
AU AI34 916 AN EXTENSIBLE FILE SYSTEM FOR HYDRAIU) CARNEGIE MELLON ' /1
UNIV PITTSBURGH PA DEPT OF COMPUTER SCIENCE
G ALMES ET AL. 09 FEB 78 CMU-CS-78-102 F44620 73-C-0074

;NCL ASS FIED F/G 9/2 NL

L

MICROCOPY RESOLUTION TEST CHART
NA

T
ONAL BUREAU OF STANOAOS '963

11- • • ' jL

All

CMU-CS-78-102

An Extensible File System for HYDRA i

Guy Almes and George Robertson D__Z TA

D710TAB EDlo

Department of Computer Science Justifloati D

Carnegie-Mellon University By
Di st ribut.n ..

F e b r u a r y 9 , 1 9 7 8 u.o nbility Codes

Avrul ,:,d/or

a proteted an efficent impementaion vi

Abstract: An extensible file system has been designed and implemented for
Hydra, an advanced capability-based operating system. This system demonstrates
three notable advances to subsystem design:

1. It provides a protected and efficient implementation via user-level
code of functions ordinarily implemented as part of a conventional
system's monolithic privileged section)

2. It provides practical solutions to two protection problems, the
Modification Problem and the Confinement Problem, for users of the
file system; and

3. It provides separation of mechanisms for data representation from
mechanisms for protection and synchronization, thus allowing an
extensible family of subfile systems to evolve.

This paper treats the design and implementation of the Hydra File System and
reflects on its implications for subsystem design and implementation.

Keywords: protection, capability, files, confinement, data abstraction.

This work was supported by the Defense Advanced Research Projects Agency
under contract no. F44620-73-C-0074 and monitored by the Air Force Office of
Scientific Research. This paper also appears in the Proceedings of the Third
International Conference on Software Engineering; the IEEE holds copyright to it.

,1

Introduction

1. Introduction

Among the more important concepts in systems, languages, and programming
methodology during the last several years are those of data type [Hoare 72], clean
control structure [Dijkstra 72, Hoare 74], and capability-based addressing [Fabry 74].
These concepts are contributing to an increasingly coherent object-oriented view of
programming, manifested in the language developments of the Alphard and CLU groups
[Jones/Liskov 76], in the systems work of Hydra (at Carnegie-Mellon [Wulf 74, Wulf
75]) and similar systems (e.g., at the University of California [Lampson/Sturgis 76],
Cambridge [Needham 72], IRIA/LABORIA fFerrie 76] Plessey Telecommunications
[England 74], SRI [Robinson 75], and others at Carnegie-Mellon University [Habermann
76, Jones 77]), and in the continuing work on the Multics system [Schroeder 77]. This
paper explores the success of the Hydra system in realizing an often-cited claim of
such systems [Cohen/Jefferson 75]: the ability to provide an adequately protected and
efficient implementation via user-level code of functions ordinarily implemented as part
of a conventional system's monolithic privileged section. Specifically, it explores the
design and implementation of an extensible file system using only the protection
mechanisms available to the ordinary users of Hydra.

Section 2 describes the goals for a file system for Hydra. Section 3
provides a detailed description of the design and implementation of this file system,
emphasizing its use of the Hydra protection mechanisms. Section 4 closes the
paper with a critical evaluation of the system in light of the claims made in
[Cohen/Jefferson 75] and the goals cited in Section 2.

Goals for a Hydra File System 2

2. Goals for a Hydra File System

The primary goals for the file system were (1) implementation without special
privileges, (2) practical solutions to two protection problems, and (3) separation
between representation and protection to allow extensibility. Each of these goals is
discussed in the following sections.

2.1. Implementation without Privilege

The principal goal of the project was to produce a usable file system without
using privileges denied to ordinary system users. The practicality of building
subsystems in this way was recognized by Fabry in the context of a Directory System;
he viewed a capability mechanism as a crucial tool:

Computer systems which do not allow processor-independent
interpretations for references to the set of objects to which a directory
name might correspond do not allow virtual-computer processing devices
to represent a directory as a data structure. Such systems, if directories
are to be available at all, must represent the directory as a data structure
hidden away within the operating system...

