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TECHNICAL REPORT SUMMARY

One purpose of this investigation has been to regionalize
the upper several hundred kilometers of the mantle under the
Arctic region, Siberia and the Eurasian continental area using
seismic surface waves. A second purpose has been to develop and
test efficient computer techniques for the computation of accurate
theoretical seismograms for hypothetical sources located within
Eurasia and which make use of the results of the regionalization
part of this study. These theoretical seismograms are complete
in the sense that they countain both body and surface waves; they
can be applied directly in a discrimination program by comparing
the theoretical seismograms, computed for both earthquakes and
underground explosions, with the actual recorded seismogram.

Regionalization. The program of regionalization involves

the measurement of phase velocities for Rayleigh waves travers-
ing the regions under investigation. The phase veloc.ty curves
were obtained with the single-station phase velocity method,
which is described in the main text of this report. Briefly,
the method involves selecting records of earthquakes from the
library of the World Wide Standardized Seismographic Network
(WWSSN) for events which: (1) occurred within, or on the peri-
meter of, the area of interest, (2) produced good long-period

surface wave records at WWSSN stations for which the
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epicenter-to-station lines lie within the regions being in-
vestigated, and (3) generated good, large recordings at a suf-
ficient number of stations to ensure an accurate fault plane
solution. When a suitable earthguake was found, an extensive
data processing and data reduction system was applied to trans-
form the data into phase velocity curves for each of the
selected epicenter-to-station lines.

The complete set of phase velocity curves (for fundamental-
mode Rayleigh waves recorded by the WWSSN instruments), which
are then used for the regionalization of the Arctic region,
Siberia, and the Eurasian continental area, consists of about
50 dispersion curves, Based on this data set, we have regionalized
the area of interest by making use of an assumption that large
parts of the region with similar geophysics or basement geology
and age will have similar upper mantle structures. A similar
assumption was made with success in the regionalization of the
Pacific Ocean basin (Kausel, Leeds and Knopoff, 1974; Leeds,
Knopoff and Kausel, 1974).

The inversion has proceded by the use of both linearized
and non-linear inversions procedures with the mantle properties
in each of the geographic regions as unknowns. Our regionalization
has made use of maps of basement geoloay of Eurasia coupled with
a postulate of similarity of mantle cross-section for regions of
similar basement age, made previously in small-scale regional

studies (Knopoff, 1972).
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From our regionalization studies on the Eurasian continent,
we draw the following conclusions: First, the properties of the
mantle of the sediment-covered Siberian and Russian platforms
are highly consistent with those of the Baltic and Siberian
shields and with ancient shields observed worldwide (Knopoff,
1972). Second, the Tibetan plateau has an extremely thick
crust, perhaps as great as 75 km from surface to Moho. Further-
more, the upper mantle under the Tibetan plateau has high seismic
velocities, indicating the absence of partial melting to relatively
great depths. This can be accounted for by emplacement of the
Indian shield under Tibet during the collision of the Asian and
Indian plates. Third the Alpide folded belt of Iran and Turkey
has a very well-developed low-velocity channel in the mantle,
with good contrast to the lid above, implying the presence of a
zone of partial melting at a depth of about 90 to 100 km, Fourth,
the Mongolia -Sinkiang geophysical province has a well-developed
low-velocity zone in the upper mantle and the more-or-less stable
part of Eastern China also has a low velocity channel at typical
depths.

The principal problem in the inversion has been the con-
struction of the boundaries to the geophysical provinces, for which
only incomplete information is found in the literature. A full
resolution of this problem is still in the future, but the
regionalization used to date, in which Eurasia is divided into 6

rather large regions,is statistically consistent with the data
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and has about the correct number of degrees of freedom in the

model parameterization.

Theoretical Seismograms. The second phase of our work has

been the development and testing of techniques for the computation
of realistic theoretical seismograms at the WWSSN and HGLP in-
stallations, for earthquake and explosive sources.within the areas
under investigation. For SH waves excited by both earthquakes

and explosions, we can construct complete seismograms down to a
period of 10 sec. (and occasionally to shorter periods). The
difficulty of calculating diffraction effects due to the presence
of lateral heterogeneity remains as an important unsolved problem;
as long as the waves cross regional boundaries at conditions re-
mote from grazing incidence, our theoretical seismograms are
probably quite accurate. The extension, development and
optimization of these algorithms and computer programs for
Rayleigh, or P-SV waves on a spherical, gravitating earth has

also been one of the main efforts under this contract. The
efficient construction of accurate, theoretical SH seismograms for
realistic models of the earth's structure using multimode methods
is based on effective dispersion computations, attenuation
calculations, structural transformations, and computations of
eigenfunction characteristics, effects of sphericity, and
point-source response; we have studied all these ingredients in
detail.

Qur work with theoretical seismograms has concerned the




multi-mode surface wave phases Ly, Sa and Sn; references to

this work are appended. For discoimination studies, it is also
desirable to have body-wave phases on the theoretical seismograms;
this has been one major thrust of our most recent work; another
has been the improvement in efficiency, control of accuracy and
increased power and flexibility of the computational algorithms
and computer programs. We have reported our ability to generate
theoretical seismograms with body and surface waves,on the same
record using up to twenty-one modes. Multimode theoretical
seismograms containing body wave phases have been generated in

the past (Satd, Usami and Landisman, 1968); however, these time
series were limited to ultralong periods. The important point

of our recent results is that, owing to the efficiency of our

new algorithms, we have been successful in extending the period
content of the theoretical seismograms through the range covered
by the WWSSNLP instruments. Thus, we can generate the theoretical
time series which, for the first time we believe, permits us to
compare theoretical seismograms directly with the entire records
obtained at the WWSSN and the HGLP installations down to a period
of ten seconds. This requires that 90-100 modes be used in the multi-
mode synthesis. The necessary frequency-domain information is
obtained in a single, relatively inexpensive computer run; time
series, for any source specification, are then obtained with a
single run of a second program (Liao, Schwab and Mantovani 1977;

preprint appended).
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In the case of Rayleigh waves, sphericity and gravity intro-
duce complications not encountered with Love waves. For Love
waves, optimized flat-structure programs can be used since the
sphericity of the real earth can be handled by exact transformation,
and since gravity does not affect Love waves. At present, accurate
Rayleigh-wave computations for a real earth require that sphericity
and gravity be handled directly in the computational algorithms
and programming; hence, our first task here was to improve the
accuracy characteristics of direct Rayleigh-, or spheroidal-wave
computations. The difficulty, expense, and time required for this
analysis showed us why this information was not in the literature,
even though the basic algorithm is available (Alterman, Jarosch
and Pekeris, 1959). The results of our work (Schwab et al, 1977)
are appended. They include: (1) an improved and simplified com-
putational algorithm for the computation of the phase velocity of Rayleigh
waves. (2) What we believe to be the first direct method for
computing the group velocity, i.e., without appeal to variational
methods; (3) numerical analyses and examples of numerical dif-
ficulties encountered in this type of computation; (4) detailed
analysis of the efficiency of our optimized algorithm and pro-
gramming. Even in this optimized form, these direct Rayleigh-
wave computations for a spherical, gravitating earth, are about
six times slower than the comparable Love-wave computations;
whereas we know that computations for Rayleigh waves on a flat,

non-qravitating structure are only twice as slow. Our conclusion,
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from the Rayleigh wave work dore here, is that new algorithms
are required before the efficiency of the Rayleigh-wave com-
putations (including sphericity and gravity) will approach
a level justifying computation of the associated multimode,
theoretical seismograms down to the desired period of ten
seconds. We have developed a sufficiently improved algorithm
(Schwab, 1977), but the necessary numerical verification and
testing are only in their initial stages.

References to our own work on theoretical seismograms for
Sa, Lg and Sn include: Knopoff, Schwab and Kausel (1973);
Knopoff et al (1974); Nakanishi, Schwab and Kausel (1976);
Kausel, Schwab and Mantovani (1977); Mantovani et al (1977).
References to our work on theoretical seismograms which in-
clude both body and surface waves are: Nakanishi, Schwab
and Kausel (1976); Kausel, Schwab and Mantovani (1977);
Mantovani et _al (1976); Mantovani (1977a,b); Liao, Schwab

and Mantovani (1977).
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TECHNICAL REPORT

I. Purposes
‘One purpose of this project was to determine the regional variations

of the crust and upper mantle in the regions under investigation
using the properties of surface wave dispersion in the Arctic
region and the Eurasian continental area. The regions of high
seismicity within and around the region,plus the dense set of
WWSSN stations located around the perimeter of the region, gave
assurance that we could acquire sufficient single-station phase
velocity data for the application of regionalization procedures.

A second purpose was to develop computational techniques
for calculating complete, accurate theoretical seismograms for
both earthquake and explosion sources within the area under in-
vestigation, and which could be compared with those recorded at

the WWSSN and HGLP stations at the edge of this region.

II. Review of scientific background

Regionalization. The single-station surface wave method

allows all stations to be located at the edge of the region

under investigation; this technique is ideal for the study of
Eurasia. Knopoff and Schwab (1968) extended the description of

the single station method (Brune, Nafe and Oliver, 1960) to take into
account the frequency dependence of the apparent initial phase

of the source. The success of the single-station method

depends on the calculation of the initial phase. For dislocation




sources in layered media, the initial phase can be determined
by a wmethod due to Ben Menahem and Harkrider (1964) and
Harkrider (1964, 1970) who obtained the surface wave response to
double couple sources. The far-field response to displace-
ment-dislocation faulting is equivalent to that from a point-
source, double-couple in an unfaulted medium (Burridge and
Knopoff, 1964). Thus if the source focal mechanism is known
from fault-plane, surface wave amplitudes, or other methods,
the initial phase can be determined for small or moderate
sized earthquakes. By means of transformation techniques
(Biswas and Knopoff, 1970) or empirical correction methods
(Bolt and Dorman, 1961), it is possible to provide corrections
for sphericity.

The first inversions of surface wave dispersion data to
give upper mantle structure were carried out by Dorman and
Ewing (1962), Brune and Dorman (1964) and Knopoff, Mueller and
Pilant (1966). These papers were concerned with obtaining a
single structure which fit the experimental data. Knopoff
(1961, 1962) pointed out that the inversion of noise-free
data is not unique. Subsequent efforts were mainly concerned
with finding the set of structural models which fit the data to
within the experimental accuracy (Keilis-Borok and Yanovskaya,
1967; Press, 1968, 1969). The inversion of noisy data enlarges
the span of non-unique, acceptable models over that for noise-
free data.

Two methods of inversion are available. 1In the first of the
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technigues, perturbation methods are applied in a linearized
version of the problem. The problems of inconsistent or

correlated data are accounted for by smoothing in the data-

space, usually by a least~squares procedure. The problems of over-
parameterization of the model space are taken care of by smoothing
in the model space, by a procedure usually described as "deltaness".
Further reductions of the number of model parameters can stabilize
the inversions. Examples of linearized inversions are

given by Backus and Gilbert (1968, 1970), Knopoff & Jackscn (1372)
Jackson (L1272, and Wiggins (1972}.

The full non-linear inverse problem in a multidimensional
parameter space of high order has been attacked by Monte Carlo
methods (Press, 1968, 1969). The inefficiency of Monte Carlo
methods can be minimized at the sacrifice of reducing the
dimensionality of the parameterization to a value less than about
seven by exploring a neighborhood of acceptable solutions for other
acceptable solutions. Such a program has been called Hedgehog
and has been much used in this laboratory (e.g. Biswas and

Knopoff, 1974 ; Knopoff and Schlue, 1972 ; etc.); copies of

this program exist in Moscow, Bologna, Edmonton, Bari, Cambridge (UK), Paris,

etc. Both linearized and Hedgehog methods have been used in our

inversions.
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The single-station, surface wave regionalization of an
area is based on the assumption that the surface waves travel
paths, and the assumption that the phase travel time from epi-
center to station is the sum of the travel times through the
homogeneous subdivisions of the laterally heterogeneous region
(Knopoff, 1969). This permits the travel-time at cach frequency
to be expresscd as a system of inhomogeneous ecuations;
for each path, the total travel time is the inhomogeneous term,
the distances through the subdivisions are the coefficients, and
the slownesses in the subdivisions are the unknowns. We have
pointed out (Leeds et al. 1974) that the solution of this system
of equatione can yield the experimental phase slownesses
associated with each of the subdivisions only if we make the
assumption that the errors in each region are uncorrelated.
Since these errors are not uncorrelated, we must consider the
model parameters as the primary unknowns in the inversion and
derive the phase slownesses in the pure regions therefrom.

The first application of the use of single-station phase
delay measurements in the pursuit of regionalization of a large
inhomogeneous area was performed by Kausel, Leeds and Knopoff
(1974), Leeds, Kausel and Knopoff (1974) and Leeds (1975). 1In
the above work, phase delays along long paths across the Pacific
area were found to vary systematically with distance from the
East Pacific Rise. This persuaded us that the appropriate

geographic regionalization was plausibly based on a basement

-
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i.e. magnetic, age of sea-floor spreading. Our geographic
provinces then took the form of broad magnetic age stripes.
An inversion using this regionalization showed that although the
number of criss-crossing paths was plentiful, the number of
degrees of freedom in the data was remarkably small. Furthermore,
we found that the data set did not permit one to obtain detailed
information concerning the bottom of the low-velocity channel. We did
find that the lithosphere increased in thickness monotonically with age:.
the ridge crest, the 1id of the channel has almost zero thickness,
while in the oldest ocean this 1id is about 100 km thick. The 1id thick-
nesses are consistent with a geochemical model in which the lid-
channel interface is at the solidus for wet peridotite.

Because they have not developed good long-period instruments,
Soviet seismologists have not been able to focus attention on
upper mantle studies. Also, their extensive program in deep seismic
sounding has focused interest upon crustal studies. The Soviet
surface wave work has been limited to short-period investigations --
usually less than 40 seconds -- and has been concerned mainly with
determining crustal properties. References to Soviet surface-wave
work include Arkhangelskaya (1960), Savarensky and Ragimov (1958,
1959), Savarensky, Solov'eva and Shechkov (1959) and Savarensky
and Sikharulidze (1959), Popov (1960), Shechkov (1961, 1964, 1970),
Savarensky and Shechkov (1961), Shechkov and Solov'eva (1961),
Savarensky and Peshkov, 1968; Sikharulidze and Makharadze, 1968;

Savarensky et al. 1969.
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Since appropriate Soviet-bused seismic data are not avail- ;
able to us, our own work has thus far focused on the estimation l
of upper mantle properties in Eurasia through the use of the
only reasonable tools available to us, namely phase delays of
surface waves on long paths, criss-crossing the region of
interest. This,plus a plausible model of regionalization --
based in part on the observations in Knopoff (1972} for
continents --,permits an attack on the problem of regionalization

of the upper mantle of Eurasia.

Theoretical seismograms. Relative to the discrimination

problem, prohably the most important feature in the calculation

of theoretical seismograms which requires improvement over ‘
previously existing systems for such computations is the capa- |
bility of extending both body- and surface-wave portions of the !
theoretical computer seismograms to short periods. In this ‘
context, by "short-period" we refer to the period range covered
by the long-period instruments of the WWSSN installations. 1In
our formulation, the successful accomplishment of this task is
dependent upon improved techniques for obtaining multimoce
dispersion-attenuation information for reasonably realistic
models of the earth, i.e. spherical, radially heterogeneous,

anelastic models.

Optimization of this type has been one of the main interests
in our laboratory for several years. The results of our early
work, based on the Thomson (1950)-Haskell (1953) technique and

on Knopoff's (1964) method for treating flat-layered structures,
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are reported by Schwab (1970) and Schwab and Knopoff

(1970; 1971; 1972; 1973). The results of our work on
spherical-to-flat-structure transformation techniques, which
permit the use of flat-structure programs in dispersion-
attenuation computations with Love waves for spherical models

of the earth, are given by Biswas and Knopoff (1970), Schwab

and Knopoff (1971; 1972; 1973), and Kausel and Schwab (1973).

In this last reference, we have also given an outline of the
approach we have adopted to handle the synthesis of multimode
seismograms once the dispersion, attenuation, source, and
excitation functions have been specified. The entire

theoretical seismogram for a dislocation source in a spherical
earth can be expre¢ssed as a simple sum of normal mode contri-
butions (Saito,1967; Takeuchi and Saito, 1972). We first applied
our scheme for ¢enerating theoretical seismograms to the inter-
pretation of the seismic phase Lg (Knopoff, Schwab and Kausel,
1973; Knopoff et _al. 1974) This phase is a multimode interference
pheonomenon which belongs to the surface wave portion of the seismo-
gram. In this report we indicate that we have developed a system
for synthesis where both body and surface waves appear on the
same seismogram for realistic models for the earth, and where the
period range spans that covered by the long-period

instruments of the WWSSN. Earlier work of this type, which was
performed with simplified models of the earth, is summarized by

Alterman and Loewenthal (1972). Sat8, Usami and Landisman (1968)

- =
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describe the computation of com: lete theoretical seismograms
for realistic models of the earth. However, their results are

limited to ultralong periods.

III. Objectives, methods and results.

Data collection. Accurate surface wave phase delavs

across the area with single-station method require that we
know the focal mechanism and the depth of focus in order to
obtain the corrections due to the apparent initial phase. Ve
have confined our attention to the measurement of the phase
velocity dispersion of the fundamental mode. [I'rez and Schwab
(1976) have computed the importance of the structural parameters
on the determination of the initial phase.
Long period records from the 47 WWSSN stations which

border the region of interest have been used in the study.
The locations of these stations are shown in Figure 1. We have
also obtained several seismograms (through World Data Center B)
of Soviet records made in Central Asia on experimental long-
period instruments. However, the precision of these latter
recordings plus an uncertain calibration impulse response has
not permitted us to use them,

An example of the intermediate magnitude seismicity of
the area is given in Figure 2. Epicenters are plotted for
earthquakes which occurred during the interval from
February, 1963 to February, 1967 and having magnitudes between

5.9 and 6.6. 1In addition to the epicenters shown in Figure 2,
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FIG. 1. Locations of WWSSN and HGLP stations.

FIG. 2. Seismicity of the Eurasian region. The
regions of high seismicity along the eastern
border of the Kamchatka peninsula and along
the Aleutian arc also provide useful events

for the study.




158

T
-

s L N T DESRIE P ¥ I N I

SNOJLYLS G0143d-9NOT ‘NIV9-HIIH = i{
SNOILTLS NSSMM e s

| | once _ ;AAA...;.i E
Ade qIZo\w;.uﬂ ; oo . yd W

NUWe, Noivze! /_omul>”,§ox\;. *Q0d «
. s i -

e THSe. .- SO
dve; ‘ IONe . "<y

Hvle e300 - - :
TN® - HSe: ! | I

¥HSe .‘.Sm. L . Swmnk

i S -

T S L ,,Fmﬁo.nghq M

o oy,
s T X ' . . Hm.h. R ,,,/,

R I e s SO 8

L/ O save T e

MMYe
HONe

93Je  9])e
100 H(Oe




o

/96l 934 - €96/ 834
99 5 30N1INIVIN 5 66
U013 14358

.,

N3 e WINY WAL et 2V LnIRAY Y




le

there are regions of high seismicity along the eastern border
of the Kamchatka peninsula and along the Aleutian arc. The
choice of this range of magnitudes is governed by two considerations.
First, experience has shown that good long-period surface wave
information requires events with magnitudes above a certain value;
of course, a shock which is so large as to send the instrument
off-scale is useless for our purposes. Second, the application
of the single-stations method requires knowledge of the focal
mechanism. We must therefore use events large enough to allow
us to obtain an accurate fault plane solution for each event we
select for processing.

Since the set of stations around the area to be studied
is dense as are the regions of high, intermediate-magnitude
seismicity located within and around the area, there has been
no problem in obtaining sufficient data for the project. It is
interesting to note that the area is almost completely encircled
by either stations or epicenters or both. The limits uf the
area, which we have covered with a sufficiently dense set of
paths from earthquakes to epicenters, are shown in Figure 3
by the solid lines. The shaded regions are those of high, large-
magnitude seismicity.

Recordings from fifteen events were processed. The list
of events is given in Table I, with their USCGS-NOAA specifi-
cations. The focal parameters and other data are listed in

Table II. We have constructed fault plane solutions for 11




FIG.

3. Limits (solid lines) of the region covered

with a dense set of epicenter-to-station paths.

Solid regions are those of high seismicity.
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Table I
Events used in phase velocity determinations
(Uscas specifications)
Date Time Lat. Long. h(km) M
1. Red Sea Mar. 31, 1969 07:15:54.4 27,79 34.0% 33 6.0 to
6.8
2. Hsingtai Mar. 7, 1966  21:29:17.4 37.3% 114.9°E 33 6.0
3. Kamchatka Dec. 26, 1964 14:30:29.1 51.g% 156.8°E 136 5.7
4. Lena River Aug. 25, 1964  13:47:20.6 78.2% 126.6°E 50 6.1
s+« Tashkent Apr. 25, 1966  23:22:49.3 41.3% 69.2°E 8 5.3
6. Lop Nor Oct. 14, 1970  07:29:58.6 40,9y 89.4°E g -
7. Yunnan Feb. 13, 1966 10:44:41.3 26.1°8  103.2% 33 5.7
8. Hindu Kush I June 6, 1966 07:46:16.1  36.4% 71.1°% 221 .2
9. Hindu Kush II Dec. 28, 1974 12:11:43.7  35,1% 72.9%E 22 6.0
10. East. Aleut. Feb. 6, 1965 01:40:33.2  53.2%  161.9% 33 6.4 to
6.7
-+ East. Aleut. Feb. 6, 1965 16:50:23.6  53.3°%  161.g% 33 6.1 to
6.6
12. West. Aleut. Feb. 5, 1965  09:32:09.3 52,39 174.3%E 41 5.9 to
6.5
13. West. Aleut. Feb. 6, 1965 04:02:53 52.1°0 175.7% 35 5.9 to
6.2
B
s S e ——
: e e .
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Event No.

10.-11.

