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PREFACE

On April 9, 10 and 11, 1974, the Tenth Annual Conference on Manual
Control Systems was held at the Air Force Institute of Technology. It brought
together more than one hundred engineers and scientists interested in research
and development of manual control systems, those systems in which the human
operator plays a significant role in control and stabilization. As reflected
in the volume of papers that follow, the discussions ranged from analytic
approaches to system analysis and system identification to empirical studies
of human operator performance in a variety of practical tasks. Although the
predominate theme focuses on application to aircraft control and handling
qualities, papers were also presented concerning human control of automobiles.

The reader of this volume may also be interested in earlier volumes in
this series. They are referenced below.

First Annual NASA-University Conference on Manual Control, The University
of Michigan, December 1964. (Proceedings not printed.)

Second Annual NASA-University Conference on Manual Control, MIT, Feb 28
to March 2, 1966, NASA SP-128.

Third Annual NASA-University Conference on Manual Control, University of
Southern California, March 1 - 3, 1967, NASA SP-144.

Fourth Annual NASA-University Conference on Manual Control, The University
of Michigan, March 21-23, 1968, NASA SP-192.

Fifth Annual NASA-University Conference on Manual Control, MIT, March 27 - 29,

1969, NASA SP-215.

Sixth Annual Conference on Manual Control, Wright-Patterson AFB, April 7 - 9,

1970.

Seventh Annual Conference on Manual Control, University of Southerr California,

June 2 - 4, 1971, NASA SP-281.

Eighth Annual Conference on Manual Control, University of Michigan, Ann Arbor,

Michigan, May 17 - 19, 1972.

Ninth Annual Conference on Manual Control, Massachusetts Institute of
Technology, May 23 - 25, 1973.

Note: The Proceedings of the Sixth, Eighth, and Tenth Conference were
published by the Air Force; address, requests to: AFFDL/FGD, Wright-Patterson
Air Force Base, Ohio 45433.
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DECISION BEHAVIOR WITH CHANGING SIGNAL STRENGTH

Renwick E. Curry and Eliezer G. Gai
Massachusetts Institute of Technology
Cambridge, Massachusetts

and

D.vid C. Nagel
National Aeronautics and Space Administration
Ames Research Center
Moffett Field, California

ABSTRACT

The Theory of Signal Detectability (TSD) has nearly replaced classical notions
of the threshold because of its ability to separate sensory and decision processes

in weak signal detection and recognition paradigms. The primary emphasis of recent

work has concentrated on the sensory rather than the decision aspects and almost

all work has been exclusively at one signal strength. We propose a model to

describe behavior at different signal strengths based on subjective rather than

objective distributions. The model predicts ensemble performance at a constant

objective likelihood ratio (LR) criterion (even though subjective distributions
are the basis for determining cutoff criteria) unless the observer adcpts a

subjective Neyman-Pearson objective. Results from an experiment in visual discrim-

ination show that some observers in fact operate at a constant objective LR's as
signal strength is varied randomly over a wide range. The objective LR's of the
other subjects changed dramatically with signal strength, but this behavior is
consistent with the use of a subjectiv: Neyman-Pearson decision rule and the

linear relation between subjective and objective log LR's found in studies of

subjective probability.
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INTRODUCTION

In this paper we consider in some detail the decision aspects of
the Theory of Signal Detectability (TSD) that has found wide application
in the psychophysics of the past several decades, particularly as a model
Tor psychophysical detection and recognition tasks. Although the theory
was first detailed by Swets, Tanner and Birdsall (1955), Green and Swets (1966)
provide the moat detailed discussion of the concept and applications of
the geueral model. As with the majority of expositions of TSD, we
consider here the case of two alternative stimulus classes, which in
the theory are represented as hypotheses. Each preseuntation of a stimulus
is assumed to map to a unidimensional sensory continuum; the continuum
is divided into intervals and (neglecting boundary or criterion variability)
v realization of the stimulus anywhere within that interval leads to a
unique response.

TSD, in common with the more modern of the threshold theories, has
allowed the experimental separation of the sensory and response elements
of psychophysics. In the present context, the sensory elements are
derived from the ensemble distributions of the realizatioms for each stim-
ulus. It is the normalized distance between these distributions (com-
monly referred to as the signal strength or signal-to-noise ratio (SNR)),
that determines the semsory capabilities, whereaz the response elements
are defined by the points separating the intervals on the continuunm,

In the formal application of TSD as a normative and descriptive
theory, the sensory continuum has been identified with the 1ikelihood

ratio (LR), or a momotonic function of the LR (see Green and Swets, 1966).
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Early experiments (e.g. Egan, Schulman and Greenberg, 1959; Tanner,
Swets and Green, 1956) were performed to investigate the manipulation
B of the response criterion levels. Results were generally as predicted |

Tl by the theory, although real observers tended to be somewhat more ]
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Py

o e ¥

conservative than the normative theory would heve it, and research

efforts then concentrated on the sensory rather than the decison as-
pects of the model, in large measure. With this change of emp.nasis, the
concept of the likelihood ratio decision axis seemed overrestrigtive

and unnecessary. This fact, coupled with some logical inconsistenctes,
especially the non-monotonic behavior of LR for the unequal-variance Gau-
ssian distributions, led to new theori-u which did not rely on the LR
(Wickelgren, 1968) and which began to fall more in line with the Thur-
stonian view (see Lee, 1969 for a comparison of TSD and Thurstonian
scaling).

The demise of the LR concept, however, created a void in one im-
portant element of the sensory continuum threshold models; namely, what
sort of decision or choice behavior does one expect for the stimulus
situations where signal strength is allowed to vary from trial to trial?
Indeed, the theory has never been fully examined under these stringent
conditions. As treated in developments to follow, the task of the dewision

maker is to determine which one of two hypotheses is true from one avail-

able ohservation. To make decisions in an optimal manner, the following
objectives might be considered (e.g. see Green, 1960):

1. Maximize percent correct

2. Maximize expected value
3. Maximize P(Hit) - &:P(False Alarm)

4, Maximize a posteriuvri probability
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5. Maximize P(Hit) at fixed P(False Alarm), commonly known as

the Neyman-Pearson objoctive.

As shown by Green and Swets, the optimal strategy for all of the above
objectives at a given SNR is to base decisions on the LR, viz, respond
"Ho" if the LR is less than some value, otherwise repond "H;", where
‘(Hg,H;) are the two alternative hypotheses. This poses obvious Aiffi-
culties if one is trying to determine the objective of a decision maker
for which only the inputs and outputs can be observed, since many
objective functions can lead to the same criterion value at a fixed
signal strength.

The next logical step to obtain an tdentifi:ation of the objective
of a normative decision maker is to change the distributions from which
the observations are drawn, i.e. the SNR. This is conceptually of limiting
value, however, for a perusal of LR criterion levels shows that only the
Neyman-Pearson objective predicts a change in LR criterion level with
SNR. All other LR criteria levels remain constant regardless of the ob-
jective being extremalized or changes in signal strength.

To our knowledge only Kinchla and Smyzer (1967) have performed
experiments where different detectibilities were an important aspect of
the design, although certain of those interested in trial-to-trial adap-
tive effects in psychophysical experiments have used zero- or half-strength

trials in an attempt to measure the effects of certain kinds of response

'igi bias (Atkinson and Kinchla, 1965; Ahumada, 1972). In these latter cases,
A3 S
‘?2 however, TSD was not the model being examined. Where Kinchla and Smyzer

emphasize the sensory and perceptual mechanisms, we concentrate on the
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g decision aspects of the model. First, we review the expected perfor- o
? mance for the normative decison model for various decision objectives. fj
F "

At any given SNR, all the objectives proposed in this paper yield the

o

same strategy based on ¢ LR decision rule, as has been ncted before

(Green and Swets, 1966). We show, furthermore, that for the objectives

B P
Y-S VD Rr BRI S

considered, the LR criterion level remains constant as the SNR is varied

“

unless the Neyman-Pearson objective is employed by the "observer",

We propose a model for decision behavior in which the observer is

258 WYL
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presumed to perform the optimal processing using aubjec.ive rather than

objective distributions, as is usually the care. This approach is

analagous to the "misperception', as oppoeed to the "misaggregation"”,

explanation of the conservatism in decieion makers' behavior (Rapo-

port and Wallsten, 1972). Bayes' Rule is used correctly, but on sub-

jective rather than objective distributions. Wheeler and Beach (1968)
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and Peterson, DuCharme and Edwards (1968) measured subjective distri-

o 14

xe
N o d

I

butions and found better predictions of probability updating or re-
vigsions with these than if they had used the theoretical or objective

distributions. Results of a visual discrimination experiment are pre-

N L. I

sented that are consistent with the notion that people make decisions

on the basis of subjective distributions that do not coincide with the
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true or objective stimulus distributions. Two possible explanations
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for the experimental results are discussed in terms of the general decision 1

ol

model presented here, one that involves the use of a subjective Neyman- =

g o1
E Pearson decisicn strategy and another that implys the breakdown of the ;j
"y Subjective Expected Utility (SEU) principle. Ome unequivocal finding is ‘33
b o
il

; that for experimental situations in which signal strength is allowed to j}q
o
; vary from trial-to-trial, decisions are not made on the basis of a con- ;:j
b -
! stant likelihood ratio criterion. :?
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A MODEL FOR DECISION BEHAVIOR WITH CHANGING SIGNAL STRENGTHS

In this section we develop a descriptive model for decision behavior
of observera in a detection or recognition task. The first hypothesis
is the familiar one for the continuous sensory threshold models.

Assumptions of the model -

Al. There exists a unidimensional psychological continuum, X,

on which the realization of any stimulus is described by a point,

x. The distributions of these realizations over the ensemble ;
of stimulus presentations of m stimulus pairs {si,si. iel,. .. ,m}
are represented by the conditional probability density functions

{p(x|54),p(x|54) 1 = 1,+++,m} .

d
The log likelihood ratio (LLR) for these ensemble distributions is: !
p(x(sy) '
Ay(x) = 1o ==-omm—ee im]l,ce0,m (1)
P(xlsi) .

E
"

A2. We assume the existence of subjective uncertainties which are
rppresented here by the intermediate construct of subjective prob-
ability densities {p%(x Si).pa(x 5;), i1, ,m} with the corres-

ponding LLR:

s pa(xlsi)
Ay (x) = In--mmemmeee i=1,"*,m (2)
Pa(xlsi)
A3. A total of n ordered category responses {Rj, j=1,*++,n} are
available, and for the ith gtimulus pair, its jth response is chosen
if:

Ml M@y > Ry 3

where Ai?j is the criterion level at or below which Ais(x) leads to

a repponse R; or R2 «s. Or Ry for stimulus pair 1{.
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A4. The observer changes his criterion levels in response to different
stimuli in order to satisfy a decisiun objective in the same manner
as would an objective decisinn maker, but subjective, rather than

objective distgributions are used in this process.

As mentioned before, the first assumption concerning the mapping of a
stimulus to the psychological continuum is the basic one for all sensory
continuum models. It is important to realize that the variability in re-
sponses over the ensemble of trials is attributed to the ensemble distri-
butionas of these points (neglecting any criterion variability). In sub-
sequent discussions, we will refer to these as the objective distributions,
since knowledge of these distributions is necessary for a decision maker
to optimize performance. The objective distributions are typically con-
sidered to be determined by external experimental constraints (e.g. choice
of signals), sensory processing (e.g. the "critical band" processing con-
cept in audition), and/or memory processinrg.

The observer's ultimate representations of these distributions is
explicitly recognized here as being different from the objective distri-
butions (A2). The traditional statements of TSD assume that 1t is the
objective distributions that are learned by the observer in a psychophysical
experiment during the training perdods. We do not make that restriction
here, and point to the work of Jee (19€3) in which he showed distinct dif-
ferences between inferred values of subjective and objective LLR for ex-
ternally distributed stimuli. In particular, Lee fcund that the subjec-
tive LLR can be monotonic for unequal-variance Gaussian distributions

when the objective LLR is not. To the extent that this holds true for
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internally distributed stimuli, using subjective rather than ob-

jective LR's for response determination (A3) removes the bothersome

aspect of nonmonotonic LR's that are characteristic of conventional TSD.
Assumption A4 has a substantial impact on the prediction of observed

performance over the ensemble of trials. If an observer is presumed to

be extremalizing any objective function other than the Neyman-Pearson,

the value of subjective LR at the criterion point should remain constant over

all stimulus strengths. There is a large class of subjective and objective

distributions which would admit a one-to-one mapping from subjective LR

to objective LR; experimental evidence suggests that this is usually sat-

isfied in practice (e.g. Wheeler and Beach, 1968; Peterson, et al.,1968).

In particular, distributions which lead to a monotone nondecreating A8(x)

and any A(x) will have such a property.

ENSEMBLE PERFORMANCE

In this section we derive the analytical expressions for model parameters
in terms of measures of performance over the ensemble of trials for equal-
variance stimulus pairs. These relationships are used in estimating para-
meters from observed data.

Objective distributions

The objective distributions describe the variability on the psycho-
logical continuum from trial to trial. Each stimulus is presumed to give
rise to a distributton p(x|*) and it is further sssumed that each real-
ization is independent of all others.

