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which is a function of depth. The index of refraction is decomposed into a
deterministic component and a zero mean random component. In addition, twoexamplecalculations are made. The first example involves the derivation of
the equations for the random, output electrical signals at each element in a
receive planar array of complex weighted point sources in terms of the
frequency spectrum of the transmitted electrical signal, the transmit and
receive arrays, and the transfer function of the ocean medium. The second
example involves the derivation of the coherence function, i.e., the auto-
correlation function of the transfer function.
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ABSTRACT

Wave propagation in a random, inhomogeneous ocean is

treated as transmission thru a linear, time-variant, space-

variant, random communication channel. A consistent notation

(vis-a-vis ad hoc), fundamental input-output relations, and

various time-space transformations for both deterministic and

random linear, time-variant, space-variant, filters are esta-

blished. Using the method of separation of variables and the

W.K.B. approximation, a time-invariant, space-variant, random

transfer function of the ocean volume is derived. The ocean

volume is characterized by a random index of refraction which

is a function of depth. The index of refraction is decomposed

into a deterministic component and a zero mean random compo-

nent. In addition, two example calculations are made. The

first example involves the derivation of the equatio or

the random, output electrical signals at each element in a

receive planar array of complex weighted point sources in

terms of the frequency spectrum of the transmitted electrical

signal, the transmit and receive arrays, and the transfer

function of the ocean medium. The second example involves

the derivation of the coherence function, i.e., the auto-

correlation function of the transfer function.

t-



I. INTRODUCTION

Since the wave equation for small amplitude acoustic sig-

nals is linear, we can represent the ocean medium as a linear,

time-variant, space-variant, random filter (system or communi-

cation channel) in general. With this interpretation in mind,

refer to Fig. 1 which illustrates a basic bistatic communica-

tion channel geometry, and Fig. 2, which is a mathematical

block diagram representation of Fig. 1. With respect to Fig. 1,

both the transmit and receive apertures (arrays) are, in gen-

eral, volume apertures (arrays) and in motion. Before pro-

ceeding further, a word of caution concerning Fig. 2. Note,

for example, that XM yA XDT, YM # XMHMO and Y # YMDR in general.

The equations required for describing the filter's input-output

relationships and for coupling the transmitted and received

electrical signals to the medium via the transmit and receive

apertures are developed in Sections II and III, respectively.

Let us now describe the notation used in Fig. 2. The posi-

tion vectors r and r refer to spatial coordinates (xoyZo 0 )-o

and (x,y,z), respectively, and t refers to time in sec. The

parameters f and n are frequencies in HZ. where f represents

input or transmitted frequencies while n represents output or

received frequencies. Note, that if n # f, Doppler spread is

implied.

The quantities a, v, 0, and y are vectors whose components

are spatial frequencies with units of cycles/m. Since spatial

frequencies are related to both direction cosines and wavelength,

[F
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Fig. 1. Basic bi3tatic communication channel
geometry.



QUU

-4 -,1

4 J 'J

b. 4.4--

0
*.- a$

-4 0U4J

~~4

~4
E 4J

X 
*2

I- -f

344



4

and hence, wavenumber components, they represent directions

of wave propagation. The vector v represents input or trans-

mitted spatial frequencies into the medium as in XM(f,V),

while 3 represents output or received spatial frequencies

from the medium as in Y M(n,8). Note, that if 3 v ', angular

spread (scatter) is implied.

The remaining expressions found in Fig. 2 are further

described in the following list:

x(t,r) - input electrical signal to transmit electro-

acoustic transducer applied at time t and

spatial location r of transducer.

X(f,a) - frequency (f) and angular (a) spectrum of input

electrical signal.

AT(f,r)- complex frequency response at spatial location

r of transmit transducer. Also referred to as

the complex transmit aperture.

DT(f,c)- transmit far-field directivity function or beam

pattern.

xM(t,r)- input acoustic signal to the medium applied at

time t and spatial location r. Also, output

acoustic signal from transmit electro-acoustic

transducer.

XM(f,v)- frequency (f) and angular (M) spectrum of input

acoustic signal.

h M(T,r; t,r) - time-variant, space-variant impulse re-

sponse of the ocean medium. It represents the



response of the medium at time t and spatial

location r due to the application of an unit

impulse at time (t-T)sec., or T sec. ago, at

a distance Ir-EoI m. away (see Fig. 1).

HM(f,v;t,r) - time-variant, space-variant transfer

function of the ocean medium.

YM(t,r) - output acoustic signal from the medium at time

t and spatial location r. Also, input acoustic

signal to receive electro-acoustic transducer.

YM(n,B) - frequency (n) and angular (B) spectrum of out-

put acoustic signal.

AR(n,r) - complex frequency response at spatial location

r of receive transducer. Also referred to as

the complex receive aperture.

DR(n,a) - receive far-field directivity function or beam

pattern.

y(t,r) - output electrical signal from receive electro-

acoustic transducer at time t and spatial loca-

tion r of transducer.

Y(n,,) - frequency (n) and angular (y) spectrum of output

electrical signal.

As was mentioned previously, we can represent the ocean

medium as a linear, time-variant, space-variant, random filter.

The term "time-variant" implies motion amongst targets, the

ocean surface, discrete point scatterers, and the transmit and

receive apertures (arrays). Discrete point scatterers in the

Vi
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ocean may include, for example, gas bubbles, fish, and other

particulate matter. The time-variant property results in

both Doppler spread and spread in round-trip time delay values.

If the filter is time-invariant, then no motion is implied.

As a result, there will be no Doppler spread and no spread in

round-trip time delay.

The term "space-variant* implies that the sound speed

profile (index of refraction) of the ocean is a function of

position. The space-variant property results in scatter or

angular spread due to refraction. If the filter is space-

invariant, then an isospeed medium is implied. As a result,

there will be no refraction, and hence, no scatter or angular

spread since the sound rays will be travelling in straight

lines.

In addition, since any motion and/or the index of refrac-

tion can be decomposed into a sum of deterministic (average)

and random (fluctuating) components, these random components

can be accounted for via a random filter representation vis-a-

vis a deterministic filter representation.

By using a systems theory approach, surface, volume, and/or

bottom reverberation returns can be modelled as the outputs

from linear filters. In addition, target returns can also be

modelled as filter outputs. Furthermore, different transmit

signals and transmit and receive directivity functions can

easily be coupled to various models (i.e., transfer functions)

of the random, inhomogeneous ocean medium in a straightforward
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and logical fashion in order to study their effects on target

detection or parameter estimation using various space-time

signal processing algorithms.

The approach of treating the ocean as an isospeed medium,

and hence, as a linear, time-variant, random communication

channel is well established [1-191. This linear, time-varying,

random system theory approach has also been applied to target

scattering problems in radar astronomy [20] and to communica-

tion channels in general [11-23]. However, with respect to

target models, past research efforts have been devoted mainly

to the slowly fluctuating point target problem [24-31]. Ef-

forts to treat more complicated target models were made by

Kooij [32], Moose [10], and Ziomek and Sibul [19,33]. Kooij

[32] and Moose [10] both modelled the target as a 1near, time-

invariant, deterministic filter while Ziomek and Sibul [19,33]

modelled the target as a linear, time-varying, random filter.

In addition, Ziomek [34] has shown that the form of the gen-

eralized ambiguity function can be derived by treating the

scattered acoustic pressure field from a point target (in

relative motion with respect to a bistatic transmit/receive

array geometry) as the output of a linear, time-varying, random

filter.

Some work has been done in treating the ocean medium as a

linear, time-variant, space-variant, random filter by Laval

[9,35] and Laval and Labasque [36]. However, the notation

used to incorporate the space-variant property is ad hoc, i.e.,

spatial variables are simply included in the arguments of the
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impulse response and transfer functions, for example, rather

than having evolved from a systematic and consistent notation

based upon linear, time-varying, space-varying system theory.

In addition, Laval and Labasque [36] assume functional forms

for the ocean transfer function instead of deriving them.

Middleton [37,38] also studied underwater acoustic propagation

in a random, inhomogeneous ocean, but did not concern himself

directly with the derivation of random, time-variant, space-

variant ocean transfer functions. He described the propagation

phenomena using space-time operators.

In this paper we will study underwater acoustic propagation

in a random, inhomogeneous ocean by treating the ocean medium

as a linear, time-variant, space-variant, random filter. Sec-

tion II is devoted to a discussion of the fundamentals of

linear, time-variant, space-variant filters and is based upon

the generalization of the results contained in Ziomek [39].

A consistent notation is developed in a systematic manner. Va-

rious system functions are introduced and important input-output

relations and multidimensional (time-space) Fourier transform

pairs are derived for both deterministic and random filters.

To the best of the author's knowledge, the expressions presented

in Section II have not appeared previously in the literature.

The equations necessary to couple the medium's transfer

function to the far-field beam patterns of the transmit and

receive apertures (arrays) and to the frequency spectrum of

the transmitted signal are discussed in Section III.
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Section 4.1 is devoted to the main problem of the paper

which is the derivation of a random ocean transfer function

incorporating the W.K.B. approximation. In the process of

the derivation, the index of refraction is decomposed into

deterministic and random components and it is assumed that

the medium is "weakly scattering". The transfer function

derivation was motivated by the work of Clarke [40] on the

application of the W.K.B. approximation.

