quired. That event is rare however. The last field in the capability is of no 

relevance to the kernel, but can be set via the Grant call. The Policy Manager uses 

it to record the file to which the page or device belongs. 

The operations on capabilities are quite limited: they can be Granted and re- 

voked. Revocation is accomplished by granting the null capability into the C-list 

slot that contains the capability to be revoked. Thus there is no means by which 

processes can directly pass capabilities. While this fact limits what can be done 

with capabilities, it also greatly simplifies many issues and avoids a number of the 

criticisms of certain capability systems, especially the danger of not knowing how 

access to an object has propagated. As a result, the kernel can more accurately be 

viewed as containing no security policy. All such decisions regarding rights 

transfer, including initial granting of rights, are made only by cue software running 

in the process which has the ability to issue Grants. The Policy Manager is the only 

such process in UCLA Unix. 

The only operation on capabilities is 

a. Grant/revoke 

It adds a specified capability to a specified slot in a specified process'  C-list. 

This call is restricted to the policy manager, who implements security policy. 

The C-list composes a local name space for the process. This name space has two 

effects.  First, through message exchanges with the policy manager, the user has com- 
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plcte control ever which C-list slot contains a given capability, thereby permitting 

local management over the name space, Fabry [Fabry 74] points out the significant 

advantages of this facility. Second, kernel names are not visable to user code. In- 

stead, the capability contains that name. Therefore user code, being unaware of the 

actual object names, cannot use them for a confinement channel. 

3..^ Types and Qpsratina: Systems 

Other authors [Schroeder 77] have noted that the usual views of abstract types 

to be found in programming languages are not quite suitable for operating systems be- 

cause of finite resources and circular dependencies. In Multics, for example, the 

process manager depends on the page abstraction, since the manager is contained in 

pages, while the page manager is a process and hence depends on the process manager. 

In a revised design for Multics, abstract types are used in a sophisticated, multiple 

layered manner to solve these problems.[Schroeder 77] However, as noted by Gaines 

[Gaines 77], the method required need not involve a sophisticated solution at all, 

and is largely composed of static allocations. 

This is the approach embodied in the UCLA kernel. Processes, pages, and devices 

are • ■■lth->r -.-ir^i;.WJ nor dastroyad. There are as many pagea as there is space on 

secondary storage for them. The number of processes is fixed by the size of the ker- 

nel process table. Devices are added at system generation time. This static view is 

not really a limitation, since the i-oiicy Manager reuses process "bodies" and pageö 

by reinitializing them via kernel calls. Many systems include these size limitations 

anyway, although perhaps not so explicitly. As a result, the kernel type structure 

is exceedingly simple, and yet robust enough for fairly general operating system ac- 

tivity, as illustrated in section 6 on Unix Functionality. Further, the entire ker- 

nel is small enough to be locked down in main memory, in space removed from page 

management, blocking circular dependencies. 
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3.'6. Kernel Names 

The na;nes for kernel supported objects were designed to maintain several impor- 

tant properties with the mininum of mechanism: a) unique names for all objects, b) 

clear knowledge of object types at all times, and c) avoidance as much as possible of 

complex name to location mappings, which must be maintained by kernel code if object 

protection is to be at all meaningful. Since these names are not visable to normal 

user processes, who see only C-list indexes, considerable design fr-i'dom was present. 

Therefore, names were chosen to represent the home location of the object; a page 

name consists of the disk device and block number. Hence no disk map need be main- 

tained or interrogated by the kernel. 

3..1  Paging., Segtnentatioh and Scheduling, 

UCLA Unix, unlike standard Unix, is a demand paging system. All user disk I/O, 

including swapping of the process virtual memory space and file activity, occurs via 

the paging mechanism.- 

Page faulting is invisable to all processes except the scheduler, who is noti- 

fied by the kernel when a fault occurs, so that it can start a swap. There are actu- 

ally two "faults" involved in accessing pages. The most significant,, just described, 

occurs when a page is not core resident. The other, called a register fault, occurs 

wh^n the . ■'■'.- is roöident but the relftvant page rsg.i •■:.■:■ is null. This case is han- 

dled in a highly efficient way: the user map table is checked by the kernel to see 

which capability (and therefore which page) is desired. The appropriate value is 

then placed in the register and user execution continues. 