Denote by Pn,i,j and P the "hit" and "false alarm" probabilities

FA,1,]
for stimulus pair i1 with respect to criterion level j, i.e:
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Py, 1,3 PR, or Ry or ++ or Ry|S,) = Py, CLIALR | :

( . . s 1z (4) )

PFA,i,j = P Rl or R2 or or le 1) = P(Ai (x):}i’jlsij :2

When the underlying objective distributions are Gaussian, these expressions ?5
meduce to a particularly simple form:

Pu’i’j = ¢(zu’i’j) r

(5) -

Pra,1,1" ¥ (2pa,1,4) -

' er

Mg oY :

Zz L] +

H,1i,3 1 .

di 2 -

' (6) -

z .- Aili - 1 5

FA”"J d 1 2 ;—

L 2

where ¢ is the distribution funotion for unit normal variables, and the E:

z's are the correpsonding unit deviates. The LLR criterion levels, Ay j :f

’ ",

are those observed from an objective decision maker operating on two éﬁ

equal-variance Gaussian distributions with a SNR of di'. These values can jj

be estimated from the observed proportion of hits and false alarms at each Ef

SNR. It is the model of the decisions based on subjective LLR that con- éﬁ

strains the objective LLR criterion levels between SNR levels and prcovents i;

these Ai,j from being complete}y free parameters. Figure 1 contains theo- 'i;

retical curves of constant d' (ROC curves) and curves of constant )\ (isobias E&

curves). Thus if an observer were operating at constant (objective) LLR, :%

the points on the P(Hit)-P(FA) plane would lie along the corresponding con- z?

stant-\ curves as d' is varied from 0 to «. v

Subjective Distributions. S

Constant Subjective LR. As described above, many of the decision L:
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objectives lead to constant LR criterion levels as the distributions
(SNR's) are changed. Assumption A4 leads to the conclusicn that the
observer will use constant subjeetive LR criteria over all SNR's. To

the extent that a given subjective LR corresponds to a unique value of
objective LR, this behavior over the ensemble of trials will be identical
to an observer using constant objective LR criteria on the objective
distributions. Morn specifically, if the objective LLR is functionally

related to subjective LLR by:
A = g{A%(x)) ()

and if g(°) is a one-to-one mapping, then a constant subjective LLR for

criterion level, Jj,

Aifj’s Ajs all i (8)

leads to a constant objective LLR,
- X, = g(1 8
Ai,j Aj g(kj ) alli 9)

This condition will hold under a wide class of objective and subjective
distributions, although the empirical evidence supgests that a simple
linear relation in (7) is a good approximation in many situations (Ra.
poport and Wallsten, 1972). Thus, the expressions for observed unit

deviates (6) become,

zH919j - di' *
- s (10)
g(A,>) d,’
z = 1 + 1
FA’i’j di' 2
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Neyman-Pearson Objective. The development for subjective Ney-

man-Pearson decisions requires a more detailed structure than that for 4
constant subjective LR. In addition to the assumption of Gaussian objec- &
tive distttbutions, we further assume that: f
a. the subjective distributions are normal, and é
b. A%(x) = beA(x) (11) A
The constant,b, relating subjective LLR to objective LLR is the so-called ;

accuracy ratio; the validity of this expression as a first approximation

has been verified under a wide range of experimental conditions (Rapo-
i: port and Wallsten, 1972).

; The ensemble performance of an observer using a subjective Neyman-
Es Pearson rule for the jth criterion level will be constrained by constant

(subjective) probability of false alarm, or, equivalently,

A dj®
25 = const = e N X (12)
FA,j d|8 2
i

where the superscript, 8, denotes subjective values. For zero-mean

normal distributions it is well known that (G;een and Swets, 1966):
A(x) = d'x (13)

which leads to an expression for subjective-SNR, d'%,

d'8:x = A8(x) = beA(x) = b*d''x

and thus, d'8 = p.d' (14)

%1 Substituting (14) and (13) into (12), solving for Xi § in turn, and
B »

substituting the result into (6) provides an expression for the unit

11
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deviates over the ensemble of trials.

d t

1
- 8 ——— - .
Zw,1,1 = ZFA,§ T 5 (145)
' (15)
1.
zFA’i,j- ,'F'A,J = -;- (l-b)

In recognition and discrimination tasks, the distinction between "noise"

nnd "signal plus noise" becomes arbitrary and so operation at a constant

probability of hit may be expected. The corresponding expressions are,
d ]

+ -1 )
2

*4,1,3 ~ “n,3

(16)
d ]
28 - --L '(1+b)

1,1 TRy T T

This family of curves describing the ensemble performance has a particularly
simple form in the unit-deviate plane (Figure 2); the loci of observations

lie on straight lines with slope of (1+b)/(b-1) or (b-1)/(1+b), and

reduce- to the expected result when the objective and subjective distribu-
tions are equal (bel). The corresponding loci in the P(Hit)-P(False Alarm)
plane are shown in Figure 3 for representative values of b. Th>» most
striking characteristic is that for any b<l the limiting values as

d'+« of the observed probability of false alarm is zero; when the prob-

ability of hit is subjectively constant, its (objective) limiting valuve is 1.

Degrees of Freedom: Positive or Negative?

With the intoveduction of the subjective basis for decisions and

12
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subsequent analysis for ensemble performance, one might wonder whether
there are so many parameters that the model loses any significance it
might have had. In reality, we have only added one new parameter and
placed new interpretations on old parameters. Thus the model is quite
parsimonious as can be seen in the accompanying table (Table 1) which

was prepared for m pairs of equal-variance Gaussian stimuli (m~SNR's)

and an n-category rating scale. As an example, using 2 and 3 SNR's with

a 4 category scale yields 6 and 11 degrees of freedom, respectively.

VISUAL DISCRIMINATION WITH RANDOMLY VARYING SNR
Method
Apparatus. A visual discrimination task was presented on a 17-inch CRT
in the form of pairs of quarter-inch circles. %en pairs of circles,
at five distances from a cursor, constituted the entire stimulus set,
shown in Figure 4. The observers' task was to indicate whether the

pair of circles was to the right or left of a vertical line passing

through the small vertical cursor near the bottom of the screen. This
provided five SNR's since the discrimination is easier for circles
closer to the cursor than for those farther away. Subjects indicated
their response by pushing one of 3 buttons corresponding to 'think left",
"don't know", and ''think right". An odd number of categoriés was used
to avoid the central criterion; we have results similar to those re~
proted here with an even number of categories.

Subjects. Six graduate students participated as observers on a volun-
tary basis in four half~-hour seasions.

Procedure. A standard set of instructions were read to the subjects

13
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describing the experimental se¢tup, informing them of equiprobable
right and left presentations and the scoring method displayed to them at
the end of each session. Three points were given for a correct response,

minus three points for an incorrect response, and zero for "don't know".

A stimulus (e.g. a palr of circles) appeared for 4 seconds and the screen

was then blanked for a 2-second response interval. Feedback after each
trial was not given.

After 10 minutes of practice, subjects began the first of four
half hour sessions of 300 presentations of the stimuli in random order.
The data for all sessions were pooled, resulting in an average of 120

presentations per stimulus or 240 presentations per SNR for each subject.

Results.

Maximum likelihood estimates of model parameters were made
for each subject in several ways. First the two LLR criterion levels
(il,iz) and equal-variance d' values were estimated for each SNR.
(Table 2). Three of these parameter sets were not attempted because
of extreme observations (e.g. no errors) at the highest SNR. A x2
goodness of fit test did not indicate a rejection of the equal-variance
Gaussian hypothesis for any of the 27 parameter sets even though d'

values ranged from .15 to 3.89.

A more sophisticated routine (Curry, 1974) was used to obtain the ML
estimates of the global model, i.e., the simultaneous estimation of

5 d' values and the two (or three) parameters describing the decision
rule. Not all combinations of decision strategies were evaluated since
inspection of the raw data on the P(Hit)-P{False Alarm) plane ruled

out many as being unreasonable. However, a constant LR strategy was

14
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tried for each subjedt to provide information regarding this hypothesis.

We have included the results for a mixed strategy, where the first cri-

P

terion level is assumed to be a constant LR criterion while the second
criterion level is obtained via application of a subjective Neyman-

Pearson rule.

A - s e 4 . o

The iz values of the ML estimates for the various decision strat- E
egies are summarized in Table 3. The degrees of freedom are not the

same because data were ppoled to obtain cells with expected frequencies

greater than 4. We feel that this constitutes a powerful test of the

4 v
st - B v J
. « e . .
Be- . Pt S
4 4 € 3 5 _Jemem B .

model, since one and only one strategy was not rejected by the *2 test

for five of the six subjects. Examination of Table 3 (or figures 9

and 10 which follow) shows that the data are best explained by mixed

decision strategies for subjects 5 and 6, i.e. a constant LR criterion

PR W WRLINNCEE R

for one threshold and a subjective Neyman-Pearson criterion for the

other threshold yield the minimum xz value. This, we feel, is due
to the assumed linear relation between subjective and objective likeli-

hood ratios, rather than a difference in strategies. The primary reason
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for this is the sensitivity of P(Hit)-P(False Alarm) values to LLR at
low d' (see Figure 9, where a small change in the theoretical LLR would
dramatically change the predicted data point at the lowest d').

Thus a slight relaxation of the linear constraint would signif-
icantly imporve the descriptive power of the model without affecting

its usefulness. Deviations from linearity should be allowed in future

-
o
PO 7" P S LI I

applications because first, any calculated accuracy ratio is sensitive

[
» s

AR T ke
LTS

.
| 3
e

2

15

'''''''''''''''''

- “, e 5 o . En A . ' e . C.w =~ 0 F e o
- . . ] . ] ~ i S, L. A A @ le Ty
[ . R YL A S W0 T Tl TP S Y0 00 K AR WPE N UNE G v ), S o W T G SN G- SR SR AP I U B RPN i




W N N N o W T - =N -wTe - =
Ve gt e T T e N TN T e e Y . L S I T T T T S S T YT YA YT T AN T TN TR TR T T T MR AG R A AN RN T A

et
LS

L
[

R
»

TR W

.' ."'. .'WF.- ! ;

AR A A i
a_ 0 _ds yF e

to sampling variations at small levels of LLR, and second, many subjects

exhibit systematic nonlinear trends, with a decrease in accuracy ratio

i

at higher LLR being typical (Peterson, et al., 1968).
The ROC curves in Figures 5 through 10 are the theoretical pre-
dictions from the Maximum Likelihood estimates yielding the smallest

x2 value.
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DISCUSSION

The strongest conclusion to be drawn from the experimental re-

sults is that subjects operate with (objective) LR criterion levels

® R ™ o™ e 2" aTn " AR A

that vary with SNR. Data similar in nasture were tabulated in Kinchla

and Smyzer (1967) and we have plotted it in the P(H)-P(FA) plane in

ii Figure 11 as further evidence of this behavior.

S W TSN

;ﬂ The:'e are several explanations for these results. We feel that
Ii the response mode (an odd number of eategories) can be ruled out since
we have obtained similar results with an even number of categoriés,

and the Kinchla and Smyzer data were generated from binary responses.

There may be some decision strategy other than the Neyman-Pearson rule

A JMEM Sa A B P P ROMB® . a"alas i

that we have not considered which requires a shift in LR criterion

with SNR. For example, the criterion levels might be fixed on the

PRI S S

sensory continuum. This hypothesis is, however, inconsistent with the

o _rmaam

data.

.o

The possibility of a drift in perceptual memory as a source of the

criterion shift was suggested by Kinchla and Smyzer for the auditory

caTacEEM UA & 2 B
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task (Figure 11b); they did not discuss the criterion shifts that ap-
parently exist for the visual task (Figure lla). A memory functicn
was not required for the experiments reported here, and it seems un~-
likely that the LLR criterion shift has a sensory basis. Thus the LLR
change would appear to be related to decision processes, and this ap-
pears to be an alternative explanation to the results reported by
Kinchla and Smyzer as well.

The most viable alternative to the subjective Neyman-Pearson

rule as an explanation of the observations is a breakdown of the

Subjectively Expected Utility (SEU) theory. Of the three major as-

sumptions comprising the SEU model (Tversky, i967) the independence

of utilities and subjective probabilities is critical in this situation.

T . m‘f,. l,: %y .:.' ".'.l : .'.:.

When the independence principle is valid, the subjective LLR criterion

level is determined by:

. U U
Aj‘ = In 00 01 (17)
Ui - Yy

where Uij is the utility of responding hypothesis i when hypothesis j

is actually true. It is difficult to completely eliminate the thange

[T VL e

in utilities as the source of variation without experimental evidence

LA

3y
»
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to the contrary. Although the payoff matrix has been manipulated to

alter criterion levels (Green and Swets, 1966) we are not aware of any

O 3G

utility measurements in a psychophysical setting even at one SNR, and

results for multiple SNRs would be required here.

LALAC A i i
PN
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0

In spite cf this lack of data, we feel that the change of utilities

with SNR (i.e. the breakdown of the SEU model) is a less satisfactory

e "‘r";"’,'.' R

explanation than the subjective Neyman-Pearson ruie for the following
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reasons. Wallsten (1970), in explaining when the SEU model has been
found to be valid, summarized the experimental efforts by suggesting
that the SEU model is more appropriate in ''simple" rather than "complex"
decision situations. Although the line of demarcation between "simple"
and "complex" decisions must necessarily be a fuzzy one, the decisions
reported here must surely lie toward the "simple" end of the continuum.
Furthermore, unusual changes in utilities would be necessary to explain
the observed results. An examination of the objective LLR criterion
levels from the Maximum Likelihood estimation procedure shows non-monotonic
behavior of criterion level with SNR, and even changes of sign. Although
this is consistent with a Neyman-Pearson rule, the utilities would have
to change in a manner such that:

(1) a "right" (or "left") response is preferred at the longer dis-
tances,

(2) the utilities change to strengthen this preference for 'right"
or "left" at intermediate distances, and

(3) the utilities change again to bias responses in the opposite
direction at nearer distances.

In summary, we have examined the decision behavior with multiple
signal-to-noise ratio stimuli and proposed a quantitative model in

which subjective (rather than objective) distributions play a key role.