With list-structured addressing using capabilities, a directory can be
represented very simply as a table of names and a table of capabilities
which correspond to the names. (Fabry 71, p. 105]

The basic technique for accomplishing this in Hydra is outlined in
(Cohen/Jefferson 75] and is reviewed in Section 3.1. This ability is shared by
several other capability-based systems, notably CAL [Lampson/Sturgis 76] and the
Plessey System 250 (England 74].

2.2. The Modification and Confinement Problems

A second project goal was to allow practical solution of two protection problems
described in [Cohen/Jefferson 75]:

1. The Modification Problem. Suppose a user wants to access a file in a read-only
fashion. Suppose further that he wants to restrict the file system from
modifying the file in any way. Hydra allows a capability for such a file to be
passed to the file system Procedures with this constraint satisfied.
(Cohen/Jefferson 75, Section 3.2]

2. The Confinement Problem. Conversely, suppose a user has a sensitive file and
wants to insure that, while accessing the file through the file system, no

-- ' - n /

3 Goals for a Hydra File System

information from the file will be transmitted to the outside world. Hydra
allows the file system to be called in a confined mode, in which only the
parameters explicitly passed and the objects local to the Procedure
invocation can be modified. [Cohen/Jefferson 75, Section 3.5]

The Confinement Problem was first posed in (Lampson 73]; very few systems
even attempt solutions to it. The only such systems known to the authors assign a
sensitivity-level, from a partially ordered set of levels, to each datum and insure that
information flows only in ways determined by this partial ordering [Lipner 76, Denning
76]. This scheme models the military security system and thus represents a special
case of the general problem stated by Lampson.

2.3. Separation of Representation and Protection

Another basic goal was to separate the responsibility for uniform and correct
synchronization and protection from that for efficient representation and transput.
This separation allows extensibility of representation. We recognized several possible
file representations, each with a different intended set of uses. One file
representation might use stored line numbers to implement text files, while another
might use a simple byte stream to implement binary files. In these cases, there is a
large common set of operations that users will perform. In addition, file protection and
synchronization (e.g., mutual exclusion on file write) and file access record maintenance
are common across these different representations. It should be possible to form a
file system that supports protection, synchronization, access record maintenance, and
the common operations, and leave the actual representation to sub-file systems. The
problem of extending the file system to support new file representations is then
reduced to a problem of supplying one of these sub-file systems, which should be a
much easier task.

A

__

Desin .

Design and Implementation 4

3. Design and Implementation

This section describes the design of the File System along with some details of
its implementation. Before discussing the design, we will provide a brief review of
Hydra's protection mechanisms.

3.1. Review of Hydra Protection Mechanisms

The reader is urged to refer to the broad summary of Hydra in [Wulf 74] and
the more detailed paper on Hydra's protection mechanisms [Cohen/Jefferson 75]. As
noted in these papers, a central notion in Hydra is that all resources and data
structures are obiects. These objects are addressed only through capabilities, which
provide an addressing mechanism that is absolute and context-independent in the
sense of IFabry 741. Objects can contain both data and capabilities, thus allowinF.
complex data structures to be built. Also, each object has a unique 64-bit Name I and
a 64-bit Type. Each capability contains two fields: the Name of the object and a set of
Access _ .hts. These Access Rights are in three groups: (1) the Generic h (e.g.,
SGetDataRts to read data from an object) control the operations applicable to objects
of any Type; (2) Un-Amplifiable Access Rights (e.g., SUnconfineRts and SModifyRts,
discussed in section 4.2) solve specific protection problems; and (3) the Auxiliary
Ri.hts (e.g., SFSCopyRts to read or copy a File object) control Type-specific
operations. Each distinct object Type is supported by a different Subsystem
comprised of a description of the Type's data format and a set of Procedures which
implement Type-specific operations. Hydra itself implements several basic Types (e.g.,
Type, Procedure, Process, Page, Semaphore, and Port); it can thus be regarded as a
uniform capability mechanism together with a few built-in Subsystems.

