
I« D-A124 85? FEASIBILITY ASSESSMENT OF JOVIAL TO ADA TRANSLATION(U) 1/1 AIR FORCE WRIGHT AERONAUTICAL LABS URIGHT-PATTERSON AFB
OH D H EHRENFRIED AUG 83 AFHAL-TR-83-1858

UNCLASSIFIED F/G 9/2 NL

in
IHHn9S9HI

i

, • •• ••. .'••;-• '*- .*•* *- '.* '.'• '.'•*"' A .'•','- * .' i, i iiiii;11; i in i i. HI i •..•••«• •,
'•- "- ". .^ ••-•' . • i •

CM » ' - *
> %•",

*

n

K .-•

.

t

f-:

I I.I
us
Li ii um 2.0

1.8

1.25 11.4 116

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

ii
•-•

-.'

4

••

•

h^''j"r. • I-,.;.-,'v..'*''., • • .--- - v.------ .--V.•---•-•----•-.-. . .-.'.—*-_..-..--.-•.•-. .- . .--.•.'.--•.•.VL'kLV-v-.'-'.

, _ _-,.-^r, . ,.»_.. —,

a.
CD

AFWAL-TR-83-1058

/td-/?/3Y ftr?

FEASIBILITY ASSESSMENT OF JOVIAL TO
ADA TRANSLATION

Daniel H. Ehrenfried, ILt, USAF
AFWAL/AAAF-2
Wright-Patterson AFB, Ohio 45433

August 1983

Final Report for Period 1 June 1982 to 29 August 1982

Approved for Public Release; Distribution Unlimited.

;•

AVIONICS LABORATORY
AIR FORCE WRIGHT AERONAUTICAL LABORATORIES
AIR FORCE SYSTEMS COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433

83 ^8
*- . - _. . «... «... - - 't -m'«. n, 1 itr. • TT. iT .w. fl m M fc * * -* •*-* J - -* -" -"* -Y -' * - *"- *'- - " - - — » » * • — »- i- i- - *• - • •*> --•*•- - > mÄ

wmmmmm^mm. mmmm ^^^^^p^r^^^^ "•^^^•^^T' [!•«'•'» I • • I

NOTICE

When Government drawings, specifications, or other data are used for any purpose
other than in connection with a definitely related Government L.I ,~':rement operation,
the United States Government thereby incurs no responsibility nor any obligation
whatsoever; and the fact that the government may have formulated, furnished, or in
any way supplied the said drawings, specifications, or other data, is not to be re-
garded by implication or otherwise as in any manner licensing the holder or any
other person or corporation, or conveying any rights or permission to manufacture
use, or sell any patented invention that may in any way be related thereto.

<

This report has been reviewed by the Office of Public Affairs (ASD/PA) and is
releasable to the National Technical Information Service (NTIS). At NTIS, it will
be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

U<^^ /
DANIEL H. EHRENFRIED,]
Support Software Group
Avionics Laboratory

7~"ÜSAF ISRAEL I. CARO, Maj, USAF
Chief, Support Systems Branch
Avionics Laboratory

FOR THE COMMANDER

FRANK A. SCARPINp, /cting Chief
System Avionics Division
Avionics Laboratory

"If your address has changed, if you wish to be removed from our mailing list,
or if the addressee is no longer employed by your organization please notify
AFWAL/AAAF, W-PAFB, OH 45433 to help us maintain a current mailing list."

i Copies of this report should not be returned unless return is required by
security considerations, contractual obligations, or notice on a specific
document.

i — _-• .. .• .•._•, _• * .. _. ^ •_. •• • . ._ - — • - - • • - •*

J^^^^JJIII*. II. i. I n Jl. U - L - J - • • . -.-.--• -r—: r—•-

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE ftWi»«! Data Entered)

REPORT DOCUMENTATION PAGE
I. REPORT NUMBER

AFWAL-TR-83-1058 f/jffs7
READ INSTRUCTIONS

BEFORE COMPLETING FORM
RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle)

FEASIBILITY ASSESSMENT OF JOVIAL
TO *DA TRANSLATION

5. TYPE OF REPORT a PERIOD COVERED

Technical Paper
June 1982 - August 1982
6. PERFORMING ORG. REPORT NUMBER

7. AUTHORf«)

Daniel H. Ehrenfried, ILt, USAF

8. CONTRACT OR GRANT NUM8ERC»)

9. PERFORMING ORGANIZATION NAME AND ADDRESS

Avionics Laboratory (AFWAL/AAAF-2)
Air Force Wright Aeronautical Laboratories (AFSC)
Wright-Patterson AFB, OH 45433

10. PROGRAM ELEMENT. PROJECT, TASK
AREA a WORK UNIT NUMBERS

20030304

11. CONTROLLING OFFICE NAME AND ADDRESS

Avionics Laboratory (AFWAL/AAAF-2)
Air Force Wright Aeronautical Laboratories (AFSC)
Wright-Patterson AFB, OH 45433

12. REPORT DATE

August 1983
13. NUMBER OF PAGES

48
14. MONITORING AGENCY NAME a AODRESSf// dillerent from Controlllnt Ollice) IS. SECURITY CLASS, (ol this report)

UNCLASSIFIED
15a. DECLASSIFI CATION DOWNGRADING

SCHEDULE

16. DISTRIBUTION STATEMENT (ol thla Report)

Approved for Public Release; Distribution Unlimited.

