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Abstract

i 773 c.Tb.,f}\..i ;

—Whe study the problem of scheduling jobs on parallel identical machines to
minimize weighted tardiness. There are no known heuristics for this problem. The
heuristic rule developedr;y?is simple. It can be used in the dispatch mode which
makes it very practical Characterizations of optimal solutions are presented
Computational results show that the myopic heuristic performed well vis-a-vis other
ruies such as the Earliest Due Date Ruele, Vg?ffhtfd QShortest Processing Time Rule and
two versions of Montagne's Rule. l(%w‘compumtional results and also the

performance of the heuristic in comparison to high computational benchmarks.
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MYOPIC HEURISTICS FOR THE WEIGHTED TARDINESS
PROBLEM ON IDENTICAL PARALLEL MACHINES
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1._Introduction
The problem of minimizing weighted tardiness of a given set of jobs. available
simuitaneously and to be scheduied without pre—emption, has attracted the attention of
several researchers. It has been shown by Lenstra that in the case of single machine
this problem is NP-complete. In view of the importance of this problem, earlier
studies on this problem emphasized on the development of effective enumerative and
heuristic procedures. In a recent study Morton and Rachamadugu [14] developed a
myopic heuris{ic for this problem which can be used in the dispatch mode. OQur
- heuristic extends the myopic heuristic developed by Morton and Rachamadugu to the
weighted tardiness problem in the case of identical parallei machines. There are no
. known effective heuristics for this problem. Briefly, the problem is as follows: we
have n jobs JrJz'Js"""Jn that arrive simultaneously to be processed on a set of
identical parallel machines. The jobs are not permitted to be pre—empted and no job
can be processed on more than one machine. Each job is characterized by the
triple(pi,di,wi) which represents the processing time, due date and the weightitardiness
.i:; penaity) of the job. Each job has associated with it the penaity function Ci(t;) where ti'

is the completion time of the job. C,t) is given by

14, 8
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We wish to allocate the jobs among the machines and schedule them such that ZCi(ti)

is minimized.

» ol

2. Revieaw of prior studies

As pointed out by Graves [8] no simple resuits exist for the weighted tardiness
-~ problem in the case of parallel machines. Lawler [10] studied the problem (identical

"machines) for jobs with equal processing times and monotonically nondecreasing penaity

cost of completion time and showed that the problem can be solved using the

2 ‘:L‘A‘;.‘ ke l“
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transportation algorithm. For problems where jobs have unequai processing times, he
suggested a procedure which yieids a lower bound for the problem. Root [16]
studied the case where job weights are equal and the jobs have the same due date.
Other special cases were studied by Elmaghraby and Park (7], Nunnikhoven and
Emmons [13] and Barnes and Brennan [2]. However, there do not seem to exist any
heuristic procedures for the general case of the weighted tardiness problem for
parallel machines. Though one can attempt a dynamic programming approach for
finding the optimal solution, such a procedure is very severely limited by ‘the curse of

dimensionality.

Rajaraman [15] developed an enumerative algorithm for optimal scheduiing of
jobs on identical parallel processors when the jobs have nondecreasing waiting costs
and also extended it to the case when jobs have due dates. However, Dogramaci and
Sukris [5] have shown that the procedure is in error and provided additional
sufficiency conditions to make the algorithm valid. However, they concede that the
imposition of the sufficiency conditions leads to an excessive computational burden.
Bernardo and Lin [3] developed a heuristic procedure for the average tardiness
problems in the case of parallel processors. The limitation of their heuristic is that in
the case of single machine problems, it reduces to the Earliest Due Date ruie. Morton
and Rachamadugu [14] have shown that the Earliest Due Date ruie performs rather
badly in the case of single machine problems, particularly when the tardiness of the

job set is high.