The model predicts that the ensemble performance of an observer should lie along

a constant (objective) LR curve unless he is using the Neyman-Pearson
objective. The experimental evidence from a visual discrimination task
certainly shows that the LR criterion level chanchange with SNR. The

moat plausible alternative explanation to a subjective Neyman-Pearson

18
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rule is the brealddown of the SEU model. The experimental evidence .
suggests that this is unlikely in the "simple" decision detting
used here, and moreover the required utility changes would be most .
unusual to explain the observations. The constant subjective LR and i

subjective Neyman-Pearson rules describe the data well on the local .

Yy

and global levels.
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Table 1

~

Parameter Summary for m Pairs of Equal-Variance

Gaussian Stimuli (m SNRs)

S A
TN S

Model Parameters to be Estimated Degrees of?

(number) Freedom

Constant 0 N _ s

Objective LLR dj (@), Ay (n=1) (2m-1) (n-1)

Objective d) (@), z;A j @D (2m-1) (n-1) ~

Neyman-Pearson s

Constant ~g

Subjective LLR dl (m), g(kj) (n-1) (2m-1) (n~-1) -

Subjective =

Neyman-Pearson d! (m) , b, 2z (n-1) (2m-1) (n-1) -
i FA,]

Mixed ' 8 18 =, -1) -

Strategy di (m) , b, zFA,j or g(Aj) (2m-1) (n-1)

(n-1)

(1)

(mt1)

aDegrees of freedom are the number of independent equations, 2m(n-1),

minus the number of parameters.
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Table 2

Maximum Likelihood Estimates of LLR and d' at Each SNR

L

]
N

-]

Subject SNR M A, d' X
1 -.73 .14 .43 .12
2 =-.94 .18 .39 79
1 3 -1.09 022 1,12 3.74
4 -1.00 -.05 2,00 1.27
5 = . = -
1 -.28 .21 .18 1.16
2 -.88 .61 72 .26
2 3 -1.19 .66 1.48 1.13
4 -1.28 .04 2,32 .01
5 = oy = e
1 -.36 -.01 +23 3.83
2 -.62 -.09 .36 .08
3 3 -1.28 -.20 .95 .22
4 -1.78 -.04 1.63 .18
5 =3.46 1.06 3.89 2,17
1 -.39 .07 .36 .18
2 -.43 15 +52 .30
4 3 -.59 52 1.10 .01
4 -.35 .93 1.49 .03
5 1.06 2.30 3.00 .37
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Table 2 (continued)

"'.L

> 2
>

Subject SNR

¥ o
]
" H]

d' X

-018 006 030 026 !
-024 025 065 007 ::

% -.15 0L .15 2.67 :

w
(O N T

-°17 056 1014 10 15 :‘
.26 1.34  2.56 1.74 R
C

-032 018 058 3024 .

-.36 .32 .93 «53 pl
--21 038 1007 004
.07 .85 1.69 .11

o
(O I T O
s - i BN

R Lt ¢ 2 o 4

8 A1l chi square values have one degree of freedom (x2>3.84 with Pr=,05)

[ )
- k
N




Table 3

x2 Goodness of Fit Tests of ML Estimates (5 SNRs)

Subject xz(df)
Constant Objective Subjective Mixed
LLR Neyman-Pearson Neyman-Pearson Strategles
*k 8 Rk
1 603(7) 29.8(6) 19.6(5) =——
1.1 2.1
2 11,0(8) 33.3(11) 20.9(8) ——
*® ®
39.820)™" — 16.7(9) 27.78)™"
*® k% 1] ®
70.013)™  19.6012) 28.3(11) 28.711)""
68.2(13)"" - — 20.8(12)
3] ®
6 21.2(9) - 19.9(9) 12.1(9)
a

*® k%
p<.05 p<.01
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FIGURE CAPTIONS

Figure 1 Theoretical curves in the P(hit)-P(FA) plane for equal-variance
normal distributions. Solid lines are isosensitivity curves
(d' = ,5, 1,, 2.). Dotted lines are isobias curves
(ja| = .1, .5, 1.). Positive values of A in the upper half-plane,
increasing toward the top. Negative values of A in the left
half-plane, decreasing toward the left.

Figure 2 Theoretical curves of unit deviates for observed P(hit)-P(FA)
when the observer uses a subjective Neyman-Pearson decision
iule. The subjective distributions are assumed normal, and b
is the ratio of subjective to objective LLR,

Figure 3 Theoretical curves of P(Hit)-P(FA) using subjective Neyman-
Pearson decision rules. The straight dashed lines are for
b = 1 (subjective LLR equals objective LLR) ; the other loci
are for b = .75 and .25,

Figure 4 Stimuli for the visual discrimination task showing both hypotheses
(left and right) and the five SNRs (distances from the cursor).
Not drawn to scale.

Figure 5 P(Hit)-P(FA) for observer 1 with constant LLR decision rules
(A = -,93, .17). Theoretical curves are the ML estimates
yielding minimum x2 values.

Figure 6 P(Hit)-P(FA) for observer 2 with constant LLR rules (A = -.86, .58)

Figure 7 P(Hit)-P(FA) for observer 3 with subjective Neyman-Pearson
decision rules (b = .29).

Figure 8 P(Hit)-P(FA) for observer 4 with subjective Neyman-Pearson

decision rules (b = ,66).
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Figure Captions (Continued)

Figure 9 P(Hit)-P(FA) for observer 5 with constant LLR and subjective
Neyman-Pearson decision rules (A » -,22, b = ,25),

Figure 10 P(Hit)-P(FA) for observer 6 with constant LLR and subjective
Neyman-Pearson decision rules (A = -,26, b = ,22)

Figure 11 P(Hit)-P(FA) performance in perceptual memory tasks (data

from Kinchla and Smyzer, 1967). a) Visual b) Auditory
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A METHOD FOR UNBIASED PARAMETER ESTIMATION BY MEANS OF THE

EQUATION ERROR INPUT COVARIANCE

by

S.J. MERHAV and E, GABAY
Department of Aeronautical Engineering
Technion - Israel Institute of Technology,
Haifa, Israel.

ABSTRACT

A new method for obtainihg a unique and unbiased estimate of an
x-dimensional parameter vector in open or closed loop linear systems in
the presence of noise is described, The method is based on the "equation
error" and is presented in continuous time. Instead of the classical least
squares approach, the equation error is correlated with the input and the
covariance is egquated to zero. The resulting single linear equation in the
r unknown parameters provides a necessary condition for their unique identi-
fication., From it, r - 1 additional indspendent equations are generated.
The resulting r 1linear equations provide the unbiased estimate of the para-
meter vector. The method does not require the identification of the noise
statistics and no precise knowledge of the form and order of the system is
required. Implementation is indicated in hybrid analog-digital form, The

method is illustrated by numerical examples.
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1. INTRODUCTION

Most current methods for identifying linear dynamical systems are based
on least squares estimation [1). The fundamental idea is to generate an
error between a "model" and the system to be identified and to minimize a
quadratic fuvnction of this error with respect to a parameter vector, the
solution of which constitutes the "least squares estimate". The attractive
property of this approach,as manifested in the "equatlion error" method (2],
is that the error is linearly related to the parameter vector, This property
guarantees that the least squares estimate is unique. In other methods, such
as the paralleil model error [1], this relatlion is not linear and, in general,
the parameter estimate is not unique. However, a severe disadvantage of the
least squares approach is, that in the presence of noise at the systen input
or output, the estimate of the parameter vector becomes biased [3]. This bias
can become extremely large even for apparently low noise levels, especially if
the system to be identified is of comparatively high order [4]. Identification
becomes particularly difficult if the system operates in a closed loop in which
the circulation of noise compornients creates "correlated residuals" leading to
bias, In recent years several methods have been Jdevelopwzl which remove this
noise-due bias, The best known of these are the "generalized least squares"
[5] and the "instrumental variable" method [6], Essentially, these are
extensions of the classical least squares method. Examples to which tHey have
been applied demonstrate that the bias can be eliminated. This, however, 1is
achieved at the expense of two factors:
1, Considerable complication of the algorithm and increase

in computation time.
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2. Loss of the fundamental property of unigqueness of the
estimate which exists in classical least squares [1]. y
In this paper, a new method for parameter estimation is described. It is
based on the "equation error" and as such it retains the fundamental linear
relationship with the parameter vector. However, instead of minimizing a i
quadratic measure of this error, it is correlated with the system input, ;
Equating the equation error - input - covariance to zero, yields a necessary !
condition from which complete identification of the parameter vector of a system
in a closed loop and in the presence of noise is achieved. The method, called
"Equation-Error-Input-Covariance" method (EEIC) has the following properties:
l, Unbiased estimate both in open and closed loop.

2. The estimate is unique.

3. Identification of the noise statistics is not required.

4, The assumed model may be of higher order than the real

system., The excess parameters are forced to zero so that
both form, order and parameters are simultaneously
identified.

5. On-line identification is possible if a recursive algorithm

O DO M P " Ve Fa®a e . MAERE T ®

is applied.

-

2. NOTATION AND BACKGROUND

2" & T A

Let Si be a linear single-input-single-output time invariant system. m

a v 7 ) EX

and n are the highest powers in the numerator and denominator respectively.

These are defined by:; ‘

i BE .
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1 i

N(p,b) = I b,p 1

i=o (1) L

n 3 ]

D(p,a) =1+ I ajp
i=1

pi A di/dti. S: may be a closed loop system in which G(p) is the dynamic
element to be identified and L(p) is the loop closure. x(t) is a random
stationary input and y(t) is the corresponding system output., Let

H(p){Colipo,pl,...,ph]} and H(p){Col[po,pl,...,pzl} be vectors of linear Y

gy g

operators on x(t) and y(t) respectively. As shown in [7], £ > n and

h>m is permitted with the formulation of Eq. (1). This has the advantage

w_* e

that no precise a priori assumptions regarding the form and order of S: are i
required. The role of the linear operator H(p) is usually to avoid pure

differentiations [2) but its specific task in this paper will become clear

later. Let a and £ be parameters corresponding to a and b . On g
forming: i
h i 1

R(p,8) 4 H(p) I Bp )

i=0 - R

(2) ;

) j :

Q(p,3) 4 Hip) (1 + I a,p7) 1

=1 :

the noiseless "equation error" [2] e(t) is given by

e(t) = Q(p,a)y(t) - R(p,B)x(t) (3) £

In practical systems the output y(t) is usually contaminated by noise ni(t)
which is zero mean and is uncorrelated with x(t). A block diagram is given

in Fig. 1.

o
E -
'l‘.-
P_.
3
;
<’f

n
(™

The input-output relations in terms of Laplace transforms are:

y(s) = T(s)x(s)+n(s) (4)




Te e wm @ T TF R L0, T 0T, T e T e

where
G(s) m
T®) =TT imew " Sa (5)
; and
'-::' ni(.)
n(®) = T L(®G(e 8)
F The filtered state variables in accordance with Eq. (3) are
- xiél‘l(p)p X, 1-0, lp---'h
)]
i Yy*tngl HP)PS (y#n), 3 = 0,1,..0, &
3
; The complete filtered r = £ + h + 1 dimensional state vector is defined by:
,{:‘:! ¥+ n 8 colf (y1+n1) reeer (ygtny) ,xo,xl,....xh} (8)
o With these notations the equation error is given by:
e-y+n+;a(y+n)-?sx-y+n +(w+n)TI‘ (9
°°j-1jjj1-oii oo =~

where T is a f+h+l = r dimensional parameter vector given by
Lé Col(al,-.,al, - Bop---,- Bh) (10)

and Yo=Y, n = n. For n{t) = 0, if all components of W are linearly

independent , e(t) = O is necessary and sufficient for the complete identifica-

tion of ¢ 4 Col (a,b). On minimizing the cost function I = (1/2)8(92) ;
vhere E(az) is the expectation of an ensemble of functions ez(t) s the

solution of the least squares estimate of I', I' is found to Le (3],

A - - -1 - -
ID=—@A+a) "(u+u) (11)
E‘gjﬁ:- where:
-
L.;
i
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- i 4 EYW
u A E(n.n) .
-n = o~ J

>

The true unbiased least squares estimate Io of g_e Col(a,b) is:

A = - -
T =-2 1a (13)
w —

AR T e .

A major problem in process parameter estimation is the elimination of the bias

é.-‘i - io' Methods which achieve this are referenced in [1]. The best known, ﬁ
[5), [6) retain some of the fundamental properties of least squares but in ;
general, convergence to the unique estimate idz-i pt i cannot be proven. E
In this paper a new method, called the "Equation Error - Input Covariance" ;
(EEIC) method is presented. 1Its basic property is that it provides a unique ;
and unbiased parameter estimate of c. Unlike the above mentioned extended E
least squares methods in which the bias is eliminated by auxiliary procedures, f
its existence is prevented at the outset by virtue of the basic principle ;
involved. ?
:

3. THE EEIC METHOD 3
In accordance with Eqs. (3) - (6) the equation error is given by: §

e(t) = T(p)Q(p,a)x(t) - R(p,B)x(t)+Q(p,a)n(t) (14) S

Multiplying e(t) by x(t) and taking the expectation of the product, one has: S
E[x(t)e(t)] = E{xz(t)[T(p)Q(p.g) - R(p,8)]1} + Elx(t)n(t)Q(p,a)l= ;

=[T(p)0lp.a) - R(p,B)IEX ()] + Q(p,0)EIX(t)n(t)]

(15)
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Since n(t) and x(t) are assumed to be uncorrelated (Sec. 2), the second term
in Eq. (15) vanishes. Since E[xz(t)] ¥ O, the first term in Eq. (15) can vanish
if, and only if

T(p)Q(p,a) - R(p,8) =0 (16)
Since y(t)/x(t) Q T(p), it follows from Eq. (3), that this is the condition for

the vanishing of the “noisesless" equation error e(t).