17. DISTRIBUTION STATEMENT (ol the ebstract entered In Block 10, II dltlerent horn Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse elde il necessary and Identity by block number)

Ada
JOVIAL
Automatic Translation

20. ABSTRACT (Continue on reveree elde It necessary and Identify by block number)

>The Ada program is part of a DoD policy change towards incrementally reducing
the number of languages in use by the DoD from many to only a few and then
eventually to just one; Ada. Currently, MIL-STD-1589B (JOVIAL - J73) "is the
Air Force standard language for use in the embedded application domain. One
approach towards an earlier transition of all software written in Ada would be
the development of an automatic J73 to Ada translation system. With the
translation of all J73 software into Ada, J73 software development

(r.nntinuad)
DD %, FORM

AN 73 1473 EOITION OF 1 NOV «5 IS OBSOLETE UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Dala Entered)

-^-»-*-- •-•-*-*-'-•-•--*•*'-*-'-'- -' -*-• -' -'- !•--' - •"- V- J- • - .'- V- «"- •' .'- . - * - « - V- - - t - . - • - . - | . _ .. . •'. I.

PI'* •.'•.'•. mm 1 «"• r*"*" • • • •y T

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGEfHTian Oala Ent.r.d;

Item 20 Continued.

^systems could be phased out of use, the cost of maintaining the J73 system
could be recovered, and programmers would be freed earlier for their eventual
transition to Ada. This paper will examine the feasibility and cost
effectiveness of developing a J73 to Ada translation system.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS P AGEfWhan Dal« Enlerrd)

iiaij . • •_• . '.>.'» V.'.V^V.V.^N'.!.'. . V • ••'-.-'•.' _.. ÄVA' i*. ; 'AvW'v,'i1

--.

3
ö

si

<***m

AFWAL-TR-83-1058

FOREWORD

This report discusses the technical feasibility of performing

automatic translation of programs written in JOVIAL to those written in

Ada.
>i- h .

The work reported herein was performed during the period 1 June

1982 to 19 August 1982 by Lieutenant Daniel Ehrenfried for the Air Force

Wright Aeronautical Laboratories (AFWAL) for Project 2003, Task 03, Work

Unit 04.

w
if < .
V

._Acoossicn For

I NTIS BUM
OTIC 1*8

I U: •nnouncaä'
I Justlfloatj

BlMrlbm too/
Aval] Mm, 9o(l9s

|Av«« aoa/or

m

-« : : _ —. ••••-.-'..'• .'. -"• -"• - - L- ••.•»••• — J •- __^^

AFWAL-TR-83-1058

i

I
fi

•V-.

<;->

%

*

•:•:

%

I

I
ft

TABLE OF CONTENTS

SECTION

I

II

III

INTRODUCTION

REQUIREMENTS

1. Source-to-Source Translation

a. Execution Equivalence

(1) Efficiency

b. Source Code Quality
(1) Maintainability and Reliability

(2) Robustness

2. A J73 to Ada Translation System

a. Scope

b. Semantic Equivalence

c. Efficiency

d. Source Code Quality

3. Requirements Summary

ANALYSIS

1. Automatic J73 to Ada Translation

a. Global Concepts

(1) The Complete Program

(2) Modules

(a) Compool Modules

(3) Scope of Names

(4) Implementation Parameters

b. Declarations

(1) Data Declarations

(a) Item Declarations
(1) Integer Type Descriptions

(2) Floating Type Descriptions

(3) Fixed Type Descriptions

(4) Bit type Descriptions

(5) Character Type Descriptions

(6) Status Type Descriptions

(7) Pointer Type Descriptions

PAGE

1

3

3

3

4

5

5

6

7

7

8

9

10

10

11

11

11

11

11

11

12

12

13

13

13

13

14

15

15

15

16

16

PREVIOUS PAGE
IS BLANK

-'••', r '*-' '•*-'— , , - „ '• V '• n*T '"•- •\" if" >* W *' *' "^ ""*' .,_,... •^>.--*±

»»• »•••_! ' I • i m i - i • . • »
— •. - •- •• .-^ '. ^1

AFWAL-TR-83-1058

TABLE OF CONTENTS (Cont'd)

SECTION PAGE

III (b) Table Declarations

(1) Table Dimension Lists

(2) Table Structure

(3) Ordinary Table Entries

(4) Specified Table Entries

17

17

18

18

18

(c) Constant Declarations 18

(d) Block Declarations 18

(e) Allocation of Data Objects 19

(f) Initialization of Data Objects 19

(2) Type Declarations 20

(3) Statement Name Declarations 20

(4) Define Declarations 20

(5) External Declarations 20

(6) Over" ay Declarations 21

c. Procedures and Functions 21

(1) Procedures 21

(2) Functions 21
• (3) Parameters of Procedures and Functions 22

(4) Inline Procedures and Functions 23

(5) Mach ine Specific Procedures and Functions 23

d. Statements 23

(1) Assi< jnment Statements 23

(2) Loop Statements 24

(3) IF Statements 24

(4) CASE Statements 24

(5) Procedure Call Statements 25

(6) RETURN Statements 25

(7) GOTO Statements 25

(8) EXIT Statements 26

(9) STOP Statements 26

(10) ABORT Statements 26

VI

fr/vw; r-vvl•.;!••« -V.'Vlv .•'v^u..--, ••o'.y•'. t „•> _,•, • • * -*»- * - • • .'-• •»-... . • . -1. ---
.- . . •>.\N

I^^WVM*«^ •v-1

AFWAL-1R-83-1058

i

i

l

II

1 .

i

SECTION

III

TABLE OF CONTENTS (Cont'd)

IV

e. Formulas

(1) Numeric Formulas

(a) Integer Formulas

(2) Bit Formulas

(a) Relational Expressions

(b) Boolean Formulas

f. Data References

(1) Variables

(2) Named Constants

(3) Function Calls

g. Type Matching and Conversions

h. Basic Elements

(1) Characters

(2) Symbols

(a) Names

(b) Reserved Words

(3) Literals

(a) Numeric Literals

(b) Bit Literals

(c) Boolean Literals

(d) Character Literals

(4) Comments

i. Directives

2. Summary of Untranslatable Features

3. Percentage Translatable

4. Summary of Unused Ada Constructs

5. Cost Effectiveness

a. Translation System Development Costs

b. Code Translation Costs

c. J73 versus Ada

CONCLUSIONS AND RECOMMENDATIONS

PAGE

26

26

26

27

27

27

27

27

28

28

29

30

30

30

30

31

31

31

31

32

32

32

32

33

35

35

36

36

37

37

38

k

J vii

•-» ---" v -• • -**-<'•-»"•- • -r' ^^^L M - m _ . - » . '-«-•-«-•-»-•-•-»-•-'-«-'•-*-'-•-----•