A Hydra Subsystem is implemented in two steps: the description of the format of
the objects of the new Type and the provision of Procedures that implement the
Type-specific operations.

The description of format is accomplished by the creation of a new object whose
Type is Type, and whose Name is "File" (or "Directory" or "Connection"). The static
attributes of File objects (e.g., the number of data words and capabilities they can
hold) are stored in this Type object. This Type object can then be used to create
objects whose Type is File, but whose Name is "MyTextFile" (or "SortSource" or
"SortObject"). This method of object creation clearly identifies each object with a
specific Type and data structure.

1 \ Within this paper, alphabetic Name will be used to denote object*. It should be remembered, however, that
the actual Name is the unique 64-bit value provided by Hydra.

5 Design and Implementation

The implementation of Type-specific operations is accomplished by the
construction of a Procedure for each such operation. Each Procedure (an object of
Type Procedure) in Hydra has two important constituents: (1) a set of inherited
capabilities for objects that belong to the Subsystem, including Pages that contain the
Procedure's code and (2) a set of formal parameters, denoted by special capabilities,
called Parameter Templates. When a Procedure is called, a new protection domain (an
object of Type LNS, for Local Name Space) is formed. The inherited capabilities are
copied directly from the Procedure and the code Pages are made addressable. The
formal Parameter Templates are then merged with the capabilities passed by the caller
to result in actual parameter capabilities in the LNS. The nature of this merging is
critical to the implementation of Subsystems and should be well understood. Any
Parameter Template can specify a Type and a minimal set of Access Rights that the
caller's parameter must satisfy. Should any of the caller's parameters be of the wrong
Type or have insufficient Access Rights, the Procedure Call will fail. A Subsystem will
normally make such Parameter Templates available to the entire community, for they
simply accomplish the checking of actual parameters and, of themselves, grant no
access.

A special kind of Parameter Template, the Amplification Template, is derived
from the Type object and kept private to the Subsystem. In addition to Type and
Access Rights checking, an Amplification Template can turn on any of the Generic
Access Rights (it cannot, however, turn on the Un-Amplifiable Access Rights). Thus,
although users of the Subsystem will lack these Generic Rights and cannot manipulate
the representation of the object directly, they can manipulate them by invocation of
Subsystem Procedures which gain these Generic Rights over the duration of the Call.
To explain this Amplification differently, we may say that the Amplification Template
signifies the Subsystem's right to control the representation of all objects of its Type
in general, but does not grant access to any particular object. On the other hand, the
user's capability for a particular object signifies his right to address it, to share it in a
flexible way, to use it as a building block for other data structures, and to manipulate
it by invocation of the Type-specific operations implemented by Subsystem
Procedures.

A Procedure can be invoked via the Call operation if the caller has a capability
for the Procedure to be called. Alternatively, the Tvoecall mechanism can be used,
which eliminates the need for the user to obtain an actual Procedure capability. The
Typecall is identical to Call, except that the Procedure is specified, not by a Procedure
capability, but by (1) a capability for an object, called a Type Representative, of the
Subsystem's Type and (2) an integer Index. When the Typecall is invoked, Hydra
locates the Type object that corresponds to the Type Representative and uses the
Index to locate a capability in this Type object, which must be a Procedure capability.
This Procedure is then Called.

Finally, Hydra provides a Port System for inter-Process communication. Using
this Subsystem, a Process can send and receive messages from Port to Port along
established connections. Like objects, these messages can contain both datt and
capabilities. The Port System itself handles the necessary synchronization and
queueing associated with sending and receiving the messages.

I.

