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Abstract

-We- study the problem of scheduling jobs on parallel identical machines to
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MYOPIC HEURISTICS FOR THE WEIGHTED TARDINESS
PROBLEM ON IDENTICAL PARALLEL MACHINES

1. Introduction

The problem of minimizing weighted tardiness of a given set of jobs, available

simultaneously and to be scheduled without pre-emption, has attracted the attention of

several researchers. It has been shown by Lenstra that in the case of single machine

this problem is NP-complete. In view of the importance of this problem, earlier

studies on this problem emphasized on the development of effective enumerative and

heuristic procedures. In a recent study Morton and Rachamadugu [ 14] developed a

myopic heuristic for this problem which can be used in the dispatch mode. Our

heuristic extends the myopic heuristic developed by Morton and Rachamadugu to the

weighted tardiness problem in the case of identical parallel machines. There are no

known effective heuristics for this problem. Briefly, the problem is as follows: we

have n jobs J1,J2,,..J3 that arrive simultaneously to be processed on a set of

identical parallel machines. The jobs are not permitted to be pre-empted and no job

can be processed on more than one machine. Each job is characterized by the

triple(p.,di,w) which represents the processing time, due date and the weight(tardiness

penalty) of the job. Each job has associated with it the penalty function C(t,) where t.

is the completion time of the job. Cift) is given by

C(t.) = wmax {0, t.-d I

We wish to allocate the jobs among the machines and schedule them such that IC,(t,)

is minimized.

2. Review of prior studies

As pointed out by Graves [8] no simple results exist for the weighted tardiness

problem in the case of parallel machines. Lawler [ 10] studied the problem (identical

machines) for jobs with equal processing times and monotonically nondecreasing penalty

cost of completion time and showed that the problem can be solved using the

4 . .-.
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transportation algorithm. For problems where jobs have unequal processing times, he

suggested a procedure which yields a lower bound for the problem Root [161

studied the case where job weights are equal and the jobs have the same due date.

Other special cases were studied by Elmaghraby and Park [7), Nunnikhoven and

Emmons [ 13) and Barnes and Brennan [2]. However, there do not seem to exist any

heuristic procedures for the general case of the weighted tardiness problem for

parallel machines. Though one can attempt a dynamic programming approach for

finding the optimal solution, such a procedure is very severely limited by the curse of

dimensionality'.

Rajaramnan [ 15) developed an enumerative algorithm for optimal scheduling of

jobs on identical parallel processors when the jobs have nondecreasing waiting costs

and also extended it to the case when jobs have due dates. However, Dogramaci and

Sukris [5) have shown that the procedure is in error and provided additional

sufficiency conditions to make the algorithm valid. However, they concede that the

imposition of the sufficiency conditions leads to an excessive computational burden.

Bernardo and Lin [31 developed a heuristic procedure for the average tardiness

problems in the case of parallel processors. The limitation of their heuristic is that in

the case of single machine problems, it reduces to the Earliest Due Date rule. Morton

and Rachamadugu [ 14) have shown that the Earliest Due Date rule performs rather

badly in the case of single machine problems, particularly when the tardiness of the

job set is high.

-. In this paper we study the weighted tardiness problem in the case of identical

processors and extend the concept of a myopic heuristic for this problem. In

developing and validating the heuristics, we are more interested in the average behavior

of the heuristic procedure rather than the worst case behavior though the latter is of

some significance. As pointed out by De and Morton [4), practitioners are typically
d4

interested in the 'average behavior' of the heuristic procedures. Thus, in testing the

heuristics, we are interested in estimating the average deviation of the heuristic from
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.4the optimum solution, if possible, or a 'high computational benchmark' such as truncated

branch and bound or an effective lower bound. We derived effective lower bounds

for 320 problems and compared the performance of the myopic heuristic against the

lower bound. We also compared the myopic heuristic against competing heuristics in a

large study consisting of 1280 problems. In our study, the myopic heuristic

performed better than the competing heuristics in an average sense and provided

solutions close to the optimum when used in a dispatch mode.

3 Myopic Heuristics for Parallel Processors

Consider the case in which the processors are identical. It is clear that in this

case, no machine is idle in an optimal solution (n > m. If n :5 m, the problem is trivially

solved by assigning not more than one job to any machine.) Consider the relaxation of

* the problem in which the jobs have unit processing times. Let J. and J. be any two
I J

jobs on any two machines in an optimal solution such that J. completes earlier than J..

