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ABSTRACT

'_—:>‘Wave propagation in a random, inhomogeneous ocean is
treated as transmission thru a linear, time-variant, space-
variant, random communication channel. A consistent notation
(vis-a-vis ad hoc), fundamental input-~output relations, and
various time-space transformations for both deterministic and
random linear, time-variant, space-variant, filters are esta-
blished. Using the method of separation of variables and the
W.K.B. approximation, a time-invariant, space-variant, random
transfer function of the ocean volume is derived. The ocean
volume is characterized by a random index of refraction which
is a function of depth. The index of refraction is decomposed
into a deterministic component and a zero mean random compo-
nent. 1In addition, two example calculations are made. The
first example involves the derivation of the equatio or
the random, output electrical signals at each element in‘a
receive planar array of complex weighted point sources in
terms of the frequency spectrum of the transmitted electrical
signal, the transmit and receive arrays, and the transfer
function of the ocean medium. The second example involves
the derivation of the coherence function, i.e., the auto-

correlation function of the transfer function.




I. INTRQDUCTION

Since the wave equation for small amplitude acoustic sig-
nals is linear, we can represent the ocean medium as a linear,
time-variant, space-variant, random filter (system or communi-
cation channel) in general. With this interpretation in mind,
refer to Fig. 1 which illustrates a basic bistatic communica-
tion channel geometry, and Fig. 2, which is a mathematical
block diagram representation of Fig. 1. With respect to Fig. 1,
both the transmit and receive apertures (arrays) are, in gen-
eral, volume apertures (arrays) and in motion. Before pro-
ceeding further, a word of caution concerning Fig. 2. Note,
for example, that Xy # XDp, Yy # XyHyo and Y # Y,Dp in general.
The equations required for describing the filter's input-output
relationships and for coupling the transmitted and received
electrical signals to the medium via the transmit and receive
apertures are developed in Sections II and IlI, respectively.

Let us now describe the notation used in Fig. 2. The posi-
tion vectors I, and r refer to spatial coordinates (xo,yo,zo)
and (x,y,2), respectively, and t refers to time in sec. The
parameters £ and n are frequencies in HZ. where f represents
input or transmitted frequencies while n represents output or
received frequencies. Note, that if n # £, Doppler spread is
implied.

The quantities a, v, B, and y are vectors whose components
are spatial frequencies with units of cycles/m. Since spatial

frequencies are related to both direction cosines and wavelength,
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and hence, wavenumber components, they represent directions
of wave propagation. The vector v represents input or trans-
mitted spatial frequencies into the medium as in XM(f'L)'
while 8 represents output or received spatial frequencies
from the medium as in Y,(n,8). Note, that if 8 # Vv, angular
spread (scatter) is implied.

The remaining expressions found in FPig. 2 are further

described in the following list:

x{(t,r) - input electrical signal to transmit electro-
acoustic transducer applied at time t and
spatial location r of transducer.

X(f,a) - frequency (f) and angular (¢) spectrum of input
electrical signal.

AT(f'E)“ complex frequency response at spatial location
r of transmit transducer. Also referred to as
the complex transmit aperture.

Dp(£,0)- transmit far-field directivity function or beam
pattern.

xM(t,g)- input acoustic signal to the medium applied at
time t and spatial location r. Also, output
acoustic signal from transmit electro-acoustic
transdacer.

XM(f,z)— frequency (f) and angular (¥) spectrum of input

acoustic signal.
hy(t,r; t,r) - time-variant, space-variant impulse re-

sponse of the ocean medium. It represents the




response of the medium at time t and spatial
location r due to the application of an unit
impulse at time (t-t)sec., or T sec. ago, at
a distance |£-£°| m. away (see Fig. 1l).

Hy(f,v;t,r) - time-variant, space-variant transfer
function of the ocean medium.

yM(t,g) - output acoustic signal from the medium at time
t and spatial location r. Also, input acoustic
signal to receive electro-acoustic transducer.

¥,(n,8) - frequency (n) and angular (8) spectrum of out-
put acoustic signal.

AR(n,g) - complex frequency response at spatial location
r of receive transducer. Also referred to as
the complex receive aperture.

Dp{n,8) - receive far-field directivity function or beam
pattern.

y({t,r) - output electrical signal from receive electro-
acoustic transducer at time t and spatial loca-
tion r of transducer.

¥{n,y) - frequency (n} and angular (y) spectrum of output
electrical signal.

As was mentioned previously, we can represent the ocean
medium as & linear, time-variant, space-variant, random filter.
The term "time-variant"” implies motion amongst targets, the
ocean surface, discrete point scatterers, and the transmit and

receive apertures (arrays). Discrete point scatterers in the




ocean may include, for example, gas bubbles, fish, and other
particulate matter. The time-variant property results in

both Doppler spread and gpread in round-trip time delay values.
If the filter is time-invariant, then no motion is implied.

As a result, there will be no Doppler spread and no spread in
round~trip time delay.

The term "space-variant® implies that the sound speed
profile (index of refraction) of the ocean is a function of
position. The space-variant property results in scatter or
angular spread due to refraction. If the filter is space-
invariant, then an isospeed medium is implied. As a result,
there will be no refraction, and hence, no scatter or angular
spread since the sound rays will be travelling in straight
lines.

In addition, since any motion and/or the index of refrac-
tion can be decomposed into a sum of deterministic (average)
and random (fluctuating) components, these random components
can be accounted for via a random filter representation vis-a-
vis a deterministic filter representation.

By using a systems theory approach, surface, volume, and/or
bottom reverberation returns can be modelled as the outputs
from linear filters. In addition, target returns can also be
modelled as filter outputs. Furthermore, different transmit
signals and transmit and receive directivity functions can
eagsily be coupled to various models (i.e., transfer functions)

of the random, inhomogeneocus ocean medium in a straightforward




and logical fashion in order to study their effects on target
detection or parameter estimation using various space-time
signal processing algorithms.

The approach of treating the ocean as an isospeed medium,
and hence, as a linear, time-variant, random communication
channel is well established [1-19]}. This linear, time-varying,
random system theory approach has alsoc been applied to target
scattering problems in radar astronomy [20] and to communica-
tion channels in general [21-23]. However, with respect to
target models, past research efforts have been devoted mainly
to the slowly fluctuating point target problem [24-31]. Ef-
forts to treat more complicated target models were made by
Kooij [32], Moose [10], and Ziomek and Sibul [19,33]. Kooij
[32] and Moose [10] both modelled the target as a l near, time-

invariant, deterministic filter while Ziomek and Sibul [19,33]

modelled the target as a linear, time-varying, random filter.

In addition, Ziomek [34] has shown that the form of the gen-
eralized ambiguity function can be derived by treating the
scattered acoustic pressure field from a point target (in
relative motion with respect to a bistatic transmit/receive
array geometry) as the output of a linear, time-varying, random
filter.

Some work has been done in treating the ocean medium as a
linear, time-variant, space-variant, random filter by Laval
[9,35) and Laval and Labasque [36]. However, the notation
used to incorporate the space-variant property is ad hoc, i.e.,

spatial variables are simply included in the arguments of the




impulse response and transfer functions, for example, rather
than having evolved from a systematic and consistent notation
based upon linear, time-varying, space-varying system theory.
In addition, Laval and Labasque [36] assume functional forms
for the ocean transfer function instead of deriving them.
Middleton [37,38] also studied underwater acoustic propagation
in a random, inhomogeneous ocean, but did not concern himself
directly with the derivation of random, time~variant, space-
variant ocean transfer functions. He described the propagation
phenomena using space-~-time operators.

In this paper we will study underwater acoustic propagation
in a random, inhomogeneous ocean by treating the ocean medium
as a linear, time-variant, space-variant, random filter. Sec-
tion II is devoted to a discussion of the fundamentals of
linear, time-variant, space-variant filters and is based upon
the generalization of the results contained in Ziomek [39].

A consistent notation is developed in a systematic manner. Va-
rious system functions are introduced and important input-output
relations and multidimensional (time-space) Fourier transform
pairs are derived for both deterministic and random filters.

To the best of the author's knowledge, the expressions presented
in Section II have not appeared previously in the literature.

The equations necessary to couple the medium's transfer
function to the far-field beam patterns of the transmit and
receive apertures (arrays) and to the frequency spectrum of

the transmitted signal are discussed in Section III.
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Section 4.1 is devota2d to the main problem of the paper
which is the derivation of a random ocean transfer function
incorporating the W.K.B. approximation. In the process of
the derivation, the index of refraction is decomposed into
deterministic and random components and it is assumed that
the medium is "weakly scattering"”. The transfer function
derivation was motivated by the work of Clarke [40] on the
application of the W.K.B. approximation.

Section 4.2 is devoted to an example calculation of the
equations for the random, output electrical signals appearing
at each element in a receive planar array of complex weighted
point sources in terms of the frequency spectrum of the trans-
mitted electrical signal, the transmit and receive arrays, and
the random ocean medium transfer function.

Finally, in Section 4.3, the autocorrelation function of
the transfer function, which is also known as the coherence

function, is calculated.
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II. FUNDAMENTALS OF LINEAR TIME-VARIANT SPACE-VARIANT FILTERS

2.1 Deterministic Filters

2.1.1 1Impulse resoonse and transfer functions

A linear, time-variant, space-variant, filter is
depicted in Fig. 3, where it is characterized by its corres-
ponding time-varying, space-varying impulse response h(r,go;
t,r). The function h(r,r ; t,r) describes the response of the
filter at time t and spatial location r = (x,y,z) due to the
application of an unit impulse at time (t-tr), or t seconds ago,
and at a distance |£fr | meters away where r_ = (x_,y ,zo).

o o o'‘o
Note that

h(r,r; t,r) = h(t,r; t-t, r-r ). (2.1-1)

The relationship between the input signal x(t,r)

and the output signal y(t,r) is given by

y(t,r) = [ fx(t-r, r-r)hic,r s t,r)dedr

(2.1-2)

where it should be noted that both the input and output signals

are functions of time and space.

Example 2.1-1
Different forms of Egq. (2.1-2) can be obtained by making

the following simplifying assumptions:
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x(t,r) —P h(r.zo; t, 1) —p y(t 1)

Fig. 3. Representation of a linear,
time-variant, space-variant,
filter.




(n

(2)

12

if the linear filter h is time-invariant and space-inva-

riant, then

h(r,r,; t,x) = h(t = [t=t], £ - [£-£ ])

= h(t,go) (2.1-3)

and as a result, Eq. (2.1-2) reduces to

y(t,r) = ./

jx(t—r, E-Eo)h(r,go)drdso

(2.1-4)

which is a multidimensional convolution integral as would
be expected.

if h is time-invariant but space-variant, then

h(r,go: t,r) = h(t - [t-t], £; g—go)

)

= h(r,z; r-x

= h(r,r; o) (2.1-5)

and as a result, Eg. (2.1-2) reduces to

o« LJ
ylt,r) = [[xlt~r, g-r dhle, gy pidedr

~a we

(2.1-6)
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(3) if h is time-variant but space-invariant, then

h(TIEO; tp£) h(tl £ - [E-Eol; t-t)

= h(t,go; t-t)

= h(TIEO; t) (2
and as a result, Eq. (2.1-2) reduces to
ylt,r) = f fx(t-r. g_—go)h(r.go: t)drdgo.
(2
LE 2 2 23
Note that if Eg. (2.1-2) is rewritten as
ylt,x) = x(t -a, r-z)h(a,3; t,r)dadg (2

and if the input is an unit impulse applied at time a

seconds at a distance ;| = |r- meters away, i.e.,

Il

x{a,g) = $(a - [t=7], g ~ [5-50}), (2

then substituting Eq. (2.1-10) into Eq. (2.1-9) yields

.1-7)

.1-8)

.1-9)

(t=71)

if

.1-10)

——
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ylt,r) = §{r=a, £ -glh{a,z: t,r)dedg

= h(t,r; t,). (2.1-11)

Analogous to the frequency response or transfer
function H(f) of linear, time-invariant systems is the time-
varying, space-varying, frequency response or transfer function
H(f,v; t,r) of linear, time-variant, space-variant, systems.

