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TECHNICAL REPORT SUMMARY

One purpose of this investigation has been to regionalize

the upper several hundred kilometers of the mantle under the

Arctic region, Siberia and the Eurasian continental area using

seismic surface waves. A second purpose has been to develop and

test efficient computer techniques for the computation of accurate

theoretical seismograms for hypothetical sources located within

Eurasia and which make use of the results of the regionalization

part of this study. These theoretical seismograms are complete

in the sense that they contain both body and surface waves; they

can be applied directly in a discrimination program by comparing

the theoretical seismograms, computed for both earthquakes and

underground explosions, with the actual recorded seismogram.

Regionalization. The program of regionalization involves

the measurement of phase velocities for Rayleigh waves travers-

ing the regions under investigation. The phase veloc.ty curves

were obtained with the single-station phase velocity method,

which is described in the main text of this report. Briefly,

the method involves selecting records of earthquakes from the

library of the World Wide Standardized Seismographic Network

(WWSSN) for events which: (1) occurred within, or on the peri-

meter of, the area of interest, (2) produced good long-period

surface wave records at WWSSN stations for which the$.



2

epicenter-to-station lines lie within the regions being in-

vestigated, and (3) generated good, large recordings at a suf-

ficient number of stations to ensure an accurate fault plane

solution. When a suitable earthquake was found, an extensive

data processing and data reduction system was applied to trans-

form the data into phase velocity curves for each of the

selected epicenter-to-station lines.

The complete set of phase velocity curves (for fundamental-

mode Rayleigh waves recorded by the WWSSN instruments), which

are then used for the regionalization of the Arctic region,

Siberia, and the Eurasian continental area, consists of about

50 dispersion curves. Based on this data set, we have regionalized

the area of interest by making use of an assumption that large

parts of the region with similar geophysics or basement geology

and age will have similar upper mantle structures. A similar

assumption was made with success in the regionalization of the

Pacific Ocean basin (Kausel, Leeds and Knopoff, 1974; Leeds,

Knopoff and Kausel, 1974).

The inversion has proceded by the use of both linearized

and non-linear inversions procedures with the mantle properties

in each of the geographic regions as unknowns. Our reqionalization

has made use of maps of basement geology of Eurasia coupled with

a postulate of similarity of mantle cross-section for regions of

similar basement age, made previously in small-scale reqional
4

studies (Knopoff, 1972).
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From our regionalization studies on the Eurasian continent,

we draw the following conclusions: First, the properties of the

mantle of the sediment-covered Siberian and Russian platforms

are highly consistent with those of the Baltic and Siberian

shields and with ancient shields observed worldwide (Knopoff,

1972). Second, the Tibetan plateau has an extremely thick

crust, perhaps as great as 75 km from surface to Moho. Further-

more, the upper mantle under the Tibetan plateau has high seismic

velocities, indicating the absence of partial melting to relatively

great depths. This can be accounted for by emplacement of the

Indian shield under Tibet during the collision of the Asian and

Indian plates. Third the Alpide folded belt of Iran and Turkey

has a very well-developed low-velocity channel in the mantle,

with good contrast to the lid above, implying the presence of a

zone of partial melting at a depth of about 90 to 100 km. Fourth,

the Mongolia -Sinkiang geophysical province has a well-developed

low-velocity zone in the upper mantle and the more-or-less stable

part of Eastern China also has a low velocity channel at typical

depths.

The principal problem in the inversion has been the con-

struction of the boundaries to the geophysical provinces, for which

only incomplete information is found in the literature. A full

resolution of this problem is still in the future, but the

regionalization used to date, in which Eurasia is divided into 6

J rather large regions,is statistically consistent with the data
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and has about the correct number of degrees of freedom in the

model parameterization.

Theoretical Seismograms. The second phase of our work has

been the development and testing of techniques for the computation

of realistic theoretical seismograms at the WWSSN and HGLP in-

stallations, for earthquake and explosive sources within the areas

under investigation. For SH waves excited by both earthquakes

and explosions, we can construct complete seismograms down to a

period of 10 sec. (and occasionally to shorter periods). The

difficulty of calculating diffraction effects due to the presence

of lateral heterogeneity remains as an important unsolved problem;

as long as the waves cross regional boundaries at conditions re-

mote from grazing incidence, our theoretical seismograms are

probably quite accurate. The extension, development and

optimization of these algorithms and computer programs for

Rayleigh, or P-SV waves on a spherical, gravitating earth has

also been one of the main efforts under this contract. The

efficient construction of accurate, theoretical SH seismograms for

realistic models of the earth's structure using multimode methods

is based on effective dispersion computations, attenuation

calculations, structural transformations, and computations of

eigenfunction characteristics, effects of sphericity, and

point-source response; we have studied all these ingredients in

detail.

O4 •  Our work with theoretical seismograms has concerned the

A
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multi-mode surface wave phases Ly, Sa and Sn; references to

this work are appended. For discrimination studies, it is also

desirable to have body-wave phases on the theoretical seismograms;

this has been one major thrust of our most zecent work; another

has been the improvement in efficiency, control of accuracy and

increased power and flexibility of the computational algorithms

and computer programs. We have reported our ability to generate

theoretical seismograms with body and surface waves, on the same

record using up to twenty-one modes. Multimode theoretical

seismograms containing body wave phases have been generated in

the past (Sat6, Usami and Landisman, 1968); however, these time

series were limited to ultralong periods. The important point

of our recent results is that, owing to the efficiency of our

new algorithms, we have been successful in extending the period

content of the theoretical seismograms through the range covered

by the WWSSNLP instruments. Thus, we can generate the theoretical

time series which, for the first time we believe, permits us to

compare theoretical seismograms directly with the entire records

obtained at the WWSSN and the HGLP installations down to a period

of ten seconds. This requires that 90-100 modes be used in the multi-

mode synthesis. The necessary frequency-domain information is

obtained in a single, relatively inexpensive computer run; time

series, for any source specification, are then obtained with a

single run of a second program (Liao, Schwab and Mantovani 1977;

preprint appended).
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In the case of Rayleigh wavus, sphericity and gravity intro-

duce complications not encountered with Love waves. For Love

waves, optimized flat-structure programs carl be used since the

sphericity of the real earth can be handled by exact transformation,

and since gravity does not affect Love waves. At present, accurate

Rayleigh-wave computations for a real earth require that sphericity

and gravity be handled directly in the computational algorithms

and programming; hence, our first task here was to improve the

accuracy characteristics of direct Rayleigh-, or spheroical-wave

computations. The difficulty, expense, and time required for this

analysis showed us why this information was not in the literature,

even though the basic algorithm is available (Alterman, Jarosch

and Pekeris, 1959). The results of our work (Schwab et al, 1977)

are appended. They include: (1) an improved and simplified com-

putational algorithm for the computation of the phase velocity of Rayleigh

waves. (2) What we believe to be the first direct method for

computing the group velocity, i.e., without appeal to variational

methods; (3) numerical analyses and examples of numerical dif-

ficulties encountered in this type of computation; (4) detailed

analysis of the efficiency of our optimized algorithm and pro-

gramming. Even in this optimized form, these direct Rayleigh-

wave computations for a spherical, gravitating earth, are about

six times slower than the comparable Love-wave computations;

whereas we know that computations for Rayleigh waves on a flat,

non-qravitating structure are only twice as slow. Our conclusion,
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from the Rayleigh wave work done here, is that new algorithms

are required before the efficiency of the Rayleigh-wave com-

putations (including sphericity and gravity) will approach

a level justifying computation of the associated multimode,

theoretical seismograms down to the desired period of ten

seconds. We have developed a sufficiently improved algorithm

(Schwab, 1977), but the necessary numerical verification and

testing are only in their initial stages.

References to our own work on theoretical seismograms for

Sa, Lg and Sn include: Knopoff, Schwab and Kausel (1973);

Knopoff et al (1974); Nakanishi, Schwab and Kausel (1976);

Kausel, Schwab and Mantovani (1977); Mantovani et al (1977).

References to our work on theoretical seismograms which in-

clude both body and surface waves are: Nakanishi, Schwab

and Kausel (1976); Kausel, Schwab and Mantovani (1977);

Mantovani et al (1976); Mantovani (1977a,b); Liao, Schwab

and Mantovani (1977).

r



TECHNICAL REPORT

I. Purposes

'One purpose of this project was to determine the regional variations

of the crust and upper mantle in the regions under investigation

using the properties of surface wave dispersion in the Arctic

region and the Eurasian continental area. The regions of high

seismicity within and around the region,plus the dense set of

WWSSN stations located around the perimeter of the region, gave

assurance that we could acquire sufficient single-station phase

velocity data for the application of regionalization procedures.

A second purpose was to develop computational techniques

for calculating complete, accurate theoretical seismograms for

both earthquake and explosion sources within the area under in-

vestigation, and which could be compared with those recorded at

the MISSN and HGLP stations at the edge of this region.

II. Review of scientific background

Regionalization. The single-station surface wave method

allows all stations to be located at the edge of the region

under investigation; this technique is ideal for the study of

Eurasia. Knopoff and Schwab (1968) extended the description of

the single station method (Brune, Nafe and Oliver, 1960) to take into

account the frequency dependence of the apparent initial phase

of the source. The success of the single-station method

depends on the calculation of the initial phase. For dislocation

t.



sources in layered media, the initial phase can be determined

by a m-Lethod due to Ben Menahem and Harkrider (1964) and

Harkrider (1964, 1970) who obtained the surface wave response to

double couple sources. The far-field response to displace-

ment-dislocation faulting is equivalent to that from a point-

source, double-couple in an unfaulted medium (Burridge and

Knopoff, 1964). Thus if the source focal mechanism is known

from fault-plane, surface wave amplitudes, or other methods,

the initial phase can be determined for small or moderate

sized earthquakes. By means of transformation techniques

(Biswas and Knopoff, 1970) or empirical correction methods

(Bolt and Dorman, 1961), it is possible to provide corrections

for sphericity.

The first inversions of surface wave dispersion data to

give upper mantle structure were carried out by Dorman and

Ewing (1962), Brune and Dorman (1964) and Knopoff, Mueller and

Pilant (1966). These papers were concerned with obtaining a

single structure which fit the experimental data. Knopoff

(1961, 1962) pointed out that the inversion of noise-free

data is not unique. Subsequent efforts were mainly concerned

with finding the set of structural models which fit the data to

within the experimental accuracy (Keilis-Borok and Yanovskaya,

1967; Press, 1968, 1969). The inversion of noisy data enlarges

the span of non-unique, acceptable models over that for noise-

free data.

Two methods of inversion are available. In the first of the
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technieues, perturbation methods are applied in a linearized

version of the problem. The problems of inconsistent or

correlated data are accounted for by smoothing in the data-

space, usually by a least-squares procedure. The problems of over-

parameterization of the model space are taken care of by smoothing

in the model space, by a procedure usually described as "deltaness".

Further reductions of the number of model parameters can stabilize

the inversions. Examples of linearized inversions are

given by Backus and Gilbert (1968, 1970), Knopoff & Jackson (1972)

Jackson (1)72), and Wiggins (1972).

The full non-linear inverse problem in a multidimensional

parameter space of high order has been attacked by Monte Carlo

methods (Press, 1968, 1969). The inefficiency of Monte Carlo

methods can be minimized at the sacrifice of reducing the

dimensionality of the parameterization to a value less than about

seven by exvploring a neighborhood of acceptable solutions for other

acceptable solutions. Such a program has been called Hedgehog

and has been much used in this laboratory (e.g. Biswas and

Knopoff, 1974 ; Knopoff and Schlue, 1972 ; etc.); copies of

this program exist in Moscow, Bologna,Edmonton, Bari, Cambridge (WK), Paris,

etc. Both linearized and Hedgehog methods have been used in our

inversions.
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The single-station, surface wave regionalization of an

area is based on the assumption that the surface waves travel

paths, and the assumption that the phase travel time from epi-

center to station is the sum of the travel times through the

homogeneous subdivisions of the laterally heterogeneous region

(Knopoff, 1969). This permits the travel-time at each frecuency

to be expressed as a system of inhomoceneous ecuations;

for each path, the total travel time is the inhomogeneous term,

the distances through the subdivisions are the coefficients, and

the slownesses in the subdivisions are the unknowns. We have

pointed out (Leeds et al. 1974) that the solution of this system

of equations can yield the experimental phase slownesses

associated with each of the subdivisions only if we make the

assumption that the errors in each region are uncorrelated.

Since these errors are not uncorrelated, we must consider the

model parameters as the primary unknowns in the inversion and

derive the phase slownesses in the pure regions therefrom.

The first application of the use of single-station phase

delay measurements in the pursuit of ragionalization of a large

inhomogeneous area was performed by Kausel, Leeds and Knopoff

(1974), Leeds, Kausel and Knopoff (1974) and Leeds (1975). In

the above work, phase delays along long paths across the Pacific

area were found to vary systematically with distance from the

East Pacific Rise. This persuaded us that the appropriate

geographic regionalization was plausibly based on a basement
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i.e. magnetic, age of sea-floor spreading. Our geographic

provinces then took the form of broad magnetic age stripes.

An inversion using this regionalization showed that although the

number of criss-crossing paths was plentiful, the number of

degrees of freedom in the data was remarkably small. Furthermore,

we found that the data set did not permit one to obtain detailed

information concerning the bottom of the low-velocity channel. We did

find that the lithosphere increased in thickness inonotonically with age:.

the ridge crest, the lid of the channel has almost zero thickness,

while in the oldest ocean this lid is about 100 km thick. The lid thick-

nesses are consistent with a geochemical model in which the lid-

channel interface is at the solidus for wet peridotite.

Because they have not developed good long-period instruments,

Soviet seismologists have not been able to focus attention on

upper mantle studies. Also, their extensive program in deep seismic

sounding has focused interest upon crustal studies. The Soviet

surface wave work has been limited to short-period investigations --

usually less than 40 seconds -- and has been concerned mainly with

determining crustal properties. References to Soviet surface-wave

work include Arkhangelskaya (1960), Savarensky and Ragimov (1958,

1959), Savarensky, Solov'eva and Shechkov (1959) and Savarensky

and Sikharulidze (1959), Popov (1960), Shechkov (1961, 1964, 1970),

Savarensky and Shechkov (1961), Shechkov and Solov'eva (1961),

Savarensky and Peshkov, 1968; Sikharulidze and Makharadze, 1968;

Savarensky et al. 1969.
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Since appropriate Soviet-b~sed seismic data are not avail-

able to us, our own work has thus far focused on the estimation

of upper mantle properties in Eurasia through the use of the

only reasonable tools available to us, namely phase delays of

surface waves on long paths, criss-crossing the region of

interest. This,plus a plausible model of regionalization --

based in part on the observations in Knopoff (1972) for

continents --,permits an attack on the problem of regionalization

of the upper mantle of Eurasia.

Theoretical seismograms. Relative to the discrimination

problem, probably the most important feature in the calculation

of theoretical seismograms which requires improvement over

previously existing systems for such computations is the capa-

bility of extending both body- and surface-wave portions of the

theoretical computer seismograms to short periods. In this

context, by "short-period" we refer to the period range covered

by the long-period instruments of the WWSSN installations. In

our formulation, the successful accomplishment of this task is

dependent upon improved techniques for obtaining multimode

dispersion-attenuation information for reasonably realistic

models of the earth, i.e. spherical, radially heterogeneous,

anelastic models.

Optimization of this type has been one of the main interests

in our laboratory for several years. The results of our early

work, based on the Thomson (1950)-Haskell (1953) technique and

on Knopoff's (1964) method for treating flat-layered structures,
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are reported by Schwab (1970) and Schwab and Knopoff

(1970; 1971; 1972; 1973). The results of our work on

spherical-to-flat-structure transformation techniques, which

permit the use of flat-structure programs in dispersion-

attenuation computations with Love waves for spherical models

of the earth, are given by Biswas and Knopoff (1970), Schwab

and Knopoff (1971; 1972; 1973), and Kausel and Schwab (1973).

In this last reference, we have also given an outline of the

approach we have adopted to handle the synthesis of multimode

seismograms once the dispersion, attenuation, source, and

excitation functions have been specified. The entire

theoretical seismogram for a dislocation source in a spherical

earth can be expressed as a simple sum of normal mode contri-

butions (Saito,1967; Takeuchi and Saito, 1972). We first applied

our scheme for generating theoretical seismograms to the inter-

pretation of the seismic phase Lg (Knopoff, Schwab and Kausel,

1973; Knopoff et al. 1974) This phase is a multimode interference

pheonomenon which belongs to the surface wave portion of the seismo-

gram. In this report we indicace that we have dtveloped a system

for synthesis where both body and surface waves appear on the

same seismogram for realistic models for the earth, and where the

period range spans that covered by the long-period

instruments of the WWSSN. Earlier work of this type, which was

performed with simplified models of the earth, is summarized by

Alterman and Loewenthal (1972). Sate, Usami and Landisman (1968)
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describe the computation of corn' lete theoretical seismograms

for realistic models of the earth. However, their results are

limited to ultralong periods.

III. Objectives, methods and results.

Data collection. Accurate surface wave phase delays

across the area with single-station method require that we

know the focal mechanism and the depth of focus in order to

obtain the corrections due to the apparent initial phase. We

have confined our attention to the measurement of the phase

velocity dispersion of the fundamental mode. Frez and Schwab

(1976) have computed the importance of the structural parameters

on the determination of the initial phase.

Long period records from the 47 WWSSN stations which

border the region of interest have been used in the study.

The locations of these stations are shown in Figure 1. We have

also obtained several seismograms (through World Data Center B)

of Soviet records made in Central Asia on experimental long-

period instruments. However, the precision of these latter

recordings plus an uncertain calibration impulse response has

not permitted us to use them.

An example of the intermediate magnitude seismicity of

the area is given in Figure 2. Epicenters are plotted for

earthquakes which occurred during the interval fron

February, 1963 to February, 1967 and having magnitudes between

5.9 and 6.6. In addition to the epicenters shown in Figure 2,

lbl
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FIG. 1. Locations of WWSSN and HGLP stations.

FIG. 2. Seismicity of the Eurasian region. The

regions of high seismicity along the eastern

border of the Kamchatka peninsula and along

the Aleutian arc also provide useful events

for the study.
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there are regions of high seism city along the eastern border

of the Kamchatka peninsula and along the Aleutian arc. The

choice of this range of magnitudes is governed by two considerations.

First, experience has shown that good long-period surface wave

information requires events with magnitudes above a certain value;

of course, a shock which is so large as to send the instrument

off-scale is useless for our purposes. Second, the application

of the single-stations method requires knowledge of the focal

mechanism. We must therefore use events large enough to allow

us to obtain an accurate fault plane solution for each event we

select for processing.

Since the set of stations around the area to be studied

is dense as are the regions of high, intermediate-magnitude

seismicity located within and around the area, there has been

no problem in obtaining sufficient data for the project. It is

interesting to note that the area is almost completely encircled

by either stations or epicenters or both. The limits of the

area, which we have covered with a sufficiently dense set of

paths from earthquakes to epicenters, are shown in Figure 3

by the solid lines. The shaded regions are those of high, large-

magnitude seismicity.

Recordings from fifteen events were processed. The list

of events is given in Table I, with their USCGS-NOAA specifi-

cations. The focal parameters and other data are listed in

Table II. We have constructed fault plane solutions for 11
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FIG. 3.Limits (solid lines) of the region covered

w ith a dense set of epicenter-to..station paths.
Solid regions are those of high seismicity.
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Table II

Focal Parameters for Events Studied

Fault Plane
Event No. 3 , h(km) Solutions Paths

1. 1330 660 2420 15 Fig. 4 Fiu. 14

2. 1220 820 00 14.5 5 15

3. 2100 900 900 136. 6 16

4. 1650 580 W 2 6 0oab 1I1 5ab 7 17

5 305 ° d  
7 0 od 9 0od 8. 22

6 explosion 0. 22

7. 1900 700 2790 33. 8 18

8. 770 500 760 221. 9 18

9. 1220 400 610 22. 10 18

10.-il. (twin earthquakes) lla,b 19

12. -13. (twin earthquakes) 12 20

a. Depth obtained from Rayleigh wave spectra.

b. Rayleigh wave spectra for event 2 shown in Fig. 13

c. Sykes (1967) gives fault planes for this event as

40, 6 = 58°W

= 3380, 6 = 54°E
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of these cases (including two pairs of twin earthquakes). The

list of figures of these fault plane solutions is given in

Table II. In one case (No. 5) we have used the fault plane

solution of Zakharova et al (1971). In one case (No. 6) we

have assumed the source that of an explosion. In two cases

(Nos. 1, 2) we have used Rayleigh wave spectra to help deter-

mine the focal parameters; in these cases, we were able to

obtain the depth of focus more accurately than by conventional

methods. In the case of No. 2 the spectra (Fig. 13) also helped

refine the fault plane parameters and permit us to modify Sykes'

(1967) values. The methods used to determine fault-plane

parameters from surface wave spectra are given by Ben Menahem

and Toks6z (1963).