Let C. be the completion time of Ji and C.j equal C +X. It can be easily seen that the

following propositions, derived in E14] for the pre-emptive version of the single

machine case, hold good for this case also:

* PROPOSITION I : In the case of identical processors with pre-emption, the

following property is satisfied by an optimal solution-
.4.

W - >dwj - (d ci)]

PROOF :The proof is similar to the proof for the single machine case

(Appendix [141) and is omitted here for the sake of brevity.

The following proposition, valid in the case of any pair of adjacent jobs in the

single machine problem, holds good for the optimal solution in the case of identical

processors-

PROPOSITION II: For any pair of adjacent jobs on any processor, the following



4

condition must be satisfied by an optimal solution-

wi [ dl-(t+Pi )  d (t+P i )

Pi [ - P P i

where t is the start time for J and J immediately precedes J.

PROOF :The proof immediately follows from the proof in [ 14). It can easily be

seen that the Proposition II holds good also for the proportionate and unequal machine

cases.

We note that the procedure for seeking optimal or good solutions to the

weighted tardiness problem in the case of parallel machines involves two aspects:

partitioning and ordering. In the case of the weighted completion time problems, for

any given partition, best ordering can be found by using the weighted shortest

processing time rule on each subset of jobs assigned to various processors.

However, in the case of the weighted tardiness problems, optimal ordering by itself is

a difficult task. In developing the myopic heuristic for this problem, it is clear that in

an optimal solution, there is no inserted idle time. Also, while partitioning the jobs, we

allocate the jobs to the machines such that the jobs with the highest 'urgency' are so

assigned that they get completed as early as possible.

Proposition II can be used directly to find a schedule which cannot be improved

by adjacent pairwise interchange on any machine. We exploit this propoerty in the

following manner in developing our heuristic: at any instant a machine becomes

available, we determine an apparent priority index(AP) for each of the unscheduled jobs

as given below
+ .4

AP = (wi/p i) { 1 - (di-t-p i) /X

vhere t is the current time. Since we do not know which job is likely to

we use the notation X max(O.X)
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suceed J, in an optimal(or in any local minimuml solution, we approximate the
processing time of the succeeding job by the mean processing time of all jobs or a

multiple thereof. The apparent priority assigned to any job over time is shown in

Figure 1. It is clear that if a job is too early, it need not be scheduled immediately. If

the slack is zero or negative, then the job is assigned its full priority, w,/p. The

-' duration of ;ntermidiate range is dependent on the value of X. It is also clear that as

X--9,,our pricrity scheme reduces to the Weighted Shortest Processing Time Rule.

AP X+

d -p

"o -.

FIGURE 1

Taking into consideration the above observations, we devise the following myopic

I Is heuristics for the identical processors case-

MYOPIC HEURISTIC [H1 1

Step 0 Determine the apparent priority (AP,) for all

unscheduled jobs as follows:

A P i = , 1- ,P. kF
t qL*P

I.
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where t is the earliest time at which a processor becomes

available(call it j), P is the mean processing time of the jobs and

k is the parameter used in the heuristic. Go to Step 1.

Step 1 Assign the job with the highest apparent priority to the

first available machine and remove it from the list of

unscheduled jobs. Go to Step 2

Step 2 If the set of unscheduled jobs is empty, stop. Otherwise,

go to Step 0.

For computational testing purposes, we used an exponential priority

- scheme. Under this procedure, apparent priority is given by

AP =(wi/p,) exp {(-k/P5)(di-t-p,) +

Our earlier computational results in case of single machine problem showed that the

exponent form performed better than the linear version [ 14).

It is to be noted that (H1] heuristic is a single-pass heuristic procedure. That

is, we do not change the start time of a job once it is assigned Secondly, partitioning

' and ordering decisions are simultaneously made. Thirdly, the rule is a dispatch

procedure- i.e., a procedure in which the actual decisions affecting a given machine

can be Implemented in the same order that they are made C 1]. There are many

advantages to such procedures They are generally simple and can easily be adapted to

dynamic situations with minor modifications. The decisions are made in the same

chronological order in which they are implemented. Further, in most practical situations,

the manager is concerned with the immediate decision to be implemented. Dispatch

procedures have the nice property that the computation can be terminated after the

immediate decision is made and incorporate additional available information(such as new

job arrivals and/or any change in the parameter values) in the decision framework
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before the next decision to be implemented is made. As rightly pointed out by Morton