I
V

AFWAL-TR-83-1058

--•-]

LIST OF ILLUSTRATION

FIGURE PAGE

1 J73 - Ada Definition Conflicts 34

I
, -

i
i
>

>

i

S

viii

^-:W-1V::---'V:A..^V--'->-W •_ ..-.%.•.•- -..••. •.^.... - - - - -* - - -• -• '*- •- ••*..-.— • • •.«• 'J ••« '-j -J

^TT^"'-' '.'T' i.in'T.vi1^ •v".1*.1* •,'/.•:•.•. •.' *• »:•*-<• .•r«f'v" -'" -.•!•!• -'-" -.•*• '-.••."•"": .""•.' ;.'": "r- r " 1
AFWAL-TR-83-1058

»

:>

as

I

SECTION I

INTRODUCTION

An initial impetus for standardization on a single High Order Language

(HOL) for Department of Defense software applications was to reduce the

overabundance of languages requiring support by the DOD. Each language

requires a pool of people knowledgeable in the details of that particular

language, a compiler, and a set of related support tools in order to

write and maintain software in that language. Often, people and resources

are not easily interchangeable between different language systems. This

redundancy illuminated the need to consolidate to a smaller set of

languages that could still satisfy DOD requirements in all application

areas.

Currently, MIL-STD-1589B (JOVIAL - J73) is the Air Force standard

language for use in the Embedded Computer System (ECS) domain. Software

written today in J73 will probably last throughout the lifetime of the

weapon system in which it is used. History shows that this life span is

normally between 5 and 10 years, and often is more than 15. A J73

language system (compiler and support tools) and the necessary complement

of trained personnel will also be required throughout this life cycle.

The Ada program is part of a DOD policy change towards incrementally

reducing the number of languages in use from many to only a few, and

then eventually to just one ~ Ada. One approach towards an earlier

transition from all software written in J73 to software written in Ada

would be the development of an automatic J73 to Ada translation system.

With the translation of all J73 software into Ada, the J73 language system

could be phased out of use, the cost of maintaining the J73 system could

be recovered, and programmers would be freed earlier for their eventual

transition to Ada. The question is whether this is a rational step

towards standardization on a single HOL.

Three issues must be addressed before this approach should be adopted

by the Air Force. First, the feasibility of an automatic translation

system must be demonstrated. It must be proven that a sufficient per-

centage of the J73 language can be correctly translated into Ada. Second,

1

-"- * -•*-**- .. * i- • -. ' - » » - *-•••*••.< . * - • - »*- •'- -•-• -• _.. . -_ -_ —!_ »_; : «_ ^J

, I ', • ' • '• ' • P'J'J'f.'f. V '" • • : -" ~ -~

*

g
I

:

>•

AFWAL-TR-83-1058

the impact of translation upon the quality of the resulting software
must be measured. A translation system must not only produce a correct

f[translation but also maintain the quality of the resulting software
including its maintainability, reliability, and robustness. Within the

£ highly constrained environment of real-time embedded software, it is
critical that efficiency be preserved as well. Finally, the cost

§] effectiveness of this approach must be shown. The cost of performing
\-f the translation must be weighed against the expected savings from an
!?] early transition to Ada.

m This report will first outline a set of general requirements for
generic source-to-source translation. These requirements will then be
refined to incorporate specific characteristics of J73, Ada, the embedded
applications environment within which actual J73 software would be
translated into Ada, and the state of the art in translation technology.
A technical analysis of the feasibility of such a translation system
will then be given. Finally, a set of conclusions will be drawn and a

v list of recommendations for the use of this technology presented.

- *-/" "# '_* I-i * ** * ' *_- -• _• '-- "_- Jk -- - ' * * *'* .-'•'«••'• -» .1 ' « ' « ß • t t-**—^-i-a— • !••! i» lifcwIJI^ — mi « ». •' m »

•- . •- -• •"
m^mww •".--—i - • • » .••'."I'l'." • • •

AFWAL-TR-83-1058

SECTION II

REQUIREMENTS

Section II.1 will define a set of general requirements for performing

source-to-source translation at the HOL level. Section II.2 will relate

these requirements to an actual J73 to Ada translation system.

1. SOURCE-TO-SOURCE TRANSLATION

Any translation system must preserve the characteristics of the

original program in two major ways: 1) execution equivalency including

functionality and efficiency and 2) source code quality. The following

discussions are intended to present a minimum set of requirements at the

highest, most general level.

a. Execution Equivalence

The original program and the resulting translation must be

equivalent to the largest extent possible. Exact equivalence might be

defined as two source code modules which, when compiled, produce the

exact same load module for a given target. Even if this were possible

to attain, exact equivalence is certainly not necessary. The critical

measure is. that the two pieces of software are functionally equivalent;

they perform the same task.

Thus, at a minimum, any functional requirements placed upon the

original code must be preserved during translation. The resulting

translation must produce the same "effect" on the outside world as the

original. Other more specific restrictions might include:

1. External inputs should be interpreted and stored in the same

manner.

2. For a given set of inputs, outputs should emanate with same

values and in the same order.

3. Critical timing dependencies within the original program

must be met by the resulting translation.

-
...... L. . J . • - . . • - - - -- » ' *•' ' *-' »,«.!. - - . .