The preceding outline indicates how the UCLA system provides a complete virtual 

* A logical disk can alternately be treated as a device, and Start-I/Os issued to it. 
However, a disk treated in this manner cannot also hold pages. 
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memory and file system with only a simple set of paging primitives in the kernel. 

This simplicity vfas achieved by two major decisions. First, the virtual memory fa- 

cilities were decomposed into that which had to operate correctly in order to main- 

tain the security and integrity of the system (Swap, Reflect, and Completion- 

interrupt) and the rest of the virtual memory mechanism (page replacement algorithm, 

interaction with cpu scheduling, etc.). This decision had a significant effect on 

the system's resulting simplicity. Second, file activity and process memory swapping 

were combined into one mechanism. In standard Unix, main memory is broken into two 

areas: one to hold user process images, and the other for I/O buffers. Each area is 

managed separately. The I/O buffers are replaced in LRU order, while scheduling of 

process images is handled differently. All disk I/O buffers are the same size, while 

process images vary. The code used to handle I/O buffers is in large part different 

from that used to handle the movement of process images, and significant p^rts of 

both collections of code are important to the system's security and integrity. 

In UCLA Unix, only one mechanism, paging, exists, and much of its support h?s 

been moved out into a scheduler which can not affect the integrity of the system. As 

explained earlier in the section on capabilities, the user domain also carries some 

of the responsibility for virtual memory management. By placing some of the respon- 

sibilities in the domain for which the action is being taken, error propagation is 

further limited. Application code is of course unaware of that responsibility, since 

the o.s. interface is performing the task. 

3.-S. Firmware Implementation 

The UCLA kernel has been developed to be a candidate for firmware implementa- 

tion. To be practical, it is helpful if each call behaves as much as possible as a 

separate instruction, with no need to be interrupted in execution, nor to issue I/O 

calls for which the results affect the instruction's behavior, since I/O is typically 
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slov/ relative to microprogram cycle speeds. These critcrii are met by ths UCLA ker- 

nel. Therefore it differs significantly from architectures such as Multics or relat- 

ed work.[Millen 76][Organick 71] In both of those systems all of the operating sys- 

tem, including inner rings in Multics and kernel software in the case of Mitre, must 

be considered as part of the user process. Any process can be suspended in the mid- 

dle of execution in the inner rins or kernel mode, respectively. Neither of those 

systems lend themselves to firmware considerations, the Mitre work because of the ar- 

chitecture, and Multics because of its size and architecture. 

3..5. Verification Irroacts 

Verification of a full scale operating system is a multistep process, and the 

methods employed at UCLA are outlined by Popek [Popek 78], with more detail available 

from Kemmerer [Kemmerer 78]. The effect that the verification and certification goals 

had on the system architecture was exceedingly positive,. Often a design choice 

presented itself, without any clear basis for resolution except maximizing verifica- 

tion ease. In retrospect this criterion was quite effective in making decisions and 

avoiding design pitfalls. Further, when it became clear subsequent to implementation 

of certain parts of the system that verification would bs difficult, those portions 

were redeveloped, r.  jood example of this case is outlined in section ':'i.'1-':  below. 

3.« 9.. 1 Ssouential Code 

The current state of verification tools do not permit proof of parallel pro- 

grams. Since semi-automated aids are in our view essential, this constraint implied 

a kernel design and implementation in which each call ran from start to completion 

without interruption, including the interrupt handlers. The UCLA kernel is built in 

this way, and so most of it can be proven by standard verification methods. 

The cost of this design choice results from delayed servicing of interrupts 
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which arrive while a kernel call is in progress. To minimize this problem, each call 

is designed to run very quickly, approximately one millisecond or less. To do so, no 

kernel call may do 1/0 of its own while in the midst of execution, since virtually 

all devices respond rather slowly relative to this criterion. V;hile millisecond de- 

lays in interrupt servicing may not be suitable for heavy real time activity, it ap- 

pears quite acceptable for interactive systems, which is the nature of Unix. 