Section 4.2 is devoted to an example calculation of the

equations for the random, output electrical signals appearing

at each element in a receive planar array of complex weighted

point sources in terms of the frequency spectrum of the trans-

mitted electrical signal, the transmit and receive arrays, and

the random ocean medium transfer function.

Finally, in Section 4.3, the autocorrelation function of

the transfer function, which is also known as the coherence

function, is calculated.



10

II. FUNDAMENTALS OF LINEAR TIME-VARIANT SPACE-VARIANT FILTERS

2.1 Deterministic Filters

2.1.1 Impulse response and transfer functions

A linear, time-variant, space-variant, filter is

depicted in Fig. 3, where it is characterized by its corres-

ponding time-varying, space-varying impulse response h(:,ro;

t,r). The function h(T,r ; t,r) describes the response of the

filter at time t and spatial location r = (x,y,z) due to the

application of an unit impulse at time (t-T), or T seconds ago,

and at a distance jr-roI meters away where ro = (xoyozo).

Note that

h(T,ro; t,r) = h(t,r; t-t, r-r ). (2.1-1)

The relationship between the input signal x(t,r)

and the output signal y(t,r) is given by

Y(t,) = ix(t-, r-r )h(,r ; t,r)drdrO

(2.1-2)

where it should be noted that both the input and output signals

are functions of time and space.

Example 2.1-i

Different forms of Eq. (2.1-2) can be obtained by making

the following simplifying assumptions:



x( tr ) h(ro t, y( ~

Fig. 3. Representation of a linear,
time-variant, space-variant,
filter.
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(1) if the linear filter h is time-invariant and space-inva-

riant, then

h(T,ro; t,r) = h(t - [t-r], r - [- r _

= h(T,ro) (2.1-3)

and as a result, Eq. (2.1-2) reduces to

y(t,r) = ffx( t-T, r-r )h(Tr )dTdr---- -0 -

(2.1-4)

which is a multidimensional convolution integral as would

be expected.

(2) if h is time-invariant but space-variant, then

h(T,ro; t,r) = h(t - [t-T], r; r-r

= h(T,r; r-r<)

- h(r,Eo; r) (2.1-5)

and as a result, Eq. (2.1-2) reduces to

y(t,r) Pat-T, r-r )h(-,o r)drd.

-(2. 1-6)



13

(3) if h is time-variant but space-invariant, then

h(T,ro; t,r) = h(t, r - [r-r o; t-T)

= h(t,ro; t-r)

= h(t,ro; t) (2.1-7)

and as a result, Eq. (2.1-2) reduces to

Y(t,r) = f Ix(t-T, r-E)h(T,io; t)dTdr .

(2.1-8)

* ** **

Note that if Eq. (2.1-2) is rewritten as

y(t,r) =f fx (t - , r-1)h(a,_: t,r)dadj (2.1-9)

and if the input is an unit impulse applied at time a = (t-T)

seconds at a distance I = Jr-r meters away, i.e., if

x(aj) = S(a - [t-T], L - [r-Eo1), (2.1-10)

then substituting Eq. (2.1-10) into Eq. (2.1-9) yields
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y (t, r) - / a 6(.r- r %-1)h(a0 3 ; t,r)daxd

- h(T,Eo; t,r). (2.1-11)

Analogous to the frequency response or transfer

function H(f) of linear, time-invariant systems is the time-

varying, space-varying, frequency response or transfer function

H(f,v; t,r) of linear, time-variant, space-variant, systems.

It is defined as follows:

H(f,v; t,r) A FTFr {h(T,ro; t,r)} (2.1-12)
-o

or

H(f,v; t,r) f h(T,rO; t,r)exp(-j2Tf:)exp(+j2-r)dTEdrJ J~0-0 -

(2.1-13)

where f corresponds to input frequencies in HZ. and v is a

vector whose components are input spatial frequencies with units

of cycles/meter. As was previously mentioned in Section 1,

spatial frequencies are related to wavenumber components, and

hence, they represent directions of wave propagation. Similarly,
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t,r) = F1 F {H(f,v; t,r)} (2.1-14)

or

h(t-,O; tr) = ( (H(fv; tr)ex j2trfT)exp(- j 2 Tv-r 0)dfdv.'

(2.1-15)

The choice of a plus (+) sign in the exponent of

exp(+j2rv-Eo) appearing in Eq. (2.1-13), which corresponds to

the forward spatial Fourier transform w.r.t. Eo was not

arbitrary. This choice of sign convention is meant to be con-

sistent with that of the spatial Fourier transform relation-

ship between a complex aperture function and its directivity

function (beam pattern) as is developed later in Section 3.

Besides, the integrand term

exp(-j21rfr)exp(+j2Trv.r)

appearing in Eq. (2.1-13) has the nice physical interpretation

of being a time-harmonic plane wave travelling in the direction

of increasing ro = jro with the sign convention as given.

Example 2.1-2

If the linear filter h is time-invariant and space-in-

variant, then its corresponding transfer function can be ob-
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tained by substituting Eq. (2.1-3) into Eq. (2.1-13). Doing

so yields the following result;

H(fV) = f -h(T, )exp(-j2irfT)exp(+j2v.ro)dtdro

(2.1-16)

Similarly, from Eq. (2.1-15),

(2.1-17)

Calculating the transfer function according to

Eq. (2.1-13) assumes that one knows the impulse response func-

tion. However, even if the impulse response is not known,

the transfer function can still be obtained by using a time-

harmonic plane wave as an input signal. This can be shown by

representing a linear, time-varying, space-varying,filter by

the linear operator L(.) which operates on input signals that

are functions of both time and space. The output of the

filter y(t,r) can then be expressed as

y(t,r) L[x(t,r)]. (2.1-18)
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If we let

x(t,r) = exp(+j2r ft)exp(-j2rv-r), (2.1-19)

which is in the form of a time-harmonic plane wave travelling

in the direction of increasing r = Ir, then from Eqs. (2.1-2)

and (2.1-18) we can write

L[exp(+j2rft)exp(-j2w.r)] = exp[+j2Tf(tt-)]exp[-j2iv. (r-.o)] •

h(Tro; t,r)drdr 0

(2.1-20)

and by using the definition of the transfer function given by

Eq. (2.1-13), Eq. (2.1-20) can be expressed as

L[exp(+j2ffft)exp(-j27rv.r)]= H(f,!; t,r)exp(+j2-rft)exp(-j2 -'r)

(2.1-21)

where L[exp(+j21rft)exp(-j27rv.r)] is the response of the filter

to exp(+j2irft)exp(-j27v.r), and H(f,_; t,r) is the time-varying,

space-varying transfer function of the filter evaluated at

f and v.

Equation (2.1-21) is a fundamental result that

will be used in the derivation of an ocean transfer function
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in Section 4.1. In addition, Eq. C2.1-21) can be used to

represent the output y(t,r) in terms of the transfer function.

For example, if we express the input x(t,r) in terms of the

following multidimensional inverse Fourier transform

x(t,r) =Ff F- 1 X(f,v)} (2.1-22)

or

x(t,r) =f f X(f~v)exp(+2rft)exp(-2Trvr)dfdv,

(2.1-23)

then from Eqs. (2.1-19) and(2.l-21), we can write the output

y(t,r) as

y(t,r) =f f X(f~v)Lfexp(+j2rft)exp(-i2nv-r)]dfdv.

(2. 1-24)

or

y(t,r) / X(f~ v)H(f, v; t,r)exp(+j2rft)exp(-j2rv-r)dfdv'.

(2.1-25)

Compare Eq. (2.1-25) with Eq. (2.1-2).
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2.1.2 Spreading and hi-frequency functions

Two additional filter functions will now be intro-

duced; namely, the spreading function and the bi-frequency

function. The spreading function will be discussed first.

The spreading function S(T,r.; 0,K) is defined as

S(ro; 0, ) ' FtFrh(,, ; t,r)} (2.1-26)

or

S(r,ro; ,.c) a ff h(T:; t,r)exp(-j21rt)exp(+j2iric.r)dtdr

(2.1-27)

where # corresponds to the rate of change of the filter's im-

pulse response in HZ. and K is a vector whose components are

spatial frequencies which correspond to the rate of change of

the impulse response in cycles/rm. Similarly,

h(r,rO; t,r) - F F. {S(rr ; 0,!.)) (2.1-28)

or

,(-r,ro; t,r) = o,l_)exp(+j2wrt)exp(-j2TK.r)dodK.

(2.1-29)
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An alternate representation of the output y(t,r)

can be obtained by substituting Eq. 2.1-29) into Eq. (2.1-2).

Doing so yields

y(t,r) - fJJ fx(t-T, r-r )exp(+j2rt)exp(-j2,r-r)•

S(r,o; O,ic)d dcdTdr (2.1-30)

where the integrand term

S(T,Eo; O,i)x(t-T, r-ro)exp(+j2nrt)exp(-j2irKr)

is a time, space, and "frequency" (frequency in HZ. and spatial

frequencies in cycles/m.) shifted replica of the input signal

x(t,r) weighted by the spreading function S(r,r ; 0,_).

Therefore, for a given input (source) location as specified by

r the spreading function determines the amount of spread in

round-trip time delay T(sec.), frequency O(HZ.), and spatial

frequencies K (cycles/m.) that an input signal will undergo as

it passes through a linear, time-varying, space-varying, channel.