It is defined as follows:

H(f,9; t,r) & FF_ (h(r,r_; t,1)) (2.1-12)
—o
or
H{f,v; t,r) 4 h(r,go; t,g)exp(-jant)exp(+j2ni-£°)drd£°
(2.1-13)

where £ corresponds to input frequencies in HZ. and v is a

vector whose components are input spatial frequencies with units

of cycles/meter. As was previously mentioned in Section 1,
spatial frequencies are related to wavenumber components, and

hence, they represent directions of wave propagation. Similarly,
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hi{x,r_; t,r) = FolrliH(e,v; t,o)) (2.1-14)
2o’ s £ v 'V (- .
or
h(r,go; t,r) = er(f,l; t,r)exg . janr)exp(-qu&-go)dfdi.

- =~

(2.1-15)

The choice of a plus (+) sign in the exponent of
exp(+j2ry-r ) appearing in Eq. (2.1-13), which corresponds to
the forward spatial Fourier transform w.r.t. I,s was not
arbitrary. This choice of sign convention is meant to be con-
sistent with that of the spatial Fourier transform relation-
ship between a complex aperture function and its directivity
function (beam pattern) as is developed later in Section 3.

Besides, the integrand term

exp(-janr)exp(+j2ni-£°)

appearing in Eq. (2.1-13) has the nice physical interpretation
of being a time-harmonic plane wave travelling in the direction

of increasing r_ = {EO{ with the sign conventicon as given.

Example 2.1-2

If the linear filter h is time-invariant and space-in-~

variant, then its corresponding transfer function can be ob-

—— -
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tained by substituting Eq. (2.1-3) into Eg. (2.1-13). Doing

so yields the following result;

H(E,v) = Jr Jrh(r,Eo)exp(°j2n£r)exp(+j2ni-£°)drd£° .

(2.1~16)
Similarly, from Eq. (2.1-15),
h(r,go) = / [H(f._v_)exp(+j2nfr)exp(-jzwy_o_:_'o)dfdy_.

(2.1-17)

LA 2 24

Calculating the transfer function according to
Eq. (2.1-13) assumes that one knows the impulse response func-
tion. However, even if the impulse response is not known,
the transfer function can still be obtained by usirg a time-~
harmonic plane wave as an input signal. This can be shown by
representing a linear, time-varying, space=-varying, filter by
the linear operator L(+) which operates on input signals that
are functions of both time and space. The output of the

filter y(t,r) can then be expressed as

y(t,r) = Lix(t,r}]. (2.1~18)




*
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i
If we let
x(t,r) = exp(+i2nftjexp(-j2nryv-r), (2.1-19)
which is in the form of a time-harmonic plane wave travelling
in the direction of increasing r = |r|, then from Eqs. (2.1-2)
and (2.1-18) we can write
L [exp(+j2nft)exp(-j22y-r)] = exp[+j2nf(t—d]exp[-j2nl-(5—50)]-

hir,ry: t,r)dedr ),

(2.1-20)

and by using the definition of the transfer function given by

Eq. (2.1-13), Eg. (2.1-20) can be expressed as

Llexp(+j27ft)exp(-j2nv-r)]= H(f,»; t,r)exp(+j2rft)exp(-j2ny-r)

(2.1-21)

where L{exp(+j2nrft)exp(-j2rv:r)] is the response of the filter
to exp(+j2rft)exp(-j2nv-r), and H(f,v; t,r) is the time-varying,
space~varying transfer function of the filter evaluated at
f and y.

Equation (2.1-21) is a fundamental result that

will be used in the derivation of an ocean transfer function
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in Section 4.1. 1In addition, Eg. (2.1-21) can be used to
represent the output y{t,r) in terms of the transfer function.
For example, if we express the input x(t,r) in terms of the

following multidimensional inverse Fourier transform

x(t,r) = Fg F T (X(£,9)) (2.1-22)
or
x(t,z) = /x(f,_\a_) exp(+j27£¢) exp (~j2ny-r) dfdy,

- o

(2.1-23)

then from Egs. (2.1-18) and(2.1-21), we can write the output

y(t,r) as

y(t,xr) = X(£,v)L[exp(+j2nft)exp(-j2ny-r) ]dfdv.

(2.1-24)

or

y(t,r) = f fX(f,g)H(f.g: t,r)exp(+j2rft)exp(~-j2ryv-r)dfdy.

(2.1-2F)

Compare Eq. (2.1-25) with Eq. (2.1-2).




.
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2.1.2 Spreading and bi-frequency functions

Two additional filter functions will now be intro-
duced; namely, the spreading function and the bi-freguency
function. The spreading function will be discussed first.

The spreading function S(t,r.; ¢,<) is defined as

o

Ste,r: ¢,%) 4 P F (h(r,gi £,0)) (2.1-26)

or

Slrergyi ¢rx) 4 //h(r,go: t,r)exp(-j2ret) exp(+j2nx-r)dtdr

(2.1-27)

where ¢ corresponds to the rate of change of the filter's im-
pulse response in HZ. and x is a vector whose components are
spatial frequencies which correspond to the rate of change of

the impulse response in cycles/m. Similarly,

-1

SEMS (L 400} (2.1-28)

h(‘l’rso: tlE) = F Is

or

hlr.Ey: t,X) = ffs(-r,go; ¢,x)exp(+j2rot)exp(-32nx-r)dédx.

(2.1-29)

S —
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An alternate representation of the output y(t,r)
can be obtained by substituting Eq. 12.1-29) into Eq. (2.1-2).

Doing so yields

Y(ttg) = // f /x(t-t' E-Eo)exp(.q.j:’_n@t)exp(-jzg:.z).

- =@ - -

S(t,r i ¢,5)d¢d5§rd£° (2.1-30)
where the integrand term
S(t,r ;i ¢,8)x(t-1, r-r Jexp(+j2rot)exp(~j27x-r)

is a time, space, and "frequency" (frequency in HZ. and spatial
frequencies in cycles/m.) shifted replica of the input signal
x(t,r) weighted by the spreading function S(r,go; $,%).
Therefore, for a given input (source) location as specified by
Iy the spreading function determines the amount of spread in
round-trip time delay t(sec.), frequency ¢(HZ.), and spatial
frequencies x (cycles/m.) that an input signal will undergoc as
it passes through a linear, time-varying, space-varying, channel.
Equations (2.1-30) and (2.1-2) both indicate that the output

y(t,r) at some receiver location r is dependent upon the loca-

tion I, of the input (source) via the spreading function
S(r,go; $,<) w.r.t. Eq. (2.1-30), and via the impulse response
h(f.go; t,r) w.r.t. Eq. (2.1-2). For example, the existence and
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extent of SOFAR transmission depends on hoth the depths of the
source and receiver [41].

The last filter function to be discussed is the
bi-frequency function. The bi-frequency function B(f,v; ¢,«)

is defined as

B(E,y; ¢,x) & FF (H(£,u; t,2)} (2.1-31)
or
B(f,v; ¢/X) 4 /H(f,\_:_: t,r)exp(~-j2retiexp(+j2nx-r)dtdr.
(2.1-32)
Similarly,
~1.-1
H(f,v; t,r) = 1-"° F (B(f,v; ¢,x)} (2.1-33)
or
H(fnz: tl£) =

/'B(f,g: ¢,x)exp(+j2not)exp(-j2rk-ridedx.
(2.1-34)
The term bi-frequency function was originally used to denote
the appearance of the two frequency variables f and ¢ in linear,
time-varying systems theory. We can generalize this notion
by using the term bi-frequency function to denote the appearance

of the input "frequency” pair f and v,and the filter variation
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"frequency” pair ¢ and « in linear, time-varying, space-vary-

ing, systems theory.

Just as the spreading function gives an indication

of how rapidly the impulse response changes with time and

space, the bi-frequency function gives an indication of how

rapidly the transfer function changes with time and space.

The bi-frequency function can also be obtained by

taking the Fourier transform of the spreading function w.r.t.

t and r i.e.
_ol I

B(f,v; ¢,x) = F F_ {S(r,r ; 3,%)7 (2.1-35)
—o
or
B(E£,vi 9,x) = //S(T,Eo? o,i)exp(-jz-rft)exp(¢j2~i-go)d:dz_'°
(2.1-36)
and, similarly,
S(t,r: 8,¢) = FRlF N(B(E, v 5,000 (2.1-37)
7 LS £ o RS- .
or
SCr,zgi b,x) = [ fB(f,i; v,c)exp(+j27£r)exp(~32ry.r_)dfdy .
(2.1-38)
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In addition, the impulse response and bi-frequency

functions form a Fourier transform pair, i.e.,

B(f,v; 9,x) = Frpgoptps{h(r,go; t,r)} (2.1-39)

or

B(f,v;: ¢,%) = / f[ [h(r,go: t,r)exp(-j2nfr)exp(+j2my-c ) *

exp(~j2mot)exp(+j2ne-r)drdr dedr
(2.1-40)

and, similarly,

-1

1.-1
£ F

h(T"r'O; t'£) = F $

F, le(B(f,i; 9,%)}

(2.1-41)

or

hix,r,; t,r) = / fB(f,i: ¢,x)exp(+j2nfr)exp(=j2ry-r )"

- = .® e

exp(+j2not)exp(~j2rx-r)dfdvdedc.
(2.1-42)
The interdependence which exists amongst the four
filter functions is illustrated in Fig. 4. Any one of
these functions may be used to define completely a linear,

time-varying, space-varying, communication channel.
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TRANSFER |
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B(f, v, ¢ x)

BI-FREQUENCY
FUNCTION

Fig. 4. Interdependence amongst the four filter
functions that characterize linear, time-
varying, space-varving, communication
channels.
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2.1.3 oQutput frequency and angular spectrum

The output frequency (n) and angular (8) spectrum

Y(n,8) is defined as
A
¥(n,8) = FtFE{Y(t.g)} (2.1-43)

or

t(n,8) = ffy(t,g)exp(-jZﬂnt)exp(+j2ﬂ§_'£)dtd_r_ (2.1-44)

where n corresponds to output frequencies in H2Z., and 8 is a
vector whose components are output spatial frequencies with
units of cycles/meter. Substituting Eq. (2.1-25) into Eq.