In this paper we study the weighted tardiness problem in the case of identical
processors and extend the concept of a myopic heuristic for this problem. In
developing and validating the heuristics, we are more interested in the average behavior
of the heuristic procedure rather than the worst case behavior though the latter is of
some significance. As pointed out by De and Morton [4]), practitioners are typically
interested in the 'average behavior' of the heuristic procedures. Thus, in testing the

heuristics, we are interested in estimating the average deviation of the heuristic from
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o~ the optimum solution, if possible, or a ‘high computational benchmark’ such as truncated
branch and bound or an effective lower bound. We derived effective lower bounds
. for 320 problems and compared the performance of the myopic heuristic against the
lower bound. We also compared the myopic heuristic against competing heuristics in a
large study consisting of 1280 probiems. In our study., the mycpic heuristic
performed better than the competing heuristics in an average sense and provided

* solutions close to the optimum when used in a dispatch mode.

3 Myopic Heuristics for Parallel Processors

Consider the case in which the processors are identical. It is clear that in this
case, no machine is idle in an optimal solution (n > m. If n < m, the problem is trivially
solved by assigning not more than one job to any machine) Consider the relaxation of
) ;Z . the problem in which the jobs have unit processing times. Let Ji and Jj be any two i
jobs on any two machines in an optimal solution such that Ji completes earlier than JJ..
. Let Ci be the completion time of Ji and Cj equal Ci+X. It can be easily seen that the
following propositions, derived in [14] for the pre-emptive version of the single

machine case, hold good for this case also:

PROPOSITION | : In the case of identical processors with pre—emption, the
__ following property is satisfied by an optimal solution—
o + +
X + +
- d, -
, U I LA I I i 4
: 1 X =73 X

PROOF :The proof is similar to the proof for the single machine case

(Appendix [14]) and is omitted here for the sake of brevity.
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The following proposition, valid in the case of any pair of adjacent jobs in the
singl'e machine problem, holds good for the optimal solution in the case of identical

processors-

LA
“aa s s

PROPOSITION Il : For any pair of adjacent jobs on any processor, the following
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condition must be satisfied by an optimal solution-

. + + + +
- d.-(t+p.)?
vy 1_{di(t+pi)} >w_i 1_{ (t+p.)}
Py Py ~ Py Pi

where t is the start time for JI and J, immediately precedes J,-

PROOF :The proof immediately follows from the proof in [14]. It can easily be
seen that the Proposition Il holds good also for the proportionate and unequal machine

cases.

We note that the procedure for seeking optimal or good solutions to the
weighted tardiness probiem in the case of parallel machines involves two aspects:
partitioning and ordering. In the case of the weighted completion time problems, for
any given partition, best ordering can be found by using the weighted shortest
processing time rule on each subset of jobs assigned to various processors.
However, in the case of the weighted tardiness problems, optimal ordering by itself is
a difficuit task. In developing the myopic heuristic for this problen'i, it is clear that in
an optimal solution, there is no inserted idle time. Also, while partitioning the jobs, we
allocate the jobs to the machines such that the jobs with the highest ‘urgency’ are so

assigned that they get completed as early as possible.

Proposition Il can be used directly to find a schedule which cannot be improved
by adjacent pairwise interchange on any machine. Wae exploit this propoerty in the
following manner in developing our heuristicc at any instant a machine becomes
available, we determine an apparent priority index(API) for each of the unscheduled jobs

as given below :
AP = (w/p) { 1 = (d-t-p)*/x } *

vshere t is the current time. Since we do not know which job is likely to

1 . +
we use the notation X = max{(0.X)




— T TNV TN T e T e T e T e R T T T e A
R A AN a0 M o ot fth. S e, B Sl I (BRI A e R E A AR )
{(1‘._'.'.‘:'\.'. R A G A T P .

hA

*a

wd

.~ 4

s

&

suceed J. in an optimallor in any local minimum) solution, we approximate the
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processing time of the succeeding job by the mean processing time of all jobs or a

ne
»

muitiple thereof. The apparent priority assigned to any job over time is shown in
Figure 1. It is clear that if a job is too early, it need not be scheduled immediately. If
the slack is 2ero or negative, then the job is assigned its full priority. w/p. The
duration of ntermidiate range is dependent on the value of X. It is also clear that as

X->%® our pricrity scheme reduces to the Weighted Shortest Processing Time Rule.