In accordance vith Eqs. (1) and (10), Eq. (16) is fulfilled i€, and only
if, a=a and B = -b so that from Eq. (15) the condition necessary for the

complete identification of ¢ 4 Col (a,b) is:

Elx(t)e(t)) = O (17)

Eq. (17) is one equation in the r unknowns which constitute the r-dimensional
parameter vector [. Substituting e(t) from Eq. (9) and by virtue of Eq. (15)
disregarding the noise terms, one has:

Elx(y, + w' T =0 (18)
or:

Elx wl]r1 + Elx w2]P2+,...,+E[x wr]I‘r = - E[x yol (19)
Consequently the solution for I 1lies on the r-dimensional hyperplane defined
by Eq. (19). 1In order to detexmine the point which is the solution [ = Eo'

Eq. (19) must be supplemented by additional r - 1 independent linear equations
in Pl,...,Pr. The generation of these additional r - 1 equations is a
straight lorward matter if one recalls that the linear operator H(p) in Egs. (2)
and therefore in Eq. (3), is, in principle arbitrary. One can, therefore, form
a linearly independent set, Hl(p), Hz(p),...Hr(p) which operate on the system
output y(t) and in accordance with Eqs, (7),(8) set up the corresponding set of
equations as follows:
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= 3
Elx wlllrl + Elx w12]P2 +,000s + Elx wlr]rl E(x ylo]
Elx w211r1 + E[x w22]F2 +,.40, + Elx w2r]P2 = - E[x y20]
L] . [ . ) (20)
E(x wrllfl + E(x "rzlrz 4,000, + Elx wmll‘r = -E[xyrol )
Or in compact form:
{EQon) IT = - Elx g} (21)

If the set Hl(p),....Hr(p) is properly chosen in accordance with x(t) and
T(p), the covariance matrix E{(xw)} has an inverse and the solution of [ 1is
unique and is given by:

I = io - - {E(xw)}-lE{x Zo} (22)

The elements w in Eq. (20) are specifically given as follows in terms of

i}

Laplace transforms:

wi =Y BiH(B)i i C 0'1'000'11
g Q (23)
- xoa H(s); i=24+1, .+ 2,.e.,r
With the set Hj(s), j=1,2,..., r one has:
w,, =Yy siH (8); 1=0,1 L
ij o 3 PRetene (24)

= xosIH (B); i=2+1, L+ 2,..4,r

3

In order to compute the expectations in Eq. (20), the following property of the

cross-correlation function E[x(t)wi(t+t)] = Ryzes (r) is made use of:
i i

d d
R (t) = R (t) = —R (1) (25)
LU/} ;:I- XWe dti o

A convenient operator for H,(s) is a pure time delay
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are abbreviated as follows:

d (1)

(=R _ () _. =R (1) ; i
dri xyo E jTo xyo Tnjto
Y]
Rxx (T)T-jt } .
o
3
T
~jt 8

The choice of Hj(s)e has two advantages:

{E(xw)} of Eq. (21)

of the cross-corre’ ition ny (1)
o

47

-jros

Hj(s) = e H j = 1,2,...,r (26)
This results in:

Rxwij(r) = ;;T nyo (1 -jTo); j=1,2,00.,2 (27)
which means that R : 'T) is Rxwi(r) shifted in the negative direction of
T by jto. For the cgvariances one has:

al X
E(xwij) = R ij(O) = [;:I- nyo(r)lr_jrot i=0,1,...,2
" [_Q; Rxx(r)]t-jr ; img+1 r > (28)
art o e
j =0,1,2,...,z-1
T2>0 /
Provided that the derivatives at 1t = jto exist for all j. These expressions

1, It has the power to generate a set of independent equations (2)
over a wide range of frequencies.
2. In exploring the method numerically all the elements in the matrix

.re eagsily determined from the single expression
and autocorrelation Rxx(t).

Dropping the indices in Egs. (29), Eq. (20) takes the form:

= 0, 1'---,2

. 2 + 1,---,: L
(29)
- 0,1,2,...,2'1

>0
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(1) (2)
RV @n sV 0r, L, s RPor = - R(0)

(1) (2)
RGP + RV + oo R r = - Rty

. . . * } (30)

. . . .

(1) (2)

Since jto (§ = 0,1,2,...,r=-1) are positive time shifts of the origin,
only the region T > O 1is of interest. In compact form, the unbiased
estimate then takes the form:

[ = i‘o - -{(r}7R (31)
The defiuitions of the matrix {R} and the vector R are self evident from

Eq. (30).

3. IMPLEMENTATION OF THE EEIC METHOD

In the actual implementation, the set of linear operators
Hl(p), Hz(p),...,Hr(p) is applied to the input x(t) and not to the system
output y(t). This modification considerably simplifies the realization of
the computer program. Denoting the set of corresponding responses by

X1 XoreeorX o the following set of equations results:

- - 3
E(xlwl)I’l + E(xlwz)I’2 +r000y + E(xlwr)I’r E(xlyo)

E(xzwl)I’1 + E(xzwz)I‘2 Eole ok b I E(xzwr)rr- - E(xzyo)

. c c . r (32)

E(xrwl)I’1 + E(xrwz)I’2 +, aea, + E(xrwr)I’r = - E(xryo)
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Using pure time delays, the responses are X, = xe r k=1,2,...r.

It is easily verified that a set of equations equal to Eq. (30) is obtained since
Egs. (20) and Eq. (32) are completely equivalent. An outline of a hybrid

analog digital computer realization is shown ia Fig. 2. The differentiations

are conveniently performed in the analog part and the delays and multiplications,
in the digital part. In practice, these differentiations are not pure but will

take the form sl/K(s), where K(s) is a polynomial in s of order q > r.

. W

The required modifications of the cross correlations in Eqs. (28) and (29)

are straightforward and they do not alter the results of Sec. 3. It is important

to note, however, that due to K(s8), the continuity of [R(J')('r)]'r_o is E

xy
o
guaranteed for all i. With the time delays operating on the input x(t), Eq.

(15) is modified as follows: e.g., for the j-th equation one has:

< v _mmy

Elx(t-jT Je(t)] = [T(P)Q(p,a) - R(P,B)IR (3T ) + Q(P,WEIx(t-Ji)n(%)] (33)

The second term again is zero. As for the first term, it sustains the validity

of condition (16) except for isolated points at which Rxx(jro) may be zero.

The r(z+1)

(R B o« & . F A AV NS -

products xjwi and xjyo are stored, averaged and processed for

~

the solution of Io in accordance with Eq. (22)., 1In practice, in particular

A

if "on-line" identification is required, the solution of £° is obtained by g

a recursive average process (see Appendix) and not by Eq. (22).

The parameters of G(s) are readily determined from the closed loop para-

~

meter vector of T(s), I = Col (a;, 0,ses)p, - B,r = Bypeesm By). The E
vanishing of the excess parameters & e1f %y and Bm+1""8h is -

guaranteed by Eq. (16) and by auxiliary procedures of pole-zero cancellation

discussed in [7]). e
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From Eq. (5) one has:

T(s)

G(8) = T T(a)T(8)

(33)

Denoting G(s) = N'(s)/D'(s), and recalling that n > m, then for e.g. L(s) =1

it is easily verified that the corresponding parameter vector [I' =

' ' L] (]
COl(Gl,Gz,.n.,Gn,°8°, -B.L'ooo:-sm) Of Nl (8)/D'(S) is:

al - al - 81
1

} (34)

' m
Bm "1-8 J
The appropriate solution of TI' can easily be determined for any form of L(s).
If x(t) is a disturbance operating on L(s), the EEIC method is equally

effective and the slight modifications required in the computations are straight-

forward.

4. NUMERICAL EXAMPLES

Example 1

A simple numerical example based on time delays in accordance with Eq. (30)

o

gserves to illustrate the method. The system S1

and the input spectrum

.......
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b are chosen as :
e
- b
- o 0 6.25 5
- = = = = 35
{ T{e) =5 =713 as "1+1.255 0.6+ (32
o
1
2 1 ST R N ey e
ii The input-output cross-spectrum is:
& ¢ (s) = ¢_ (5)T(s) = 2 (37)
o xYO b 3 (1+s) (1-8) (0.8+8)
:f The corresponding cross correlation functlon is:
E R (1) = = 12.5 e | + 13.90-0'BT T>0
) XIS =
v = 1.39e" T <0 (38)
Zi The input autocorrelation function is:
3 - ;1 (39)
R ([th=o0.5¢
:i The equation error is
-5
- = - 40
iy e =y +y0 xBo (40)
The EEIC is given by
2
E(ex) = E(xyo) + E(xy,)o, - E(x")8, =0 (41)
In accordance with Eq. (30) we have:
(1)
ny (O)Gl Rxx(O) Bo ny ©)
o o
(42)
R (¢ ya, - R (1B = -R_ (1)
xyo o1 XX 0 0 xyo o

The required covariances are readily determined from Egs. (38) and (39).

Choosing Ty 0.5 sec, Eqs. (42) become:

l.40, - 0.58 = - 1,39
l ()

(43)
Oalsul- 0.30580 = - lc72

which yield the exact estimates: Bo = 6.25; o, = 1.,25. The determinant of

1
Eqs. (42) is det{R} = - 0.352. This quite large value indicates that the
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matrix

{R} = (44)
0.15 = 0.305

is far from being singular thus demonstrating the effectivity of the time-

delay operators.

s +a sz). The equation error now

Let the assumed form now be BO/(l + ay 2

is:

e = yo + ylal + yzaz -xBO (45)

and the set of equations in accordance with Eq. (30) is:

(2) (1) ; - )
R (O)a2 + ny (O)a1 Rxx(O)B° ny(O)

o o} (o]

(2) (1) ; ..
ny (ro)a2 + nyo(ro)al Rxx('ro)B° ny;ro) : (46)

(1) - =
(Zro)a2 + ny (Zro)al Rxx(z'ro)B° ny(ZTO)
0 [ (o] J

R(2)
Xy

Choosing again T 0.5 sec. Egs. (46) become:

1

= 1.52(12 + 0.15a, - 0.3038° = - 1.72 (47)

1

- 0.60, - 0.380, - 0.1848 = - 1.62
2 (o)

1
The determinant of Egs. (47)is det{R} = - 0.035 and their solution is:

a, = Q; a, = 1.25; B° = 6,25. This result indicates that the method can
handle "higher order models" i.e. models in which the powers of the nufierator
and denominator are higher than in the real system, S:. The excess parameter
estimate az which is zero, demonstrates that the form and order of T(s) =

can be identified along with the parameters.
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Example 2

v
»

Q? The second example illustrates the identification of a zero and a
N, .
pole. ;
[
b + b.s
1 [e) 1 6.25 + 2.58 2.5
Q= S as 1+ l.2ss 20.8+ (48)
- 1 (49) |
Qxx(s) {1+4s5) (1-8) (2+8) (2-8)
The input-output cross-spectrum is:
2(2.5 + 8)
tay, (8 ™ Yx (B)T(8) = TITTaLs) (1s) (279) (0-6%) e
The corresponding cross correlation function is:
R (1) = - 2.5¢" '+ 0.07e"%"+ 2.82¢70"8", t>0 (51)
xyo -
The input autocorrelation function is: ;
Rxx(|r|)=—-e el L 'ZITI (52)
The equation error is:
RO el xoBo - x181 &) \
The EEIC is given by: 5
E(ex) = E(xyo) + E(xyl)al - E{x )B° - E(xxl)Bl = 0 (53) E
In accordance with Eq. (30) we have: ‘
i
(1) (l)
R (0)a, - R (0)8, ©)8) = - R (0) 1
o o b
(1) (1) ;
nyo(ro)al Rxx(ro) Bo (r )8 nyo(ro) ) (54) ._
i
(1) (1) i
nyo(zro)al Rxx(zro)B° (21 )B xyo(21‘0) ) :

Choosing Boln 0.5 sec as before, the resulting set of equations is:
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0.1a1 = 0.0833B° - 081 = - 0.39

1
-0.114a1 - 0.0580 + 0.03981 = - 0.354 )
The determinant is det {R}= - 10-4 and the solution is: Bo = 6,25; Bl = 2.,5;

al = 1.25.

It should be noted that in this example x(s) (Eq. (49)), has been chosen sc
1
that Rxx(r) at T = 0 is continuous. This guarantees the existence of Rix)(o)

in (54). In practice this is guaranteed by the state filter K(s).

CONCLUSIONS

It has been shown that by correlating the system input with the equation
error an effective and relatively general algorithm is obtained for the unbiased
astimation of parameters both in open and closed loop. By properly formulating
the equation error, it has also been demoﬁstrated that the order and form of the

system to be identified must not be precisely known. If a sufficiently high

order model can be afforded in the computer program, the excess parameters are
estimated as zero so that the order and form are identified along with the
parameters. The method is amenable to hybrid or to pure digital computing
facilities. In the development of the actual computer software a recursive

algorithm will be employed so that on-line identification can be achieved.

Rapidity of convergence of the parameter estimate and its variance and extensions

;fﬁ to multivariable systems are subjects for further work.
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APPENDIX

RECURSIVE ON-LINE IMPLEMENTATION.

The solution of the parameter vector estimate as given by Eq. (31) is:
I, =- YR (A1)

where the elements of {R} are the cross correlations

R} = {R;;} = (R (Q))= {R (1)} (A2)

] 1"y 3
i=20,1,...,r

j=1,2,...,r
and the elements of R are:

R= (Ej) = (Rx (0)) = (ny (ty)) 3 =o0,1,.00,r (A3)

Yo o 3

For on-line implementation a hybrid computer may be used, where the time

delay is performed in the digital part and the cross correlations are computed by:

k 1 k
ny('r) = 151 x(iT - 1)y(iT) (ad)

T is the sampling interval 2nd k the number of samples. Egq. (A4) may be

be vritten in a recurzive form which enables real time processing.