Design and Implementation 6

3.2. File System Design

A basic goal of the File System is the separation of responsibility for
synchronization and protection from responsibility for efficient representation and
transput. The former responsibilities are handled by one fixed File System; the latter
by several SubFile Systems 2. The File System defines and supports the new Type
called File. Each SubFile System defines and supports a new SubFile Type. A user's
file is an object of Type File, and all accesses to it are initiated through Typecalls to
the File System. The File object has a capability for a SubFile object, which contains
the actual data stored in the file. The File System handles activities common to all
SubFile Systems, and passes representation-specific requests on to the appropriate
SubFile System via Typecalls on the SubFile object.

There is a fundamental convention that only the File System and the supporting
SubFile System ever have capabilities for SubFile objects. The File System and all
SubFile Systems respect this convention; it allows the SubFile Systems to know they
are called only by the File System, which will have satisfied protection and
synchronization requirements.

The File System makes effective use of both the Typecall and Port mechanisms
of Hydra to accomplish transput. Typecalls, using a File object as a Type
Representative, are used to Create new Files, to Open or Close them, and to Copy,
Query, Compare, or Edit them. These C.l3s will be described in more detail later. In
normal transput, however, the only necessary Calls are Open and Close. Each SubFile
System provides a Monitor Process with which the user communicates via messages
sent through the Port System. The Open Call to the File System evokes an Open Call
to the SubFile System, which establishes the SubFile as an opened SubFile and
connects the user's Port to the SubFile System Monitor's Port. All transput is then
accomplished through messages to this Port. Using these messages in a manner similar
to the classical technique of "double buffering", processing concurrency between the
user process and the SubFile Monitor is achieved. When the transput is completed, the
Close Call disconnects the user's Port from the SubFile Monitor's Port.

2 \Atthough there may be many different SubFile Systems, each supporting its own Type, any particulsr File

object will always use e perticular SubFil System specified upon File creation. Thus, in the ret of the
paper, we will often refer to the SubFile System, meaning the SubFile System that supports the aubfile of
the File under discussion

-I

LI,..

7 Design and Implementation

3.2.1 File System: Protection and Synchronization

A File is an object of Type File and is effectively manipulable only through the
File System Proceduces via Typecalls. Its representation contains both capabilities and
data. One capability addresses a Semaphore used for exclusive access to the File
object. Another addresses the current SubFile (i.e., the SubFile object that represents
the current versior of the File). The data contain record access maintenance
Information such a- the print name for the File, creation date, last access date, and last
modification date.

All user manipulations of files are initiated via one of the following Typecalls to
the File System: Create, Open, Close, Copy, Query, Compare, and Edit. We will briefly
describe each.

The Create Call takes a File as a parameter. It creates a new object of Type
File and initializes the File's maintenance information (e.g., print name and creation
date). Using the current SubFile of the File parameter, a SubFile Create Typecall is
made to create a new SubFile object. Capabilities for that new SubFile and for a new
Semaphore are then placed in the new File. Finally, the new File is returned to the
user with all Auxiliary Rights, all Un-Amplifiable Access Rights, but no Generic Rights.

The Open Call takes a File, a Port, and a Job object (used to access the system
Scheduler) as parameters. If the file is being 'opened for writing', then appropriate
synchronization is done and a new SubFile is created and opened; otherwise the
current SubFile is opened. This scheme allows many readers and one writer
simultaneous access to the File. The appropriate SubFile System is notified, via
SubFile Open Typecall, that the SubFile is being opened. The Job object is passed to
the SubFile System for its use. The SubFile Open returns its Monitor's Port, which is
then connected to the user's Port. Finally, an object of Type OpenFile (containing
information needed by Close) is created and returned to the user.

The Close Call takes an OpenFile object as a parameter. It performs a SubFile
Close Typecall, which notifies the SubFile Monitor. If the file had been 'opened for
writing', then SubFile Close returns the new SubFile which is then made the current
SubFile. The user's Port is then disconnected from the SubFile Monitor's Port. Finally,
some maintenance information is updated in the File (e.g., latest access date).

The Copy Call takes a File and produces a physical copy of it (data and
capabilities), which Is returned to the caller. However, the SubFile is not physically
copied since the SubFile of a File can be read and replaced, but never modified.