19A

FIG. 4. Fault plane solution for event 4 (Red Sea)

occurring at 07:15:54.4 GMT, March 31, 1969.

FIG. 5. Fault plane solution for event 1 (Hsingtai)

occuring at 21:29:17.4 GMT, March 7, 1966.

FIG. 6. Fault plane solution for event 3 (Kamchatka)

occuring at 14:30:29.1 GMT, December 26, 1964.

FIG. 7. Fault-plane solution for event 2 (Lena River)

occurring at 13:47:20.6 GMT, August 25, 1964.

The solution given by Sykes (1967) is indicated

by dotted lines.

FIG. 8. Fault plane solution for event 7 (Yunnan)

occurring at 10:44:41.3 GMT, February 13, 1966.

FIG. 9. Fault plane solution for event 8 (Hindu Kush)

occurring at 07:46:16.1 GMT, June 6, 1966.

FIG. 10. Fault plane solution for event 9 (Hindu Kush)

occurring at 12:11:43.7 GMT, December 28, 1974.

FIG. lla. Fault plane solutions for events 10 and 11

llb. (Eastern Aleutians) occurring at 01:40:33.2

(Fig. lla) and 16:50:29 GMT (Fig. lib), February 6,

1965.

In ! II
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FIG. 12. Fault plane solution for events 12 and 13

(Western Aleutians) occurring at 09:32:09.3 GMT,

February 5, 1965 and 04:02:53 GMT, February 6,

1965.

FIG. 13. Rayleigh-wave amplitude distributions for

event 2 (Lena River) occurring at 13:47:20.6

GMT, August 25, 1964. The central set of

radiation patterns are the results of theor-

etical computations based on the fault plane

solution given in the text. The other four

radiation patterns depict the experimental

results.
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Two points should be noted concerning the accuracy of the

digitizations of the recorded events. First, most of the event

records we have used are about as large as they could be without

going off scale. This has necessitated a change in our data

processing techniques which should be noted for the information

of others involved in this type of work.

In the past, our standard procedure, when working with

smaller-amplitude recordings, has been to digitize from copies

of 35 mm microfilm records of the WWSSN seismograms made with a

standard microfilm reader-printer (Itek 18.24 Reader-Printer).

Tests which compare the phase velocity results obtained from

full-size record copies provided by NOAA with the results

obtained from our microfilm copies show that distortion in the

copying process is of concern when working with large-amplitude

recordings such as those employed in the present study. We en-

courage the use of full-size record copies of large events

obtained directly from NOAA.

The second point concerns the fact that the direction of

swing of the galvanometer may not be parallel to the axis of

the recording drum. Although James and Linde (1971) term this

phenomenon "a source of major error in digital analysis of WWSSN

seismograms", our tests show the effect to be negligible on phase

travel tUires computed using the single-station method for epicenter-

station separations of a few thousand kilometers. In the case of

l-
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the poorest galvanometer alignment we encountered, about triple

the normal ramp slope of 0.30, we found only negligible differences

between the phase velocity curve obtained with the correct

digitization base line, and the curve obtained with the normal

ramp as a base line.

The paths over which the phase delays have oeen measured from

each of the seismic events are shown in Figs. 14-20 and are sun-

marized in Table II. Sample phase velocity results are given in

Figure 21, which illustrates the variation in dispersion for dif-

ferent propagation paths. We have obtained phase velocity data for

most paths over a period range extending from about 30 or 38 sec.

in most cases, to as long as 357 sec in a few rare cases. The

instrumental response at these longest periods is unreliable; if

the :easur-d values of phase velocity and its first derivative

were in significant disagreement with values from the free mode

spectrum, then these long period values were rejected. For our

present inversions, we have only used periods up to 250 sec. The

specific period ranges, which we have used in the inversions are

shown in Table 3.

The phase velocities from five earthquakes and one nuclear

explosion for the 32 paths crossing Eurasia (Figure 22) sort

themselves into two groups (Figures 23 and 24). The paths with

higher phase velocities are generally those that cross the stable

platforms and shields (such as paths from the Hsingtai earthquake

to Scandinavian (KEV) and German (STU) stations; typical of the

lower-velocity group is the phase velocity on the paths from the

Red Sea earthquake to the southern Asiastic stations (SHL, MAN, etc.)).

_ _ _ _ - - _ _--
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FIG. 14. Epicenter-to-station paths processed for

event 4 (Red Sea) occurring at 07:15:54.4 GMT,

March 31, 1969.

FIG. 15. Epicenter-to-station paths processed for

event 1 (Hsingtai) occurring at 21:29:74.4 GMT,

March 7, 1966.

FIG. 16. Epicenter-to-station paths processed for

event 3 (Kamchatka) occurring at 14:30:29.1 GMT,

December 26, 1964.

FIG. 17. Epicenter- to-station paths processed for

event 2 (Lena River) occurring at 13:47:20.6 GMT,

August 25, 1964.

FIG. 18. Epicenter-to-station paths processed for event

7 (Yunnan) occurring at 10:44:41.3 GMT,

February 13, 1966, and events 8 and 9

(Hindu Kush) occurring at 07:46:16.1 GMT,

June 6, 1966 and 12:11:43.7 GMT, December 28,

1974.
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FIG. 19. Epicenter-to-staLion paths processed for

events 10 and 11 (Eastern Aleutians) occurring

at 01:40:33.2 (dashed lines) and 16:50.29 GMT

(solid lines), February 6, 1965.

FIG. 20. Epicenter-to-station paths processed for

events 12 and 13 (Western Aleutians) occurring

at 09:32:09.3 GMT, February 5, 1965 (dashed

line) and at 04:02:53 GMT, February 6, 1965

(solid line).

FIG. 21. Sample phase velocity results for the paths

from the Hsingtai earthquake (1966) to STU

and from the Lena River earthquake (1964) to

HOW. The paths are shown in Figures 15 and

16.
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TADLE 3

PERIOD RANGE (sec)

PATH 30 38 50 69 100 119 139 167 192 208 227 250

RED SEA-ANP x x
-BAG x

-MAN __X

-SHL _ _ _ _ _

HSINGTAI-ATU _

-KEV x

-LAH -- K

-MSH x -x'"

-NDI

-PO0 x x
-STU - x
-TAB - x

MCHATKA-CHGx

-HOW

-IST x -

-JER

-NDI x

-QUE x- x
-SHL x x

LENA RIVR-ATU x x
-HKC x X"

ILW x -.

-HOW __--- x
-KEV xx
-NDI X- - - -

-NHA x

-SHI x"

TASHKENT -NDI x ------x

-SHL x* -

LOP NOR -KBL x L.
-NDI - -

-SHL x__ b.

Kp
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TABLE 3

PERIOD RANGE (sec)

PATH 30 38 50 69 100 119 139 167 192 208 227 250

YUNAN-ANP X X

-BAG X X

-MSH X X

-SEO X X

-SHK X x

HINDU KUSH I-ANP X__

-HKC X x

HINDU KUSH II-ANP X X

Ih)



9

21M

FIG. 22. Propagation paths across the Eurasian continent

from five earthquakes and one nuclear explosion

FIG. 23. All Eurasian phase velocities can be sorted into

two groups (shaded areas), except for phase

velocities POO-2 and SHL-l, which fall between

these two groups. Phase velocities for

"standard" shield (FLO-GOL), younger stable

regions (SHA-LUB) and rift zones (TUC-BOZ)

are shown for comparison (Biswas and Knopoff,

1974). The global average phase velocities

obtained from free-mode observations are also

shown (F.M.) (Gilbert and Dziewonski, 1975).

FIG. 24. Propagation paths corresponding to the two

phase velocity groups in Fig. 21. The solid

line indicates a path with higher phase velocity;

the dashed line indicates a path with lower

phase velocity.
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Phase velocities for typical shield regions and young stable con-

tinental regions (Biswas and Knopoff, 1974) are shown for com-

parison. The incompatibility of most of the phase velocity

observations for Eurasian paths with the "standard" curves for

homogeneous regions testifies to the inhomogeneous nature of the

Eurasian region.

Regionalization

The first step in the structural analysis requires the

division of the area into subregions; each of these is assumed

to be laterally homogeneous. In our first attempt we have sub-

divided the Eurasian area into six broad regions (Fig. 25). These are:

1. Ancient PreCambrian Shields

2. Stable Platforms

3. The Himalayan-Alpide Mountain Belt

4. The Tibetan Plateau

5. The Sinkiang-Mongolian Seismic Zone

6. The Chinese "Stable" Region

This choice of regionalization is largely governed by an attempt

to define a small number of discrete geographically homogeneous

provinces. In this choice we have been guided by tectonic maps

of Eurasia (Khain and Muratov, 1969) as well as by seismicity and

sparse heat flow information(Lubimova and Polyak, 1969). Our first

impulse was to regionalize the stable parts of Eurasia according to

the bimodal division of these regions into stable ancient shields

and stable younger continents (Knopoff, 1972). However,

information about basement ages

'Is
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FIG. 25. Regionalization of the Eurasian continent

based on the tectonic map of Khain and Muratov

(1969).

'R-
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of the Eurasian sediment-covered platforms is difficult to obtain,

so we have taken the simple expediment of dividing the stable

parts of the continent into the geologically identificable shields

and a second region which includes the rest of the seismically stable land

mass; these form our regions 1 and 2. In selecting region 2 as a

homogeneous region we impose no a priori condition that it be either

of the north-central U.S. or the Gulf Coast (U.S.) types of

sediment-covered stable regions: the first of these regions in the

U.S. has been found to have an upper mantle with shield character-

istics while the second has an upper mantle with a strong low velocity

channel, and is the prototype younger stable region.

The next three regions are characterized by their high

tectonic activity. We have chosen to identify the mountainous

collision zone between the Asian and Indian plates as a single

province; this is undoubtedly incorrect in detail, but is valid

enough in view of our inability to provide detailed resolution of

smaller regions by our use of long paths.

It should be noted that an increase in the density of path

samples does not necessarily improve the resolution of structure

of a small geographic area. Consider the limiting case of a

region which is vanishingly small in area. An increase in the

number of paths which transect this region does not improve our

ability to estimate the cross-section under it, because the

travel-time spent by the ray in this region is a vanishingly

small part of the total delay. An increase in the number of paths
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in a small area only increases the redundancy of the data. For this

reason we had some hesitation regarding the possibility of determin-

ing the structure under a region as "small" as the Tibetan plateau.

The Tibetan plateau is indeed small in comparison with the dimen-

sions of the Eurasian continent, and herein lies one of the dif-

ficulties with the method of very long single-station transverses

across the entire span of the continent. But the Tibetan plateau

contains one of the important mysteries of modern Plate Tectonics,

namely the reason for its great elevation and the nature of the

architectural underpinning that holds it up, so we resolved to try

to determine its structure,fully anticipating that the error bias

in the determinations of structural parameters might be large; it

became our region 4. To improve resolution here, we made use of

shorter paths from two Hindu Kush and one Tashkent earthquakes plus

a Lop Nor explosion all recorded at nearby stations to increase the

fraction of the travel-times spent in the Tibetan region. It can be

seen from the table of period ranges of the observations (Table 3)

that the inability to obtain long-period information from the

observations of the Tashkent earthquake and the Lop Nor nuclear ex-

plosion also limits our ability to resolve deeper structure under

region 4. The complete sampling of all regions by the path-phase

delays from the set of earthquakes and explosions is shown in Fig. 26.

The Sinkiang-Mongolia seismic zone is easily identified as one

of the provinces in our regionalization. We have chosen to identify

the relatively stable aseismic block of Southeast China

as an additional province. The Hsingtai earthquakes of 1968

occurred on the boundary between these two regions. We have

--K -
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identified Southeast China as a separate region without any a priori

assumption that it has either a cross-section similar to those for

the ancient shields or the younger stable continents. We prefer to

allow the inversion to yield this determination. Should the in-

version indicate that this region, or region 2 for that matter, is

similar in cross-section to that for some other region, we may make

the assumption that these regions are the same and use this information

to perform a further simplified inversion. Although, within them-

selves, these regions encompass widely differing geologic structures

and widely varying seismic activity, we have assumed that each of

these regions is homogeneous in order to limit the number of

parameters in the inversion.

Three small regions are treated specially. For the South

China Sea, we have assumed the structure to be known, and to be

that for typical marginal seas. The phase delays for this region

are taken from two single-station phase velocity observations in

marginal seas obtained by Leeds (1973) and from two phase velocity

determinations by the two-station method across the Philippine Sea.

Phase velocity corrections for the Sea of Okhotsk were obtained

theoretically from a crustal structure given by Kosminskaya et al

(1969) and derived from explosion work, in which the Okhotsk

depression has a 25 km crustal thickness; we have used an oceanic

mantle below this crust; These phase corrections have been applied

to travel times for those paths that traverse these two regions.

K,
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Finally, a small fraction of the paths cross the Yakutsk-Magadan

region of northeastern Siberia. The maps show this mountainous

region to be tectonically different in a significant way from

the shield immediately to the west of it. Since our samples of

this region are all from the Kamchatka earthquake, and are all

small in length, we have decided, without justification, to

couple this region to our other mountainous province, region 3.

We do not expect significant differences from a region 3 structure

for this part of Eastern Eurasia to produce major changes in the

inversions since the total fraction of path length in this region

is small.

The total path length in each region summed over all event-

paths in given in Table 4. Since the phase shifts have not been

obtained over a uniform band of periods for all paths, in the last

column of Table 4 we have also reported an estimate of the

number of samples in each region by giving the product of sample

path length by number of period estimates of phase shift. By

either method of estimation, the very low fraction of sampling

in regions 4 and 6 lead us to expect that large uncertainties in

the structure will be obtained from the inversion for these

regions.

We have inverted the data under the assumption that a simple

ray theory for surface waves applies, that is, the phase shift for

a surface wave passing through a given region is computed as though
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TABLE 4

Region Path Percentage of Total Weighted Percentage of
Length(km) Path Length Total Path Length

1 20970 12.1 13.0

2 53150 30.6 30.4

3 38411 22.1 22.5

4 15292 8.8 6.9

5 37994 20.7 20.7

6 9979 5.7 6.5

TOTAL 173796 100.00 100.0

ill
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the region were laterally infinite in extent and uninfluenced Ly

the presence of neighboring regions, no matter how close the great

circle path approaches the regional boundaries. The assumption

that diffraction effects are unimportant is evidently untenable

but provides a basis for starting an inversion; we have tested

this assumption in one of the inversions below.

The inversion proceeds using the method described by Leeds
th

et al. (1974). We calculate the phase travel time for the n

path and the p th period as

6
t V k. S.
np= itl in ip

thtwhere Z in is the path length of the n thpath in the i th region

(i=l,...,6) and sip is the (theoretical) phase slowness for the 1th

th
region at the p period. The phase slownesses s. are functionsip

of the model parameters in each region.

V (tnp0 - tnp)2
np

where t is the observed travel-time for the nt h path at the pth
np 0

period. The minimization takes place with respect to the choice

of model parameters.

i , , i I II
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We obtain larger and larger variances in the model para-

meters as the number of model parameters increases. We would

like to be able to solve for the properties of the crust in each

of the six regions. However, this a) requires much precise data

at periods shorter than 30 sec., b) increases the number of model

parameters significantly, and c) pushes our postulate of lateral

homogeneity in each of the regions to an untenable extreme. We

have therefore used model crusts for each of the regions which a)

seem to be plausible when compared with results for similar parts

of the earth where observations exist (such as locations typical of

regions 1, 2 and 3), and b) agree with Soviet refraction results

where available (Kosminskaya, et al, 1969; Sollogub, 1969). When

large residuals were encountered at short periods, such as in the

case of region 3 (Alpide-Himalayan belt) and region 4 (Tibetan plateau),

we were obliged to introduce more low-velocity material into the crust.

This was done by keeping crustal velocities fixed and increasing

crustal thickness. In these two cases, this procedure leads to

extraordinarily thick crusts. It should be realized that these

model crustal thicknesses are consequences of the procedures

used; if we had chosen to lower the crustal velocities, the

thicknesses would have been less. We have used a crustal thick-

ness of 70 km in the Tibetan Plateau (region 4) a value not in-

consistent with other recent estimates (Chun and Yoshii, 1977).

The crustal models we have used are listed in Table 5 and are

assumed to be fixed in the inversions.
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Made] paramctcrs for inversi~n of phase velocity data

Thickness Depth a(krn/sec) cx(km/sec) p(gm/cm')

0

CRUST (different crustal models for each region)

(fixed)

LID VAR 4.65 8.17 3.45

CHANNEL VAR 7.80 3.45

SUBCHANNEL VAR 4.80 8.80 3.65

420(fixed)

94 5,128 9.609 3.806

514

94 5.283 9.781 3.934

608

63 5.419 9.902 4.051

691

138 6.172 10.552 4.417

809

139 6.266 11.238 4.505

948

104 1026.351 11.392 4.579

-------------------------------------------------------
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We have parameterized the mantle into a lid, channel and

subchannel; each of these layers in a given region is taken to be homo-

geneous. The subchannel region terminates at a depth of 420 km.

Below this depth, we place a standard lower mantle platform under

all regions, indicated in Table 5. The unknowns in the inversions

will be the shear velocities in each of the three upper mantle

layers and the depths of the interfaces at top and bottom of the

second ("channel") layer. The number of unknowns is thus 30,

five in each of the six regions. This figure far exceeds the number

of degrees of freedom in the data. Thus some reduction in the

number of unknowns has to be made, by some assumptions which are

geophysical in character.

Inversion 1

In a first attempt at inversion, we have fixed the lid S-wave

velocity at 4.65 km/sec and the subchannel S-wave velocity at 4.8

km/sec in order to reduce the number of degrees of freedom. The

value of 4.65 km/sec for the lid arises frequently in inversions

for other parts of the world. For one case in which a 4.65 km/sec

lid was not observed, namely for the Western United States (Biswas

and Knopoff, 1974) in which the subcrustal material has S-wave

velocity around 4.3 km/sec, we were able to assume that a model with a

4.65 km/sec lid with zero lid thickness was accepted by the inversion

and that the 4.3 km/sec value represents channel material rising

almost to the base of the crust. Should the lid velocity in some

region be less than 4.65 km/sec in reality, then crustal thick-

nesses can be reduced. A similar comment can be made about the
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subchannel velocity: if the subchannel velocity should turn out to

be less than 4.8 km/sec in some regions, channel thicknesses will

be reduced.

This parameterization thus includes only two adjustable model

parameters for each region. These are the lid thickness and the

channel S-wave velocity. A thirteenth parameter is the sub-

channel thickness, which is presumed to be uniform across the

entire continent and hence has the same value under each region.

Since the crustal thickness and the depth to the 420 km interface

are fixed, the parameterization of lid and subchannel thicknesses

is equivalent to a parameterization of the depth below the sur-

face of the top and bottom of the channel. This parameterization

has 13 degrees of freedom.

After adjustment of the crust by the procedures described

above (with interpretation of crustal parameters according to

the remarks above), the parameterization and cross sections used

in a linearized inversion procedure are given in Table 5. The

superficial sedimentary layer that is introduced in the crusts

of regions 3 and 4 is designed to reduce the residuals at the

shortest periods.
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The starting values of the thirteen parameters in this linearized

inverse are(in the usual units):

Table 6

Depth to Depth to
h h top of bottom ofRegion CH LID SUB channel channel

1 4.51 110 155 -

2 4.39 113 158

3 4.30 54 150 119 270

4 4.29 90 167

5 4.08 92 137

6 4.38 103 148

The thirteen parameters in the rectangular box in Table u are those var-

ied in the inversion. The standard errors of the travel-times in the

inversion were taken to be the same as those used by Leeds et al.

(1974), namely o = Max (7, 0.1T) sec. These estimates were later

found to be too large and required modification

In the inversion, an iteration process has been used in which

the matrix of partial derivatives G was recalculated whenever we

moved into a new portion of parameter space. This process was con-

tinued until we obtained convergence of the variable model parameters.

The thirteen eigenvalues of the product matrix of partial derivatives

G TG, which were obtained in the final stage of the iteration process,

are given in Table 7. Each eigenvalue corresponds to an eigenvector

which,in every case (except nos. 5 and 6),points in a direction close

to one of the thirteen parametric axes. Thus, each eigenvector can

be said to be a discriminant foreach of the thirteen degrees of

'II
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TABLE 7

Eigenvalue Model parameter most closely resolved
by eigenvector

1. 13.68 
'H

2 . 8 43 CH5

3. 6.85 CH3

4. 3.56 
CHI

5 . 2 .8 7, C H 6 &  h S U B

06. 2.59 CH6 & h SUB

7 . 1 84 
CH4

8. 1.61 
h LID5

9. 1.14 
h LID2

0. 1.04 
h LID3

ii. 0.56 
h LID6

12 . 0 36 
h LID1

13. 0.21 
h LID4
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freedom in the model. The eigenvectors corresponding to the

largest eigenvalues give reliable structural information con-

cerning the model parameters closest to them, and the eigen-

vectors corresponding to the smallest eigenvalues give little

information about their corresponding parameters.