t
AP,

d;-3p; d;-2py d;-p

t-

FIGURE 1

Taking into consideration the above observations, we devise the following myopic

heuristics for the identical processors case-

MYOPIC HEURISTIC (H1]

Step O : Determine the apparent priority (AP) for all

unscheduled jobs as follows:
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6
where t is the earliest time at which a processor becomes
available(call it j), P is the mean processing time of the jobs and
k is the parameter used in the heuristic. Go to Step 1.
Step 1 : Assign the job with the highest apparent priority to the
first available machine and remove it from the list of
unscheduled jobs. Go to Step 2
Step 2 : if the set of unscheduled jobs is empty, stop. Otherwise,
go to Step 0.
For computational testing purposes, we used an - exponential priority

scheme. Under this procedure, apparent priority is given by

AP =(w./p) exp{(-k/pid-t-p)* }
Our earlier computational resuits in case of single machine problem showed that the

exponent form performed better than the linear version [14].

it is to be noted that [H1] heuristic is'a single—pass heuristic procedure. That
is, we do not change the start time of a job once it is assigned. Secondly, partitioning
and ordering decisions are simultaneously made. Thirdly, the rule is a dispatch
procedure— ie., a procedure in which the actual decisions affecting a given machine
can be implemented in the sarme order that they are made [1]. There are many
advantages to such procedures. They are generally simple and can easily be adapted to
dynamic situations with minor modifications. The decisions are made in the same
chronological order in which they are implemented. Further, in most practical situations,
the manager is concerned with the immediate decision to be implemented. Dispatch
procedures have the nice property that the computation can be terminated after the
immediate decision is made and incorporate additional available information(such as new

job arrivals and/or any change in the parameter values) in the decision framework
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before the next decision to be implemented is made. As rightly pointed out by Morton
and Dharan [ 12], managers may be willing to sacrifice the search for optimization for
the ease and robustness of a dispatch rule. Dispatch rules, by and large. tend to be
simple and are easily incorporated into more complex rules ocevised to take into
account other operational constraints. Step 1 of the myopic heuristic ensures that the
job with the highest apparent priority gets assigned immediately. At the first sight, it
may appear that we can perhaps improve our results by reapplying the heuristic
scheme for each subset of jobs assigned to various machines. Another way to
improve the solution would be to use adjacent pairwise interchange, though this can at
best ensure only local optimality of the schedule. However, any such improvement
procedures destroy the dispatching nature of the heuristic and experimentally give only

small improvements in our studies.

It can easily be seen that the Earliest Due Date rule and the "“eighted Shortest
Processing Time rule can be adapted for these probiems. In the earliest due date rule,
priority of a job is determined by the due date of the job- earlier the due date is,
higher the priority. In the Woeighted Shortest Processing Time rule, the priority is
determined by the ratio w,/p, — higher the ratio is, higher the priority of the job. We
also note that the Earliest Due Date rule and the Weighted shortest processing time
rL;les are static rules— that is, the relative priority of the jobs do not change over time.
Therefore, reapplication of the same heuristics for the jobs assigned to various
machines does not alter the original scheduie generated. However, the myopic heuristic

is a dynamic rule in the sense that the relative priorities of the jobs may change over

time.

Baker and Marin [1] in their paper on the experimental comparison of solution
algorithms fcor the averagelunweighted! tardiness problem refer to Montagne's
method [11]. They claim it to be very effective for the weighted version of the
tardiness problem. The heuristic is as follows: sequence the jobs in nondecreasing

order of the ratio pi/(wi*(Z'::’; p, — dl- lower the ratio, higher the priority of the job.

PP O Y
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This rule can also be used in the case of parallel machines and we call such a
procedure 'Adapted Montagne's rule. However, it is clear that adjustments can be
made on the jobs assigned to any particular machine by reapplying the rule on the set
of jobs assigned to that particular machine. We call this 'two-pass Montagne's
Procedure. In the two-pass procedure. we simply add the following step:

. Step 4: Rearrange the jobs on each machine in nondecreasing order

of the ratio p'/wl*(ZI ¢ NP~ d) where Nk is the set of jobs
L
- assigned to the machine k in Steps 0 through 3.
)
y . It may be noted that Adapted Montagne's rule is a static rule and can be used in

dispatch mode. The two-pass Montagne's procedure is not a static rule and though it
» may yield better results than the simple version, it cannot be used as a dispatch

procedure.