3..S..1 1/0 Interface 

The PDP-11 does not have any significant channels; instead the device registers 

are wired into physical address locations and "channel" functions are executed by cpu 

code. Since all devices address main memory (and secondary storage) in terms of ab- 

solute addresses,  I/O management is therefore necessarily a kernel responsibility. 

That is unfortunate, for several reasons.  First, device semantics are quite complex 

and difficult to interface with the semantics of the programming language in which 

kernel code is written. Next, devices are probably the single largest source of 

changes to the kernel, since as new types of devices are added, additional verified 

kernel code is required to manage the device's actions. To minimize the impact of 

these problems, kernel 1/0 code was redesigned to provide a device independent level 

of I/O abstraction within the kernel.  Code above that level is not  concerned with 

any of the device details. Code below it implements device dependent issues, includ- 

ing any device dependent protection controls.  The I/O abstraction level appears 

similar to a channel interface, with well defined opcode and operands. 

This I/O abstraction level is quite important, likely more so than the process 

abstractions mentioned by other authors, since at least half of the operating system 

kernel is concerned with I/O.CSchroeder 77][MiUen 76] As a result of its use. device. 

wo^n -i^ipfrH to the low level drivers.  See Walker for more semantics have been isoiateo zo    tnt J-^W 

information.[Walker 77] 
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iL. The Policy Maili&g£ 

The Policy Manager is the major security relevant process in UCL.1 Unix. It is 

responsible for implementing a shared file system, for maintaining whatever security 

policy is to be supported by the system, and for part of the action of process ini- 

tialization, which occurs every time a Unix fork operation takes place. Each of 

these issues is discussed below. Long terra resource allocation can also be imple- 

mented in this process, but currently is not. 

Ü.JL The File System and Protection Policy 

User code must sec a file structure which is identical to the Unix tree of 

directories. Hov/ever, one should not immediately conclude that the entire directory 

structure and other file support should be implemented in trusted code. In fact, one 

can make the following argument, largely independent of the security policy to be en- 

forced. 

Most code to be run in the user domain strictly should not be trusted to be 

correct, at least not to the same standards as the verified secure kernel and policy 

manager. However, all names, including file names, are either issued, interpreted or 

transmitted through that code. Therefore it makes little sense to verify the •'■Lv;- 

tory naming scheme of a file system when significant amounts of unverified code issue 

the names or are in the path leading to the file system. The best one can do, it ap- 

pears, is to provide the user with a reliable means to specify a uroc:o:;ö profilg 

which characterizes the categories of files to which the process is to be allowed ac- 

cess. Profile specification and alterations, together with the association of labels 

with the file on which categories are based, must therefore be done in a guaranteed 

reliable way if the verified protection and integrity of the entire operating system 

is to have any meaning. That necessary secure terminal facility is discussed in sec- 

tion 7 below. 
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The file protection labels provided in UCLA Unix consist of a very large variety 

of "colors". Each file can be labelled v/ith some number of them. Each user (princi- 

pal in Saltzer's tertninolosy [Saltzer 75]) has a fixed color list associated with 

him. It is understood that a user potentially can access a file only if his color 

list covers that of the file. The actual profile for a running process can be set to 

any subset of the user's color list. There is a separate profile for read and write. 

Since there are a large number of colors, many of the usual protection policies 

can be implemented using them. Public files are labelled with the color public and 

all users have that color in their list. Denning has noted that military security 

policy is essentially a lattice, and that the relations of sets and subsets provides 

just the lattice required. Individual file names are had by assigning a given color 

to a single file. This color system is still evolving as experience is gained with 

the user protection interface, especially in the area of control over changes to 

color lists. Additional detail is provided by Urban [Urban 78]. 