Equations (2.1-30) and (2.1-2) both indicate that the output

y(t,r) at some receiver location r is dependent upon the loca-

tion r of the input (source) via the spreading function-0

S(T,r.; 4,K_) w.r.t. Eq. (2.1-30),and via the impulse response

h(T,Eo; t,r) w.r.t. Eq. (2.1-2). For example, the existence and

-0
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extent of SOFAR transmission depends on both the depths of the

source and receiver [41].

The last filter function to be discussed is the

bi-frequency function. The bi-frequency function 3(f,v; o,_)

is defined as

3(f,v; *,i_) - F Fr{H(f,v; t,r)} (2.1-31)

or

B(f,v; f,_) - f H(fv; t,r)exp(-j2rot)exp(+j2 cr)dtdr.

(2.1-32)

Similarly,

H(fv; tr) F 1F (B(fv; *,)} (2.1-33)

or

H(f,_; t,r) = f fB(fv; o,!_)exp(+j21rot)exp(-j2nK-r)dodK.

(2.1-34)

The term bi-frequency function was originally used to denote

the appearance of the two frequency variables f and 0 in linear,

time-varying systems theory. We can generalize this notion

by using the term bi-frequency function to denote the appearance

of the input "frequency" pair f and v,and the filter variation
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"frequency" pair * and K in linear, time-varying, space-vary-
ing, systems theory.

Just as the spreading function gives an indication

of how rapidly the impulse response changes with time and

space, the bi-frequency function gives an indication of how

rapidly the transfer function changes with time and space.

The bi-frequency function can also be obtained by

taking the Fourier transform of the spreading function w.r.t.

T and r i.e.,

B(f,v; F,) =F F F (S(T,r 0 ,.) (2.1-35)

or

B(f,v; D,ic) = F (S(-,r; o,<)exp(-j2-rf)exp(+j2-'r 'd-dr

(2.1-36)

and, similarly,

S(T, ; F 1 Fl {B(f,j; , (2.1-37)

or

S(TE O; f B(f,v; ),<)exp(+j2.fT)exp(-j2 v-r 0)dfd,-

-( --- 38
(2. 1-38)
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In addition, the impulse response and bi-frequency

functions form a Fourier transform pair, i.e.,

B(f,v; 0,K) F Fr FtFr (h(T,r ; t,r) (2.1-39)

or

B(fv; *,,) f f f ]h(t,r; t,r)exp(-j2wfT)exp(+j2yv'r,)"

exp(-j2Tot)exp(+j2K -r)d-rdrodtdr

(2.1-40)

and, similarly,

hTE;t,r) =F~
1F~l F_1 F_ I(B(f,j; $,)
f K

(2.1-41)

or

h(TEo; t,r) = Bf,v; 4, _)exp(+j2wfT)exp(-j2rv') •

exp(+j21yt)exp(1-j2i<c-r)dfdvdldic.

(2.1-42)

The interdependence which exists amongst the four

filter functions is illustrated in Fig. 4. Any one of

these functions may be used to define completely a linear,

time-varying, space-varying, communication channel.
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TIMtE-VARYING SPACE- VARYING
IMPULSE RESPONSE

SPREADING S~r,,w F F SPACTIE-VARYING

TRANSFER
FUNCTION

91-FREOUENCY
FUNCTION

Fig. 4. Interdependence amongst the four filter
functions that characterize linear, time-
varying, space-varying, communication
channels.
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2.1.3 Output frequency and angular spectrum

The output frequency (n) and angular (a) spectrum

Y(n,O) is defined as

Y(n,S) = FtF r{y(t,r)} (2.1-43)

or

Y(n,B) = ffy(tr)exp(-j2nt)exp(+j2s8r)dtdr (2.1-44)

where n corresponds to output frequencies in HZ. and B is a

vector whose components are output spatial frequencies with

units of cycles/meter. Substituting Eq. (2.1-25) into Eq.

(2.1-44) yields

Y(nB) = (,, X(f,)f H(fv; t,r)exp[-j2(rf-f)t1"

exp[ j2 (8-v) •r]dtdrdfdv

(2.i-45)

where, from Eq. (2.1-32), it can be seen that the inner multi-

dimensional integral is equal to B(f,v_; n-f, 2-v) so that

Y(n,) X= f X(fv_)B(f,,; i-f, _- )dfd_

(2.1-46)

K.• !--
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which is in the form of a multidimensional "frequency" domain

convolution integral. Note that * a n-f or n E f+O, and that

B =-v or 0 a v+K. Thus, the output frequencies n in HZ. are

equal to the sum of the input frequencies f and the variations

in frequency, *, due to the time-varying property of the filter.

Similarly, the output spatial frequencies B (directions of

wave propagation) in cycles/m. are equal to the sum of the in-

put spatial frequencies v (directions of propagation of trans-

mitted plane waves) and the variations in spatial frequency

(directions of wave propagation), K, due to the space-varying

property of the filter. Equation (2.1-46) demonstrates that a

linear, time-variant, space-variant, filter will spread the

input frequency and angular spectrum X(f,v) in both frequencies

in HZ. and spatial frequencies in cycles/m.

Example 2.1-3

If the linear filter h is time-invariant and space-in-

variant, then H(f,v; t,r)= H(f,v) [see Eq. (2.1-16)] and, as a

result, Eq. (2.1-32) reduces to

B(f,v; o,10 H(f,v) iexp(-j2-,(t)dt iexp(+j2Tr.r)dr

or

B(f,v; ,c) =H(f,v)6(0)6(K) (2.1-47)
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since

F (1 d(0

and

F (1 [II

Substituting Eq. (2.1-47) into Eq. (2.1-46) yields

Y(n,3) = ffX(f1J)H(f~v)5(n-f)5(8-v)dfdv

which simplifies to

YUn,3)3n)3=

and by replacing n with f and 3 with \, we finally obtain

Y(f,\) = X(f,V)H(f,V) (2.1-48)

which is the output frequency and angular spectrum from a linear,

time-invariant, space-invariant, filter. Note that the output

frequency f and the output spatial frequency vector v are iden-

tical with those of the input Xlf,.). Hence, as would be ex-

pected, there is no "frequency" spreading. This would corres-

pond to the physical situation of transmitting a signal via a

transmit aperture (array) to a receive aperture (array) when
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the platforms containing the apertures (arrays) are not in

motion, and the intervening ocean medium has a constant speed

of sound (index of refraction) and no discrete point scatterers

in motion. No motion implies no Doppler (frequency) spread

and a constant speed of sound implies that the sound rays

travel in straight lines, i.e., there is no angular spread

(scatter) or change in the direction of propagation of the

transmitted sound rays.

qh
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2.2 Random Filters

2.2.1 Filter autocorrelation functions

In Section 2.1, four system functions were intro-

duced which are used to characterize linear, time-variant,

space-variant, filters. However, if the filter is random,

then each of these system functions must be considered as

random functions. As a resul;, we must work with the respec-

tive system autocorrelation functions which are defined as

follows:

Rh(T,, ',r r'; t,t',rr_) i E(h(T,ro; t,r)h*(T',r'; t',r')1-h a- -0o

(2.2-1)

R H~f,f',,_i,v'; t,t',r,r*) i E{H(f,-j;t,r)H*(f',v'; tl,r') }

(2.2-2)

R s(T, , ' ro ,S E,' ' -S (T ,,o (P ,K ) S * (r ' , r ' 0 ' _K

(2.2-3)

and

R (f'f',u_,uv'; , ', , ') E{B(f,v_; ,! )B*(f', '; 0',L') }

(2.2-4)

where E{-} is the expectation or ensemble average operator

and the asterisk denotes complex conjugate.

If we use the sign convention that forward trans-

forms w.r.t. T,t, , and r' are defined with a minus sign in

the exponent of the complex exponential (inverse transforms

ti--
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w.r.t. f, ,v' and 0' are defined with a plus sign) and for-

ward transforms w.r.t. T' t',ro, and r are defined with a

plus sign (inverse transforms w.r.t. f',O',v, and K are defined

with a minus sign), then it can be shown that the four system

autocorrelation functions are related by the following Fourier

transform pairs:

RH(f,f',Ivv'; t,t', r,r') = F F iFro, t,t'Tr rF)

(2.2-5)

and
(r,r',r ,r'; t,t',r,r') - -i - -l

- -o_ =Ff FfFv V ; t r

(2.2-6)

R. (f,f',v,v'; ,4',.,') = FtFt,FrFr,{RH(f,f',v,v'; t,t',r,r')}

(2.2-7)

and
-i -1 -i -i ~ffv

R (f,f',v,v't,t',r,r') F F F ,

(2.2-8)

Rs(T T'r-or'; ' ''- F Ft F F r'(Rh(T,' ,'' ' ;  t,t',r,r )}
S 0 0 t 'h -0 -0

(2.2-9)

and

Rh ( ,''r- r'; t,t',r,r') = F F ,F F, ,Rs(, , r'; '_ _

(2.2-10)

Cf ,f ', \, v' ; * ' , _, ') = F F , F F , RS, , '0.r , r ' * ' , _, ' )}
_R r r

(2.2-11)

''S
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and

RF-1 - 1-

(2. 2-12)

and finally,

R,'',' = F FF Fr*FtFtFrFr,{h(T,T',r r';

t~t'rr')1(2.2-13)

and

_ (2.2-14)

The interdependence which exists amongst the four

filter autocorrelation functions is illustrated in Fig. S.
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2.2.2 Uncorrelated spreading and the scattering

function

In this section we will examine the consequences

of assuming that the spreading function S(r,o; 
4,) is un-

correlated with S(-', r'; *,_') for all values of T' # T,

_ , o $' *, and K' 0 K.