+
R:;I(T) - :Ei X (T - 7)y(iT) =

: - 1;? x(iT-1)y(iT) + L x[ (k+1)T=1)y[ (k+1)T)

— k+1l i=1 . k+1

ey X Ry (1) X[ (k+1)T-1)y [ (k+1)T)

o = R° (1) - (A5)
) Xy k+1
t_.i Eq. (A5) may be rewritten as follows:
;3* R::;l (1) = R::y('r) + AR:;]'(T) (A6)
-::‘f: where:
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% & = 7 !

?. ARk+l(r) L R*y(r) X[ (k+1) t-t]ly[ (k+1)T] (A7) !

*‘:' xy k + l ‘
>

Thus every sample (consisting of x(tk), yo(tk), wi(tk) i=1,2,...,r)

updates the elements of {R} and R recursively

&' - &) o+ Y (A8) !
§r+1 . B} . A_ls:kﬂ (A9) .

The elements of {AR} and AR .(Eqs. A2-A3) are computed using Eqs. (A6-A7).

Substituting Eqs. (A8-A9) into (Al) we obtain:

T k+l

= - (R} + (aR®I) L ER + ARt (a10)
Using the well known matrix invrrsion lemma

(R} + RMIH ™ o /710 (R 1R i« (R Liarktlyy i)t .

= (&)L o+ (erkY) (A11)
where <]
(6R 1} w o (R TR i+ (REY T aRKTI TRk L (A12) >
Substituting in Eq. (Al0) %
£F+l - - R s R 4 a2 - 5
- - (g} 5}-[{Rk}-lA§r+l + {dn¥+l}(§f + A§r+l)l (a13; ;
Denoting i
o o CRSIARL L (R L) 6 4 2R (A14) :
and since <
nk ky-1 k %
I'=-{R} 'R (A15)
Eq. (Al3) becomes :
el |k, apierl JA16) f
To provide the initial value of {Rk}-l the initial measurements, say the first :
ten measurements, should be processed using Eqs. (A4, Al5) obtaining {5}0},5}0' ;
i}o. With these, the recursive process (Eqs. A8, 11, 14, 16) can be started (with &

k=10). :
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MEASUREMENTS AND MODELING ON THE
NATURE OF PHYSIOLOGICAL TREMOR

Gunter Rau
Forschungsinstitut fur Anthropotechnik (FAT)
(Research Institute for Humon Engineering)
Meckenheim, F.R. Germany

ABSTRACT

Fine=motor unsteadiness |imits the accuracy of perceptual=-motor cuntrol as described
e.g. by Magdaleno et al. at the 1973 Annual Manucl. At least a portion of these minute
limb movements are referred to as normal tremor. New measurements on forefinger tremor
and a resulting simplified tremor model are presented and discussed.

In our experiments forefinger tremor showed a sharp peak in the frequency spectrum of the
acceleration at 20~ 25 Hz which is clearly seperated from the peaks of hand tremor

(10 Hz) and forearm tremor (1= 3 Hz). At the same time the "EMG pulsations" ot the
correspondi ng forefinger extensor muscle showed a broad spectrum with a flat maximum

at about 15 Hz. When we added ar. extra mass (up to 90 g) the peak of the acceleration
spectrum was shifted towards lower frequencies while the EMG spectrum remained un=-
changed. Our results indicate that this type of tremor can be described by a linear mechani-
cal model without a neuromuscular reflex loop which moy well play a role in other types

of tremor as e.g. force tremor,

A. INTRODUCTION

It has long been known that posture, as well as voluntary movements even in healthy
subjects, are associated with physiological tremor. These small thythmical involuntary
fluctuations in position of various body parts impair the accuracy of fine motor performonce.
For example, in control tasks using a smoll finger stick or in the use of hand field glasses
[1], the resolution is limited by tremor oscillations. Other examples are mentioned by
Allen, Magdaleno and Jex [ 2 Jand other authors [3 ] . However, every possible means
which can be employed to reduce the influence of tremor movements depend on knowledge
of its frequency distribution. Therefore, it is important to analyse the tremor frequency
spectrum, and also to get some insight into the origin of the oscillations. These tasks can

be assisted by modeling different possible system configurations.

1. Servo-loop hypothesis : In previous studies, the postural tremor is reported to show

Tts predominant frequency at about 10 cycles per second. Lippold [4, 5 ] concluded from
his experiments on finger tremor that physiological tremor in the 8 =12 Hz band is due to
oscillation in the reflex servo~loop. Also other authors have been in favour of the reflex
loop hypothesis [6,7 ]. However, it seems to be clear now that it is impossible to define
a uniform or unique tremor frequency. On the basis of peaks in the tremor frequency
spectrum it is possible to make distinctions between finger tremor (20 - 25 Hz), hand
tremor (8 - 10 Hz), and forearm tremor (1 = 3 Hz) [ 8, 9 ] . The disagreement in the
above issuls moy be explained by dJifferences in the experimental sitoation. For example,
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Lippold’s measurements at the finger tip comprised mainly hand tremor movements
masking the finger tremor with its much lower amplitude values. Two reasons are
responsible for this strong masking of finger tremor ;: (1) the detection of finger displace-
ment instead of the acceleration, results in smaller amplitudes of the frequency

peak relative to higher amplitudes in the lower frequency band of hand tremor ; and (2)
the positioning of the hand on the table in a manner which allows, at least, a portion
of hand tremor movements to be superimposed on finger movements.

s
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2. Mechanical filter hypothasis : In contrast to the servo mechanism hypothesis, tremor
could be described as a teature of an underdamped, second-order, linear system

according to the mechanical properties (mass, spring, damping) of a limb=muscle system
(8, 9, 10, 11 ]. This system is activated through forces developed by the muscles :
involved. These muscle forces may be estimated by recording EMG activities. This is !
possible because at least for small changes in the force an approximately linear relation=- p
ship between EMG activity and the exerted muscle force can be assumed [12, 13 ].
The mechanical filter hypothesis predicts the tremor peak frequency to decrease with
added weights without a shift in the lower frequencies of the EMG spectrum.

Based on these considerations we studied finger tremor in order to discriminate between 1
the servo-loop and mechanical filter.

B. EXPERIMENTS ON FINGER TREMOR

1. Methods : The hand was rested in a relaxed position on a special support 10, 11 ]
with the index finger extended as shown by figure 1. This support was designed to
eliminate hand movement.

The forearm was held in a pronated position and supported at the elbow region. An
accelerometer (weight 4g) was attached to the end phalanx of the index finger picking up
the flexion-extension movement selectively. The acceleration frequency spectrum was
obtained by means of a filter bank as described by Alewijnse and Koster [14 ].

PR LY

The EMG signals were picked up with a pair of surface electrodes (8 mm diameter,

40 mm interdistance) from the distal part of the M, extensor indicis, and then amplified
(flat between 15-1000 Hz [10 ). Signals were processed further by double-wave
rectification and low-pass filtering (24 dB/oct., about 30 Hz cut off frequency) ; the
result being an envelope of the EMG signal. The frequency spectrum of the EMG envelope
was analyzed by using the same filter bank as for the acceleration processing.

B T R o et

Additional weights were attached around the first phalanx in the form of small pieces
of lead.
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acceleration pick up

Figure 1 : Arrangement for finger tremor measurements

2. Results : The acceleration amplitude of the forefinger’s oscillations is shown

(Figure Za) as a functinn of frequency for two different example masses. When the fore-
finger was loaded with 16 g, the frequency spectrum showed a peak at 20 Hz. This peak
was shifted down to 9 Hz when the extra mass was increased to 87 g.

The EMG envelope spectrum is shown by figure 2b. Here, too, a peak frequency is
observed, but the peak is not very sharp ; the spectrum is much broader than that of the
acceleration. Different weights up to about 100 g did not cause any shift of the flat
maximum ; there is no change in the form of the noiselike spectrum which cculd be related
to changes in the acceleration spectrum of figure 2a.

Similar results were obtained with various masses [ 10 Jand different subjects as well as
when a different method for spectrum analysis was applied [ 15 ].

3. Discussion and filter modeling : The acceleration spectra showed sharp peaks and are

in good agreement with results reported in the literature [8, 10, 15 ]. The EMG spectra
were much broader and showed no changes when a mass was added.

Thinking in terms of a mechanical filter the following concept has to be tested. The
frequency spectrum of the EMG envelope may be taken as a representation of the muscle
ferces as already mentioned. The mechanical resonant system is driven by varying muscle
forces which have a broad frequency spectrum, and it filters out a narrow band of the
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Figure 2 : Finger tremor with two different masses
a) amplitude spectrum of the acceleration
b) amplifude spectrum of the EMG activity
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whole input driving spectrum. The spectrum of the acceleration can, therefore, be
expected to primarily indicate the porperties of the mechanical filter. A comparison

of the spectra of figure 2a and 2b reveals no equivocal relationship between the driving
force and the filter response.

This concept is also in agreement with results reported and discussed by Hamoen [ 16 ]
concerning hand tremor oscillations. The results of Fox and Randall [9 ] obtained by
detecting the forearm tremor and the envelope of the biceps EMG are essentially the same,
thus supporting the mechanical filter concept.

Using a second=-order linear filter equation to describe the acceleration spectrum of fore=
finger movements, it is possible to estimate the shift of the peak frcquency caused by
increasing the mass. Taking the effective mass of the finger to be Mo’ the peak frequency
is

(1)

[
N
3
(4]
;O

while c_is the stiffness of the system. Assuming the stiffness ¢ to be independent of the
added n?ass, we get £

(2)

:
ji_‘

M+m
()

This means that with additional masses attached to the finger, the frequency will decrease
with the square root of the total mass.

Assuming that the moved mass of our subject’s finger system is about M_= 10 g, we can
start with the peak frequency of 25 Hz where no mass is added except fhe transducer ;
and calculate the shift corresponding to the mass m, . By applying (1) recurrently, we
can use the ratio. !

f M +m
—J—: o 2 (3)
f2 Mo +m]

for calculation of the resonance frequencies.

The table below shows that the results of this approximation are in good agreement with
the measurements [ 10 J:
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g measured predicted

4 25 25

16 19 18.5
45 12.6 125
87 9 95

Figure 3 shows the relation between mass and resonance frequency represented by a line
starting from zero as predicted by the model. Various data points of resorance frequencies
of finger oscillations were entered. These data points were derived from our experiments
[10 Jand those of other investigators. Measurements of physiological tremor {8 , 10] and
measurements of die-away oscillations following a sharp tap to the finger [ 12 ] were
included.

Each set of values entsred fell on a line parallel to the theoretical line of the model.
Effective finger mass values were of course not given in the literature, since they can not
easily be measured directly. However, it is reasonable to assume these masses differ with
different subjects. Effective finger mass assumptions can be made in such a way that the
values are situated very close to the theoretical line. In fact, this procedure is an indirect
method for estimating the effective finger mass.

The agreement between data and the model tend to support the mechanical filter
hypothesis. In addition, the assumption of the system’s stiffness to be a constant is
supported.

Qur experiments invol ved masses up to 100 g. As recently reported Koster and van Schuur

[15 ] extended their measurements to extra masses up to 184 g. The shift of the acceleration

peak frequency in their extended range of masses can also be described very well by the
filter model. But in that range the spectrum of the EMG envelope gradually exhibited a
peak at the tremor frequency. Similarly, Lippold {4, 5 ] reported EMG pulsations
synchronously with the die~away oscillations follwing a tap to the finger. How could
these phenomena be explained in accordance with the filter model ?

4. Muscle spindle feedback : During normal tremor oscillations, the maximum amplitude
of the finger *ip is about 0.2 mm [4 1. The muscle spindles which are acting in the reflex
loop as the sensors seem to have a threshold for small amplitudes [ 17 ], i.e. changes

in muscle lenght must exceed a minimum value to cause an excitation of the muscle
spindles. It can be assumend that the tendon crgans have higher thresholds compared to
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those of the sensitive muscle spindle endings {17 7. Therefore, only the muscle spindle
endings will be taken into consideration here. On the basis of measured data, a test can
be made of the proposition that the length of the muscle spindles (during normal tremor
amplitudes) can be changedsubthreshold, while during the marked changes in length
following a tap on the finger, this threshold could be exceeded.

10°
x
© Halliday & Redfearn 1956 Ve
1203_ s Stiles & Randall 1967
© Rau & Vredenbregt 1971
f~'§ 100}
2 80t -

O

Ny /
< 60 v

— 40l - “’,a’
20:///,,% .
0 20 40 60 80 100

effective total mass [q]

Figure 3 : Relationship between peak frequency f and moved total mass. The line is
given by the 2nd order filter model, dafa points are derived from measurements
[6,8,10]. Assumptions for finger masses M_: Halliday & Redfearn: 13 g ;
Stiles & Randall : 12 g ; Rau & Vredenbregt 210g.

In the following discussion, the finger system is approximated by the model given
schematically in figure 4. The length of a rigid forefinger is assumend to be 10 cm, and
the tendon connected to the finger 1 cm distant from the axis of rotation (metacarpal
joint). Further, it can be assumed that tendon stiffness is many times that of muscle tissue.
Therefore, a displacement of the finger tip will cause a change only in muscle length.

On the basis of these assumptions, during normal tremor a finger tip displacement of
0.2 mm causes a change in muscle length of about 0.02 mm. For a totol muscle length of
about 200 mm the relative change in length is 0.02/200 = 1/10 000. The amplitudes of
the finger tip displacement observed as a response to a tap was about 1.5 mm [4 ],
causing a change in muscle length of 0.15 mm. Thus the relative change is 0.15/200 =
1/1 330. The results are illustrated in figure 5.