Given the preceding view of file system protection, one can profitably decompose 

its implementation into two parts, one a common mechanism relevant to security and 

integrity, the other executable in the domain of the requesting user process. The 

common mechanism can support 3 Pimple, flat file system'. Files are the only signi- 

ficant data type, and a color list is one of the attributes of a file. The simple 

file system mechanism must include complete space management: disk free lists and 

maps Erjecifying v/hich pages belong to which files, together with software to manage 

these data structures. 

Many of the facilties normally thought of as part of the file system can be 

provided by software in the individual process domains as part of the o.s. interface: 

directory structure, maintenance, and searching; end of file indicators and other 

file status information such as usage locks. Directories are then contained in 

files, and access to directories is controlled in the same way as access to any other 
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files. Assuming that the common mechanism in the policy manager is verified correct, 

users can affect one another only through the use of files to which they share ac- 

cess. 

iL-£ Process Initialization and Forking 

The policy manager must also be involved when new processes are created, since a 

kernel process body must be Initialized and appropriate capabilities need to be 

granted to the new process. As much as possible however, one wishes process 

bootstrapping to take place within the domain of the new process. In UCLA Unix, the 

normal procedure for process forking is as follows. The requesting process sends a 

message to the Policy Manager requesting the new process as a member of the same user 

family. The Policy Manager records the user to be associated with the new process 

and issues a kernel Initialize call, which zeroes a process body, grants tv;o capa- 

bilities to that process, and sets the program counter and status to standard values. 

The capabilities point to a standard boot, code page and a scratch data page respec- 

tively.* A third capability is granted by the policy manager upon process request to 

give the process the ability to communicate with its forking parent. From here on, 

initialization takes place wholly in the domain of the new proces. The process be- 

rirs bv attimptina; to execute its boot code, which may cause s page fault. These are 

handled normally. Eventually the boot code will load the o.s. interface and presum- 

ably a Unix Shell into its address spaces. 

iL.3. Other Policy Manager Responsibilities 

In UCLA Unix, the Policy Manager is also responsible for control over access to 

the other kernel supported objects besides pages: processes and devices. Devices ap- 

* The boot code is actually the Kernel Interface Subsystem discussed in section 5. 
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pear as special files and inter-process communication takes place through pages which 

appear as part of a file. Therefore, colors are uniformly employed for access con- 

trol in these cases too. 

An ARPANET connection is provided in UCLA Unix; access to it must be controlled 

and support for initial network connection activities is required. Access control is 

done by making each host a special file and using colors. See section 8 below for a 

discussion of initial connection protocols. 

5.. The Kernel Interface Subsystem 

Since the kernel is an operating system nucleus of minimum size and complexity, 

one can properly expect that it is not a convenient base to build on. Traditional 

systems provide a good deal of "extension" for convenience. While at first glance 

the o.s.interface has this responsibility, it should be noted that a considerable 

amount of code is written to run directly on top of the kernel: the o.s. interface, 

the network manager, process initialization, and the scheduler, for example. Each of 

these need basically the same extensions: capability management, inter-process com- 

munication support, virtual memory code, and some file system interfaces. Therefore 

we have developed an intermediate interface between the o.s. interface and the ker- 

nel. L'he software 'which implements it provides a much more convenient interface to 

the kernel and is called the Kernel Interface Subsystem (KISS). As an extension 

nschanism, tha KISS malnagea tha entire environment of the process. In rrenaral, no 

other code in the process makes kernel calls, sends messages to the scheduler or pol- 

icy manager, etc. Thus this software package has primary responsibility for main- 

taining a convenient "virtual machine" for the user process. 

The KISS of course runs as part of the user process domain, and is architectur- 

ally contained in the same address space of the process as the o.s. interface. The 

KISS can be viewed as an inner ring in the sense of Multics, and if appropriate 
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hardware were available, that would be an effective means of implementation. 