(2.1-44) yields

Y{(n,8) = //x(f,y [/H(f,_‘i; t,r)expl-j27(n-£1¢]"

- . -c0 =

exp[+j2r(8-v) -r]|dtdrdfdv

(2.1~45)

where, from Eq. (2.1-32), it can be seen that the inrner multi-
dimer.sional integral is equal to B(f,v; n-f, 2-v) so that
¥(n,2) = X(f,v)B(f,v; n-f, 8-v)dfdy

- =

(2.1~46)

<
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which is in the form of a multidimensional "frequency” domain
convolution integral. Note that ¢ = n-f or n = f+¢, and that
x I B-v or B = v+x. Thus, the output frequencies n in HZ. are
equal to the sum of the input frequencies f and the variations
in frequency, ¢, due to the time-varying property of the filter.
Similarly, the output spatial frequencies g8 (directions of

wave propagation) in cycles/m. are equal to the sum of the in-
put spatial frequencies v (directions of propagation of trans-
mitted plane waves) and the variations in spatial frequency
(directions of wave propagation), x, due to the space-varying
property of the filter. Equation (2.1-46) demonstrates that a
linear, time-variant, space-variant, filter will spread the
input frequency and angular spectrum X(f,v) in both frequencies

in HZ. and spatial frequencies in cycles/m.

Example 2.1-3

If the linear filter h is time-invariant and space-in-
variant, then H(f,v; t,r)= H(f,v) [see Eq. (2.1~16)] and, as a

result, Eg. (2.1-32) reduces to

B(f,v; %,x) = H(f, V) /exp(-jzwt)dt /exp(+j2n§-£)d£

or

B(E,v; 9,%) = H(f,v)6(e)6(x%) (2.1-47)
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since

F {1} § ()

and

Fe(l} = 8(x).
Substituting Eq. (2.1-47) into Eq. (2.1-46) yields

¥(n,3) = /X(f,l)ﬂ(f,g)d(n—f)5(_8_-_\1)dfd_v_

which simplifies to
¥(n,3) = X(n,3)H(n,8),

and by replacing n wit@ £ and 3 with v, we finally obtain
Y(f,v) = X(f,v)H(E,v) (2.1-48)

which is the output frequency and angular spectrum from a linear,
time-invariant, space-invariant, filter. Note that the output
frequency f and the output spatial frequency vector v are iden-
tical with those of the input X(£,y). Hence, as would be ex-
pected, there is no "frequency” spreading. This would corres-
pond to the physical situation of transmitting a signal via a

transmit aperture (array) to a receive aperture (array) when
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the platforms containing the apertures (arrays) are not in
motion, and the intervening ocean medium has a constant speed
of sound (index of refraction) and no discrete point scatterers
in motion. No motion implies no Doppler (frequency} spread

and a constant speed of sound implies that the sound rays
travel in straight lines, i.e., there is no angular spread
(scatter) or change in the direction of propagation of the
transmitted sound rays.

RhkkRh

———
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2.2 Random Filters

2.2.1 Filter autocorrelation functions

In Section 2.1, four system functions were intro-
duced which are used to characterize linear, time-variant,
space-variant, filters. However, if the filter is random,
then each of these system functions must be considered as
random functions. As a resul:, we must work with the respec-
tive system autocorrelation functions which are defined as
follows:

4

Rh(r,r'.go,gé; t,t',r.r') E(h(r,go; t,g)h'(r',gé; t',r')}

(2.2-1)

R (E,€%, 5,0 t,8',0,2%) % E(H(, 96, D) H*(£',3%: ¢',"))

(2.2-2)

RS(T""EQ’£67 $,9",xc,x") & E(S(r,go: 0.5)5'(r',56 Poet,")d
(2.2-3)
and
Ry (£,£,v,0"7 008" sker') 2 E{B(E,u; 3, )B*(E£',0': o',c")}
(2.2-4)
where E{-} is the expectation or ensemble average operator
and the asterisk denotes complex conjugate.
If we use the sign convention that forward trans-
forms w.r.t. t,t,r;, and r' are defined with a minus sign in

the exponent of the complex exponential (inverse transforms
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w.r.t. £,4,v', and «' are defined with a plus sign) and for-
ward transforms w.r.t. t°' t',go, and r are defined with a

plus sign (inverse transforms w.r.t. £',4¢',v, and «x are defined
with a minus sign), then it can be shown that the four system
autocorrelation functions are related by the following Fourier

transform pairs:

Ry(£,£%,v,v'; t,t', £,2') = F F ,F . F  (Ry(r,c',e ,20; t,t',2,r")}
=0 ~o
(2

.2=5)

Pl F I R, (£, 80,0 bt 2, 20 b

5
a
b
g

6'1

&
iy
o
"
"

[[]

(2.2-6)

R‘B(f'f"i’z'; QIQ'pf_;E') = FtFt'F {Rﬂ(f,f',y_.g': tlt'l£l£')}

rr
(2.2-7)
and
Ry (£, v,v 78,8, 0,2') = FooF SF YR bR (5,60 ,v,0"5 9,00 kx') };
H oy rXr Y v =y LR ¢ "v ‘(— K—l ‘RB ’ t¥e Y 4 ’ R rR ’
(2.2-8)
RS(T'T"EO'EC')' ¢r¢'rl<:l<‘) = FtFt'PEPE'{R“l("T.'EOlié; t.t',_r_,r')}
(2.2-9)
and
-1_-1_-1
Rh('lf'pr JI'i ot t IE'E') = F’IFO.F Fiv{Rs(YIT'rEOI_r_;)7 3:@':1:"')}:
(2.2-10)
Ro(£,€',v,9%; %' ,0,c") = FTFT,FEOF%{RS(f,:'.EO,gé: 2,9 x,c")}
(2.2-11)
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and
Rg (T T, 0o,y 0,90 k,x") = PRl P P B HRG(E £0 0,005 4,07, x,00) )

(2.2-12)

and finally,

(£,£',v,v'; ¢,¢',c,c') = F F_, .
Rgif, vt e Tl tt'rr
t,t'r, ")} (2.2-13)
and
-1.-1.-1_-1_=1 _«1_=-1.-
Ry (T, 7' 2 £l tot',E,x') = Fflrf}s-vlpl}rﬁyo.FilF;(PE(f.f',1,3',-

¢I¢'If_'£l)}- (2.2-14)

The interdependence which exists amongst the four

filter autocorrelation functions is illustrated in Fig. 5.
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2.2.2 Uncorrelated spreading and the scattering

function

In this section we will examine the consequences

of assuming that the spreading function S,z i $,x) is un-
correlated with S(t', r;; ¢',x') for all values of L
L Ay o # 0 and x' # x.

The assumption of uncorrelated spreading is matche=

matically equivalent to stating that the autocovariance of

S(t,r,s¢,<) and S(r',Eli ¢',x') is zero for all values of

A, L AL, ¢4 and ' # x, i.e.,

Clt,t',C ,r':@,@',f_,t') = R (1,7’ 2 JE: ¢:¢'rf_l£.) -

S =o’'=o S Zo'>0
pg (T/Eq7 o,x) wE(c’,0l; $'.c') = 0;
t';ir,gc',#so, ' # 4, and ' # x.

where Cq is the autocovariance function and us(t,go; d,c) =
E{S(t,r,: ¢.%}1}. If it is assumed that uglr,r.; ¢,¢) =0,
then Eq. (2.2~15) is equivalent to

Rglt, ',k ,gé;o.o',i,ﬁ') - Rs(t,£°;¢;5)5(1°1')‘

-0
§(rymrg) s (o= 8 lxmg’) (2.2-186)

where

RS(T.£°7¢,£) = E{|S(r,z,i ¢,£)|2} {2.2-17)
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is called the scattering function and is equal to the mean

squared value of the spreading function. The scattering func-
tion can be thought of as an average power density function
which determines the average amount of spread that an input
signal's power will undergo as a function of round-trip time
delay t, frequency ¢, and spatial frequencies x for a given
input (source) location I, Note that the scattering function
is a real, positive valued function.

Equation (2.2-16) is the result of the assumption
that the spreading function is zero mean. However, if the
spreading function is non-zero mean, it is convznient to do

the analysis with the centered process

Sclr.ry: $,c) = S(r,r i ¢,%) = vg(r,r ;i ¢,5).

The random process SC(T,EO; ¢,<) has zero mean, and as a re-
sult, its autocovariance function is equal to
Xl .00 ,x,c') = E(sc(t,go: w,i)SE(T', ' 0',1')}

= Ry (r,r',go,gé Podedtak,R")

i.e., the autocorrelation function of the ~er> mean centered
process is equal to2 the autocovariance func.ico of the original

non-zero mean spreading function.
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Let us next examine the effect that the assumption
of uncorrelated spreading has on the remaining three system
autocorrelation functions. As Fig. 5 indicates, RH can

be obtained from Rs by performing the following transformations:

-1_-1_.-1_-1

(£,£%v,v' s t,tr,c')=F,_F ,F F ,FF_,F_F_, {Ro(z,t",
RH o 'k x'tr! I, I, S
EO'E('); 010',5;_‘_')} (2-2"18)

or
Rﬂ(f'f"i'i'7t't"£'£') = / .o /RS(TIT'I_Eolsé; @1@':_“_:5_')'

exp{+j2n(pt-o't"]exp[-j2r(x-L-x"-C*)]-

exp[-32n (fr-£'t') Jexp{+j2niy-r -v'-L)]"

d¢d¢'dﬁd£'dtdt'd£°d£$ . (2.2-19)
If Eq. (2.2-16) is substituted into Eq. (2.2-19), then
R (£,£',v,v": t,e',E,2") = R, (af,ay; at,sx) (2.2-20)
where

Ro(t,r i ¢,x)exp(+j2moat)-

RH(Af'AX7 it,dr) = S I,

5““5:
P —s
P

exp(-j2nc-ar)exp(-j2vaft).

exp(+32nA3-£°)d¢d£§rd£°,

(2.2-21)

PO
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Af = £-f', Ay = v-v', At = t-t', and 4r = r-r'.

It can be seen from Eq. (2.2-20) that when uncorrelated spread-
ing is assumed, the autocorrelation function Ry becomes a func-
tion of the differences A4f, 4v, 4t, and Ar only. This implies
that the random process H(Z,v; t,r) is wide-sense stationary

in frequency, spatial frequencies, time, and space. An addi-
tional requirement for H(f,v; t,r) to be wide-sense stationary

is that the mean value

wg(f,v: t,r) = BE{H(E,v; t,0)}

is a constant. Since the four filter functions are related

by linear transformations (see Fig. 4}, and since it was
assumed that wug(t,r.; ¢,<) =0, then u (7,r; t,r) =0,
ug(£,v: t,r) = 0, and pp(f,v; 9,¢) = 0 which are constant,

zero mean values. Therefore, the condition of uncorrelated
spreading in round-trip time delay 1, input (source) location
Tyt frequency ¢, and spatial frequencies « is equivalent to a
condition of wide-sense stationarity in frequency Aif, spatial
frequencies Ay, time At, and output (receiver) location ar,
respectively. 1If uncorrelated spreading in T, gt % and «

occur together, then we have a wide-sense stationary uncorre-

lated spreading (WSSUS) communication channel.