The Query Call provides a means for the user to interrogate the maintenance
Information stored in the File. It also provides an open-ended way of obtaining
information about the SubFile. The user specifies which field he wishes to see; any
field unknown to the File System will yield a request to the SubFile System (via
SubFile Query Typecall).

Design and Implementation 8

The Compare Call takes two File objects and returns information resulting from
comparing their respective SubFiles. No SubFile Compare operation is needed. The
information returned indicates whether the SubFiles are identical and whether they are
of the same SubFile Type.

Finally, the Edit Call provides an entry into the editor most appropriate for the
SubFile (via SubFile Edit Typecall). The SubFile Editor may replace the SubFile in the
File by performing a NewSub Typecall on Ihe File. The NewSub Typecall requires as a
parameter a capability for the original SubFile to insure that only the SubFile System
can make such a modification.

In each of these Calls, the File System does appropriate rights checking using
the Parameter Template mechanism provided by the Hydra Call mechanism. It also
provides the common kinds of synchronization found in most file systems. For
example, a File 'opened for writing' by one user cannot be simultaneously edited by
another. In sum, the File System is responsible for all things that SubFile Systems
have in common, leaving only representational issues to the SubFile Systems.

3.2.2 SubFile System: Transput and Representation

A SubFile System is the only system which ever has direct access to the data
stored in a SuhFile object. It has sole responsibility for data representation and
access. Each SubFile System is built around a particular SubFile Type and provides
Procedures (called from the File System via Typecalls) for Create, Open, Close, Query,
and Edit. It also provides a Monitor Process, which cooperates with the SubFile Open
and SubFile Close to establish Port System connections with users for transput.

The SubFile Create Procedure creates an empty SubFile in whatever form is
suitable for its representation. The SubFile Query Procedure responds to information
requests that are representation-specific (e.g., what is the length of the file?). The
SubFile Edit Procedure invokes the editor most appropriate for its representation (e.g.,
line-oriented editor or character-oriented editor).

The SubFile ,pen SubFile Close, and SubFile Monitor Procedures cooperate with
each other to establish Port System connections with users for transput. Once a File
is opened, all transput is handled by messages between the user and the SubFile
Monitor. The formats used for these messages are very general and open-ended. The
first word of the message contains a pointer to the message header, which may be in
the message text or in a Page object passed along with the message. The message
header has the transput opcode and a word for error return from the SubFile Monitor.
The most common message format has two descriptors following the message header:
one for the text being transput, and one for an optional key (e.g., line number or byte
index into file). Each descriptor contains a pointer to the text (key), which may be
either in the message or in the Page object. It also contains requested and actual
lengths for the text (key). The semantics of a key are SubFile Type specific, while the
syntax is fixed for all SubFile Types. The set of transput opcodes is also open-ended,
with some SubFile Monitors implementing different subsets of the available opcodes.

9 Design and Implementation

The most common opcodes are FileRead, FileWrite, FileRewind, FileToEnd,
FileReadGivingKey, FileSeek, and FileSeekRead. The last three deal with keys (e.g.,
FileReadGivingKey in a line oriented SubFile returns the next line with its line number).

It is important to note that in the above discussion no restrictions were placed
on the representation of a SubFile object. Although the most obvious implementation
repres-ents the SubFile as a list of capabilities for Page objects, there is no
requirement to do so. In fact, three SubFile Systems have been considered that use
other representations. The first, which has already been implemented, is a line printer
Spooler SubFile System. Another is a Terminal SubFile System which provides access
to a user's terminal, allowing uniform access to files or terminals. The third example is
an ARPA Network SubFile System, which makes file transfer between different
Network Hosts very straightforward. The point all these examples i that the
representational issues are left entirely to the various SubFile System- 4..ile the
protection and synchronizatior issues are handled by the File System.