36

From Table 7 it can be seen that, in general, the data yield

the greatest information about the channel velocities and the

least information about the lid thicknesses. In general, the

data contain more information about regions 2, 3, and 5 than

the the other three regions. This is clearly correlated with

the higher percentages of total path length which sample regions

2, 3, and 5. (For complete details, see Table 4 and Fig. 26).

The variance of each model parameter decreases as successive

models approach the fine one, which demonstrates the convergence

of our inversion procedure. Fig. 27 gives our results for this

inversion: the "best" model and the corresponding standard

deviations of each model parameter. We see that the upper mantle

structure for regions i and 2 are very similar although the lid

in region 1 is somewhat thicker. The channel shear-wave velocity

for region 1 is slightly less than that in region 2 , but the un-

certainty of the model parameter in region 1 is rather large and

in any case, the velocity contrast to the lid in these regions

is rather smaller than one would like to assert that a) a channel

is indeed present and b) that a channel with velocities low

enough to require partial melting is present. Thus, the existence

of a low-velocity channel in region 1 is uncertain. The most strik-

ing result of this inversion is the very thin lid, and moderate

shear wave velocity, in the channel for regions 3 and 5; as

in the case of regions 1 and 2, regions 3 and 5 have strikingly

similar upper mantles. These latter two regions are those which

are tectonically active and have high seismicity. Region 4

is that in which the Eurasian and Indian continents are

in collision. Although the upper mantle structure for this



37

region appears to be very similar to those of regions 1 and 2,

the uncertainties in the model parameters are large. This is due

1) to the low percentage of total path length in this region, and

2) to the fact that most of the paths which sample this region

have only short-period information. Region 6 has a thick lid and

a pronounced low-velocity channel, but the standard deviations are

rather large; additional assumptions may help to improve the

resolution of the structural parameters in this region.

Inversion 2

In a second attempt at inversion we have made the assumption

that the chemical composition of the lids is everywhere the

same across Eurasia(as before)and that, in this case, the chemical

composition of the channels is similarly the same across Eurasia.

We have allowed the lid velocity to be adjusted in this case; it

was fixed in the preceding case. In this case the number of para-

meters in the fit is nine: the depth to the lid-channel interface

in each of the six regions, the depth to the channel - subchannel

interface, and the S-wave velocities in the lid and channel;

the latter three parameters are are constants across the

entire region. The errors o are assumed to be the same as

before.

The results of this inversion are shown schematically in Fig. 28.

The result for lid velocity was 4.56+.Ol km/sec and for channel

velocity 4.34+.02 km/sec. The results for lid thicknesses show striking

similarity among regions 1, 2, 4 on the one hand and 3, 5, and 6 on the other.
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FIG. 26. Propagation path in each subregion of the

Eurasian continent. The percentage of total

path length in each region is shown in Table 2.

FIG. 27. Final result for linearized inversion of 13

variable parameters in the model and their

corresponding standard deviations.

FIG. 28. Schematic upper mantle cross-sections obtained

in inversion 2.
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This observation lends support to the interpretation of the first

inversion, that -The sediment-covered platforms of Russia and Siberia

are largely sediment-covered shields. The result for Tibet we

have obtained is that the upper mantle, to great depth, is

largely shield-like in character. We interpret this to Mean,

if it should be substantiated, that the Indian Shield has been

emplaced beneath the Tibetan crust during the collision of the

plates and that the mantle beneath Tibet is presently at

temperatures well below the melting point to great depth, i.e.

the mantle under the Tibetan plateau is relatively cool com-

pared with tectonically active collision zones such as region 3.

On the other hand regions 3, 5, and 6 all exhibit the develop-

ment of a marked low-velocity channel at shallow depths in the

mantle, which implies that a significant zone of partial melting,

perhaps 200 km thick, is present. All these three regions are

thus presumed to be tectonically active, despite the low seismicity

of region 6 (the large recent earthquakes in China occurred

in the northern part of region 6). The presence of a small channel

at great depth is not considered to be significant: this may be

an artifact of the inversion, due to improper choice of parameters

at shallower depths. These deep channels are probably absent

but we cannot be absolutely certain.

Inversion 2.1

We have made a variation on inversion 2 by enlarging the

extent of the Baltic shield in the preceding inversion, as shown

Kt
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in Fig. 29 according to a hint in the tectonic map of

Khain and Muratov (1969). As might have been expected, the

results of the preceding inversion are not significantly changed

in view of the result of inversion 2, namely that regions 1 & 2

are virtually identical in cross-section. Hence enlarging

region 1 at the expense of region 2 cannot be expected to pro-

duce a significant change in the results.

A tabulation of the results of this inversion is as follows,

and is listed only for purposes of comparison with the other

inversions:

LID = 4.56+0.01 km/sec

CH = 4.34+0.02 km/sec

hLID = 206+25 km

hLID 2= 229+29

hLID 3 99+9

hLID 4= 246+56

hLID 5 = 79+7

hLID 6 = 69+7

hCHSUB= 274+8

Inversion 2.2

In each of the two preceding inversions we have obtained

the result that the upper mantle of both regions 1 and 2 are

remarkably similar. In both cases we have a deep continental

root to essentially the same depths. we have therefore made

i'
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FIG. 29. Modification of regionalization of Fig. 25

by enlargement of region 1 in Baltic shield

area.
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the assumption that these two regions are indistinguishable

in a new inversion 2.2. We call the coalescence of regions

1 and 2, a new region lA (Fig. 30); there is now no separate

region 2.

As might be expected the results of the inversions are

not significantly changed from the earlier explorations. Indeed

the results for inversion 2.2 are identical in all respects

with that of inversion 2.1

SLID = 4.56+.0l km/sec

BCH = 4.34+.02 km/sec

hCHSUB = 274+8 km

hLID(IA ) = 217+18 km

hLID(3) = 99+9

hLID(4) = 246+55

hLID (5) = 79+9

hLID(6) = 69+7

all depths h are measured from the surface.

Inversion 3

A rather annoying aspect of the data concerns the fact that

the phase travel-time residuals from any of the preceding models

are not normally distributed. There is an unacceptably large

number of residuals between 2a and 4a; this result has been

verified by a X2 test. We have deleted several of the data with

large residuals and have proposed a new data set with a value of

X2 which places the new data set within acceptable limits of a

I
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FIG. 30. Modification of regionalization of Fig. 25

by fusion of regions 1 and 2.

'h i. . i i ii i



40B

.............

...........



41

a normal distribution with a new value of a having 2/3 the

former value:

a = 2/3 Max (7 sec, 0.1T)

We have repeated inversion 2.2 with the revised data

set and the new estimate of errors and have obtained the follow-

ing results:

SLID = 4.57+.0l km/sec

CH = 4.35+.01 km/sec

hCH-SUB - 276+5 km

h LID(IA )  204+12

h LID(3) 99+7

h LiD(4) 256+41

h LID(5) 59+4

hLID(6) 55+5

The shear velocities in the lid and channel are unchanged from the

preceding inversion 2.2. But there have been some significant

changes in the lid thickness of some of the regions. Regions 1A

and 4 continue to have upper mantles consistent with ancient (cold)

shield models. However, regions 5 and 6 now have very thin lids,

implying high heat flow and the presence of strong tectonic pro-

cesses.

Inversion 3.1

To test the validity of the linearized inversion procedures

especially in view of our observations that the final results are
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strongly dependent on smoothing procedures in the model space,

we have applied the power of our non-linear Hedgehog program

whose results are independent of smoothing in the model space.

The data set is the reduced data set of Inversion 3 with a

normal distribution of residuals relative to model 2.2. We

have further fixed the channel-subchannel interface at the value

given by inversion 3. The remaining seven parameters were ex-

plored in the space given by Table 6.

TABLE 6

Parameters and Range of Search in Hedgehog Inversion

for Inversion 3.1

Starting Value Step Size Lower Limit Upper Limit

P1 4.57 0.1 4.47 4.67

P2 4.35 0.1 4.25 4.45

P3 204 30 144 264

P4 99 30 69 189

P5 256 30 136 256

P6 59 30 59 179

P7 55 30 55 175

Pl: Lid shear wave velocity in Km/Sec

P2: Channel shear wave velocity in Km/Sec

P3: Lid thickness of region 1A in Km

P4: Lid thickness of region 3 in Km

P5: Lid thickness of region 4 in Km

P6: Lid thickness of region 5 in Km

P7: Lid thickness of region 6 in Km
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The results of the inversion gave the 67 acceptable solutions,

acceptable within 1.4o under the postulate that there is equal

tradeoff between the effects of uncertainties in the model space

and fit to the data (Table 7). The first, and most obvious

result is that the lid velocity was accepted to be 4.57 kn/sec;

no other values are acceptable. The channel velocities accepted

were only 4.25 and 4.35 km/sec. Although the lid thicknesses

for the shields of region 1A could vary between 174 and 234 km

and for the Tibetan plateau (region 4) between 226 and 256 km

a) under some circumstances both lids could have the same thick-

ness (models 14, 30, 31, etc.) and b) under no circumstances

could the Tibetan plateau have a lid which was as thin as (say)

30 km, a result which would have implied a mantle appropriate

to a tectonically active region, i.e., one with a well-developed

high-contrast low velocity channel. Finally, although the

linear inverse of inversion 3 implied a difference in lid

thickness between region 3 on the one hand and regions 6 and 7

on the other, the non-linear model-independent inverse gave some

solutions in which the lid thicknesses are such that the lid

channel interface is roughly at a common depth below the

surfaces of all three regions (e.g. solutions 35, 55, 23, 37,

46, 57). We conclude from these inversion results that cold

shield properties extend to great depth under regions IA and 4

while regions 3, 5, 6 may have similar properties (at least

we cannot discount this result) with upper mantles characteristic

of young active regions. What is remarkable is that region 6

is coupled together with the more obvious active regions.
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Successful solutions in Hedgehog inversion 3.1

i 12 P3 P4 05 6 i7

1 4.57 4.55 204 99 256 59 55
2 4.57 4.35 174 99 256 5 55
3 4.57 4.35 234 99 256 59 55

4.57 4.35 204 69 256 59 55
5 4.57 4.35 204 129 256 59 55
6 4.57 4.35 204 99 226 5. 55
7 4. 57 1,.35 204 99 256 39 55

, •57 4.35 204 99 256 59 05
9 4.57 1.55 174 69 256 59 55

10 4.57 4.35 174 129 256 59 55
11 4.57 L.35 234 69 256 59 55
12 4.57 4.55 234 129 256 59 55
15 4.57 4.35 174 99 22r 59 55
14 4.57 4.35 234 99 226 5 5
15 4.57 4.55 174 99 256 89 55
16 4.57 4.35 234 99 256 89 55
17 4.57 4.35 174 99 256 59 85
10 4.57 4.35 234 99 256 59 85
19 4.57 4.35 204 69 226 59 55
20 4.57 4.35 204 129 ?26 59 55
21 4.57 4.35 204 69 256 89 55
22 4.57 4.35 204 129 256 89 55
23 4.57 4.35 204 69 256 59 85
24 I. 57 4.35 204 129 2-56 59 85
25 4.57 4.35 204 9) 226 89 55
26 4.57 4.35 204 99 226 59 85
27 4.57 4.35 204 99 256 69 35

28 4.57 4.35 174 69 226 59 55
29 4.57 4.35 174 129 226 59 55
30 4.57 4.35 234 G9 226 59 55
31 4.57 4.35 234 129 226 59 55
32 4.57 4.35 174 69 256 89 5533 4.57 4.35 174 129 256 89 55

34 4.57 4.35 234 69 256 89 55
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1 2 .7
4.57 4. 35 1715 59 35

36 4.57 4.35 174 129 256 59 85
37 4.57 4.35 234 69 256 5 9 35
3U 4.57 4.35 234 129 256 85
39 4.57 4.35 174 9.. 226 9 55
40 4.57 4.35 234 99 226 9 5
41 4.57 4.35 174 99 226 59 85
42 4.57 4.35 234 99 226 59 85

4 3 .57 4.55 174 99 256 C9 85
44 4.57 4.35 204 69 226 I9 5545 4.57 4.35 204 125 22 .. 9 55
46 4. 57 4.35 204 69 226 59 85
47 4.57 4.55 201 129 226 59 85
U8 4.57 4.35 204 69 256 09 65

IL9 4.57 4.55 204 99 226 9 85
30 b;.57 4.25 254 129 256 9 55
51 4.57 4.25 204 129 256 89 :5
52 4.57 4.35 174 69 226 U9 55
53 4.57 4.35 174 129 226 89 55
54 4.57 4.35 234 69 226 39 55
55 4.57 4.35 174 69 226 59 85
50 4.57 4.35 174 129 226 59 (5

57 4.57 4.35 234 69 226 59 8558 L.57 4.35 234 129 226 59 35

59 4.57 4.35 174 69 2'56 89 3560 4.57 4.35 234 09 256 89 85
61 4.57 4.35 174 9) 226 39 85
62 4.57 4.55 254 99 226 U9 85
63 4.57 4. 204 69 226 69 35
64 14.57 4.25 234 129 256 9 35
u5 4.57 4.35 174 69 226 89 8)
66 4.57 4.35 234 69 226 U9 85
67 4.57 4.25 234 129 226 89 85
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Inversion 4

To test the importance of diffraction, we have deleted

from the data set,phase travel times for those paths which lie

close and parallel to a contrast between two dissimilar zones.

The value of a continues to be taken as in the result of

Inversion 3. The linear inverse using the same regionalization

and parameterization as inversion 3 for the results:

SLID = 4.58+.0l km/sec

CH = 4.36+.02 km/sec

hLID(lA) = 181+13 km (below surface)

h Li D  = 101+16LD(3)

hLID(4) = 204+35

hLID(5) = 54+7

hLID(6) = 54+7

h = 268+6CH-SUB

We detect no significant changes from the results of inversion 3.

Inversion 5

Finally, since the Tibetan structure appears to be

associated with the collision of the Indian-Asian plates, we

have incorporated the Himalayan part of region 3 into region 4,

and re-analyzed the linear inversion with the data and errors

as in inversion 3. A map of the new egionalization is shown

in Figure 31.

I,
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FIG. 31. Modification of regionalization of Fig. 30

by enlargement of region 4 in Himalayan region.
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The results of the inversion are

SLID = 4.58+.0l km/sec

CH = 4.34+.0l

hLID(IA) = 194+l km

hLID (3) 97+8

hLID (4) = 207+21

hLID(5) 67+4

hLID (6) 58+5

hCHSUB = 273+5

Again we observe no major change in the structure.

We conclude from all these tests that the stable sediment-

covered regions of the USSR are probably stable preCambrian

shields covered by sediments, that the Tibetan plateau is under-

lain by relatively cold shield mantle material with no major

low-velocity zone at even moderate depths that might be ex-

pected of tectonically active zone or of young stable regions,

that the mountainous collision zone between the Asian and

Indian plates have a prominent low velocity zone at moderate

depths, that the Sinkiang-Mongolian active seismic zone has a

similar structure and that South Eastern China is also a

region of tectonic activity as indicated by the similarity of

its uppper mantle structure to the other two seismically

active regions.
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Arctic Study. We have ,ieasured fundamental mode Rayleigh

waves over a number of paths crossing the Arctic Ocean. We

have used as sources four earthquakes whose focal parameters

are:

4. Lena River Aug. 25, 1964 13:47:20.6 78.2 0 N 126.6 0 E

10. Eastern Aleutians(l) Feb. 6, 1965 01 :40:33.2 53.2 0 N 161.9 0 W

11. Eastern Aleutians(2) Feb. 6, 1965 16:50:23.6 53.3 0 N 161 .8 0 W

13. Western Aleutians Feb. 6, 1965 04:02:53 52.1 0 N 175.7 0 E

For each of these earthquakes we have obtained initial phases

either from the fault plane solution or from the radiation pat-

tern for Rayleigh waves (as in the case of the Lena River dis-

cussed above). We have obtained phase velocities by the single-

station method for seven paths crossing the Arctic over the

period range 50 to 208 sec. The paths are shown in Figure 32

It can be seen that none of these are purely oceanic paths.

The shaded area outlines out estimate of the boundary between

the continental shelf and the deep ocean basins. The fraction

of the geometrical path that each event has in the oceanic part

is as follows:

Event Total path length Oceanic length Fraction oceanic

1. Lena - ESK 4816 km 1904 km .40

2. Lena - KTG 3386 1823 .54

3. East Aleut(l)- KON 7483 4603 .62

4. East Aleut(l) -KTG 5933 916 .15

5. East Aieut(2) - KEV 6347 2334 .37

6. East Aleut(2)- ESK 7818 2714 .35

7. West Aleut. - KEV 6263 844 .13
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FIG. 32. Map of Arctic region showing all propagation

paths used in dispersion and regionalization

analysis.
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To reduce the available data to information regarding

purely oceanic paths, we have decided to use the phase veloci-

ty data for the Lena River event recorded at KEV (see discus-

sion above for Eurasia) as a typical continental value and to

subtract these values , for the appropriate path length con-

tribution, from the phase delays observed for the above 7

path-events. Unfortunately, the two events East Aleut.(l) - KTG

and West Aleut.-KEV have such small parts of their total path

that are oceanic that we are subtracting two numbers of com-

parable size and the result is quite unstable. The unreliabil-

ity of the oceanic phase delay results for these two cases has obliged

us to exclude them from our data set. Accordingly, we have in-

vestigated the inversions of the phase velocity results for

the five remaining paths. Tile relevant data are given in Table 8:

TABLE 8

(Pure) Oceanic Phase Velocities (km/sec)

T(sec) Lena-ESK Lena-KTG E.Al(l)-KON E.Al(2)-KEV E.AI(2)-ESK

208 4.64 (4.83) 4.62 4.55 4.52

192 4.52 (4.61) 4.51 4.42 4.42

167 4.38 4.32 4.38 4.22 4.28

139 4.21 4.14 4.24 4.09 4.15

119 4.08 4.06 4.12 4.04 4.11

100 4.01 3.99 4.08 3.96 4.07

69 3.95 3.90 4.00 3.91 4.00

50 3.91 3.82 3.98 3.89 3.92

With so few data, we have not been able to regionalize the

~II



48

the deep Arctic; the number of degrees of freedom in the data

is too small. The best we can do is to consider the deep Arctic

as a single province and investigate the consequences of invert-

ing an "average" phase velocity for the region. The average

phase velocity is obtained from the above table by weighting by

the oceanic path length in each case. The result is (omitting

the quantities in parentheses):

T(sec) c(km/sec)

208 4.59

192 4.47

167 4.32

139 4.18

119 4.10

100 4.03

69 3.97

50 3.92

These results can be compared with those obtained for Pacific

paths by Leeds (1973) from inversion of trans-Pacific phase

velocity data by methods similar to those described above for

trans-Eurasian paths. The pure-age phase velocities for the

Pacific can be derived from the cross-sections resulting from

the inversions; these are shown in Fig. 33 for Pacific ages

0-10 my, 20-40 my, 85-110 my. The Arctic data points are shown

as circles. The Arctic cross-section averages out to about a 30 my

Pacific structure. According to the model of Parker and Oldenburg

(1973), the lid thickness as a function of the age is
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z(t) = 9.4t km, with t the age in my. Thus, assuming that the

lid and channel S-wave velocities are of the same order as in

the Pacific, the age at which the Arctic began to open is cal-

culated to be about 70 my (before present), an unexpectedly small

quantity.

Theoretical seismograms. The main thrust of our work with

time series synthesis has been directed toward improving the

efficiency of existing computational techniques. This improve-

ment is required to permit us to extend the information contained

on the theoretical seismograms down through the period range

covered by the long-period instruments of the WWSSN. Although up

to the present time we have concentrated on laterally homogeneous

structures, in all other respects our models of the earth have been

highly realistic: approximately 200 layers are being used to model

the radial heterogeneity of the crust-mantle system of a spherical

earth, and the intrinsic attenuation is included.

A summary of the general methods we have applied in our

computations is given by Kausel and Schwab (1973), and Knopoff

et al (1974). An elaboration of, and certain justifications

for these procedures have recently been given by Schwab and

Kausel (1976). A recent contribution by Calcagnile et al (1976),

also completed under this contract, is also pertinent here when

only the surface-wave portion of the thoeretical seismogram is

desired.

The initial development of the algorithm and certain pro-

gramming improvements, which were carried out under the present

lbi
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FIG. 33. Results of phase velocity dispersion for Arctic

region (circles). "Standard" phase velocity

curves for Pacific age strips are shown for

comparison (Leeds, 1973). Because the Pacific

spreads at a different rate than the Arctic,

this gives a different age for the Arctic (see

text).
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contract, are contained in Nakanishi, Schwab and Kausel (1976),

and Nakanishi, Schwab and Knopoff (1976). These manuscripts

formed the necessary bridge between first generation and second

generation dispersion programs. First generation techniques

are based on full, detailed specification - a structure, a

specific mode, and a specific period - from which a single

phase velocity at a time is sought; second generation dispersion

computations begin with only the structure and the mode specified,

and they then compute all phase velocities down to whatever

minimum period is desired. As the second generation software is

developed, computations for the group velocity, phase attenuation,

amplitude excitation function, and apparent initial phase are in-

corporated into the procedure (but not yet into a single, automatic

routine combined with the phase velocity computations).