4. Design of the Computational Experiment

Control variables in the design of the computational experiment are the number
of machinesim), number of jobslexpressed as the ratio of number of jobs per
machine~ n/m), the tardines§ factor(r) and the Range factor(R). The tardiness factor is
an approximate measure of the number of jobs which may bé expectaed to be tardy in
a random sequence [17). The range factor is a measure of the dispersion of the due

N dates of the jobs. For a detailed discussion of these two factors see [17].
® weights for the fobs : Since we expect that the penalty factor associated

with the tardiness of a job to be correlated to the work content, it is

expected that the weight of the jobs would be roughly proportionate to

the processing time of the job. Taking this into consideration, we

generate the ratio (w/p) for any job from the uniform distribution(0.2.]

® Processing Times : Job processing times are generated from the Normal
distribution with 4=30 and two values for the coefficient of variation-

s Coefficient of variation for the processing times: 0.1,0.3

P " — — e B B oMol --J
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® Due Dates : In generating the due dates, two controlling factors are the

tardiness factor(r) and the range faci..i?). As indicated earlier, the
tardiness factor is a coarse measure of the proportion of jobs which
might be expected to be tardy in a random sequence [17]. The range
factor is again a coarse measure of the dispersion of the due dates from
the mean due date of the given set of jobs. It is expressed as a ratio
of the makespaﬁ of the problem. In the case of identical parallel
processors case, we use the ratio nﬁ/m as a measure of the makespan
for generating the due dates. The values o; the tardiness factor and the
range factor used in the study are as given below:

s Tardiness factor{r) 0.2,0.4,06.08

® Range factor(R: 0.4,0.8

Job due dates are generated from a Normal distribution for the above.

values of tardiness factor and range factor.

Number of jobs per machine : Number of jobs per rachine are set at

two levels- 15 jobs per machine and 30 jobs per machine.

Number of machines : Number of machines were set at two levels— 2

and 5.

We tested 20 problems for each specification of the parameters. Thus, in total,

1. Earliest Due Date Rule

2. Waeighted Shortest Processing Time Rule
3. Adapted Montagne's procedure

4. Two—-pass Montagne's procedure

5. Exponent form of the myopic heuristic

The heuristics tested were as follows:

NP VN W S S
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It may be noted that all the rules, except the Two—-pass Montagne's procedure’

are dispatch rules.

5. Computational Results

Since the study was conducted across a wide range of values of weights,
processing times and the number of jobs, it is necessary to normalize the results for
comparison and analysis. The metric that we use in our study is as follows:

Weighted tardiness for the sequence
Performance measure generated by the rule
of the rule =

wenwp

w,n and ';5 are, respectively, the mean weight of the jobs, number of jobs and the

mean processing time of the jobs in a problem. Division with the number of jobs

‘makes results comparable across the problems with different number of jobs.

Similarly, division with the mean weight. normalizes the measure for differences in
average weights. Finally, division with the average processing time expresses the

measure in terms of average number of average processing times tardy.

The resuits of the computational experiment are shown in Tables LILIll and IV. |t
is clear that the exponent form of the myopic heuristic performs better than the other
heuristics. For comparison purposes, we tested the exponent form of the myopic

heuristic with smoothing parameter value saet at 1.0 against other heuristics.

Among the problems tested, the myopic heuristic performed better than any
other heuristic in an average sense, except in the case of very low tardiness
factor(r=0.2) and high range value(R=0.8). Even in these cases, increasing the value of
the smoothing parameter k led to a performance better than any other heuristic.
Behavior of the myopic heuristic for varying values of the parameter k is illustrated

for the case m=5, n/m=30 for varying values of the parameter in Figures 2 and 3. It

is clear that the performance of the myopic heuristic can be improved by increasing

T, W T
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the value of the parameter value for low tardiness factor and/or high range values. It
must be noted that the version of the myopic heuristic tested is a dispatch rule. In
spite of this limitation, in our computational studies, this rule performed better than :he

two-pass Montagne's method which is a multi-pass procedure.