6.. The- Unix Interface 

The operating system interface has the responsibility of providing a user pro- 

gram interface which is as much .is possible identical to standard Unix.« It handles 

user system calls either by performing them itself if possible, or making the ap- 

propriate kernel calls or service requests to the policy manager to get the desired 

action accomplished. Much of the Unix o.s. interface is actually lifted from the 

standard Unix operating system. Most of the changes consist of wholesale deletions 

of functions, resulting from the fact that many of those functions are redundant 

given the available kernel facilities and the fact that, the o.s. interface is essen- 

tially a single user system.  All scheduling support could be removed, since schedul- 

ing is done in a separate process. A more drastic change concerns I/O buffering.  In 

standard Unix, buffers contain significant structure to aid in multiuser and LRU 

operation.  In UCLA Unix, most of that function disappears since it is done by the 

paging mechanism supported by the kernel and scheduler.  I/O support is replaced in 

the o.s.interface by code that requests file opens and relevant page capabilities 

from the Policy Manager, and issues Map calls to add those pages to the interface's 

virtual msmory.   :"r :-r\ ■. <> c• 
Interface merely tries  to reference data on  th-1  p to 

move it to the user, and the usual page faulting and swapping action takes place. 

ty Q "^H H XV. interface largely consists of the FUSS,  changes to  c! 

interface/KISS boundary, ips support, and maintenance of the process hierarchy. This 

last issue is discussed below. 

* There are certain actions possible in standard Unix which will be blocked by the 

security policy of the secure system. 
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6..J. The File System 

The Unix interface has a significant portion of the responsibility for making 

the user view of the file system equivalent to standard Unix. This task consists of 

all directory support, including searching, working directory control and the like. 

Once the desired logical file name is found in a directory, a file open request of 

the policy manager can be made using that name.* Directory searches are done by first 

opening the containing file, like any other. It is the responsibility of the Unix 

interface to manage its open files in such a way as to keep the working directory 

open most of the time to minimize search costs. 

.6.2. Forking and Process Hierarchies 

In standard Unix, a given user can have a process family active for him. The 

family is hierarchical in the sense that parents have certain rights over children. 

However, intra-family protection is not really effective, since any member of a fami- 

ly can convince any other member to destroy itself, and to take other undesirable ac- 

tions, via standard Unix functions. 

Therefore process hierarchies should not be supported by kernel code, and so in 

LiCLr Unix members of a oroc.^-.m family cooperate among themselves to effect family 

behavior. Of course, the support for process families is provided in the o.s. inter- 

face, so that user software need not be concerned. This design choice simplified the 

kernel, and in lig'nt of the observations made above,, had little or no effect on the 

actual protection functionality provided. 

In the implementation, each process of a family has a capability for a shared 

page, set up by family members.  In that page, data structures are maintained by the 

* The logical file name is essentially an inode number. 
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o.s. interface so that intra-family relationships are properly supported. In doing 

so, the kernel notification facility is used to great advantage. Unix typically per- 

forms a great deal of "one to n" notification: one process issuing a signal intended 

for the rest of the family. The kernel Notify call is designed to support this 

behavior efficiently, as veil  as to be adaptable for other uses. 

2..   Secure User Interface 

In order for any user to have assurance that the protection controls of a system 

are operating in the manner desired, it is crucial that he be sure of the values to 

which protection policy data has been set. Further, when login takes place, there is 

an issue of mutual authentication: the user wishes to be sure that he is interacting 

with the secure system interface, not some clever user simulation of it vihich col- 

lects passwords. For both of these reasons, UCLA Unix contains a small dialog;uer 

process to which the user terminal can be reliably connected. The user causes his 

terminal to be switched to the dialoguer by typing a predefined sequence of break 

characters.* The kernel supports the terminal switch through maintenance of terminal 

modes. A terminal can be thawed or froren. Capabilities are granted by the Policy 

Manager giving access to terminals only when thawed, or only when frozen. When the 

break sequence is detected, or when ?. line drop occurs, the line is nri:'-:^ frozen. 

The Policy Manager grants frozen access only to the dialoguer, thawed access in all 

other cases. In this way, the user can move his terminal to the dialoguer, accom- 

piiah whatever change is desired, such as changing process profiles, and then move 

the terminal back, all without disturbing the state of computation of the process at 

all so that it can be continued. 