Consider the autocorrelation function Rh next.
If Eq. (2.2-16) is substituted into Eq. (2.2-10) and the in-

dicated transformations are performed, then




Rh(T'T"EO'EC‘); tlt"£l£') = Rh(TIEO; At;AE)ﬁ(T‘T')S(EO‘Eé)

(2.2-22)
where
Rh(r,go: at,ar) = /Rs(r,go: b,c)exp(+j2npat) -
exp(-j2rc-ar)dsde. (2.2~23)

Equation (2.2-22) indicates that the random process h(r,go; t,r)
is wide-sense stationary in time and space because of the st

and Ar dependence and since uh(r,go; t,r) = 0. Eqguation (2.2-22)
also indicates that h(r,go; t,r) is uncorrelated for all values
of ' # ¢ and Eé # Eo'
Finally, if Eq. (2.2-16) is substituted into

Eg. (2.2-11) and the indicated transformations are perfcrmed,

then
Rg(£,£",v,v": 9:0"yx,c') = Rglaf,avio, c)s(g=s")6(e=c")
(2.2-24)
where
RB(Af,ij pix) = ffRs(r,go: prxlexpl(-j2anf:)-
exp(+j2«A3~£o)d:dgo. (2.2-25)

Equation (2.2-24) indicates that the random process B(Z,v: 5,«)

is wide-sense stationary in frequency and spatial frequencies
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because of the 3f and 4y dependence and since wp(f,v; 4,%) = 0.
Equation (2.2-24) also indicates that B(f,v; ¢,x) is uncorre-
lated for all values of ¢' #¥ ¢ and x' # x.

Therefore, in summary, under the assumption of

uncorrelated spreading the four filter autocorrelation func-

tions reduce as follows:

'Ili 9,987,%,k') = Rglr, £ ; ¢,6)8(v=1")8(r ~£l)

§(9-9")6(x-x") (2.2-16)

Ry(£,€',9,9'5¢,¢',5,2") = Ry (Af,8y; At,Ar)  (2.2-20)

Rh(r,r',go, '; t,t',r,r') = Rh(r,go; At,A£)6(T-T')5(£°-£é)
(2.2~22)

and

Pg(f'f',y_:i'; 010':5:5.') = RB(Af,Ai;O,ﬁ)5(0-0')6(5_-:')
(2.2-24)

where Ro(t,r i ¢,x) is the scattering function.
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2.2.3 The scattering function and its Fourier

transforms

By inspecting Eq. (2.2-23), we can write that

Ry (.5, ¢ at,80) = FUFTMRS(Lr, ¢ p,0))
(2.2-26)
and
Rglr,r, i b,x) = FAtFAE{Rh(r,EO ioAt,Ar);
(2.2-27)
or
Rolz,ry & ¢,x) = j-'/.Rh(T'EQ ; 8t, Ar)exp(-j2msst)-
exp(+j2nk-ar)datdar. (2.2-28)

Also, by inspecting Eg. (2.2-25), we can write

that
Ry(af,ay : 4,¢) = Fngo{Rs(r'Eo Tobex)}
(2.2-29)
and
1
Rg(t,r_ : 9,¢) = F .F AV(R (3£, : 9,<)}
(2.2-30)
or
Ro(t,r i #,x) f fRB(Af,Ag_; 3,<)exp (+j21Af<T) «
exp(-j27ay-r_)dafday. (2.2-31)
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Additional transform pairs can be obtained as
follows. With the use of Eq. (2.2-23), Eg. (2.2-21) can be

expressed as

R, (af,8y ; at,8r) = F Fr (Rh(t, i At,ar)}
(2.2-32)

or

(Af,Av ; At,Ar) (<, Iy i At,ar)exp(~j2nafz)-
Ry 2 L Ry E

3'\8
3\. 8

eXP(+j2nA1-£o)drd£o (2.2=-33)
and
Rylt,r, + At,8r) = FAfPAl{RH(Af av 5 At,ir)’
(2.2-34)
or

R (t.x, : at, 2x) = /RH(Af'AB-; At,Ar)exp(+j2nafr)-.

exp(-j2ray-r )dafdsy. (2.2-35)
Next, if Eq. (2.2-28) is substituted into Eq. (2.2-25), then

RB(Af,Ai i $.x) = F F_OFAtFAr(Rh(T'EO i oAt,ar)}

(2.2-36)
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or

R.B(Af,Ay_: 015) = f f

fth(r,go i At,8r)exp(-j2nafr)-

exp(+j2uA3-go)exp(-ijoAt)~

exp (+j2nrc-ar)drdr datdar

(2.2-37)
and
o=l =1_-1_-1 i .
Rylt,ry i at,Ar) = FAfFAg?é Fi {(Rgtc€,8y 3 ¢,x)?}
(2.2~38)
or
Rh(t.go ; At,Ar) = f f f fP?(Af.Ag; ¢.c)exp(+j2rafr) -

exp(-jzwAi"Eo)exp(+j21r¢At) .
exp(~j2nc-ar)dafdavdedc.
(2.2-39)

Finally, with the use of Eg. (2.2-33), Eq. (2.2-37) can be
expressed as

Ry(af,ay ; ¢,x) = F (R (af,ay ; at,ar)}

atfar
(2.2-40)

or

RH(Af,Ai i At,Ar)exp(-j2meat) -

RB(Af:A\_)_: Qlf) = f

s

exp(+j2rx-ar)datdar (2.2-41)
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and
(af,8y : at,ar) = FUFTL(R (af,8v 1 9,0))
% LA [t ¢ i RB 18y [
(2.2-42)
or
Ry(af,av 7 At,sr) = Ry(af,ay i ¢,x)exp(+j2neat) -
exp(-j2rx-ar)dedx. (2.2-43)
The various Fourier transform pairs are summarized
in Fig. 6. The scattering function, or any of its Fourier

transforms, is a complete second order statistical description
of a WSSUS communication channel.

Another very important Fourier transform relation-
~ship can be obtained by substituting Eq. (2.2-35) into Eq.

(2.2-28) which yields

; sux) = F P _Filptl

Rg (t. At ar af Ay

I, {Ry(af,ay 5 at,ar)}
(2.2-44)

or

'ts(r.Eo Podex) = / / / f RH(Af,A_v_; At,Ar)exp(~-j2asat) -

exp(+3j2nk-Ar)exp(+j2nafc) -
exp(-j2frAy_'£o)dAtd.’.\£dAfdA_).
(2.2-45)

and
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RH(Af'AX ; At,Ar) = FglF;lFTFr (Rs(t,go ; ¢,x)}
- =0
(2.2-46)
since
- ] o« L]
Ry(af, 8y ; At,0r) =[ / Rglr,ry ¢ ¢,c)exp(+j2moat) -

exp(-j2nk-sr)exp(-j27afr) -
exp(+j2ﬂAi-£o)dod5§td£°.

(2.2-21)

— =
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2.2.4 Input-output relations

We will now proceed to derive an expression for
the autocorrelation function of the output from a linear,
time-varying, space-varying, random filter. The output auto-

correlation function Ry(t,t',g,g') is defined as follows:
R (e, t0,r) & Ely(tiny (e 20 (2.2-47)

If Eq. (2.1-30) is substituted into Eq. (2.2-47), then the

output correlation function in time and space is given by

Ry(t,t',£,£') = [ ...f X(t—t, E.Eo)x*(t""l £|_£:)).

exp[+j2r(st-¢'tN]exp(-j2n (' = x'-L")]"
Rs(r,t',golgé ; ¢,¢',_,£')d¢d5§rdgo-
d¢'d£'dr'd£6 . (2.2-48)

If the random filter is a WSSUS (wide-sense stationary uncor-
related spreading) communication channel, then the autocorre-
lation function of the spreading function is given by Egq.

(2.2-16). Substituting Eq. (2.2-16) into Egq. (2.2-48) yields
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Ry(t,t',‘r_'_r_') = f f f /x(t-r'E_EO)x*(tl_T’Ec_Eo).

exp(+j2ndAt)exp(-j2nxrar) -

Rs(r,go; ¢,5)d¢d£drd£°.

(2.2-49)

The mean squared value of y(t,r) is given by

where, from Eq. (2.2-48), we have in general that ‘

Ry(t,t,g,_{) = ff x(t-t,r-£ )x*(t-t',r-r )"

exp(+j2raet)exp(~-j2nac-r) -

r'
5

' -
de'dx'dc'dar! (2.2-50)

Rs(rt\"i ’

i 9,9%,x,c")1dedcdrdr -

where A¢ = ¢-¢' and 4x = x-x', In the case of a WSSUS commu- :

nication channel, we have from Eq. (2.2-49) that '




then the average

- N
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R (t,t,r,r) = |x(t=-1, r-r )IZR {(t,2_ ; ¢,x)*
=t r -~ =0 S l_o ’ [ e
d¢d5§rd£o. (2.2-51)
If we define the energy of the output signal Ey as
e, 4 ly (t.r) | 2atar, (2.2-52)

output energy Ey can be expressed as

I-:‘y 4 E{E ) = f [B(Iylt,_{)lz}dtdg (2.2-53)
or o a»
E = ,t, dtdr. .2-
E, [ f Ry(t t,xr,r)dtdr (2.2-54)
If Eq. (2.2-51) is substituted into Eg.(2.2-54), then
Ey/zx-f f fas(r, 7 ¢,x)dededrdr
-t oW =® w® (2.2‘55)
R T
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where

E = |x(t,r) | 2atar (2.2~56)

is the energy of the input signal. Equaticn (2.2-55) indicates

" that the ratio of the output (received) average energy to the

input (transmitted) energy for a WSSUS communication channel
can be obtained by integrating the scattering function of the
channel. Also note that the average output energy is not a
function of the input signal's shape.

Alternate expressions for the output autocorrela-
tion function can be obtained from Eq. (2.1-25). If Eq.

(2.1-25) is substituted into Eq. (2.2-47), then

f /x(f.yx*(f-,y)-

Ra(f'f'py_li' H trt'liog')'
exp[+j2n (ft-£ ' t"Vexp[~j2a(v-g=v'-£") ]
dfdzﬁf'dl'. (2.2-57)

If the random filter is a WSSUS communication channel, then
the autocorrelation function of the transfer function is given
by Eq. (2.2-20). Substituting Eq. (2.2-20) into Eq. (2.2-57)

yields
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[1a]

R (£, 8,1, X(E,0)X*(£',v' )Ry (8€,8y ; At,Ar)-

"

"
P
T
ak"‘ﬂa
a\"“sl

exp[+3j2n (£t - £'t')]Jexp[-j2n(yvexr ~v'-r")}"
dfdvdf'dy’. (2.2-58)

A relationship between the input and output power spectral
densities will be obtained next.