The assumption of uncorrelated spreading is 
matne-

matically equivalent to stating that the autocovariance 
of

S(TrO,, ) and S(Vr',; *',') is zero for all values of

T, # rr, # ,' E ' 4 * andgc' c , i.e.,

CS( , ' r , ; , ' _,-' RslT'T''ro'r';-- ' ' )- -

(t,~ rI'S 'r 0,r; 0,o"K'c' -

T r, r O *' ' and K "
(2.2-15)

where CS is the autocovariance function and AS(T,-o; $,) =

E{SI ,ro; 0,1). If it is assumed that uS(,ro; *,) 0,

then Eq. (2.2-15) is equivalent to

RS(T,T',,r , , ,' , ' RS(To E ;0,!S.) 6 T-'')"

1(r -r)6($)d(c_.') (2.2-16)

where

RS( ,£o;,, )  EIIS( ,£ ; 0,01 2r1 (2.2-17)

s ,) EIST.~j

K_& __ .. .
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is called the scattering function and is equal to the mean

squared value of the spreading function. The scattering func-

tion can be thought of as an average power density function

which determines the average amount of spread that an input

signal's power will undergo as a function of round-trip time

delay r, frequency #, and spatial frequencies K for a given

input (source) location r . Note that the scattering function--o

is a real, positive valued function.

Equation (2.2-16) is the result of the assumption

that the spreading function is zero mean. However, if the

spreading function is non-zero mean, it is convenient to do

the analysis with the centered process

Sc(T,Eo; *,C) = S(t,r ; jK) - 1,s(T,ro;

The random process SC(T,!o; *,c) has zero mean, and as a re-

sult, its autocovariance function is equal to

Csc(T,' ,"ro r'; € ! ) =  EIS (T'ro; (P'K)S*(-,',' ;  ' ')
_ C -o0 C -0

C

i.e., the autocorrelation function of the -erj mean centered

process is equal to the autocovariance funi.i(n of the original

non-zero mean spreading function.
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Let us next examine the effect that the assumption

of uncorrelated spreading has on the remaining three system

autocorrelation functions. As Fig. 5 indicates, R. can

be obtained from R S by performing the following transformations:

R ff t,t',r,rl)= F 1~ F -F ,1F F tF Fr {Rs~i'

ro 1 r'; ,*,ci)1(2.2-18)

or

RH (f ,f',,'t, t,r, r') f f1 R S,'.,c)

exp(-j2niifT-f'r ')]exp[+j2T ,v-r -'r)

d~d4Odcdi'dTdr'drdr' (2.2-19)

If Eq. (2.2-16) is substituted into Eq. (2.2-19), then

R H t,tl,r,.r) = R.H(LfA'; At,ar) (2.2-20)

where

_At,dr) f J J Jf R S( r,E; 0,K1exp(+j2roAt).

exp (- j 2 1T c -r) exp (-j 2 -rAf T)

exp(+-j2irAv-r0 )d4dcdrdr ,

(2.2-21)
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4f = f-f', Av A-', .t t-t', and Ar = r-r'

It can be seen from Eq. (2.2-20) that when uncorrelated spread-

ing is assumed, the autocorrelation function RH becomes a func-

tion of the differences Af, Av, At, and Ar only. This implies

that the random process H(f,v; t,r) is wide-sense stationary

in frequency, spatial frequencies, time, and space. An addi-

tional requirement for H(f,v; t,r) to be wide-sense stationary

is that the mean value

UH(f, \; t,r) = EfH(f,,v; t,r) r

is a constant. Since the four filter functions are related

by linear transformations (see Fig. 4), and since it was
assumed that 0S(t, <; ) = 0, then h (T,EO; t,r) = 0,

0 (f,'j; t,r) = 0, and PB(f,!; Oo) = 0 which are constant,

zero mean values. Therefore, the condition of uncorrelated

spreading in round-trip time delay T, input (source) location

Eo, frequency 0, and spatial frequencies < is equivalent to a

condition of wide-sense stationarity in frequency Af, spatial

frequencies Av, time At, and output (receiver) location Ar,

respectively. If uncorrelated spreading in T, Eo, , and <

occur together, then we have a wide-sense stationary uncorre-

lated spreading (WSSUS) communication channel.

Consider the autocorrelation function N next.

If Eq. (2.2-16) is substituted into Eq. (2.2-10) and the in-

dicated transformations are performed, then
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Rh( (Tt' ,; t,t' r,r') =Rh.(T r At-1r) 6(r-r)5(r -r')

(2. 2-22)

where

RhT~o;At,.r) R J:, J ( ; 0,ex(-j2rt)-

exp(-j21Kar)d~dKc. (2.2-23)

Equation (2.2-22) indicates that the random process h(T,ro t,r)

is wide-sense stationary in time and space because of the %t

and ar dependence and since Ph (T~r t,r) = 0. Equation (2.2-22)

also indicates that h(T,E.; t,r) is uncorrelated for all values

Of T' A T and r' # r

Finally, if Eq. (2.2-16) is substituted into

Eq. (2.2-11) and the indicated transformations are performed,

then

(2. 2-24)

where

R B(Lf'LV; :P'!0 f Jf R S(t-rr; ,!.)exp(-j2-.r~f7)-

exp(+j2-,Av._r)d-dr. (2.2-25)

Equation (2.2-24) indicates that the random process B(f,,; D,<)

is wide-sense stationary in frequency and spatial frequencies
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because of the Af and Av dependence and since PB(fV; I,.C) = 0.

Equation (2.2-24) also indicates that B(f,v; 0,K) is uncorre-

lated for all values of s' # * and K' .

Therefore, in summary, under the assumption of

uncorrelated spreading the four filter autocorrelation func-

tions reduce as follows:

RS(T,T',r ,r'; 0, I,ic,ic) = RS(T,ro , ) ( - ' 6 r r )
S-- -- -- -- 0 -O -0

6 ( -P) (K_- ) (2.2-16)

R H(f,f',v,v';t,th,r,r') = RH(Af,Av; At,Ar) (2.2-20)

Rh(T,T',r ,r'; t,tt,r,r') = Rh(T,ro; At,Ar)6(,-T')6(r -r')
-0- - -O -0

(2.2-22)

and

RB(f,f ,v, \'; *, 1,i ,i') = RB(Af,Av;j, _)6(0-10')6(_- ')

(2.2-24)

where RS(T,EO; o,<) is the scattering function.



39

2.2.3 The scattering function and its Fourier

transforms

By inspecting Eq. (2.2-23), we can write that

R(T~r ; At,Lr) = F- F- 1R (T,ro o,)

(2. 2-26)

and S TE ; ,K) = F atF A Rh(T,r o ; .t A )

(2. 2-27)

or

exp(+j21rK-L~r)d~td.~r. (2. 2-28)

Also, by inspecting Eq. (2.2-25), we can write

that

RB(,if= FFr R _ -,E

(2. 2-29)

and

Rs(t,r F, -F 1
(R (.if'Av _'C)

S 0 f Iv B

(2. 2-30)

or

R~ fT~ f R(Af,Av ; ,'C)exp(4.j21'~fT)

exp(-j27Av.r 0)d.~fd.~. (2.2-31)
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Additional transform pairs can be obtained as

follows. With the use of Eq. (2.2-23), Eq. (2.2-21) can be

expressed as

RH(Af,Av ; AtAr) - FTFr (Rh(T,Eo At,Ar)}
-o

(2.2-32)

or

,(Af,Av ; At,ar) = f Rh(T,ro ; at,Ar)exp(-j2lrAfT)"

exp(+j2wAv-.Eo)dTd~o (2.2-33)

and

R(, At,Ar) - -1 ; (Rt,:.r)
FAf AVR(fA

(2.2-34)

or

Rh (T,E ; At, Ar) = J f R H(bfAv ; At,Ar)exp(4-j27?Afr).

exp(-j2v-ro)dAfd~v. (2.2-35)

Next, if Eq. (2.2-28) is substituted into Eq. (2.2-25), then

_ ; *,iIc)F= F Fr 0F atF r Rh(T.ra At,ar)i

(2.2-36)

'l
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or

RB(AfAV 0 ,Kc) f f f J Rh (,~, At,Ar)exp(-j2raf-t)*

exp(+j2ir~v*E,)exp(-j2iroat)-

exp(+j2,rcAr)ddodAtd~r

(2.2-37)

and

Rh (T,E At,Ar) F-1F - F-1 {R 0,0c)

(2.2-38)

or

R(, At,Ar) = RB(tAfAv ; , .)exp(+j2WAfT)-

exp(-j2w~v'r )exv(4j2iroat)-

exp(-j21rcAr)d~fdaddKc.