12.-13.
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Table II

Focal Parameters for Events Studied

Fault Plane

¢ ;) h (km) Solutions
133° 66° 242° 15 Fig. 4
122° g2° 0° 14.5 5
210° 90° 90° 136. 6
165°  58%  260°%:P 15 53/P 7
30504 7004 90°d 8.
explosion 0.
190° 70° 279° 33. 8
77° 50° 76° 221. 9
122° 40° 61° 22. 10
(twin earthquakes) lla,b
(twin earthquakes) 12

a. Depth obtained from Rayleigh wave spectra.

b. Rayleigh wave spectra for event 2 shown in Fig. 13

¢c. Sykes

\;, =

¢

(1967) gives fault planes for this event as
4°, § = 58%

54°E

338°, 8

Paths

15

18

18

13

19

20
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of these cases (including two pairs of twin earthquakes). The
list of figures of these fault plane solutions is given 1in
Table II. In one case (No. 5) we have used the fault plane
solution of Zakharova et al (1971). In one case (No. &) we
have assumed the source that of an explosion. 1In two cases
(Nos. 1, 2) we have used Rayleigh wave spectra to help deter-
mine the focal parameters; 1in these cases, we were able to
obtain the depth of focus more accurately than by conventional
methods. In the case of No. 2 the spectra (Fig. 13) also helped
refine the fault plane parameters and permit us to modify Sykes'
(1967) values. The methods used to determine fault-plane
parameters from surface wave spectra are given by Ben Menahem

and Toksoz (1963).




FIG. 4. Fault plane solution for event 4 (Red Sea)

occurring at 07:15:54.4 GMT, March 31, 1969.

FIG. 5. Fault plane solution for event 1 (Hsingtai)

occuring at 21:29:17.4 GMT, March 7, 1966.

FIG. 6. Fault plane solution for event 3 (Kamchatka)

occuring at 14:30:29.1 GMT, December 26, 1964.

FIG. 7. TFault-plane solution for event 2 (Lena River)
occurring at 13:47:20.6 GMT, August 25, 1964.
The solution given by Sykes (1967) is indicated

by dotted lines.

FIG. 8. Fault plane solution for event 7 (Yunnan)

occurring at 10:44:41.3 GMT, February 13, 1966.

FIG. 9. Fault plane solution for event 8 (Hindu Kush)

occurring at 07:46:16.1 GMT, June 6, 1966.

FIG. 10. Fault plane solution for event 9 (Hindu Kush)

occurring at 12:11:43.7 GMT, December 28, 1974.

FIG. lla. Fault plane solutions for events 10 and 11
1ib. (Eastern Aleutians) occurring at 01:40:33.2
(Fig. lla) and 16:50:29 GMT (Fig. 11lb), February 6,

1965.
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FIG. 12. Fault plane solution for events 12 and 13
(Western Aleutians) occurring at 09:32:09.3 GMT,
February 5, 1965 and 04:02:53 GMT, February 6,

1965.

FIG. 13. Rayleigh-wave amplitude distributions for
event 2 (Lena River) occurring at 13:47:20.6
GMT, August 25, 1964. The central set of
radiation patterns are the results of theor-
etical computations based on the fault plane
solution given in the text. The other four
radiation patterns depict the experimental

b results.
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Two points should be noted concerning the accuracy of the
digitizations of the recorded events. First, most of the event
records we have used are about as large as they could be without
going off scale. This has necessitated a change in our data
processing techniques which should be noted for the information
of others involved in this type of work.

In the past, our standard procedure, when working with
smaller-amplitude recordings, has been to digitize from copies
of 35 mm microfilm records of the WWSSN seismograms made with a
standard microfilm reader-printer (Itek 18.24 Reader-Printer).
Tests which compare the phase velocity results obtained from
full-size record copies provided by NOAA with the results
obtained from our microfilm copies show that distortion in the
copying process is of concern when working with large-amplitude
recordings such as those employed in the present study. We en-
courage the use of full-size record copies of large events
obtained directly from NOQAA.

The second point concerns the fact that the direction of
swing of the galvanometer may not be parallel to the axis of
the recording drum. Although James and Linde (1971) term this
phenomenon "a scurce of major error in digital analysis of WWSSN
seismograms", our tests show the effect to be negligible on phase
travel times computed using the single-station method for epicenter-

station separations of a few thousand kilometers. In the case of

- — g -
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the poorest galvanometer alignment we encountered, about triple

the ncormal ramp slope of 0.30, we found only negligible differences
between the phase velocity curve obtained with the correct
digitization base line, and the curve obtained with the normal

ramp as a base line.

The paths over which the phase delays have peen measured from
each or the seismic events are shown in Figs. 14-20 and are sum-
marized in Table 1I. Sample phase velocity results are given in
Figure 21, which illustrates the variation in dispersion for dif-
ferent propagation paths. We have obtained phase velocity data for
most paths over a period range extending from about 30 or 38 sec.
in most cases, to as long as 357 sec in a few rare cases. The
instrumental response at these longest periods is unreliable; 1if
the easured values of phase velocity and its first derivative
were in significant disagreement with values from the free mode
spectrum, then these long period values were rejected. For our
present inversions, we have only used periods up to 250 sec. The
specific period ranges, which we have used in the inversions are
shown in Table 3.

The phase velocities from five earthquakes and one nuclear
explosion for the 32 paths crossing Eurasia (Figure 22) sort
themselves into two groups (Figures 23 and 24). The paths with
higher phase velocities are generally those that cross the stable
platforms and shields (such as paths from the Hsingtaili earthquake
to Scandinavian (KEV) and German (STU) stations; typical of the
lower-velocity group is the phase velocity on the paths from the

Red Sea earthquake to the southern Asiastic stations (SHL, MAN, etc

).




FIG.

FIG.

FIG.

FIG.

FIG.

14.

15,

16.

17.

18.

21A

Epicenter-to-station paths processed tor
event 4 (Red Sea) occurring at 07:15:54.4 GMT,

March 31, 1969.

Epicenter-to-station paths processed for
event 1 (Hsingtail) occurring at 21:29:74.4 GMT,

March 7, 1966.

Epicenter-to-station paths processed for
event 3 (Kamchatka) occurring at 14:30:29.1 GMT,

December 26, 1964.

Epicenter- to-station paths processed for
event 2 (Lena River) occurring at 13:47:20.6 GMT,

August 25, 1964.

Epicenter-to-station paths processed for event
7 (Yunnan) occurring at 10:44:41.3 GMT,
February 13, 1966, and events 8 and 9

(Hindu Kush) occurring at 07:46:16.1 GMT,

June 6, 1966 and 12:11:43.7 GMT, December 28,

1974.




FIG.

FIG.

FIG.

19.

20.

21.

21B

Epicenter-to-station paths processed for
events 10 and 11 (Eastern Aleutians) occurring
at 01:40:33.2 (dashed lines) and 16:50,29 GMT

(solid lines), February 6, 1965.

Epicenter-to-station paths processed for
events 12 and 13 (Western Aleutians) occurring
at 09:32:09.3 GMT, February 5, 1965 (dashed
line) and at 04:02:53 GMT, February 6, 1965

(solid line).

Sample phase velocity results for the paths
from the Hsingtai earthquake (1966) to STU
and from the Lena River earthquake (1964) to
HOW. The paths are shown in Figures 15 and

l6.
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RED SEA-ANP
-BAG
~MAN
~SHL

HSINGTAI-ATY

-KEV
-LAH
-MSH
-NDI
-P00
-STU
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“MCHATKA-CHG
-HOW
-IST
-JER
-NOI
-QUE
-SHL

LENA RIVR-ATU
~HKC
ALW
~-HOW
-KEV
-NDI
-NHA
-SHI

TASHKENT -NDI
-SHL

LOP NOR -KBL
-NDI
-SHL

21K
TADLE 3

PERIOD RANGE (sec)
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YUNAN-ANP
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~-SHK

HINDU KUSH I-ANP
-HKC

HINDU KUSH II-ANP

TABLE 3
PERIOD RANGE (sec)

69 100 119
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FIG.

FIG.

FIG.

22.

23.

24.

21M

Propagation paths across the Eurasian continent

from five earthquakes and one nuclear explosion

All Eurasian phase velocities can be sorted into
two groups (shaded areas), except for phase
velocities POO-2 and SHL-1, which fall between
these two groups. Phase velocities for
"standard" shield (FLO-GOL), younger stable
regions (SHA~LUB) and rift zones (TUC-BOZ)

are shown for comparison (Biswas and Knopoff,
1974). The global average phase velocities
obtained from free-mode observations are also

shown (F.M.) {(Gilbert and Dziewonski, 1975).

Propagation paths corresponding to the two

phase velocity groups in Fig. 21. The solid
line indicates a path with higher phase velocity;
the dashed line indicates a path with lower

phase velocity.
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Phase velocities for typical shield regions and young stable con-
tinental regions (Biswas and Knopoff, 1974) are shown for com-
parison. The incompatibility of most of the phase velocity
observations for Eurasian paths with the "standard" curves for

homogeneous regions testifies to the inhomogeneous nature of the

Eurasian region.

Regionalization

The first step in the structural analysis requires the
division of the area into subregions; each of these is assumed

to be laterally homogeneous. In our first attempt we have sub-

divided the Eurasian area into six broad regions (Fig. 25). These are:

1. Ancient PreCambrian Shields

2. Stable Platforms

3. The Himalayan-Alpide Mountain Belt

4. The Tibetan Plateau

5. The Sinkiang-Mongolian Seismic Zone

6. The Chinese "Stable" Region
This choice of regionalization is largely governed by an attempt
to define a small number of discrete geographically homogeneous
provinces. 1In this choice we have been guided by tectonic maps
of Eurasia (Khain and Muratov, 1969) as well as by seismicity and
sparse heat flow information(Lubimova and Polyak, 1969). Our first
impulse was to regionalize the stable parts of Eurasia according to
the bimodal division of these regions into stable ancient shields
and stable younger continents (Knopoff, 1972). However,

information about basement ages




FIG.

25.

22A

Regionalization of the Eurasian continent
based on the tectonic map of Khain and Muratov

(1969).
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of the Eurasian sediment-covered platforms is difficult to obtain,
so we have taken the simple expediment of dividing the stable
parts of the continent into the geologically identificable shields
and a second regior which includes the rest of the seismically stable land
mass; these form our regions 1 and 2. In selecting region 2 as a
homogeneous region we impose no a priori condition that it be either
of the north-central U.S. or the Gulf Coast (U.S.) types of
sediment-covered stable regions: the first of these regions in the
U.S. has been found to have an upper mantle with shield character-
istics while the second has an upper mantle with a strong low velocity
channel, and is the prototype younger stable region.

The next three regions are characterized by their high
tectonic activity. We have chosen to identify the mountainous
collision zone between the Asian and Indian plates as a single
province; this is undoubtedly incorrect in detail, but is valid
enough in view of our inability to provide detailed resolution of
smaller regions by our use of long paths.

It should be noted that an increase in the density of path
samples does not necessarily improve the resolution of structure
of a small geographic area. Consider the limiting case of a
region which is vanishingly small in area. Aan increase in the
number of paths which transect this region does not improve our
ability to estimate the cross-section under it, because the
travel-time spent by the ray in this region is a vanishingly

small part of the total delay. An increase in the number of paths
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in a small area only increases the redundancy of the data. For this
reason we had some hesitation regarding the possibility of determin-
ing the structure under a region as "small" as the Tibetan plateau.
The Tibetan plateau is indeed small in comparison with the dimen-

sions of the Eurasian continent, and herein lies one of the dif-

ficulties with the method of very long single-station transverses
across the entire span of the continent. But the Tibetan plateau
contains one of the important mysteries of modern Plate Tectonics,
namely the reason for its great elevation and the nature of the
architectural underpinning that holds it up, so we resolved to try
to determine its structure,fully anticipating that the error bias
in the determinations of structural parameters might be large; it
became our region 4. To improve resolution here, we made use of
shorter paths from two Hindu Kush and one Tashkent earthquakes plus
a Lop Nor explosion all recorded at nearby stations to increase the
fraction of the travel-times spent in the Tibetan region. It can be
seen from the table of period ranges of the observations (Table 3)
that the inability to obtain long-period information from the
observations of the Tashkent earthquake and the Lop Nor nuclear ex-
plosion also limits our ability to resolve deeper structure under
region 4. The complete sampling of all regions by the path-phase
delays from the set of earthguakes and explosions is shown in Fig. 26.
The Sinkiang-Mongolia seismic zone is easily identified as one
of the provinces in our regionalization. We have chosen to identify
the relatively stable aseismic block of Southeast China
as an additional province. The Hsingtai earthquakes of 1968

occurred on the boundary between these two regions. We have
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identified Southeast China as a separate region without any a priori
assumption that it has either a cross-section similar to those for
the ancient shields or the younger stable continents. We prefer to
allow the inversion to yield this determination. Should the in-
version indicate that this region, or region 2 for that matter, is
similar in cross-section to that for some other region, we may make
the assumption that these regions are the same and use this information
to perform a further simplified inversion. Although, within them-
selves, these regions encompass widely differing geologic structures
and widely varying seismic activity, we have assumed that each of
these regions is homogeneous in order to limit the number of
parameters in the inversion.

Three small regions are treated specially. For the South
China Sea, we have assumed the structure to be known, and to be
that for typical marginal seas. The phase delays for this region
are taken from two single-station phase velocity observations in
marginal seas obtained by Leeds (1973) and from two phase velocity
determinations by the two-station method across the Philippine Sea.
Phase velocity corrections for the Sea of Okhotsk were obtained
theoretically from a crustal structure given by Kosminskaya et al
(1969) and derived from explosion work, in which the Okhotsk
depression has a 25 km crustal thickness; we have used an oceanic
mantle below this crust; These phase corrections have been applied

to travel times for those paths that traverse these two regions.
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Finally, a small fraction of the paths cross the Yakutsk-Magadan
region of northeastern Siberia. The maps show this mountainous
region to be tectonically different in a significant way from
the shield immediately to the west of it. Since our samples of
this region are all from the Kamchatka earthquake, and are all
small in length, we have decided, without justification, to
couple this region to our other mountainous province, region 3.

We do not expect significant differences from a region 3 structure
for this part of Eastern Eurasia to produce major changes in the
inversions since the total fraction of path length in this region
is small.

The total path length in each region summed over all event-
paths in given in Table 4. Since the phase shifts have not been
obtained over a uniform band of periods for all paths, in the last
column of Table 4 we have also reported an estimate of the
number of samples in each region by giving the product of sample
path length by number of period estimates of phase shift. By
either method of estimation, the very low fraction of sampling
in regions 4 and 6 lead us to expect that large uncertainties in
the structure will be obtained from the inversion for these
regions.

We have inverted the data under the assumption that a simple
ray theory for surface waves applies, that is, the phase shift for

a surface wave passing through a given region is computed as though

P
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TABLE 4
Region Path Percentage of Total Weighted Percentage of
Length (km) Path Length Total Path Leng:th
1 20970 12.1 13.0
2 53150 30.6 30.4
3 38411 22.1 22.5
4 15292 8.8 6.9
5 37994 20.7 20.7
6 9979 5.7 6.5
TOTAL 173796 100.00 100.0
i
i
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the region were laterally infinite in extent and uninfluenced ty
the presence of neighboring regions, no matter how close the great
circle path approaches the regional boundaries. The assumption
that diffraction effects are unimportant is evidently untenable
but provides a basis for starting an inversion; we have tested
this assumption in one of the inversions below.

The inversion proceeds using the method described by Leeds

th

et al. (1974). We calculate the phase travel time for the n

path and the pth period as

where Rin is the path length of the nth path in the ith region

(i=1,...,6) and sip is the (theoretical) phase slowness for the ith

h

region at the pt period. The phase slownesses Sip are functions

of the model parameters in each region.

t
npo np

5
°(]
-~

]

th h

where tnp is the observed travel-time for the n path at the pt
0
period. The minimization takes place with respect to the choice

of model parameters.

Fryas SR VAT
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We obtain larger and larger variances in the model para-
meters as the number of model parameters increases. We would
like to be able to solve for the properties of the crust in each
of the six regions. However, this a) requires much precise data
at periods shorter than 30 sec., b) increases the number of model
parameters significantly, and <¢) pushes our postulate of lateral
homogeneity in each of the regions to an untenable extreme. We
have therefore used model crusts for each of the regions which a)
seem to be plausible when compared with results for similar parts
of the earth where observations exist (such as locations typical of
regions 1, 2 and 3), and b) agree with Soviet refraction results
where available (Kosminskavya, et al, 1969; Sollogub, 1969). When
large residuals were encountered at short periods, such as in the
case of region 3 (Alpide-Himalayan belt) and region 4 (Tibetan plateau),
we were obliged to introduce more low-velocity material into the crust.
This was done by keeping crustal velocities fixed and increasing
crustal thickness. In these two cases, this procedure leads to
extraordinarily thick crusts. It should be realized that these
model crustal thicknesses are consequences of the procedures
used; if we had chosen to lower the crustal velocities, the
thicknesses would have been less. We have used a crustal thick-
ness of 70 km in the Tibetan Plateau (region 4) a value not in-
consistent with other recent estimates (Chun and Yoshii, 1977).
The crustal models we have used are listed in Table 5 and are

assumed to be fixed in the inversions.




TABLE ':.‘ 30.
Model parameters for inversion of phase velocity data
Thickness Depth g(km/sec) a(km/sec) p{gm/cm?)
0
CRUST (different crustal models for each region)
(fixed)
LID VAR 4.65 8.17 3.45
CHANNEL VAR 7.80 3.45
SUBCHANNEL VAR 4.80 8.80 3.65
420(fixed)
94 5.128 9.609 3.806
514
94 5.283 9.781 3.934
608
63 5.419 ¢.902 4.051
691
138 6.172 10.552 4.417
809
139 6.266 11.238 4.505
948
104 6.351 11.392 4.579
1052
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We have parameterized the mantle into a 1id, channel and
subchannel; each of these layers in a given region is taken to be homo-
geneous. The subchannel region terminates at a depth of 420 km.
Below this depth, we place a standard lower mantle platform under
all regions, indicated in Table 5. The unknowns in the inversions
will be the shear velocities in each of the three upper mantle
layers and the depths of the interfaces at top and bottom of the
second ("channel") layer. The number of unknowns is thus 30,
five in each of the six regions. This figure far exceeds the number
of degrees of freedom in the data. Thus some reduction in the
number of unknowns has to be made, by some assumptions which are

geophysical in character.

Inversion 1

In a first attempt at inversion, we have fixed the lid S-wave
velocity at 4.65 km/sec and the subchannel S-wave velocity at 4.8
km/sec in order to reduce the number of degrees of freedom. The
value of 4.65 km/sec for the lid arises frequently in inversions
for other parts of the world. For one case in which a 4.65 km/sec
lid was not observed, namely for the Western United States (Biswas
and Knopoff, 1974) in which the subcrustal material has S-wave
velocity around 4.3 km/sec, we were able to assume that a model with a
4.65 km/sec lid with zero 1lid thickness was accepted by the inversion
and that the 4.3 km/sec value represents channel material rising
almost to the base of the crust. Should the lid velocity in some
region be less than 4.65 km/sec in reality, then crustal thick-

nesses can be reduced. A similar comment can be made about the
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subchannel velocity: if the subchannel velocity should turn out to
be less than 4.8 km/sec in some regions, channel thicknesses will
be reduced.

This parameterization thus includes only two adjustable model
parameters for each region. These are the 1id thickness and the
channel S-wave velocity. A thirteenth parameter is the sub-
channel thickness, which is presumed to be uniform across the
entire continent and hence has the same value under each region.
Since the crustal thickness and the depth to the 420 km interface
are fixed, the parameterization of 1id and subchannel thicknesses
is equivalent to a parameterization of the depth below the sur-
face of the top and bottom of the channel. This parameterization
has 13 degrees of freedom.

After adjustment of the crust by the procedures described
above (with interpretation of crustal parameters according to
the remarks above), the parameterization and cross sections used
in a linearized inversion procedure are given in Table 5. The
superficial sedimentary layer that is introduced in the crusts
of regions 3 and 4 is designed to reduce the residuals at the

shortest periods.




The starting values of the thirteen parameters in this

inverse are (in the usual units):

Table 6
Depth to
Region Scn Lo sus channel
1 4.51 110 155
2 4.39 113 : 158
3 4.30 54 150 119
4 4,29 90 | 167
5 4.08 92 , 137
6 4.38 103 :; 148

33

linearized

Depth to
bottom orf
channel

270

The thirteen parameters in the rectangular box in Table v are those var-
ied in the inversion. The standard errors of the travel-times in the
inversion were taken to be the same as those used by Leeds et al.
(1974), namely o = Max (7, 0.1T) sec. These estimates were later
found to be too large and required modification

In the inversion, an iteration process has been used in which
the matrix of partial derivatives G was recalculated whenever we
moved into a new portion of parameter space. This process was con-
tinued until we obtained convergence of the variable model parameters.
The thirteen eigenvalues of the product matrix of partial derivatives
GTG, which were obtained in the final stage of the iteration process,
are given in Table 7. Each eigenvalue corresponds to an eigenvector
which,in every case (except nos. 5 and 6),points in a direction close
to one of the thirteen parametric axes. Thus, each eigenvector can

be said to be a discriminant foreach of the thirteen degrees of
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11.

12.

13.

Eigenvalue

13.68
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TABLE 7

Model parameter most closely resolved
by eigenvector

“CH2

Schs

B3

Beul

3 & h

CHé suUB

BeHe

SUB
CH4

LIDS

LID2

LID3

LID6

LID1

LID4




freedom in the model. The eigenvectors corresponding to the

cerning the model parameters closest to them, and the eigen-

information about their corresponding parameters.
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largest eigenvalues give reliable structural information con-

vectors corresponding to the smallest eigenvalues give little
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From Table 7 it can be seen that, in general, the data yield

the greatest information about the channel velocities and the
least information about the 1lid thicknesses. In general, the
data contain more information about regions 2, 3, and 5 than

the the other three regions. This is clearly correlated with
the higher percentages of total path length which sample regions
2, 3, and 5. (For complete details, see Table 4 and Fig. 26).

The variance of each model parameter decreases as successive
models approach the fine one, which demonstrates the convergence
of our inversion procedure. Fig. 27 gives our results for this
inversion: the "best" model and the corresponding standard
deviations of each model parameter. We see that the upper mantle
structure for regions } and 2 are very similar although the 1id
in region 1 is somewhat thicker. The channel shear-wave velocity
for region 1 is slightly less than that in region 2 , but the un-
certainty of the model parameter in region 1 is rather large and
in any case, the velocity contrast to the 1lid in these regions
is rather smaller than one would like to assert that a) a channel
is indeed present and b) that a channel with velocities low
enough to require partial melting is present. Thus, the existence
of a low-velocity channel in region 1 is uncertain. The most strik-
ing result of this inversion is the very thin 1lid, and moderate
shear wave velocity, in the channel for regions 3 and 5; as
in the case of regions 1 and 2, regions 3 and 5 have strikingly
similar upper mantles. These latter two regions are those which
are tectonically active and have high seismicity. Region 4
is that in which the Eurasian and Indian continents are

in collision. Although the upper mantle structure for this
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region appears to be very similar to those of regions 1 and 2,

the uncertainties in the model parameters are large. This is due
1) to the low percentage of total path length in this region, and
2) to the fact that most of the paths which sample this region
have only short-period information. Region 6 has a thick 1lid and
a pronounced low-velocity channel, but the standard deviations are
rather large; additional assumptions may help to improve the

resolution of the structural parameters in this region.