ß Kernel recognition of the break sequence is not expensive since POP-11 hardware re- 
quires character by character terminal input handling anyway. 
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8.. Th3 Scheduler 

Whenever it is time for a process invocation decision to be made, the Scheduler 

is invoked, either directly by a user process (i.e. when it v/ishes to sleep) or by a 

clock interrupt. The kernel posts a considerable amount of data to the scheduler 

process, so that it can make sophisticated resource allocation decisions, about both 

memory and the cpu. Centralizing both classes of resource control permits effective 

coordination of allocation decisions and therefore potentially higher performance. A 

large class of scheduling policies can be implemented in this process. Some of them 

have confinement implications but provide better performance potential than those 

which do not. This architecture permits the system operator to make the 

confinement/performance tradeoff, since there is no kernel effect from scheduling 

policy changes. 

The one potential drawback of a separate scheduler process is that it doubles 

the actual number of process invocations over what is really needed. This overhead 

is of little consequence if context switches are relatively cheap, and this will be 

the case for UCLA Unix.* 

3.. Secure Computer Networks 

When security is of concern in a computer network, encryption of the lines is 

generally a necessity, because those lines are not considered safe from tapping or 

spoofing. However, the usual approach is to encrypt and decrypt the data external to 

the central machine and its operating system. 

« Context switches on the PDP-11 are in general fairly slow. Therefore, the 
scheduler is actually to be run, still as a separate process, in kernel mode of the 
hardware. This avoids the necessity of extensive state saving and restoring, but re- 
quires the scheduler to be written in a language for which it can be demonstrated 
that kernel data structures are not touched. The implemented scheduler is written in 
UCLA Pascal. Moving it into kernel mode was not yet complete when this paper was au- 

thored . 
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It should be recognized that the software resident vdthin the oporatins system 

responsible for managing the netv;orr: is both complex and relevant to security and in- 

tegrity. In standard Unix with an ARPANET Network Control Program (NCP), the NCP, 

operating as a common mechanism, is of comparable size and complexity to the whole 

operating system.* Typically, one wishes to protect each network connection separate- 

ly from each other connection, but the NCP manages them all, including moving data 

from user buffers through the NCP and out to the network interface device. 

Given the availability of a secure operating system, one can entertain the idea 

of extending the "ends" of the encryption path deep into the operating system. For 

example, the user process, as it hands data over to the NCP, could be forced to cause 

the data to be encrypted, so the network software is treated merely as part of the 

insecure transmission channel. That data would not be decrypted until the receiving 

NCP handed it over to the destination user. If each connection were encrypted with a 

separate key, then NCP errors and misdelivery within the host operating system would 

not affect security. If suitable error correction is incorporated with the encryp- 

tion, then integrity problems can also be detected. 

The main problem in this approach is the initial connection establishment proto- 

col: how to permit users to supply the NCP with parameter? telling which site and 

what type ox connsction should be established, without large confinement channels in 

the system. For a discussion of these and related issues, see Kline [Kline 78J. 

'{•;oa ^sthbd of solution outlined there has been implemented in UCW Unix. The addi- 

tional kernel code to support secure network operation was quite small. Further, 

most of the original NCP was kept unmodified, although its lower level was altered to 

match the kernel interface.* 

a The NCP being considered was developed at the Univ. of Illinois, 
* The Illinois NCP "kernel" was rewritten. 
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IQ. Programming: Lan-^uag-.o Issues 

The programming language employed in software development is usually recognized 

to have a significant effect on that effort; however v;hen the goal of development in- 

cludes verification, the effect is heightened. The specific language issues break 

down here into two groups: those concerned with systems programming, and those con- 

cerned with the scale of the verification steps. 

Systems programming issues arise in the same way that, they occur in most high 

level systems programming languages. It is necessary to be able to express details 

of the hardware in the high level language, such as interrupt vectors, hardware dev- 

ice registers, or special instructions. These facilities must be available in the 

programming language, but in a way that minimizes the effect on the semantics of the 

rest of the language. 