and Dharan [12], managers may be willing to sacrifice the search for optimization for

the ease and robustness of a dispatch rule. Dispatch rules, by and large, tend to be

simple and are easily incorporated into more complex rules aevised to take into

account other operational constraints. Step 1 of the myopic heuristic ensures that the

job with the highest apparent priority gets assigned immediately. At the first sight, it

may appear that we can perhaps improve our results by reapplying the heuristic

scheme for each subset of jobs assigned to various machines. Another way to

improve the solution would be to use adjacent pairwise interchange, though this can at

best ensure only local optimality of the schedule. However, any such improvement

procedures destroy the dispatching nature of the heuristic and experimentally give only

small improvements in our studies.

It can easily be seen that the Earliest Due Date rule and the "Veighted Shortest

Processing Time rule can be adapted for these problems. In the earliest due date rule,

priority of a job is determined by the due date of the job- earlier the due date is,

higher the priority. In the Weighted Shortest Processing Time rule, the priority is

determined by the ratio wi/pi - higher the ratio is, higher the priority of the job. We

also note that the Earliest Due Date rule and the Weighted shortest processing time

rules are static rules- that is, the relative priority of the jobs do not change over time.

Therefore, reapplication of the same heuristics for the jobs assigned to various

machines does not alter the original schedule generated. However, the myopic heuristic

is a dynamic rule in the sense that the relative priorities of the jobs may change over

time.

Baker and Matin E1) in their paper on the experimental comparison of solution

algorithms for the average(unweighted) tardiness problem refer to Montagne's

method 1]. They claim it to be very effective for the weighted version of the

tardiness problem. The heuristic is as follows: sequence the jobs in nondecreasing

order of the ratio pi/(wi*(k k - d))- lower the ratio, higher the priority of the job.

k k .

. ."



'-V ''~-. - VI

8

This rule can also be used in the case of parallel machines and we call such a

procedure 'Adapted Montagne's rule'. However, it is clear that adjustments can be

made on the jobs assigned to any particular machine by reapplying the rule on the set

of jobs assigned to that particular machine. We call this 'two-pass Montagne's

Procedure'. In the two-pass procedure, we simply add the following step:

Step 4: Rearrange the jobs on each machine in nondecreasing order

of the ratio p,/w, .1 e NA p - di) where Nk is the set of jobs

assigned to the machine k in Steps 0 through 3.

It may be noted that Adapted Montagne's rule is a static rule and can be used in

dispatch mode The two-pass Montagne's procedure is not a static rule and though it

may yield better results than the simple version, it cannot be used as a dispatch

procedure.

4. Design of the Computational Experiment

Control variables in the design of the computational experiment are the number

of machinesm), number of jobs(expressed as the ratio of number of jobs per

machine- n/m), the tardiness factor(r) and the Range factor(R). The tardiness factor is

an approximate measure of the number of jobs which may be expected to be tardy in

a random sequence [17]. The range factor is a measure of the dispersion of the due

dates of the jobs. For a detailed discussion of these two factors see C 17].

e weights for the jobs : Since we expect that the penalty factor associated

with the tardiness of a job to be correlated to the work content, it is

expected that the weight of the jobs would be roughly proportionate to

the processing time of the job. Taking this into consideration, we

generate the ratio (wi/p,) for any job from the uniform distribution[ 0.,2.]

* Processing Times : Job processing times are generated from the Normal

distribution with p=30 and two values for the coefficient of variation-

U Coefficient of variation for the processing times: 0.1,0.3
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*Due Dates In generating the due dates, two controlling factors are the

tardiness factor() and the range fac., (7). As indicated earlier, the

tardiness factor is a coarse measure of the proportion of jobs which

might be expected to be tardy in a random sequence 17). The range

factor is again a coarse measure of the dispersion of the due dates from

the mean due date of the given set of jobs. It is expressed as a ratio

of the makespa n of the problem. In the case of identical parallel

processors case, we use the ratio no/m as a measure of the makespan

for generating the due dates. The values of the tardiness factor and the

range factor used in the study are as given below

*Tardin~ess factorlr): 0.2,0.4,0.6.0.8a

*Range factor(R): 0.4,0.8

Job due dates are generated from a Normal distribution for the above.

values of tardiness factor and range factor.

*Number of jobs per machine : Number of jobs per machine are set at

two levels- 15 jobs per machine and 30 jobs per machine.

e Number of machines Number of machines were set at two levels- 2

and 5.