In a series of five later papers under this contract (Kausel,

Schwab and Mantovani, 1977; Mantovani et al 1976, 1977; Mantovani,

1977 a,b) this second generation software was fully developed and

applied to the generation of multimode theoretical siesmograms

containing as many as 21 modes; each of these was represented

over the entire period range down to 1 second.

The final stage of our work on the generation of complete

theoretical seismograms for torsional waves, was the development

of a third generation program. This routine is fully automatic,

and requires only the structural specification as input. The out-

put, which is obtained in a single, relatively short computer run,

contains all of the frequency-domain information required
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to compute theoretical seismograms for arbitrary source specifi-

cations. As desired, all body-wave and surface-wave arrivals,

for periods greater than ten seconds, are obtained from the 90-100

modes thus specified. Results from this work were recently pre-

pared and a preprint is appended (Liao, Schwab and Mantovani, 1977).

We are now in a position of being able to compare directly, the

entire experimental, torsional-wave seismograms from the long-

period WWSSN instruments with those computed from theoretically

specified sources and structures.

Our work on the algorithm and the programming on the Rayleigh-,

or spheroidal-wave theoretical seismograms, began with detailed

analysis and improvements of the basic direct method for handling

such calculations on a sphe:rical, gravitating earth. In its

original form, this method was initially develoepd in the series

of papers by Hoskins (1920), Pekeris and Jarosch (1958), and

Alterman, Jarosch and Pekeris (1959); some numerical details con-

cerning such computations were given by Bolt and Dorman (1961),

and later, by Takeuchi and Saito (1972). In the appended manu-

script (Schwab et al, 1977) we describe: (1) the newly developed

simplifications of the usual algorithm, which has made it possible

we believe for the first time - to develop a direct algorithm for

group velocity computation, that is independent of the usual

appeal to variational techniques; (2) the numerical problems that

are associated with this type of computation, in quite detailed

form, in relation to what has appeared previously in the literature;

ItI
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(3) our optimization of the improved algorithm, and the

efficiency of the optimization relative to various similar

computations problems.

Relative to the efficiency determination, the most per-

tinent results affecting the work on this contract are: (1) that

such computations - for Rayleigh-, or spheroidal waves on a

spherical, gravitating earth - are abcut six times more expensive

than the comparable torsional-wave computations, and (2) that

spheroidal waves can be handled on a non-gravitating earth for only

about twice the expense of torsional waves. From these results we

conclude that the present optimization is still too expensive

to use for the computation of theoretical seismograms for

spheroidal waves (down to periods of only ten seconds), but that

the optimization technique will be satisfactory for this purpose

if a means can be devised to approximate the removal of gravity

from the formulation. Such a technique has already been devised

(Schwab, 1977), but the numerical tests have only just begun.

The final, practical purpose of our work under this contract -

application of our results to the discrimination problem - will

involve comparison of complete theoretical and experimental

seismograms. It is theorefore important that we have as accurate

a means as possible of obtaining the instrumental constants from

the impulse response of the experimental record. These constants

then permit us to include, with a minimum of error, the effect

of the instrumental response on the theoretical seismogram. Our

improved scheme for inversion of the impulse response to obtain

the instrument parameters, is described in the appended preprint

by Mitchel (1977).

I" , , ,
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ABSTRACT

Algorithmic and numerical analyses are carried out

for Rayleigh-wave dispersion computations on a spherical,

gravitating earth. Our work is based on the direct, Alterman-

Jarosch-Pekeris formulation. For practical purposes, we fix

period and determine the associated phase velocity (or polar

order number). Neither this, nor integration downward from the

free surface -- both "non-standard" procedures -- results in

unexpected difficulties. The latter procedure yields a simpli-

fication of the computational algorithm, the clarity of which

al ws it to be extended to group-velocity evaulations. The AJP,

direct-integration formulation is optimized and compared with the

fastest -- Knopoff's method -- of the techniques based on the flat,

homogeneous-layer approximation. The optimized form of the AJP

method (spherical) is three times slower than Knopoff's (flat,

non-gravitating) method when gravity is included in the AJP

formulation; and is 1.36 times slower when gravity is not included.

Additional programming would reduce the former estimate to a lower

bound of 2.42 times slower, and the latter, to a lower bound of 1.30.

In size and number, the treatment of integration "steps" in the

direct-integration procedure, is equivalent to the treatment of

"layers" in the homogeneous-layer approximation; thus the usual

assumption that the former method does a better job of treating

continuous parameter-depth distributions, appears to be invalid.

Overflow problems in the AJP formulation can be controlled by



simple normalization. Loss-of-precision problems appear to be

intrinsic to the AJP formulation. At a fixed period, this results

in the attainable accuracy of the phase velocity decreasing as

mode number increases; and, for fixed accuracy in the phase

velocity, as period decreases the maximum mode number that

can be treated successfully decreases.



I. INTRODUCTION

Dorman, Ewing and Oliver (1960) described the use of an elec-

tronic computer to calculate surface-wave dispersion for multilayered,

perfectly-elastic half-spaces. Their computations were based on

the technique devised by Thomson (1950) and Haskell (1953). Press,

Harkrider and Seafeldt (1961) also used the Thomson-Haskell tech-

nique, and with a more advanced computer, greatly improved the

speed of computation. Randall (1967) later applied Knopoff's

(1964) method to this problem and reported a further improvement

in speed for the Rayleigh-wave case.

In a later series of papers, Schwab (1970) and Schwab and

Knopoff (1970, 1971, 1972, 1973) improved the optimization, for

computer application, of both the Thomson-Haskell and Knopoff's

methods for flat, multilayered media. These papers also provide

complete details for obtaining full control over the accuracy of

the computations, and for generalizing the algorithms to include

computation of attenuation due to the intrinsic anelasticity of

the earth.

For Love waves, the use of spherica.-to-flat structure trans-

formations (Biswas and Knopoff, 1970; Schwab and Knopoff, 1971;

1972; 1973; Kausel and Schwab, 1973) makes it possible to carry

out all spherical dispersion, attenuation, and focal-response

problems using the optimized algorithms for flat structures. Sev-

eral attempts have been made to develope the same type of transfor-

mation for Rayleigh-wave computations (Alterman, Jarosch and

Pekeris, 1961; Bolt and Dorman, 1961; Biswas, 1972; Schwab and
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and Knopoff, 1972), but these have all yielded only empirical re-

sults which lack general applicability. Thus, at the present time

at least, it appears that one cannot apply transformation theory to

Rayleigh-wave dispersion computations on any arbitrary, spherical,

gravitating earth. Bhattacharya's(1976) recent results -- although

we will not pursue this approach in the present paper -- suggest the

feasibility of an interesting new procedure for treating spherical,

gravitating structures: Gravitation alone might be handled by trans-

formation techniques, while Bhattacharya's approach could be used to

optimize the treatment of sphericity.

The primary purposes of the present paper are: (1) to report

on our study of the optimization of the direct computations (see

Wiggins (1976) for a discussion of computations based on the

variational technique), (2) to report the results of our study con-

cerning accuracy considerations, and (3) to determine the efficiency

of these direct computations relative to the analogous computations

for non-gravitating structures. Also, a new computational technique

is developed, for the calculation of group velocities, which does

not depend on tile numerical evaluation of "energy integrals." Our

second purpose is to present -- we believe for the first time -- an

explicit, quantitative comparison of the relative efficiencies of

the two basic techniques for performing surface-wave dispersion

computations: that in which an exact structural specification is

employed with approximate mathematical methods, and that in which

exact analytical techniques are applied to an approximate model of

the structure, i.e., where the structure is replaced by a sequence

of homogeneous layers.



3.

2. ALTERMAN-JAROSCH-PEKERIS (AJP) FORMULATION

The basic formulation for our problem (Pekeris

and Jarosch, 1958) involves the solution of three second-order,

ordinary differential equations constrained by a set of boundary

conditions. For purposes of numerical solution it is advisable

to reduce this system to six, linear, first-order differential

equations, as was done by Alterman, Jarosch and Pekeris (1959).

Bolt and Dorman (1961) applied this formulation, to the evaluation

of Rayleigh-wave dispersion, and reported on those numerical

details which it was economically feasible to investigate with

second-generation computing equipment. Detailed algorithmic testing

of accuracy, precision, and efficiency characteristics really

requires the present, third-generation machinery, which we have

employed in the current study; the work we report here can be

considered as the logical extension of the above series of papers.

To sketch the AJP formulation, if we let

yi=dyi/dr, where r is the distance from the center of the earth,

then the sixth-order system is

yl a 1 1  a 1 2  a 1 3  0 0 0 yl

Y2 a21 a22 a23 a 2 l 0 a 2 6  Y 2

-Y3 a 3 3  0 a 3 3  a 34  0 0 Y3

(2.01)

Y.1 a4 1  a42  a4 3  a 4 4  a 4 5  0 Y4

y 5  a5 0 0 0 0 1 Y5

-Y6 0 0 a 6 3 0 a65 a 6 6 Y 6
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with y, and y3 related to the components of displace-

ment u r (r, 0 ) u (r', C, )' and u (r,6,0) by

u =yl(r)Xm(0)eim eiat
r

d n eim~eiat (2.02)u,_y 3 ( r ) -! X m (6e~ i
d6 P

im m e~imoei~t

sine Y3 (r)x1z()e' 
e

For propagating surface waves diverging from the epicenter,

i 2
S1(p +i Q) (2.03)

2 . ,

for waves converging toward the epicenter,

X =I(P - 2 Q ). (2.04)

For a treatment of the situations which require

the use of (2.03), (2.04), or their sum, see Schwab and Kausel

(1976). In this same reference, the justification is given for our

major departure from previously reported computations of Rayleigh

wave dispersion on a spheret Strictly speaking, Rayleigh waves

only exist on a sphere at the discrete set of frequencies corres-

ponding to integral values of the polar order number 2 . However,

fixing 9'and evaluating the corresponding angular frequency w does

not yield the dispersion data at equal frequency intervals, which

we desire to use in the usual numerical technique for obtaining

time series by inverse Fourier transformation. Schwab and Kausel

(1976) have shown that, for most practical applications of propaga-

ting surface waves, non-integral Z at equally-spaced frequencies
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can be used without introducing significant errors; therefore,

we adopt the procedure of fixing ± and computing -, or

c = aw/(Z+1/2), (2.05)

where a is the radius of the earth. The relation between c

and the true spherical phase velocity is also treated by Schwab

and Kausel (1976). In equation (
2
.
0 1

),y2 and y, are, respectively,

the radial dependences of the rr, and the r and Lk components of

stress; y5 and Y 6 arise from the presence of tne gravitational

field.

Since, in any numerical integration procedure,

it is important to initiate the integration with accurate values,

we have chosen to proceed from the free surface downward. This

allows us to specify the initial vector exactly. The integration

is then carried down to a depth sufficient to make it immaterial--

to , significant figures in . or c--just how we terminate the

integration: with an approximation of a free surface or rigid

surface, for example. The fact that such a termination process is

valid has been checked by extensive numerical tests in the course

of this work. These tests follow the lines of the layer-reduction

experiments described by Schwab and Knopoff (1970; 1972), and will be

described in some detail below. In Section 7 we discuss the termina-

tion of the structure at depth by either a solid or liquid, homogen-

eous, gravitatin)' sphere.

-az_
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Here, we should point out that the warning

given by Takeuchi and Saito (page 241, 1972) against proceeding

downward from the free surface when integrating the system of

differential equations, or when forming the layer-matrix product

if applying the Thomson-Haskell technique or Knopoff's method,

does not appear to be justified by our experience. In the work

upon which we report herein, downward integration did not give

rise to any unexpected difficulties; in previous, extensive work

with matrix methods applied to Rayleigh-wave dispersion computations

(Schwab, 1970; Schwab and Knopoff, 1970; 1972), the formation of

matrix products upward toward the free surface (Thomson-Haskell

formulation) was not found to have any advantage over formation of

the product in the downward direction (Knopoff's formulation).

Continental structure. In this case,y end

y vanish, andy -y ( Z+1)/a at r -a. Thus we can write the starting

vector as
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y I(a) y I(a) 0l 1  F0
y 2 (a) 0 0 0 0

y, (a) y, (a) 0 1 0

(a)- - =y (a) .ly(a) +y(a (2.06)

y. (a) 0 0 0 0

y 5 (a) y 5 (a) 0 0I 1

y (a) -Y5 (a) (, +l /a 0 0 (+l)

or

Y (a)=yl (a)X 1 (a)+y 3 (a)X 2 (a)+Y 5 (a)X 3 (a), (2.07)S

and for r' a

YS(r)=yl(a)Xl(r)+y 3 (a)X2(r)+ys(a)X3 (r) (2.08)

The three quantities which are unknown-- yl(a), y 3 (a),

and yS(a) -- can be carried implicitly in the computations,

while we integrate the vectors whose starting values are known

exactly: XI, X 2 , and X 3. That is, we

integrate to obtain X1 at depth; this is repeated, in turn, with

X 2 and X 3 . Thus we actually use equation(2.01) in the form
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X =AX. to integrate from the surface r a to the depth at
1 1 - -

which the boundary conditions are to be applied: r r , where

we can again express YS in terms of the undetermined coefficients

by using equation (2.08).

If we define a rigid boundary at depth by

yj(rO)=Y3(r0)=y5(r0)=O, (2.09)

we then obtain three linear, homogeneous equations in three

unknowns--the undetermined coefficients--and the determinant of

the coefficient matrix must vanish if we are to have a non-trivial

solution. Thus the dispersion function, F , takes the form

[Xl(r0)]1 [X 2 (r 0 )] I [X 3 (r 0 )] 1

A = X1 (r 0 )] 1[X(r0)3  [X3(ro)] 3 , (2.10)

[X1 (ro)] [X2(ro)15 [X3 (ro)15

zeros of which define valid (E,,j) dispersion pairs. For the two

approximations to free boundaries at depth, we have used the

definitions

y2 (r0 ) = y4(r O ) - 0 (2.11)

and either

y6 (r 0 ) -Y5 (r 0 ) (U+1)/r 0 (2. 12)
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or

y6(r1)=-y5(ro) (+1)/a ,(2.13)

which yield, respectively, dispersion functions

LXt (ro)] 2  [X2 (ro)] 2  [X 3 (ro)] 2

FB(C.,G)= [Xl(ro)]. [x 2 (ro)]. LX3 (ro)L.

(2.14)
BX2 (ro)] 6 , LX3 X2

(
r)] (ro)6 4

IX2 ro)] 6 4± l[XI (r 0 )] 5 r0 r06 -2 r) EX( ' 6+TL>3 (r 4 )j

and

[X (ro)] 2  [Xz(ro)]2 LXo (rc).2

F, (C,j)= [X1 (ro)].C LX2 (rO)], L (r).

[XI (ro)] 6 [XI (ro) 5 [X2 (ro) 64-i--[X2 (rj)] X3(1 + X(ro)] (2 15)a-i--) X! (r r).i a L aL3r.

Oceanic Structure. In this case, the analog of equation

(2.0 1) is, for the homogeneous oceanic (liquid) layer,

- - Y1 b1 1 b12 b 150Y

Y2 b 2 1  b 2 2  b25 - 2

(2.16)

Y 5 4aG 0 0 1 Y 5

V C b61 b 6 2  b 6 5  b 6 6  Y6

At r = a, Y2 vanishes and y6 -- Ys(Z+1)/a, and we can write the

starting vector as

ilk



yj (a) y I(a) 1 0

y2 (a) 0 0 0

Y La) y I(a) +y 5 (a) (2. 17)

Y5 (a) Y 5 (a) 0 1

y6 (a) -Y5(a)(Z+1)/a 0 -kll

orL (a) = yl(a) ZI(a) + y5 (a) Z2 (a), (2. 18)

and for r < a

Y L(r) = yl(a) Z1 (r) + y5 (a) Z2 (r). (2.19)

Again, we carry the unknown quantities -- y1 (a) and yS(a)--

implicity, and integrate the vectors whose starting values we

know exactly: Z1 and Z2 , using equation (2.16) in the form 2.=B Z.-

on the oceanic side of the liquid-solid boundary at the bottom

of the ocean r= lw then have[Z 1 r [ Lz2 (r I ) I I
Y (r)=y~a)+ y 5(a) 1220
L [Z~l1 Z2 (rj),' 2  (.0

L I r I ] SLZ 2 ( r 1 ) I Sj
IZI~ri)]G C(r l)1

At this boundary, y1 , Y2, Y5, an, y are continuous, Y4. Must

vanish, and y3 is undetermined. Thus on the solid sid'- of this

interface, we have



Z1 r1 )j 0 !Z2(r1)j

Zj(ri) 2 0 Z2 (rl)) 2

0 1 0

Y, (r,=yj (a) +Y 3 (r I) +y 5 (a) (2.21)

0 0 0

IZi(rj) i 0 JZ2 (rl)15

ZI(r 1 ) 16 0 IZ 2 (rl) It

o r

Y (rj)-yj(a)Xj(r1 ) + Y3 (r 1 )X 2 (r 1 ) + y 5 (a)X 3 (rj), (2.22)
S

and the integration proceeds and terminates, from r, to o

exactly as in the continental case.
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3. ALGORITHM FOR GROUP VELOCITY DETERMINATION

When treating Rayleigh waves on a spherical, gravitating

earth, the variational technique is usually employed to compute

group velocities (Takeuchi and Saito, 1972, Section III). This

involves the evaluation, by numerical approximation, of integrals

having the form

[ f(r) yi(r)y (r) dr (3.01)

Jo

Since the functions yk(r) becomE highly oscillatory for large

(radial) mode numbers, this numerical evaluation can become

inaccurate (Knopoff et al., 1974, Appendix). Further,[ Y (r)

become spuriously large at depths much below those at which there

is significant energy in the mode, at the period being treated.

Although, somewhat surprisingly, these spurious magnitudes do not

seem to affect the location of a root of the dispersion function,

they can cause large errors in the evaluation of integrals such as

(3.01). Thus one must specify r 2  , the value of r below which

tho spurious magnitudes occur, p ior to seeking the group velocity,

and then evaluate

a l a f(r)yi(r) yj (r) dr (3.02)

in place of (3.01). However, without prior knowledge of the group

velocity, r 2 can be quite difficult to determine in period ranges

such as those in which the energy shifts back and forth repeatedly

between the crustal wave guide and the low-velocity channel in the

upper mantle (Panza, Schwab and Knopoff, 1972; Frantsuzova, Levshin

and Shkadinskaya, 1972; Schwab and Knopoff, 1971; 1972). Since

the integrals must eventually be evaluated to obtain excitation
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functions for earthquake sources, and since group velocity can be

used to specify whether the energy is in the crust or low-velocity

channel, it is desirable to develope analgorithm for obtaining these

velocities, which is not dependent upon prior knowledge of r 2 '

Since we have a dispersion function, F(c,- ), which vanishes

when the point (c,lw) falls on a dispersion curve, we can use implicit-

function theory to define the group velocity U:

u = c/(1- ~ )(3.03)

dcw

wi304

F

where the partial derivatives are evaluated at a point on a

dispersion curve. If we agree to use the rigid boundary at depth,

then

FI j'L(o3[G]3~j [X3(r0)]3  [Xj (r0 )] I [X2 (ro)_]3 [X3(ro)]3

oF Xj(rO)j 5[X2 (rG) 5 [X3(ro)] 5  [X1'(ro)]s [X2(ro)I]s [X3 (r3)]5

[Xj(rO)]1 [X2(rO)]j [X3 (ro)] 1

1- X1(rO)] 3 [X2 (rO)%5 CX3(r0 )]3 (305
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and

(3.06)

is given by the same type of expression as (3.05), with dots

replacing the primes. The elements Ix.(r 0 )_I. in (3.05) and

(3.06) are obtained exactly as described in Section 2. The

evaluation of 'Xi(r0)j and Ix (rO) j requires a simple extension of

the algorithm.

Cont inental Structure. In this case we start with the

sixth-order system
x=AY, 

3.07)

;Ini form

Y'=A'Y+AY' (3.08)

Y= AY+AY. (3.09)

Here again, w. these equations of motion in terms of the vectors,

X., X', X.. t we know exactly at the surface:
1 1 1

,- A' X + AX'. (3.10)

11 1.

TX x. + Ai (3. 11)
1 1 1

Since X. can be determined indepet.lently, we car treat A'X. and
1 a

A x. as known vectors at each depth, and we have
I



R'. AX'. + C. (3. 12)

X. AX.+D. (3. 13)

0

1 ~[x.(r)] 3  3 4

0

C )=krX (r) -(2+) 0r=2~)j E r)3(.4

C0

0

(A +2 (3.1'X)
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OcLanic structure. Here we begin with the fourth-order

system (2.16), and form

Yi Y'I

y, Y 2 Y'2
+B (3. 16)

5 Y 5 A'

soutos t h surface, Z

Y2 Y2 I 2

= B + Z' (3.17)y: y
Y6 ! 6

These equations are then used With the vectors for which we hlave

solutions at tile surface, Z.