6. Computational Bench-Marks

We have so far compared the myopic heuristic against other competing
heuristics and showed that it performed better than others in our computational study.
However, in order to determine the efficiency of the myopic heuristic, it is necessary
to find a high computational benchmark, if not the optimum. Some of the procedures
used by the researchers for high computational benchmark are either to look for a
tight lower bound which can easily be estimated or resort to truncated branch and
boundiin truncated branch and bound the procedure is terminated after a finite number
of nodes are evaluated and the best available upper bound is chosen for comparison
purposes). The former procedure was used by Baker and Martin [ 1] in their study on
the comparison of various heuristics for the weighted completion time problems for
identical parallel processors and the latter procedure was used by Morton and
Dharan [12] in evaiuating the myopic heuristics for the weighted completion time
problems in case of jobs with precedence constraints. Taking into consideration the
fact that in an optimum soiution no machine is idlein > m), it can be shown that the
total number of possible schedules is (0t n—1)/in-mi m—1). Since there do not appear
to exist any exact procedures which can find optimal solutions for reasonable size

problems, we attempted to seek effective lower bounds.

6.1 Lower Bound based on Weighted Lateness

It is clear that for any feasible schedule, weighted lateness is less than the

weighted tardiness—

T wiec - d) S " wic -~ d)f
[t} i i=1 v i

i=1

Hence a lower bound on the weighted lateness problem is a lower bound on the

weighted tardiness problem aiso. Let LB1 be a lower bound on the weighted lateness
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u problem and WL" and WT" be the vaiues of optimal solutions to the weighted lateness

and weighted tardiness problems respectively.
LB1 < wL* s wt"

Obviously, LB1 is rather a poor lower bound for the weighted tardiness
problems when jobs have low tardiness. However, when the jobé have high tardiness,
then a tight lower bound on the weighted iateness probiems is likely to turn out to be
an effective lower bound on the weighted tardiness problem as welliin the extreme
case where ail jobs are late in an optimum solution to the weighted tardiness probilem,

values of optimal solutions for both problems are the same).

Eastman, Even and Isaacs [6] have shown that the following is a lower bound

:‘-E for the weighted completion time problem in the case of identical parallsl processors-
' Bim) = max { Bin), (1/miB(1) + ((m=1)/2miBin) '

where Bim) is the lower bound for the m processor problem. Using this bound,

5 LBl s wL® = B1<wWC -ZI wd

LBl S max { B(n), (1/miB(1) + ((m-1)/2m)B(n)} - Z::'; wd,

Since weighted tardiness is always non-negative,

LB1 = max { 0. max [ Binl, (1/miB(1) + (m=11/2miBin) ] ~Z." wd. }

We wish to further emphasize that this bound may he expected to be effective

for problems with high values of tardiness factor.

8.2 Lower Bounds based on Pre-emptive Delivery

Suppose that the jobs can be pre—empted at unit intervals i.e, jobs can be split
into pieces of unit length and can be delivered when finished This relaxed problem

can be formulated as the following linear programming problem-—

L. impy t=T
minimize T T X 7, F, x.

. TNt . . . - ~_ - .. 3 . .
ST e . B . c . . N . - . . B - . .. . . e e n )
BT L B A I Sy IR YO SRS T S YR WP PTG I T adaliada Al aia el hlialadtarahal.n
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: 2::: Xy 2 P, Vien

: % sm | Vier

.- x S 1 Vienter.
x, 20 Vienter

it
-
where F _ equals (w,/plit—-d)” and T equals max { P rmax’ [np/m]+‘1 }.
it can easily be shown that the solution to the above problem is a valid
: relaxation for the original problem. it may also be noted that this probiem can be
solved using any of the available codes for solving capacitated transportation probiems.

Let LB2 be the optimal solution to this problem.