We tested 20 problems for each specification of the parameters. Thus, in total.

we tested 2*4..2*2*2*20= 1280 problems. The heuristics tested were as follows:

1. Earliest Due Date Rule

2. Weighted Shortest Processing Time Rule

3. Adapted Montagne's procedure

4. Two-pass Montagne's procedure

5. Exponent form of the myopic heuristic
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It may be noted that all the rules, except the 'Two-pass Montagne's procedure'

are dispatch rules

5. Computational Results

Since the study was conducted across a wide range of values of weights,

processing times and the number of jobs, it is necessary to normalize the results for

comparison and analysis. The metric that we use in our study is as follows.

Weighted tardiness for the sequence

Performance measure generated by the rule

of the rule =

w,n and F are, respectively, the mean weight of the jobs, number of jobs and the

mean processing time of the jobs in a problem. Division with the number of jobs

makes results comparable across the problems with different number of jobs.

Similarly, division with the mean weight. normalizes the measure for differences in

average weights. Finally, division with the average processing time expresses the

measure in terms of average number of average processing times tardy.

The results of the computational experiment are shown in Tables 1,11,111 and IV. It

is clear that the exponent form of the myopic heuristic performs better than the other

heuristics. For comparison purposes, we tested the exponent form of the myopic

heuristic with smoothing parameter value set at 1.0 against other heuristics.

Among the problems tested, the myopic heuristic performed better than any

other heuristic in an average sense, except in the case of very low tardiness

factor(? =0.2) and high range value(R=0.8. Even in these cases, increasing the value of

the smoothing parameter k led to a performance better than any other heuristic.

Behavior of the myopic heuristic for varying values of the parameter k is illustrated

for the case m=5, n/m=30 for varying values of the parameter in Figures 2 and 3. It

is clear that the performance of the myopic heuristic can be improved by increasing

. *, .
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the value of the parameter value for low tardiness factor and/or high range values. It

must be noted that the version of the myopic heuristic tested is a dispatch rule. In

spite of this limitation, in our computational studies, this rule performed better than :he

two-pass Montagne's method which is a multi-pass procedure.

* 6. Computational Bench-Marks

We have so far compared the myopic heuristic against other competing

heuristics and showed that it performed better than others in our computational study.

However, in order to determine the efficiency of the myopic heuristic, it is necessary

to find a high computational benchmark, if not the optimum. Some of the procedures

used by the researchers for high computational benchmark are either to look for a

tight lower bound which can easily be estimated or resort to truncated branch and

bound(in truncated branch and bound the procedure is terminated after a finite number

of nodes are evaluated and the best available upper bound is chosen for comparison

purposes). The former procedure was used by Baker and Martin E1l in their study on

the comparison of various heuristics for the weighted completion time problems for

identical parallel processors and the latter procedure was used by Morton and

Dharan [123 in evaluating the myopic heuristics for the weighted completion time

problems in case of jobs with precedence constraints. Taking into consideration the

fact that in an optimum solution no machine is idle(n > m), it can be shown that the

total number of possible schedules is (n! n-l!)/n-mn, m-l!). Since there do not appear

to exist any exact procedures which can find optimal solutions for reasonable size

problems, we attempted to seek effective lower bounds.

6.1 Lower Bound based on Weighted Lateness

It iS clear that for any feasible schedule, weighted lateness is less than the

weighted tardiness-

" w(ci- d) q lun w (c d )+

Hence a lower bound on the weighted lateness problem is a lower bound on the

* weighted tardiness problem also. Let LB 1 be a lower bound on the weighted lateness
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problem and WL* and WT* be the values of optimal solutions to the weighted lateness

and weighted tardiness problems respectively.

LB1 < WL < WT*

Obviously, LB1 is rather a poor lower bound for the weighted tardiness

problems when jobs have low tardiness. However, when the jobs have high tardiness,

then a tight lower bound on the weighted lateness problems is likely to turn out to be

an effective lower bound on the weighted tardiness problem as well(in the extreme

case where all jobs are late in an optimum solution to the weighted tardiness problem,

values of optimal solutions for both problems are the same).

Eastman, Even and Isaacs [6) have shown that the following is a lower bound

for the weighted completion time problem in the case of identical parallel processors-

B(m) = max { B(n), (1/m)B(1) + ((m-i)/2m)B(n) )

where B(m) is the lower bound for the m processor problem. Using this bound,

LB 1 .5 WL LB 1 :WC* Zn wd.