Let us assume that the input signal x(t,r) is a
zero-mean, wide-sense stationary (in time and space), random
process which is uncorrelated with the transfer function.
Under these assumptions, the output autocorrelation function

given by Egq. (2.2-57) becomes

R (t.t%,E,E") = E{X(£,v)X*(£',v") }-

$—s
s
;““"sa

Ry (£,80,0,9" 5 €', 5,2
exp[+j27 (ft-£'tV]exp[-j2n(v-r-v' ') ]"*
dfdvdf'dy’ . (2.2-59)

Since x(t,r) was assumed tn be wide-sense stationary in both

time and space, then it can be shown that

E{X(£,0)X*(£,0")} = S, (£,9) 6 (£-£") 6 (y-")
(2.2~-60)
where

X(£,v) = PtFE(x(t,g)},

A e b




& F, F, (R (at,0r)} (2.2-61)

Sy (£o2) At Ar

is the power spectral density of the input, and
R (st,ar) = E{x(t,r)x*(t',r")}

where At = t-t' and ar = r-r'. If Eq. (2.2-60) is substituted

ints Eq. (2.2-59), then

Ry(tlt'IEIE') = f sx(fli)%(flflill; t:t'p_;f_')exp(+j2ﬂ’f&t)'

exp(-j2nv-Ar)dfdy, (2.2-62)

and if it is further assumed that the transfer function is wide-

sense stationary in both time and space, then Eq. (2.2-62) re-

duces to

R, (at,31) = S (€, IR, (E,£,,» ;i st,ar)

ak“‘ﬂs

exp(+j27fat)exp(-j2vv-ar)dfdy (2.2-63)

which implies that the output y(t,r) is also wide-sense sta-
tionary in both time and space. 1If we define the output power

spectral density Sy(n,g) as

oo . -
Sy(“'i) = FAtFAEf.Ry(Jt,AE)), (2.2-64)
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then substituting Eq. (2.2-63) inco the R.H.S. of Eq. (2.2-64)

yields

Sy(n,_ﬁ_) = f [ sx(f'l)RB(f'f'."_'!. H ﬂ"f. g-i)dfdl
to tw (2.2-65)

where, from Eq. (2.2-41),

8

Ry(f,£,9,v i n-f,3-y) = RH(frfrlrl : At ,Ar)exp(-j2a(n=-f)at]:

a““‘-\s

exp[+32n(3-v)-arldatdsr.

(2.2-66)

Note that Eq. (2.2-65) is in the form of a multidimensional

convolution integral analogous to Eq. (2.1-46) for the deter-
ministic case. The convolution process accounts for the fre-
quency spreading (frequency in HZ. and spatial frequencies in

cycles/m.) of the input power srectral density.

Example 2.2-1
Using Egs. (2.2-65) and (2.2-66), let us compute the

output power spectral density for the case when the transfer
function is time-invariant, space-invariant, and deterministic.

First note that

(£,£,v,v ; 3t,Ar) = E{H(f,v ; t,c)H*(f,v ; £',r"'):.
Ry vy z 2 L v z
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If H(f,v ; t,r) is both time-invariant and space-invariant,

then [see Eq. (2.1-16}]

H(f,» ; t,r) = H(f,v),

and if the transfer function is also deterministic, then

R (£,€,9,9 : at,50) = E(JH(E, ) %)

s, v 12,

Therefore, Eq. (2.2-66) becomes

Ry(£,£,v,v 7 n-£f,8~v) = iH(f,g)lz exp[-j2v(n-f)At]dat.-

exp [+j27 (8-v) -ar]dar

lﬁ\ﬂi

= [H(£,v) 125 (n=£)6(3-v),

and substituting this expression into Eq. (2.2-65) yields the
desired resul:
12

Sy(n,3) = [H(1,3) 175, (n,3)

By replacing n with f and 3 with », we finally obtain [compare
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with Eq. (2.1-48)]

Sy(f,_v.) =

L2 22 2]

[H(E,v) Izsx(flx) .
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TIII. COUPLING EQUATIONS

We will now present those equations which couple the
transmitted and received electrical signals to the transfer
function of the ocean medium via the transmit and receive far-
field directivity functions. Referring to Fig. 2, the fre-
quency and angular spectra of the input acoustic signal to
the medium and the output electrical signal from the receive
aperture (array) are given, respectively, by the following

equations [2]:

Xy (E,9) = fX(f,g)DT(f,_\_a_—g)dg_ (3-1)

and

Yin,y) = Yy (ns8)Dp(n,¥-8)d8 (3-2)

ak“‘\u

where the frequency and angular spectrum of the output acoustic

signal from the medium is given by [see Eg. (2.1-46)]

Yyin,3) = f Xy (£,9)By(£,v ; n-f,8-v)dfdy (3-3)

8
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where [see Eq. (2.1-32)]

By (f,v i ¢,x) = / [ Hy (£, ; t,r)exp(-j2nét)-

exp(+j2nc-r)dtdr (3-4)

is the bi-frequency function, and H,(f,y ; t,r) is the time-
variant, space-variant, transfer function of the ocean medium.

Equations (i-1) thru (3-4) are the basic coupling equations.

However, w.r.t. Eq. (3-1), we have the following additional

relationships:

Xy (£,v) = F F {x,(t 1)} = fl Xy (t,r)exp(+j2ay-r)dv-

exp(=-j2rft)dt (3-5)
where [2]

xM(t,g) = [X(f,E)AT(f,_r_)exp(+j2nft)df, (3-6)

X(f,a) = F.F {x(t,£)} = f/ x{t,r)exp(+j2ra-r)dv.
-y

exp(-j2nft)dt (3-7)

i e

Ry D

#L 24T
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is the frequency and angular spectrum of the transmitted elec-

trical signal, and

Dplf,a) = F {A,(£,£)} =/AT(f,£)exp(+j21rg~:_')dv
v
(3-8)
is the far-field directivity function (beam pattern) of the

complex transmit aperture A,(f,r). Also,w.r.t. Eq. (3-6),

X(f,r) = F {x{t,r)} = jr x{t,rlexp(-j2nft)dt

(3-9)

and

Ap(f,x) = F;l{DT(f,g)} = | py(f,a)exp(-j2ra-r)da .

?“‘ﬁs

(3-10)

Similarly, w.r.t. Eq. (3~2), we have the following

additional relationships:

Y(n,y) = F F i{ylt,r)} = [[y(t.g)exp(+j2w1-5)dV-

-

exp(-j2nnt)dt (3-11)
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where [2]

y{t,r) = / YM(n,E)AR(n,g)epojZ'nnt)dn, (3-12)

the frequency and angular spectrum of the output acoustic sig-

nal from the medium is given by

8

Yy(n,8) = FtFE{YM(t,g)} = fyM(t,g_)exp(+j2n_e_-5_)dV-
v

exp(-j2rnt)dt (3-13)

where [see Eq. (2.1-25)]

Yy(t.r) = Xy(E,v)HY £,y ; t,r)exp(+j2nft) -

M

———
P ——s

exp(~j2rv-r)dfdy , (3-14)
and

DR(n.g) = FE{AR(n'E)} =[AR(n,I_‘)exp(+j2n§_-£)dV
v
(3-15)

is the far-~field directivity function (beam pattern) of the

complex receive aperture AR(“'E)' Finally, w.r.t. Eq. (3-12),

T T =S
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Yyl x) = P ly,(t,z}} = yy(t,D)exp(-j2rnt)de

lk“‘\e

(3-16)

and

AR(H l£)

F;_l{DR(n Bl = f Dpln,glexp(-j2ng-r)ds.
{3-17)

Substituting Eq. (3-14) into Eq. (3-16) yields

Yy(n,x) = j' J.XM(f,i)BM(f,g ; n-f,r)exp(-j2mv-r)dfdy
(3-18)

where

B,(f,v : ¢,x) = Hy(f,y ; t,D)exp(-j2rot)dt
(3-19)

which is not the same as the bi-frequency function [see Eqg.
(3-4)1].

The components of the vectors &, v, 8, and y are spatial
frequencies with units of cycles/m. and r = (x,y,2z).

A moments reflection leads one to the conclusion that

Eq. (3-12) is well suited for space-time signal processing




applications. By inspecting Egqs. (3-18), (3-19), and (3-1),

it can be seen that the output signal given by Eq. (3-12) can
be expressed as a function of time and space in terms of the
transmitted electrical signal, the transmit aperture, the

transfer function of the ocean medium, and the receive aperture.

Equation (3-2), however, represents the theoretical output

"spectrum”, albeit dependent upon the same system functions.
If the ocean medium is modelled as a random filter,

then y(t,r) given by Eq. (3-12) is a random process with auto-

correlation function
Ry(t,t',g,g') = E{y(t,r)y*(t',r")}. (3-20)

It is probably obvious by now that the weak link in the
coupling equations is the ocean medium transfer function
H,(f,y : t,r) and its corresponding autocorrelation function

[see Eq. (2.2-2)]

Ry (£,€',,v' 5 t,t',5,c') = E{H,(£,v ; &, DIHA(E ,u' 5 t',£")} .
M
(3-21)

If one is not able to specify a realistic functional form for
Hy(£,v : t,r), then the equations presented in this section
represent an exercise in the methods of linear system theory.
This leads us to the main purpose of this paper which is to

demonstrate the derivation of an ocean transfer function based

. L 4
%.,,—‘.‘,, »t
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upon the W.K.B. approximation. The derivation is discussed in
Section 4.1.
Finally, note that the autocorrelation function given

by Eq. (3-21) can be referred to as a generalized coherence

function since it is a generalization of the two-frequency cor-
relation function or two-frequency mutual coherence function
based upon linear, time-variant filter theory as discussed by
Ishimaru [51], for example. Equation (3-21) provides informa-
tion concerning the amount of spreading in time-delay, space,
frequency, and spatial frequencies that a transmitted signal
will be expected to experience as it propagates in a random
medium. The result of all this spreading is, of course, dis-

tortion in pulse shape.

o

- —— e 7
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Iv. ANALYSIS

4.1 Transfer PFunction

We will now proceed to derive a transfer function
which models the bistatic communication channel geometry shown
in Fig. 1. The communication channel is regarded to be the
ocean volume between the apertures so that surface and bottom
scattering effects are not included. Both apertures are sta-
tionary (not in motion), and it is assumed that no discrete
point scatterers (such as bubbles, fish, etc.) are in the
volume between the apertures. No motion implies that the re-
sulting transfer function will be time-invariant.

The propagation of gmall amplitude acoustic signals
in the ocean from the transmit aperture to the receive aperture
can be described by the following linear, inhomogeneous, scalar
wave equation:

1 3

VZW(t,E) - —2‘ ‘(tIE) = xM(tIE)

(4.1-1)
where ¢(t,r) is the velocity potential at time t and position
£ = (x,y,2), %,(t,r) is the source distribution [see Fig. 2
and Eq. (3-6)), and c(r) is the speed of sound in the ocean.
Since the coupling equations discussed in Section III already
allow for an arbitrary xu(t,g) with corresponding frequency
and angular spectrum xu(f'l)' we need only f£ind the solution

to the following Helmholtz wave equation:
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v?e(r) + k2 n? (2ol = 0 (4.1-2)
where
k, = 2nE/cy = 2/A_ (4.1-3)

is the constant, reference wavenumber,

n(r) = ¢ /cl(x) {(4.1-4)

is the random index of refraction,

) = £ (4.1-5)

is the constant, reference speed of sound at the source posi-

tion r, = (xQ,yo,zo). and
e(t,r) = v(rlexp(+j27£ft) (4.1-6)
is the time-harmonic solution of Eq. (4.1-1) when xM(t,E) is

set equal to zero,and where ¢(r) is the solution of Eq. (4.1-2}.