The most sensitive parts of the muscle spindle receptor are the primary endings. For
example, changes in the length of the muscle spindle of 0.05 mm or somewhat less, lead
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Figure 4 : Simplified model of a finger (figures are scaled in mm)

to changes in the spindle firing rate [17 ]. In the situation as given by the proposed
model it is difficult to estimate the factual length change of the spindles when the sur-
rounding muscle tissue is stretched | In addition, the finger muscle is very long with
respect to its extension. It can be expected that a dynamic extension of the whole
muscle at a tremor-like frequency (e.g. 25 Hz) will result in only a partial stretch of
the primary endings of the spindle.

Experiments with the soleus muscle of the cat [17 ]have shown : when a sinussoidal length

variation was applied to the tendon at a frequency of 100 Hz the lowest amplitude

threshold of the most sensitive primary ending showed to be about 0.005 mm. This

corresponds to a relative change in muscle length of 140 000 (fig. 5). In the experimental

situation the sensitivity of the primary endings was already enhanced by a mechanical :
prestretch of the muscle. ‘

It can be further assumed that the amplitude threshold of the spindle is also about the ]
same magnitude in the range of tremor oscillations. In the literature no comparable :
electrophysiological measurements on humon subjects are available which would permit ,
a determination of the threshold of muscle spindles relative to toial muscle length changes. \
Therefore, the results of *he cat experiments are used tc give some indication of the order i
of magnitude in sensitivities in judging the situation of finger tremor.

Comparing the cat soleus threshold reported by Mathews [ 17 ] with the finger movement

= amplitudes estimated in the model (figure 4), one can presume that the amplitude of ,
E normal tremor may be too small to excite the muscle spindles in the human finger muscle. i
In contrast, the amplitudes of die=away oscillations in response t¢ a tap on the finger '
Ei could exceed the threshold of the muscle spindles. Also, during oscillations with additional

i masses above 100 g the finger movement amplitudes were increased markedly [15 ].

68

..................................................
........................
................




.........................

maximum amplitude
following a tap

=
P8
'Y

spindle threshold when
stretching the M. soleus
of the cat

=
w
L

0,2

o

L]

——t

iz Y sttt 777, .
maximum

amplitude
of normal
finger tremor

Figure 5 : Estimated changes of relative muscle lengths

Consequently, it should not be expected that in normal finger tremor the frequency is
determined by the reflex loop, since it can be considered to be an open=loop circuit
This is because feedback is missing due to the receptor being excited only subthreshold.
The force driving the finger system is supplied by the resting activity of the muscle. This
is in agreement with the observation that EMG activity was constant and showed no
pulsations with the same rhythm as occurred in the movements. In the case of a tap to the
finger the reflex loop would be closed, since the greater movement amplitudes can cause
a spindle excitation. As expected, EMG pulsations with the same rhythm of the finger
oscillations are observable, as shown by Lippold’s investigations [4, 57. But the EMG
pulsations can not be considered as the cause of these finger movements, they are only

a consequence.

69

......
ot et o T Dl R B tame, al e By et

- . »
. " R 4 ) A . il = os e, .. “n . 2l P i .
Ve, U Y T T S-Sl 0, T L T T V- GOT T U1 WL I, W RS- 1R SN DL e 8 SR SR L B B

“a

Ep———————— SISO SR X SRE A e Do T Tt e o e R e A o B A T i . P
i el S i g =

MRS K PR R

PRI ~ 3 el

Frre o

PR TN D v



Chrcmet 3 v -
l.:.. . "
s . .xl

Lt

C. TREMOR MODELS

In this section an attemgt is made to describe models which incorporate all the above
mentioned results and which enable one to make predictions with respect to other types
of tremor.

Three ssparate models are illustrated scher. atically (figure 6). With small modifications
these modells can be combined into one. They were simulated on an analog computer.

force input finger system (f.s) ! finger movement

' |
(noiselike) i (2nd order) E X, X, X
! I
a ; > f.s. : 4>
| |
| |
b- ' > s -+ >
}- s
: Tt P |
| | |
| |
c 5o fs ; -
o a
central : Tt Je—o{| P .
rhythm : i
| |

Figure 6 : Models describing 3 different types of tremor : (a) 2nd order filter, (b) Reflex=-
loop model, (c) Central rhythm model

1. Linear mechanical filter ;: This model is shown in figureb6a. The shift of the peak
trequency (f ) as illustrated in figure 2a was previously discussed in section B3. Figure 7
shows the spgctra of the acceleration, the velocity and the displacement for different
values of the mass. These results are similar to those described in figure 2a. Notice that
the variations in peak amplitudes are not to be seen in figure 2a because of the
normalization to 100 %. However, the tremor amplitudes are worthwhile studying in the
future because they can provide indications about increases in input force as well as
changes in the mechanical properties of the oscillating system.
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Figure 7 : Resonance curves of a linear 2nd order filter (spring, mass, damping ) with the
mass as a parameter (a) displacement spectrum (b) velocity spectrum
(c) acceleration spectrum
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2, Reflex=loop model : The length and the tension’of a skeletal muscle is at least partly

controlled by the reflex loop of the stretch reflex. As anticipated with greater oscillation
amplitudes, the muscle spindles are excited superthreshold, when the loop becomes closed
as indicated in figure 6b. From control systems theory it is well known that such a closed
loop can have the tendency to oscillate or even to become unstable if a given delay time
exists and the loop gain exceeds a limiting value. The finite signal velocity of nerve
transmission and the synapse time constants cause a real delay time of the reflex loop of
about 30 msec. This estimate is derived from electrophysiological data {18 ]. Ata
tremor frequency of 10 Hz [ 4, 5 Jthe delay time would have to be about 100 msec if the
reflex loop were responsible for the oscillations. Subsequently, a simple simulation of the
finger system including the reflex loop was tested with the two delay times : 30 msec

and 100 msec.

The feedback signal detected by the muscle spindle contains not only information of the
displacement but also of the velocity (and possibly also of the acceleration). Thus, a
whole set of different cases of positive and negative feedback configurations had to be
investigated. Combinations of displacement, velocity or acceleration as feedback signals
were not studied. The results of these experiments can be summarized as follows : No
stable oscillations occurred without the peak frequency varying with the additional mass.
These results contradict the hypothesis that the reflex loop may be the origin of normal
tremor oscillations at a uniform frequency of 10 Hz.

An additional property of the reflex-loop model was observed when the oscillation
frequency was shifted close to that given by the delay time ; this shift can be accomplished
either by changing the mass or the proportional feedback gain. When this was done, the
system became unstable and the amplitudes would have increased indefinitely if the
amplifiers of the analog computer had no limit. Because of this non-liniarity a further

shift in the frequency through an increase in mass was not to be detected, while an
increase in the input force amplitude still caused an increase of the movement amplitude.
The output signal was still nearly sinussoidal.= Are there similar tremor phenomena to be
seen in human limbs ?

3. Experiments on force tremor : To answer that question | made experiments on isometric
contraction (flexion and extension) of the hand. The isometric contraction, or rather,
static contraction in respect to movement is similar to a contraction for moving an
indefinitely large mass. The subject was asked to sustain a moderately large force. Force
variations after eliminating the DC level and the EMG activities at the fiexor and
extensor muscle groups were recorded simultaneously as shown in figure 8.

One can see force oscillations which are of the same frequency as the fluctuations in the
EMG envelope at the agonist muscles. At the antagonist muscles only a very low
activity is to be detected, it is almost slack. During flexion the result is basically the
same as during extension. The oscillation frequency in both situations was about 12 Hz
and was seen to be very stable and independent from the sustained contraction force in

a wide range. The oscillation amplitudes increased with increasing forces.
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This type of tremor is different to the type of normal or postural tremor and may be
called “force tremor". Here a reflex loop plays a role because the EMG and exerted
forces showed oscillations of the same frequency. It can be assumed that the stretch
reflex is responsible for this phenomena. The results cannot be due to a reflex system
combining the agonist and antagonist muscle groups since the antagonist showed nearly
resting activities indicated by the small EMG signal as shawn in figure 8. Similar results
can be observed when the forearm is loaded by a big mass and the EMG activity of the ~
biceps muscle is compared to accelerations in forearm oscillation movements ; the )
frequency of this tremor also showed to be about 11 Hz. Additional similar results are

S

Ldaii

b
5 reported by Magdaleno et al. [ 2 ] for finger oscillations : the frequency of the forefingar 3
X was about 12 Hz, Different exerted forces caused changes in amplitude while no marked -
o changes in frequency are to be seen. N

P

4. Central rhythm model : A further type of tremcr can be due to rhythmical excitations ;
with its origin in the central nervous system as observed e.g. with Parkinson tremors &
(19 ] . Our simulation tests of the model illustrated in figure 6¢c showed that the '
oscillation frequency of the finger model is determined by the rhythmical force
changes at the input independent of the mass. This is i n agreement with measurements
on hand tremor of Parkinson patients [ 20 ]; which show that the sharp peak in the
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acceleration spectrum coincided with the peak in the EMG spectrum and an extra mass
caused only a very small shift of these peaks.

D. CONSEQUENCES AND APPLICATIONS

1. Consequences : The measurements and the model studies give strong evidence for
different types of tremors depending on their origins. Distinctions can be made betwaen
these types, (a) by changing the mechanical properties of the moving system, and (b) by
using the surface EMG as an indication of the muscle activities and thus indirectly of the
muscle forces. A prerequesite for a reliable tremor measurement is a well defined . i
positioning of the moving limb. As a future goal, measuring techniques for the quantitative =
evaluation of amplitudes has to be worked out. A better quantification would also permit
detection of the bandwidth of resonance curves. This gives an indication of the mechanical
parameters of the moving system such as damping. For each experimentai situation it should
be determined whether the displacement, the velocity or the acceleration, or even all

of them simultaneously, should be recorded {21 J.
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Still an unsolved problem remains with the assumption that stiffness in the mechanical
filter model may be constant. It is known [ 22, 23, 24 Jthat an increase in muscle force
also increases the stiffness of the muscle. When the finger was loaded with an extra mass
the EMG activity increased. This means an increase in force and, therefore, an increase
in stiffness had to be expected. To avoid this problem, Stiles and Randall 8 ] instructed
their subjects to keep the EMG activity constant by providing them with visual feedback
while adding different loads. The aim was to keep the stiffness of the muscle independent
of the load. In fact, the same relation between frequency and mass as defined by equation
(2) was found.

a. PR ]
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2. Applications : In each design of an arm, hand, or finger control the tremor phenomena =
have to be taken into consideration, especially when fine control movements have to be
performed, For example, a well defined positioning support of the arm and possibly of the
hand can prevent the arm and hand tremor movements from disturbing or limiting fine
control with a finger stick. Similarly, an isometric control may be used only with small
sustained forces. Otherwise no fine control would be possible because of the occurrence
of force tremor oscillations.
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Before selecting deflection resistance for a control (mass, spring, damping as a function

of the displacement) one has to test the behaviour of the whole system including the moved
limb. For example, a big mass of the control could shift the resonance peak of the dis-
placement spectrum too much towards lower frequencies ; while an appropriate spring
stiffness could cause a desired shift to higher frequencies as can be seen from equation (1).

Evaluation of tremor amplitudes can be utilized in two other fields of ergonomics. (1)

As reported in the literature { 25 ] changes in the amplitudes of physiological tremor are
correlated with mental laad and drug influences. Therefore, an index of mental work load
could be obtained. (2) Tremor is reported to be a very specific feature of different
subjects [ 25 ]. On the basis of tremor amplitudes it seems possible to select persons who

P B T T
L BRI
. DI R S

P A

A B

74

..................................................
............................................................................

.......................
......
....................................
........................................
..........................

- “ .
- e P A
A T e P )




R F e all e e s T L e A e S R R R e e e R e Tt s B W - W ol RRC L TR

are especially suited for fine motor performances. However, these applications still .
have to be preceeded by improvement in the repeatability of results by better methods o3
and techniques in quantitative tremor analysis as a diagnostic tool.
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DETERMINATION OF IN-FLYGHT P1LOT PARAMETERS USING
A NEWTON-RAPHSON MIIIMIZATION TECHNIQUE

Leniel L. Kugel
AF Flight Dynamics Laboratory, Wright-Patterson AFB, Ohio

Abstract =—— This peper descriles the application
of & modified Newton-Raphson paremeter identification
program to a post-simulation enalysis of a larga
delta~wing aircreft similar to a Concorde super-
sonic transport. Pilot parameters are detarmined
by minimizing tbe waighted meen square difference
betwean tha computed model rasponses and the measur-
od responses of the tota. pilot-vehicle system.
Pilot ramnant is calcula:i.ed using a powar spectral
dansity epproach. These results ere compared to
presisulation aralysis rasults obtained using an
automated digital scheme and to those which were
seasured by an on-board inalog computer. This study
{1lustrates the utility (« f modern parameter identi-
fication techniques to p.st-simulation analysis.

I. Introduction

The mathematical modeling of pilot response in a
particular task is of continuing interest in ‘ha
fialds of aircraft devalopment and handling quali-
ties evaluation. A model which can accurately rap-
resent a pilot's rasporie .¢ of great tenefit and
can ba used to predir - -liut reting and aircraft
performance. A model affort such as this was
aprlied to a recent .t. '« using the Totel In-Flight
Simulator (TIFS) to iavastigete the landing approach
handling quaiitias of e larga delta-wing aircraftc.
(11.

The TIFS is a variable stability rasearch air-
craft which permits tha duplication of motion
effects in the cockpit, es wall as visual and
instrumant cuas. Crosswinds end turbulence can ba
introduced electronically into the evaluation task.
These signels era recorded to provide deterministic
snvironmentel disturbances which cen bs used latar
in the anelysis program. All eircreft states and
pilot respouse data ere elso racordad on a digitel
tape.