(2.2-39)

Finally, with the use of Eq. (2.2-33), Eq. (2.2-37) can be

expressed as

%(AfA 0,K)= F t F ArfR,(Af.av ; At,ar))

(2.2-40)

or

R B(f ;- 0,10 f J RHd(AfAv ; At,Ar)exp(-j2i~ot)*

exp(+j2nK.ar)dAtdAr (2.2-41)
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and

RH(A~f,&v ; t,Ar) = F_ F_ (R

(2.2-42)

or

exp(-j27.K-r)dodK. (2.2-43)

The various Fourier transform pairs are summarized

in Fig. 6. The scattering function, or any of its Fourier

transforms, is a complete second order statistical description

of a WSSUS communication channel.

Another very important Fourier transform relation-

ship can be obtained by substituting Eq. (2.2-35) into Eq.

(2.2-28) which yields

R (Tro ;0,K FtF~ F-1F-1 RH (Af,..V ; .AtAr)l

(2.2-44)

or

~S (To f,~ f f f RH~(tAf,Av ; At,ar)exp(-j2-.r t).

exp(+j27rK.Ar)exp(+j2t~fT)-

exp(-j2irAv*-r )d~td~rde~fdA_

(2.2-45)

and
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R= F~ F, FrF (Rs(T,r
%(ftfAv T EtOr F F0

(2. 2-46)

since

R,(f~v At,Ar) R R(T,r ; o,.c)exp(+j2imrpt)-

exp(-jvK-Ar)exp(-j2-r.fT)-

exp(+j2v-_0 )dodCddr

(2.2-21)
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2.2.4 Input-output relations

We will now proceed to derive an expression for

the autocorrelation function of the output from a linear,

time-varying, space-varying, random filter. The output auto-

correlation function R y(t,t',r,r') is defined as follows:

R y(t,t',r,r') A E{y(t',r)y*(t r')!. (2.2-47)

If Eq. (2.1-30) is substituted into Eq. (2.2-47), then the

output correlation function in time and space is given by

Ry(t,tl,r,r') = ...f x(t-T, r-ro)x*(t'-T', r'1-r 1).

exp[+j2r(ot-*'t')]exp[-j2(.r- -

R S(TT'l,E, ;O,',,c')dodcd-rd "

do'dK'dT'dE (2.2-48)

If the random filter is a WSSUS (wide-sense stationary uncor-

related spreading) communication channel, then the autocorre-

lation function of the spreading function is given by Eq.

(2.2-16). Substituting Eq. (2.2-16) into Eq. (2.2-48) yields

K.
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R~tt~rr) f f f J .- *t

exp(+j21rt At)exp(-j2iTmc ar)

R S(T,ro ; -,~fidd

(2.2-49)

The mean squared value of y(t,r) is given by

E{ Iy(t,r)l 2 R y (t,t,r~r)

where, from Eq. (2.2-48), we have in general that

R~ (t,t,r,r) af.Jx(t- ,r- )X*(t-T',r-')-

exp(+j2wA*t)exp(-j2lw.%Kr)-

(r~r', ##s,.c,,c)dod~cdrdro

do'dK'dT'dr (2.2-50)

where A# *- and AK - . In the case of a WSSUS commu-

nicat-ion channel, we have from Eq. (2.2-49) that
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Ry(,tr, f f f f., . _xtT _- _ T r0 4,
d~di.dTdr o .  (2.2-51)

If we define the energy of the output signal Ey as

E y fJ IY(tr) 12dtdr, (2.2-52)

then the average output energy E can be expressed as

i , J JT y E{Iykt,r)I 2 dtdr (2.2-53)

or

E- f f R (t, t, rr) dtdr. (2.2-54)

If Eq. (2.2-51) is substituted into Eq. (2.2-54), then

Y J x f J R5 (4 S *T,Ect)dtdlcdTdro
(2.2-55)

I '[aI H ui
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where

E,= f f xt,12) dtdr (2.2-56)

is the energy of the input signal. Equation (2.2-55) indicates

that the ratio of the output (received) average energy to the

input (transmitted) energy for a WSSUS communication channel

can be obtained by integrating the scattering function of the

channel. Also note that the average output energy is not a

function of the input signal's shape.

Alternate expressions for the output autocorrela-

tion function can be obtained from Eq. (2.1-25). If Eq.

(2.1-25) is substituted into Eq. (2.2-47), then

R y(t,t',r,r') - f f f f X(f,v)X*(f',v ' ) "

R (t~t',r ,')=',iii _-

R(f,f',v,v' ; _ _~~r)

exp[+j2w(ft-f't')]exp[-j2(vr-v'r')]"

dfdvdf'dv'. (2.2-57)

If the random filter is a WSSUS communication channel, then

the autocorrelation function of the transfer function is given

by Eq. (2.2-20). Substituting Eq. (2.2-20) into Eq. (2.2-57)

yields

I'i
'V1
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lR (ttry' f f f f X(f,V)X*(f',VI)R.,tAf,Av ; t,Ar)*

exp[+Jaw(ft - f't')Iexp[-j2ir(v-r -'- ) "

dfdvdf'dv'. (2.2-58)

A relationship between the input and output power spectral

densities will be obtained next.

Let us assume that the input signal x(t,r) is a

zero-mean, wide-sense stationary (in time and space), random

process which is uncorrelated with the transfer function.

Under these assumptions, the output autocorrelation function

given by Eq. (2.2-57) becomes

R y(t,t',r,r') f f f E{X(f,v)X*(f', '_') }

RH(f,f',v,v' ; t,t',r,r ).

exp[+j21t(ft-f't')]exp[-j27r(v-r-v'-r')]"

dfdvdf'dv' (2.2-59)

Since x(t,r) was assumed to be wide-sense stationary in both

time and space, then it can be shown that

E{X(f,v)X*(f',_')} = Sx(f,v)6(f-f')6(_-\_')

(2.2-60)

where

X(f,v) Ft F r{x(t,r) },

- tr
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Sx(f,, _ ) F Fr {Rx (t,Ar) (2.2-61)

is the power spectral density of the input, and

Rx(6t,ar) _E{x(t,r)x*(t',r')}

where At = t-t' and Ar = r-r'. If Eq. (2.2-60) is substituted

into Eq. (2.2-59), then

Ry(tt',r,r') = J Sx(fv)RH(f,f,vv ; t,t',r,r')exp(+j2,rfAt)"

exp(-j2 v Ar)dfdv, (2.2-62)

and if it is further assumed that the transfer function is wide-

sense stationary in both time and space, then Eq. (2.2-62) re-

duces to

Ry(At,Ar) = f Sx(f,)RH(f,f,, t,r)

exp(+j2 fAt)exp(-j2., • Ar) dfdv (2.2-63)

which implies that the output y(t,r) is also wide-sense sta-

tionary in both time and space. If we define the output power

spectral density Sy (1,3) as

S (F,) = F rR (Lt,Ar) }, (2.2-64)
Y At AI I
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then substituting Eq. (2.2-63) iro the R.H.S. of Eq. (2.2-64)

yields

S y (n,3) f f Sx(f,v)RB(f,f,v,v ; n-f, B-v)dfdv

.. 4 (2.2-65)

where, from Eq. (2.2-41),

, (f,f,v_,v ; n-fB-V_) f R f ,(f,f,_,ju_ ; At,Ar)exp[,-j2--(n-f)At]- 

exp[+j27r(S-v) • r]dAtdgr.

(2.2-66)

Note that Eq. (2.2-65) is in the form of a multidimensional

convolution integral analogous to Eq. (2.1-46) for the deter-

ministic case. The convolution process accounts for the fre-

quency spreading (frequency in HZ. and spatial frequencies in

cycles/m.) of the input power s:-ectral density.

Example 2.2-1

Using Eqs. (2.2-65) and (2.2-66), let us compute the

output power spectral density for the case when the transfer

function is time-invariant, space-invariant, and deterministic.

First note that

RH(f,f,v,v At,ar) =E{H(f, ! ; t,r) H*(f,v t',rf'.
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If H(f,v t,r) is both time-invariant and space-invariant,

then [see Eq. (2.1-16)]

_~,, t,r) = H(f,v),

and if the transfer function is also deterministic, then

_,(~~,, ; t,Ar) =E{IH(f,v,) 1

= H(f,)I 12.

Therefore, Eq. (2.2-66) becomes

RB(f,f,v,v ;v1f,$_v) = H(f,v)I 2 f expf-j2w(rn-f)At~dat-

J exp [+j27r (8-j) .Ar~d~r

= H(f'V)f 2(-~(S')

and substituting this expression into Eq. (2.2-65) yields the

desired result

S n = H(i,W) *2 S ~n

By replacing n with f and i~ with -v, we finally obtain J compare
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with Eq. (2.1-48)]

S (f,v') = H(f,v)l 2S (f,v)
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TII. COUPLING EQUATIONS

We will now present those equations which couple the

transmitted and received electrical signals to the transfer

function of the ocean medium via the transmit and receive far-

field directivity functions. Referring to Fig. 2, the fre-

quency and angular spectra of the input acoustic signal to

the medium and the output electrical signal from the receive

aperture (array) are given, respectively, by the following

equations [2]:

xM(f,V) f -X(f,_)DT(f,\-a)da (3-1)

and

Y(n,y) f YM(n,S)DR(n,v-B)dB (3-2)

where the frequency and angular spectrum of the output acoustic

signal from the medium is given by [see Eq. (2.1-46)]

Y = f f XM(f,v)BM(f,v ; n-f,B-v)dfdv (3-3)

if I
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where [see Eq. (2.1-32)]

B ; ,_)-- f f HM(f,_ ; t,r)exp(-j21rot)"

exp(+j2wi.cr)dtdr (3-4)

is the bi-frequency function and HM(fv ; t,r) is the time-

variant, space-variant, transfer function of the ocean medium.