LB 1 < max f Bin), (1 /m)B(1) + ((m- 1)/2m)B(n)} - Z=n w.d.

Since weightei tardiness is always non-negative,

LB1 = max { 0. max [ B(nl. (1/m)B(1) + ((m-1)/2mB(n) I - AI wid}

| a

We wish to further emphasize that this bound may be expected to be effective

for problems with high values of tardiness factor.

6.2 Lower Bounds based on Pre-emptive Delivery

Suppose that the jobs can be pre-emoted at unit intervals i.e., jobs can be split

into pieces of unit length and can be delivered when finished. This relaxed problem

can be formulated as the following linear programming problem-

minimize _ t- Ftx
j 1 ta I it i

,p

o.p
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where Ft equals (wI/p.t-d) and T equals max { p m~x, [np/mJ+1 }.

It can easily be shown that the solution to the above problem is a valid

relaxation for the original problem. It may also be noted that this problem can be

solved using any of the available codes for solving capacitated transportation problems.

Let LB2 be the optimal solution to this problem.

6.3 Lower Bounds based on Lawler's Procedure

Lawler [10] formulated the problem of scheduling jobs on identical parallel

processors as a capacitated transportation problem Adapting this procedure, the

lower bound for the original problem can be found by solving the following problem-

minimize rUn I-t=T F xit

m ,' ViEN

:-. ml pi

x. t1 itV

It-

,#:, < 5m V t ET

x < 1 V i E N, t E T

xitk 0 i E N, tE T
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where T is same as in L82 and F is evaluated as follows:

F =0 t 5 0

= kw d+(k-1)p,+1 < t < d.+kp,

It can easily be shown that the above is a relaxation of the original problem.

Let LB3 be the value of the optimal solution to this problem.

PROPOSITION III: LB2 < L83

PROOF: Without loss of generality, the job due dates can be reset to zero if

they are negative. Also note that the feasible regions for LB2 and L83 are the same.

It is also clear that in any optimal solution to the problems, x take the values either 0

or I.

Case I Suppose t = kpi, k an integer k 0.

Contribution to the objective function in L92= (wi/pi)(kp1)=kwi.

Contribution to the objective function in L83= kw (by definition)

Therefore, LB2 = LB3

Case II Suppose t = d + (k-1)p, + I, 1 < I <p-l, k an integer k 0.

Contribution to the objective function in LB2

= (w/pi)(t-d.).

,, (Wi/p) {(k- 1) +/p) -- ---------------- (1)

Contribution to the objective function in 183

= kw. -------------------- (2)

Comparing (1) and (2), LB2 < LB3

Considering both cases I and II, LB2 :5 LB3

From proposition III, it is clear that we do not need to compute LB2. However,

LB1 is rather easy to compute. The size of Capacitated Transportation problems-!
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described in S62 and 6.3 is a function of the number of machines and the processing

times of the jobs. Due to problem size limitations, we formulated and solved

additional 320 problems in the tardiness ranges 0.2.0.4,0.6 and 0.8. As was to be

expected, LB1 was extremely weak, in most cases being 0, in the tardiness ranges

0.2.0.4 and 0.6. The additional 320 problems were run for the following set of

parameters-

" number of machines: 2,4

" number of jobs per machine:

* 15 jobs per machine and 20 jobs per machine in the case of 2

machines

* 10 jobs per machine and 14 jobs per machine in the case of 4
machines

" tardiness factor 0.2,0.4,0.6 and 0.8

" range factor 0.4 and 0.8

" coefficient of variation for processing times: 0.1 and 0.3

Due to computational limitations. L83 for the cases n=2,n/m=20 and n=4.n/m= 14

could not be computed exactly. LB3 was computed for these cases by further

*relaxing the problem based on the following remarks-
'.

REMARK I: If p, is odd, then the problem solved with p, <- p,-1 is a

relaxation of the original problem.

REMARK I1: If p. is reduced to p.- 1, then d, +- di - 1 is a relaxation

of the original problem.

REMARK Ilk If d. is odd, then d. <- d. + 1 is a relaxation

of the original problem.