1
oa*.^-.-..•;*n,•«.•.v.^V-Vi'V.-.'^ ./•;*••/•: T.w «•„•?. •I-J-'. •• "^.':-.-y-?,-.- --.'---

I-- AFWAL-TR-83-1058

(1) Efficiency

The discussion of efficiency often reduces to a question of
tradeoffs between available resources and time. In programming terms,
one major resource is storage space and time is measured in execution

L cycles. Space can be optimized by packing data into the smallest
" representation possible. Unfortunately, additional effort must then be

exerted (and time expended) to extract the data when it is required, and
t" replace it after it has been modified. Through the use of data

redundancy, processing time can, in most cases, be reduced. All
applications must strike an appropriate balance between space and time
to fit their underlying hardware resources and meet any timing require-
ments .

Programs must not only be translated correctly, but also
preserve the efficiency characteristics of the original program. Again,
exact equivalence between two programs written in different HOLs would
require that the same number of machine instructions be used to implement
all functional aspects, and that the same amount of storage be used for
any accompanying data. This goal is just as unattainable as exact
functional equivalence and even more unnecessary. A more reasonable
requirement might be to restrict the translation to be, on average, no
less efficient than the original. The overall size of the code and
execution speed of the translation should not exceed that of the original
in any considerable way. Minor local aberrations may in some cases be
tolerable, but approximate global parity must be preserved and local
deviations must not be too large.

Tra.-slation requirements should certainly not prohibit
increases in efficiency when they can be realized. In most cases it
would be desirable to have increased efficiency in the resulting trans-
lation unless, by doing so, a timing restriction is violated. In practice,
however, efficiency increases are very difficult to achieve. The
implementation of a particular function in software for a specific target
hardware will require a certain minimum amount of data storage and
instructions. Two compilers of equal quality, each employing similar
optimization techniques, will both approach this minimum to approximately
the same extent.

••-•••V''-'-V-Y • , ••-.-•-. • I . ._ v £ J-. ; . . .••- . •- .-I

r • •••.•'. i' •—i > ">"T ., »H.i- •_*. . l ,"j (1 ; .—: . - -

y ••

a

1

.-.-

AFWAL-TR-83-1058

b. Source Code Quality

If the software is expected to have a reasonably long life cycle,

it must be of high quality. Software systems are constantly being

modified and updated to fix newly detected errors and reflect changing

requirements. Quality software can make this process easier and more

cost effective.

Execution characteristics are not the only measure by which the

quality of software is judged. Maintainability and reliability are

critical metrics of quality. It should be as readable, easily under-

standable, and embrace the style and intent of the language in which it

is coded. Translations should also result in robust implementations,

using to the fullest extent possible the power of the target HOL. An

equivalent or greater level of these qualities should be present in the

software resulting from translation.

(1) Maintainability and Reliability

"Maintenance" is a deceptive term when applied to software.

It does not imply that one must apply constant tinkering to maintain a

constant level of functioning as one might a piece of machinery. Except

for the possibility of hardware error, programs should by definition

execute in the same manner each time they are invoked with the same

inputs. This term actually refers to the fixing of bugs in software

that deviate from the original set of functional requirements or the

modification of a program to reflect a new set. Several qualities make

the maintenance of software easier to perform. Software should be well

structured with separate modules for separate functions. It should

exhibit clear data flow between modules and clear flow of control within.

It should be well documented and commented in a manner that promotes the

understanding of its intent. The specification or functional interface

of a subprogram and data should be separate from its implementation.

"Reliability" is a related term that is probably misapplied

as well. The definition used here is the quality of a program to isolate

the effects of inevitable programming bugs. Two aspects of an HOL and

its programming environment can improve the reliability of software.

A

:U"JH\1UV*VL*\

r« •pp '.ii^"i mm i * •-• v^ .-.-,-.•

AFWAL-TR-83-1058

The first is the automatic detection of bugs. Through exact specification

(typing) and redundant information about intent (declarations) many bugs

can be found at compile time, and corrected immediately. A second aspect

is a program's ability to localize the effect of modifications to a

program. Subtle dependencies between two sections of software within

one program can allow errors to occur in one section when changes are

made to the other. (Global flags are a good example of such dependencies.)

Dependencies other than those explicitly placed in the software in a

clear manner should be avoided whenever possible. Third, access to the

internal definition of data and functions should be restricted only to

parts of the program that require it. This is often called Information

Hiding. Multiple access paths to a single data object, commonly called

aliasing, should also be avoided. Modularization and the grouping of

similar functions together contribute to reliable code.

A translation system should preserve or improve the level of

these qualities in the resulting program. This is often very difficult

to do. The quality of software is frequently inherent in the design of

the software and the features of the language useo in the implementation.

The original software may even violate some of the quality standards

given above. To improve maintainability, one must either redesign the

module or find a way to use features of the target HOL that are designed

to improve software quality. Redesign of software is currently considered

beyond the scope of an automatic translation system. We can reasonably

attempt, therefore, to preserve only those qualities that are present in

the original software.

(2) Robustness

Robustness is a measure of how well a program utilizes the

features of the language in which it is written. Software written in a

particular HOL should take advantage of its powerful features whenever

possible. This not only improves efficiency but also provides a clearer

representation of what the program is intended to do. Features are placed

1n a language for a reason and should be used whenever the intent of the

feature is applicable to the requirement at hand. A translation system

should attempt to provide the highest possible utilization of the target

HOL.

^•v-.-:-%: v; .-^.\ -2 -..-..

•

".'" ".!•' •-' •-'" ". ' •* _".' \". .".

AFWAL-TR-83-1058

Often, there is no one-to-one correspondence between the

features of the target and source HOLs. Features in the source HOL which

do not have an equivalent feature in the target HOL will have to be

implemented with a combination of lower level features. The reverse is

also true. Features in the target HOL may not be used because there is

no corresponding feature in the source HOL from which it can be trans-

lated. Thus, higher level features in the target HOL may be only

partially used or not at all.