Inversion 2

In a second attempt at inversion we have made the assumption
that the chemical composition of the lids is everywhere the
same across Eurasia{as before)and that, in this case, the chemical
composition of the channels is similarly the same across Eurasia.
We have allowed the lid velocity to be adjusted in this case; it
was fixed in the preceding case. In this case the number of para-
meters in the fit is nine: the depth to the lid-channel interface
in each of the six regions, the depth to the channel - subchannel
interface, and the S-wave velocities in the 1id and channel;
the latter three parameters are are constants across the

entire region. The errors v are assumed to be the same as

before.

The results of this inversion are shown schematically in Fig. 28.
The result for 1id velocity was 4.56+.01 km/sec and for channel
velocity 4.34+.02 km/sec. The results for 1id thicknesses show striking

similarity among regions 1, 2, 4 on the one hand and 3, 5, and 6 on the other.
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FIG. 26. Propagation path in each subregion of the
Eurasian continent. The percentage of total

path length in each region is shown in Table 2.

FIG. 27. Final result for linearized inversion of 13
variable parameters in the model and their

corresponding standard deviations.

FIG. 28. Schematic upper mantle cross-sections obtained

in inversion 2.




——

I R b

T

- w
-,
I




. — TI DI B - - ha
37C
B (KM/SEC) Fig. 27
3 4 ﬁs 3] L} l4 T ﬁs ? T ? T j ;
0 pas
45 45 65 i
465 16*9
100 97+26 8929 |
[
[
447+ 06 450+ (2 4.34+ 03 1_¢".
2001 b
P
267+7 2677 ' 2677
300+
480
| I i g
40 Ancient Ffrecambrian Younger stable Himalayaq - Alpide T
E B shields platform Mountain Belt e
" 3 4 5 3 4 5 3 4 5
I i T T T -1 T ] T T - L] T T 1
= 0
& 1
S 45 145 o
7 12+5 [
100- 105+47 113415 -
g
433+ 02 -
200k 449+ 1) 412+ 09 .
677 , 2677 - 2677
300+
v Y Y/ .
Tibetan Plateau Sinkiang - Mongolian southeast China o |
400 Seismic zone stable region L‘ﬁ; |




23s/WY Z0'QFpE b = KILDQ[3A dAaeM-§ [auuRy)

37

J4.

29S/WY 10°0%9G b = A1LD018A SARM-g

PLI

e

g*vie

95%9%2

SNOT93y

Gcw8le

KB
3

47

GEFL1E ————

A

{(SHL1d3G)




38

This observation lends support to the interpretation of the first
inversion, that the sediment-covered platforms of Russia and Siberia
are largely sediment-covered shields. The result for Tibet we
have obtained is that the upper mantle, to great depth, is
largely shield-like in character. We interpret this to mean,

if it should be substantiated, that the Indian Shield has been
emplaced beneath the Tibetan crust during the collision of the
plates and that the mantle beneath Tibet is presently at
temperatures well below the melting point to great depth, i.e.
the mantle under the Tibetan plateau is relatively cool com-
pared with tectonically active collision zones such as region 3.

On the other hand regions 3, 5, and 6 all exhibit the develop-~
ment of a marked low-velocity channel at shallow depths in the
mantle, which implies that a significant zone of partial melting,
perhaps 200 km thick, is present. All these three regions are
thus presumed to be tectonically active, despite the low sceismicity
of region 6 (the large recent earthquakes in China occurred
in the northern part of region 6). The presence of a small channel
at great depth is not considered to be significant: this may be
an artifact of the inversion, due to improper choice of parameters
at shallower depths. These deep channels are probably absent

but we cannot be absolutely certain.

Inversion 2.1
We have made a variation on inversion 2 by enlarging the

extent of the Baltic shield in the preceding inversion, as shown
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in Fig. 29 according to a hint in the tectonic map of

Khain and Muratov (1969). As might have been expected, the
results of the preceding inversion are not significantly changed
in view of the result of inversion 2, namely that regions 1 & 2
are virtually identical in cross-section. Hence enlarging
region 1 at the expense of region 2 cannot be expected to pro-

duce a significant change in the results.

A tabulation of the recults of this inversion is as follows,

and is listed only for purposes of comparison with the other

inversions:
BLID = 4.56+0.01 km/sec
8ok = 4.34+0.02 km/sec
hiyp ;- = 206%25 km
hpip p- = 229%29
brip 3 = 9919
hipp 4 = 246156
hLID 5 = 79+7
bip e = 6947
heg-syp = 27418

Inversion 2.2

In each of the two preceding inversions we have obtained
the result that the upper mantle of both regions 1 and 2 are
remarkably similar. In both cases we have a deep continental

root to essentially the same depths. We have therefore made
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FIG. 29. Modification of regionalization of Fig. 25
by enlargement of region 1 in Baltic shield
area.
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the assumption that these two regions are indistinguishable
in a new inversion 2.2. We call the coalescence of regions
1 and 2, a new region 1lA (Fig. 30); there is now no separate

region 2.

As might be expected the results of the inversions are
not significantly changed from the earlier explorations. Indeed
the results for inversion 2.2 are identical in all respects

with that of inversion 2.1

BLID = 4.56+.01 km/sec
BCH = 4.34+.02 km/sec
hey-sus 274+8 km

hy 1o (1a) 217418 km
Prin(3) 9949

hyip(g) = 246455

LD (5) 7919

BLib(ey = 89%7

all depths h are measured from the surface.

Inversion 3

A rather annoying aspect of the data concerns the fact that
the ph~se travel-time residuals from any of the preceding models
are not normally distributed. There is an unacceptably large
number of residuals between 2¢ and 4¢; this result has been
verified by a x? test. We have deleted several of the data with
large residuals and have proposed a new data set with a value of

x? which places the new data set within acceptable limits of a

ch a3,




FIG. 30. Modification of regionalization of Fig. 25

by fusion of regions 1 and 2.
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a normal distribution with a new value of ¢ having 2/3 the
former value:
o = 2/3 Max (7 sec, 0.1T)
We have repeated inversion 2.2 with the revised data
set and the new estimate of errors and have obtained the follow-

ing results:

Br1p = 4.57+.01 km/sec
BCH = 4.35+.01 km/sec
Boyosyp = 2765 km
rp(ra) = 204112

Pripy = 997

hiipa) = 256741

Brmpgsy = 94

Brine) ~ 3543

The shear velocities in the 1lid and channel are unchanged from the
preceding inversion 2.2, But there have been some significant
changes in the 1lid thickness of some of the regions. Regions 1lA
and 4 continue to have upper mantles consistent with ancient (cold)
shield models. However, reyions 5 and 6 now have very thin lids,
implying high heat flow and the presence of strong tectonic pro-

cesses.

Inversion 3.1
To test the validity of the linearized inversion procedures

especially in view of our observations that the final results are
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strongly dependent on smoothing procedures in the model space,

we have applied the power of our non-linear Hedgehog program

whose results are independent of smoothing in the model space.
The data set is the reduced data set of Inversion 3 with a

normal distribution of residuals relative to model 2.2. We

have further fixed the channel~subchannel interface at the value

given by inversion 3. The remaining seven parameters were ex-

plored in the space given by Table 6.

TABLE 6
Parameters and Range of Search in Hedgehog Inversion
for Inversion 3.1

Starting Value Step Size Lower Limit Upper Limit

Pl 4.57 0.1 4.47 4.67
p2 4.35 0.1 4.25 4.45
P3 204 30 144 264
P4 99 30 69 189
P5 256 30 136 256
Pé 59 30 59 179
pP7 55 30 55 175

Pl: Lid shear wave velocity in Km/Sec

P2: Channel shear wave velocity in Km/Sec
P3: Lid thickness of region 1A in Km

P4: Lid thickness of region 3 in Km

P5: Lid thickness of region 4 in Km

P6: Lid thickness of region 5 in Km

P7: Lid thickness of region 6 in Km
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The results of the inversion gave the 67 acceptable solutions,
acceptable within 1.40 under the postulate that there is equal
tradeoff between the effects of uncertainties in the model space
and fit to the data (Table 7). The first, and most obvious
result is that the 1lid velocity was accepted to be 4.57 kn/sec;
no other values are acceptable. The channel velocities accepted
were only 4.25 and 4.35 km/sec. Although the 1lid thicknesses
for the shields of region 1A could vary between 174 and 234 km
and for the Tibetan plateau (region 4) between 226 and 256 km
a) under some circumstances both lids could have the same thick-
ness (models 14, 30, 31, etc.) and b) under no circumstances
could the Tibetan plateau have a lid which was as thin as (say)
30 km, a result which would have implied a mantle appropriate
to a tectonically active region, i.e., one with a well-developed
high~contrast low velocity channel. Finally, although the
linear inverse of inversion 3 implied a difference in 1lid
thickness between region 3 on the one hand and regions 6 and 7
on the other, the non-linear model-independent inverse gave some
solutions in which the 1lid thicknesses are such that the 1lid
channel interface is roughly at a common depth below the
surfaces of all three regions (e.g. solutions 35, 55, 23, 37,

46, 57). We conclude from these inversion results that cold
shield properties extend to great depth under regions lA and 4
while regions 3, 5, 6 may have similar properties (at least

we cannot discount this result) with upper mantles characteristic
of young active regions. What is remarkable is that region 6

is coupled together with the more obvious active regions.




Table 7 43A
Successful solutions in Hedgehog inversion 3.1

r'} b2 Ps Py 5 16 ¥7
1 457 he 55 204 99 256 59 55
2 4,57 e 55 174 99 256 5 25

3 457 Le 355 234 92 256 59 25 1
Lo L.37 Le 35 204 69 256 29 B
5  h.57 Le35 204 129 256 59 55

6 4.57 435 204 99 226 59 55 J
Y hLe57 e 35 204 99 a56 a9 55
& e D7 he 35 204 26 256 59 &b
9 had7 Le 355 174 69 256 29 55
10 L5357 L35 174 129 256 59 55
M Le 57 Le 55 254 69 256 59 55
12 L.57 Le 55 254 129 256 P 55
15 W57 L35 174 99 226 59 55
W L.57 L35 254 9¢ 226 o8 55
15 L.57 Le 55 174 99 256 89 55
16 4,57 b4e 55 254 99 256 &9 55
17 4.57 e 35 174 29 256 59 &5
S hJ57 Le 55 234 99 256 59 85
19 LJ57 L35 204 69 226 g 55
2 Lo 57 4e 35 204 129 226 59 55
21 457 he35 204 69 256 &9 55
22 Le57 Le 55 204 129 256 89 55
23 457 e 35 204 69 256 59 85
2L 4,57 Le 35 204 20 256 59 35
25 4457 ha 35 204 99 226 89 55
26 457 Le 35 204 99 226 59 85
27 L57 L,355 204 99 256 89 35
2 L.57 Le 55 174 69 226 59 55
29 L 57 be 35 174 129 226 59 55
50 LeD7 he 55 234 69 226 9 55
31 hW5Y Lo 55 a5 129 226 59 55
32 ho57 Le35 174 69 as6 §9 55
35 kW57 4y 35 174 129 256 89 55
Sho 457 le 35 254 69 256 39 55

. e e — e
4 e e
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Inversion 4

To test the importance of diffraction, we have deleted
from the data set,phase travel times for those paths which lie
close and parallel to a contrast between two dissimilar zones.
The value of ¢ continues to be taken as in the result of
Inversion 3. The linear inverse using the same regionalization

and parameterization as inversion 3 for the results:

4.58+.01 km/sec

BLID

BCH = 4,36+.02 km/sec

hLID(lA) 181+13 km (below surface)
hLID(3) 101+16 " "
hLID(4) = 204+35 “ "
hLID(S) = 54+7 " "
hLID(6) = 54+7 " "
hCH—SUB 268+6 " "

We detect no significant changes from the results of inversion

Inversion 5

Finally, since the Tibetan structure appears to be
associated with the collision of the Indian-Asian plates, we
have incorporated the Himalayan part of region 3 into region 4,
and re-analyzed the linear inversion with the data and errors
as in inversion 3. A map of the new regiocnalization is shown

in Figure 31.

e SRR P VRN
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Modification of regionalization of Fig. 30
by enlargement of region 4 in Himalayan region.
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The results of the inversion are

811D = 4.58+.01 km/sec
By = 4.34+.01
hLID(lA) 194+1C km
Brip(yy = 9718
hLID(4) = 207+21
Appgsy = 674
Pripey T 58%S
Bep-sup = 27315

Again we observe no major change in the structure.

We conclude from all these tests that the stable sediment-

covered regions of the USSR are probably stable preCambrian
shields covered by sediments, that the Tibetan plateau is under-
» lain by relatively cold shield mantle material with no major
low-velocity zone at even moderate depths that might be ex-
pected of tectonically active zone. or of young stable regions,
that the mountainous collision zone between the Asian and
Indian plates have a prominent low velocity zone at moderat~
depths, that the Sinkiang~Mongolian active seismic zone has a
similar structure and that South Eastern China is also a
region of tectonic activity as indicated by the similarity of
its uppper mantle structure to the other two seismically

active regions.
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Arctic Study. We have measured fundamental mode Rayleigh
waves over a number of paths crossing the Arctic Ocean. We
have used as sources four earthquakes whose focal parameters

are:

4. Lena River Aug. 25, 1964 13:47:20.6 78.2°N 126.6°F
10. Eastern Aleutians(1) Feb. 6, 1965 01:40:33.2 53.2°N 161.9°W
11. Eastern Aleutians{2) Feb. 6, 1965 16:50:23.6 53.3°N 161.8°W
13. Western Aleutians Feb. 6, 1965 04:02:53 52.1°N 175.7°C

For each of these earthquakes we have obtained initial phases
either from the fault plane solution or from the radiation pat-
tern for Rayleigh waves (as in the case of the Lena River dis-
cusced above). We have obtained phase velocities by the single-
station method for seven paths crossing the Arctic over the
period range 50 to 208 sec. The paths are shown in Figure 32 .
It can be seen that none of these are purely oceanic paths.
The shaded area outlines out estimate of the boundary between
the continental shelf and the deep ocean basins. The fraction
of the geometrical path that each event has in the oceanic part

is as follows:

Event Total path length Oceanic length Fraction oceanic
1. Lena - ESK 4816 km 1904 km .40
2. Lena - KTG 3386 1823 .54
3. East Aleut(1) - KON 7483 4603 .62
4. East Aleut(1) - KTG 5933 916 .15
5. East Afeut(2) - KEV 6347 2334 .37
6. East Aleut(2) - ESK 7818 2714 .35
7.West Aleut. - KEV 6263 844 .13




FIG. 32. Map of Arctic region showing all propagation
paths used in dispersion and regionalization

analysis.
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To reduce the available data to information regarding
purely oceanic paths, we have decided to use the phase veloci-
ty data for the Lena River event recorded at KEV (see discus-
sion above for Eurasia) as a typical continental value and to
subtract these values , for the appropriate path length con-
tribution, from the phase delays observed for the above 7
path-events. Unfortunately, the two events East Aleut.(1) - KTG
and West Aleut.-KEV have such small parts of their total path
that are oceanic that we are subtracting two numbers of com-
parable size and the result is quite unstable. The unreliabil-
ity of the oceanic phase delay results for these two cases has obliged
us to exclude them from our data set. Accordingly, we have in-
vestigated the inversions of the phase velocity results for

the five remaining paths. The relevant data are given in Table 8:

TABLE 8

(Pure) Oceanic Phase Velocities (km/sec)

T(sec) Lena-ESK Lena-KTG E.AT(1)-KON E.AT{2)-KEV E.A1(2)-ESK

208 4.64 (4.83) 4.62 4.55 4.52
192 4.52 (4.61) 4.51 4.42 4.42
167 4.38 4.32 4.38 4.22 4.28
139 4.21 4.14 4.24 4.09 4.15
119 4.08 4.06 4.12 4.04 4.
100 4.01 3.99 4.08 3.96 4.07
69 3.95 3.90 4.00 3.91 4.00
50 3.9 3.82 3.98 3.89 3.92

With so few data, we have not been able to regionalize the
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the deep Arctic; the number of degrees of freedom in the data
is too small. The best we can do is to consider the deep Arctic
as a single province and investigate the consequences of invert-
ing an "average" phase velocity for the region. The average
phase velocity is obtained from the above table by weighting by
the oceanic path length in each case. The result is (omitting

the quantities in parentheses):

T (sec) c(km/sec)
208 4.59
192 4.47
167 4.32
139 4.18
119 4.10
100 4.03

69 3.97
50 3.92

These results can be compared with those obtained for Pacific

paths by Leeds (1973) from inversion of trans-Pacific phase
velocity data by methods similar to those described above for
trans-Eurasian paths. The pure-age phase velocities for the
Pacific can be derived from the cross-sections resulting from

the inversions; these are shown in Fig. 33 for Pacific ages

0-10 my, 20-40 my, 85-110 my. The Arctic data points are shown

as circles. The Arctic cross-section averages out to about a 30 my
Pacific structure. According to the model of Parker and Oldenburg

(1973), the 1lid thickness as a function of the age is
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z(t) = 9.41:;i km, with t the age in my. Thus, assuming that the
lid and channel S-wave velocities are of the same order as in

the Pacific, the age at which the Arctic began to open is cal-
culated to be about 70 my (before present), an unexpectedly small
guantity.

Theoretical seismograms. The main thrust of our work with

time series synthesis has been directed toward improving the
efficiency of existing computational techniques. This improve-
ment is required to permit us to extend the information contained
on the theoretical seismograms down through the period range
covered by the long-period instruments of the WWSSN. Although up
to the present time we have concentrated on laterally homogeneous
structures, in all other respects our models of the earth have been
highly realistic: approximately 200 layers are being used to model
the radial heterogeneity of the crust-mantle system of a spherical
earth, and the intrinsic attenuation is included.

A summary of the general methods we have applied in our
computations is given by Kausel and Schwab (1973), and Knopoff
et al (1974). An elaboration of, and certain justifications
for these procedures have recently been given by Schwab and
Kausel (1976). A recent contribution by Calcagnile et al (1976),
also completed under this contract, is also pertinent here when
only the surface-wave portion of the thoeretical seismogram is
desired.

The initial development of the algorithm and certain pro-

gramming improvements, which were carried out under the present
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Results of phase velocity dispersion for Arctic
region (circles). "“Standard" phase velocity
curves for Pacific age strips are shown for
comparison (Leeds, 1973). Because the Pacific
spreads at a different rate than the Arctic,
this gives a different age for the Arctic (see

text).
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contract, are contained in Nakanishi, Schwab and Kausel (1976),
and Nakanishi, Schwab and Knopoff (1976). These manuscripts
formed the necessary bridge between first generation and second
generation dispersion programs. First generation techniques

are hased on full, detailed specification — a structure, a
specific mode, and a specific period — from which a single

phase velocity at a time is sought; second generation dispersion
computations begin with only the structure and the mode specified,
and they then compute all phase velocities down to whatever
minimum period is desired. As the second generation software is
developed, computations for the group velocity, phase attenuation,
amplitude excitation function, and apparent initial phase are in-
corporated into the procedure (but not yet into a single, automatic
routine combined with the phase velocity computations).

In a series of five later papers under this contract (Kausel,
Schwab and Mantovani, 1977; Mantovani et al 1976, 1977; Mantovani,
1977 a,b) this second generation software was fully developed and
applied to the generation of multimode theoretical siesmograms
containing as many as 21 modes; each of thege was represented
over the entire period range down to 1 second.

The final stage of our work on the generation of complete
theoretical seismograms for torsional waves, was the development
of a third generation program. This routine is fully automatic,
and requires only the structural specification as input. The out-
put, which is obtained in a single, relatively short computer run,

contains all of the frequency-domain information required
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to compute theoretical seismograms for arbitrary source specifi-
cations. As desired, all body-wave and surface-wave arrivals,

for periods greater than ten seconds, are obtained from the 90~100
modes thus specified. Results from this work were recently pre-
pared and a preprint is appended (Liao, Schwab and Mantovani, 1977).
We are now in a position of being able to compare directly, the
entire experimental, torsional-wave seismograms from the long-
period WWSSN instruments with those computed from theoretically
specified sources and structures.

Our work on the algorithm and the programming on the Rayleigh-,
or spheroidal-wave theoretical seismograms, began with detailed
analysis and improvements of the basic direct method for handling
such calculations on a sph=rical, gravitating earth. 1In its
original form, this method was initially develoepd in the series
of papers by Hoskins (1920), Pekeris and Jarosch (1958), and
Alterman, Jarosch and Pekeris (1959); some numerical details con-
cerning such computations were given by Bolt and Dorman (1961),
and later, by Takeuchi and Saito (1972). In the appended manu-

script (Schwab et al, 1977) we describe: (1) the newly developed

simplifications of the usual algorithm, which has made it possible —

we believe for the first time — to develop a direct algorithm for
group velocity computation, that is independent of the usual
appeal to variational techniques; (2) the numerical problems that
are associated with this type of computation, in quite detailed

form, in relation to what has appeared previously in the literature;
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(3) our optimization of the improved algorithm, and the
efficiency of the optimization relative to various similar
computations problems.

Relative to the efficiency determination, the most per-
tinent results affecting the work on this contract are: (1) that
such computations — for Rayleigh~, or spheroidal waves on a
spherical, gravitating earth — are abcut six times more expensive
than the comparable torsional-wave computations, and (2) that
spheroidal waves can be handled on a non-gravitating earth for only
about twice the expense of torsional waves. From these results we
conclude that the present optimization is still too expensive
to use for the computation of theoretical seismograms for
spheroidal waves (down to periods of only ten seconds), but that
the optimization technique will be satisfactory for this purpose
if a means can be devised to approximate the removal of gravity
from the formulation. Such a technique has already been devised
(Schwab, 1977), but the numerical tests have only just begun,.

The final, practical purpose of our work under this contract —
application of our results to the discrimination problem — will
involve comparisop of complete theoretical and experimental
seismograms. It is theorefore important that we have as accurate
a means as possible of obtaining the instrumental constants from
the impulse response of the experimental record. These constants
then permit us to include, with a minimum of error, the effect
of the instrumental response on the theoretical seismogram. Our
improved scheme for inversion of the impulse response to obtain
the instrument parameters, is described in the appended preprint

by Mitchel (1977).