Note that the wavenumber

k(r) = 27f/c(r) (4.1-7)
can be expressed as
kir) = kn(x). (4.1-8)
= T T g ——x— P

L .
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Therefore, k(Eo) = k° since n(go) = 1. The index of refraction

is commonly written as [40, 42-45]

n(r) = ny(r) + ng(r) (4.1-9)

or

n(r) = ny(r) + s(ring.(x) (4.1-10)

where nD(g) is the deterministic component and is usually
close to unity in value, nR(g) is the random, zero mean compo-

nent, o(r) is the standard deviation of ny(z), and
Byp (2} = np(r)/a(x) (4,1-11)
is the normalized random component with zero mean and variance
equal to unity. We shall work with Eg. (4.1-10) in this paper.
Note that the average value of n(r) is equal to n,(r).
Let us assume that the speed of sourd is only a

function of the depth y, i.e., c(r) = c(y), so that Eq. (4.1-2)
reduces to

2 \ 2 2

voe(x,y,z) + ko n (y)elx,y,2) =0 (4.1-12)

where, from Eq. (4.1-10),

n(y) = nD(y) + o(y)nNR(y). {(4.1-13)
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By using the method of separation of variables and the W.K.B.
approximation [46,47], an approximate solution of Eq. (4.1-12)

is given by

P(x,y,2) = exp[-jkx(x-xo)] aY(y)exp[+jeY(y)]exp[-jkz(z—zo)]

(4.1-14)
where
-1/2
a ly) = [ky(y)] / (4.1-15)
Y
8, (y) = exp}-j J[ kylzdde (4.1-16)
yO
and
1/2
_ 2.2 2,2 _
kyly) = [kon®(y) = kg-k;] (4.1-17)

where kx, kY(y). and kZ are the components of the propagation

vector
K(y) = kyx + ky(y\§ + Ky z. (4.1-18)

Note that kX and kz are constants while kY(y) is a function of
the depth y. In addition, Egs. (4.1-14) thru (4.1-16) allow
for a general source location with position vector r_ = (x ,¥ .2
-0 o'fo’ "o
The W.K.B. approximation given by Egs. (4.1-15) and

{4.1-16) is a valid solution for the depth dependence pro>vided

).




that [46,47,50] 1) the transmitted frequencies f are high, 2)
the sound speed profile c(y) is slowly changing, and 3) the
depth interval from Yo to y does not include any turning
points. A turning point exists at y = Yo if kY(yT) = 0.
Since ‘he reference propagation vector 50 can be

expressed as

]50 = kxx + kYy + kzz , (4.1-19)
then
2 2 _ .2 2 2 _
kg = lkgl™ = kg + ky + ky (4.1-20)
where
kx = kouo (4.1-21)
kY = kovQ (4.1-22)
and
kz = kowo (4.1-23)
where
u, = sine _cosy, (4.1-24)
vy = sineosinwo = cosao (4.1-25)
and
W, = coss (4.1-26)

are the direction cosines w.r.t. the positive X,Y, and 2 axes,
respectively, and (eo,wo) are the vertical and azimuthal
spherical angles measured w.r.t. the positive Z and X axes,

respectively, representing the initial directions of wave pro-
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pagation (see Fig. 7). From Eq. (4.1-20) we can write that
k2 + k5 = k2 - k2 (4.1-27)
X ky .

and substituting Egs. (4.1-27) and (4.1-22) into Eq. (4.1-17)

yields
2 /2
Ky (y) = ky f1+ [2 )21 (4.1-28)
v
o
Note, that k,(y,) = ky since n(y,) = 1. Therefore, the square

root expression in Eq. (4.1-28) is responsible for changing

the initial direction of propagation kY' Iif
ISR RAREY (4.1-29)

then the square root expression in Eq. (4.1-28) can be approx-

inated by the first two terms in a binomial expansion yielding
ke (y) = k, + k2[n2(y) - 1]/(2k,) (4.1-30)
YR Ry T Rein Y Yo :

It will be shown later that the binomial expansion criterion
given by 2q. (4.1-29) can be related to the critical angle of
incidence, and hence, total reflection. The assumption con-
cerning the absence of turning points will also be discussed
later, but first let us return to the derivaticn of the trans-

fer function.
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Recall that we designated the vector v to represent

the transmitted spatial frequencies as in XM(f,l) (see Fig. 2;.

If we let
v = (fX'fy'fz)' (4.1-31)
then
fx = kx/(Zw) = uo/xo (4.1-32)
fY = kY/(Zn) = vo/Ao (4.1-33)
and
fz = kz/(2n) = wO/xo (4.1-34)

are the spatial frequencies in the X,Y¥, and Z directions, re-
spectively, where c, = c(y,) = fxo. Therefore, if Egs. (4.1-30)
thru (4.1-34) are substituted into Eqs. (4.1-14) thru (4.1-16),

then Eq. (4.1-6) becomes

Y
2 2
exp ‘J[ko/(4wfy)]j- [(n®(z)-11dg
yO

oit,x,y,z) = .
2 1/2
o

27, + k

¢ ra(y) - 1) /(4nE)

exp(+j2rft)exp(~j2ny- (z~r )]. (4.1~35)

Since the input to the communication channel is the time-har-

monic plane wave

exp(+j27ft)exp[-j2ny. (r-£ )],

]!
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and since Eq. (4.1-35) represents the output from the channel

at any time t and position r, then [see Eq. (2.1-21)]

Hy(£,v ; t,z) = Hy(f,v» ; r) = H, (£, £, ; y)

(4.1-36)

where the random, time-invariant, space-variant transfer func-

tion of the ocean medium is given by

By (£, £y 5 y) = A, (£,£, ¢ yexp[+jo,(f, £, ; ¥)]

(4.1-37)
where
Ay(E £y 5 y) = (2ngy + k2[n?(y)-11/(ane )72
(4.1-38)
4
2 2
eM(f,fY P y) = —[ko,ﬂ4an)] (n"(z)-11dg
Yo (4.1-39)
ko = 21rf/co (4.1-3)
and from Eg. (4.1-13)},
n?y) = ndly) + 2yl o(ying (y) + o (yindp(y).
(4.1-40)

If the medium is "weakly irregular" or "weakly scattering”,

P -,
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i.e., if o(y) is very small compared to unity so that
koa (y)sY << 1 (4.1-41)

where sy is the scale size of the irregqularities (i.e., the
average distance over which the refractive index fluctuations
remain correlated [48]), then terms involving az(y) can be ne-

glected [42] and Eq. (4.1-40) reduces to
n?(y) % n2(y) + 2n (o (Pingly). (4.1-42)
Therefore, by using Eq. (4.1-29) to simplify Eq. (4.1-38) and
»

upon substituting Eq. (4.1-42) into Eq. (4.1-39), one obtains
the following:

A (f,£, 5 y) = (2wf¥)'1/2 (4.1-43)
and
O(frfy 5 ¥) = O (f.fy i ¥) + Oy (£,8y 5 y)
(4.1-44)
where Y
eyp(frfy i ¥) = -[kg/(th)] / [ng(c)-l]dc (4.1-45)
yO

is the deterministic or average component of the phase function,

and

e
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Y
Sup £ty 7 ¥) = ~[k§/(2nfy)]/ np (2o (2) nyp (2)dz
Yo (4.1-46)

is the random component.

The medium transfer function HM given by Eq. (4.1-37)
with amplitude and phase functions Ay and eM specified by Eq.
(4.1-43) and Eqs. (4.1-44) thru (4.1-46), respectively, in-
dicate that for a weakly irregular medium, the major effect of
the medium is to angle modulate the transmitted field. Further-
more, if ny(y) = 1, then eMD(f,fY i Y) 8 0 [see Eq. (4.1-45))
and, as a result, the angle modulation is due strictly to the
random fluctuations q(y)nNR(y) of the index of refraction [see
Eq. (4.1-46)]. Note that the angle modulation process is often
referred to as "scattering” [48]. Also note that the transfer
function derived in this section can be written as the product

of two functions, one deterministic and the other random, i.e.,

HM = [AMexp(+jeMD)][exp(+j@MR)]

which agreer with the assumed transfer function expressions of
Laval and Labasque [36] and with the general practice of re-
presenting a field in a randem medium as the product of a de-
terministic and a random function [40].

Let us now discuss the two important assumptions

responsible for the derivation of the transfer function, namely,
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the aforementioned binomial expansion criterion given by Eq.
(4.1-29) and the assumption regarding the absence of turning
points.

Since

n(y) = c/cly), (4.1-47)

substituting Eqs. (4.1-25) and (4.1~47) into Eq. (4.1-29)

yields

1) (e - 2pt/? (4.1-48)

By < cos”
cly)

where Bo is the angle of incidence of the reference propagation
vector k. (see Fig. 7). Now recall that the critical angle of
incidence B associated with a time-harmonic plane wave inci-
dent upon a plane boundary between two fluid media is given by

{49] (see Fig. 8)

sing, = cy/¢, H €y > ¢ (4.1-49)
or, equivalently,
2 212
-1 Y leg = e
B, ™ cos <, Pcy > (4.1-50)

where ¢y must be greater than < for Bc to exist. When the

angle of incidence g 2 Bc , there is total reflection and hence,

e e

BRI ey
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Fig. 8. Illustration of the angle of incidence

3 and the critical angle of incidence B
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no transmission of energy into medium II. The speed of sound
c({y) generally increases with depth, for example, in the deep
ocean. Also, c(y)l increases above and below the SOFAR channel
axis. Therefore, when c(y) > Cqr the absolute value sign in
Eq. (4.1-48) can be removed, and by comparing Eq. (4.1-50)
with the R.H.S. of Eq. (4.1-48), the binomia. expansion crite-
rion indicates that the initial angles of transmission so must
be less than the "critical angle" in order to avoid total re-
flection, and thus, passing thru a turning point {47,50].

This is consistent with the fact that the W.K.B. approximation

is invalid at a turning point [47,50].

e
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4.2 OQutput Electrical Signal

Now that we have derived an ocean medium transfer
function, let us demonstrate the use of the coupling equations
presented in Section III by calculating the output electrical
signal y(t,r) from the receive aperture (array) as given by
Eq. (3-12). As can be seen by ingpecting the integrand of
Eq. (3-12), we need expressions for both of the kernels YM(n,g)
and Ap(n,r). Let us compute YM("'E) first [see Eq. (3-18)].

Assume that the transmit aperture depicted in Fig.l
is a planar array of MxN (odd) complex weighted point sources,
centered at (xo,yo,zo) and parallel to the XY plane. In addi-
tion, assume that the complex weights are separable. Since in
most practical situations an identical input electrical signal
is applied to all elements in the transmit array before the

complex weights, i.e., since

x(t,r) = x(t),
then Eq. (3-7) reduces to
X(£,a) = X(£f)§(a) (4.2-1)

since F (1} = §(a). Substituting Eq. (4.2-1) into Eq. (3-1)

yields
XM(E,X) = X(f)DT(f,l) (4.2-2)
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where
: (M-1)/2 (N-1)/2
Dn(£f,v) = Z E c d exp(+j2rf md,) -
m=-(M~1)/2 n=-(N-1)/2
exp(+j2anndY)exp(+j2wfxx°)-
exp(+j2anyo)exp(+j21fzz°)

(4.2-3)

is the far-field beam pattern of the transmit array, Cn and dn
are complex weights, dx and dY are the interelement spacings in
the X and Y directions, respectively, and the last three expo-
nentials are phase factors which account for the array being
centered at (xo,yo,zo) instead of at the origin (0,0,0).