2. A J73 TO ADA TRANSLATION SYSTEM

This section will now consider translation system requirements when

the source HOL is JOVIAL / J73, Ada is the target HOL, and the type of

software to be translated is real-time embedded software.

a. Scope

A compiler is an example of a system that translates programs

written in a high order language into equivalent programs "written" in

machine language. A source-to-source translation system would have to

perform many of the same "front end" analysis functions as a compiler

for the same source HOL, the difference lying in the level of the target

language. The capabilities of today's compiler technology can therefore

be used as a baseline for analyzing the limits of a source-to-source

translation system.

From the outset, we must remind ourselves of the limited capacity

to which machines (or the programs that run on them) can understand

programs written in one language and translate them into another. An

ideal system would accept any legal J73 program and return the Ada

equivalent. In practice, however, translation of J73 to Ada will require

a mixture of both automatic translation and human augmentation.

Two things can be stated with certainty:

1) All J73 programs have a functionally equivalent

implementation in Ada.

J73 and Ada are alike in many ways. Although difficult to

prove, neither can implement a function that the other cannot duplicate.

•N- -'••*-.- -•- . • - •- . -. ..--.-- • • ' *- • - - -•- - - - --- .-»-^—j^-m—j-^t^-^j^i***i«i

K

K

y •.|I.'V«, _: »J^II ••"•.•I •!

AFWAL-TR-83-1058

Turning Equivalence should guarantee that a skilled programmer can design

and code an algorithm in both languages that is functionally equivalent.

(Ada was designed to be an improvement over J73. As such, programs

written in Ada should be of higher quality. Improvements were primarily

made in the features for structuring programs and not to the functional

capability of the language. Ada did formalize several areas such as

error handling, multi-process control, and I/O)

2) The translation from J73 to Ada cannot be a 100% automated

process.

J73 and Ada are also dissimiliar in many ways. Several J73

features have no corresponding feature in Ada. When a particular feature

cannot be translated directly, some alternative must be found. A trans-

lation system may not be able to understand the meaning of a whole program

well enough to find an alternative combination of Ada features that

provide the same effect. A human will have to step in and redsign

sections in Ada, then integrate them with the rest of the program. The

extent to which this must be done is the critical measure of a translation

S; system's viability.

l.v

tf

b. Semantic Equivalence

Section II.1.a stated the requirement that the original program

and resulting translation be "functionally equivalent". Unfortunately,

today's compilers can not "understand" at this high a level. They can

recognize and understand most constructs at the statement level only.

Thus, "functional equivalence" must also be applied at this level. A

J73 to Ada translation system must have an equivalent Ada statement or

statements for every J73 statement or mark it as untranslatable. (Both

languages contain definitions of more than just "statements." Here,

reference to a "statement" is intended to mean any separately defined

construct of the language, including those constructs not formally defined

as statements.)

In order to make a comparison between two similar statements

from two different languages, and arrive at a judgement of their

equivalence or lack thereof, a precise definition must be available for

fjfc\-\\::u\:v^v>;v>i^^i,.v^\v.\,:f.\:.v/..';1\^\^v,v-j.-_.lv. .__^._...:_-,/. .'j.-_*.-:.•.-.• J

k
k>

AFWAL-TR-83-1058

•TT'"' ••- ••"-• •••- • i ••• •_• my •..» •• ' ——•—~~^ ' * - v *r"

I
both the "source" and "target" statements. Unfortunately, MIL-STD-1589B
contains many constructs for which the definition is incomplete or
ambiguous. This allows the compiler writer the freedom to interpret the
definition to mean either what is most logical to him or easist to
implement. J73 also defines several parts of the language to be

• "implementation dependent," again allowing the compiler writer the freedom
5 of choice. The same is true for the definition of Ada, but to a much
6 more limited extent. Every attempt was made during the language

definition to provide the most complete definition possible, to remove
| any abiguities, and to isolate machine dependencies.

\':J Incomplete, ambiguous, and implementation dependent definitions

8 have dire consequences for general purpose J73 to Ada translation systems.
In order to have the widest possible application, such a translation
system would have to be flexible enough to adapt to the various
interpretations that particular J73 and Ada implementations have adopted.
Another option might be to have several translation systems, each tailored

I

~*.

IT.

>•

»

tft

» ' *

to a particular compiler pair, although the economics of such a solution
would probably be prohibitive. Areas where an ambiguous or incomplete
definition effect the ability to perform correct translation will be
pointed out. in Section III.l.

c. Efficiency

Real-time software systems are bound by very stringent efficiency
requirements. Memory is usually limited and the computing power is
seldom adequate to execute every desirable function. Software often has
to be "shoehorned" into memory with little if any space to spare. A
translating system must therefore minimize its impact on both time and
space. There are several pitfalls awaiting our attempts to translate
J73 to Ada. Numeric accuracy and data representation are defined dif-
ferently in J73 and Ada. The translation of some features may induce
some additional overhead. Differences between implementation dependent
parameters and options are especially troublesome. Each compiler, both
the original J73 compiler and the Ada compiler for the translated program,
will make space/time tradeoff decisions in a different manner.

Lzl "-• '-- •-- '-• -• ----- -- •-•.--.-•• -. - -• •-- -s -. •• Jlk-,,...- .- «•; j '* ,'•: ;.- '.- V ,'J .- : . • . ., . -• - -' -!••-•>- -• - -i

I s.

III.PIII^I^IIJ^I . llL.ll. I.ll I. I. . I. .. '.".•. ".".!".". ".".-.•!•

s

AFWAL-TR-83-1058

d. Source Code Quality

Real-time software is constantly being updated and modified.

Source code quality is essential to performing these upgrades in a cost

effective manner. A translation system must insure a high degree of

readability and limit the amount of underlying dependencies that result

in unreliable code.