Prior to conducting this axperimeut e prasimula-
tion analysis of handling qualities was performed
using Pitch Paper Pilot {2). This analysis provided
the predictad parameters of a pilot modal for pitch
control [3]. During the flight, an anslog comrutar
known as a Describing Funciion Analyzer {(DFA) was
used to measure the Bode responsa, (emplituda and
phase) of the human operator at eech frequancy com-
ponent of the input forcing function. The predic~
ted and messured pilot parameters were then
computed. The recnrded data for the in-flight
simulation provided a data base from which a tech-
nique could be developed to extract pilot model
pevametors from flight test data records by applica-
tion of parameter identification techniques.

This paper will describe tha models of the air-
craft, the flight control system, and tha pilot used
ja the post-simulacion analysis. A description of
the modified Naw:ou-Raphson parameter identification
routine usad to extract the pilot parameters will
also be discussed. The results will then be pre-
santed and compered with the results using ths
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Describing Function Analyzer and Pitch Papar Pilot.

II. System and Disturbance Models

The total pilot-vehicle system for tha approech
and landing task of a large dalta-wing aircraft.can
be represanted by Figure 1.

Aircrsft Dynamics

The longitudinal dynamics of the supersonic trans-
port we-e programmed on the TIFS simulator using
linearized, three-dagrae-of-freedosm, smell perturba-
tion equations of wotion. For parameter identifica-
tion purposas tha longitudinal responsas ware simpli-
fied by using a short period approximaticn to helg
1imit the size of the overall model. This was a
fairly good epproximstion since only a small saction
of data was being analyzed at eny one tiza (40
seconds) and sinca approach speed was held reletivaly
constant.

Tha aircraft short period lineer equations used in
this analysis wera of the form

T = M+ M

Por the short period approximetion
x =~ (%a,qT

whare

[ pitch angla (rad)
o angle of attack (rad)
q pitch rate (red/ssc)

The eircraft can be rapresanted by tha following
first ordar linear differential equations:

S IC|
- (Hq + H&)q + (M&Z‘x + Hu)u

F-13

+ M2, +M, )48
() 6‘ 6e [
+ m&zu + Ho) ugult

&6 = q+ zoa + zc‘ce + zﬂugust

From the ebove equa‘ion it can be sean that

T
B = [0, .z +H°). z.]

and

d = disturbance vector = “gust
The disturbauce uaed was a sum of five sinusoids
vtosa frequency content was equally spaced when
plotted on a logarithmic axis {4]). The power
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distribution resembled that of a Dryden spectra for
an angle of attack gust, Ggusts of 1.272 degrees,
whose associated vertical gust, Wg, was 6.0 ft/sec.
The disturbance had the form

4
Z An sin w,t

c.u.t LA a=o

Tigure 2 shows the power distribution of this dis-
turbanca (5].

Control - Fael System

The control system for this anilysis duplicated
that programmed on the TIFS {1]). Coupled with the
control systeam was a second order feel system which
provided control feel to the wheel and rudder pedals.
The total control-feel system can be modeled by a
fourth ordsr linear differential equation. This
system is shown in Figure 3. Combining these two
ascond order systams produces the following transfer
function:

a
é ] 4 [

a [} 3 2 P
s +n1| +lzl +131+n‘

‘Usirg thrae dummy states, this' equation can be
transfarred into four first order linear differen-
tisl equations of the form

= Ax

These aquations are

[} = -g,8§ -a.§ -a,§ -a2,8 +2a,8
LA e "3, 2'e, lg‘ 4°p

Human Operator

The model chosen for the human operator is a
quasi-linear pilot describing function of the form

K
n
Y (s) = Ke *(T.s + 1) 2 28 s
P P L 8_ 2.
(TLs +1) '"nz + o +1

{61, [7] and (8],

wvhere the remmant term is defined to be that portion
of the actual pilot's response not accounted for by
the linear model.

[ T

rai

1

The linear describing function, YP(a), can be
written in form

x = Ax

by representing the pure time delay by a first order
Padf approximation. The block diagram of Figure 4
represents the human operator model. Using the Padé
approximation
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K= KpKn

and

then the human opsrator can be repreaented by four
first order lincar differential equations

T

1 L 1
$ = —0+=q=-:y
1 TI TI TIJ
'
-4»26

2
mny‘l. -un”nyi n

(-2/:)y3 + (4/1)8’

Total Pitch Tracking Model

Tha total pitch tracking model can be represented
in the state vector form by

t = Ax+Bd

where

, 68

x = (0,a,q,8 &
T aliet

and A is a partitioned matrix of the form given in
Pigure 5.

III. Newvton-Raphson Minimization

A linear system can be represented by
X = Ax + M
and a set of output expressiona
y = Fx+Gu+b
and
T = y + n

In the above equations

x state vector

e calculated response vector

z measured response vector

d disturbance vector

b constant bias vector

n noise vector

A airframe/gust correlation vector
] state transition matrix

G gust tramaition vector

A cost function which ia proportional to the mean
square error can be represented by

’ 6.1.’ 71. yz’ Y3’ 6')T

The vectors B and d are the same as before.
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<7 vhere NM is the number of samples and D; is a weight- +(-c )TH-]'(c -c) -
L‘ ing matrix for the difference in responas {9]. This o’ "2 o =
weighing matrix should equal the inverse of the B
appropriate error covariance matrix [10]. vhers ﬂ:
o Because the aircrafc, feel system, and control n noise ve-tor et
S system dynamics are known quantities (programmed on B
% the TIFS simulator (1], only the parameters of tha ) noainal parameter vector -~
human operator are identified. These pilot para- H1 E {nnT} ":
meters make up an unknown parameter vector, ¢, which M B(c~c) (c -c )T) -
o relates to the system states and system rssponses as 2 o () %
¥ = wvhere E is the expectation operator. This occurs 3]
x(t) £lx(t), ¢, u(®)] provided the weighting matrices used are equal to the '
y(t) = glx(t), c} +a appropriste inverse error covariance matrices. (The
abova information taken from (9}). ~
Por this sxperiment -
2 2 r 1V. Program Operation ,,‘.i
c = [1/.‘. v Ty, s wg s K W Zﬁnwn, 2/'] o
1 / TI P The analysis using the Newton-Raphson method [9] "
was conducted on a Control Data Cyber-74 computer. :.
The estimate for these parameters can ba found by The program takes 56,000 words of central memory to ]
compile and execute. For a data record length con- .
& = ARC MIN (J) taining 400 data points of 11 state variables, the Y
program takes approximately 350 seconds of central
where ARG MIN means the vector ¢ which minimizes the processor time and 25 seconds of peripheral processor
cost function J. time. The program has the capability of printing out
the values of the gradient and RMS error of each state
The calculated response vector y can bs linear- and iue value of the cost function at each iteration.
igsed with respect to the unknown parameter vector c After convergence, the program prints out the final
such that A, B, F, and G matrices, and the bias vector b. Also
printed out are the pilot parameters, an error covar-
Yy " + \"cy1 (c - co) fance matrix of the estimated results and their
o

spproximate standard deviation. After convergence is
reached, new time histories, using the escimated

whsre matrices, are calculated.
Yy nominal response calculated by V. Results
[} using S
Predictions (Paper Pilot)
chi gradient of y with respect to ¢
Tha results of the presimulation analyeis using :‘I
Paper Pilot (11}, with a pure time delay of T = 0.2
o gomidl (cliveccon seconds and a first order neuromuscular lag of .1
T = 0.1 second, predicted a pilot lead of T, = 3.89 . 9
The optimal estimate for the unknown parameter srconds and a pilot gain of l(g = 0.691. These para- %
vector is the vector c which minimizes J, and hence meters were obtained by optimizing the pilot para- vl
the mean square response error. This estimate can meters to minimize a cost functional based on the -

be found by applying the following equation 1itera- root mesn square tracking error and the pilot lead
tively to update the calculated nominal response and [2].
its gradient with respect to the vector of unknown

parameters. Frequency Techniques (DFA)

NM T -1 NM T During the flight test of the TIFS simulator, the
& = c, + ) (chi) Dl(chi) ) (chi) D, DFA calculated, on-line, the finite Fourier transform
i=] i=] of the various system signals. The real and imaginary
carts of the Fourler transform were then used in

o3
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(2, ~ ) simple off-line calculations to yield system response 4
1° 7 and performance data. The rer lting describing func- ‘

0 =4
?j tion measurements can be seen in Tatle 1. g
o A priori estimates of the unknown parameters can *
_ be incorporated into the cost function using proba- Newton-Raphson Method "
- bility theory (9], [10}. This is done by maximizing
o the unconditional probabllicy of z. The optimum Using the aircraft and pilot response data, which 1
' parameter vector, &, will result if a cost function were recorded during the experiment, the Newton-

containing the sum of the mean square response error Raphson minimization routine was used to extract

t and the mean square difference of ¢ and its a priori pilot parameters based on the theory previously dis-
. value is minimized. cussed.

.
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During the digitization of this data, a 3-second
saction of deta was improperly digitized midwsy
-] through tha run. As a result, the 100 seconds of
- dats wes divided into a two 40 sacond data records
4T and sech processed separataly. During the identifi-
A cation anelysas, the natural frequency and damping
of tha second ordar neuromuscular dynamics were set
at w, = 16.5 redians/sac and §, " 0.12 [6].

The identified pilot parameters in Tabla 2 were
obteined using the Newton-Raphson technique.

It should be noted that this method can yield
biasad astimates if the mean of the distribution of
8 1is non-zero. This bias can be redu:ed by using
tha longest data records possible. The Nawton-
Raphson program also has the cepebility of estima-
ting the bies terms of each of tha states.

The ebove describing functions hava been plotted
in Bode form for comparison purposes. These plots
appear in Figure 6.

Remnant

A dateyminetion of remnant wes made by calcule-
ting the power spectral density [12] of the
diffarence signal formed by subtrecting the pilot
output of the modal from the ectual recorded pilot
command to the alavetor. Figure 7 shows the power
spectral dansity plots of tha recorded elavator
command of tha pilot, the modeled alevator command,
and the celculetad remnant.

As can be seen from a closa examinetion of the
power spectral density functions of tha pilot model,
the model produces an output which has powar at aach
of the five input frequancies. The spectral dansity
functions of tha ectual recorded pilot output, how-
evar, has power at frequencias othar than those of
the input. These extraneous powers ara defined as

82

remnant powers. The small spikes in the power spac-
tral density plots could rasult from nonlinear or
nonstationary operation of the pilot or from the fact
that the spproach and landing tasks requirad the con-
trol of soma side tssks and as a result was not truly
a single loop compansatory task. The large spike in
eech of tha remnant plots is attributed to 'pilot
pumping”. Pumping is performed by the pilot to obtain
dynamic informstion about the aircrsft as it anters
ground effects. The pumping fraquency obsarved from
in-flight records wss always graater than 1.0 radians/
sec. This oscillatory input to the elevstor would
show up as a pilot generated input and could tharefore
not be accounted for by the linear dascribing furctiom.
Making a sinusoidal approximation to the pilot pump-
ing the remnant tarm will appaar relatively flat and
look mora like a typical remnant epactra.

VI. Development Status

To dete, the Newton-Raphson method as eppliad to
pilot modaling haa only baen usad with the longitu-
dinel dynemics of a lerge trarsport aircraft simula-
tion. By including the lateral directional dynamics
end e roll p'lot model, & two axis trscking situation
could ba mode ad. Also, an analytical expression for
pilot reting, such es is used in Paper Pilot {3], or
in tha Naal-Smith method [14], could be incorporatad
to giva not only identified pilot parametars, but also
to ralete thesa peramatars to e useful handling
qualities criterion.

Finelly, tha Nawton-Raphson method could be used
in manual control situations for othar than aircraft
situetions, such as eutomobile control in recponse
to highway gusts {15}, or tha behavior of a helmsman
steering a ship {16].

Further use and refinement of this tachnique could
provide e valueble tool in the area of handling
qualities and human operator modeling.
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INTRODUCTION
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There are a variety of approaches to describing the human motor control

gystem. One is to describe its individval components; sensors, controllers and

Sod sl P L I . ¢ b %
. 5 * 'Lt S
'./ e B 9

and effectors, in order to assemble them into a realistic model. In this paper

. '—T"T'T'U.—-'f v

we shall consider the effector organ, skeletal muscle, and one series of experi-

' 2
. .
A,

ments for identifying and measuring muscle's parameters.
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For purposes of exposition, it is helpful to consider a simple visco-elastic ;

model of muscle illustrated in Figure 1[1’2].

Such a mcdei makes two points.
In response to deforming mechanical forces, muscle acts like a visco-elastic
gstructure, albeit a more complex one, and muscle is also a force generator which
is filtered by its own internal visco-elasticity.

One of the major advances in muscle physiology was the recognition that any
force measured externally from a muscle's attachments, except perhaps during
fused tetany, is not the force actively generated by that muscle's intrinsic

(1]

contractile mechanism' ', The difference between tho=e two forces arises as a
direct consequence of the mechanical filtering[3]. One goal of research into
muscle mechanisms has been to deduce the character of this internal force.
Figure 2 diagramatically shows that force as well as the externally measured
force when muscle is stimulated to » single twitch contraction[al.

Part of the difficulty in studying this intrinsic force (which of course

cannot be directly measured) is tliat the properties of the mechanical filter

CoRLdh, f e Te e _a s s i RE QG x °, ° f 4 @ EER L v s ¢ v O« . OnRR - v T _ W 7 8_® w2t L, -

are not accurately known. However, it is well established that the visco-

elastic properties of muscle are not invariant, but are in fact a function of

v“

k.