.o
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ABSTRACT

Algorithmic and numerical analyses are carried out
for Rayleigh-wave dispersion computations on a spherical,
gravitating earth. Our work is based on the direct, Alterman-
Jarosch-Pekeris formulation. For practical purposes, we fix
period and determine the associated phase velocity (or polar
order number). Neither this, nor integration downward from the

free surface -- both "non-standard” procedures -- results in
unexpected difficulties. The latter procedure yields a simpli-
fication of the computational algorithm, the clarity of which

al’ ws it to be extended to group-velocity evaulations. The AJP,
direct-integration formulation is optimized and compared with the
fastest -- Knopoff's method -~ of the techniques based on the flart,
homogeneous-layer approximation. The optimized form of the AJP
method (spherical) is three times slower than Knopoff's (flat,
non-gravitating) method when gravity is included in the AJP
formulation; and is 1.36 times slower when gravity is not included.
Additional programming would reduce the former estimate to a lower
bound of 2.42 times slower, and the latter, to a lower bound of 1.30.
In size and number, the treatment of integration "steps" in the
direct-integration procedure, is equivalent to the treatment of
"layers" in the homogeneous-layer approximation; thus the usual
assumption that the former method does a better job of treating
continuous parameter~depth distributions, appears to be invalid.

Overflow problems in the AJP formulation can be controlled by




-
simple normalization. Loss-of-precision problems appear to be
intrinsic to the AJP formulation. At a fixed period, this results

in the attainable accuracy of the phase velocity decreasing as
mode number increases; and, for fixed accuracy in the phase
velocity, as period decreases the maximum mode number that

can be treated successfully decreases.




1. INTRODUCTION

Dorman, Ewing and Oliver (1960) described the use of an elec-
tronic computer to calculate surface-wave dispersion for multilayered,
perfectly-elastic half-spaces. Their computations were based on

the technique devised by Thomson (1950) and Haskell (1953). Press,

Harkrider and Seafeldt (1961) also used the Thomson-Haskell tech-
nique, and with a more advanced computer, greatly improved the
speed of computation. Randall (1967) later applied Knopoff's
(1964) method to this problem and reported a further improvement

in speed for the Rayleigh-wave case.

In a later series of papers, Schwab (1970) and Schwab and
Knopoff (1970, 1971, 1972, 1973) improved the optimization, for
computer application, of both the Thomson-Haskell and Knopoff's
methods for flat, multilayered media. These papers also provide
complete details for obtaining full control over the accuracy of
the computations, and for generalizing the algorithms to include
computation of attenuation due to the intrimsic anelasticity of

the earth.

For Love waves, the use of spherica.-to-flat structure trans-
formations (Biswas and Knopoff, 1970; Schwab and Knopoff, 1971;
1972; 1973; Kausel and Schwab, 1973) makes it possible to carry
out all spherical dispersion, attenuation, and focal-response
problems using the optimized algorithms for flat structures. Sev~
eral attempts have been made to develope the same type of transfor-
mation for Rayleigh-wave computations (Alterman, Jarosch and

Pekeris, 1961; Bolt and Dorman, 1961; Biswas, 1972; Schwab and

e —— —— e e e ———— e ————— ————
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and Knopoff, 1972), but these have all yielded only empirical re-
sults which lack general applicability. Thus, at the present time

at least, it appears that one cannot apply transformation theory to
Rayleigh-wave dispersion computations on any arbitrary, spherical,
gravitating carth. Bhattacharya's(l1976) recent results -- although
we will not pursue this approach in the present paper -- suggest the
feasibility of an interesting new procedure for treating spherical,
gravitating structures: Gravitation alone might be handled by trans-
formation techniques, while Bhattacharya's approach could be used to
optimize the treatment of sphericity.

The primary purposes of the present paper are: (1) to report
on our study of the optimization of the direct computations (see
Wiggins (1976) for a discussion of computations based on the
variational technique), (2) to report the results of our study con-
cerning accuracy considerations, and (3) to determine the efficiency
of these direct computations relative to the analogous computations
for non-gravitating structures, Also, a new computational technique
is developed, for the calculation of group velocities, which does
not depend on the numerical evaluation of "energy integrals." Our
second purpose is to present ~- we believe for the first time -- an
explicit, quantitative comparison of the relative efficiencies of
the two basic techniques for performing surface-wave dispersion
computations: that in which an exact structuval specification is
employed with approximate mathematical methods, and that in which
exact analytical techniques are applied to an approximate model of

the structure, i.e.,, where the structure is replaced by a sequence

of homogeneous layers.




2. ALTERMAN-JAROSCH-PEKERIS (AJP) FORMULATION

The basic formulation for our problem (Pekeris
and Jarosch, 1958) involves the solution of three second-order,
ordinary differential equations constrained by a set of boundary
conditions. For purposes of numerical solution it is advisable
to reduce this system to six, linear, first-order differential
equations, as was done by Alterman, Jarosch and Pekeris (1959).
Bolt and Dorman (1961) applied this formulation, to the evaluation
of Rayleigh-wave dispersion, and reported on those numerical
details which it was economically feasible to investigate with
second-generation computing equipment. Detailed algorithmic testing
of accuracy, precision, and efficiency characteristics really
requires the present, third-generation machinery, which we have
employed in the current study; the work we report here can be

considered as the logical extension of the above series of papers.

To sketch the AJP formulation, if we let
§i=dyi/dr, where r is the distance from the center of the earth,

then the sixth-order system is

- r - -
[_Yl aj; a2 a3 0 0 0 [v1

2 a) azz azs azy 0 aze y2

vyl |23z O azz a3z, O 0 3

_k (2.01)
Ya ay) 4,2 ay 3 ayy ays 0 Yy

ys| |asy 0 0 0 0 1 ¥s

yj 0 Y agy 0 ags  agg Y
L - I I
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with y; and y; related to the components of displace-

ment ur(r,e,a).ue(r,a,@), and u®(r,8,¢) by

n im¢ iwt
u =y (e)e e

d m im¢ iwt (2.02)
Uy ya(r)dexn(e)e e

im o
= ya(r)xl(e)e

u im¢eiuc
¢ sinbd

For propagating surface waves diverging from the epicenter,

m_ 1, m, .2 m
[Pl +1—= -
Ky 2(PQ 1"Ql)’ (2.03)
for waves converging toward the epicenter,

m

2)' (2.04)

m_l . .m .2
x, =7 (Pymita

For a treatment of the situations which require
the use of (2.03), (2.04), or their sum, see Schwab and Kausel
(1976). In this same reference, the justification is given for our
major departure from previously reported computations of Rayleigh
wave dispersion on a gphere: Strictly speaking, Rayleigh waves
only exist on a sphere at the discrete set of frequencies corres-
ponding to integral values of the polar order number I . However,
fixing f and evaluating the corresponding angular frequency w does
not yield the dispersion data at equal frequency intervals, which
we desire to use in the usual numerical technique for obtaining
time series by inverse Fourier transformation. Schwab and Kausel
(1976) have shown that, for most practical applications of propaga-

ting surface waves, non-integral £ at equally-spaced frequencies




can be used without introducing significant errors; therefore,

we adopt the procedure of fixing w and computing i. or
c = aw/(L+1/2), (2.05)

where a is the radius of the earth. The relation between é
and the true spherical phase velocity is also treated by Schwab

and Kausel (1976). 1In equation (2.01),y, and y, are, respectively,

the radial dependences of the rr, and the r6 and ry components of

stress; yg and yg arise from the presence of tne gravitational

field.

Since, in any numerical integration procedure,
it is important to initiate the integration with accurate values,
we have chosen to proceed from the free surface downward. This
allows us to specify the initial vector exactly. The integration
is then carried down to a depth sufficient to make it immaterial--
to n significant figures in % or ¢~ -just how we terminate the
integration: with an approximation of a free surface or rigid
surface, for example. The fact that such a termination process is
valid has been checked by extensive numerical tests in the course
of this work. These tests follow the lines of the layer-reduction
experiments described by Schwab and Knopoff (1970; 1972), and will be
described in some detail below. In Section 7 we discuss the termina-
tion of the structure at depth by either a solid or liquid, homogen-

eous, gravitatiny sphere.




Here, we should point out that the warning
given by Takeuchi and Saito (page 241, 1972) 'against proceeding

downward from the free surface when integrating the system of

differential equations, or when forming the layer-matrix product
if applying the Thomson-Haskell technique or Knopoff's method,

does not appear to be justified by our experience. In the work

upon which we report herein, downward integration did not give
rise to any unexpected difficulties; in previous, extensive work
with matrix methods applied to Rayleigh-wave dispersion computations

(Schwab, 1970; Schwab and Knopoff, 1970; 1972), the formation of

i
i
matrix products upward toward the free surface (Thomson-Haskell i
formulation) was not found to have any advantage over formation of {

the product in the downward direction (Knopoff's formulation).

Continental structure. In this case,y2 and

Thus we can write the starting
4

y vanish, andy =~y (+1)/a atr =a.
5 - SO - =

vector as




L J
7.
- = [~ ] ~ B
yi(a) yi(a) J o] !—o —‘
|
yz(a) 0 0 0 0 E
]

y, (a) y, (a) lo 1 0 ;
, _ oo . |
55(3)- = =y1 (a) .ﬂ'a(a)‘ _.,,ys(a)‘ l(2.06)

y.(a) 0 0 0 o ;
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or

Yg (a)=y;(a)x;(a)+yz(a)Xz(a)+ys(ayxy(aj, (2.07)
and for r<a

Ys(r)=y1(a)X (r)+y3(a)X,(r)+ys(a)X3(r) (2.08)

The three quantities which are unknown -- y;(a), yi3(a),
and yg{(a) -- can be carried implicitly in the computations,

while we integrate the vectors whose starting values are known

exactly: X;, X, and X3. That is, we

integrate to obtain X; at depth; this is repeated, in turn,with

X, and X3. Thus we actually use equation(2.01l) in the form




-
8.
;i=AX< to integrate from the surface r = a to the depth at
i i - -
which the boundary conditions are to be applied: r = LI where

we can again express YS in terms of the undetermined coefficients

by using equation (2.08).

If we define a rigid boundary at depth by

y1(rg)=y3(rg)=ys(ry)=0, (2.09)

we then obtain three linear, homogeneous equations in three
unknowns ~—-the undetermined coefficients——and the determinant of
the coefficient matrix must vanish if we are to have a non-trivial

solution. Thus the dispersion function, FA' takes the form

(Xi(ro) ], [Xa(ro) ] [X3(r0) ],
Fy(c,0) = (X1 (ro)]s [Xo(rg)ls [X3¢ro2]s |, (2.10)

X1 (ro)]s [Xa(ro)]s (X3(rg)]s

zeros of which define valid (E,u) dispersion pairs. For the two
approximations to free boundaries at depth, we have used the

definictions

y2(rg) = yu,(ry) =0 (2.11)
and either
yel(rg) =-ys(rg)(R+1)/ry (2.12)




or

Ye(ry)=-ys(rg) (2+1)/a

which yield, respectively,

X (e) ]2

FB(E.w)= [Xl(ro)]“

xi(ro)] 6“':%1“[’(1 (re)]s

and

X1(ro)]2

ﬁ‘(E,m)ﬂ [Xl(ro)]u

Dceanic Structure.,

X2 (r)]2

[Xz(fo)]u

(2.13)

dispersion functions

X3t ];

(x3(ro)],

L4l

P—.+l R .
[Xz(ro):!s*‘;o—*[xz(m)}s RS E R S e EETCI

Xae ]2

(X2 (red ]y

In

X3(re)ls

X3erodl.

L+ p L i+l n - -
[Xl(ro)]s*%l[xx(roﬂs [Xz(fo)le*“:—[xz(ro)]s an(l’o)]e*“g‘an(fo)Js

(2.13)

this case, the analog of equation

(2.01) is, for the hcecmogenecous oceanic (liquid) layer,

Y1 by by
v2 by, b,
;5 4aGe 0
Yo be1 bgz
b —d L.

At r = a, y, vanishes and ye=-ys(L+l,/a, and we c

starting vector as

bes

- -
0 yl—
-0 y2
1 ¥s
bge Ye
.

(2.186)

an write the

———




YL(a)=

]
10.
vy (a) yi(a) 1 0
yz(a) 0 0 0
= Fy (a) +ys5(a) (2.17)
ys(a) ys(a) 0 1
ye (a) ~ys(a) (£+1)/a 0 -(L+1)/a
- 4 b . L L i
or
YL(a) = y](a) Zl(a) + ys(a) Zz(a), (2.18)
and for r <a
YL(r) = yj(a) Z;(r) + ys(a) Z,(r). (2.19)
Again, we carry the unknown quantities =-- y;(a) and yg(a)--

implicity, and integrate the vectors whose starting values we

know exactly: 2 and Z,, using equation (2.16) in the form Zi—B

On the oceanic side of the liquid-solid boundary at the bottom

of the ocean, r = r;,we then have
— =175 - .
[Zl(rl)Jl [z,(r )],

Y, (¢ )=y (a) ) + ys(a)

L l [z, (r) ]2 [z,(r 7> (2.20)

[z)(r)]s [z,(e10 ]
[Zl(rl)JG [ZZ(rl)}G

- - — -

At this boundary, y,, v, ys5, anu yg are continuous, y, must

vanish, and yj is undetermined. Thus on the solid sid«e of this

interface, we have

z..




Y (r;)=y;(a)

—

lzy ()
2 (r) 1,
0
0
EYCIORN
21 (ri)ls

+y3(ry)

|

+ys(a)

[Z22(xy) i)
Z,(e) iz
0
0
[22(r1) s
[2,(r1) 16

Yo (e =y (@)X (ry) + y3(rXa(ry) + ys(a)X3(ry),

and the integration proceeds and terminates,

exactly as in the continental case.

.

1.
(2.21)
(2.22)

from r; to rg,
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3. ALGORITHM FOR GROUP VELOCITY DETERMINATION

When treating Rayleigh waves on a spherical, gravitating
earth, the variational technique is usually employed tc compute
group velocities (Takeuchi and Saito, 1972, Section III). This
involves the evaluation, by numerical approximation, of integrals

having the form

J f(r) yi(r)yj(r) dr . (3.01)
o
Since the functions yk(r) become highly oscillatory for large
(radial) mode numbers, this numerical evaluation can become

inaccurate (Knopoff et al., 1974, Appendix). Further,l yk(r)i

become spuriously large at depths much below those at which there
is significant energy in the mode, at the period being treated.
Although, somewhat surprisingly, these spurious magnitudes do not
seem to affect the location of a root of the dispersion function,
they can cause large errors in the evaluation of integrals such as
(3.01). Thus one must specify r

2 the value of r below which

the spurious magnitudes occur, prior to sceking the group velocity,

and then evaluate
f(r)yi(r) yj(r) dr (3.02)
ra
in place of (3.01). However, without prior knowledge of the group

velocity, r, can be quite difficult to determine in period ranges

such as thgfé in which the energy shifts back and forth repeatedly
between the crustal wave guide and the low-velocity channel in the
upper mantle (Panza, Schwab and Knopoff, 1972; Frantsuzova, Levshin
and Shkadinskaya, 1972; Schwab and Knopoff, 1971; 1972). Since

the integrals must eventually be evaluated to obtain excitation
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functions for earthquake sources, and since group velocity can be
used to specify whether the energy is in the crust or low-velocity
channel, it is desirable to develope analgorithm for obtaining these
velocities, which is not dependent upon prior knowledge of r,.

Since we have a dispersion function, F(Efil, which vanishes
when the point (E,M) falls on a dispersion curve, we can use implicit-

function theory to define the group velocity Y:

sl - 59 (3.03)
with
3\
2} F
9_(-3 . ~(8w)2 ,
d (i) . (3.04)
5T,

where the partial derivatives are evaluated at a point on a
dispersion curve. If we agree to use the rigid boundary at depth,

then

(X1 [k ] [Xir) ]y

(X r)] 32 (rd ] [Xaee)]; N

(X (r) ] s (Xa(ro)]s [X3(rg)]s

el Kl X300,

il peply Kol

Xi(eg)]s (Xa(e)]s [X3(r)]s

K] Ko ]1 X))y
+ X ) ]sXaeod)]s X3rod]s (3.05)

D‘; (re)]s [X; (rg)]s (X3Cro)]s
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and
. IF
F = (3?h (3.06)

is given by the same type of expression as (3.05), with dots
replacing the primes. The elements IXi(rO)Ij in (3.05) and
(3.06) are obtained exactly as described in Section 2. The

evaluation of ixi(ro)‘j and lxi(ro)!j requires a simple extension of

the algorithm.

Continental Structure. 1In this case we start with the

sixth-order system

Y=AY, (3.07)
and form
Y =A'Y+AY' (3.08)
- . .
Y= AY+AY, (3.09)
Here again, we —se these equations of motion in terms of the vectors,
X., X'., X.. t' . we know exactly at the surface:
1 1 1
T2 A' X, + AX', (3.10)
1 1 1
r . .
X. = A X. + AX, . (3.11)
i i i

Since X, can be determined indepet lently, we can treat A'Xi and
i

R X. as known vectors at each depth, and we have
i




>
[}
g
>
+
o

(3.12)

1
>
PG
+
o

; : : (3.13)

where

Ci(r)=A'(r)Xi(r)=~Zp(t)u (3.14)

D/ G207 (X (0] W

[pg-2u(3r+20)/ G+2)r] [X, (r) 1 5+[X, (0) ]
_e __ aw -

D, (r)=A(r)X  (r)=- =3 (2c41) 0

[ow O/ r2uye] (X, ()]
0

(-4mce] [x,(0)]3+[1/r] [x; ()]s

(3.15)




Ocvanic structure.

system (2.16), and form
7
Y

1
i

#
[+~

These equations are then used with

solutions at the surface,
Z'. = B'Z.

i i

z. = Bz, +
i i

Here we
—_ -
yi
yz
Y5

L Ya

— —
Yl
y2
yS
yé

L

Z.:
1

+ BZ.
1

16.

begin with the fourth-order

— ~
¥
T
y2
+B (3.16)
¥'s
|
-
—_ —
7y
Y,
+B (3.17)
95
95
L

the vectors for which we have

(3.18)

(3.19)




which can be written in

at each depth:

where

Ei(r)=a'(r)zi(r)=[zz(i+1)/r2w3]

ci(r)=é(r)zi(r)=[—a(zn+1)/52r2w]

and

H (r)=g(o) [z, ()] - [170(0)] [z, ()],

VA

N

terms of known

[4nGo(r)] 1 ()

L J

~— -

H. (r)
1

[g(r)o(rﬂﬂi(r)

0

Ji(r)

- [Zi(f)]s

17.

vectors, B'Z., and BZ .,
i i

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

———
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L ()=-p(r) p*r? /2(8+1) +g2(n)] [2, ()] + g(r){[zi(r)]z + () [z,(0]s)  (3.29)

J; (0)=4nG{-p(r)g(r) [2, (1) ]1 +[2, ()] +[p (1) 42/4rG] [z, (r)] 5} (3.26)

Application of (3.20) and(3.21) will allow us to carry the integration to the

bottom of the oceanic layer at r=r;, where we can apply the boundary conditions

of continuity of y;, ¥ 1,¥1,s yz,y'z,yz,ys,y’5,§5,y6,y'6,§5, and the vanishing of

yq,y’g,ih, to obtain the necessary starting values to apply in (3.12) and (3.13):

A - -
[z'1(e0]) [z ()],
[z ,Ge]2 [z 2(0)]2
0 4]
X'y (ry) = X' )=0,X"3 (r))= (3.27)
0 4]
(1D ]s (22 (0)]s
[z') (r1]6 [z2 (0]
B i L i

and a like set of starting values with primes replaced by dots.

Although precise computation-time estimates are given in
Section 5, a few general observations will be appropriate here. At
any given frequency, the phase velocity is evaluated by repeated
determination of the dispersion function until a root is bracketed;
this root {sthen refined until the desired accuracy ; is obtained.
Each determination of F involves the integration of the three

vectors xi. I1f we assume that Xi(r) have been saved from the last

set of integrations to obtain a value of é, then to obtain the group

velocity at this same frequency requires the integration of six
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vectors, i.e. approximately twice the amount of time it takes to
compute a single value of the dispersion function while iterating

for c. The number of iterations required in the computation of ¢

is variable, but for the present purpose, ten iterations may be
taken as a representative value. Thus 30 integrations would be

required to obtain é, and only 6 to obtain é. To the accuracy of

this estimate then, i can be obtained in only 20 percent of the time

the evaluation of ¢ requires.
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NUMERICAL TECHNIQUE FOR INTEGRATING THE SYSTEM OF DIFFERENTIAL

EQUATIONS

To optimize the computaticns, it is useful to constrain

the structural specification somewhat. For this purpose:

1. The liquid, oceanic layer is limited to a single,
homogeneous layer. A special fourth-order Runge-Kutta technique
(see below) is used for the first three steps of the integration--
step size of about ! km-- and a fourth-order predicator-corrector method (see
below) is employed, if necessary, to continue the integration to

the bottom of the oceanic layer with the same step size.

2. The sedimentary layers are limited to a sequence of
homogeneous layers, each of which does not exceed 1 km

These layers are treated with one fourth-order Runge-Kutta step.

The subscdimentary crustal layers must also
be homogeneous, and each is treated as the oceanic layer; the step

size fixed at about 1 km.

4. The sub~Moho mantle requires continuous velocity-

depth and density~depthdistributions , although discontinuities

in thxcknegs.
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can be approximated as closely as desired by specifying large
gradients. As with the oceanic layer,three Runge-Kutta steps

are followed by a fourth-order predictor-corrector method. The
initial step size is 1.5625 km, with which we execute three Runge-
Kutta, and seven predictor-corrector steps. The step size is then

doubled and five predictor-corrector steps are perf¢ -med; this
procedure is repeated until the step size reaches 12.5 km, and the
predictor-corrector method is then appli:d with this fixed step
size. The results of our numerical testing have shown that this
dependence of step size on depth is sufficient to vield 4-signifi
cant-figure accuracy in the computed values of é. Concerning this
point, one should review the treatment given by Schwab and Knopoff
(1972), in which piecewise-continuous velocity- and density-depth
distributions are treated with the homogeneous-layer approximation.
Comparison will show that the thickness of the layers as a function
of depth, in that approximation, is roughly the same as the integration
step size in the present analysis. That is, to the degree of accuracy
which two surh dissimilar methods can be compared, if the step sizes above

are used as layer thicknesses in the homogeneous layer approximation, that

technique will yield 4 significant figures in the computed values of E .