3. REQUIREMENTS SUMMARY

1. The semantic equivalence between J73 statements or

blocks of statements and Ada must be guaranteed.

2. Induced processing overhead must be minimized. The

exact toleration threshold is application dependent.

3. Data storage requirements must remain approximately

equivalent. This threshold is also application

dependent.

4. The translation must produce readable code. It should

be well structured in the style and intent of Ada.

5. The.resulting code should be free of subtle underlying

dependencies.

6. The translation system should utilize the features of

Ada to the largest extent possible.

10

- . '- .*-%V.-'. -£»*- •'-'-'- •-* La '_. - ' - - • - --r '-» '-. "-» •»• -1 - •••---- ----- J-~. m. •"- J- rf- .-»••- rf. «'-••-.*-»->-«- V - « - • - ' - - «J

F.'-

'.•w

WH^^^^^^^m^+^^^^m,,,*^ . i ii i , ,...L. ,., j,,,|ifi • P

AFWAL-TR-83-1058

SECTION III

ANALYSIS

1. AUTOMATIC J73 TO ADA TRANSLATION

This section will mirror the structure of the MIL-STD-1589B definition

of the J73 language. Chapter titles in the Standard match subsection

titles here. All comments relating to the translation of J73 constructs

will appear in the appropriate section. Any violations of the requirements

given in II.3 will be so noted. All references to the Ada Language

Reference Manual (LRM) refer to the July 1982 version of that document.

a. Global Concepts

(1) The Complete Program

The concepts of modules, complete programs, and main program

modules parallel those of Section 10.1 in the Ada Language Reference Manual

(LRM).

(2) Modules

(a) Compool Modules

Compools can be translated into Ada packages with some

minor caveats. Ada requires a separate package specification and body

when subprograms are included. Separate specification and body modules

can be fabricated by a translator from the locally available information.

This simply complicates the work required of a translator. Most compool

directives (also discussed in Section III.1.1) can be mapped into the

Ada WITH CLAUSE. J73 REF and DEF specifications are defined independently

of compools and will be discussed in Section III.l.b.(5).

The Ada package is actually much more powerful than the

J73 Compool. The following list of unreachable capabilities indicates a

conflict with Requirement 6 of Section II.3.

Packages can contain variables. Compools can declare variables,

but only with the external DEF construct. Problems with this

are discussed in Section III.l.b.(5).

11

tZcZ&ZCZi^ilJUL^JL^JL^L.. . . .'•.•':'jkZj

•."••»II I. •"V". '". V. k—'

-:

i

L^'

s

AFWAL-TR-83-1058

Compools have nothing corresponding to private or limited private

types.

Package bodies may contain internal declarations not visible

outside the package for use in the internal implementation of

£:; the package specification. It must be assumed that all

declarations within a compool are intended for external use.

Package bodies may also contain an executable part similar to

the BEGIN ... END of a subprogram definition. Compools have

no corresponding capability.

(3) Scope of Names

No conflicts with the Ada visibility rules given in section

8 of the Ada LRM appear in this section. External names will be discussed

in Section III.l.b.(5).

Two conflicts with Requirement 6 appear:

J73 prohibits two names within the same scope to have the same

spelling. Ada allows for the overloading of subprogram names

and enumeration literals.

Name conflicts and overloading ambiguities are avoided in Ada

through the RENAMES facility. This is not available in J73.

L*->' (4) Implementation Parameters

The J73 LRM contains the following statement: "The machine

on which a J73 program runs contains an array of memory cells." Ada

does not make this specific a statement about the hardware on which it

will run.

This difference contains several implications. The most
K obvious one appears in this section, namely the existence of implementa-

tion parameters relating to linear memory. Programs which refer to these

parameters will require the same value when translated into Ada. Each

of these constants will have to be encapsulated in a package similar to

the SYSTEM package for use throughout the program. Other implementation

parameters are J73 dependent, i.e., MAXTABLESIZE. Tables are obviously

12

,1V1 - • I • ^> */ « • . * '. - r • i"- * i'_ •. ». •. '*i t ^- *. ;**_•.•. »'I, •

AFWAL-TR-83-1058

not in Ada. The name "MAXTABLESIZE" would make no sense in an Ada

program. Parameters such as this will probably have to be hand trans-

lated. Other numeric parameters may have to be translated by hand as

well.

b. Declarations

(1) Data Declarations

Data manipulation, especially of numerical data, is the core

of any programming language. The majority of the constructs in J73 and

Ada are for structuring programs and for managing the flow of control

between functional subsections. The bottom line, however, is the

manipulation of hard data, the handling of input from the outside world.

The primary issues involved here are the representation of data and its

precision, range constraints, and allocation permanence. Embedded

systems require a strict definition of precision in order to maintain

the accuracy of numerical computations. They may also require precise

control over the legal range of variables. These issues and their

translation from their meaning in J73 to that in Ada are discussed in

the following sections.

(a) Item Declarations

(1) Integer Type Descriptions

J73 and Ada differ in the manner in which they

define the range of integers. Ada allows the range to be arbitrary

(within the bounds of the SYSTEM INTEGER'RANGE) and be expressed in

decimal or as a based number. J73 requires that "... the minimum number

of bits required to hold the maximum value of the integer (excluding the

sign, if any)..." be given in the ITEM declaration of an integer. While

this does allow for the implication of a range constraint, it offers

them only with limits of powers of two. For example, the declaration:

ITEM X U 4;

declares the unsigned integer X with 4 bits to hold

its values. This implies a range of 0 to 15.

*y 13

-< - .* .•- .•_ -•-•.•. -"•'•*•- \ _-. .••...-,.-• .. _. ^ .- - - - • - • -

P»^^^^¥"*»^»" l|_" . I . J .'» *• f" ." 1- "•• • I • • • • • » • . ' - • I •-••." ••'••.••»•.-.•••. 'T, '

K

AFWAL-TR-83-1058

There are several problems with the J73 definition

provided. It does not define what happens when an attempt is made to

assign to an integer ITEM with a value larger than it is allowed to hold.