Since the transfer function derived in Section 4.1

is time-invariant, Eq. (3~19) becomes
BM(f'! ; ¢l£) = HM(f,y_ H 5)5(0) (4.2—4)
and, as a result,
BM(fri ; -f,r) = HM(f,g ; r)d(n=-£). (4.2-5)

Therefore, substituting Egs. (4.2-2) and (4.2-5)

into Eg. (3-18) yields

e e

by
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Yyla,r) = X(n) / Dp(n,v)H,(n,v ; rlexp(~j2mv-r)dy,

(4.2-6)

and upon substituting Eq. (4.2-6) into Eg. (3-12), we obtain

y(t,xr) = / X(£) /DT(f,y_)HM(f,v_; riexp(-j2rv-rjdv:
Ag(f,x)exp(+j2nft)df (4.2-7)

where n was replaced by f since there is no frequency (HZ)
spreading in this example due to the time-invariant property
of the transfer function. We need to specify the complex
aperture function AR(f,g) next.

Assume that the receive aperture depicted in Fig. 1
is a planar array of M'x N' (odd) complex weighted point
sources, centered at (xR,yR,zR) and parallel to the XY plane.
In addition, assume that the complex weights are separable.

Therefore, the receive aperture function is given by

Mr-1)/2 (N'-1)/2

AR(f,g) = 2 Z cidé&(x—[xR+id}'{])'

i==(M'<1)/2 g==(N"-1)/2
5(y—[yR + qdé])&(z-zn)

(4,2-8)

W SV VI
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where ci and dé are complex weights and di and d& are the inter-
element spacings in the X and Y directions, respectively.

Upon substituting Egs. (4.1-31), (4.1-36), (4.2-3),
and (4.2-8) into Eq. (4.2-7) and recalling that r = (x,y,2),

one obtains

(M'-1)/2 (N'-1)/2

ylt,x,y,2) = Z Z cj'.dé X(£) -

i==(M'=1)/2 g==(N'-1)/2 -

(M-1})/2

k)
2. c exp(-32mEyaX, VA .

m=-(M-1),2 -

(N-1)/2

Z dn /HM(E,FY i oYgt qdi)exp(-janYAan)de-
n=-(N-1) /2 Zo

o

exp(—ijszZ)dfzexp(+j2nft)df'

-

§ (x=[xp+ 1dg]) 6 (y=[vg* qdy])é(z-2p) (4.2-9)
wherae
Axim = (xR-xo) + (idk - mdx) (4.2-10)
Yo, = (yp¥,) + (9dy - ndy) (4.2-11)
and
AZ = 2z - zo. (4.2-12)

L e T
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If we now change variables from spatial frequencies to direc-
tion cosines by substituting Eqs.‘(4.l—32) thru (4.1-34) into
Eg. (4.2-~9), and treat the frequency variable f as a constant
with respect to the spatial frequency integrations, then Eg.

(4.2-9) becomes

(=172 (N'-1)/2 .
3 rg 3 .
y(t,x,y,2) = (2/c)) 2 )IEEILY ff. X(£)
i=-(M'-1) /2 g=-(N'=1)/2 -
(M=1)/2

E csinc(2£2X, /e )(*
m=-(M-1)/2

(N=-1)/2 +1

D oy | omgE tEvse b ver aay
n=-(N-1) /2 a

q

exp(-j2w[fv°/c°]Aan)dvo .

{bqexp(-janfAz/co)sinc(bquZ/co)}-

exp{+j2nft)dfs(x~ [xR+ idi])s(y- [yR+ qdi])s(z-zR)
(4.2-13)

since in our example problem

A e
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-1S u S +1 ' (4.2-14)
a < v, < +1 (4.2-15)
and
0 < wo < bq (4.2-16)
where
2 ' 1/2
ag = (lnD(yR + qdy) - 1)) (4.2-17)
\ 1/2
bg = (1 - Injlyg + adp) - 1D /2 (4.2-18)
sinc(x) = Sinlrx) (4.2-19)

X

and nz(-) was replaced by ng(-) in Egs. (4.2-17) and (4.2-18).
The transfer function Hy, is given by Egs. (4.1-37) and (4.1-43)
thru (4.1-46) with the exception that the lower limit of in-

tegration Yq in Eqs. (4.1-45) and (4.1-46) must be replaced by

y + ndY which is the Y coordinate of a point source in the

o
transmit planar array. Note that if ny(+} < 1, then

= ? -
bq = nD(yR+ qu). (4.2-20)
Equation (4.2-13) is the desired result, i.e., it represents
the random output electrical signal from each element in the
receive array in terms of the transmitted electrical signal,
the transmit and receive arrays, and the random transfer func-

tion of the ocean medium. If y(t,x,y,z) given by Eq. (4.2-13)

T e e
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is complex, then simply take the real part to obtain the real

output electrical signal,




(4.3~2)
where
_ 2
K = - k2/(47£) (4.3-3)
v o= 2 ' -
K= +(k) 2/ (4nEY) (4.3-4)
y
I(y) =[ (n%(z) - 1]ag (4.3-5)
yo
y'
I(y") =f n%(g) - 1]dg (4.3-6)
yo
N ’ oo
- ""’T‘._.".. w—"
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4.3 Coherence Function

Upon inspecting Eq. (4.2-13), it can be seen that
the autocorrelation function of the output electrical signal
will depend upon the autocorrelation function of the transfer

function

RH (f'f'llefv'i ; Y,Y') = E{HM(f,fY H Y)Hﬁ(f'lf‘} H Y')}
M

(4.3-1)

which is also known as the coherence function. Substituting

Eqs. (4.1-37), (4.1-39), and (4.1-43) into Eq. (4.3-1) yields

-1
RH“(f,f',fY.fé P Yyl = [én(fyfé)l/z] E%exp(+j{xz(y)+K'I(y’)])
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ko = 2ﬂf/c° (4.3-7)
ké = an'/co (4.3-8)

and n2(°) is given by Eq. (4.1-42) where the expectation appear-
ing in Bg. (4.3-2) is the characteristic function of the random
quantity [KI(y) + K'I(y')]. 1If it is assumed that I(y) is a
real Gaussian random process, which implies that the index of
refraction is a real Gaussian random process, then Egq. (4.3-2)

can be written as

-1
] LY L] - " l 3
Ry, (8080 Ey €y 190y = [2n (2,9 /7] exp(+3 [0y (£,£, 5 ¥)-
Oyp(£' £y 7 ¥ )] -
exp (-E{0Z. (£,£, 5 v)1/2) -

exP(+E{eMR(f'fY; y)eMR(f',EQ AR DI

exp(~E(02  (£1,£) 1 y")i/2)  (4.3-9)

where
Yy Y
E(02 (£,£, : y)} = [K2/(21£,0]° ()n_(z")alg)a(z") -
MR 'ErEy 7Y o Y fp D
yo yO
! R (z,z')dzdz!
é nNR
: (4.3-10)
‘;A
s aaac

DR
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y' y'
E{e2 (£',£;, : y')1 = [(k')z/(zwf')]2 J. .[ na{(z)n (2*)o(g)a(zg?) -
MR Y ! o Y D D
yo yO
R (z,z')dzdz!’
NR

(4.3-11)

Ef0yp (.5, & VIO (£0, 65 5 v} = +[k2/ (20 ) 11 (k) %/ (2089 ] -

Yy y'
/ﬁ Jﬂ np(2)ny(5')alg)o(c’) -
yO yO
RnNR(:,c')d;dc'
(4.3-12)

and

R (y,y') = E{ (y) (y*)}. (4.3-13)
nNR nNR nNR

If it is further assumed that the deterministic component nD(y)
of the index of refraction is equal to unity [40, 42-45], and
that the random component nR(y), and hence, the normalized

random component nNR(Y) is wide-sense stationary, i.e.,
R (v,y') =R (ay) (4.3-14)
O fNR

where Ay = y-y', then [see BEq. (4.1~45)]

; y) =0 (4.3-15)
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and

GMD(f',fQ i y') =0, (4.3-16)

and Egs. (4.3-10) thru (4.3-12) become, respectively,

kz 2 (Y‘YO)
2 . = (yoy ) |00 - L
eloZa(£,8, ; y)f (7-y,) [z,rfy] f [1 G—{;i-,—] Ry (0
=(y-y,)
(4.3-17)

2 22 (y'-yo)
2 (k)%
[] . . - R - o -
E eMR(f PEg i y')} = (y Yo)[‘i??;'] J- [l 7;45%;7]RHNR(c)dc
=(y'-y,)
{4.3-13)
and
(k klo)?
Ezem(f'fy’y)em(f"f\" 7 Y"‘ * TR (R
Y Y
(y=y,) (y=y,)
(y-y") R (g)dg + (y'-y) R (g)dg +
“Nr ° xR
(y-y") -(y'-y,)
0 (y-yo)
IR, (2)d: - R (%)d:
R NR .
=(y'=y,) (y-7") :
:
(4.3-19)
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where ¢ is the constant standard deviation of the Gaussian,

zero mean, wide-sense stationary, random component nR(y) of

the index of refraction.
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v. SUMMARY and CONCLUSIONS

A congistent notation, fundamental input-output relations,
and various time-space transformations for both deterministic
and random linear, time-variant, space-variant filters have
been established. The notation is consistent in the sense that
all of the various input-output relations which are based upon
the general theory will reduce to the classical relations of
linear, time-invariant filter theory. These results should be
of interest to persons involved in the general area of linear
systems theory, and not only to those involved in underwater
acoustics.

With the use of the method of separation of variables
and the W.K.B. approximation, a mathematical expression of a
time-invariant, space-variant, random transfer function of the
ocean medium was derived. The transfer function was time-in-
variant instead of time-variant because motion was not consi-
dered in the present derivation. The transfer function modelled
the ocean volume between transmit and receive apertures (arrays).
The ocean volume was characterized by a random index of refrac-
tion (sound speed profile) which was a function of depth., The
index of refraction was decomposed into deterministic and random
components.

In addition to the transfer function derivation, two
example calculations were made. The first example demonstrated
the use of the coupling equations and involved the derivation

of a mathematical expression for the random output electrical
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signal at each element in a receive planar array of complex
weighted point sources. The output signals were expressed

in terms of the frequency spectrum of the transmitted electrical
signal, the transmit and receive arrays, and the previously
derived transfer function of the ocean medium. The first exam-
ple demonstrated that an output electrical signal could he
derived in a logical and straightforward fashion. The second
example involved the derivation of the coherence function, i.e.,
the autocorrelation function of the transfer function. In
order to obtain somewhat simplified results, it was necessary
to assume that the random component of the index of refraction

was Gaussian and wide-sense stationary.




89

ACKNOWLEDGMENT

Support for this research was obtained from the NPS

Foundation Research Program.




1.

10.

11.

90

REFERENCES

A. W. Ellinthorpe and A. H. Nuttall, "Theoretical and
Empirical Results on the Characterization of Undersea
Acoustic Channels,” IEEE First Annual Communication
Convention (1965), pp. 385-591,

D. Middleton, "A Statistical Theory of Reverberation and

Similar First-Order Scattered Fields. Part I: Waveforms
and the General Process,” IEEE Trans. Inform. Theory, Vol.
13, 372-392 (1967).

K. A. Sostrand, "Mathematics of the Time-Varying Channel,"
in Proceedings of NATO Advanced Study Institute on Signal

Processing with hasis on underwater acoustics (Enschede,
The Netherlands, 559685, Vol. 1I, pp. (25-11-(25-20).