— - - —— T = -~
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Runge-Kutta technique. To start the predictor-corrector

method we have used a Runge-Kutta technique designed specifically
for this purpose. Here one is only interested in being able to
minimize the bounds ¢n the truncation error. Ralston (1962) has
treated this problem, and gives the following algorithm for
obtaining the first four points for starting a predictor-

corrector method.

In terms of a single, first-order differential equation:

y = £ (r.y) , y(r ) = Y, s (4.1)
at r,;, rp..., the Runge-Kutta“methnd is given by

N - I .

)n+1 yn i=1 wiKi (4.2)

Here, yn=y(rn),the wi are constants, and

i-1
= +. L .. K. .
Ry=h f(r +ah .y j=131jh3) (4.3)
with hn=rn+l-iﬂ’ and
a] = J
azx = 2/5
(4.4)

ay = (14-373)/16
a, T 1
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Ba1 = a2
By = a3z-B3;
832 = [a3laz=a,)]/[2a,(1~2a,)] (4.5)
Buy = ay-Byy-B43
G, = (l-aj) [a,+a;y -1-(2a3-1)?]
42 2a;(a3-0y) [6ajsaz-4(as+as) + 3]
(1-20,) (1-0,) (l-ay)
B - =
43 az(az-ay) [6a,03 -4(0z403)+3)
T “%'*[1'2(02+03)142 G203
Wy = (2 oy -1)/[12G2(03—G2)(1—a2)1
(4.6)
Wy o (1-2 az)/[1203 (63'uz)(1-a3)]
wy = _;_+[2(a2+a3)-31/[12(1-a2)(1_%)]

Predictor-corrector method. The fourth-order method we

have used (Hamming, 1959) is fully described, along with the details
concerning doubling of step size, by Ralston (1960). Highly practi-
cal details concerning the combination of the Runge-Kutta and predic-
tor~corrector routines, which we have employed, will be found in
Anon. (1970). One should be warned, however, that the usco of the
subroutines therein described is highly inadvisable for our present

purposes. The use of these general purpose subroutines camn increase

computation expense by a factor of 10 to 100 over that of the optimized

algorithm.




5. OPTIMIZATION OF THE ALTERMAN-JAROSCH~PEKERIS FORMULATION

The key to optimizing the integration is to apply our
knowledge about this specific problem to specify all the depths ro
at which a..(r) are to be evaluated. The evaluation of these

P
clements can then be removed from the innermost, integration loops

of the program. The details concerning these depths are contained

in the preceding section. In Figure 1, the optimized scheme for

the evaluation of aij(rk)-- for the solid sedimentary layers, subsedi

mentary crustal layers, and mantle-is indicated in outline form,
This figure shows that most of the procedure for evaluating ai'(rk)
1] X
can even be removed from within the wand é loops: within the é
loops each new g value requires only 6N+l assignments, 6N+l multipli
cations, and N+l additions; within the w loop, each new w value
requires only 3N+l assignments, N+l additions, and 2N subtraction.,
where N is the number of depths at which a‘.(rk) must be evaluated.
N ij
All other portions of the element determinations are performed
external to these loops. In Figure 2 the same information is given
for the elements, b, . (r) of the matrix describing the integration
R % B

through the liquid, oceanic layer. Again, all elements can be
evaluated external to the integration routine.

In the integration procedures themselves, it is very
important to form matrix products, such as those in (2.01) and
(2.16), in an explicit munner. This permits full use to be made

of the many zero elements, and those that are independent of x,

or are equal to another matrix element. For example, *he basic

[ ———
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AJP matrix multiplication for solid layers is illustrated in

Figure 3.

In reports on our earlier work with Love-wave dispersion
and dispersion-attenuation computations, for both flat and
spherical structures, it was possible to give the short, key,
FORTRAN program segments (Figure 2, Schwab and Knopoff, 1972;
Figures 4 and 5, Schwab and Knopoff, 1973). These together
with descriptions of the root-bracketing and root-refining proce-
dures, completely specify the optimization when the multi-,homoge-
neous-layer approximation is employed. When this approximation is
used with Rayleigh waves on flat structures, the optimization can
be specified in the same manner (Figures 11, 12 and 13, Schwab and
Knopoff, 1972). When employing the method of direct integration
of the equations of motion, it is not possible to exhibit the
complete program optimization in this compact, simple manner for
Rayleigh-wave dispersion on a spherical, radially heterogeneous,
gravitating earth. However, it is possible to present the most
important part of the algorithm as a relatively compact program
segment. This is given in Figure &4a,which illustrates the predic-
tor-corrector method we have applied to the integration from below
the Moho to the selected value of ro; the automatic doubling of
integration step size is included in the segment. Most of the
computation time is spent in this program segment, which is entered
with:

COEFFl = (4/3) H

COEFF2 = 3H

COEFF6 (121/36) H

H = -25/16;

the indices for the successive integration step-size regions are

given in Table 1; for the details concerning B(I,J), see the

description of subroutine DHPCL (Anon., 1970). 1In this type of

Programming there are important, machine-dependent considerations:
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the manner in which the 6x6 matrix elements are stored in
memory, and the manner in which indices are

handled in the program segment given in Figure 4a. In fact,
the indices ITP1, ITP3, ITP8, ITP9, ITP10 which are used for
compactness in Figure 4, actually slow computation speed on
the IBM 360/91; these subscripts are best used in explicit
form IT+1, I1T+3, IT+8, IT+9, IT+10. The key program segment is
given in the form shown in Figure 4a for two reasons: (1)
to illustrate the logic as clearly and simply as possible,
and (2) to provide an i1llustrative example of the importance
of handling subscripting and storage in the manner most
appropriate for a given machine. The time required to
execute DO-loop 170 once, specifies the necessary time to
execute one integration step for each of the three vectors

Xi ; thus, to perform one integration step in forming the

dispersion function, DO-loop 170 must be executed three
times. The time for one integration step in forming F is
termed the characteristic time 1, which we use to illustrate
the importance of correct subscripting and storage. The
characteristic time for the segment in Figure 4a is

489 usec/step/iteration. By simply reversing the order of
the subscripts of B(I,J), this time is improved by

92 usec/step/iteration; if ITPl, etc. are used explicitly
as IT+1, etc., 1 is decreased still further by an amount of
67 usec/step/iteration; and if ili are stored more efficiently,
still another 44 psec/step/iteration can be saved, bringing
1 down to 286 usec/step/iteration. DO-loop 170, in a form

incorporating the above improvements, is shown in Figure 4b.
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It should be understood that 286 usec/step/iteration is a

Jower bound; the corresponding effective characteristic time -
given in (5.02) -- must reflect time spent in other parts of
the program than DO-loop 170, e.g., time spent 1in starting the

predi-tor-corrector scheme with the Runge-Kutta procedure.

Our computations have been performed on IBM 360 and 370
installations: a 360/91 in Los Angeles, a 360/65 in Bari, and
a 370/145 in Santiago and in Cosenza. The first installation
was nlso used in the final optimization of the flat-structure
Rayleigh-wave work (Schwab and Knopoff, 1972), which allows us
to make an accurate evaluation of the 1eclative characteristic
times (Schwab and Knopoff, 1972) for computations with flat,
non-gravitating structures and with spherical, gravitating

models. In the former case, this time is

FLAT T RAYLEIGH=110 psec/layer/iteration (5.01)

(which corresponds to Knopoff's method applied to a sequence

of homogeneous layers), and in the latter case,

SPHERICAL T RAYLEIGH=336 usec/step/iteration (5.02)

(which corresponds to the optimization of the AJP formulation
herein described). Again, these characteristic times were

measured on the IBM 360/91 at UCLA. As we have noted above,




an integration "step" can be considered nearly equivalent to
a "layer" in computations based on the homogeneous-layer
approximation. Also, to the accuracy possible in this type of
comparison, the "iterations" required in the two cases (see
Schwab and Knopoff (1972) for details concerning iteration
procedures) can be considered equivalent. Thus, the relative
efficiences of the two types of Rayleigh-wave dispersion
computation can be evaluated by simple comparison of their
characteristic times, and we find that the inclusion of
sphericity and gravitation triples actual computation time.
Thus, the time required to integrate each of the three vectors
over depth in the spherical, gravitating case, is the same as
that required to carry out the analogous operation -- the
formation of the matrix product -- for the flat, non-gravitating case.
To obtain a valid comparison of the direct-integration
method, with the homogeneous-layer technique, clearly we should
not include gravity in the former method. The removal of

gravity reduces the vectors Xi,

that must be integrated, from
three to two, and the number of elementary operations (multi-
plications and additions) in (2.01) from 34 to 23. Thus, the
ratio of computation times for non-gravitating and gravitating
spheres, when treated with the direct-integration method, is

approximately (2x23) / (3x34); or, for the non-gravitating case,

SPHERICAL T RAYLEIGH-151 usec/step/iteration, (5.03)

-




Thus the direct integration metauod, for a non-gravitating
sphere, is only 36 percent slower than the optimized com-
putations for a flat, non-gravitating structure, where the
latter is treated with the homogeneous-layer approximation.
From this result we are led to conclude that attempts
to devise Rayleigh-wave transformation techniques -- which
have hitherto been concentrated on curvature corrections to
permit spherical, gravitating struztures to be treated with
algorithms for flat, non-gravitating models ~- might also
be directed toward gravity corrections that would allow one
to use programs for spherical, non-gravitating structures to

handle the spherical, gravitating case.

A final improvement in the lower bounds of the AJP
characteristic times is possible. The limiting bound for
the gravitating case was obtained by including the integration
of all three Xi, simultaneously, within DO-loop 170; the re-
sult was 266 ;;ec/step/iteration. I1f the two vectors of the
non-gravitating case are handled simultaneously within the

loop (sce Figure 4c), the lower bound of I becomes

143 pusec/step/iteration.

It is obviously of interest, to those involved in surface-
wave computations, to have some idea of the relative speeds of
such computations for the various computers currently in use at
the larger installations. In Table 2 we present the results of
a first effort to summarize this information for the computers

that are available to us for testing. The test routine we
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have employed is that given by Schwab and Knopoff (Figure 2,
1972). A 100-layer structure was used; the program segment
was enclosed within a DO-loop that was executed either 100 or
1000 times; case 1 involved tests with §<Bm, and case 2, tests

with £>Bm' Results from a more extensive set of relative computer-

time Lests, for both Love- and Rayleigh-wave dispersion com-

putations are given by Porter et al. (1977),




6. EXISTENCE OF SOLUTIONS AS A FUNCTIOY OF NUMERICAL AND

ALGORITHMIC PROCEDURES

On 1BM 360 equipment, large-scale numerical work is
routinely carried out in double precision: about 16 decimal
digits. Except where indicated otherwise, this precision was
used to investigate the existence criteria for solutions from
our oplimization of the basic AJP formulation.

Qur testing procedure followed the lines of the
layer-reduction e¢xperiments described by Schwab and Knopoff
(1972): At each of a set of periods, E is computed for a com-
plete range of terminating values, ro, for the integration. At
each, fixed period, by comparing th;—values of E as a function
of rg, the range of rg, over which E is stable to 4 significant
figures is immediately evident. In terms of ro and period, our
results for an oceanic, and a continental shield structure
(Figure 5) are given in Figure 6; the fundamental and first
seven higher modes are treated in each case.

The results are similar to those previously obtained for
Rayleigh waves when the homogeneous-layer approximation is
employed (¥Figures 14, 15, 17, Schwab and Knopoff, 1972): At
each period, a certain minimum amount of structure (maximum ry)
must be retained to ensure 4 significant figures in E. This
maximum value of rg is a physical limitation. For the mnade and
period of interest, there is significant energy content down

to a depth of a-ry , and the structure above this point thus

affects all &4 figures of c.
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In the initial program testing, it is useful if one can
integrate to any depth, irregardless of whether this results in loss
of accuracy in the computed phase velocity, or in the expenditure of
more computer time than if the integration were terminated at the
minimum acceptable depth for the desired accuracy in the phase velo-
city. The use of a very large value of ro. or more precisely, a
large number of wavelengths of structure, will result in overflow,
thus a simple, temporary solution to this problem is useful. Such a
solution is the simple extension of the normalization technique
described by Schwab and Knopoff (1970; 1672). The application of

normalization to the direct-integration procedure is quite simple;

it 1s not necessary to begin normalization until the application of the

predictor-corrector method has begun in the mantle. To normalize
all one need do is determine the maximum of the absolute values of

i at the end of each integration step; one then divides all

y4(ri) and ;.(r.) by this value, where r., are the seven positions
i ; i i 3

at which Y and yi must be specified so as to permit the next step

of the fourth-order predictor-corrector method. Seven, rather than
four il are required to allow the automatic doubling of step size
when ;ercain depths are reached.

For ease of reference, a normalization schcme
which is appropriate for the program segment in Figure 4a, is
given in Figure 7. Two warnings: (1) ZXf only sparing use of

normalization is planned, or it is to be invoked from an IF

statement, the segment in Figure 7 will be satisfactory; how-
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ever, if large-scale use is envisioned, efficiency requires the
inclusion of normalization directly within the coding in Figure 4a.
(2) Unless absolutely necessary, normalization should not be in-
cluded in these computations; it can resclt in a very significant
increase in computation time.

Our numerical tests of the overflow problem were performed
with the average (oceanic) earth structure given by Wiggins (1968) .
The results are given in Table 3. For IBM 360 equipment, when using
7 8
double-precision computation, overflow occurs when [|F} = 10 0to 10 o.
Returning to Figure 6, for routine use of the AJP
formulation, it is important to integrate only down to slightly
below the position the ryo lines in the figure, and to thereby
minimize computation time and expense. For this purpose we have

devised empirical "laws" for determining the maximum depth

to which the integratior must be performed if the resulting
phase velocity is to be valid to 4 significant figures. The
data for these determinations are collected in Figure 8. The
“"laws" specifying the number of wavelengths of structure to be
retained, if 4 significant figures are desired in the computed

phase velocities, are

H/A = 7-¢ for mode 0 (6.01)

H/A =9.5-¢ for mode 1 (6.02)

H/A = [11 + 4 M-2)] - ¢ for modes 2-7 (6.03)
10

where A 1s the wavelength, and M is the mode number.
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From the results shown in Figures 6 and 8 we also
have the maximum periods and values of § which can be determined
without taking the structure of the core into consideration
(other than to determine the values of g(r)). These results

are shown in Figure 9, along with the corresponding values of the

minimum order number }.

Relative to the computation of theoretical seis-
mograms, the combination of the results in Figure 9 and those
given by Schwab and Kausel (Section 5, 1976), indicate a potentially

useful conclusion: (1) When &>2m only the crust-mantle

in’
system need be used in the computations; E can be computed at
specified, equally~spaced frequencies and inverse Fourier trans-
formation can be used to calculate the theoretical seismogram for

this range of periods; and the first term of the asymptotic ex-

pansions for Pkm and sz can be used (possibly corrected by

automatic numerical interpolation from the data in Figures 2 and

3 of Kausel and Schwab (1976)). (2) When <2

min’ the core

must be included in the computations; w should be computed at
integral values of %, and summation over % should replace
Fourier synthesis; and the exact, integral-% expressions should

be used to evaluate the assoclated Legendre functions.
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A point of considerable interest to those 1involved
in the actual computation of surface wave dispersion, is whether
or not a difficulty analogous to the Thomson-Haskell "loss-of-
precision” problem(Schwab and Knopoff, 1970; Schwab, 1970) is
inlrinsic to the AJP formulation. In computations based on
the homogeueous-layer approximation, when the original version

(Haskell, 1953) of the Thomson-Haskell formulation for Rayleigh

waves is used, this problem can cause serious difficulties if

the computer is employed in a low-precision mode. To test for

an analog to this "loss-of-precision'" problem, in our optimization
of the AJP formulation, we simulated single-precision (about 6
decimal digits) computation by replacing DO-loop 160 (Figure 4a)
in our double-precision program, with the program segment shown

in Figure 10. The function SNGL accepts a double-precision
argument, and ieturns the single-precision equivalent.

The results of our single-precision tests are
similar to those from the original Thomson-Haskell formulation
(Figure 2, Schwab and Knopoff, 1970), and are illustrated in
Figure 11. In the r-0 range shown, our results indicate that
there is no problem with modes 0-4 in double-precision computations;
but when computations are reduced to single precision, the loss-of-
precision problem is clearly illustrated. In the latter case,
there is seen to exist a minimum value of rg, below which we

cannot go and still retain a given accuracy in the computed phase

Wder a
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velocities. Thus the AJP formulation does indeed exhibit the
analog to the Thomson-Haskell loss-of-precision problem.

Since practical work with dispersion computations
on IBM 360 equipment is routinely carried out in double precision,
it is importamnt to estimate the numerical limitations imposed by
the loss-of-precision problem in this computational mode. The
results of our tests at 50 and 25 seconds are shown in Figures
12 and 13. Less extensive tests were also carried out at a
period of 65 seconds. At a given period, the right-most point of
each of the smoothed curves was used to determine the maximum
accuracy possible for each mode. This information was then
collected in the Figures 14 and 15. Although the data is
necessarily sparse, due to the expense of this type of experiment,
the results are strikingly clear: For a fixed period, as we go
to higher and higher mode numbers, the attainable accuracy in E
becomes less and less; for a fixed accuracy in E, as we go
to shorter and shorter periods, the maximum mode number that
can be successfully treated becomes smaller and smaller.

In the near future we intend to present the details of

our numerical analysis of the various possible methods for dealing

with the loss-of-precision problem. See, for example, Wiggins (1968),

Nolet (Appendix A, 1976), Neigauz and Skadinskaya (1972), Gilbert

and Backus (1966), and Takeuchi and Saito (Section II.D.4, 1972).
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7. TERMINATING BOUNDARY CONDITIONS

In our present programming efforts we are concentrating
on the computation of phase velocities at arbitrarily specified
(equally-spaced) frequencies. To keep our algorithms as simple
as possible, and to avoid the difficulties involved in the
evaluation of spherical Bessel functions of non-integral order,
we have chosen to terminate our integrations at depth with free,
or rigid, terminating boundary conditions. For completeness, we
also include th: technique for: (1) terminating the integration
within the mantle by applying terminating boundary conditions for

a gravitating, homogeneous, solid sphere below r, and, (2) termi

nating at the mantle-core boundary by applying the conditions for a homo-

geneous liquid sphere below L

In the former case, just above ro we have

Y+(ﬁ ) = yi(a)X1(rg) + y3(b)X,(rg) + ys(a)X3(ryp) (7.01)

where

a for a continental structure
b = (7.02)

r; for an oceanic structure
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For the homogeneous, gravitating, solid spnere below P there

are three classes of solutions: Yi(r), Y,(r), y3(r); thus just
below g
Y_(ro) = D Yl(ro) + E Y?_(ro) + M Y3(r0), (7.03)
where D, E, and M are undetermined constants. Applying the boundary
conditions of continuity of y; at rp, we obtain
= a— -

ol [Xeol: [X@ol: el -l

Xir) ]z [Xptrd]s  [X50e00]5  -[YyGepd]s -lYa(ro)]s
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and the dispersion function has the form

F(w,T) = det(N)

-G ]y) ivata) o
-l¥a(eo)]2| ys(ey O
—[Yg(ro)]3 ygla 0
-{Y3(ro)]uf| D 0
-(sro))s|| E ¢
-[¥3(r0)]e M_J Y
(7.04)
(7.05)
(7.06)
e




The components of Yi(r) are given in convenient form by Takeuchi

and Saito (1972): Y,(r) bytheir equations (98) with the negative

sign in (99); Yz(r) by (98), with the positive sign in (99); and YJ(r)

by their equations (100). Note that their definition of Ye differs
slightly from that used here.

When the structure used to form the dispersion function is
terminated at the mantle-core boundary by the conditions for a

homogeneous liquid sphere below Ty above ty we have (7.01); below,

Y (rg) = P Y,(rg) + Q Ya(rg) , (7.07)

where P and Q are undetermined constants,

and Yi in (7.07) have the form

y1(ro)
y2(xryo)
Yi(l‘o) = (7.08)
ys{rg)

ye(rg)
L -

Again, Takeuchi and Saito (1972) give the form of these vector
components for the gravitating, homogeneous, liquid sphere. From

the conditions of continuity of y;, y2. ¥s, Y¢ at rg, and the

vanishing of y,(rg), we have
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- - 9
Kol Xl Kl -[¥@el; Yol | i@ 0
irol:  eGels Kol -[Y@ol: -[¥Y3(ep)]; y4{b} |0
Xirodls [oGrodly [aro)]e 0 0 ysa)Y=fo |  (7.09)
X )]s [Xeod)]s [X3rd]s -[¥ ()]s -[¥3(ep)]s P 0
X )]s Xplrdlg [ ()] -[Y,(gd]s ~[¥3(ryd]s Q 0

g JL 4L

or

RS=0, (7.10)
and the dispersion function takes the form
F(w,c) = det(R) . (7.11)

To obtain the group velocity we still employ (3.03) and (3.04).
The forms of F' and fywhich result from (7.06), or (7.11), can be obtained by
analogy with the way in which (3.05) is obtained from (2.10). 1In the present
case, however, the analog of (3.05) will comprise the sum of six, sixth-order
determinants when (7.06) is used to form the dispersion function, and the sum

of five, fifth-order determinants when (7.l1) is used.

As would be expected, our numerical tests of a
terminating solid sphere show that, to obtain a given accuracy
in E , less structure must be retained in this case thamn when

using terminating rigid or free boundaries within the solid mantle,.

A complete set of tests, comparable to those in Figure 12, was
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performed for a period of 50 seconds; the results showed that
the increase in the maximum ry values was surprisingly independ-
ent of mode number and o : (300+25) km, or in most cases,
about 24 fewer integration steps when terminating with a solid
sphere. Thus the use of the "correct'" terminating boundary
condition appears to be important only for the lowest (radial)
mode numbers. OQur tests with mode 7 at 25 seconds, show the
increase in ry to be about (110+10) km. Thus, from our limited
number of tests, it appears that §ro/rg is roughtly constant with
about the value 0.14+0.02 ; where ry is maximum value required
by the structural limitation when the condition of a rigid
terminating boundary is employed, and Sry; is the increase possible
in ro when one then employs the condition of a terminating solid
sphere.