Does rounding or truncation occur? Are the high order bits masked,

performing something like modulo arithmetic? Is the size constraint

ignored resulting in no effect. Does the execution of the program halt?

MIL-STD-1589B simply does not say.

Ada contains the concept of a range constraint. An

exception, CONSTRAINT_ERROR, will be raised if an attempt is made to

assign a value outside the declared range. J73 has no concept of

exceptions, exception handlers, or even of error conditions. One approach

towards avoiding CONSTRAINT_ERROR exceptions would involve translating

all integer definitions into the SYSTEM defined integer type ignoring

BflQ any <integer-size> attributes. There are two problems with this. One,

an exception cannot be avoided entirely if an attempt is made to assign

a value outside INTEGER'RANGE. And two, it is hard to justify ignoring

this attribute when the original programmer took the time to specify it,

and must have done so for a reason.

The J73 <round-or-truncate> attribute is also trouble-

some. Either rounding or truncation is invoked during type conversion
in J73 (specified by the ITEM declaration of the target variable). The

exact algorithms for truncation and rounding are not specified and so

must be assumed to be implementation dependent. The J73 manual statement

"If the [<round-or-truncate>] attribute is omitted, truncation in an

implementation-dependent manner will occur," further muddies the water.

Ada allows for explicit type conversions between

"closely related numeric types." No mention is made in the Ada manual

of any rounding or truncation except for: "The conversion of a real

value to an integer type rounds to the nearest integer; if the operand

is half way between two integers (within the accuracy of the real sub-

type), rounding may be either up or down."

(2) Floating Type Descriptions

The definition of J73 floating point numerics have

many of the same problems as that of integers. The <precision> field

14

.... •.•...V-.,*./jt..:Jft.;.l,fc,.:.„tl..*,.^..:... _«_. '— -"—*-' _._..._. _ _ . . -. •_ -_ __ »_ ^_ ^ _ ^ .«.«:-.* - -*-V*-A "*a

^•^^^•^^•^•1 i| i i i i »m • . my ••! . mi I f^WIFf •• ••t".»V' •' ^.•.-,-..,..,

AFWAL-TR-83-1058

1

I

I

•

•-

-.

again refers to the number of bits needed to represent the mantissa. It

offers no ability to specify a range constraint. Ada requires precision

to be defined as the number of decimal digits for the mantissa and allows

for a range constraint. Anomalies between the representation of the

mantissa as decimal digits and binary bits may cause problems.

The definition of rounding and truncation is missing.

If the attribute is omitted, truncation in an implementation dependent

manner will again occur.

(3) Fixed Type Descriptions

Precision and range are again specified in numbers

of bits. J73 fixed type declarations contain two attribute fields. The

<scale-specifier> indicates the number of bits to the left of the decimal

P point including the sign bit. It is unclear whether this implies a range

constraint similar to that for integers. The <fraction specifier indicates

the number of bits to the right of the decimal point. Again, Ada differs

in its specification semantics for this data type. Ada allows specifica-

I tion of a delta and a range constraint. It is unclear whether these two

definitions are compatible in all cases. A definition for rounding and

truncation is implementation dependent and not provided in the manual.

• (4) Bit Type Descriptions

Ada does not provide a bit string type directly.

The Ada LRM does make special reference to objects declared as:

type BIT_VECTOR is array (NATURAL range <>) of BOOLEAN

Since the BIT_VECTOR type is defined as an array of

BOOLEANS, use of this type will be governed by all rules relating to

arrays. The functions "and", "or", and "xor" which operate directly on

objects of this type are provided and are presumably optimized.

(5) Character Type Descriptions

The type STRING is also constrained by its

definition as an array.

15

'••"•"

AFWAL-TR-83-1058

(6) Status Type Descriptions

J73 Status types translate fairly easily into Ada

enumeration types with some minor reformatting. Two problems are

apparent:

Ada does not have an equivalent of the <status-size> attribute.

In Ada, enumeration types must be named types. Objects cannot

be directly declared as enumeration types as with arrays, etc.

Thus, a type declaration and type name must be generated when a

status declaration is translated into an Ada enumeration type.

The problems associated with generating an appropriate name

will be discussed in Section III.l.h.(2).(a).

(7) Pointer Type Descriptions

J73 pointers appear to be equivalent to Ada access

types. In fact, they are not.

Access types are included in Ada for two reasons.

Their primary purpose is as the mechanism for naming dynamically created

objects. Static objects are given a name reference at declaration time.

Dynamically created objects are given an internal name by which to

reference them. Access types hold these name values. Access values are

typed in that they can only hold references to objects of one type.

Access types also provide a convenient way to implement directed graph

structures.

J73 pointers differ in the following respects. A

minor difference is that pointers can be untyped in J73. Untyped pointers

will not translate into Ada. The major difference is that pointers are

actually defined to be the address of the object pointed to. The functions

LOC and NEXT move pointers around the address space allowing access to

the internal structure of all data objects. Pointers can also be converted

into integers and bit strings. This allows manipulation with integer

and bit string operators. The values can then be converted back into a

pointer. In this way, all data (and possibly even instructions) is

16

. V
I.- • -V»\ ..'* +.*.*. •^-, m.'^H.*^'~.?.*-J-'^.. ^'-.'-»•., lft'm ft\ r.|„ f, m - - '• «, * ^ '«..'. t-' «__ ,' •_' «L_ ^-' -. V - '. -•« .'« ^' ' -'•' - " - > - . -'-'•.- * * -J -» -* -• -• ..'- •'- »'- - • .,

AFWAL-TR-83-1058

exposed to meddling from anywhere in the program. Ada was designed

specifically to prevent programmers from accessing data in this manner.