Equations (2-1) thru (3-4) are the basic coupling equations.

However, w.r.t. Eq. (3-1), we have the following additional

relationships:

XM(fV) " FtFr{XM(t,r)} f t x. (t,r)exp(+j2'v.r)dV.

exp(-j27rft)dt (3-5)

where (21

xM(tr) = f X(fr)AT(f'r)exp(+j2nft)df' (3-6)

X(f,a) FtFr{x(tr)} = f x(t,r)exp(+j27r_.r)dV.

-~V

exp(-j2,rft)dt (3-7)

%l
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is the frequency and angular spectrum of the transmitted elec-

trical signal, and

DT(f, _ ) = Fr{AT(fr) } f AT(fr)exp(+j2rc_-r)dV

V
(3-8)

is the far-field directivity function (beam pattern) of the

complex transmit aperture AT(f,r). Also,w.r.t. Eq. (3-6),

X(f,r) = Ft{x(t,r)} = J x(t,r)exp(-j27rft)dt

(3-9)

and

AT(f,r) = F 1 lDT(f, a) I= f DT(f'ca)exp(-j2tca'r)d.

(3-10)

Similarly, w.r.t. Eq. (3-2), we have the following

additional relationships:

Y(n,y)= FtFr{Y(t,rV yt,r)exp(+j2y-r)dV.

exp (-j27rnt) dt (3-11)
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where [2]

y(t,r) = f YM(n,r)AR(nr)exp(+j2wnt)dn, (3-12)

the frequency and angular spectrum of the output acoustic sig-

nal from the medium is given by

YM(nB) = FtFr{yM(t,r) } = ff YM(tr)exp(+j27r_.r)dV.

-~V

exp(-j27nt)dt (3-13)

where [see Eq. (2.1-25)]

YM(tr) = f J XM(fv-)HM(f'v- ; t,r)exp(+j2rft).

exp(-j2 v.r)dfdv , (3-14)

and

DR(,*)rB) - = AR(nr)exp(+j21Tq.r)dV

V
(3-15)

is the far-field directivity function (beam pattern) of the

complex receive aperture AR(nr). Finally, w.r.t. Eq. (3-12),
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Y M (nr =Ft{YM(t,r)} - f yM(tr)exp(-j 27rnt)dt

(3-16)

and

AR(nr) = F_1{DR(n,8)}= f DR(n,_)exp(-j 2 7r.r)de.

(3-17)

Substituting Eq. (3-14) into Eq. (3-16) yields

Y(ii, L = f7 7 XM(f,\I)B M(f,v ; n-f,r)exp(-j21v~r)dfdv

(3-18)

where

BM - , f HM(f,v ; t,r)exp(-j2-ot)dt

(3-19)

which is not the same as the bi-frequency function [see Eq.

(3-4)].

The components of the vectors a, v, s, and y are spatial

frequencies with units of cycles/m. and r = (x,y,z).

A moments reflection leads one to the conclusion that

Eq. (3-12) is well suited for space-time signal processing
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applications. By inspecting Eqs. (3-18), (3-19), and (3-1),

it can be seen that the output signal given by Eq. (3-12) can

be expressed as a function of time and space in terms of the

transmitted electrical signal, the transmit aperture, the

transfer function of the ocean medium, and the receive aperture.

Equation (3-2), however, represents the theoretical output

"spectrum", albeit dependent upon the same system functions.

If the ocean medium is modelled as a random filter,

then y(t,r) given by Eq. (3-12) is a random process with auto-

correlation function

R y(t,t',r,r') = E(y(t,r)y*(tl,r')}. (3-20)

It is probably obvious by now that the weak link in the

coupling equations is the ocean medium transfer function

H M(f,v ; t,r) and its corresponding autocorrelation function

[see Eq. (2.2-2)]

RH (f,f',v,v' ; t,t',r,r') - E{H (f,v ; t,_)H*(f',v'
M M ,)Mfv t'r)

(3-21)

If one is not able to specify a realistic functional form for

H M(f,v ; t,r), then the equations presented in this section

represent an exercise in the methods of linear system theory.

This leads us to the main purpose of this paper which is to

demonstrate the derivation of an ocean transfer function based

~II
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upon the W.K.B. approximation. The derivation is discussed in

Section 4.1.

Finally, note that the autocorrelation function given

by Eq. (3-21) can be referred to as a generalized coherence

function since it is a generalization of the two-frequency cor-

relation function or two-frequency mutual coherence function

based upon linear, time-variant filter theory as discussed by

Ishimaru [51], for example. Equation (3-21) provides informa-

tion concerning the amount of spreading in time-delay, space,

frequency, and spatial frequencies that a transmitted signal

will be expected to experience as it propagates in a random

medium. The result of all this spreading is, of course, dis-

tortion in pulse shape.

II
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IV. ANALYSIS

4.1 Transfer Function

We will now proceed to derive a transfer function

which models the bistatic communication channel geometry shown

in Fig. 1. The communication channel is regarded to be the

ocean volume between the apertures so that surface and bottom

scattering effects are not included. Both apertures are sta-

tionary (not in motion), and it is assumed that no discrete

point scatterers (such as bubbles, fish, etc.) are in the

volume between the apertures. No motion implies that the re-

sulting transfer function will be time-invariant.

The propagation of small amplitude acoustic signals

in the ocean from the transmit aperture to the receive aperture

can be described by the following linear, inhomogeneous, scalar

wave equation:

2 (t'r) 1 2(tr) - N(tr)

c 2r) 3t2

(4.1-1)

where C(t,r) is the velocity potential at time t and position

r - (x,y,z), xM(t,r) is the source distribution [see Fig. 2

and Eq. (3-6)], and c(r) is the speed of sound in the ocean.

Since the coupling equations discussed in Section III already

allow for an arbitrary xM(t,r) with corresponding frequency

and angular spectrum XM(fv), we need only find the solution

to the following Helmholtz wave equation:

,I'
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7 2 0(r) + k 2 n 2(r) 0(r) =0 (4.1-2)

where

k= 2uf/c 0  27/= (4.1-3)

is the constant, reference wavenumber,

n~r) = c O/c(r) (4.1-4)

is the random index of refraction,

co= c(ro) = fX 0  (4.1-5)

is the constant, reference speed of sound at the source posi-

tion r 0= (x 0 1y0 'z 0 ), and

0(t,r) - (r)exp(+j2rft) (4.1-6)

is the time-harmonic solution of Eq. (4.1-1) when x M(t~r) is

set equal to zero,and where O(r) is the solution of Eq. (4.1-2).

Note that the wavenumber

k(r) = 2lrf/c(r) (4.1-7)

can be expressed as

k(r) - k 0n~r). (4.1-8)
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Therefore, k(r k since n(r o = 1. The index of refraction

is commonly written as [40, 42-45]

n(r) = nD(r) + nR(r) (4.1-9)

or

n(r) = nD(r) + a(r)nNR(r) (4.1-10)

where nD(r) is the deterministic component and is usually

close to unity in value, nR(r) is the random, zero mean compo-

nent, a(r) is the standard deviation of nR(r), and

nNR(r) = nR(r)/a(r) (4.1-il)

is the normalized random component with zero mean and variance

equal to unity. We shall work with Eq. (4.1-10) in this paper.

Note that the average value of n(r) is equal to nD(r).

Let us assume that the speed of sound is only a

function of the depth y, i.e., c(r) = c(y), so that Eq. (4.1-2)

reduces to

SP(x,y,z + kn (y)O(xy,z) 0 (4.1-12)

where, from Eq. (4.1-10),

n(y) = nD(Y) + oiy)R(y). (4.1-13)

D (
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By using the method of separation of variables and the W.K.B.

approximation [46,47], an approximate solution of Eq. (4.1-12)

is given by

P(x,y,z) exp[-jkx (X-xo)] ay(y)exp[+jey(y)]exp[-jk z (z-zo )]

(4.1-14)

where

ay(y) = [ky (y) ]- 1/ 2  (4.1-15)

( y
e Y(y)= exp- k kY(;)di (4. 1-16)

YO

and

22 2_ 2 1/2
ky~y) = [ 0 n(y)- kxkz] (4.1-17)

where kX , ky(y), and kz are the components of the propagation

vector

k(y) = kxX + kY(yly + kzZ. (4.1-18)

Note that kX and kz are constants while Ity(y) is a function of

the depth y. In addition, Eqs. (4.1-14) thru (4.1-16) allow

for a general source location with position vector r = (xo,y O ,zo ).

The W.K.B. approximation given by Eqs. (4.1-15) and

(4.1-16) is a valid solution for the depth dependence prgvided
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that [46,47,50] 1) the transmitted frequencies f are high, 2)

the sound speed profile c(y) is slowly changing, and 3) the

depth interval from y0 to y does not include any turning

points. A turning point exists at y = YT if ky (yT )  0.