R

the same mechanisms which generate and control active contraction. A muscle 5

R

re which is contracting is much stiffer than one wi.ich is relaxed[z’S]. j

< X

i}: Knowledge of how the muscle visco-elasticity varies with contraction is R

Eﬁ? preseritly limited to steady state conditions. During tonic contraction, both i

] *s' :
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the elastic and the viscous stiffness are proportional to the degree of contrac-
(5]

tion""’. This study is an attempt to investigate the state of muscle visco-

elasticity during a transient muscle cintraction.

METHODS

The subjects (3 normal adult males) were seated with their right foot strapped
to a rigid device which prevented movement of the foot and also measured torque
about the ankle joint.

The transient contraction was produced by an electrical shock of 1.5 msec
duration delivered rercutaneously to the posterior tibial nerve and causing a

twitch contraction of the triceps surae.

Muscle stiffness was measured by delivering a tap to the achilles tendon.

The force measured in the hammer head and its displacemer.t were assumed to he
directly proportional to the stretching force and to the dc ree of stretch imposed
upon the muscle.

Fifty-five twitches were elicited, about six seconds apart. Once during each
twitch a tap would be delivered to the tendon and the hammer force and displacement
recorded for 50 msec. The first five taps were delivered prior to the twitch and
the last 50 at increasing intervals after the start of the twitch. Figure 3 shows
the 55 records of hammer force and displacement for one such experiment.

The computation of stiffness was made by taking the difference in hammer force
at 752 and 25X of its peak and dividing it by the difference in hammer displacement
at corresponding instants in time. These instants were determined on the first
hammer blow and used for the succeeding fifty-four. This gave the ratio of force
change to length change over an interval of from 6 to 10 msec. The tic marks on

each trace of Figure 3 indicate the points actually used for the computation.
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Figure 4 ghows the change in relative stiffness over a 400 msec interval.

On the same time scale, the muscle twitch is also shown. All the data is nor-

. .
e

P,

malized to fill the range of the graph. The peak stiffness represents an
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e Sttt N

approximate doubling of the base line level. Figure 5 shows another experiment

in whick the subject attempted to maintain a constant . .level of muscle contraction

during the stimuli.,
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The data of Figure 4 show that muscle stiffness, as we have defined and

TN
.1

measured it, varies along a time coursge that is similar to, but slightly faster

St
PR I I

ey
N

thar the muscle twitch. The resemblance between the shape of the stiffness curve

in Figure 4 and the intrinsic tension curve in Figure 2 1s most striking.

The stiffness in Figure 5 also varies as we would expect if it were produced
by the same mechanism responsible for active contraction. In that experiment the
muscle was initially contracted. Undar such conditions, a twitch produces a brief
period, the so-called silent period, in which muscle activity is reduced by means
of reflex mechanisms. In such a case we expect that the contractile process
shuts off briefly even though the external tension remains above the initial level.
The incrsase in stiffness near the end of contraction is due to reactivation of

the muscle.

Although such data are promising, a number of cautionary remarks about its

interpretation should be made. An obvious, but not very troublesome shortcoming

i
¥
L]

-~ ;'1

is that our computation of stiffness does not distinguish between viscous and

]

elastic components (and in more realistic models than Figure 1 there may be several

Yy
-0t

4
“

of each). This does not invalidate the qualitative implications of the data. For
more quintitative informaticn, a more complex approach (such as finding the best

solution to a differential equation) is needed. For a preliminary investigation
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however, it was felt that sophisticated mathematical techniques were premature.
A more basic problem is that our measu.re for stiffness is only valid under
the assumption that the active force does not change significantly during the

interval over which the measurement for stiffness is made. That this assumption

is very much open to question can be deduced from Figure 2, especially during

the initial rising phase of the active state.

The third problem is in relating variables measured at the hammer to actual

changes in muscle length and tension. We have assumed a linear relation over
the operating range in these experiments.
It i3 worth noting however that this very simple and innocuous experiment

shows promise of permitting the study of aspects of muscle contraction for which

there are currently no alternative techniques.
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Figure 1. A model for active muscle where the

parallel elastic element has been neglected. The
contractile element consists of a force generator (A.S.)
in parallel with viscous damping (B).
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Figure 2. A facsimile for the active state (intrinsic tension) 3

and isometric tension of an isolated firog 3

i sartorius muscle responding to an electrical g
f stimulus (From (4)).

?5 j




i

ﬁ

N / Y/ \M .....;. m %

0GR EEE

“,. ///////////,,//,,/,,,,,,//,//,,,,,%,,,,//,,,,,,,,.,,, s § 3 i

_ =8¢ : 2

S g = =

| MDY H 3 5 %7 3

; \;_\; i) : iy s M %

: ‘ 2 g 6 o + ¥

, A . ;

| ({ Ex ( ;§\\\A«m « §YEs .

| \ SN //////// A & e

ﬂ AN __,,.__/___/_ o M & m m _

,” g § 5 T ¢

20§z 3 o m

u._ g
] ;

MO SWATMEE -4 SRS - PP |

v sy i




x

Figure 4. Vartation in stiffness ( x marks) during
a tvitch contraction (continuous line) with triceps
surae muscle relaxed before the electrical imput.
The abséissa is time from 0 to 400 msec. The

;'5 ordinates are uncalibrated. The relative change

in stiffness is a factor of two.
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Figure 5. Variation in stififness (x marks) during
a twitch contractdon (continuous line) with tri-
ceps surae muscle contraction at the time of
electrical input. The abscissa is time from 0

to 400 msec.
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R. J. Niemela
U.S. Army Avionics Laboratory
Fort Mommouth, N.J.

E. S. Krendel
Iniversity of Pennsylvania
Philadelphia, Pennsylvania

ABSTRACT

Description of man's adaptive behavior in a closed-loop system requires
a model of the means by which the human operator detects the change in
operating conditions. This paper describes the detection portion of a
concise model of human operator adaptation in mamally tracking a step

change in polarity of double integral plant dynamics. ‘

The general form of the detection boundaries in error state space was d
postulated based on examination of man-machine error trajectory responses. |
This form was verified and the actual boundaries determined by experimental '
data.
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INTRODUCTION

A prime reason for including the human operator as an active element in
a man-machiine system is to make use of his adaptive capabilities. However,
system designers are restricted in the employment of these capabilities by
an incomplete understanding of man's adaptive characteristics and the manner
in which they interact with the system parameters. A concise mathematical
description of man's adaptive behavior similar to the quasi-linear model
developed for steady-state tracking would be a great asset to man-machine
syatem design.

Previous research efforts [Sadoff (1962), Young (196L4), Elidnd and
Miller (1967), Phatak and Bekey (1968), and Gilstad and Fu (1970)] have
applied a diversity of analysis and modeling techniques to the problem of
human operator adaptation to sudden changes in plant dynamics. These previous
efforts resulted in several general conclusions although no comprehensive
mnodels have emerged for human operator adaptation to a step change in plant
dynamics. A thorough survey of the topic is presented in a tutorial article by
Young (1969).

APPROACH

Human operator adaptation to a step change in plant dynamics can be
represented by a variable structure system model (Niemela 1973). The current
paper describes the detection aspect of this model. Due to the incomplete
understanding of human operator adaptation the current effort investigated
the following task : human operator adaptation in a one-dimensional, com-
pensatory, visual iuput tracking task with a step change in plant dynamics.

In the main experiment, the subjects were well trained in the task shown
in Figure 1. The input was low-pass filtered "white noise" with equivalent
statistical bandwidth® 1.5 radians/second. System error was displayed by the
lateral displacement of a dot from a reference line on a raster scan cathode
ray tube. The control stick was a lightly damped single axis sidearm con-
troller. During the course of a two-mimute tracking task, the polarity of the
double integral plant dynamics was suddenly reversed. The subjects were
instructed to minimize error at all times during the course of the trails.

*The bandwidth of the input is specified in terms of "equivalent
statistical bandwidth" defined as

b 2
- [fo Oii(m)dm]
fo 444 w)de

W

where ?11(w) is the power spectrum of the input. This quantity has been
found to be an appropriate measure of .input "randomness" for man-machine
investigations (McRuer et al. 1965, Elkind 196)).
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- (e - = — 2
STICK LY
7 "Ku(t)
| dt

Figure 1. Elements of Man-Machine Investigation

The error and error rate are the difference between the input and system
output and their first time derivatives:

e(t) = 4(t) - m(t)
e(t) = i(t) - m(t)

Upon completion of the experiment, error and error rate for time just
before and immediately after the change in plant dynamics were played back
on an X-Y plotter. Examination of the error trajectories revealed that
during steady-state tracking, the errcr trajectory was confined to a region
relatively close to the origin. Immediately after the change in plant
dynamics, the error increased rapidly until the subject detected the change
and recovered control. Figure 2 is a typical error trajectory obtained for
the double integral set of dynamics. Examination of the data produced in
this mammer revealed several dominant features of the error trajectories:
error rate peak and error at that instant, maximum error, and the second
error rate peak and error at that instant.

Trajectories similar to that shown in Figure 2 and its inverted mirror
image appeared with approximately equal frequency. For ease of analysis and
discussion, those trajectories in the second and third quadrants were
normalized to appear in the first and forth quadrant. It was found that the
well-trained subject generated error time histories with essentially no
X! overshoot in response to a step change in double integral plant dynamics.

o This observation is supported by averages of error time histories compiled
- by Elkind and Miller (1967) for a variety of plant dynamics.

THE DETECTION PROCESS

The manner in which the human operator detects the change in plant
dynamics is of prime importance : this detection process determines the
state of the system from which the human operator must recover control.
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Tumerical data is presented in units of volts and/or volts/sec. ~
Conversion to display deflection units can be accomplished with the factor
.625 cm/volt.
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Detection by the human operator was manifested by an abrupt reversal of the
manipulator resulting in an error rate peak. It is evident that the subject
perceived the change in plant dynamics before this error rate peak but his
reaction time delayed his response.

Those trajectories in the data set which displayed a very small excursion
of the error trajectory from the origin were of particular interest. Ex-
amination of several of these error trajectories indicated that the human
operator did not perceive a change in dynamics with sizeable errors if the
velusity is toward the origin. Fathermore, it appeared that detection was
accomplished if both the error and error rate were sufficiently large in
magnitude and identical in sign. The general form and logical representation
of the detection boundaries implied from the above observation are shown in
Figure 3. In this model, a change in plant dynamics is detected if the
error trajectory enters the crosshatched region.
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Figure 3. General Form of Detection Boundaries
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Recognizing that the human operator detects a change in plant dynamics
based on a combination of error and error rate, the manner in which this
detection is made was determined through construction of a supplemental
experiment.
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Elkind and Miller (1967) have shown that if the subject were alerted
by a 1 kliz audio tone the instant the plant dynamics changed, a statistically
significant reduction in the average peak error resulted in the postran-
sition transient than if the subject had to deduce the failure besed on the
error alone. Elkind and Miller found a reduction in average peak error
from 6.83 to 3.93. This reduction was significant at the 0.05 level.

It was postulated that if the subject were alerted when the error
trajectory intersected computer generated boundaries, the location of the
human operator's detection boundaries could be determined by examining the
average peak error for each set of boundaries. For those boundaries which
gave no improvement over the nonalerted case, the alerting signal was redundant
information to the subject. For those boundaries which gave significant
jmprovement in average peak error, the alerting signal aided the subject in
the detection process.

Two methods of alerting the subject were investigated in preexperiment
trials - visual and audio. The visual means consisted of a smail white
bar which was displayed to alert the subject. It was found that this
indication was distracting to the subject as has been noted in other
experiments involving visual alarms (Poole 1966). A 1 kHz audio signal
similar to that employed in Elkind and Miller's investigation was introduced.
Mowbray and Gebhard (1961) found that the human operator's response to audio
alarms is quicker than visual alarms. This characteristic of audio alarms is
fortunate in the context of the supplemental experiment. It was desired to
have the subject aware the instant the error trajectory crossed a particular
boundary.

Prior to the experiment, the subject was told that an audio tone would
be provided to alert him of a change in plant dynamics. He was further
instructed that the mechanism for providing the "audio alert" would not
operate in an identical manner from one trial to the next. Similar to the
procedure in the main experiment, the subject was instructed to minimize
tracking error at all times in the course of a trial.

Table I contains the values of the absolute peak errors as the
detection toundaries were varied. The detection boundary location was
specified by the lower left corner of the region in terms of multiples of
the steady-state RMS error and RMS error rate.
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Treatment
Trial 1 2 3 b 5 é
1 8.0 7.5 12,5 15.5 12,9 1.5
2 k.S 12,0 15.8 12,8 15.9 9.5
3 L.8 3.5 8.5 15.0 1.5 12,3
L 9.8 10.0 12,7 10,2 12,1 9.5
5 6,1 13.0 1.6 8.0 10.5 9.5
6 7.9 8.5 11,9 0,2 9.5 "
7 8.5 1.6 1.5 1n.s 1.0
8 g.o 7.5 11.9
9 0 9.0 9.9
10 h.s 8.2
Mean Absolute 6.11 9008 12.1 1206 12.0 11.5
Peak Error
| ; Detection Region
} g Treatment Corner Location
. in State Space
P! Number (Expressed in
Maltiples of RMS
Lt Error and RMS Exror
[ Rate)
P
I 1 (o, 0)
? 2 (1, 1)
X 3 (2, 2)
i L (3, 3)
i 5 (3, 1)
o 6 (00, 00)
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Table I. Tabulation of Peak Error versus Alerting Boundaries
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Six sets of alerting boundaries were considered and miltiple compa

bLetween sets of boundaries were performed to determine those boundaries which
aided the subject and those that did not. Table II contains the element<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>