Virtually all the security and integrity relevant code in UCLA Unix is written 

in a slightly altered Pascal. Obvious verification problems were removed from the 

language, such as pointers, variant records, and various sources of aliasing.[Lampson 

77] I/O facilities were also deleted, since we were building I/O mechanisms, among 

other functions. The runtime package needed to support Pascal I/O would have been 

usiless baggage, and since it typically would be written in assembly code thsrs would 

be little chance of ever verifying properties of its operation. 

Tz -..--i? aiöo necessary however to add features r.o Pascal to permit systems pro- 

gramming, as remarked above. Very few additions were actually necessary, and were 

limited to the following: 

) the ability to declare a variable to be stored at a fixed physical location (to 

initialize interrupt vectors, access device control registers, etc.), 

b) assembly language procedures (so that special hardware instructions could be ex- 

pressed as a procedure call), 

a 
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c) the ability to have procedures which take array parameters whose lergth is deter- 

rained at call time (to remedy the most significant limitation of Pascal). 

We also developed an extensive library system to support independent compilation of 

program modules, and yet force type integrity across module boundaries. The compiler 

and library system force recompilation of modules when needed for compatibility with 

another module which has been altered. This facility is needed since the verifica- 

tion work depends on type enforcement. The language, compiler, and library system 

arc discussed by Walton.[Walton 76] 

There are many issues concerned with the scale of the verification effort. It 

is believed that over half of the original verification effort could bs avoided if 

the language contained more reasonable controls over aspects of program behavior. 

One of the more obvious examples concerns the integrity of global variables. An im- 

portant portion of the assertions to be verified state that most of the kernel vari- 

ables have not been altered by the routine being considered. (After all, much of the 

statement of security concerns what is not to happen.) These assertions, in the form 

of a large invariant, could be simply handled by scope controls in the language, such 

as the Import/Export lists of Euclid [Lampson 77]- Then compile time enforcement 

could be employed and the verification task correspondngly simplified. UCLA Pascal 

has '•.y-'i'r.  modified '>? provide tmport Lists. 

Another example where the verification task can be eased concerns array bounds 

•"'!. - :'-;.L;;'2;. in 0-;.;^:;l , man"-' subscripts 2:■.:^ ■■';,:^ly be cut of ran^e, and therftr'orc po- 

tentially reference data other than the given array, violating type rules. There are 

four reasonable ways to deal with this problem: Subscript checking could be done by 

hardware, by runtime software generated by the compiler, by runtime software expli- 

citly inserted by the programmer, or it could be verified in many cases that sub- 

scripts do not get out of range. The PDP-11 hardware base does not provide any rea- 

sonable way to itself check subscript references.* Trie UCLA Pascal compiler does not 
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implement array checking code. Therefore a combination of the remaining choices were 

taken. The resulting assertions which need to be proven compose a significant frac- 

tion of the total verification to be done. Clearly here is a fertile area for 

language support or enhanced verification tools. 

11. Architectural Observations 

UCLA Unix comprises the first verifiably secure, full functionality operating 

system with a fine grain of protection. The experience gained in its design and 

development lead us to several conclusions. Most obvious, secure operating systems 

are feasible to develop, although the development cost is likely to be considerably 

greater than if higly reliable security and integrity were not such a serious goal. 

However, the result is a system which appears to exhibit considerably enhanced relia- 

bility and integrity, and because of the strict modularity, is easier to modify. 

Performance does not appear to be adversely affected by the architectural constraints 

imposed by the various goals. That is, the net result of the security goal seems to 

be a better system in general. 

It should be noted however that one of the central ideas to the success of the 

work, kernel structured architectures, requires considerable rethinking of the usual 

ooeratinf jystem architecture views if it is to be effectively employed. Mu=n cf the 

standard operating system wisdoms must be reexamined, or the result will be a "ker- 

r.el" that is in fact overly complex and x;ot suitable for a rigorous demonstration of 

correct security and integrity enforcement. 

In conclusion, it appears that the goal of obtaining secure operating systems, 

at least for centralized, medium scale machines, has been largely reduced to (high 

» The new, upward compatible DEC VAX/780 does, 
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quality)  engineering, with the most  significant progress required  in program    verifi- 

cation. 
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