Since ^he reference propagation vector k. can be

expressed as

k k x + ky + kz (4.1-19)

then
2 2 2 2 2k= 0 k = kx + + kz (4.1-20)

where

kx =k 0u0  (4.1-21)

ky k (4.1-22)

and

kz = k0 w o  (4.1-23)

where

U0 = sine oSp (4.1-24)

vo = sine0 sin o = COSs o  (4.1-25)

and

wo = cose0  (4.1-26)

are the direction cosines w.r.t. the positive X,Y, and Z axes,

respectively, and (9 Io,) are the vertical and azimuthal

spherical angles measured w.r.t. the positive Z and X axes,

respectively, representing the initial directions of wave pro-
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pagation (see Fig. 7). From Eq. (4.1-20) we can write that

2 2 2 2 (4.1-27)

and substituting Eqs. (4.1-27) and (4.1-22) into Eq. (4.1-17)

yields

ky(y) = ky 1 + [n 2(y - I /  (4.1-28)

Note, that ky(y0 ) = k since n(yO ) = 1. Therefore, the square

root expression in Eq. (4.1-28) is responsible for changing

the initial direction of propagation ky. If

j[n2(y) - l]/v 0I < 1 , (4.1-29)

then the square root expression in Eq. (4.1-28) can be approx-

imated by the first two terms in a binomial expansion yielding

k,,(y) m ky + k2[n 2(y) - l]/(2ky) (4.1-30)

It will be shown later that the binomial expansion criterion

given by Eq. (4.1-29) can be related to the critical angle of

incidence, and hence, total reflection. The assumption con-

cerning the absence of turning points will also be discussed

later, but first let us return to the derivation of the trans-

fer function.

Il.. I
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Recall that we designated the vector v. to represent

the transmitted spatial frequencies as in X M(f,v) (see Fig. 2).

If we let

= xffyof Z), (4.1-31)

then

= k x/(2nT) -u 0/A 0 (4.1-32)

f= ky/(2r) aV 0/A 0 (4.1-33)

and

= kZ/(27T) -wo/,X (4.1-34)

are the spatial frequencies in the X,Y, and Z directions, re-

spectively, where co = c(y0 ) = fx0. Therefore, if Eqs. (4.1-30)

thru (4.1-34) are substituted into Eqs. (4.1-14) thru (4.1-16),

then Eq. (4.1-6) becomes

y

exp~ -j( (1f n2()l

J21rfy + k 2 n 2 (Y) - 1] (4r

exp(+j2rft)exp[-j2wTv.(r-Q,) . (4.1-35)

Since the input to the communication channel is the time-har-

monic plane wave
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and since Eq. (4.1-35) represents the output from the channel

at any time t and position r, then [see Eq. (2.1-21)]

HM (f,v ; t,r) = HM(f,v ; r) = HM(ff Y ; y)

(4.1-36)

where the random, time-invariant, space-variant transfer func-

tion of the ocean medium is given by

Mff ; y) = A(f,f y ; y)exp[+jeM(f,fY ; y)]

(4.1-37)

where
AM(f,fy ; y) = {2wf x + k2 n2(y)_l]/(47fy)}

(4.1-38)

y

3M(f,f ; y) =-[k2 /(4nf)] f [n2 ()-1]dr

YO (4.1-39)

k O = 2nf/c (4.1-3)

and from Eq. (4.1-13),

n 2(y) = n2(y) + 2 nD(y)o(Y)nNR(Y) + o2(y)n2(y).

(4.1-40)

If the medium is "weakly irregular" or "weakly scattering",
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i.e., if a(y) is very small compared to unity so that

k o(y)Sy << 1 (4.1-41)

where Sy is the scale size of the irregularities (i.e., the

average distance over which the refractive index fluctuations

remain correlated [48]), then terms involving a 2(y) can be ne-

glected [42] and Eq. (4.1-40) reduces to

n (y) $ 1(y) + 2ND(y)o(y)nNR(Y). (4.1-42)

Therefore, by using Eq. (4.1-29) to simplify Eq. (4.1-38) and

upon substituting Eq. (4.1-42) into Eq. (4.1-39), one obtains

the following:

AM(ffy ; y) (2fy) - I / 2  (4.1-43)

and

M (f,f Y ;Y) = eD(f,f Y ; Y) + MR(f,f Y ; Y)

(4.1-44)

where y

eMD(f,f ¥ ; y) =[ko/(4rfy)] f [n ( )-l]dC (4.1-45)

YO

is the deterministic or average component of the phase function,

and

I I



70

Y

,f0y) .[ko/(2ifY)J f (C)a(C)nNR()dd

Yo (4.1-46)

is the random component.

The medium transfer function HM given by Eq. (4.1-37)
with amplitude and phase functions AM and eM specified by Eq.
(4.1-43) and Eqs. (4.1-44) thru (4.1-46), respectively, in-
dicate that for a weakly irregular medium, the major effect of
the medium is to angle modulate the transmitted field. Further-
more, if nD(y) s 1, then aMV(f,fy ; y) 2 0 [see Eq. (4.1-45)]
and, as a result, the angle modulation is due strictly to the
random fluctuations O(Y)nNR(y) of the index of refraction [see
Eq. (4.1-46)]. Note that the angle modulation process is often
referred to as "scattering" [48]. Also note that the transfer

function derived in this section can be written as the product
of two functions, one deterministic and the other random, i.e.,

- [AMexp(+JeGMD )][exp(+jE)]

which agreer with the assumed transfer function expressions of
Laval and Labasque [36] and with the general practice of re-
presenting a field in a random medium as the product of a de-

terministic and a random function [40].

Let us now discuss the two important assumptions
responsible for the derivation of the transfer function, namely,
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the aforementioned binomial expansion criterion given by Eq.

(4..1-29) and the assumption regarding the absence of turning

points.

Since

n(y) - co/c(y), (4.1-47)

substituting Eqs. (4.1-25) and (4.1-47) into Eq. (4.1-29)

yields

a < cos- I  (I c2()y. co(4.1-48)

where 80 is the angle of incidence of the reference propagation

vector ko (see Fig. 7). Now recall that the critical angle of

incidence Bc associated with a time-harmonic plane wave inci-

dent upon a plane boundary between two fluid media is given by

[49] (see Fig. 8)

sinac M c 1/c2  2 > c (4.1-49)

or, equivalently,

acn - 2c 2 1) 1; c. > c, (4.1-50)

where c2 must be greater than cl for Bc to exist. When the

angle of incidence B > 8c there is total reflection and hence,
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no transmission of energy into medium II. The speed of sound

c(y) generally increases with depth, for example, in the deep

ocean. Also, c(y) increases above and below the SOFAR channel

axis. Therefore, when c(y) > co , the absolute value sign in

Eq. (4.1-48) can be removed, and by comparing Eq. (4.1-50)

with the R.H.S. of Eq. (4.1-48), the binomial expansion crite-

rion indicates that the initial angles of transmission 80 must

be less than the "critical angle" in order to avoid total re-

flection, and thus, passing thru a turning point [47,50].

This is consistent with the fact that the W.K.B. approximation

is invalid at a turning point [47,50].
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4.2 Output Electrical Signal

Now that we have derived an ocean medium transfer

function, let us demonstrate the use of the coupling equations

presented in Section III by calculating the output electrical

signal y(t,r) from the receive aperture (array) as given by

Eq. (3-12). As can be seen by inspecting the integrand of

Eq. (3-12), we need expressions for both of the kernels YM(n,r)

and AR(n,r). Let us compute YM(n,r) first [see Eq. (3-18)].

Assume that the transmit aperture depicted in Fig.l

is a planar array of M xN (odd) complex weighted point sources,

centered at (xoyozo) and parallel to the XY plane. In addi-

tion, assume that the complex weights are separable. Since in

most practical situations an identical input electrical signal

is applied to all elements in the transmit array before the

complex weights, i.e., since

x(t,r) x(t),

then Eq. (3-7) reduces to

X(f,a) = X(f)6() (4.2-1)

since F r(l} = 6(a). Substituting Eq. (4.2-1) into Eq. (3-1)

yields

XM(f,v) = X(f)DT(f,V) (4.2-2)
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where

(M-1)/2 (N-1)/2

DT(f,v) = c.dnexp(+j2fxmd)"

m--(M-l)/2 n=-(N-1)/2

exp(+j21fyndy)exp(+j2wf x 0 )•

exp(+j27rfyyO )exp(+j2wf zz0 )

(4.2-3)

is the far-field beam pattern of the transmit array, cm and dn

are complex weights, dX and dy are the intereiement spacings in

the X and Y directions, respectively, and the last three expo-

nentials are phase factors which account for the array being

centered at (xoyo, z0 ) instead of at the origin (0,0,0).

Since the transfer function derived in Section 4.1

is time-invariant, Eq. (3-19) becomes

BM(f,v ; ,) = HM(f,v ; r)d(f) (4.2-4)

and, as a result,

B _M(fV ; n-fr) - R (f,v ; r)6(n-f). (4.2-5)

Therefore, substituting Eqs. (4.2-2) and (4.2-5)

into Eq. (3-18) yields

Ki
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Y (n,r) X(n) f DT(n,v)HM(n,v ; r)exp(-j2v.r)dv,

-J (4.2-6)

and upon substituting Eq. (4.2-6) into Eq. (3-12), we obtain

y(t,r) =fX(f) D DT(f,v)HiM (f,v ; r)exp(-j2irv'r)dv,

AR(f,r)exp(+j27ift)df (4.2-7)

where n was replaced by f since there is no frequency (HZ)

spreading in this example due to the time-invariant property

of the transfer function. We need to specify the complex

aperture function AR(f,r) next.