However, problems solved making use of the remarks I, II and III tend to give weaker

lower bounds. LB3 was determined by adapting the NETFLOW code devised by

Kennington and Helgason E93. The results comparing the performance of the myopic

- ...
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TABLE V

Mean Deviation form the best lower bouid
for the dispatch version of the ;.opic heuristic

Tardiness Factor = 0.2

R=0.4 R=0.8

n n/m Deviation from Best Deviation from Best
lower bound lower bound lower bound lower bound

2 15 0.0119 0.0113 0.0069 0.0029
2 20 0.0225 0.0229 0.0051 0.0009
4 10 0.0184 0.0187 0.0128 0.0029
4 14 0.0231 0.0138 0.0063 0.0000

Tardiness Factor = 0.4

2 15 0.0493 0.2603 0.0637 0.1621
2 20 0.1038 0.2742 0.1096 0.1514
4 10 0.0416 0.1660 0.0582 0.0755

4 14 0.0679 0.1758 0.0662 0.0690

Tardiness Factor = 0.6

2 15 0.1012 0.9009 0.1263 0.8226
2 20 0.2812 1.2383 0.2363 0.9586
4 10 0.0933 0.7628 0.1007 0.5444

-4j 14 0.1616 0.8224 0.1636 0.6652

Tardiness Factor = 0.8

2 15 0.2083 2.7561 0.1867 2.5254
2 20 0.3547 3.2259 0.2576 3.0736*
4 10 0.1053 1.8846* 0.1394 1.8294*
4 14 0.2440 2.2868* 0.1668 2.3890*

. Unless otherwise stated, lower bounds reported are Lawler's lower bound.
Lower bounds in case of problem sets marked with * are the lower bounds
attained using Even's procedure.

* . .
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TABLE VI

Mean Deviation of the myopic heuristic after adjacent pairwise
interchange from the best lower bound

Tardiness Factor = 0.2

R=0.4 R=0 .8

n n/m Deviation from Best Deviation from Best
lower bound lower bound lower bound lower bound

2 15 0.0084 0.0113 0.0053 0.0029
2 20 0.0204 0.0229 0.0035 0.0009
4 10 0.0158 0.0187 0.0179 0.0029
4 14 0.0200 0.0138 0.0038 0.0000

Tardiness Factor = 0.4

2 15 0.0457 0.2603 0.0600 0.1621
2 20 0.1007 0.2742 0.1025 0.1514
4 10 0.0392 0.1660 0.0480 0.0755
4 14 0.0621 0.1758 0.0555 0.0690

Tardiness Factor = 0.6

2 15 0.0995 0.9009 0.1217 0.8226
2 20 0.2808 1.2383 0.2328 0.9586
4 10 0.0925 0.7628 0.0962 0.5444
4 14 0.1601 0.8224 0.1613 0.6652

Tardiness Factor = 0.8

2 15 0.2079 2.7561 0.1867 2.5254
2 20 0.3530 3.2259 0.2566 3.0736*
4 10 0.1052 1.8846* 0.1383 1.8294*
4 14 0-2435 2.2868* 0.1658 2.3890*

Unless otherwise stated, lower bounds reported are Lawler's lower bound (LB3).
Lower bounds in case or problem sets marked with * are the lower bounds
attained using Even's procedure (LB1).

• " '""-" . .. "- . - -- - .- " " " . . ." '- - . . .i
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heuristic(with parameter value set at 1.01 against the best lower bound are shown in

tables V. It may be noted that LB 1 is a lower bound on the weighted lateness

and LB3 is a lower bound on the weighted tardiness. Surprisingly, for high tardiness

problems(-=0.8), LB1 was tighter than LB3. Hence the lower bound in those cases is

conservative. From tables V it is clear that the results are comparable to those

obtained in the case of single machine problemsqsee ( 143). We further attempted to

improve the results of this heuristic by adjacent pairwise interchange. These results

; are shown in Tables VI. Comparing the results in tables V and VI, it is also

clear that the gains through adjacent pairwise interchange are marginal.

7. Conclusion

It is clear from our study that the myopic heuristic performed better than the

competing heuristics in the case of identical parallel machines. The advantage of the

myopic heuristic is that it is simple to use and it can be easily incorporated into

problem situations where other operational constraints may exist Moreover, the

myopic heuristic is a dispatch procedure which makes it easy to implement in practice.

Our computational study has shown the efficacy of the heuristic by comparing it

against a tight lower bound and further showed that an improvement routine such as

adjacent pairwise interchange yields only marginal improvements. The procedure can

easily be extended to the case of unequal parallel machines. The myopic heuristic can

also be extended to flowshops. In case of flowshops, our heuristic can be used in

dispatch mode at each machine with appropriate modifications. We are currently

exploring this area and the preliminary results appear to be promising.
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