Z'. = B'Z. + BZ'. (3. 18)
1 1 +

-7z. = lIz. + BZ. , (3. 19)
1 1 1
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which can be written in terms of known vectors, B'Z. and BZ.,1 1

at each depth:

Z'. 
=  BZ'. + E. (3.20)

Z. = BZ. + G. , (3.21)

where

-H. (r)

11

E. (r) =B' (r) Z iir)= [2v(',+l) /r2w3 ]  (3. 22)

0

[41GP (r)] Hi(r)

H.(r)
1

[g (r)p (r)]H i (r)

G (r)=B(r)Z (r)=[-a(2Z+1) c
2
r
2
w] (3.23)

0

J. (r)

and

Hi (r)=g(r) [Z (r)] -[I/o(r)] [Zi(r)] 2 [Zi(r)] 5 (3.24)
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li(r) =-p(r) 4 r
2

/Z(Z+l) +g
2
(r)] CZ(r)]1 + g(r){ [Z(r)] 2 +o(r) [Z(r)] 5 ) (3.25)

Ji (r)=4-G{-p(r)g(r) [Zi (r)] 1 +[Z i (r)] 2+[P (r) 4W
2 /4,G] [Z,(r)] 5 (3.26)

Application of (3.20) and (3.21) will allow us to carry the integration to the

bottom of the oceanic layer at r-rI, where we can apply the boundary conditions

of continuity of yl, y' j,Y1 , Y2,Y' 2,y2,Yy'5,y5, 6 ,Y' 6,Y6, and the vanishing of

Y4,Y'4,Y4, to obtain the necessary starting values to apply in (3.12) and (3.13):

[Z' 1 (rl)] I [Z' 2(r)] 1

[z' I(rl)]2 [Z' 2 (r)] 2

0 0

XV1 (rj) = ,X' 2 (rl)-0,X' 3 (rl)- (3.27)

0 0

[z' 1 (rl)]s [Z' 2 (r)15

[Z' 1 (r, 16 CZ'2 (r)16

and a like set of starting values with primes replaced by dots.

Although precise computation-time estimates are given in

Section 5, a few general observations will be appropriate here. At

any given frequency, the phase velocity is evaluated by repeated

determination of the dispersion function until a root is bracketed;

this root is then refined until the desired accuracy is obtained.

Each determination of F involves the integration of the three

vectors X.. If we assume that X (r) have been saved from the last

set of integrations to obtain a value of c, then to obtain the group

velocity at this same frequency requires the integration of six
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vectors, i.e. approximately twice the amount of time it takes to

compute a single value of the dispersion function while iterating

for c. The number of iterations required in the computation of

is variable, but for the present purpose, ten iterations may be

taken as a representative value. Thus 30 integrations would be

required to obtain c, and only 6 to obtain u. To the accuracy of

this estimate then, u can be obtained in only 20 percent of the time

the evaluation of c requires.
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4. NUMERICAL TECHNIQUE FOR INTEGRATING THE SYSTEM OF DIFFERENTIAL

EQUAT IONS

To optimize the computaticns, it is useful to constrain

the structural specification somewhat. For tnis purpose:

1. The liquid, oceanic layer is limited to a single,

homogeneous layer. A special fourth-order Runge-Kutta technique

(see below) is used for the first three steps of the Irtegratlon--

step sizt. of about I km-- and a fourth-order predicator-correctr method (see

below) is employed, if necessary, to continue the inte.,ratio:i to

the bottom of tile oceanic layer with the same step size.

2. The sedimentary layers are limited to a sequence of

homogeneous layers, each of which does not exceed I ka in thickness.

These layers are treated with one fourth-order Runge-Kutta step.

3. The subsedimentary crustal layers must also

be homogeneous, and each is treated as the oceanic layer; the step

size fixed at about I km.

4. The sub-Moho mantle requires continuous velocity-

depth and density-depthdistributions , although discontinuities
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can be approximated as closely as desired by specifying large

gradients. As with the oceanic layer,three Runge-Kutta steps

are followed by a fourth-order predictor-corrector method. The

initial step size is 1.5625 km, with which we execute three Runge-

Kutta, and seven predictor-corrector steps. The step size is then

doubled andfive predictor-corrector steps are perf -med; this

procedure is repeated until the step size reaches 12.5 kin, and the

predictor-corrector method is then applied with this fixed step

size. The results of our numerical testing have shown that this

dependence of step size on depth is sufficient to yield 4-signifi

cantL-figure accuracy in the computed values of c. Concerning this

point, one should review the treatment given by Schwab and Knopoff

(1972), in which piecewise-continuous velocity- and density-depth

distributions are treated with the homogeneous-layer approximation.

Comparison will show that the thickness of the layers as a function

of depth, in that approximation, is roughly the same as the integration

step size in the present analysis. That is, to the degree of accuracy

which two such dissimilar methods can be compared, if the step sizes above

are used as layer thicknesses in the homogeneous layer approximation, that

technique will yield 4 significant figures in the computed values of c

~I
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Runge-Kutta technique. To start the predictor-corrector

method we have used a Runge-Kutta technique designed specifically

for this purpose. Here one is only interested in being able to

minimize tile hounds un the truncation error. Ralston (1962) has

treated this problem, avd gives the following algorithm for

obtaining the first four points for starting a predictor-

corrector method.

In terms of a single, first-order differential equation:

y = f (r,y) , y(ro) = Y (4.1)
at r i, rz,.... the Runge-Kutta methnd is given by

Yn+l-y n iEI W (4.2)

Here, yn=y(r n),the w. are constants, and

i-i
K =h f(r + aih ,y + j 6ijK (4.3)in n in'1 l jj

with h =r +1-r , and

n L n
01 = U

a2 = 2/5

(4.4)
'3 = (14-3r)/16

= I
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621 = (2

a
3  = a3-832

3 2 = [a 3 (a 3 X2)1/ [2C02 1 - 2C'2)1 (4.)

641 = a4-842-643

42 = (a3_ 2) 6 2 a 3 - 4 (2+a3)

(L- 03 C'2) [-23 -4 )02+03)+31

1 +[2-23(a2+(3)4x 2C

w2 = (2 a3 -1) /[12a2(a3-02) (-o2)1

(4.6)
3 = (1-2 2 2 )/ [1203 ( -3 2) -(= 3)]

Predictor-corrector method. The fourth-order method we

have used (Hamming, 1959) is fully described, along with the details

concerning doubling of step size, by Ralston (1960). Highly practi-

cal details concerning the combination of the Runge-Kutta and predic-

tor-corrector routines, which we have employed, will be found in

Anon.(1970). One should be warned, however, that the ur2 of the

subroutines therein described is highly inadvisable for our present

purposes. The use of these general purpose subroutines can increase

computation expense by a factor of 10 to 100 over that of the optimized

algorithm.
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5. OPTIMIZATION OF THE ALTERMAN-JAROSCH-PEKERIS FORMULATION

The key to optimizing the integration is to apply our

knowledge about this specific problem to specify all the depths rk,

at which a..(r) are to be evaluated. The evaluation of these

elements can then be removed from the innermost, integration loops

of the program. The details concerning these depths are contained

in the preceding section. In Figure 1, the optimized scheme for

the evaluation of aij (r k)-- for the solid sedimentary layers, subsedi

mentary crustal layers, and mantle--is indicated in outline form.

This figure shows that most of the procedure for evaluating aij(rk)

can even be removed from within the -and c loops: within the

Loop, each new c value roquires only 6N+1 assignments, 6N+l multipli

cations, and N+l additions; within the w loop, each new w value

requires only 3N+l assignments, N+1 additions, and 2N subtraction-,

where N is the number of depths at which a.i (r k ) must be evaluated.

All other portions of the element determinations are performed

external to these loops. In Figure 2 the same information is given

for the elements, b..(r) of the matrix describing the integration

through tie liquid, oceanic layer. Again, all elements can be

evaluatcd external to the integration routine.

In the integration procedureb themselves, it is very

important to form matrix products, such as those in (2.01) and

(2.16), in an explicit manner. This permits full use to be made

of the many zero elements, and those that are independent of r,

or are equal to another matrix element. For example, 'he basic

I'
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AJP matrix multiplication for solid layers is illustrated in

Figure 3.

In reports on our earlier work with Love-wave dispersion

and dispersion-attenuation computations, for both flat and

spherical structures, it was possible to give the short, key,

FORTRAN program segments (Figure 2, Schwab and Knopoff, 1972;

Figures 4 and 5, Schwab and Knopoff, 1973). These together

with descriptions of the root-bracketing and root-refining proce-

dures, completely specify the optimization when the multi-,homoge-

neous-layer approximation is employed. When this approximation is

used with Rayleigh waves on flat structures, the optimization can

be specified in the same manner (Figures 11, 12 and 13, Schwab and

Knopoff, 1972). When employing the method of direct integration

of the equations of motion, it is not possible to exhibit the

complete program optimization in this compact, simple manner for

Rayleigh-wave dispersion on a spherical, radially heterogeneous,

gravitating earth. However, it is possible to present the most

important part of the algorithm as a relatively compact program

segment. This is given in Figure 4a,which illustrates the predic-

tor-corrector method we have applied to the integration from below

the Moho to the selected value of r ; the automatic doubling of0

integration step size is included in the segment. Most of the

computation time is spent in this program segment, which is entered

with:

COEFFI - (4/3) H

COEFF2 - 3H

COEFF6 = (121/36) H

H = -25/16;

the indices for the successive integration step-size regions are

given in Table 1; for the details concerning B(I,J), see the

description of subroutine DHPCL (Anon., 1970). In this type of

programming there are important, machine-dependent considerations:
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the manner in which the 6x6 matrix elements are stored in

memory, and the manner in which indices are

handled in the program segment given in Figure 4a. In fact,

the indices ITPI, ITP3, ITP8, ITP9, ITP10 which are used for

compactness in Figure 4, actually slow computation speed on

the IBM 360/91; these subscripts are best used in explicit

form IT+l, IT+3, IT+8, IT+9, IT+10. The key program segment is

given in the form shown in Figure 4a for two reasons: (1)

to illustrate the logic as clearly and simply as possible,

and (2) to provide an illustrative example of the importance

of handling subscripting and storage in the manner most

appropriate for a given machine. The time required to

execute DO-loop 170 once, specifies the necessary time to

execute one integration step for each of the three vectors

X. ; thus, to perform one integration step in forming the

dispersion function, DO-loop 170 must be executed three

times. The time for one integration step in forming F is

termed the characteristic time i, which we use to illustrate

the importance of correct subscripting and storage. The

characteristic time for the segment in Figure 4a is

489 psec/step/iteration. By simply reversing the order of

the subscripts of B(I,J), this time is improved by

92 wsec/step/iteration; if ITPl, etc. are used explicitly

as IT+1, etc., T is decreased still further by an amount of

67 wsec/step/iteration; and if a are stored more efficiently,

still another 44 Wsec/step/iteration can be saved, bringing

T down to 286 psec/step/iteration. DO-loop 170, in a form

incorporating the above improvements, is shown in Figure 4b.
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It should be understood that 286 lsec/step/iteration is a

lower bound; the corresponding effective characteristic time

given in (5.02) -- must reflect time spent in other parts of

the program than DO-loop 170, e.g., time spent in starting the

predi:tor-corrector scheme with the Runge-Kutta procedure.

Our computations have been performed on IBM 360 and 370

installations: a 360/91 in Los Angeles, a 360/65 in B.ri, and

a 370/145 in Santiago and in Cosenza. The first installation

was also used in the final optimization of the flat-structure

Rayleigh-wave work (Schwab and Knopoff, 1972), which allows us

to make an accurate evaluation of the iolative characteristic

times (Schwab and Knopoff, 1972) for computations with flat,

non-gravitating structures and with spherical, gravitating

models. In the former case, this time is

FLAT T RAYLEIGH
1 1 0 wsec/layer/iteration (5.01)

(which corresponds to Knopoff's method applied to a sequence

of homogeneous layers), and in the latter case,

SPHERICAL T RAYLEIGH=
3 3 6 visec/step/iteration (5.02)

(which corresponds to the optimization of the AJP formulation

herein described). Again, these characteristic times were

measured on the IBM 360/91 at UCLA. As we have noted above,
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an integration "step" can be considered nearly equivalent to

a "layer" in computations based on the homogeneous-layer

approximation. Also, to the accuracy possible in this type of

comparison, the "iterations" required in the two cases (see

Schwab and Knopoff (1972) for details concerning iteration

procedures) can be considered equivalent. Thus, the relative

efficiences of the two types of Rayleigh-wave dispersion

computation can be evaluated by simple comparison of their

characteristic times, and we find that the inclusion of

sphericity and gravitation triples actual computation time.

Thus, the time required to integrate each of the three vectors

over depth in the spherical, gravitating case, is the same as

that required to carry out the analogous operation -- the

formation of the matrix product -- for the flat, non-gravitating case.

To obtain a valid comparison of the direct-integration

method, with the homogeneous-layer technique, clearly we should

not include gravity in the former method. The removal of

gravity reduces the vectors Xi, that must be integrated, from

three to two, and the number of elementary operations (multi-

plications and additions) in (2.01) from 34 to 23. Thus, the

ratio of computation times for non-gravitating and gravitating

spheres, when treated with the direct-integration method, is

approximately (2x23) / (3x34); or, for the non-gravitating case,

SPHERICAL T =151 lisec/step/iteration. (5.03)
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Thus the direct integration met.,od, for a non-gravitating

sphere, is only 36 percent slower than the optimized com-

putations for a flat, non-gravitating structure, where the

latter is treated with the homogeneous-layer approximation.

From this result we are led to conclude that attempts

to devise Rayleigh-wave transformation techniques -- which

have hitherto been concentrated on curvature corrections to

permit spherical, gravitating stru-tures to be treated with

algorithms for flat, non-gravitating models -- might also

be directed toward gravity corrections that would allow one

to use programs for spherical, non-gravitating structures to

handle the spherical, gravitating case.

A final improvement in the lower bounds of the AJP

characteristic times is possible. The limiting bound for

the gravitating case was obtained by including the integration

of all three Xi, simultaneously, within DO-loop 170; the re-

sult was 266 Wsec/step/iteration. If the two vectors of the

non-gravitating case are handled simultaneously within the

loop (see Figure 4c), the lower bound of T becomes

143 wsec/step/iteration.

It is obviously of interest, to those involved in surface-

wave computations, to have some idea of the relative speeds of

such computations for tile various computers currently in use at

the larger installations. In Table 2 we present the results of

a first effort to summarize this information for the computers

that are available to us for testing. The test routine we
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have employed is that given by Schwab and Knopoff (Figure 2,

1972). A 100-layer structure was used; the program segment

was enclosed within a DO-loop that was executed either 100 or

1000 times; case 1 involved tests with L<3 , and case 2, tests

with c> m . Results from a more extensive set of relative computer-

time Lests, for both Love- and Rayleigh-wave dispersion com-

putations are given by Porter et al. (1977).
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6. EXISTE:;CE OF SOLUTIONS AS A Fi'NCTIOY OF NUMERICAL AND

AL(;ORI'i1MIC PROCEDURES

On IBM 360 equipment, large-scale numerical work is

routinely carried out in double precision: about 16 decimal

digits. Except where indicated otherwise, this precision was

used to investigate the existence criteria for solutions from

our opLimization of the basic AJP formulation.

Our testing procedure followed the lines of the

layer-reduction ,xperiments described by Schwab and Knopoff

(1972): At each of a set of periods, c is computed for a com-

plete range of terminating values, r0 , for the integration. At

each, fixed period, by comparing the values of c as a function

of r , the range of ro0 , over which c is stable to 4 significant

figures is immediately evident. In terms of r0  and period, our

results for an oceanic, and a continental shield structure

(Figure 5) are given in Figure 6; the fundamental and first

seven higher modes are treated in each case.

The results are similar to those previously obtained for

Rayleigh waves when the homogeneous-layer approximation is

employed (Figures 14, 15, 17, Schwab and Knopoff, 1972): At

each period, a certain minimum amount of structure (maximum )

must be retained to ensure 4 significant figures in c. This

maximum value of k is a physical limitation. For the mode and

period of interest, there is significant energy content down

to a depth of a-ro , and the structure above this point thus

affects all 4 figures of c.
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In the initial program testing, it is useful if one can

integrate to any depth, irregardless of whether this results in loss

of accuracy in the computed phase velocity, or in the expenditure of

more computer time than if the integration were terminated at the

minimum acceptable depth for the desired accuracy in the phase velo-

city. The use of a very large value of r , or more precisely, a

large number of wavelengths of structure, will result in overflow;

thus a simple, temporary solution to this problem is useful. Such a

solution is the simple extension of the normalization technique

described by Schwab and Knopoff (1970; 1972). The application of

normalization to the direct-integration procedure is quite simple;

it is not necessary to begin normalization until the application of the

predictor-corrector method has begun in the mantle. To normalize,

all one need do is determine the maximum of the absolute values of

Y, at the end of each integration step; one then divides all

Yi(r) and y" (r.) by this value, where r. are the seven positions

at which y, and y. musL be specified so as to permit the next step

of the fourth-order predictor-corrector method. Seven, rather than

four r. are required to allow the automatic doubling of step size

when certain depths are reached.

For ease of reference, a normalization scheme

which is appropriate for the program segment in Figure 4a, is

given in Figure 7. Two warnings: (1) If only sparing use of

normalization is planned, or it is to be invoked from an IF

statement, the segment in Figure 7 will be satisfactory; how-

• •|
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ever, if large-scale use is envisioned, efficiency requires the

inclusion of normalization directly within the coding in Figure 4a.

(2) Unless absolutely necessary, normalization should not 
be in-

cluded in these computations; it can result in a very significant

increase in computation time.

Our numerical tests of the overflow problem were performed

with the average (oceanic) earth structure given by Wiggins (1968).

The results are given in Table 3. For IBM 360 equipment, when using

70 80

double-precision computation, overflow occurs when IFI z 10 to 10

Returning to Figure 6, for routine use of the AJP

formulation, it is important to integrate only down to slightly

below the position the LL lines in the figure, and to thereby

minimize computation time and expense. For this purpose we have

devised empirical "laws" for determining the maximum depth

H = a - r0

to which the integration must be performed if the resulting

phase velocity is to be valid to 4 significant figures. The

data for these determinations are collected In Figure 8. The

"laws" specifying the number of wavelengths of structure to be

retained, if 4 significant figures are desired in the computed

phase velocities, are

H/A = 7-c for mode 0 (6.01)

H/A -9.5-c for mode 1 (6.02)

H/A - [11 + 
4 
(M-2)] - c for modes 2-7 (6.03)

10

where A is the wavelength, and M is the mode number.

• • i •m m i i •
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From the results shown in Figures 6 and 8 we also

have the maximum periods and values of c which can be determined

without taking the structure of the core into consideration

(other than to determine the values of g(r)). These results

are shown in Figure 9, along with the corresponding values of the

minimum order number Z.

Relative to the computation of theoretical seis-

mograms, the combination of the results in Figure 9 and those

given by Schwab and Kausel (Section 5, 1976), indicate a potentially

useful conclusion: (1) When Z>Xmin' only the crust-mantle

system need be used in the computations; c can be computed at

specified, equally-spaced frequencies and inverse Fourier trans-

formation can be used to calculate the theoretical seismogram for

this range of periods; and the first term of the asymptotic ex-

pansions for P m and Q, can be used (possibly corrected by

automatic numerical interpolation from the data in Figures 2 and

3 of Kausel and Schwab (1976)). (2) When Z<Z min' the core

must be included in the computations; w should be computed at

integral values of Z, and summation over Z should replace

Fourier synthesis; and the exact, integral-i expressions should

be used to evaluate the associated Legendre functions.
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A point of considerable interest to those involved

in the actual computation of surface wave dispersion, is whether

or not a difficulty analogous to the Thomson-Haskell "loss-of-

precision" problem(Schwab and Knopoff, 1970; Schwab, 1970) is

inlrins z to the AJP formulation. In computations based on

the homoge,,eous-layer approximation, when the original version

(Haskell, 1953) of the Thomson-Haskell formulation for Rayleigh

waves is used, this problem can cause serious difficulties if

the computer is employed in a low-precision mode. To test for

an analog to this "loss-of-precision" problem, in our optimization

of the AJP formulation, we simulated single-precision (about 6

decimal digits) computation by replacing DO-loop 160 (Figure 4a)

in our double-precision program, with the program segment shown

in Figure 10. The function SNGL accepts a double-precision

argument, and'ieturns the single-precision equivalent.

The results of our single-precision tests are

similar to those from the original Thomson-Haskell formulation

(Figure 2, Schwab and Knopoff, 1970), and are illustrated in

Figure 11. In the r-O range shown, our results indicate that

there is no problem with modes 0-4 in double-precision computations;

but when computations are reduced to single precision, the loss-of-

precision problem is clearly illustrated. In the latter case,

there is seen to exist a minimum value of IA. below which we

cannot go and still retain a given accuracy in the computed phase
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velocities. Thus the AJP formulation does indeed exhibit the

analog to the Thomson-Haskell loss-of-precision problem.