Assume that the receive aperture depicted in Fig. 1

is a planar array of M'x N' (odd) complex weighted point

sources, centered at (xRYR, ZR) and parallel to the XY plane.

In addition, assume that the complex weights are separable.

Therefore, the receive aperture function is given by

(M'-I)/2 (N'-I)/2

A (f,r) =c~d 6Cx- [x+id'Jh-

i--(M'-l)/2 q=-(N'-l)/2

6(Y" YR + qd.] )M(z-zR)

(4.2-8)

1 - I4

. .. . . .
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where c! and d' are complex weights and dx and d are the inter-
q

element spacings in the X and Y directions, respectively.

Upon substituting Eqs. (4.1-31), (4.1-36), (4.2-3),

and (4.2-8) into Eq. (4.2-7) and recalling that r = (x,y,z),

one obtains

(M'-I)/2 (N'-l)/2

y(t,x,y,z) = cd' J X(f)•
i=-(M'-l)/2 q=-(N'-l)/2 --

(M-1)/2

cm f exp(-j 2TrfxaXim)dfx"

m=-(M-l)/2 --

(N-I)/2

dn J HM(f'fY ; y R+ qdy)exp(-j2TfyLYqn)dfY"

n=-(N-l)/2

J exp(_j2-rfzAZ)dfzexp (+j 2- ft) df"
6(x-[xR+ id ])6(y-[yR+ qd ])6(z-z R )  (4.2-9)

where

AXi = (xR-xo) + (id - md X ) (4.2-10)

AYqn = (yR-yo) + (qd - ndY) (4.2-11)

and

AZ z R - z. (4.2-12)
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If we now change variables from spatial frequencies to direc-

tion cosines by substituting Eqs. (4.1-32) thru (4.1-34) into

Eq. (4.2-9), and treat the frequency variable f as a constant

with respect to the spatial frequency integrations, then Eq.

(4.2-9) becomes

(111-1)/2 (N'-l)/2

y(t,x,y,z) =(2/c03) 2 ~ c~d4  f 3X(f).

i=-(M'-l)/2 q--(N'-l)/2 -

(M-1) /2

E c msinc(2f&X i/ c}

(N-1)/2 +).

E d n f HM(f, [fv/co]; ya+ qd )

n--(N-1)/2 aq

exp(-j2lT[fv 0/C 0 AY n)dv,

(b qexp(-jixb qf~Z/c 0)sinc(b qfAZ/c 0 H.

(4. 2-13)

since in our example problem
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-1 u : +1 (4.2-14)

aq < VO < +1 C4.2-15)

and

0 w0 < bq (4.2-16)

where

aq (inD(YR 
+ qd)- 101/2 (4.2-17)

bq (1 (y + qd) - 11)1/2 (4.2-18)

sinc(x) sin(wx) (4.2-19)
lrX

2

and n 2(.) was replaced by nD(.) in Eqs. (4.2-17) and (4.2-18).

The transfer function HM is given by Eqs. (4.1-37) and (4.1-43)

thru (4.1-46) with the exception that the lower limit of in-

tegration y0 in Eqs. (4.1-45) and (4.1-46) must be replaced by

y + nd y which is the Y coordinate of a point source in the-O

transmit planar array. Note that if n D(.) < 1, then

bq = nD(Ye qd ). (4.2-20)

Equation (4.2-13) is the desired result, i.e., it represents

the random output electrical signal from each element in the

receive array in terms of the transmitted electrical signal,

the transmit and receive arrays, and the random transfer func-

tion of the ocean medium. If y(t,x,y,z) given by Eq. (4.2-13)

J - f
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is complex, then simply take the real part to obtain the real

output electrical signal.

• I!
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4.3 Coherence Function

Upon inspecting Eq. (4.2-13), it can be seen that

the autocorrelation function of the output electrical signal

will depend upon the autocorrelation function of the transfer

function

R. (f~f'5 fy1ff ; y,y') = E{H (f,fy ; y)P.*(f',f.' ; y')}

(4.3-1)

which is also known as the coherence function. Substituting

Eqs. (4.1-37), (4.1-39), and (4.1-43) into Eq. (4.3-1) yields

RH (f~f', fv.f ; yy') = [21f f y1/2] E exp(+j[KZ(y)+K'(y')])

(4.3-2)

where

K= - k2/(4wfy) (4.3-3)

K' - +(ko) 2/(4.f ) (4.3-4)

y

I(y) = f [n2 ( ) - l]d (4.3-5)

yo

I(y') = f [n2 ( ) - l]d (4.3-6)

YO yeJ

I! . -- Il
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k - 2wf/c0 (4.3-7)

k' - 2wf'/c o  (4.3-8)o

and n2 (.) is given by Eq. (4.1-42) where the expectation appear-

ing in Eq. (4.3-2) is the characteristic function of the random

quantity [KI(y) + K'I(yl)]. If it is assumed that I(y) is a

real Gaussian random process, which implies that the index of

refraction is a real Gaussian random process, then Eq. (4.3-2)

can be written as

Mcf~~f',fy~f( 'f y y' _-[ fl/ 2]"-

RH f-'f'1f j [2], exp(+j[MDU(f,f Y ; y)-

f'f M; y')])"

exp(-E{ 2R(f,fy ; y) }/2) •

exp(+E{G 'R(f,fy; Y) MR(f,f ; y'))-

exp(-E{O 2(f',f ; y')1/2) (4.3-9)

where

y y
E{O 2R(f,fyY)}" [k 2/(21rfy)2f f nD(O'nD('a ¢)

YO YO

RnNR (c, ') dc'

(4.3-10)

i4

i:I
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y' y,

Efe 2(f,f I y') I= [(k,)2/(2If )] 2 f f nD()nD(,)c( )a(,)

70 YO

NR ( ,c )dcd '

(4.3-11)

EfGO.(f f ; y)eR(f',f, ; yn)) = +[k/(27rf )][(k')2/(2,f4)J.

y yl
f f nD(") n D (C) a (C')

Yo YO

R ( , ')dcd;'

(4.3-12)

and

R R(y,y') = E{rnR(y)nNR(y')f. (4.3-13)

If it is further assumed that the deterministic component nD(Y)

of the index of refraction is equal to unity [40, 42-45], and

that the random component nR(y), and hence, the normalized

random component nNR(y) is wide-sense stationary, i.e.,

RnNR (y,y') = R nNR(Ay) (4.3-14)

where Ay - y-y', then [see Eq. (4.1-45)]

eMD(f~f Y ; y) 0 (4.3-15)
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and

a'3 (flIf, ; y') =0, (4.3-16)

and Eqs. (4.3-10) thru (4.3-12) become, respectively,

E9 (f~fy ; y)j k7y0  i."- f [Y-y R (y. R(;)d;

(4.3-17)

yry (k-) 2c~ 2 -y0) -. IL]N

2if (Yj..

(4.3-18)

and

Ee (f,f ;y)eMR(f'f4 ;y') 
( oC

E )OM Y MR(21rf Y) 21rf)

(y-y) (Y-y0 )

(Y-y') f R (c)d + (y'-y 0) f R (d; +

f 0 fJ Y )d~-~ -(Y,)d

f NR f ;R NR(;d
-(YYo)(Yy 4 ')

(4.3-19)



86

where a is the constant standard deviation of the Gaussian,

zero mean, wide-sense stationary, random component nR(Y) of

the index of refraction.

I I
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V. SUMMHRY and CONCLUSIONS

A consistent notation, fundamental input-output relations,

and various time-space transformations for both deterministic

and random linear, time-variant, space-variant filters have

been established. The notation is consistent in the sense that

all of the various input-output relations which are based upon

the general theory will reduce to the classical relations of

linear, time-invariant filter theory. These results should be

of interest to persons involved in the general area of linear

systems theory, and not only to those involved in underwater

acoustics.

With the use of the method of separation of variables

and the W.K.B. approximation, a mathematical expression of a

time-invariant, space-variant, random transfer function of the

ocean medium was derived. The transfer function was time-in-

variant instead of time-variant because motion was not consi-

dered in the present derivation. The transfer function modelled

the ocean volume between transmit and receive apertures (arrays).

The ocean volume was characterized by a random index of refrac-

tion (sound speed profile) which was a function of depth. The

index of refraction was decomposed into deterministic and random

components.

In addition to the transfer function derivation, two

example calculations were made. The first example demonstrated

the use of the coupling equations and involved the derivation

of a mathematical expression for the random output electrical

...
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signal at each element in a receive planar array of complex

weighted point sources. The output signals were expressed

in terms of the frequency spectrum of the transmitted electrical

signal, the transmit and receive arrays, and the previously

derived transfer function of the ocean medium. The first exam-

ple demonstrated that an output electrical signal could be

derived in a logical and straightforward fashion. The second

example involved the derivation of the coherence function, i.e.,

the autocorrelation function of the transfer function. In

order to obtain somewhat simplified results, it was necessary

to assume that the random component of the index of refraction

was Gaussian and wide-sense stationary.
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