Tests of the loss-of~precision problem were also per-
formed with the "correct"” boundary condition at depth. Again, a com-
plete set of tests was carried out at 50 seconds, and mode 7 was
tested at a period of 25 seconds. The right-hand extremes of the
analogs of the smooth curves in Figures 12 and 13, occurred at the
gsame depths in these new tests; thus, as a result of the increased
rg values of the upper portions of the curves when solid-sphere
termination is used, the maximum accuracy for any given mode is

significantly improved by using this type of boundary at depth,
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8. CONCLUSIONS

An analysis of direct, Rayleigh~wave dispersion com-
putations on a spherical, gravitating earth has been performed
using the Alterman-Jarosch-Pekeris (1959) formulation.

1. No difficulty was encountered when we reversed the
usual procedure, for practical purposes, and computed phase
velocities (or polar order numbers) at specified periods.

2. Integration from the free surface downward, again
reversing the "standard" procedure, resulted in no unexpected
difficulties. In fact, this procedure much simplified the
specification of the algorithm for integrating the system of
differential equations to obtain phase-velocity dispersion.

This procedure makes the generalization from the algorithm for
continental, to oceanic structures relatively trivial; also,

it makes it possible to develop direct algorithms for obtaining
group velocities for the two types of structures. The usual
variational techniques are not required for this latter purpose.

3. Our optimization of the AJP formulation is based on
removing all function evaluations from the innermost, integration
(over r) loops of the program. In fact, most of the evaluation
procedure for ai,(rk) can even be removed from the phase velocity
and frequency loops. This optimization of the AJP formulation
yields a characteristic time of 336 useconds/integration step/
iteration for spherical, gravitating structures, and a time of

151 useconds/integration step/iteration for spherical,
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non-gravitating structures. These characteristic times, for
the AJP direct-integration procedure, provide a basis of com-
parison with the homogeneous-layer approximation for a non-

gravitating flat structure, which has a characteristic time

of 110 usec/layer/iteration (Knopoff's method, Schwab and
Knopoff, 1972). The lower bounds of the characteristic

times, for our final optimizations of the AJP formulation, are
266 usec/step/iteration for the gravitating case and

143 usec/step/iteration when gravity is not included. All of
the above times apply to the IBM 360/91 computer at UCLA.

4. Our results here,combined with those of Schwab

and Knopoff (1972), indicate that an integration "step" (in
the AJP procedure) can be considered nearly equivalent to a "layer"
in computations based on the homogeneous-layer approximation.
Also, to the accuracy possible in this type of comparison, the
"iterations” required in the two techniques (see Schwab and
Knopoff (1972) for details) can be considered equivalent. Thus
the relative efficiencies of the two types of Rayleigh-wave dis-
persion computations can be evaluated by simple comparison of the
above characteristic times. The fact that approximately the same
number and sizes of "steps" must be used in the direct-integration
procedure, as number and sizes of "layers" in the homogeneous-
layer approximation, means that the usual assumption that the
former method does a better job of treating continuous parameter-
depth distributions, appears to be invalid.

5. The overflow problem in the AJP formulation can be
controlled by simple normalization. Program segments are given

which describe the procedure explicitly.
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6. A loss-of-precision problem appears to be intrinsic
to the AJP formulation. Results of this problem: For a fixed
period, as mode number increases, the attainable accuracy in
the phase velocity decreases; for a fixed accuracy in the phase

velocity, as period decreases the maximum mode number that can be

treated successfully decreases.
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Table 1. Constants for integrationm through successive step-size regions
illustrated in program segment given in Figure 4. Constants

correspond to 4 significant figures in computed phase velocity.

1 N1(I) N2(I) Integration
step size
(ka)
1 5 11 -1.5625
2 12 16 -3.1250
17 21 -6.2500
4 22 * -12.5000

* N2(4) is specified s0 as to allow integration to proceed to the
deepest point within the solid mantle, while maintaining a step
size of -12.5 km. NEND is determined, at each period, by the input
value of r,; it must satisfy NEND £ N2(4).
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Table 3.

P e et S RS

Results of numerical tests of the overflow

problem when normalization is not included in our
optimization of the basic AJP formulation. An
average (oceanic) earth structure (Wiggins, 1968),
and a period of 50 seconds, were used in the tests.
The value of ro is the maximum at which overflow
occurs; ﬁl& ;; the corresponding number of wave-
lengths of structure, from the surface of the earth

down to r=rg. These, and larger values of H/A, yield

overflow,

Mode Yo

Number (km) H/)
1] 4600 8.7
1 4300 8,3
2 4000 8.2
3 3800 7.9




Figure 1.

Figure 2.

Figure 3.

Figure 4a.

FIGURE CAPTIONS

Schematic representation of optimized scheme for
evaluating the matrix elements aii(rk) in the
treatment of the solid sedimentary layers, the
subsedimentary crustal layers, and the mantle.
The quantities A and y are Lamé's constants, G

is the gravitational coastant, and N is the number

of depths at which a; (rk) must be evaluated.

A3 kT

Schematic representation of optimized scheme for
evaluating the matrix elements bi](rk) in the
treatment of the homogeneous oceanic (1iquid) layer.
The quantity o ls the compressional-wave velocity,

p is the density, g(r) is acceleration due to gravity,
and M is the number of depths at which bi (rk) must

i3 k7

be evaluated.

(a) FORTRAN IV program segment for the basic matrix
multiplication for our optimization of the AJP
formulation for solid layers; (b) symbolic repre-
sentation of (a), which is used in Figure 4; and
(c) definition of one-dimensional array used in (a)
to represent 6x6 matrix in (2.01). The integer IPT
is the index specifying the value of r, and Al

through A36 are dimensioned to 300.

FORTRAN IV program segment in which the predictor-
corrector portion of the integration from below the Moho
to ro is handled; most of the computation time is spent

in this segment. The boxed segments refer to the basic
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Figure 4b.

Figure 4c.

FORTRAN IV program segment demonstrating sub-
scripting and storage improvements, relative
to the segment in Figure 4a, that are required
to optimize computation time on an IBM 360

¢

computer.

FORTRAN IV program segment illustrating our

final optimization for the non-gravitating case.




Figure 5. Oceanic and continental (shield) models used in

program testing.

Figure 6. Values of r,, the depth at which integration is

terminated, which yield 4-significant-figure
accuracy in the computed values of é with the
optimized version of the basic AJP formulation.
At each period, 4-figure accuracy is attained
only if r, is specified to be smaller than the

indicated curve ,

Figure 7. Normalization scheme appropriate to program segment

\ in Figure 4a. The procedure should be included
between statement numbers 160 and 170 in Figure 4a,
See text for warnings concerning loss of efficiency

b when normalization is employed.

Figure 8§, Results of tests for determining general, multimode
"laws" for specifying the required values of r  to
use when computing phase-velocity dispersion for

mantle Rayleigh waves, if § is desired to 4-figure

accuracy.

Figure 9. Maximun periods, maximum phase velocities, and
minimum order numbers, %, that can be used if
§ is desired to 4-figure accuracy, when the inte-
gration is limited to the mantle and the core is
excluded fr o the computations (other than for use

in the determination of g(r)).




Figure 10.

Figure 11.

Figure 12.

Figure 13.

FORTRAN 1V Program segment used to simulate
single-precision computations when Jéing our
double-precision optimization on the basic AJP
formulation.

This program segment is used to

replace DO-loop 160 in Figure 4a.

Test of the effect of reducing IBM 360 com-
putations from double (about 16 decimal digits)
to single precision (about 6 decimal digits),
while keeping period fixed at 50 seconds. For
a given mode, in order to obtain ¢ significant
figures 1n the computed phase velocity, ro must
not exceed the value given by the upper portion
of the dashed line (structural limitation) nor
fall below the lower portion (loss-of-precision

limitation).

IBM 360 double-precision tests of loss-of-precision
problem at a period of 50 seconds. At left, raw
results of structure reduction experiments; at right,
smoothed curves for each mode., Latter curves are
drawn such that all data points, for a given mode,

fall to the right of corresponding curve.

IBM 360 double-precision tests of loss-of-precision

problem at a period of 25 seconds.
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Figure 14. Maximum possible mode number, n X’ for which
¢ significant figures can be obtained with our
optimization of the AJP formulation. This
limitation is due to the loss~of-precision
problem.
Figure 15. Relationship between maximum possible mode number,

noax? and minimum period, for several values of O.
This limitation of our optimization of the AJP

formulation is due to the loss-of-precision problem.
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Elements to be evaluated external to both w and ¢ loops:

aj)a a2 as
Ayl az2 aj
as ay2 ay

3 ays
4 26
4 Ae e

Auxiliary quantities to be evaluated external to both w and

c loops:
dz1=4u (3A+2uw) ay o /x
d.‘3=-2u/r2
d;s=lay2/r
de 3=-4nGp
d55=l/r2
e«s=4u(k+u)axz/r2
r—-(u loop
2
OMEGSQ=w
DO 10 I=1,N
TEMP=-a¢ (I) XOMEGSQ
azi(I)=d,,(1)~TEMP
10 f£43(I)=d.;(I)~TEMP
— ¢ loop
ORDER=4% (2+1)
DO 20 I=1,N
a13(I)=d,;(I)*ORDER
a3 f{I)=ay; (I)*xORDER
ag3(I)=dg3 (I)*ORDER
az4 (I)=a,; (I)*ORDER

ags (I)=des (I)*xORDER

20 ay3(I)=£f,3(I)+e,3(1)*ORDER




Evaluate bge external to koth w and ¢ loops. Auxiliary
guantities to be cvaluated external to both w and c loops:

XLAINV=1/020 Pes=Ps 2P P21='P259(r)
pxz=-l/0r2 Ps1=-Pssg(r) sg1=-4ng(r)/r
p52=4nG/r2 pzz='9(r)/r2
P15=-l/r2 p25=Pz2P

—— w loop
RHMOSQ=-ON2
OMSQIN=l/u)2

DO 10 I=1,M
hay (I)=p2, (1) *xOMSQIN
qa1 (I)=s2, (I)+RHMOSQ
he;(I)=pe1 (I)*xOMSQIN
hy;z2(IY=pjy2(I)xOMSQIN
hy(I)=p2; (I)xOMSQIN
hez (I)=pe2 (1) xOMSQIN
hys{(I)=p1s(I)xOMSQIN
h,s(I)=p2s (I)xOMSQIN
10 hgs(I)=pes (I)xOMSQIN

—c loop

ORDER=% (2+1)

DO 20 I=1,M

by, (I)=h,, (I)*ORDER

by, (I)=beg¢ (I)-b22(I)

by (I)=hz; (I) xORDER+qz (I)

bg, (I)=he, (I)xORDER

b, 2 (I)=h;,{I)xORDER+XLAINV

bg2 (I)=hg,(I)xORDER

b, s (I)=h,s (I)*ORDER

bss (I)=hzs(I)*ORDER
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1

(b)

Al
A2
-AlS

@ 24 As

0

YBAR(1) =
YBAR(2) =

{a) YBAR(3) =
YBAR(4)=

YBAR(S5) =
YBAR(6) =

Al (IPT)*Y(1)+A7 (IPT)*Y(2)+A13 (IPT) *Y (3)

A2 (IPT)*Y (1)+AB(IPT)*Y(2)+Al4 (IPT)*Y(3)+
A20(IPT) *Y (4)+A32 (IPT) *Y (6)

AXS(IPT) *( Y(3)-Y(1))+A21(IPT)*Y(4)

A4 (IPT)*Y(1)+ALl0(IPT)* Y (2)+Al6 (IPT)*Y(3)+
A22 (IPT) *Y (4) +A28 (IPT) *Y (5)

A5 (IPT) *Y (1) +Y (6)

Al8(IPT)*Y (3)+A30(IPT)*Y(5)+A36 (IPT)*Y(6)

[xoa, ter]]

A7 Al3 0 0 0
A8 Al4 A20 0 A32
0 AlS A2l 0 0
Alo Ale6 A22 A28 0
0 0 0 0 1
0 Al8 0 A30 A36

—— A s bee A e




BEGIN APPLICATION OF PREDICTOR-CORRECTOR METHOD.

DO 110 I=1,6
110 PMNUSC(I)=0.0D+00
HH=0,5D+00*1.5625D+00
LOOP OVER REGIONS WITH DIFFERENT STEP SIZES.
DO 180 IREG=1,NUMREG
HH=HH+HH
NSTART=N1 ( IREG)
NSTOP=N2 (IREG)
NTEMP=5
IT=0
LOOP OVER DEPTH IN CURRENT STEP-SIZE REGION.
DO 170 N=NSTART,NSTOP
IF(IT.EQ.4) GO TO 115
IT=NTEMP-4
ITP1=1IT+1
ITP3=1IT+3
ITP8=1T+8
ITP9=IT+9
ITP10=IT+10
115 DpoO 120 I=1,6
SET PREDICTOR P(I),
P(I)=B(IT,I)+COEFF1*(2.0D+00*(B(ITP10,I)+B{(ITP8,1))
-B(ITP9,I))
SET MODIFIED PREDICTOR XM(I).
120 XM(I)=P(I)-.9256198347107438D+00*PMNUSC(I)
IPT=1PT+1

||

DO 130 1I=1,6
SET CORRECTOR C(I)
C(I1)=.125D+00*(9.0D+00*B(ITP3,I)-B(ITP1,I)
+COEFF2* (XMBAR(I)+2.0D+00*B (ITP10,I)
~-B(ITP9,I)))
PMNUSC(I)=P(I)~C(I)
SET SOLUTION VECTOR AT NTH DEPTH.
130 Y(I)=C(I)+.07438016528925620D+00
. *PMNUSC (I)
IF (N.EQ.NEND) RETURN
SET DERIVATIVE OF SOLUTION VECTOR AT NTH DEPTH.

[venr, 1er]

IF(NTEMP.GT.7) GO TO 150
NtMPP7=NTEMP+7
DO 140 I=1,6
B(NTEMP,I)=Y(I)

140 B(NTMPP7,I)=YBAR(I}
NTEMP=NTEMP+1
GO TO 170

150 po 160 1=1,6
B(1,1)=B(2,I)
B(ZII)=B(3lI)
B(3,I)=B(4,I)
B(4,I)=B(5,I)
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B(5,1)=B(6,I)
B(6,I)=B(7,1I
B(7,I)=Y(I)
B(8,7T)=B(9,1I)
B(9,1)=B(10,1I)
B(10,I)=B(1l1,I)
B(12,I1)=B(13,I)
B(13,1)=B(14,1)
160 B(14,X)=YBAR(I)
170 CONTINUE
RESET STORED VALUES OF COEFFICIENTS IN PREPARATION FOR
DOUBLED STEP SIZE.
COEFF1=COEFF1+COEFF1
COEFF2=COEFF2+COEFF2
COEFF6=COEFF6+COQOEFF6
RESET STORED VALUES OF Y(I),YBAR(I),and PMNUSC(I) IN
PREPARATION FOR DOUBLED STEP SIZE.
DO 180 I=1,6
PMNUSC(I)=8.962962962962963D+00* (Y(I)
~B(1,I))~COEFF6* (YBAR(I)+B(8,I)
+3.0D+00*(B(12,1)+B(10,I)))
B(2,I1)=B(3,I)
B(3II)=B(SII)
B(4,I)=B(7,1)
B(9,1)=B(10,I)
B(10,I)=B(12,1)
180 B(11,I)=B(14,I)




DIMENSION B(6,14),Y(6),YBAR(6),XM(6) ,XMBAR(6) ,P(6),C(6),PMNUSC(6),
1 A(2090)

EQUIVALENCE (Y(1),Y1)

EQUIVALENCE (XM(1),XM1)

EQUIVALENCE (XMBAR(1),XMBAR1)

1PT=-18

LOOP OVER DEPTH IN CURRENT STEP-SIZE REGION.

DO 170 N=NSTART,NSTOP
IF(IT.EQ.4) GO TO 115
IT=NTEMP-4
115 DO 120 I=1,6
SET PREDICTOR P(I)
P(1)=B(I,IT)+COEFF1*(2.0D+00* (B(I,1T+10)+B(I,1T+8))-B(I,IT+9))
SET MODIFIED PREDICTOR XM(I).
120 XM(1)=P(1)-.9256198347107438D+00*PMNUSC(I)
IPT=1PT+19
XMBAR(1)=A(IPT)*XM(1)+A(IPT+1)*XM(2)+A(IPT+2)*XM(3)
XMBAR(2)=A(IPT+3) *XM(1)+A (IPT+4) *XM(2)+A (IPT+5) *XM(3)

1 +A(IPT+6) *XM(4)+A(IPT+7)*XM(6)
XMBAR(3)=A(IPT+8)* (XM(3)-XM(1) ) +A(IPT+9) *XM(4)

XMBAR (4)=A(IPT+10) *XM(1)+A (IPT+11)*XM(2)+A(IPT+12) *XM(3)

1 +A(IPTH+13)*XM (4)+A(IPT+14) *XM(5)
XMBAR(5)=A(IPT+15)*XM(1)+XM(6)

XMBAR(6) =A(IPT+16) *XM(3)+A(IPT+17) *XM(5)+A (IPT+18) *XM(6)
DO 130 I=1,6

SET CORRECTOR C(I)
C(I)=.125D+00*(9.0D+00*B (1, IT+3)-B(I,IT+1)+COEFF2* (XMBAR(I)+2.0D+0
1 *B(1,IT+10)-B(1,1IT+9)))
PMNUSC(I)=P(1)-C(I)

SET SOLUTION VECTOR AT NTH DEPTH.

130 Y(I)=C(I)+.07438016528925620D+00*PMNUSC(I)
IF(N.EQ.NEND) RETURN

SET DERIVATIVE OF SOLUTION VECTOR AT NTH DEPTH.
YBAR(1)=A(IPT)*Y (1)+A(IPT+1)*Y (2)+A(IPT+2)*Y(3)
YBAR(2)=A(IPT+3) *Y (1)+A(IPT+4) *Y (2)+A (IPT+5) *Y (3)

1 +A(1PT+6) *Y (4) +A (IPT+7) *Y (6)
YBAR(3)=A(IPT+8)* (Y (3)-Y(1))+A(IPT+9)*Y (4)
YBAR(4)=A(1PT+10) *Y (1) +A(IPT+11)*Y (2) +A(IPT+12) *Y (3)

1 +A(IPT+13) *Y (4) +A (IPT+14) *Y (5)
YBAR(S)=A(IPT+15)*Y (1)+Y (6)

YBAR(6)=A(IPT+16)*Y (3)+A(IPT+17)*Y (5)+A(IPT+18) *Y (6)
IF(NTEMP.GT.7) GO TO 150
DO 140 I=1,6
B(I,NTEMP)=Y(I)
140 B(I,NTEMP+7)=YBAR(I)

NTEMP=NTEMP+1

GO TO 170

t
.




C BESET STORED VALUES OF Y AND YBAR IN PREPARATION FOR NEXT INTEGRATION

C STEP.

150 DO 16C I=1,6
B(I,1)=B(1,2)
B(I,2)=B(I,3)
B(I,3)=B(I,4)
B(1,4)=B(I1,5)
B(I,5)=B(I,6)
B(I,6)=B(I,7)
B(I,7)=Y(I)
B(1,8)=B(I,9)
B(I,9)=B(I,10)
B(I,10)=B(I,11)
B(I,11)=B(I1,12)
B(1,12)=B(1,13)
B(I,13)=B(1,14)

160 B(I,14)=YBAR(I)

170 CONTINUE
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DIMENSION B(4,14),D(4,14),X(4),Y(4),XBAR(4) ,YBAR(4L) ,XM(4),YM(4),
1 XMBAR(4) ,YMBAR(4),P(4),Q(4),C(4) ,F(4) ,PMNUSC(4),
2 QMNUSF (4) ,A(1430)

EQUIVALENCE (X(1),X1)

EQUIVALENCE (Y(1),Y1)

EQUIVALENCE (XM{1),XM1)

EQUIVALENCE (YM(1),YM1)

EQUIVALENCE (XMBAR(1),XMBAR1)

EQUIVALENCE (YMBAR(1)YMBAR1)

IPT=-12

C LOOP OVER DEPTH IN CURRENT-STEP-SIZE REGION.
DO 170 N=NSTART,NSTOP
IF(1IT.EQ.4) GO TO 115
IT=NTEMP-4
115 DO 120 I=1,4
C SET PREDICTORS P(I) , Q(I) .
P(I)=B(1,IT)+COEFF1*(2.0D+00*(B(I,IT+10)+B(I,IT+8))~B(I,IT+9))
Q(1)=D(1,IT)+COEFF1*(2.0D+00*(D(I,IT+10)+D(I,IT+8))~-D(I,IT+9))
C SET MODIFIED PREDICTORS XM(I) , YM(I) .
XM(1)=P(I)~.9256198347107438D+00*PMNUSC (1)
120 YM(I)=Q(1)-.9256198347107438D+00*QMNUSF (1)
IPT=IPT+13
XMBAR (1)=A(IPT)*XM(1)+A(IPT+1)*XM(2)+A(IPT+2) *XM(3)
YMBAR (1)=A(IPT)*YM(1)+A (IPT+1)*YM(2)+A(IPT+2)*YM(3)
XMBAR(2)=A(IPT+3) *XM(1)+A(IPT+4)*XM(2)+A (IPT+5) *XM(3)

1 +A(IPT+6) *XM(4)
YMBAR (2)=A(IPT+3) *YM(1)+A(IPT+4) *YM(2)+A (IPT+5) *YM(3)
1 +A(IPT+6)*YM(4)

XMBAR (3)=A(IPT+7)* (XM(3)-XM(1) )+A(IPT+8) *XM(4)
YMBAR(3)=A(IPT+7) * (YM(3)-YM(1) )+A(IPT+8) *YM(4)
XMBAR(4)=A (IPT+9) *XM(1)+A (IPT+10) *XM (2)+A (IPT+11) *XM(3)
1 +A(IPT+12) *XM(4)
YMBAR(4)=A(IPT+9) *YM(1)+A (IPT+10) *YM(2)+A(IPT+11) *YM(3)
1 +A(IPT+12) *YM(4)
DO 130 I=1,4

C SET CORRECTORS <C(I) , F(1) .
C(I)=.125D+00*(9.0D+00*B(1,IT+3)-B(I,IT+1)+COEFF2* (XMBAR(I)+2.0D+0

1 *B(1,IT+10)-B(1,IT+9))) .
F(I)=.125D+00%*(9.0D+00*D(1,IT+3)~-D(1,IT+1)+COEFF2%*(YMBAR (1)+2.0D+0
1 *D(I,1T+10)-D(I,1T+9)))

PMNUSC(1)=P(I)~C(I)
QMNUSF(1)=Q(1)-F(I)
C SET SOLUTION VECTORS AT NTH DEPTH.
X(1)=C(I)+.07438016528925620D0+00*PMNUSC (1)
130 Y(1)=F(1)+.07438016528925620D+00*QMNUSF (1)
IF(N.EQ.NEND) RETURN
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C SET DERIVATIVES OF SOLUTION VECTORS AT NTH DEPTH.
XBAR(1)=A(IPT)*X (1)+A(IPT+1)*X(2)+A(IPT+2)*X(3)
YBAR(1)=A(IPT)*Y (1)+A (IPT+1)*Y (2)+A(IPT+2) *Y (3)
XBAR(2)=A(IPT+3) *X(1)+A(IPT+4) *X (2)+A(IPT+5) *X(3)

1 +A(LPT+6) *X (4)
YBAR(2) =A(IPT+3) *Y (1)+A(IPT+4) *Y (2)+A(IPT+5) *Y(3)
1 +A(IPT+6) *Y (4)

XBAR(3)=A(IPT+7) *(X(3)-X(1))+A(IPT+8) *X(4)
YBAR(3)=A(IPT+7)*(Y (3)-Y (1) )+A(IPT+8) *Y (4)
XBAR (4)=A(IPT+9)*X(1)+A (IPT+10) *X (2)+A(IPT+11)*X(3)
1 +A(IPT+12) *X (4)
YBAR (4)=A(IPT+9)*Y (1)+A(IPT+10)*Y (2)+A(IPT+11)*Y(3)
1 +A(IPT+12) *Y (4)
IF(NTEMP.GT.7) GO TO 150
DO 140 1=1,4
B(I,NTEMP)=X(I)
D(1,NTEMP)=Y(I)
B(I,NTEMP+7)=XBAR(I)

140 D(I,NTEMP+7)=YBAR(I)
NTEMP=NTEMP+1
GO TO 170

C RESET STORED VALUES OF X , Y AND XBAR , YBAR 1IN PREPARATION FOR NEXT
C INTEGRATION STEP.