Since practical work with dispersion computations

on IBM 360 equipment is routinely carried out in double precision,

it is important to estimate the numerical limitations imposed by

the loss-of-precision problem in this computational mode. The

results of our tests at 50 and 25 seconds are shown in Figures

12 and 13. Less extensive tests were also carried out at a

period of 65 seconds. At a given period, the right-most point of

each of the smoothed curves was used to determine the maximum

accuracy possible for each mode. This information was then

collected in the Figures 14 and 15. Although the data is

necessarily sparse, due to the expense of this type of experiment,

the results are strikingly clear: For a fixed period, as we go

to higher and higher mode numbers, the attainable accuracy in c

becomes less and less; for a fixed accuracy in c, as we go

to shorter and shorter periods, the maximum mode number that

can be successfully treated becomes smaller and smaller.

In the near future we intend to present the details of

our numerical analysis of the various possible methods for dealing

with the loss-of-precision problem. See, for example, Wiggins (1968),

Nolet (Appendix A, 1976), Neigauz and Skadinskaya (1972), Gilbert

and Backus (1966), and Takeuchi and Saito (Section II.D.4, 1972).

It
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7. TERMINATING BOUNDARY CONDITIONS

In our present programming efforts we are concentrating

on the computation of phase velocities at arbitrarily specified

(equally-spaced) frequencies. To keep our algorithms as simple

as possible, and to avoid the difficulties involved in the

evaluation of spherical Bessel functions of non-integral order,

we have chosen to terminate our integrations at depth with free,

or rigid, terminating boundary conditions. For completeness, we

also include th.! technique for: (1) terminating the integration

within the mantle by applying terminating boundary conditions for

a gravitating, homogeneous, solid sphere below r. and, (2) termi

nating at the mantle-core boundary by applying the conditions for a homo-

geneous liquid sphere below r
0"

In the former case, just above r we have

Y+(r,) = yl(a)Xl(ro) + y3 (b)X 2 (ro) + y5 (a)X 3 (ro) (7.01)

where

a for a continental structure

b =(7.02)

I for an oceanic structure



I I I

36.

For the homogeneous, gravitating, solid sphere below r , there

are three classes of solutions: Yl(r), y 2 (r), Y3 (r); thus just

be Iow r,

Y_(r 0 ) = D YI(r 0 ) + E Y2 (r0 ) + M Y3 (ro), (7.03)

where D, E, and M are undetermined constants. Applying the boundary

conditions of continuity of yi at r0 , we obtain

F [XI(ro)II Lx2 (ro)] [X3(ro)]I -[Y1 (ro)]I -LY2(ro)]i -1Y3(ro)]I y1 (a: 0

Xj (r0)j 2  IX2 (ro)j 2  [X3 (ro)] 2  -LY, (ro)]2  -LY2 (ro)] 2  -[Y3 (ro)] 2 y3(b) 0

IXI (rd 3 IX2 (rO)J 3  IX3 (ro)] 3  -LYj (ro) 3  -LY2 (ro). 3  --Y3 (r0)] y5(a O

LXi (ro) 1  [X2 (ro)] 4 IX3 (ro)]4 -[Y1 (ro)j. -LY2 (ro)1, -LY3 (ro)]4 D 0

'X1 (r0)j 5  Lx2(r0)_ 5 LX3 (ro)]i -[Y(ro)35 -[IY2 (ro)] 5  -[Y3 (ro)] 5  E 0

[XI (ro)b [X2 (ro)i X3 (r0) -o(ro)] 6  -LY2 ro)]6  -[Y3(r0)]6  M o

(7.04)

or

NW = 0 (7.05)

and the dispersion function has the form

F(w,c) = det(N) (7.06)



37.

The components of Yi(r) are given in convenient form by Takeuchi

and Saito (1972): Y1 (r) bytheir equations (98), with the negative

sign in (99); Y 2(r) by (98), with the positive sign in (99); and Y3 (r)

by their equations (100). Note that their definition of y6  differs

slightly from that used here.

When the structure used to form the dispersion function is

terminated at the mantle-core boundary oy the conditions for a

homogeneous liquid sphere below r0 , above r0 we have (7.01); below,

Y_(ro) = p YI(r 0 ) + Q Y 3 (r0 ) , (7.07)

where 11 and q are undetermined constants,

and Y. in (7.07) have the form

yi (ro)

y2 (r0 )

Yi(r 0 ) = (7.08)
y5 (ro)

YS (ro)

Again, Takeuchi and Saito (1972) give the form of these vector

components for the gravitating, homogeneous, liquid sphere. From

the conditions of continuity of yl, Y2. Y5, Y6 at r0 , and the

vanishing of y5 (ro), we have
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[Xj (rO)jl1 IX 2 (r o )] I [X3 (ro)] I-[Y (ro)] 1  -LY 3 (ro)]I y(a) 0

XI (ro )i2  [X2 (ro)] 2  [X3 (ro )J2  -LYi (ro )] -[LY 3(r0)]2  y3 'b: 0

Lx1 (ro)j LX2 (ro)]L [X3 (ro)]. 0 0 y5 (a: 0 (7.09)

[XI (ro) [X2 (ro] 5  LX3 (ro)] 5-[Y 1 (ro)] 5 -Y3 (ro 5  P 0

[X, (r,)]. [X2 (ro )16  [X. (r0 )] 6  - LY 1(ro )] 6  -[Y3 (r0 )35  Q 0

or

R S = 0 , (7.10)

and the dispersion function takes the form

F(w,c) = det(R) (7.11)

To obtain the group velocity we still employ (3.03) and (3.04).

The forms of F' and F which result from (7.06), or (7.11), can be obtained by

analogy with the way in which (3.05) is obtained from (2.10). In the present

case, however, the analog of (3.05) will comprise the sum of six, sixth-order

determinants when (7.06) is used to form the dispersion function, and the sum

of five, fifth-order determinants when (7.11) is used.

As would be expected, our numerical tests of a

terminating solid sphere show that, to obtain a given accuracy

in c , less structure must be retained in this case than when

using terminating rigid or free boundarieq within the solid mantle.

A complete set of tests, comparable to those in Figure 12, was

~.II
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performed for a period of 50 seconds; the results showed that

the increase in the maximum _ values was surprisingly independ-

ent of mode number and o (300+25) km, or in most cases,

about 24 fewer integration steps when terminating with a solid

sphere. Thus the use of the "correct" terminating boundary

condition appears to be important only for the lowest (radial)

mode numbers. Our tests with mode 7 at 25 seconds, show the

increase in ro to be about (110+10) km. Thus, from our limited

number of tests, it appears that 6ro/ro is roughtly constant with

about the value 0.14+0.02 ; where ro is maximum value required

by the structural limitation when the condition of a rigid

terminating boundary is employed, and 6ro is the increase possible

in ro when one then employs the condition of a terminating solid

sphere.

Tests of the loss-of-precision problem were also per-

formed with the "correct" boundary condition at depth. Again, a com-

plete set of tests was carried out at 50 seconds, and mode 7 was

tested at a period of 25 seconds. The right-hand extremes of the

analogs of the smooth curves in Figures 12 and 13, occurred at the

same depths in these new tests; thus, as a result of the increased

LL values of the upper portions of the curves when solid-sphere

termination is used, the maximum accuracy for any given mode is

significantly improved by using this type of boundary at depth.
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8. CONCLUSIONS

An analysis of direct, Rayleigh-wave dispersion com-

putations on a spherical, gravitating earth has been performed

using the Alterman-Jarosch-Pekeris (1959) formulation.

1. No difficulty was encountered when we reversed the

usual procedure, for practical purposes, and computed phase

velocities (or polar order numbers) at specified periods.

2. Integration from the free surface downward, again

reversing the "standard" procedure, resulted in no unexpected

difficulties. In fact, this procedure much simplified the

specification of the algorithm for integrating the system of

differential equations to obtain phase-velocity dispersion.

This procedure makes the generalization from the algorithm for

continental, to oceanic structures relatively trivial; also,

it makes it possible to develop direct algorithms for obtaining

group velocities for the two types of structures. The usual

variational techniques are not required for this latter purpose.

3. Our optimization of the AJP formulation is based on

removing all function evaluations from the innermost, integration

(over r) loops of the program. In fact, most of the evaluation

procedure for afi(rk) can even be removed from the phase velocity

and frequency loops. This optimization of the AJP formulation

yields a characteristic time of 336 vseconds/integration step/

iteration for spherical, gravitating structures, and a time of

151 Pseconds/integration step/iteration for spherical,
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non-gravitating structures. These characteristic times, for

the AJP direct-integration procedure, provide a basis of com-

parison with the homogeneous-layer approximation for a non-

gravitating flat structure, which has a characteristic time

of 110 psec/layer/iteration (Knopoff's method, Schwab and

Knopoff, 1972). The lower bounds of the characteristic

times, for our final optimizations of the AJP formulation, are

266 psec/step/iteration for the gravitating case and

143 psec/step/iteration when gravity is not included. All of

the above times apply to the IBM 360/91 computer at UCLA.

4. Our results here,combined with those of Schwab

and Knopoff (1972), indicate that an integration "step" (in

the AJP procedure) can be considered nearly equivalent to a "layer"

in computations based on the homogeneous-layer approximation.

Also, to the accuracy possible in this type of comparison, the

"iterations" required in the two techniques (see Schwab and

Knopoff (1972) for details) can be considered equivalent. Thus

the relative efficiencies of the two types of Rayleigh-wave dis-

persion computations can be evaluated by simple comparison of the

above characteristic times. The fact that approximately the same

number and sizes of "steps" must be used in the direct-integration

procedure, as number and sizes of "layers" in the homogeneous-

layer approximation, means that the usual assumption that the

former method does a better job of treating continuous parameter-

depth distributions, appears to be invalid.

5. The overflow problem in the AJP formulation can be

controlled by simple normalization. Program segments are given

which describe the procedure explicitly.
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6. A loss-of-precision problem appears to be intrinsic

to the AJP formulation. Results of this problem: For a fixed

period, as mode number increases, the attainable accuracy in

the phase velocity decreases; for a fixed accuracy in the phase

velocity, as period decreases the maximum mode number that can be

treated successfully decreases.
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Table 1. Constants for integration through successive step-size regions
illustrated in program segment given in Figure 4. Constants

correspond to 4 significant figures in computed phase velocity.

I Nl(I) N2(I) Integration
step size

(kin)

1 5 11 -1.5625

2 12 16 -3.1250

3 17 21 -6.2500

4 22 * -12.5000

• N2(4) is specified so as to allow integration to proceed to the

deepest point within the solid mantle, while maintaining a step

size of -12.5 km. NEND is determined, at each period, by the input

value of r.; it must satisfy NEND < N2(4).

K 1 t
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Table 3. Results of numerical tests of the overflow

problem when normalization is not included in our

optimization of the basic AJP formulation. An

average (oceanic) earth structure (Wiggins, 1968),

and a period of 50 seconds, were used in the tests.

The value of r0 is the maximum at which overflow

occurs; H/A is the corresponding number of wave-

lengths of structure, from the surface of the earth

down to r=r 0 . These, and larger values of H/, yield

overflow.

Mode ro
Number (km) H/X

0 4600 8.7

1 4300 8.3

2 4000 8.2

3 3800 7.9

'I .-.- ~



FIGURE CAPTIONS

Figure 1. Schematic representation of optimized scheme for

evaluating the matrix elements ai (r ) in the

treatment of the solid sedimentary layers, the

subsedimentary crustal layers, and the mantle.

The quantities X and V are Lam6's constants, G

is the gravitational constant, and N is the number

of depths at which aij(rk) must be evaluated.

Figure 2. Schematic representation of optimized scheme for

evaluating the matrix elements b i(r k ) in the

treatment of the homogeneous oceanic (liquid) layer.

The quantity a Is the compressional-wave velocity,

p is the density, g(r) is acceleration due to gravity,

and M is the number of depths at which bi (r k ) must

be evaluated.

Figure 3. (a) FORTRAN IV program segment for the basic matrix

multiplication for our optimization of the AJP

formulation for solid layers; (b) symbolic repre-

sentation of (a), which is used in Figure 4; and

(c) definition of one-dimensional array used in (a)

to represent 6x6 matrix in (2.01). The integer IPT

is the index specifying the value of r, and Al

through A36 are dimensioned to 300.

Figure 4a. FORTRAN IV program segment in which the predictor-

corrector portion of the integration from below the Moho

to ro is handled; most of the computation time is spent

in this segment. The boxed segments refer to the basic

. - --- -- _ |



Figure 4b. FORTRAN IV program segment demonstrating sub-

scripting and storage improvements, relative

to the segment in Figure 4a, that are required

to optimize computation time on an IBM 360

computer.

Figure 4c. FORTRAN IV program segment illustrating our

final optimization for the non-gravitating case.

---------------------- w-



Figure 5. Oceanic and continental (shield) models used in

program testing.

Figure 6. Values of rz, the depth at which integration is

terminated, which yield 4-significant-figure

accuracy in the computed values of c with the

optimized version of the basic AJP formulation.

At each period, 4-figure accuracy is attained

only if r. is specified to be smaller than the

indicated curve.

Figure 7. Normalization scheme appropriate to program segment

in Figure 4a. The procedure should be included

between statement numbers 160 and 170 in Figure 4a.

See text for warnings concerning loss of efficiency

when normalization is employed.

Figure 8. Results of tests for determining general, multimode

"laws" for specifying the required values of r0 to

use when computing phase-velocity dispersion for

mantle Rayleigh waves, if C is desired to 4-figure

accuracy.

Figure 9. Maximum periods, maximum phase velocities, and

minimum order numbers, Q , that can be used if

c is desired to 4-figure accuracy, when the inte-

gration is limited to the mantle and the core is

excluded ft a the computations (other than for use

in the determination of iL_)).

~Is



Figure 10. FORTRAN IV Program segment used to simulate

single-precision computations when using our

double-precision optimization on the basic AJP

formulation. This program segment is used to

replace DO-loop 160 in Figure 4a.

Figure 11. Test of the effect of reducing IBM 360 com-

putations from double (about 16 decimal digits)

to single precision (about 6 decimal digits),

while keeping period fixed at 50 seconds. For

a given mode, in order to obtain a significant

figures in the computed phase velocity, r must

not exceed the value given by the upper portion

of the dashed line (structural limitation) nor

fall below the lower portion (loss-of-precision

limitation).

Figure 12. IBM 360 double-precision tests of loss-of-precision

problem at a period of 50 seconds. At left, raw

results of structure reduction experiments; at right,

smoothed curves for each mode. Latter curves are

drawn such that all data points, for a given mode,

fall to the right of corresponding curve.

Figure 13. IBM 360 double-precision tests of loss-of-precision

problem at a period of 25 seconds.

I
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Figure 14. Maximum possible mode number, n for which

c significant figures can be obtained ith our

optimization of the AJP formulation. This

limitation is due to the loss-of-precision

problem.

Figure 15. Relationship between maximum possible mode number,

nmax' and minimum period, for several values of a.

This limitation of our optimization of the AJP

formulation is due to the loss-of-precision problem.

I I I- --



Elements to be evaluated external to both w and c loops:

aia 12  a 3 3  a 4 5

a a2 2  a 3 4  a 2 6

asi a4 2  a 4 4  a 6 6

Auxiliary quantities to be evaluated external to both w and
c loops:

2
d2 =41 (3X+2i) a1 2/r

2
d 4 3 =-2i/r

dI 3 =Xa I 2 /r

d6 3=-4rrGp
2

d6 s=l/r

e 4 3=41(A+p4a1 2 /r

U) loop)
2

OMEGSQ=W

DO 10 I=l,N

TEMP=-a2 £ (I) xOMEGSQ

a21 (I)=d 21 (I)-TEMP

10 f4 3 (I)=d 4 3 (I)-TEMP

c loop

ORDER=. (t~-l)

Do 20 I=1,N

al 3 (I)=a4 1 (I)x<ORDER

a 3 (I)=da 3(I) xORDER

a2 4(I) =as 3(I)xIORDER

a6 s(I) =d6 i (I) xORDER

20 a4 3(I)=f 4 3 (I)+e43(I)XORDER



Evaluate b6 6 external to Loth w and c loops. Auxiliary

quantities to be evaluated external to both w and c loops:

XLAINV=l/i p p6 5-P62P p2 1 -p 2 sg(r)

2

P1=I/rp., -p 6 5g(r) s2 1 =-4Tig(r)/r

2 2

p62 4mG3/r P 2 2=-g(r)/r

2

P15=-I/rP 2 5=P22P

w loop
2

RHMOSQ- Pw
2

OMSQIN=l/w

DO 10 I=l,M

h2 l(I)z=P21(I) xOMSQIN

q~1 (I)=S 2 1 (I)+RHMOSQ

h~2 (I)=pl2 (I) xOMSQIN

h2 2 (I)=P22 (I) xOMSQIN

h6 2 (I)=p& 2(I)xOMSQIN

h2 5s(I) =P25s(I) xOMSQIN

10 hr.5 (I)=p6 5(I)xOMSQIN

c loop

ORDER~k(2t+l)

Do 20 I=1,M

b2 2 (I)=h2 2 (I)xORDER

bl(I)=b 66(1)-b 2 2 (I)

b2 l(I)=h2 1 (I)xORDER+q21(I)

b6 1 CI)=h 61 (I)xORDER

b2 (I)hi 2(I) xORDER+XLAINV

b6 2 (I)=h,2 (I) xORDER

b?5 (I)=h 2 5 (I)xORDER



YBR1=l(P)Y U;(P)*()A3(P)Y3

YBAR(1)=Al(IPT)*Y(l)+A8(IPT)*Y(2)+A13(IPT)*Y(3)+

1 A20(IPT)*Y(4)+A32(IPT)*Y(6)
YBAR(3)=A15(IPT)*( Y(3)-Y(1))+A21(IPT)*Y(4)
YBAR(4) =A4 (IPT) *Y(1) +AlO (IPT) * Y (2) +Al6 (IPT) *Y(3) +
1 A22(IPT)*Y(4)+A28(IPT)*Y(5)

YBAR(5)=A5(IPT) *Y(1)+Y(6)
YBAR(6) =A18 (IPT) *Y(3) +A30 (IPT) *Y(5) +A36 (IPT) *Y(6)

(b) YBAR, IPT1

F Al A7 A13 0 0 07
A2 A8 A14 A20 0 A32

j]-A15 0 A15 A21 0 0(C) a1 3  L A4 A10 A16 A22 A28 0

0 0 A18 0 A30 A36



C BEGIN APPLICATION OF PREDICTOR-CORRECTOR METHOD.

DO 110 I=1,6
110 PMNUSC(I)=O.OD+00

HH=0. 5D+00*1. 5625D+00
C LOOP OVER REGIONS WITH DIFFERENT STEP SIZES.

DO 180 IREG=1,NUMREG
HH=HH+HH
NSTART=N1 (IREG)
NSTOP=N2 (IREG)
NTEMP=5
I T=0

C LOOP OVER DEPTH IN CURRENT STEP-SIZE REGION.
DO 170 N=NSTART,NSTOP
IF(IT.EQ.4) GO TO 115
IT=NTEMP- 4
ITP1=IT+l
ITP3=IT+3
ITP8=IT+S
ITP9'=IT+9
ITP1O=IT+10

115 DO 120 1=1,6
C SET PREDICTOR P(I).

P(I)=B(IT,I)+COEFF1*(2.ODD O*(B(ITP1O,I)+B(ITP8,1))
-B (ITP9, I))

C SET MODIFIED PREDICTOR XM(I).
120 XM(I) =P CI)-. 9256198347107438D+00*PMNUSC(I)

IPT=IPT+l

DO 130 1=1,6
C SET CORRECTOR C(I)

C(I)=.125D+00*C9.0D+00*B(ITP3,I)-B(ITPI,I)
+COEFF2*(XMBAR(I)+2.OD+00*B(ITPI0,I)
-B(ITP9,I)))

PMNUSC(I) =P(I) -CCI)
C SET SOLUTION VECTOR AT NTH DEPTH.

130 YCI)=C(I)+.07438016528925620D+00
*PMNUSC(I)

IF(N.EQ.NEND) RETURN
C SET DERIVATIVE OF SOLUTION VECTOR AT NTH DEPTH.

lYBAR, IPT~f

IF(NTEMP.GT.7) GO TO 150
N'j MPP7=NTEMP+7
DO 140 I=1,6
B (NTEMP ,I) =Y (I)

140 B(NTMPP7,1)=YBA.R(I)
NTEMP=NTEMP+ 1
GO TO 170

150 DO 160 I=1,6
B (1, 1) =B (2, 1)
B(2,1)=B(3,I)
B(3,I)=B(4,I)
B (4,1) =B(5,I1)



B (5, 1) =B (6 , 1)

B(6,I) =B(7,I

B(7,I)=B(9,)

B (9,1) =B (10,1)

B(11,I)=B(12,I)
B(12,I)=B(12,I)
B(13,I)=B(14,I)

160 B (14,1) =YBAR (I)
170 CONTINUE

C RESET STORED VALUES OF COEFFICIENTS IN PREPARATION FOR
C DOUBLED STEP SIZE.