6.3 Lower Bounds based on Lawler's Procedure

Lawler [10] formulated the problem of scheduling jobs on identical parallel
processors as a capacitated transportation problem.  Adapting this procedure, the

lower bound for the original problem can be found by solving the following probiem-

. j=n t=T
minimize Z.:_, Zo, P

Il % 2P Vien

T x, S m Vier
x, S 1 | Vienter
; x_ 20 Vienter

. .. Soe .
RPN SR 0 G Yt SR WU R WA S Sy A.J
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where T is same as in LB2 and F't is evaluated as follows:

F. =0 t<O0

kw, dl+(k-1)pi+'l £ts d+kp,

It can easily be shown that the above is a relaxation of the original problem.

Let LB3 be the value of the optimal solution to this probiem.
PROPOSITION Il LB2 s LB3

PROOF: Without loss of generality, the job due dates can be reset to zero if
they are negative. Also note that the feasible regions for LB2 and LB3 are the same.
It is also clear that in any optimal solution to the problems, x;, take the values either 0

or 1.

Case | : Suppose t = kp, k an integer 2 0.
Contribution to the objective function in LB2= (w./p)kp)=kw.
Contribution to the objective function in LB3= kw, (by definition)
Therefore, LB2 = LB3

Case I Suppose t = d. + k=Tp, + 1, 1 51 <p=1, k an integer 2 0.

Contribution to the objective function in LB2

w,/pNt=d)”

tw/p) {k=1) +I/p}"  ———=mmmm—mmmmeee (n

Contribution to the objective function in LB3

= kw, - -=--=(2)
Comparing (1) and {2), LB2 ¢ LB3
Considering both cases | .and I, LB2 s LB3 .

From proposition Ill, it is clear that we do not need to compute LB2. However,

LB1 is rather easy to compute. The size of Capacitated Transportation problems
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" described in $6.2 and 6.3 is a function of the number of machines and the processing
0y

tmes of the jobs. Due to problem size limitations, we formulated and solved
'\.} additional 320 problems in the tardiness ranges 0.2.0.4,06 and 0.6. As was to be
B expected, LB1 was extremely weak, in most cases being 0, in the tardiness ranges
02,04 and 06. The additional 320 problems were run for the following set of

: parameters—
e number of machines: 2,4
ro- e number of jobs per machine:

&‘!
?'::; = 15 jobs per machine and 20 jobs per machine in the case of 2
o machines
wpiny

'_ZEZ_ @ 10 jobs per machine and 14 jobs per machine in the case of 4

;:3:1 machines
= e tardiness factor: 0.2,0.4,0.6 and 0.8

® range factor: 0.4 and 0.8

] ' e coefficient of variation for processing times: 0.1 and 0.3

Due to computational limitations, LB3 for the cases n=2,n/m=20 and n=4,n/m=14
. could not be computed exactly. LB3 was computed for these cases by further
o

:‘; ‘relaxing the problem based on the following remarks-
Y

e

e REMARK I If p, is odd, then the problem solved with p,ep-lisa

- relaxation of the original problem.
%
.\.

ot REMARK I If P, is reduced to p.~1, then d &« d - 1is a relaxation

- of the original problem.

A -

REMARK Il If d, is odd, then d. « d. + 1 is a relaxation

N of the original problem

& However, problems solved making use of the remarks |, Il and Ill tend to give weaker
_:J lower bounds. LB3 was determined by adapting the NETFLOW code devised by
A

% Kennington and Heigason [9). The resuits comparing the performance of the myopic
N o
™
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' TABLE V

Mean Deviation form the best lower bound
for the dispatch version of the .yopic heuristic