3.3. File System Implementation

The File System and two SubFile Systems (one line-oriented, the other a line
printer spooler) have been operational since early fall of 1976. A third SubFile
System (simple byte stream) has been implemented to explore the Confinement
Problem. The design of these systems took place during May and June of 1976 and
involved six people for a total of about fourteen man-days. The implementation of
each of these systems took less that one man-month. Each was written in BLISSI 1, a
PDPII dialect of BLISS [Wulf 71], and has approximately three-thousand machine
instructions. Coding, compiling, and most of the testing of the File System and various
SubFile Systems were done independently. The only testing that required coordination
between two implementors occurred when communication between the File System and
a SubFile System was in question. This amounted to only a few man-days in each case.

In order to simplify maintenance, each SubFile System produces crash dumps
whenever unexpected failures occur. This has made most of the errors very easy to
detect and correct. A few obscure errors have required installing special versions of a
SubFile System with a debugging system. Once an error has been corrected in a
SubFile System Procedure, the Typecall mechanism has made it extremely easy to
install new versions. The SubFile System maintainer merely has to replace capabilities
for the changed Procedures in the SubFile Type object. All such maintenance activities
are done without special privileges.

• Ag

Evaluation 10-

Evaluation 10

4. Evaluation

We have described a set of goals for an extensible file system for Hydra and
details of a design and implementation of a file system to meet those goals. The design
critically depends on the capability-based protection mechanisms of Hydra and makes
heavy use of Hydra's Type, Subsystem, and Port mechanisms. This section provides a
more explicit evaluation of our design with respect to the goals of [Cohen/Jefferson
75] and Section 2.

4.1. Implementation without Privileges

The most Important goal of our work was the implementation of a practical File
System without special privileges. The Hydra protection mechanisms allowed us to
insure the integrity of the data structure and Type-specific operations of the File
System. Furthermore, these same mechanisms encouraged a modular decomposition of
the system; this decomposition, together with the use of the BLISSI 1 language greatly
eased the design, implementation, and maintenance efforts.

While the Hydra file system design is functionally very nice, it is slower than it
would be were it part of the Hydra Kernel. This is a natural result of using
mechanisms as general and powerful as the Hydra Protection Mechanisms as
extensively as we did. One dominant example of this is the implementation of the
Procedure Call mechanism. During a series of traced calls to the File System, the
average amount of computation within the File System was 49 msec and the average
cost of Call overhead was 51 msec (i.e., about half the total time). Thus, while the
domain crossings did make our protection and software engineering r sults possible,
we find that they are very expensive on Hydra, since it implements the capability
mechanisms via software.

4.2. The Modification and Confinement Problems

A second result was the implementation of a useful Subsystem able to solve the
two chief protection problems discussed in [Cohen/Jefferson 75].

The Modification Problem was the simple- of the two. When a user passes a File
parameter lacking SModifyRts, Hydra prevents the File System from modifying the File
or any object accessed through capabilities in the File. Whenever a File System
operation has no intrinsic need to modify the File, it detects when the passed File
parameter lacks $ModifyRts and functions correctly without modifying the File in any
way. Thus in the case of the 'open for reading' operation, the implementing Procedure
refrains from modifying the date of last access field in the File object when the
capability lacks SModifyRts. A more subtle constraint involves the Semaphore that
controls exclusive access to the File object during Open and Close operations. An

1 Evaluation

analysis of the 'open for reading' Procedure reveals that the only indivisible operation
on the File object necessary during the Open is the copying of a capability for the
current SubFile object. Due to the capability mechanism of Hydra, this operation is
indivisible, so no explicit locking is necessary and $ModifyRts is not needed. Were it
necessary to determine the current SubFile by means of access to a multi-word data
structure in the File object, on the other hand, some locking, and thus $ModifyRts,
would be needed.