COEFFI=COEFF1+COEFFI
COEFF2=COEFF2+COEFF2
COEFF6 =COEFF6+COEFF6

C RESET STORED VALUES OF Y(I),YBAR(I),and PMNUSC(I) IN
C PREPARATION FOR DOUBLED STEP SIZE.

DO 180 I=1,6
PMNUSC(I) =8.962962962962963D+00* (Y (I)

+3.OD+00*(B(12,1)+B(10,I)))
B(2,I)=B(3,I)
B ( 3, I) =B (5 , I)

B(1,I)=B(1,I)

180 B(11,I)=B(14,I)



DIMENSION B(6,14),Y(6),Y3AR(6) ,XM (6),XNBAR(6).P(6),C(6),PMJUSC(6),
1 A(2090)

EQUIVALENCE (Y(l) ,Y1)

EQUIVALENCE (XN(l) ,XM1)
EQUIVALENCE (XMBAR(l) ,XMBARI)
IPT=-18

C LOOP OVER DEPTH IN CURRENT STEP-SIZE REGION.

DO 170 N=NSTART,NSTOP

IF(IT.EQ.4) GO TO 115
IT=NTEMP- 4

115 DO 120 1=1,6
C SET PREDICTOR PCI)

P(I)=B(I,IT)±COEFF1*(2.OD+OD*(B(I,IT+)+B(I,IT+8))-B(IIT+9))
C SET MODIFIED PREDICTOR X11(I).

120 XM(I)=P(l)-.9256198347107438D+00*PMNUSC(I)
IPT=IPT+19
XlBAR(1)=A(IPT)*XM(1)+A(IPT+)*11(2)+A(IPT+2)*XM(3)
XMBAR(2)=A(IPT+3)*XM()+A(IPT+4)*X1(2)+A(IPT+5)*XM(3)

1 4A(IPT+6)*XM(4)+A(IPT+7)*XI1(6)
XN1BAR(3)=A(IPT+8)* (XM(3)-XM(1))+A(IPT+9)*XM(4)
XMBAR(4)=A(IPT+10)*XN()+A(IPT+1)*X(2)+A(IPT+2)*X.(3)

1 +A(IPT±13)*X(4)+A(IPT+14)*jM(5)
XMNBAR(5)=A(IPT+15)*XM(1)+XM(6)
XMA()AIT1)X()AIP+7*M5+(P+8*M6
DO 130 I=1,6

C SET CORRECTOR C(I)

C(I)=.125D+00*(9.OD+00*B(I,IT+3)-B(I,IT+1)+COEFF2*(XBAJR(I)+2ODO

1 *B(I,IT+1O)..B(I,IT+9)))
PMNUSC(I)-P(I)-C(I)

C SET SOLUTION VECTOR AT NTH DEPTH.
130 Y(I)=C(I)+.07438016528925620D+00*PMNUSC(I)

IF(N.EQ.NEND) RETURN
C SET DERIVATIVE OF SOLUTION VECTOR AT NTH DEPTH.

YBAR(1)=A(IPT)*Y(1)+A(IPT+1)*Y (2)+A(IPT+2)*Y(3)
YIAR(2)=A(IPT+3)*Y(l)+A(IPT+4)*Y(2)+A(IPT+5)*Y(3)

1 +A(IPT+6)*Y(4)+A(IPT+7)*Y(6)
YBAR(3)=A(IPT+8)*(Y(3)-Y(l))+A(IPT+9)*Y(4)
YBAR(4)=A(IPT+1)*Y(I)+A(IPT+11l)*Y(2)+A(IPT-12)*Y(3)
I +A(IPT+13)*Y(4)4-A(IPT+14)*Y(5)
YBAR(5)=A(iPT+15)*Y (1)+Y (6)
YBAR(6)=A(IPT+16)*Y(3)+A(IPT+17)*Y(5)+A(IPT+18)*Y(6)
IF(NTEMLP.GT.7) GO TO 150
DO 140 I=196
B(I ,NTEMP)=Y(I)

140 B(I,NTENP+7)=YBAR(l)

NTENP=NTEMF+I
GO TO 170



C RESET STORED VALUES OF Y AND YBAR IN PREPARATION FOR NEXT INTEGRATION

C STEP.
150 DO 16C 1=1,6

B(I,2)=B(I, 3)
B(I,3)-B(I,4)

B(I,4)=B(I,6)
B(I,6)=B(I,6)
B (I, 7) =Y(I,)
B(I,8)-B(I,)
B(I,9)=B(I,1O)
B(1,1O)=B(I,10)
B(I , 1)=B(I ,12)
B(I,12)=B(I,13)
B(1,13)=B(1,14)

10B(I,13)=YBA(,1)

170 CONTINUE



DIMENSION B(4,14),D(4,14),X(4),Y(4),XBAR(4),YBAR(4),XM(4),YM(4),
1 XNBAR(4) ,YMBAR(4) ,P(4) ,Q(4) ,C(4) ,F(4) ,PMNUSC(4),
2 QMNUSF(4) ,A(143O)
EQUIVALENCE (X(1) ,Xl)
EQUIVALENCE (Y(1) ,Y1)
EQUIVALENCE (XM(1) ,X111)
EQUIVALENCE (YM(1) ,YMI)
EQUIVALENCE (XMBAR(l) ,XMBARI)
EQUIVALENCE (YMBAR(1)YMBAR1)
IPT=-12

C LOOP OVER DEPTH IN CURRENT-STEP-SIZE REGION.
DO 170 N=NSTART,NSTOP
IF(IT.EQ.4) GO TO 115
IT=NTEMP-4

115 DO 120 1=1,4
C SET PREDICTORS P(I) , Q(I)

P(I)=B(I ,IT)+COEFF1*(2.Oo+00*cj3I,IT+10)+B(I ,ITs8) )-B(I,IT±9))
Q(I)=D(I,IT)+COEFF1*(2.OD+OO*(D(I ,IT+10)+D(I,IT+8))-D(IITs9))

C SET MODIFIED PREDICTORS XM(I) , YN(I).
XM(I)=P(I)-.9256198347107438D00*PMNUSC(I)

120 YN(I)=Q(I)-. 9256198347107438D+OO*QMNUSF(l)
IPT=IPT+l 3
XMBAR(1)=A(IPT)*XN(1)+A(IPT4-1)*XM(2)+A(IPT+2)*XM(3)
YNDBAR(1)=A(IPT)*YM(1)+A(IPT+1)*YM(2)+A(IPT+2)*YM(3)
XMBAR(2)=A(lPT+3)*XM(I)+A(IPT+4)*XM(2)+A(IPT+5)*XM(3)
1 +A(IPT+6)*XM(4)
YMBAR(2) =A(IPTI3) *YM(1)+A(IPT+4) *YM(2)+A(IPT+5) *YM(3)
1 +A(IPT+6)*YM(4)
XMBANR(3)=A(IPT+7)*(XM(3)-XM(l))+A(IPT+8)*XM(4)
YMIBAR(3)=A(IPT+7)*(YM(3)-YM())+A(IPTr+8)*YM(4)
XMBAR(4)=A(IPT+9) *XM(1)+A(IPT+10) *XM(2)+A(IPT+11)*XM~(3)
1 +A(IPT+12)*XM(4)
YMBAR(4)=A(IPT+9) *YM(1)+A(IPT+10)*YM(2)+A(IPT+11)*YM(3)
I +A(IPT+12)*YM(4)
DO 130 I=1,4

C SET CORRECTORS C(I) , F(I)
C(I)=.125D+00*(9.OD+00*B(I,IT+3)-B(I,IT+1)+COEFF2*(XBAR(I)+2.OD+O
1 *B(1,IT+10)-B(I,IT+9)))
F(I)=.125D+00*(9.OD+00*D(I,IT+3)-D(I,IT+1)+COEFF2*(YMBAR(I)+2.Oo+O

1 *D(I,1T+10)..D(I,IT+9)))
PMNUSC(I)=P(I)-C(I)
QMNUSF (I) =Q (1)-F (I)

C SET SOLUTION VECTORS AT NTH DEPTH.
X(I) =C(I)+.074 380165289256200*PMNUSC(I)

130 Y(I)=F(I)+.07438016528925620-.0*QMNUSF(l)
IF(N.EQ.NEND) RETURN~



C SET DERIVATIVES OF SOLUTION VECTORS AT NTHi DEPTH.
XBAR(l)=A(IPT)*X(1)+A(IPT+1)*X(2)+A(IPT+2)*XC3)
YBAR(1)=A(IPT)*Y(l)+A(IPT+1)*Y(2)+A(IFT+2)*Y(3)
XBAR(2)=A(IPT+3)*X(i)+A(IPT+4)*X(2)+A(IPT+5)*X(3)
1 +A(IPT4+6)*X(4)
YBAR(2)=A(IPT+3)*Y(1)4+A(IPT+4)*Y(2)+A(IPT+5)*Y(3)
1 +A(IPT+6)*Y(4)
XBAR(3)=A(IPT+7)*(X(3)-X(l))+A(IPT+8)*X(4)
YBAR(3)=A(IPT+7)*(YC3)-Y(1) )+A(IPT+8)*Y(4)
XBAR(4)=A(IPT+9)*X(1)+A(IPT+10)*X(2)+A(IPT+11)*X(3)
1 4A(IPT+12)*X(4)
YBAR(4)=A(IPT+9) *Y(1)+A(IPT+10)*Y (2)+A(IPT+11)*Y(3)
1 +A(IPT+12)*Y(4)
IF(NTEMP.GT.7) GO TO 150
DO 140 I=1,4
B(I,NTEMP)=X(I)

DCI ,NTEMP)=Y(I)
B(X,NTEMP+7)=XBAR(I)

140 D(I,NTEl4P+7)=YBAR(I)
NTEMP=NTEMP+l
GO TO 170

C RESET STORED VALUES OF X ,Y AND XBAR ,YBAR IN PREPARATION FOR NEXT
C INTEGRATION STEP.

150 DO 160 1=1,4
B(1,1)=B(1,2)
B(I,2)=B(1,3)
B(I,3)=B(I,4)
B(1,4)=B(1,5)
B(1,5)=B(1,6)
B(1,6)=B(1,7)
B(1,7)=X(I)
B(I,8)=B(1,9)
B(1,9)=B(1,10)
B(I,10)=B(I,11)
B(I,11)=B(I,12)
B(I,12)=B(I,13)
B(1,13)=B(I,14)
B (I,14) =X BAR (I)

D(1,2)=D(1,3)
D(1,3)=D(1,4)
D(I,4)=D(I,5)
D(I,5)=D(1,6)
D(1,6)=D(1,7)
D (1,7) =Y (I)
D(I,8)=D(I.9)
D(I,9)=D(I,10)
D(I,1O)=D(1,11)
D(I,11)=D(I,12)
D(1,12)=D(I,13)
D(1,13)=D(I,14)

160 D(I,14)=YBAR(I)
170 CONTINUE
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C NORMALIZATION.
AMXINV=1.QD+OO/DMAX1(DABS(B(7,1)),DABS(B(7,2)),

1 DABS(!3(7,3))LDABS(B(7,4)),
2 DABS(B(7,5)),DABS(B(7,6)))
DO 165 I=1,6
PMINUSC (I)=PMNUSC (I)*AM4XINV
Y(I)=Y(I) *MXINV
YBAR(I)=YBAR(I) *AJMjIj
DO 165 J=1,14

165 B(.,I)=B(J,I)*AMXINV
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150 DO 160 1=1,6

B(1,I)=SNGL(B(2,I))

B(2,I)=SNGL(B(3.I))

B(3,I)=SNGL(B(4,1))

B(5,I)=SNGL(B(6,I))

B(6, I) =SNGL(B (7 ,I) )

B(7, I)=SNGL(Y(I))

B(8,I)=SNGL(B(9,I))

B(9,I)=SNGL(B(10,I))

B(10,I)=SNGL(B(12,1))

B(11, I)=SNGL(B(13, 1))

B(12,I)=SNGL(B(13,I))

160 B(14,I)=SNGL(YBAR(i))
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RESEARCH NOTE

GENERATION OF COMPLETE THEORETICAL SEISMOGRAMS

FOR SH III

Enzo Mantovani

Summary

Earlier efforts to generate the entire theoretical

seismograms, including both body and surface waves for

realistic sources buried in a radially heterogeneous

anelastic, spherical Earth, are extended to include the

summation of sixteen modes. The comparison between a

real seismogram and theoretical time series, relative to

different attenuation models in the upper mantle, yields

information concerning the anelasticity under the Pacific

Ocean.



Introduction

Complete seismograms which include both body and surf.
ce waves for a spherical, anelastic, radially heterogeneous
Earth have been generated by simple inverse Fourier tran-
sformation of the propagating fundamental and higher-mode
surface wa7;es (Nakanjshi et al.,1977, MLantovani et al.,1977).
Efficient computational algorithms permit us to deal with
highly realistic models of the Earth, whose radial hetero-
geneity is approximated by 200 layers, and to employ 2000
frequency points per radial mode.

p.

Theoretical seismograms
The tests we report here were carried out on a CIT-11

oceanic structure (Anderson and Toksoz, 1963). The first
sixteen Love wave, or torsional modes were used, and for e-
ach, the dispersion, attenuation and excitation are computed

down to a minimum period of 1 second. The source model we
have adopted is a dip-slip displacement dislocation on a ver
tical fault at a depth of 180 km.
In Fig. I we illustrate the improvement in the details of
the theoretical seismograms as the number of radial modes
used in the synthesis increasesFrom top to bottom, as the
number of modes increases,the amplitude, clarity and short
period content are seen to increasqe for each arrival in a
manner corresponding to the depth of penetration of the mo-
des and the depth at which the arrival is produced: the first
six modes appear sufficient to reproduce, almost completely,
the Sa surface waves train, that is, the late-arriving, domi
nant energy whose penetration is limited to approximately
400km of depth (Kausel et al.,1977); in the second trace,
synthesized from the first eleven modes, also the shallow
body wave phase SS, having-a group velocity of about 5.7
km/sec, appears. to be almost completely formed; in the last
trace , synthesized from 16 modes, the deeper body wave pha
ses S and SS, i.e., the first bursts on the time series be-
gin to appear as two resolvable pulses, but are still devel.2
ping inamplitude and short-period content.
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3.

The core reflections ScS and sScS, whose penetration is much

greater than that of the first 16 modes, at the predominant

periods comprising these pulses, are still unrecognizable

in the seisiograms.

In Fig. 2 we show a range of results out to an epic n_

tral distance of 8000 kim; the direct waves and those reflec-

ted by the surface of the Earth are recognizable in almost

every case; the waves reflected by the core however are re-

presented only by their long period components ( see traces

for distances of 3000 and 4000 kin.). Relative to the corre-

sponding figure in Part II (Yantovani et al.,1977), it is

possible to note a general iprovement in the impulsive

shape and resolution of individual body waves and is parti-

cularly clear at short distance in those traces for the

15-100 WWSSN instrument. PP

The comparison between experimental and theoretical sei

smograms for 30-100 WISSN instruments is given in Fig.3.

Details concerning the event and a preliminary compari-

son between theoretical and experimental time ser.es using

surface waves is reported by Kausel et al. (1977). Our pur-

pose here is to continue the discussion, begun in Part II,on

the qualitative aspects of the theoretical- ;xperimental

comparison as more and more higher modes are included in the

synthesis of the theoretical traces. We also report on some

tests of the sensitivity of the amplitudes and arrival times

of the pulse bursts to the model of tha Earth's intrin

sic attenuation and to the source parameters.

In Part II the variation of relative amplitudes of body

and surface waves caused by changes in crustal and upper-man

tle attenuation was noted, and it was suggited that this L
effect might be a useful tool in the investigation of the

Earth's intrinsic anelasticity. We have used two models of

attenuation. Model I is based on model Uh8 of Anderson et

al.(1965). This model was obtained from measurements of the

decay of Rayleigh and Love waves traveling globe circling

paths; thus it cannot be expected to be an accurate represen-

tation of the anelasticity in a specific oceanic region. a-
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4.

Model II is based on that given by Mitchell (1976) derived

from inversion of Rayleigh-wave attenuation measurements in

the "older portions of the Pacific crust and upper mantle".

Models I and II are shown in Fig.4.

Since the average anelasticity in the first 400 km is very

similar for model I ( Q = 0.00825 ) and

model II ( Q = 0.00774 ) the Sa waves

have about the same attenuation. The ratio of amplitudes of

Sa/S is about the same for both models since amplitudes of

S are only slightly affected by variations of anelasticity

in a small portion of their path. Since Sa waves sample the

uppermost 400 km of the structure almost uniformly, they are

more sensitive to the average attenuation in this region than

to its detailed depth distribution.

A comparison of traces A and B (Fig.3), with the help of TA-

BLE 1, indicates that, for a source at 180 km, the. relatlve

amplitudes of S and Sa are not so different for model I and

II. The striking feature of trace B, relative to A, is the

remarkable increase in the amplitudes of SS arrivals. It is

reasonable to suppose that this effect is connected with the

lower attenuation of model II between about 250 and 700 km,

that is in that part of the structure in which the SS rays

have a eignificant portion of their path.

A comparison of the well pronounced SS phase in trace B, with

even the largest amplitudes around the same arrival in the

experimental series, leads us to suspect that model II has

a drop in attenuation which is too large between 250 and 700

km of depth (Fig.4).



5.

On the basis of the results shown in Fig.1, we infer that the

above observations are little affected by the finite number

of radial modes used in this study since the phase SS appears

to be converging both to a definitive wavelet form and ampli-

tude.

A final note in this series, which will describe theoretical

seismograms generated by even more radial modes, will give

more infnrmation on this point.

To investigate further the effect produced by changes in the

average anelasticity of the crust and upper mantle, we gene-

rated time series (Fig.3,trace C) corresponding to an anela-

sticity distribution derived from model I, but with the pha-

se attenuation B2 , reduced to 0.000700 sec/km from the top

of the low-velocity channel down to the 400 km discontinuity.

Comparison of traces C and A shows an appreciable decrease

in the amplitude ratio S/Sa, and a significant increase of

the energy in the tail of the Sa wave train.

As a limiting case for the anelasticity tests we have also

extibited the time series (Fig. 3, trace D) for a perfectly

elastic Earth. In this case ,for reasons reported in Part 1I,

the surface waves completely dominate those body waves that

penetrate deeply.

The phases SS show a less drastic decrease in amplitude be-

cause they are relatively strongly affected by the high atte-

nuation in the upper mantle.

To give a representation of the effect , on the time series,

produced by variations in source depth, we present theoreti-

cal seismoIramI (Fl I....



res as traces A,B,C,D but with a focal depth of 140 kI.

We see that variation of the source depth has an effect

on the arrival times and the amplitudes of body waves; the

feature of the time series,which is most sensitive to the

source depth, at least for the focal and structural parame_

ters we used, is the amplitude of the SS phase.
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8.

FIGURE CAPTIONS

Fig. 1 Representation of the effect of adding more higher (radial)
modes in the synthesis of theoretical sismograms recorded
at the surface of the Earth. Source mechanism is a dip
slip displacement dislocation on a vertical fault at a depth r
of 180 km. Epicenter-station separation is 6788 km. The
model we have used for the intrinsic anelasticity of the

Earth is an adaptation (Fig.4) of model MM8 (Anderson, Ben
Menahem & Archambeau , 1965) to our oceanic structure.

Fig. 2 Torsional-wave response, at the surface of the Earth, to
a dip-slip displacement dislocation on a vertical fault,
at a depth of 180 km. The expected body-wave arrival times
are indicated for S( *), SS (A), ScS (v), sS (m), sScS

(* ) . See caption of Fig.1 for anelasticity model.

Fig. 3 Comparison of theoretical and experimental seismograms
for 30-100 WWSSN instruments, 6788 km from the epicenter; k.

short traces are copies of the long-period experimental
record (SH) measured at Honiara (HNR) for the event occur- -

ring atthe foot of the Kamchatka peninsula at 14:30:30.3
GCT on 1964 December 26 (See Kausel et al., 1977 for full
details on this event, our theoretical treatment of the
source mechanism, and the analysis of the Sa portion of L
the time series). Traces denoted by capital letters are
theoretical seismograms: trace A represents the anelasti
city Model I ( Fig. 4 ) ; trace B, anelasticity Model II
(Fig. 4); trace C, MD.del I with the phase attenuation B2
reduced to 0.000700 sec/km from the top of the low velo-

city channel down to the "400-km" discontinuity; trace D

does not inc.... t ir, 4 t-Inn I -I
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E, F, G, and H represent the same models respectively as

A, B, C and D but with the source depth reduced from 180

to 140 km,

Fig. 4 S-wave velocity structure, transverse-wave phase attenua-

tion B2, and intrinsic attenuation Q-1 , obtained from the

adaptation, to our velocity structure, of two anelasticity

models reported in the literature: (I) world-wide average

model (Anderson, Ben Menahem, Archambeau, 1965), (II) 0-
ceanic model (Mitchell,1976). Model I is given by solid

lines, Model II by dotted lines

h
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TABLE I
P

Amplitude-ratios S/Sa and SS/Sa measured, peak to peak, on the

traces A, B, C, E, F and G in Fig. 3..