H. L. Van Trees, Detection, Estimation and Modulation Theor
(John Wiley and Sons, New York, 1971}, Vol. 1ii, Chap. 13,

pp. 459-~460.

A. N. Venetsanopoules and F. B. Tuteur, "Stochastic Filter
Modeling for the Sea-Surface Scattering Channel," J. Acoust.
Soc. Am. Vol. 49, 1100-1107 (1971).

J. F. McDonald and R. C. Spindel, "Implications of Fresnel
Corrections in a ®on-Gaussian Surface Scatter Channel,"
J. Acoust. Se¢. ... Vol. 50, 746-757 (1971).

L. Fortuin, "The Sea Surface as a Random Filter for Under-
water Sound Waves," J. Acoust. Soc. Am. Vol. 52, 302-315
(1972). ' -

J. Johnsen, "Spectrum Analysis of Reverberation,” in Signal
Processing, edited by J. W. R. Griffiths, P. L. Stocklin,
and C. Van Schooneveld (Academic Press, New York, 1973),
pp. 97-115.

R. Laval, "Sound Propagation Effects on Signal Processing,"”
in Sigrial Processing, edited by J. W. R. Griffiths, P. L.
Stociiln, and C. Van Schooneveld (Academic Press, New York,
1973), pp. 223-241.

P. H. Moose, "Signal Processing in Reverberant Environments,"
in Signal Processing, edited by J. W. R. Griffiths, P. L.
Stocklin, and C. Van Schooneveld (Academic Press, New York,
1973), pp. 413-428.

J. F. McDonald, "Fresnel-Corrected Second Order Interfre-
quency Correlations for a Surface-Scatter Channel,” IEEE
Irans. Commun. Vol. COM-22, 138-145 (1974).




12.

13.

1l4.

15.

16.

17.

18.

19.

20.

21.

22.

91

J. F. McDonald and F. B. Tuteur, "Calculation of the Range-
Doppler Plot for a Doubly Spread Surface-Scatter Channel
at High Rayleigh Parameters," J. Acoust. Soc. Am. Vol,57,
1025-1029 (1975).

J. G. Zornig and J. F. McDonald, "Experimental Measure-
ment of the Second-Order Interfrequency Correlation Func-~
tion of the Random Surface Scatter Channel," IEEE Trans.
Commun. Vol. COM-23, 341-347 (1975).

F. B. Tuteur, J. F. McDonald, and H. Tung, "Second-Order
Statistical Moments of a Surface Scatter Channel with
Multiple Wave Direction and Dispersion,™ IEEE Trans.
Commun. Vol. COM-24, 820-831 (1976). -

A. Ishimaru, Wave Propagation and Scattering in Random
Media (Academic Press, New York, 1978), Vol. I, Chap. 5,

erci—

PP- 933-94.

A. B. Baggeroer, "Sonar Signal Processing,"” in Applications
of Digital Signal Processing, edited by A. V. Oppenheim
{Prentice-Hall, Englewood Cliffs, New Jersey, 1978),

Chap. 6, pp. 365-366.

L. J. Ziomek, "Generalized Kirchhoff Approach to the Ocean
Surface~Scatter Communication Channel. Part I. Transfer
Function of the Ocean Surface," J. Acoust. Soc. Am. Vol.
116-126 (1982).

L. J. Ziomek, "Generalized Kirchhoff Approach to the Ocean
Surface-Scatter Communication Channel. Part II. Second
Order Functions," J. Acoust. Soc. Am. Vol. 71, 1487-1495
(1982).

L. J. Ziomek and L. H. Sibul, "Broadband and Narrowband
Signal-to-Interference Ratio Expressions for a Doubly
Spread Target," J. Acoust. Soc. Am. Vol., 72, 804-819 (1982).

P. E. Green, Jr., "Radar Measurements of Target Scattering
Properties,” in Radar Astronomy, edited by J. V. Evans and
T. Hagfors (McGraw-Hill, New York, 1968), Chap. 1, pp. 1-77.
T. Kailath, "Channel Characterization: Time-Variant

Dispersive Channels," in Lectures on Communication Systam
Theory, edited by E. J. Baghdady (McGraw-Hill, New York,
I§3I5, pp. 95-123.

P. A. Bello, "Characterization of Randomly Time-Variant
Linear Channels," IEEE Trans. Commun. Systems Vol. 11,
360-393 (1963).




AD-A134 886 LINEAR TIME-VARIANT SPACE-VARIANT FILTERS AND THE WKB Z/z
APPROXIMATION({U) NAVAL POSTGRADUATE SCHOOL MONTEREY CA

L J ZIOMEK OCT 83 NPS-62-83-058

UNCLASSIFIED F/G 20/1 NL




1S
r

o

E:""FEEEE
EEEE

E

EEE

E

N
=

2= e s

I

MICROCOPY RESOLUTION TEST CHART
NAT ONBL BURE AU OF STANDAADS - 963 - 3




23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

3s.

92

R. S. Xennedy, Fading Dispersive Communication Channels
(Wiley-Interscience, New York,1969).

W. D. Rummler, "Clutter Suppression by Complex Weighting
of Coherent Pulse Trains," IEEE Trans. Aerospace Electron.
Systems Vol. 2, 689-699 (1966).

D. P. Delong, Jr., and E, M. Hofstetter, "On the Design
of Optimum Radar Waveforms for Clutter Rejection, "IEEE
Trans. Inform. Theory Vol. 13, 454-463 (1967).

W. D. Rummler, "A Technique for Improving the Clutter
Performance of Coherent Pulse Train Signals,"” IEEE Trans.
Aerospace Electron. Systems Vol. 3, 898-906 (1 .

J. S. Thompson and E. L. Titlebaum, "The Design of Optimal
Radar Waveforms for Clutter Rejection Using the Maximum
Principle,"” Supplement to IEEE Trans. Aerospace Electron.
Systems Vol. 3%65, 5831-589 (1967).

L. J. Spafford, "Optimum Radar Signal Processing in Clutter,”
IEEE Trans. Inform. Theoxry Vol. 14, 734-743 (1968).

C. A. Stutt and L. J. Spafford, "A Best Mismatched Filter
Response for Radar Clutter Discrimination,” IEEE Trans.
Inform. Theory Vol. 14, 280-287 (1968).

D. F. DeLong, Jr., and E. M. Hofstetter, "The Design of
Clutter-Resistant Radar Waveforms with Limited Dynamic
Range," IEEE Trans. Inform. Theorv Vol. 15, 376-385 (1969).

L. H. Sibul and E. L. Titlebaum, "Signal Design for Detec-
tion of Targets in Clutter," Proc. IEEE Vol. 69, 481-482
(1981).

T. Kooij, "Optimum Signals in Noise and Reverberation,"”
in Proceedings of NATO Advanced Study Institute on Signal

Processing with emphasis on underwater acoustics (Enschede,
The Netherlands, 1968), vol. I, pP. (17-1)=-(17-12).

L. J. Ziomek and L. H. Sibul, "Maximization of the Signal-

to-Interference Ratio for a Doubly Spread Target: Problems

in Nonlinear Programming,” Signal Processing Vol. S5, No. 4,
1-14 (1983).

L. J. Ziomek, "Comments on the Generalized Ambiguity Function,"
IEEE Trans. Acoust. Speech, Signal Proc. Vol. ASSP-30,

IT7-119 (1982).

R. Laval, "Time-Frequency-Space Generalized Coherence and
Scattering Functions,” in Aspects of Signal Processing,

edited by G. Tacconi (D. ReIgel Publishing Company, Dordrecht,
Holland, 1977), Vol. I, pp. 69-87.

N




36.

37.

38.

39.

40.
41.
42.
43.
44.
45.
46.
47.

48.
49.
i 50.
) 51.

_. A e e ===l

93

R. Laval and Y. Labasque, "Medium Inhomogeneities and In-
stabilities: Effects on Spatial and Temporal Processing,”
in Underwater Acoustics and Signal Processing, edited by

L. Bjorno (D. Reidel Publishing Company, Dordrecht, Holland,
1981), pp. 41-70.

D. Middleton, "A Statistical Theory of Reverberation and
Similar First-Order Scattered Fields. Part III: Waveforms
and Fields," IEEE Trans. Inform. Theory Vol. 18,-35-67
(1972).

D. Middleton, "The Underwater Medium as a Generalized Com-
munication Channel," in Underwater Acoustics and Signal
Processing, edited by L. Bjorno (D. Reidel Publishing
Company, Dordrecht, Holland, 198l1), pp. 589-612.

L. J. 2iomek, A Scattering Function Approach to Underwater
Acoustic Detection and SlgnaI DesIgn, Ph. D. Dissertation,
The Pennsylvania State University, University Park, PA
(1981), Chap. 2, pp. 10-49.

R. H. Clarke, "Sound Propagation in a Variable Ocean,”
J. Sound and Vibration Vol. 34, 457-477 (1974).

C. B. Officer, Introduction to the Theory of Sound Trans-
mission (McGraw-Hill, New York, 1958), pg. 100.

D. Mintzer, "Wave Propagation in a Randomly Inhomogeneous
Medium. I,"™ J. Acoust. Soc. Am. Vol. 25, 922-927 (1953).

D. Mintzer, "Wave Propagation in a Randomly Inhomogeneous
Medium. II," J. Acoust. Soc. Am. Vol. 25, 1107-1111 (1953).

D. Mintzer, "Wave Propagation in a Randomly Inhomogeneous
Medium. III,"” J. Acoust. Soc. Am. Vol. 26, 186-190 (1954).

B. J. Uscinski, The Elements of Wave Propagation in Random
Media (McGraw-~Hill, New York, 1977), pg. 2.

L. M. Brekhovskikh, Waves in Layered Media (lst Edition,
Academic Press, New York, 1960), op. 193-198.

I. Tolstoy and C. 5. Clay, Ocean Acoustics (McGraw-Hill,
New York, 1966), pp. 48-52.

see 45, pp. 4-6.

see 41, pp. 78-80.
see 46, pp. 206~-213.
see 15, pp. 96-98.

e+ ——— s




DISTRIBUTION LIST
No. of Copies

Defense Documentation Center 2
Cameron Station
Alexandria, VA 22214

Chief of Naval Research 1
800 North Quincy Street
Arlington, VA 22217

Library, Code 0142 4
Naval Postgraduate School
Monterey, CA 93943

Dean of Research 1
Code 0121A

Naval Postgraduate School

Monterey, CA 93943

Professor Lawrence J. Ziomek 17
Code 62Zm

Naval Postgraduate School

Montersy, CA 93943

Peter Verburgt 1
Naval Air Development Center

Code 30412

Warminster, PA 18974

Robert Obrochta 1
Office of Naval Research

Geophysical Sciences Division

Group Leader Arctic Research

Code 425AR

Arlington, VA 22217

Dr. J. Michael McKisic 1
Office of Naval Research

Geophysical Sciences Division

Group Leader Ocean and Underwater Acoustics

Code 425

Arlington, VA 22217

Dr. Charles J. Holland 1 .
Office of Naval Research

Mathematical Sciences Division

Group Leader Mathematics

Code 411

Arlington, VA 22217




i
!
]

Dr. Edward J. Wegman

Office of Naval Research

Division Leader Mathematical Sciences
Code 411

Arlington, VA 22217