The second, more difficult, and more interesting of the two problems is that of
Confinement. A confined Procedure Call is performed whenever the capability for the
Procedure object of a Call (or Type Representative of a Typecall) lacks SUnconfineRts.
In this ca-.e, Hydra removes SUnconfineRts and SModifyRts from each capability
inherited from the Procedure. This very simple mechanism insures that the only
objects that may be modified in the Call are (1) the actual parameters passed explicitly
by the caller and (2) objects local to the Procedure invocation. Furthermore, this
mechanism is transitive, since only Procedure capabilities or Type Representatives
pa-ssed as actual parameters can possibly have SUnconfineRts. Although it was not
difficult to implement the File System under this constraint, it was difficult to construct
confinable SuhFile Syc.tems. In the case of the Spooler SubFile System, there is the
intrinsic need to modify a particular inherited object, the line printer device. In other
ca.es, the need to modify is not intrinsic, but technological, and stems from the
multiplexing of a single monitor Process to handle the transput for all its open
SubFiles. Given this efficiency-oriented shared monitor concept, confinement is
impossible.

One particular SubFile System was constructed, however, to explore the
feasibility of a Confinable SubFile System. The Open Procedure of the Confinable
StibFile System rpins off a special monitor Process for each open SubFile. Due to the
confinement constraint, the initial LNS of this monitor Process will be confined and may
only modify the parameters of the Open Call. One detail of this should be pointed out,
however, to be perfectly clear. As noted above, the propagation of confinement may
be broken by the explicit passing of a Type Representative, having SUnconfineRts, by
the caller. If the caller trusts the Subsystem identified by this Type Representative,
then this is an appropriate way for him to limit the Confinement intended and is
falithful to Lampson's first confinement criterion: "Transitivity: If a confined program
calls another program which is not trusted, the called program must also be confined"
[Lamps.on 73, p. 614, emphasis added]. In the case of the Confinable SubFile System,
an explicit Type Representative for a Job object is needed to allow the Calls on the
Proce-,s Scieduler (called the Policy Module in Hydra [Levin 75]) that are necessary to
spin off the confined monitor; the Scheduler, for intrinsic reasons, cannot operate
confined. Note, however, that this relaxation of confinement for the Scheduler is the
only exception. It is done above-board, for the Type Representative is passed
explicitly, and allows unconfined Calls only on the Scheduler (which would be within
the privileged portion of a conventional system). Apart from the Scheduler, moreover,
Hydra itself enforces the confinement of the File System, the SubFile System, and any
other Subsystems they may invoke through inherited capabilities.

A point can now be made about the importance of the Modification Problem. The
most obvious motivation, that given in (Cohen/Jefferson 75], is that a user should be

Evaluation 12

able to attempt a read-only access to a File without any risk of its corruption, as in
the case when a user suspects a File System bug. This is not a forceful motivation,
however, for such a situation wuuld occur very rarely in such a critical Subsystem. A
more convincing motivation stems from the desire to make a solution to the
Confinement Problem a practical reality. A user can call a Subsystem confined, but
that Call will fail unless the Subsystem can effectively get its work done without
$ModifyRts and SUnconfineRts for its inherited capabilities. If, for example, a
Subsystem needs to read a File (or look up a read-only item in a Directory) and if the
File (or Directory) System did not solve the Modification Problem (it might fail by
insisting on being able to update a date of last access field), then it would be
impractical or impossible for the Subsystem to function confined. Thus, any Subsystem
that intends to solve the Confinement Problem in a practical way must also solve the
Modification Problem.

4.3. Separation of Representation and Protection

Another interesting result came from the separation of representation and
protection issues. The distinction between the File System and SubFile Systems has
made the File System highly extensible. This kind of extensibility is very important in
experimental computing environments, like Hydra, where representational issues are
open-ended.

In sum, an extensible file system has been constructed for Hydra. It is usable
and was implemented at low cost without special privileges. Hydra's capability-based
protection, Type, Subsystem, and Port mechanisms were all critical to the success of
this project.

Acknowledf ements. We wish to recognize the important contributions of David Lamb,
Joseph Newcomer, Samuel Harbison, and Philip Karlton to the design of the File System.
We also wish to thank our patient colleagues who commented on drafts of this paper,
with special thanks to Roy Levin and Lee Schiller.