150 DO 160 I=1,4
B(1,1)=B(1,2)
B(1,2)=B(1,3)
B(1,3)=B(I,4)
B(I,4)=B(1,5)
B(I,5)=B(1,6)
B(1,6)=B(1,7)
B(I,7)=X(1)
B(I,8)=B(1,9)
B(1,9)=B(1,10)
B(1,10)=B(I,11)
B(I,11)=B(I1,12)
B(I,12)=B(1,13)
B(I,13)=B(I,14)
B(I,14)=XBAR(I)
D(I,1)=D(I,2)
D(1,2)=D(1,3)
D(I,3)=D(1,4)
D(I,4)=D(1,5)
D(I,5)=D(1,6)
D(1,6)=D(1,7)
D(1,7)=Y(1)
D(1,8)=D(I,9)
Dp(1,9)=D(1,10)
D(I,10)=D(I1,11)
D(X,11)=2(1,12)
D(I,12)=D(I1,13)
D(1,13)=D(1,14)

160 D(I,14)=YBAR(I)

170 CONTINUE
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C NORMALIZATION,
AMXINV=1,0D+00/DMAX1 (DABS (B(7,1)) ,DABS(B(7,2)),
1 DABS (8(7,3)) ,DABS(B(7,4)),
2 DABS(B(7,5)) ,DABS(B(7,6)))
DO 165 1I=1,6
PMNUSC(I)=PMNUSC(I) *AMXINV
Y(I)=Y(I)*AMXINV
YBAR(I)=YBAK(I) *AMXINV
DO 165 J=1,14

165 B(J,I)=B(J,I)*AMXINV
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150 DO 160 I=1,6
B(1,I1)=SNGL(B(2,1))
B(2,I1)=SNGL(B(3,1))
B(3,1)=SNGL(B(4,1))
B(4,I1)=SNGL(B(5,1))
B(5,I1)=SNGL(B(6,1))
B(6,I)=SNGL(B(7,1))
B(7,I)=SNGL(Y(1))
B(8,1)=SNGL(B(9,1I))
B(9,I1)=SNGL(B(10,1))
B(10,I)=SNGL(B(11,I))
B(11,I)=SNGL(B(12,1))
B(12,1)=SNGL(B(13,1))
B(13,I)=SNGL(B(14,1))

160 B(14,1)=SNGL(YBAR(Z))
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RESEARCH NOTE
GENERATION OF COMPLETE THEORETICAL SEISMOGRAMS
FOR SH III
Enzo Mantovani
Summary

Earlier efforts to generate the entire theoretical
seismograms, including both body and surface waves for
realistic sources buried in a radially heterogeneous
anelastic, spherical Earth, are extended to include the
summation of sixteen modes. The comparison between a
real seismogram and theoretical time series, relative to
different attenuation models in the upper mantle, yields
information concerning the anelasticity under the Pacific

Ocean.




Introduction

Complete seismograms which include both body and surfa
ce waves for a spherical, anelastic, radially heterogeneous
Earth have been generated by simple inverse Fourier tran-
sformation of the propagating Ffundamental and higher-mode
surface waves (Nakanishi et al.,1977, Mantovani et al.,1977).
Efficient computational algorithms permit us to deal with
highly realistic models of the Earth, whose radial hetero—
geneity is approximated by 200 layers, and to employ 2000
frequency points per radial mode.

Theoretical seismograms

The tests we report here were carried out on a CIT-11
oceanic structure (Anderson and Toksoz, 1963). The first
Bixteen Love wave, or torsional modes were used, and for e~
ach, the dispersion, attenuation and excitation are computed
down to a minimum period of 1 second. The source model we
have adopted is a dip-slip displacement dislocation on a ver
tical fault at a depth of 180 km.
In Fig. 1 we illustrate the improvement in the details of
the theoretical seismograms as the number of radial modes
used in the synthesis increases.From top to bottom, as the
number of modes increases,the amplitude, clarity and short
period content are seen to increase for each arrival in a
manner corresponding to the depth of penetration of the mo-
des and the depth at which the arrival is produced: the first
8ix modes appear sufficient to reproduce, almost completely,
the Sa surface waves train, that is, the late-arriving, domi
nant energy whose penetration is limited to approximately
400km of depth (Kausel et al.,1977); in the second trace,
synthesized from the first eleven modes, alsc the shallow
body wave phase SS, having a group velocity of about 5.7
km/sec, appears. to be almost completely formed; in the last
trace , synthesized from 16 modes, the deeper body wave pha
ses 5 and SS, i.e,, the first bursts on the time series be-
€in to appear as two resolvable pulses, but are still develg
ping inamplitude and short-period content.
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The core reflections ScS and sScS, whose penetration is much
greater than that of the first 16 modes, at the predominant
periods comprising these pulses, are still unrecognizable
in the seismograms,

In Fig. 2 we show a range of results out to an epic.n_
tral distance of 8000 km; the direct waves and those reflec-
ted by the surface of the Earth are recognizable in almost
every case; the waves reflected by the core however are re-
presented only by thelr long period components ( see traces
for distances of 3000 and 4000 km.). Relative to the corre-
sponding figure in Part II (Mantovani et al.,1977), it is
possible to note a general igprovement in the impulsive
shape and resolution of individual body waves and is parti-
cularly clear at short distance in those traces for the
15-100 WWSSN instrument.

The comparison between experimental and theoretical sei
smograms for 30-100 WWSSN instruments is given in Fig.3.

Details concerning the event and a prelimlnary compari-
son between theoretical and experimental time ser.es using
surface waves 18 reported by Kausel et al. (1977). Our pur-
pose here 1s to continue the discussion, begun in Part II,on
the gqualitative aspects of the theoretical -« ~xperimental
comparison as more and more higher modes are included in the
synthesis of the theoretical traces., We also report on some
tests of the sensitivity of the amplitudes and arrival times
of the pulse bursts to the model of the Earth's intrin
sic attenuation and to the source parameters.

In Part II the variation of relative amplitudes of body
and surface waves caused by changes in crustal and upper-man
tle attenuation was noted, and it was sugg:.ted that this
effect might be a useful tool in the investigation of the
Barth's intrinsic anelasticity. We have used two models of
attenuation, Model I is based on model MM8 of Anderson et
al.(1965). This model was obtained from measurements of the
decay of Rayleigh and Love waves traveling globe circling
paths; thus it cannot be expected to be an accurate represen-
tation of the anelasticity in a specific oceanic region.,
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Model II is based on that given by Mitchell (1976) derived
from inversion of Rayleigh-wave attenuation measurements in
the "older portions of the Pacific crust and upper mantle",
Models I and II are shown in Fig.4.

Since the average anelasticity in the first 400 km is very
similar for model I ( Q = 0,00825 ) and
model II ( Q = 0.00774 ) the Sa waves
have about the same attenua*ion. The ratio of amplitudes of
Sa/S is about the same for both models since amplitudes of

S are only slightly affected by varlations of anelasticity
in a small portion of their path. Since Sa waves sample the
uppermost 400 km of the structure almost uniformly, they are
more sSensitive to the average attenuation in this region than
to its detalled depth distribution,

& comparison of traces A and B (Fig.3), with thke help of TA-
BLE 1, indicates that, for a source at 180 ki, the. relative
amplitudgs of S and Sa are not so different £2£‘mode1 I and
I1. The striking feature of trace B, relative to A, is the
remarkable increase in the amplitudes of SS arrivals. It is
reasonable to suppose that this effect is connected with the
lower attenuation of model II between about 250 and 700 km,
that ig in that part of the structure in which the SS rays
have a gignificant portion of their path.

A comparison of the well pronounced SS phase in trace B, with
even the largest amplitudes around the same arrival in the
experimental serles, leads us to suspect that model II has
a drop in attenuation which is too iarge between 250 and 700
km of depth (Fig.4).
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On the basis of the results shown in Fig.1, we infer that the
above cobservations are little affected by the finite number
of radial modes used in this study since the phase SS appears
to be converging both to a definitive wavelet form and ampli-
tude.

A final note in this series, which will describe theoretical
seismograms generated by even more radial modes, will give
more information on this point,

To investigate further the effect produced by changes in the
average anelasticity of the crust and upper mantle, we gene~
rated time series (Fig.3,trace C) corresponding to an anela=
sticity distribution derived from model I, but with the pha~
se attenuation 32 , reduced to 0.000700 sec/km from the top
of the low-velocity channel down to the 400 km discontinuity.
Comparison of traces C and A shows an appreciable decrease

in the amplitude ratio S/Sa, and a significant increase of
the energy in the tail of the Sa wave train.

As a limiting case for the anelasticity teste we have also
exhibited the time series (Fig. 3, trace D) for a perfectly
elastic Earth. In this case ,for reasons reported in Part 1I,
the surface waves completely dominate those body waves that
penetrate deeply.

The phases SS show a less drestic decrease in amplitude be-~
cause they are relatively strongly affected by the high atte-
nuation in the upper mantle.

To give a representation of the effect , on the time series,
produced by variations in source depth, we present theoreti-
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res as traces A,B,C,D but with a focal depth of 140 km,

We see that varlation of the source depth has an effect

on the arrival times and the amplitudes of body waves; the
feature of the time series,which is most sensitive to the
source depth, at least for the focal and structural parame_

ters we used, i1s the amplitude of the SS phase,

"
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Fig., 1

Fig, 2

Fig. 3

8.

FIGURE CAPTIONS

Representation of the effect of adding more higher (radial)
modes in the synthesis of theoretical sismograms recorded

at the surface of the Earth, Source mechanism is a dip

slip displacement dislocation on a vertical fault at a depth
of 180 km, Epicenter-station Separation is 6788 km, The
model we have used for the intrinsic anelasticity of the
Earth is an adaptation (Fig.4) of model MM8 (Anderson, Ben

Menahem & Archambeau , 1965) to our oceanic structure,

Torsional-wave response, at the surface of the Earth, to

a dip-slip displacement dislocation on a vertical fault,
at a depth of 180 km, The expected body-wave arrival times
are indicated for s(e ), SS (A), Scs (w), sS (m ), sScs
(®) . see caption of Fig.1 for anelasticity model,

Comparison of theoretical and experimental seismograms

for 30-100 WWSSN instruments, 6788 km from the epicenter;
short traces are copies of the long-period experimental
record (SH) measured at Honiara (HNR) for the €vent occur—
ring atthe foot of the Kamchatka Peninsula at 14:30:30.3
GCT on 1964 December 26 (See Xausel et al,, 1977 Ffor full
details on this event, our theoretical treatment of the
source mechanism, and the analysis of the Sa portion of

the time series). Traces denoted by capital letters are
theoretical seismograms: trace A represents the anelasti
city Model I ( Fig, 4 ) ; trace B, anelasticity Model IT
(Fig. 4); trace Cc, Mpdel I with the phase attenuation B,
reduced to 0.000700 sec/km from the top of the low velo-
city channel down to the "400-km" discontinuity; trace D

does not include Artermmarian in +ha Pameh mAAAl  Mwaman
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Fig. 4
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9.

E, F, G, and H represent the same models respectively as
A, B, C and D but with the source depth reduced from 180
to 140 km,

S-vave velocity structure, transverse-wave phase attenua-
tion Bz' and intrinsic attenuation 0_1, obtained from the
adaptation, to our velocity structure, of two anelasticity
models reported in the literature: (I) world-wide average
model (Anderson, Ben Menahcm, Archambeau, 1965), (II) O-
ceanic model (Mitchell,1976), Model I is given by solid
lines, Model II by dotted lines ,
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TABLE 1_ :
P
¥
Amplitude~ratios s/sa and ss/sa measured, peak to peak, on the ’
traces A, B, C, E, F and G in Fig, 3.. !
180 km 140 km ’
A B Cc E F G -
S/Sa 0.66 0,62 0.54 0.59 0.50 0.43 ‘
i
SS/Sa 0.27 0.39 0.25 0.48 0.58 0.41
r
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DEFINITIONS OF QUANTITIES USED IN THIS PAPER

() Angular deflection of seismometer boom in radians
/6 Angular deflection of galvanometer mirror in radians
w, Angular frequency of seismometer free period, = 177/71 , {radians/sec)
W2 Angular frequency of galvanometer free period, = )W/Tl‘, (radians/sec)
&. Seismometer damping parameter, = \\3 Wy
¢z Galvanometer damping parameter, = VWJLUZ

A, Seismometer damping constant (1.0 = critical damping)
\\; Galvanometer damping constant (1.0 = critical damping)
G, Seismometer coupling constant

J2 Galvanometer coupling constant

G? =73,02 , coupling constant between seismometer and galvanometer
(1.0 = direct coupled)

P\‘ Seismometer boom mass (kilograms)

H Distance between center of gravity of mass and rotation point
of seismometer boom (meters§

\( Moment of inertia of seismometer boom (kg-ml)
{ Displacement of the ground {meters)

Ko = G [, , magnitude of the force impressed on the boom by
‘the' calibration current (Newtons)

kf Calibration current (milliamperes)
(G Motor constant of the calibration coil (Newtons/Ampere)

7§p) Height of the |mpulse response as measured on the record {(milli-
¢ meters)

YH4) Heaviside step function of time
2 (() Dirac delta function of time

- [
\\Xv Pseudoparameter forms of the seismometer and galvanome-
ter free periods and dampings

—— e e ————— i+ ———— i - it et e ittt
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The time at which the calibration current was switched on
An apparent amplitude factor that is determined in the inversion

A constant term to be subtracted from the digitized data to
best agreement with theoretical impulse responses

A linear trend to be subtracted from the digitized data to
give best agreement with theoretical impulse responses

A rotation to be applied to the impulse response to correct
for incorrect digitizing of the impulse

_——— - = - = T T RS —




IMPULSE RESPONSE INVERSION

Quantitative time series analysis using the World-Wide seismic
network records (WWSSN) requires that corrections be made for the
response of the seismograph. In the usual method of calculation of
instrumental corrections the seismograph is considered as a black box.
From Fourier analysis of the response to a known transient impulse
{(usually a step function in acceleration applied to the seismometer
mass) corrections can be obtained. In general, at frequencies in the
neighborhood of the peak instrumental response this is an accurate

athod of correction. However, periods shorter than the seismometer
free period are not strongly excited in the impulse response and sig-
nificant errors in the computation of ground motion may occur.

Studies involving short period crustal and higher mode surface
waves have obliged us to seek an alternative method of determining these
corrections, in order to reduce errors caused by instrumental uncer-
tainties. The parameters of the seismometer system have been determined
wirectly using a linear inversion method. Mitchell and Landisman's
(t969) analytical expressions can then be used to derive the phase and
amplitude corrections at all periods. This method uses a stabilized
least-squares technique which allows more parameters to be used while
maintaining convergence in the inversion process. Arbitrary values of
the coupling constant and‘the seismometer period can be used in this
form of the calculation. Also, the scale factor determined in the in-
version can be used to obtain an expression for seismograph magnifica-

vion that is independent of the rated value.

-




The procedure for inversion (Jackson,1972) involves solving a sys-
tem of linear equations for the corrections DV@ 1o the model para-
:ters. In our case these parameters are the seismograph instrumental
constants. The equations are set equal to the data residuals 251L
which are the residuals between the data and the predictions from
the model. The linear equations take the form
L= l~\."\ NG 1 Ts

where the matrix AZ{ :TMF/D‘%‘ , the partial derivatives of the
data residuals with respect to the model parameters. The least-squares
solution results from the straightforward minimization of the error

siduals (Mitchell and Landisman, 1969). They noted that the in-
clusion of too many parameters tended to cause instabilities in the
inversion. Thus certain parameters, such as the scale factor and

impulse 'on' time, had to be empirically adjusted in the inversion.
In our experience with digitizing actual impulse responses there is
error introduced due to baseline choice, and so a constant, linear
and, and rotation parameters were introduced. Although all the
partial derivatives have linearly independent components, in the
presence of noise not all of them can be resolved, and an unstable
inversion resulted using least-squares methcd with the nine parameters
listed in figure 1. The inversion was stabilized by decreasing the
degrees of freedom in the inversion (Wiggins, 1972). The [A;s matrix
of particl derivatives is first normalized with respect to the data
standard deviations and a priori uncertainties assigned to the model
ameters. The matrix, now in normal form (Jackson, 1972), is factored
according to the Lanczos factorization (Lanczos 1961) into eigenvalue
and eigenvector matrices. In this form eigenvalues less than 1.0

correspond in some sense to paramcter combinations that cannot be




resolved from the data, and so th.se eigenvalues are set to zcro,
removing these degrees of greedom from the inversion. In general
the number of independent degrees of freedom in the inversion

when this was done was six or seven. All the parameters necessary
to obtain phase and magnification information were obtainable,

but carefu digitization was necessary to insure good results.
COMPUTATIONS

The actual computation of the partial derivatives was done
using an analytical formula for the impulse response as a func-
tion of the parameters. Mitchell and Landisman(1969) used the
inverse fFourier transform of the frequency domain representation
of the impulise response to calculate the pariial derivatives.

While this has certain advantages, 1 felt that the number of Fou-
rier transforms needed per inversion would be a significant cost
factor even with FFT, and so a method was followed as illustrated
in figure 2. Starting with the representation of the seismometer
and galvanometer as coupled damped harmonic oscillators, the
equation of motion of the rotation of the galvanometer is solved

by inverse Laplace transform. The magnitude of the impulse given to
the mass, W , is just (32?/v& . Jarosch and Curtis (1773) noted
that the denominator cannot be factored uniess the term containing
62 is set to zero. When this is done the pseudo-parameter
equation can be solved uniquely to obtain new vatues of W, w, 2, €,
and we call the new values of Tjﬁ},h,ﬂnz the 'pseudoparameters'.

As can be seen from the figure, the effect of this conversion

is small for &% small, but may be significant for larger ¢
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Furthermore, the pseudoparameters become complex for

We can obtain finally an analytic expression for the
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impulse response:

K
1 Zl&(n\<1f L
*[D(Zz‘( \(\SK)_T I( *(:B*Kx K, Y a—c‘,L(‘
. = _,\
“where K qu 52 K SR IeH {?
This will be in general complex-valued for complex parameters;
the real part corresponds to the impulse response function.

If the seismometer or ga'!vanometer becomes critically damped,

we must remember that ,=O or K320 , and so
PLAN Sy LG . Sin | {-t —‘. (es Kot cos Kot =1.
K\ ' \(1

For the case when the seismometer or galvanometer is overdamped,

K\ or Kl

cos are replaced by sinh and cosh.

becomes complex, and so the appropriate sin and

In figure 3 are some impulse

responses calculated using the above formula. The reference impulse

response corresponds in some way to a standard WWSSN instrument.

Some notion of what the partial derivatives look like can te

gained from this figure. The effect of changing the seismometer

free period can be seen to be very similar to the effect of chang-
ing the gain, or amp[itude factor of the impulse response. This
effect can be seen in the Lookout Mountain calibration tests, in
which two different impulse responses from the instrument were
inverted independently. The seismometer free period values show

somewhat larger discrepancies than the other parameters. The theo-

retical values for the parameters compare very well with those

determined experimentally using the usual tests for damping and




free period. In the case of the galvanometer constants, there is

a very good argument for determining the constants through inversion
rather than by other methods, since this seems to be at least

as accurate and does not disturb the instrument in any way.

The seismometer constants,'especially the free period, are probakb-
ly better determined by other experimental methods, and constrained
in the inversion. Once thé instrumental constants are determined,
the instrumental effects on amplitude and phase can be determined
theoretically. Following Mitchell and Landisman (1963) the phase

can be written as: . .
L TRV <h,t;(\~o'2\1 Wewlws

’(ﬁ { L«.‘-) = "l’\\\-'

AE4C )W’ - ATy 2,8 w
H
The convention here is that Ayﬁ/&b) is positive, which corres-
ponds to positive instrumental group delay time. The magnification
of the instrument can similarly be expressed in terms of the para-

meters of the instrument:

_AHWAa i)

ﬂ (w) = {[“4..(\.43;&;"*“:?@‘“--72))\.,? Mgkxl‘]z*[.i;_‘;;)u; ..l(.(-‘uzf*zlb.‘?}u‘ll ’S’\/l

v

F\ is the inversion gain constant, LP is the calitration coil
current, and Gi is the motor constant of the coil. For WWSSN
stations there is an empirical formula for the gain at the seis-

mometer free period:

H-‘ O‘L“{Q__X_&C for T, = 15 seconds;
G
= Q138 Kip for T, =30 seconds
- Gi .
XH’{; the height of the impulse response in mi'llimeters. This

formula was checked against the analytical formula for gain and

agreement to a few percent or tetter was found. However, the




empirical formula assumes all the constants are at the rated values
and so a badly tuned instrument would give erroncous gains.
A long period WWSSN station, NDI-LPZ, was used in inversion to

get instrumental parameters. The amplitudes in the impulse response

e

must be multiplied by QJS: to get the ground magnification. This
means that the gains at the long period end are well determined,
where the original impulse had a strong signal. However, below
30 seconds period the amplitudes become relatively worthless and
it is advisable to use the theoretical values. The same consider-
ations hold for the phases. An additional source of error in the
phase of the impulse is introduced because the 'on' time of the
impulse is not known a priori, but must be estimated from the re-
cord. An error of one second or more is common here. This }eads
to a systematic bias in the phases determined as can be seen in
figure 5, where the empirically determined 'on' time is wrong

by one second. No bias is evident in the phases derived using

the 'on' time from inversion.