180 km 140 km

A B C E F G

S/Sa 0.66 0.62 0.54 0.59 0.50 0.43

SS/S a  0,27 0.39 0.25 0.48 0,58 0.41

aP

r
I-

F

0

p.

,mi
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DEFINITIONS OF QUANTITIES USED IN THIS PAPER

0 Angular deflection of seismometer boom in radians

/' Angular deflection of galvanometer mirror in radians

W. , Angular frequency of seismometer free period, =%./T , (radians/sec)

LA>_ Angular frequency of galvanometer free period, =)r/l- , (radians/sec)

Seismometer damping parameter, = ,

£. Galvanometer damping parameter, = I W.

VA, Seismometer damping constant (i.0 = critical damping)

Vi.z Galvanometer damping constant (1.0 = critical damping)

G- Seismometer coupling constant

j-2 Galvanometer coupling constant

G- 1 = -,'-5- , coupling constant between seismometer and galvanometer
(1.0 = direct coupled)

Mi1  Seismometer boom mass (kilograms)

-A Distance between center of gravity of mass and rotation point
of seismometer boom (meters)

/. Moment of inertia of seismometer boom (kg-m -a)

(. Displacement of the ground (meters)

= . , magnitude of the force impressed on the boom by
the calibration current (Newtons)

ki, Calibration current (milliamperes)

Q Motor constant of the calibration coil (Newtons/Ampere)

)( Height of the impulse response as measured on the record (milli-
meters)

-\(I' Heaviside step function of time

Dirac delta function of time

\r freePseudoparameter forms of the seismometer and galvanome-

ter free periods and dampings
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T The time at which the calibration current was switched on

An apparent amplitude factor that is determined in the inversion

C A constant term to be subtracted from the digitized data to
best agreement with theoretical impulse responses

L A linear trend to be subtracted from the digitized data to
give best agreement with theoretical impulse responses

9 A rotation to be applied' to the impulse response to correct
for incorrect digit.izing of the impulse

I I I



IMPULSE RESPONSE INVERSION

Quantitative time series analysis using the World-Wide seismic

network records (WWSSN) requires that corrections be made for the

response of the seismograph. In the usual method of calculation of

instrumental corrections the seismograph is considered as a black box.

From Fourier analysis of the response to a known transient impulse

(usually a step function in acceleration applied to the seismometer

mass) corrections can be obtained. In general, at frequencies in the

neighborhood of the peak instrumental response this is an accurate

ethod of correction. However, periods shorter than the seismometer

free period are not strongly excited in the impulse response and sig-

nificant errors in the computation of ground motion may occur.

Studie; involving short period crustal and higher mode surface

waves have obliged us to seek an alternative method of determining these

corrections, in order to reduce errors caused by instrumental uncer-

tainties. The parameters of the seismometer system have been determined

irectly using a linear inversion method. Mitchell and Landisman's

(1969) analytical expressions can then be used to derive the phase and

amplitude corrections at all periods. This method uses a stabilized

least-squares technique which allows more parameters to be used while

maintaining convergence in the inversion process. Arbitrary values of

the coupling constant and the seismometer period can be used in this

form of the calculation. Also, the scale factor determined in the in-

,,ersion can be used to obtain an expression for seismograph magnifica-

Lion that is independent of the rated value.
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The procedure for inversion (Jackson,l972) involves solviny a sys-

tem of linear equations for the corrections lo *t the model para-

2ters. In our case these parameters are the seismograph instrumental

constants. The equations are set equal to the data residuals

which are the residuals between the data and the predictions from

the model. The linear equations take the form

where the matrix - ! , the partial derivatives of the

data residuals with respect to the model parameters. The least-squares

solution results from the straightforward minimization of the error

siduals (Mitchell and Landisman, 1969). They noted that the in-

clusion of too many parameters tended to cause instabilities in the

inversion. Thus certain parameters, such as the scale factor and

impulse 'on' time, had to be empirically adjusted in the inversion.

In our experience with digitizing actual impulse responses there is

error introduced due to baseline choice, and so a constant, linear

2nd, and rotation parameters were introduced. Although all the

partial derivatives have linearly independent components, in the

presence of noise not all of them can be resolved, and an unstable

inversion resulted using least-squares method with the nine parameters

listed in figure 1. The inversion was stabilized by decreasing the

degrees of freedom in the inversion (Wiggins, 1972). The J;. matrix

of particl derivatives is first normalized with respect to the data

standard deviations and a priori uncertainties assigned to the model

ameters. The matrix, now in normal form (Jackson, 1972), is factored

according to the Lanczos factorization (Lanczos 1961) into eigenvalue

and eigenvector matrices. In this form eigenvalues less than 1.0

correspond in some sense to parameter combinations that cannot be

I,'•



q

-3-

resolved from the data, and so thse eigenvalues are set to zero,

removing these degrees of greedom from the inversion. In general

the number of independent degrees of freedom in the inversion

when this was done was six or seven. All the parameters necessary

to obtain phase and magnification information were obtainable,

but careful digitization was necessary to insure good results.

COMPUTATIONS

The actual computation of the partial derivatives was done

using an analytical formula for the impulse response as a func-

tion of the parameters. Mitchell and Landisrnan(1969) used the

inverse Fourier transform of the frequency domain representation

of the impulse response to calculate the parLial derivatives.

While this has certain advantages, I felt that the number of Fou-

rier transforms needed per inversion would be a significant cost

factor even with FFT, and so a method was followed as illustrated

in figure 2. Starting with the representation of the seismometer

and galvanometer as coupled damped harmonic oscillators, the

equation of motion of the rotation of the galvanometer is solved

by inverse Laplace transform. The magnitude of the impulse given to

the mass, , is just Jarosch and Curtis (l'"-3) noted

that the denominator cannot be factored unless the term containing

G"Z is set to zero. When this is done the pseudo-parameter

equation can be solved uniquely to obtain new values of ,,., V' ,

and we call the new values of 1%-. the 'pseudoparameters'.

As can be seen from the figure, the effect of this conversion

is small for .z small, but may be significant for larger r-z
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Furthermore, the pseudoparameters become complex for larger

We can obtain finally an analytic expression for the impulse response:

where 2.'2 rZ-'& . - -- -

S--C,

This will be in general complex-valued for complex parameters;

the real part corresponds to the impulse response function.

If the seismometer or galvanometer becomes critically damped,

we must remember that K%-O or V).::O , and so

54% :::c -C COS "'2-6 =i.

For the case when the seismometer or galvanometer is overdamped,

K or becomes complex, and so the appropriate sin and

cos are replaced by sinh and cosh. In figure 3 are some impulse

responses calculated using the above formula. The reference impulse

response corresponds in some way to a standard WWSSN instrument.

Some notion of what the partial derivatives look like can be

gained from this figure. The effect of changing the seismometer

free period can be seen to be very similar to the effect of chang-

ing the gain, or amplitude factor of the inpulse response. This

effect can be seen in the Lookout Mountain calibration tests, in

which two different impulse responses from the instrument were

inverted independently. The seismometer free period values show

somewhat larger discrepancies than the other parameters. The theo-

retical values for the parameters compare very well with those

determined experimentally using the usual tests for damping and
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free period. In the case of the galvanometer constants, there is

a very good argument for determining the constants through inversion

rather than by other methods, since this seems to be at least

as accurate and does not disturb the instrument in any way.

The seismometer constants, especially the free period, are probab-

ly better determined by other experimental methods, and constrained

in the inversion. Once the instrumental constants are determined,

the instrumental effects on amplitude and phase can be determined

theoretically. Following Mitchell and Landisman (.1969) the phase

can be written as:

The convention here is that is positive, which corres-

ponds to positive instrumental group delay time. The magnification

of the instrument can similarly be expressed in terms of the para-

meters of the instrument:

is the inversion gain constant, Lp is the calibration coil

current, and Q is the motor constant of the coil. For WWSSN

stations there is an empirical formula for the gain at the seis-

mometer free period:

[-- OI? - for T = 15 seconds;

0,Is"I ki for T2 =30 seconds

k(.is the height of the impulse response in m'llimeters. This

formula was checked against the analytical formula for gain and

agreement to a few percent or better was found. However, the

lb,
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empirical formula assumes all the constants are at the rated values

and so a badly tuned instrument would give erroneous gains.

A long period WWSSN station, NDI-LPZ, was used in inversion to

get instrumental parameters. The amplitudes in the impulse response

must be multiplied by L&J. to get the ground magnification. This

means that the gains at the long period end are well determined,

where the original impulse had a strong signal. However, below

30 seconds period the amplitudes become relatively worthless and

it is advisable to use the theoretical values. The same consider-

ations hold for the phases. An additional source of error in the

phase of the impulse is introduced because the 'on' time of the

impulse is not known a priori, but must be estimated from the re-

cord. An error of one second or more is common here. This leads

to a systematic bias in the phases determined as can be seen in

figure 5, where the empirically determined 'on' time is wrung

by one second. No bias is evident in the phases derived using

the 'on' time from inversion.

A note concerning baseline determination is relevant here.

Although it was not possible in the inversion to use the rotation

as an independent parameter, the rotation is quite important, es-

pecially for very large, steep impulses, and a wrong baseline will

distort the constants obtained and resultant phases quite badly.

However, drawing the correct baseline is not juAL a matter of con-

necting the ends of the trace and making sure the impulse does not

occur in a disturbed part of the record. Figure 7 shows an impulse

on our instrument. The minute marks line up, which makes it easy

to notice the offset of the minute mark near the top of the pulse.

This is probably due to a lens misalignment. This effect may be
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common among WWSSN instruments, as noted by James and Linde (1971).

What I did for this was to rotate the impulse on the digitizer un-

til the minute marks on the pulse fell at equal intervals on the

digitizer scale. This meant that the digitizer scale was then

aligned parallel to the direction of motion of the galvanometer

light beam. Digitizing the impulse in this manner gave satisfactory

results even for large impulse responses.

Some conclusions I have reached in this work are that the appli-

cation of a generalized inversion scheme to instrument impulse

responses allows in inclusion of more parameters without sacrifi-

cing the stability and validity of the inversion. In particular,

the use of the ampl i tude factor al lows an independent measure of the

magnification to be made. The inclusion of the 'on' time means

that this source of phase error can be practically eliminated.

The constant and linear trend terms are important because of digi-

tizing considerations in which a baseline must be assumed and later

corrected for. Careful digitizing is necessary to assure that the

correct baseline is used.

Noise on the record during the impulse response did not seem

to be a significant facto in the inversion. In general I chose

only impulses that occur(:d during clear, quiet times and without

visible noise except for microseisms. Examining the residuals that

remain after inversion, I found that much of the error seemed to be

associated with digitizing errors on the steep parts of the impulse.

This is unavoidable because of the steepness of the pulse and the

uncertainty in the digitizer scale. The largest magnitude of these

errors appeared to be of the order of 1% of the impulse height

Ii-.
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for good impulses that had successful inversions. These

errors did not appear to cause much error in the parameters

determined as shown by the good agreement between indepen-

dent impulse inversions from the same instrument.

ERROR ANALYSIS AND CONCLUSIONS

Errors in the determination of parameter values are of

several different types. One type of error arises becaunt

of the finite line thickness and other digitizing error,, and

because of microseisms and other types of noise present on

the record. These effects can all be included as noise in

the impulse response signal. Figure 8 shows the results of

inversion of theoretical and actual impulse responses.

Random noise (white noise) was added to one theoretical

impulse and inversion was done. Convergence of error to the

noise level was quite rapid, and after that essentially no

change took place. Similar results were obtained for two

actual impulses, LMO-2 and NDI-LPZ. The digitizing noise

level was obtained by an estimation of the random error to

be about .14 mm on the record on the average. However, in

the steep parts of the impulse the errors became greater, and

residuals of amplitude equal to about l1 of the impulse

response amplitude (about I mm) were occasionally seen.

Since the steep regions of the impulse response are most

critical in determination of the instrumental parameters,

this upper bound was taken as the representative noise level

in the analysis of propagation of errors. The effect of
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random errors in the data on the parameters was estimated

by computing the covariances of the model parameters by the

method of Jackson (1972).

The matrix \ is , the general inverse

of the matrix of partial derivatives. The results obtained

using I mm as the random error are shown in table 1. The in-

strumental parameters for LMO-l and LMO-2 appear to agree

within the uncertainties given for the parameters, although

the errors in the data may not actually be random as assumed.

The errors on the seismometer and galvanometer free periods are

about equal for the severely underdamped case, LMO-i and LMO-2,

but change for the overdamped case, LMO-NEW. The impulse response

was activated by an automatic relay at exactly 12-hour intervals.

There appears to be some difference between the 'on' times of the

impulses LMO-I and LMO-2 on the seismogram, as judged by measure-

ments relative to the minute marks. This may account for the

difference between the " times of LMO-l and LMO-2 impulse

responses. 0 , the rotation, was constrained to equal

zero throughout the inversions.

Another type of error is not random, and results because the

seismometer free period and the amplitude scale parameter R can-

not be resolved from the data. Because of this trade-off effect,

errors due to lack of resolution will have little effect on the

calculated magnifications or phases. It could be corrected by
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constraining in the inversion, since this parameter can

be accurately measured. Table 2 shows the result of constraining

1i by adding in the parameter eigenvector to the solution.

- and R have both been made consistent by this procedure.

Some conclusions that can be drawn from this work are that ap-

plication of generalized linear inverion to seismograph impulse

responses to derive the instrument constants yields useful and

consistent resuits, and makes possible more accurate estimates

of gain and phase shift at short periods. An independent means

of deriving the gain as a function of period is possible using

the inversion amplitude parameter. Errors in phase due to un-

certainty in impulse 'on' time are reduced. There is a trade-

off of "- , the seismometer free period and , the gain

constant, but these can be resolved by constraining T , which

is in general well-known. Noise caused by digitizing errors or

microseisms does not appear to be a problem in this work. The

residuals were usually of amplitude less than I% of the original

impulse amplitude. It was necessary to take great care in choos-

ing the correct baseline for digitizing. Application of the

inversion technique to actual impulse responses yielded consis-

tent results and enabled amplitude and phase shifts to be cal-

culated at all periods.

1kl
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APPENDIX A

ANALYTICAL METHOD FOR OBTAINING PSEUDOPARAMETERS

From figure 2 we have the equality involving original and

pseudoparanieters that must be satisfied:

Foliowing Jarosch and Curtis (1971) we equate powers of S

(i) + / , -

(2)

(3) W' 2

To simpl ify, let

(5) W, -c

(7) ,., ., L(6) :, a "'' .

(9) , f -

We can t: derive the characteristic equation in 01

Rather than solve this equation numericaliy as Jarosch and Cur-

tis did, I needed the complex solution, tc the equation. The

equation can be factored as

¢ , , ) ~ ~ x -t' C ). ( , t , ;?, ( X .2i -
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We must solve for x,. r- Since there is symmetry between X, , 2

they may be interchanged:

(12)- ) _ -__) T3  - _ T-G_

where

(14) 3( - T --¢7 )'.

and

(15) 4 ,7 -%
(16) k,:z-V'- ,t-

(17) '-
(18) /3 :,( -<~

The solution for tk j> is C. " - A

(19) " - -  l -;e'1

I always used the positive sign in the root. If one root was ,,

the other two corresponded to.4 and t2IK. It was always possible

to distinguish which was which.



FIGURE CAP1IONS

Figure 1: Schematic model of the impulse response inversion
program. The periods and dampings are in pseudoparameter form
as used in the inversion. Up to five iterations were used in
convergence to the stabilized least-squares solution.

Figure 2: Equations for the seismomecer and galvanometer motions,
fol lowing Jarosch and Curtis (1973). The effect of the pseudo-
parameter conversion is small for small, but significant
for larger

Figure 3: Effect of various parameters on the impulse response
function. The solid line is the for all figures. Changing the
seismiometer free period has a large effect on the impulse am-
pl i tude.

Figure 4: Results of inversion on our long period vertical in-
strument. The parameters were measured in situ using overshoot
ratio tests and timing the free periods--y stopwatch.

Figure 5: Phase determination of NDI-LPZ impulse response, using
direct Fourier transform method and the inversion method. The
Fourier method is degraded at periods below 30 second,. The
'on' time had been picked by eye at 4 seconds after the minute
mark; the inversion showed it actually occured at 3 seconds after
the minute. The large black dots correspond to the best esti-
mate of the phase.

Figure 6: Amplitude determination of NOI-LPZ using the Fourier
method and inversion method. The curve on the left corresponds to
impulse amDl i tude . These become very small below 30 seconds,
which accounts for the degradation of the phases and ampl;tudes.
To obtain ground displacement magnification, this curve is mul-
tiplied by

Figure 7: Impulse response on the Lookout Mountain (LMO) LPZ
record. There is a slight misal ignment of the light beam rela-
tive to the drum as shown by the offset of the minute mark on
the impulse. This minute mark was used to help align the impulse
for correct digitization.

Figure 8: Convergence of the !inear inversion method for theo-
retical and actual impulse responses. For all successful solu-
tions the method converged within 5 iterations.
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Table I

Inversion Results

LMO-1 9-4 LMO-2- LMO-NEW

15.0 sec. 0.8 sec. 16.0 sec. 0.7 sec. 15.4 sec. 0.2 sec.

T2  91.0 sec. 0.8 sec. 92.9 sec. 0.8 sec. 94.4 sec. 2.9 sec.

Vlh 0.46 0.03 0.435 0.02 0.995 0.07

h7 0.76 0.01 0.745 0.01 1.19 0.03

Tc 33.6 sec. 0.2 sec. 33.1 sec. 0.2 sec. 33.7 sec. 0.07 sec.

4.21 0.5 3.55 0.34 6.69 0.245

C -0.41 0.2 -0.032 0.2 -0.219 0.28

L -0.005 .006 -0.009 0.006 -0.0045 0.006

o 0.0 0.0 0.0 0.0 0.0 0.0

0.012 -- 0.012 -- 0.029 --
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COMPUTATION OF COMPLETE THEORETICAL
SEISMOGRAMS FOR TORSIONAL WAVES

BY A. H. LiAO, F. SCHWAB, AND E. rovA,n

INTRODULCTON

In the study of earth structure, and earthquake source mechanism, the handiest
and probably most important information is that provided by the seismic waves
recorded on seismograms. Therefore, the direct comparison between theoretical
and experimental seismograms is a very appealing subject for most seismolog,ts.

The computation of theoretical seismograms has been studied by various av'hors.
Some tried to obtain long-period seismograms by combining a few normal g,.odes;
some tried to obtain a few body-wave phases. The results of the inv-stigations

that led to the present letter are reported by Schwab (1970); Schwab and Knopoff
(1970, 1971, 1972. 1973); Kausel and Schwab (1973); Schwab and Kausel (1976);
Knopoff et al. (1973): Knopoff et al. (1974); Schwab et al. (1974); Nakanishi et al.
(1976); Kausel et al. (1977); Nakanishi et al. (1976); Mantovani et al. (1976);
Mantovani J1977a): and Mantovani k in preparation). The results of our most

recent work now allow us to generate complete theoretical seismograms for torsional-
wave motion. By saying complete, we mean that all modes that exist for periods
above 10 sec are included in our sei ,nograms, i.e., that all amplitude and phase
information down to a period of 10 sec is included. This means that the body-wave
phases, as well as surface-wave arrivals, are obtained with this method.

The computational technique is somewhat involved; however, anyone who is
interested in the details can obtain program copies from the authors. Briefly, we
compute all of the required frequency-domain information such as phase and group
velocity dispersion, attenuation, amplitude excitation, apparent initial phase, depth
of penetration (and if desired, partial derivatives with respect to structural param-
etersi from the longest existing period for each mode, down to 10 sec. This requires
between 90 and 100 radial modes, and is accomplished in a single, relatively short

computer run. This computation corresponds to about 50,000 free oscillating modes.
Theoretical seismograms in the time domain are then obtained by inverse Fourier
transformation as described by Kausel and Schwab (1973) and Schwab and Kausel
(1976). The cost of computing the volume of frequency-domain information, which
is required to construct the synthetic seismograms down to a period as short as 10
sec, has been prohibitively high up to the present time: but, with our current
optimization we have succeeded m reducing the computation time to about 6 min
on our IBM 360/91 computer (an expenditure of about $50) for a given earth
structure. The corresponding time on a CDC 7600 computer is about 2 min. [For
corresponding tunes on other computers see Schwab et al. (1977) and Porter et al.
(in preparation)] These tune estimates should be considered only as upper bounds;
relatively simple improvements-which a little practical experience will be needed
to justify-are expected to cut these times at least in half.

The purposes of the present letter are (1) to report that the capability now exists
for computing realistic, torsional-wave seismograms that contain all of the seismic
energy and arrivals down to a period of 10 sec; (2) to announce the availability, for
general distribution, of the associated program; and (3) to.exhibit the results of our
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