13 References

5. References

Cohen/Jefferrson 75: E. Cohen and D. Jefferson, "Protection in the Hydra Operating
System", Proc. 5th Symposium on Operating Systems Principles, Austin,
November 1975.

Denning 76: D. Denning, "A Lattice Model of Secure Information Flow", Comm. ACM,
(May 1976) 195.

Dijkstra 72: E. Dijkstra, "Notes on Structured Programming", in Dahl, Dijkstra, and
H-oare, Structured Prog.ramming, 1972, Academic Press, New York.

England 74: D. M. England, "Capability Concept Mechanisms and Structure in System
250", Proc. IRIA Workshop on Protection in Operatinp Systems. Rocquencourt,
August 1974.

Fabry 71: R. Fabry, List-Structured Addressing. Ph.D. Thesis, University of Chicago,
March 1971.

Fabry 74: R. Fabry, "Capability-Based Addressing", Comm. ACM, (July 1974) 17 7.

Ferrie 76: J. Ferrie, C. Kaiser, D. Lauciaux, and B. Martin, "An Extensible Structure for
Protecte, Systems' Design", Computer Journal (November 1976) 19 4.

Habermann 76: A. N. Habermann, L. Flon, and L. Cooprider, "Modularization and
Hierarchy in a Family of Operating Systems , Comm. ACM, (May 1976) 19 5.

Hoare 72: C.A.R. Hoare, "Notes on Data Structuring", in Dahl, Dijkstra, and Hoare,
Structured Proprmming, 1972, Academic Press, New York.

Hoare 71: CA.R. Hoare, "Monitors: An Operating System Structuring Concept", Comm.
ACM, (October 1974) 17 10.

Jones./Liskov 76: A. Jones and B. Liskov, "A Language Extension for Controlling Access
to Shared Data", IEEE Transactions on Software Engineering, (December 1976)
SE-2 4.

Jones 77: A. Jones, R. Chansler, I. Durham, P. Feiler, and K. Schwans, "Software
Management of CM*, a Distributed Multiprocessor", Proc. National Computer
Conference Dallas, June 1977.

Lampson 73: B. Lampson, "A Note of the Confinement Problem", Comm. ACM, (October
1973) 16 10.

Lampson/Sturgis 76: B. Lampson and H. Sturgis, "Reflections on an Operating System
Design", Comm. ACM, (May 1976) 19 5.

Sit

References 14

Levin 75: R. Levin, E. Cohen, W. Corwin, F. Pollack, and W. Wulf, "Policy/Mechanism
Separation in Hydra", Proc. 5th Symposium on Operating Systems Principles.
Austin, November 1975.

Lipner 75: S. Lipner, "A Comment on the Confinement Problem", Proc. 5th Symposium
on Operating Systems Principles. Austin, November 1975.

Needham 72: R. Needham, "Protection Systems and Protection Implementation", Proc.
Fall Joint Computer Conference Anaheim, December 1972.

Robinson 75: L. Robinson, K. Levitt, P. Neumann, and A. Saxena, "On Attaining Reliable
Software for a Secure Operating System", Proc. International Conference on
Reliable Software Los Angeles, April 1975.

Schroeder 77: M. Schroeder, 0. Clark, and J. Saltzer, "The Multics Kernel Design
Project", Proc. 6th Symposium on Operating Systems Principles, West Lafayette,
Novemler 1977.

Wulf 71: W. Wulf, "BLISS: A Language for Systems Programming", Comm. ACM,
(December 1971) 14 12.

Wulf 74: W. Wulf, E. Cohen, W. Corwin, A. Jones, R. Levin, C. Pierson, and F. Pollack,
"HYDRA: The Kernel of a Multiprocessor Operating System", Comm. ACM. (June
1974) 17 6.

Wulf 75: W. Wulf, R. Levin, and C. Pierson, "Overview of the Hydra Operating System
Development", Proc. 5lh Symposium on Operating Systems Principles Austin,
November 1975.