A note concerning baseline determination is relevant here.
Although it was not possible in the inversion to use the rotation
as an independent parameter, the rotation is quite important, es-
pecially for very large, steep impulses, and a wrong baseline will
distort the constants obtained and resultant phases quite badly.
However, drawing the~correct baseline is not ju.t a matter of con-

necting the ends of the trace and making sure the impulse does not

occur in a disturbed part of the record. Figure 7 shows an impulse

on our instrument. The minute marks line up, which makes it easy
to notice the offset of the minute mark near the top of the pulse.

This is probably due to a lens misalignment. This effect may be




common among WWSSN instruments, as noted by James and Linde (1971).
What I did for this was to rotate the impulse on the digitizer un-
til the minute marks on the pulse fell at equal intervals on the
digitizer scale. This meant that the digitizer scale was then
aligned parallel to the direction of motion of the galvanometer
light beam. Digitizing the impulse in this manner gave satisfactory
results even for large impulse responses.

Some conclusions I have reached in this work are that the appli-
cation of a generalized inversion scheme to instrument impulse
responses allows in inclusion of more parameters without sacrifi-
cing the stability and validity of the inversion. In particular,
the use of (he amplitude factor allows an independent measure of the
magnification to be made. The inclusion of the ‘'on' time means
that this source of phase error can be practically eliminated.

The constant and linear trend terms are important because of digi-
tizing considerations in which a baseline must be assumed and later
corrected for. Careful digitizing is necessary to assure that the
correct baseline is used.

Noise on the record during the impulse response did not seem
to be a significant facto' in the inversion. In general I chose
only impulses that occured during clear, quiet times and without
visible noise ercept for microseisms. Examining the residuals that
remain after inversion, I found that much of the error seemed to be
associated with digitizing errors on the steep parts of the impulse.
This is unavoidable because of the steepness of the pulse and the
uncertainty in the digitizer scale. The largest magnitude of these

errors appeared to be of the order of 1% of the impulse height
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for good impulses that had successful inversions. These
errors did not appear to cause much error in the parameters
determined as shown by the good agreement between indepen-

dent impulse inversions from the same instrument.
ERROR ANALYSIS AND CONCLUSIONS

Errors in the determination of parameter values are of
several different types. One type of error ariscs because
of the finite line thickness and other digitizing errors, and
because of microseisms and other types of noise present on
the record. These effects can all be included as noisc'in
the impulse response signal. Figure 8 shows the results of
inversion of theoretical and actual impulse responses.

Random noise (wihite noise) was added to one theoretical
impulse and inversion was done. Convergence of error to the
noise level was quite rapid, and after that essentially no
change took place. Similar results were obtained for two
actual impulses, LM0-2 and NDI-LPZ. The digitizing noise
level was obtained by an estimation of the random error to
be about .4 mm on the record on the average. However, in
the steep parts of the impulse the errors became greater, and
residuals of amplitude equal to about 1% of the impulse
response amplitude (about 1 mm) were occasionally seen.
Since the steep regions of the impulse response are most
critical in determination of the instrumental parameters,
this upper bound was taken as the representative noise level

in the analysis of propagation of errors. The effect of




random errors in the data on the parameters was estimated
by computing the covariances of the model parameters by the

method of Jackson (1972);
. " 2
vav ( 7\\(_) z _Z_\ Hk'x \Jav'(\\:)
st |
. i AT AT .
The matrix M is = V/\ \) , the general inverse

of the matrix of partial derivatives. The results obtained

using | mm as the random error are shown in table 1. The in-

strumental parameters for LMO-1 and LMO-2 appear tn agree
within the uncertainties given for the parameters, although

the errors in the data may not actually be random as assumed.
The errors on the seismometer and galvanometer free periods are
about egual for the severely underdamped case, LMO-1 and LMO-2,

but change for the overdamped case, LMO-NEW. The impulse response

was activated by an automatic relay at exactly 12-hour intervals.
There appears to be some difference between the ‘on' times of the
impulses LMO-1 and LM0O-2 on the seismogram, as judged by measure-
ments relative to the minute marks. This may account for the
difference between the la times of LMO-1! and LM0-2 impulse
responses. 0 , the rotation, was constrained to equal

zero throughout the inversions.

Another type oF»error is not random, and results because the
seismometer free period and the amplitude scale parameter F\ can-
not be resolved from the data. Because of this trade-off effect,
errors due to lack of resolution will have little effect on the

calculated magnifications or phases. It could be corrected by
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constraining 'W: in the inversion, since this parameter can
be accurately measured. Table 2 shows the result of constraining
T} by adding in the parameter eigenvector to the solution.
—T\ and B have both been made consistent by this procedure.

Some conclusions that can be drawn from this work are that ap-
plication of generalized linear inverion to seismograph impulse
responses to derive the iﬁstrument constants yields useful and
consistent resuits, and makes possible more accurate estimates
of gain and phase shift at short periods. An independent means
of deriving the gain as a function of period is possible using

the inversion amplitude parameter. Errors in phase due to un-

certainty in impulse 'on' time are reduced. There is a trade-
of f of 1, , the seismometer free period and R , the gain
constant, but these can be resolved by constraining .T; , which

is in general weli-known. Noise caused by digitizing errors or
microseisms does not appear to be a problem in this work. The
residuals were usually of amplitude less than 1% of the original
impulse amplitude. It was necessary to take great care in choos-
ing the correct baseline for digitizing. Application of the
inversion technique to actual impulse responses yielded consis-
tent results and enabled amplitude and phase shifts to be cal-

culated at all periods.
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APPENDIX A

ANALYTICAL METHOD FOR OBTAINING PSEUDCPARAMETERS

From figure 2 we have the equality involving original and

pseudoparameters that must be satisfied:

>

. - - . - 22 2 ot X s -2 « / n
(57425 vw)(s% s rud) —lasa™s® = (332a/s ) (5% 2 5w
Foliowing Jarosch and Curtis (1971) we equate powers of s

(1) ¢ +%) - ¢ =%,

‘ 2 - . -
(2) WS Tewr deley = el v dee - e

2.0 R [ rd
(3)  W%E, ity T WterlE,

(4) Wi o Wi

To simplify, let

(5) W=«

(6) Wi w?s ¢

(7) €/« = "U

(8) w!tew/?uelg) 4 Qg 70

(9) w/le + wel =4

We can t: derive the characteristic equation in (A

(10) o ‘va.quf“ﬁ)eﬂw\sz~4f%2—41;)a3*(qvﬁ'wﬁ\af-lfr@‘~P$:(
Rather than solve this equation numericaliy as Jarosch and Cur-

tis did, I needed the complex scolutions t¢ the equation. The

equation can be factored as

(1) (L\‘,"‘-’\[‘-’\)-) ((.-.) u‘(: +\)) ((ﬁ .t»Bc\-r{’)\ ol




We must solve for 1‘1.(: . Since there is symmetry between x,t" ol
they may be interchanged:

~(ArR) |, (A-B) -3 : —(Ar) _(n-@)§-3"

(12) %,y,z = A8, > > 7 5

where g

RS . 3
(13) A= Q'b/l X r\:_/q-fﬁ 51 \)
Gu) B 6 = Waegilin )3
and
(15) g = |
(‘6) \0 > 2\’3/2‘?-!3\"/3,_
(17) & = L&q»—qﬁ-qu
(18) 8= ‘i"(f - 4o

The solution for (C" is

‘,2 _\-3/3

- (xR s N2

e

(19) L»‘i MVERETFISTE
(zj_a_ ‘\\)‘2-

L2
1 always used the positive sign in the root. If one root was i,
the other two corresponded touf and Lw,. It was always possible

to distinguish which was which.
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_FIGURE CAPTIONS

Figure 1: Schematic model of the impulse response inversion
program. The periods and dampings are in pseudoparamecter form
as used in the inversion. Up to five iterations were used in
convergence to the stabilized least-squares solution.

Figure 2: Equations for the seismomecer and gaivanometer motions,
following Jarosch and Curtis (1973). The effect of the pseudo-
parameter conversion is small for small, but significant

for larger

Figure 3: Effect of various parameters on the impulse response
function. The solid line is the for all figures. Changing the
seismometer free period has a large effect on the impulse am-
plitude.

Figure L: Results of inversion on our long period vertical in-
strument. The parameters were measured in situ using overshoot
ratio tests and timing the free periods by stopwatch.

Figure 5: Phase determination of NDI-LPZ impulse resporse, using

direct Fourier transform method and the inversion method. The
Fourier method is degraded at periods below 30 seconds. The
'on' time had been picked by eye at 4 seconds after the minute

mark; the inversion showed it actually occured at 3 seconds after
the minute. The large black dots correspond to the best esti-
mate of the phase.

Figure 6: Amplitude determination of NDI-LPZ using the Fourier
method and inversion method. The curve on the left corresponds to
impulse amplitudes. These become very small below 30 seconds,
which accounts for the degradation of the phases and ampi.tudes.
To obtain ground displacement magnification, this curve is mul-
tiplied by

Figure 7: Impulse response on the Lookout Mountain (LMQ) LPZ
record. There is a slight misalignment of the light beam rela-
tive to the drum as shown by the offset of the minute mark on

the impulse. This minute mark was used to help align the impulse
for correct digitization.

Figure 8: Convergence of the tinear inversion method for theo-
retical and actual impulse responses. For all successful solu-

-~

tions the method converged within 5 iterations.
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Table 1
Inversion Results
LMO-1 Tn LMO-2- e LMO-NEW Gun
15.0 sec. 0.8 sec. 16.0 sec. 0.7 sec. 15.4 sec. 0.2 sec.
T, 91.0 sec. 0.8 sec. 92.9 sec. 0.8 sec. 94.4 sec. 2.9 sec.
h, 0.46 0.03 0.435 0.02 0.995 0.07
hy 0.76 0.01 0.745 0.0 1.19 0.03
Te 33.6 sec. 0.2 sec. 33.1 sec. 0.2 sec. 33.7 sec. 0.07 sec.
A 4.21 0.5 3.55 0.34 6.69 0.245
C -om 0.2 -0.032 0.2 -0.219 0.28
L -0.005 .006 -0.009 0.006 -0.0045 0.006
5] 0.0 0.0 0.0 0.0 0.0 0.0
g% o0.012 -- 0.012 -- 0.029 --
{
o |
]
P - o D
! - It T TR - -




Table 2

_ DELETED EIGENVECTOP USED TO CORRECT INSTRUMENTAL PARAMETERS FOR IMPULSES LMO-1 and LMO-2

- e ——————

—————

. .

m LMO-1 LMO-1 LMO-1 LMO-1 LMO-2 LMO-2
! Parameter Inversion Deleted Parameter Parameter Corrected Inversion Corrected
Results Eigenvector Uncertainities Eigenvector Parameters Results Parameters
T, (see) 15.0 -.33 1.0 -.33 15,22 .. 16.0 . 15.2
T2 (sec) 91.0 -.034 5.0 -.17 g91.1 92.9 92.5
W, 0.46 .094 0.2 .02 0.45 0.435 0 .48
Yy 0.76 .0052 0.2 .001 0.76 0. 745 0.747
T, (sec) 33.6 .186 0.25 .05 33.6 33.1 , 33.2
A\ L. 21 .919 0.25 .23 L4.07 3.55 Lo

C -0.41 -.012 0.1 -.0012 -0.41 -.032 -.035
m L -0.005 -.006 0.012 - 00006 -0.005 -.009 -.009
* e 0.0 0.0 0.0 0.0 0.0 0.0 0.0

|
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COMPUTATION OF COMPLETE THEORETICAL
SEISMOGRAMS FOR TORSIONAL WAVES

By A. H. Liao, F. ScuwaB, aND E. MANTOVANI

INTRODUCTION

In the study of earth structure, and earthquake source mechanism, the handiest
and probably most important information is that provided by the seismic waves
recorded on seismograms. Therefore, the direct comparison between theoretical
and experimental seismograms is a very appealing subject for most seismologists.

The computation of theoretical seismograms has been studied by various avchors.
Some tried to obtain long-period seismograms by combining a few normal -2odes;
some tried to obtain a few body-wave phases. The results of the invcstigations
that led to the present letter are reported by Schwab (1970); Schwab and Knopoff
(1970, 1971, 1972, 1973); Kausel and Schwab (1973); Schwab and Kausel (1976);
Knopoff et al. (1973); Knopoff et al. (1974); Schwab et al. (1974); Nakanishi et al.
(1976); Kausel et al. (1977); Nakanishi et al. (1976); Mantovani et al. (1976);
Mantovani (1977a); and Mantovani } in preparation). The results of our most
recent work now allow us to generate complete theoretical seismograms for torsional-
wave motion. By saying complete, we mean that all modes that exist for periods
above 10 sec are inciuded in our se.smograms, i.e., that all amplitude and phase
information down to a period of 10 sec is included. This means that the body-wave
phases, as well as surface-wave arrivals, are obtained with this method.

The computational technique is somewhat involved; however, anyone who is
interested in the details can obtain program copies from the authors. Briefly, we
compute all of the required frequency-domain information such as phase and group
velocity dispersion, attenuation. amplitude excitation, apparent initial phase, depth
of penetration (and if desired, partial derivatives with respect to structural param.
eters) from the longest existing period for each mode, down to 10 sec. This requires
between 90 and 100 radial modes, and is accomplished in a single, relatively short
computer run. This computation corresponds to about 50,000 free oscillating modes.
Theoretical seismograms in the time domain are then obtained by inverse Fourier
transformation as described by Kausel and Schwab (1973} and Schwab and Kausel
(1976). The cost of computing the volume of frequency-domain information, which
is required to construct the synthetic seismograms down to a period as short as 10
sec, has been prohibitively high up to the present time: but, with our current
optimization we have succeeded in reducing the computation time to about 6§ min
on our IBM 360/91 computer (an expenditure of about $50) for a given earth
structure. The corresponding time on a CDC 7600 computer is about 2 min. [For
corresponding times on other computers see Schwab et al. (1977) and Porter et al.
(in preparation).] These time estimates should be considered only as upper bounds;
relatively simple improvements—which a little practical experience will be needed
to justify——are expected to cut these times at least in half.

The purposes of the present letter are (1) to report that the capability now exists
for computing realistic, torsional-wave seismograms that contain all of the seismuc
energy and arrivals down to a period of 10 sec; (2) to announce the availability, for
general distribution, of the associated program; and (3) to.exhibit the results of our
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initial tests of direct comparison of these complete theoretical seismograms with
an experimental record from a standard, long-period instrument of the WWSSN.

ExXaMPLES

For our comparison of theoretical and experimental seismograms, we have chosen
an event with its epicenter near the foot of the Kamchatka peninsula [see Kausel
et al. (1977) for a discussion of this event]. Analysis of this earthquake indicates
that the source is approximated by purely dip-slip motion on a vertical fault plane.

We used the station at HNR, which provides a N-S path, so that the recording on \

the E-W instrument can be considered to contain only the azimuthal component
of displacement. The focal depth is in the intermediate range. The initial earth
model that we used in our calculations was a somewhat smoothed version of the
average oceanic structure described in Kausel et al. (1977), which is essentially the
CIT-11 structure (Figure 10, Toksoz and Anderson, 1966). About 200 layers were
used to model the vertical heterogeneity of the crust-mantle system; an adaptation
of model MM8 (Anderson et al. 1965) was used to approximate the dependence of
the intrinsic atter§uation on depth.

Tp prepare the experimental and theoretical seismograms for comparison, the

ramp function was removed from the experimental time series (James and
Linde, 1971). The result of this is the upper trace in Figure 1. Since the theoretical
seismograms do not contain periods below 10 sec, we ran a low-pass frequency
(boxcar) filter, with cutoff at 10 sec, over the experimental data (second trace in
Figure 1). A Gaussian roll-off filter with peak at 15 sec and a 90 per cent decay at
10 sec, was then applied to suppress the time-domain oscillations introduced by
the abrupt cutoff of the boxcar filter. The result of these operations on the
experimental seismogram is shown in the third trace of Figure 1. The same Gaussian
roll-off filter is applied to the theoretical seismograms, so that both the theoretical
and experimental time series are processed in the same way. Thus, we can compare
these time series directly.

In our sample computations, we have varied the souice parameters over the
possible range of variation from our point-source solution. The first figure shows
the dip angle dependence. With the theoretical seismograms available for compari-
son, we can easily identify several of the arrivals on the experimental record. The
most striking of these are the body-wave phases S, sS, SeS, sScS, and the later,
surface-wave arrivals. (The various arrivals are identified in Figure 5.) For this
particular event, the surface waves are composed of multimode, oceanic Sa (Kausel
et al,, 1977). In Figure 1 we have varied the dip angle from that of a vertical (90°)
fault plane, to 70°; the results show that as dip angle decreases, the normalized S
and Sc8 phases remain unchanged, but sS and sScS diminish. Thus, the dip angle
appears to have its main effect on body waves when they leave the focus above
the equator of the focal sphere. Both the long- and short-period energy increase, in
the surface-wave portion of the seismogram, when the dip angle decreases from
vertical. Figure 2 illustrates the dependence of the seismogram on source depth.
Here we have varied this depth from 220 to 140 km; the consequent separation of
body-wave arrivals, and development of the Sa wave train in the lower set of
theoretical traces, clearly exhibit the power of complete theoretical seismograms
as interpretive tools. As Figure 3 illustrates, the theoretical seismograms from this
class of sources are less sensitive to changes'in slip angle than to changes in fault
dip or source depth.

The azimuthal-component seismogram is composed, in principle, of two contri-
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with m S 2. Since (u,)r and (uy)s are of the same order of magnitude, so must Vr
and Vs. Thus, in terms of an order-of-magnitude estitnate, the relative sizes of the
two contributors to azimuthal-component seisinograms, (u,)r and (u,)s, are gov-
erned by the relative § dependences of these contributions. Since these dependences
for (u,)s and (uy)r are the same, the order-of-magnitude comparison of the two
contributors to the azimuthal displacement is the same as the comparison of the
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- The results of our direct computation of (us)r and (u,)r are shown in Figure 4,
( where we see that relative to the azimuthal displacements, the polar seismogram 1s

a straight line. In fact, the numerical results show that the ratio of maximum
displacements in the two cases is about 100 to 1. We therefore conclude that for
normal WWSSN seismograms which contain all of the generated energy down to a
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instrument desenibed in the caption of Figure | and the Gaussian roll TGl Computatiomal paranse o
rl:'. W’;’wﬂuu ar lhc foot of K“Mlh pentomule, the station at HNHL 8 = 907" o = 40° A = 180
Aw tume d i at the focus

period of 10 sec, the total azimuthal component of displacement can be computed
by considering only the torsional-wave comnbuhon

Before going into a specific, direct comparison of theoretical and experimental
seismograms, it should be emphasized that we have not made any special attempt
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to fit the experimental data yet. We have Just picked the best fit to the experimental
record from among the theoretical traces shown in Figures | to 3. Even so, the
feature-by-feature agreement is striking over much of the record. This is shown in
Figure 5. The first point to note is the success of the theoretical work in generating
the phases ScS and sScS that are reflected from the core-mantle boundary. This
means that we can expect this kind of analysis to be useful over the entire mantle
down to the core. The second point is the phase-bv-phase agreement in the bodv
waves vlentified in the tigure, and the decrease in the quabey of the agieement
bevoad them. According to the recent paper by Kausel ef al. (1977), the propertios
of Sa are determined by the structure from the vicinity of the “650-km " discontinuity
upward. Therefore, the good agreement in initial body waves, and the relatively
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Fic. 6. Test of relarive effects on initial bodv-wave phuses and an Iater, shillower sampling vrovale ’
ing the th al . when the structure above a deprh of "0 km is vared Upper \;'

and lower traces reproduce the expenmental record. shorter traces are theoretical seismograms from
indicated structure. These velocity structures are vanations from CIT. 11 tHungwoud, 19750, all use the
attenuation model for the Pacific that s given by Mitchel (1976

poorer agreement in surfice waves implise that we have essentially the right
strocture below 700 km, but that we need sonre mititic stian in our earth model T AN
above that. As mentioned 4 uve. the structure we used is an average oceanic model.” \_/
however, the Kamchatka-KNR path is along the “old” edge of the Pacific plate.
Recent seismic studies (eg., Leeds, ef al 1974 Leeds, 1975) indicate that the
thickness of the lid grows with increasing distance from the ridges. Therefore,
Mdupul\}iwh’ddmddbethkhﬂhnnw. This may be one source of
mwbnmmmmmmmm traces in Figure 5.
mmhmmmmhm;mmmanﬂn
that may exceed 30 km (Furumoto et al, 1973).
Tommmmdwmuﬂkmhmnmmnmmm
mhuw»mmmhrm&nhnmedme
WMMMMWMWMMMQMJ
hMtMﬁmMMa&mthththMumaw




eonpulalirn {Crmf et Jeyietioal ‘m'dfmygw /n -/rld}'ma/ wqud

—_—

e e . e e

323

interpretation before making the obvious generalization of the technique to include e
lateral heterogeneity. Consideration of the experimental coda is beyond the scope -~ 1
of this letter. —— — e e S - -1&';'-‘— 2

i
CONCLUSIONS

It is now feasible to make direct comparisons of theoretical and experimental
seism sgras, for torsional-wave records obtained from the long-petivd Instruments
of the WIVSSN. With our present technique. all of the generated energy—at penods
above 10 sec—is exhibited on the calculated time series. body waves as well as
surface waves. Application of this result might be expected to provide the highest
source and structural resolution that has yet been achieved.

Our latest work (Schwab et al., 1977) with spheroidal waves on spherical, gravi-
tating models of the earth, shows that even when we employ highly optimized
versions of the current algorithms, these calculations are six times slower than the
comparable torsional-wave computations. We conclude from this that new algo-
rithms are required before the efficiencyd of spheroidal-wave computations (includ- 4,
ing gravity) will approach a level justifying computation of the associated theoretical
seismograms, down to a period as low as 10 sec.
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