Tardiness Factor = J.2
R=0.4 R=0.8
n n/m Deviation from Best Deviation from Best
lower bound lower bound lower bound lower bound
2 15 0.0119 0.0113 0.0069 0.0029
2 20 0.0225 0.0229 0.0051 0.0009
4 10 0.0184 0.0187 0.0128 0.0029
4 14 0.0231 0.0138 0.0063 0.0000
Tardiness Factor = 0.4
2 15 0.0493 0.2603 0.0637 0.1621
2 20 0.1038 0.2742 0.1096 0.1514
4 10 0.0416 0.1660 0.0582 0.0755
4 14 0.0679 0.1758 0.0662 0.0690
Tardiness Factor = 0,6
2 15 0.1012 0.9009 0.1263 0.8226
2 20 0.2812 1,2383 0.2363 0.9586
4 10 0,0933 0.7628 0.1007 0.5444
4 14 0.1616 0.8224 0.1636 0.6652
Tardiness Factor = 0.8
2 15 0.2083 2.7561 0.1867 2.5254
2 20 0.3547 3.2259 0.2576 3.0736%
4 10 0.1053 1.8846%* 0.1394 1.8294%
4 14 0.2440 2,2868%* 0.1668 2.3890*

Unless otherwise stated, lower bounds reported are Lawler's lower bound.
Lower bounds in case of problem sets marked with * are the lower bounds
attained using Even's procedure,.
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TABLE VI

Mean Deviation of the myopic heuristic after adjacent pairwise
interchange from the best lower bound

Tardiness Factor =

0.2

A i it ah et i AICRMIL S A AL AV A S it a
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RERE

R=0.4 R=0,8
n n/m Deviation from Best Deviation from Best
lower bound lower bound lower bound lower bound
2 15 0.0084 0.0113 0.0053 0.0029
2 20 0.0204 0.0229 0.0035 0.0009
4 10 0.0158 0.0187 0.0179 0.0029
4 14 0.0200 0.0138 0.0038 0.0000
Tardiness Factor = 0.4
2 15 0.0457 0.2603 0.0600 0.1621
2 20 0.1007 0.2742 0.1025 0.1514
4 10 0.0392 0.1660 0.0480 0.0755
4 14 0.0621 0.1758 0.0555 0.0690
Tardiness Factor = 0.6
2 15 0.0995 0.9009 0.1217 0.8226
2 20 0.2808 1.2383 0.2328 0.9586
4 10 0.0925 0.7628 0.0962 0.5444
4 14 0.1601 0.8224 0.1613 0.6652
Tardiness Factor = 0.8
2 15 0.2079 2,7561 0.1867 2,5254
2 20 0.3530 3,2259 0.2566 3,0736*
& 10 0.1052 1.8846%* 0.1383 1.8294%*
4 14 0.2435 2,2868* 0.1658 2,3890%

Unless otherwise stated, lower bounds reported are Lawler's lower bound (LB3).
Lower bounds in case or problem sets marked with * are the lower bounds
attained using Even's procedure (LBl),
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heuristiciwith parameter value set at 1.0) against the best lower bound are shown in
tables V., It may be noted that LB1 is a lower bound on the weighted lateness
and LB3 is a lower bound on the weighted tardiness. Surprisingly, for high tardiness
problems(r=0.8), LB1 was tighter than {83. Hence the lower bound in those cases is
conservative. From tables V it is clear that the results are comparable to those
obtained in the case of single machine problemsisee [ 14]). We further attempted to
improve the results of this heuristic by adjacent pairwise interchange. These results
are shown in Tables VI Comparing the results in tables V and VI, it is also

clear that the gains through adjacent pairwise interchange are marginal.

7. Conclusion

it is clear from our study that the myopic heuristic performed better than the
competing heuristics in the case of identical parallel machines. The advantage of the
myopic heuristic is that it is simple to use and it can be easily incorporated into
problem situations where other operational constraints may exist  Moreover, the
myopic heuristic is a dispatch procedure which makes it easy to implement in practice.
Our computational study has shown the efficacy of the heuristic by comparing it

against a tight lower bound and further showed that an improvement routine such as

adjacent pairwise interchange vyields only marginal improvements. The procedure can
f:_':l; easily be extended to the case of unequal parallel machines. The myopic heuristic can
also be extended to flowshops. In case of flowshops, our 'heuristic can be used in
M dispatch mode at each machine with appropriate modifications. We are currently

exploring this area and the preliminary results appear to be promising.
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