Pointers, therefore, can not be translated into access types. All code

involving pointer types will have to be hand translated. This is a very

serious violation of requirement 1.

Note: Since J73 does not allow dynamic allocation

(other than block entry), access types will not be used by a translation

system.

(b) Table Declarations

There is no directly parallel structure for J73 TABLES

in Ada. Table-like structures can be composed with an array of r°cords.

This works fairly well with several small problems. Most of the

incompatibilities occur with the several special case rules connected

with TABLES.

Ada requires record types to have a name in a similar

I manner to enumeration types. Objects cannot be directly declared as a

I record. They can be declared only as a record type declared elsewhere.

This requires a name to be generated for the record type to match the

internal structure of the table. Name generation is discussed further

in Section III.l.h.(l).(a).

The following pointer related restriction in the J73

manual precludes the use table types. "Items in tables declared with a

<table-type-name> can only be accessed using pointers to the tables."

Since pointers cannot be translated, tables declared with a type name

cannot either.

(1) Table Dimension Lists

Ada requires both an upper and lower bound to appear

in a range. J73 allows a default for the lower bound of 0. This will

have to be explicitly supplied by a translator.

Ada requires that a range have a type_mark so that

it will be specified as a particular discrete type. The J73 "*" dimension

does not require a type. The J73 manual states: "(Note that in accordance

17

'••'••••

. -*-"- - - •-1 - - -' — - - - • • - *••• - -; '•'' •' ••' * ' *

'V W» V* '.•'.• ,• ,« I 'lyill-tln.n.ii I • . *" * '

I AFWAL-TR-83-1058

1

i

a

with Section 6.3.9 and 6.1, a bound of * dimensions range from 0 to

NN-1, where NN is the number of elements in the corresponding dimension

of the actual parameter, regardless of what the lower and upper bounds

values are for the actual parameter or whether the bound has an integer

or status type)."

(2) Table Structure

In J73, the programmer can specify the layout of

tables in memory. Ada allows the programmer no control over the manner

in which arrays of records are laid out.

(3) Ordinary Table Entries

There are a couple problems here,

the J73 <order-directive> is not available in Ada.

An equivalent to

J73 provides for 3 levels of packing, some in an

implementation dependent fashion. Ada allows for one level through the

PRAGMA(PACK). It is unclear whether the mapping of both (M)edium and

(D)ense packing will have any effect on translated programs or not.

(4) Specified Table Entries

Specified table entries have corresponding record

type representation constructs "use" and "at" (Ada LRM, Section 13.4).

Some fairly complex reformatting of J73 representation specs will be

required of the translator, but it can be done.

(c) Constant Declarations

Ada has no equivalent to the J73 concept of constant

tables.

(d) Block Declarations

"A <block-declaration> declares a group of items, tables,

and other blocks that are to be allocated in a contiguous area of storage."

Presumably blocks are u^ed to improve the access efficiency to data

contained within the block. Ada does not define an equivalent construct.

Perhaps this can be ignored during translation, but programmers who

18

• m.t - • •» I -'• - .'._•• «••-,-.•*•-• - '- ^ . . • -•.... . . .-•.:

. . - ^T^-T-"-^—«—-r»-»—I-»T—-r- •v '.'•:•

a

AFWAL-TR-83-1058

specifically used a BLOCK construct probably did so for a reason. It is

likely that some translations will be effected if block designations are

ignored.

(e) Allocation of Data Objects

Ada does not explicitly provide a static allocation

specifier. Variables contained in packages do remain allocated

for the life of the package in which they are contained. Thus, data

objects declared in packages are essentially static. One approach towards

the translation of STATIC data might be to encapsulate all modules that

define STATIC data inside a new package. The proliferation of packages

each containing just one module for the sole purpose of achieving STATIC

data would have a tremendous impact on the readability of programs. This

is not the intended purpose of packages.

If a program requires STATIC data, the package construct

must be used. Hand design of these packages is required to insure the

quality of the resulting code.

(f) Initialization of Data Objects

There are several restrictions on when and where item

presets can be used in J73. Many of these restrictions are not present

in Ada. This has a minor effect on the robustness and style of the

resulting Ada program.

J73 has preset lists. Ada has aggregates. Both languages

have "equivalent" shortcut methods for representing repetitive values.

J73 allows values within the preset list to be omitted. Ada requires a

complete set. A translator can select an arbitrary literal of the

appropriate type to complete the aggregate. This should have no impact

on correctness. J73 requires assignment before use. This rule guarantees

that the selected value will be replaced by a subsequent assignment before

it is used.

This section mentions that preset values must be

"implicitly convertible to the type of the data object being initialized."

Implicit type conversions are are discussed in Section Ill.l.g.

19

.*•->. i . a..*.". •..»•- n. . *>«..••- *- « - - - •- -- i . t"- i -• -*--.«•- J— * _ < - J

.- ."'-/•

..

' AFWAL-TR-83-1058

(2) Type Declarations

\.* Like options will have to be expanded before
translation. The mechanics of saving textual information about previously
defined types and substituting it for like options are difficult but not
impossible.

(3) Statement Name Declarations

Ada does not allow statement names (labels) to be
declared or passed as parameters. Labels used to name statements can be
translated with no problem.

(4) Define Declarations

Ada has nothing equivalent to J73 DEFINE
declarations. The concept of generics in Ada is close but does ;iot have
the same semantics. DEFINES can be expanded before they are run through
the translator resulting in a correct program, but the modularity and
structure of the DEFINES will have been destroyed. This will impact
readability to the extent that DEFINES are used in the original program.

(5) External Declarations

The Ada mechanism for exporting and importing name
references is the package construct coupled with the WITH clause. Several
compatibility problems exist between the J73 DEF - REF mechanism and the
Ada package / WITH:

Single names can be pulled out of compools through use of
the DEF - REF mechanism. Ada has no such mechanism. The
WITH clause imports all names declared within the referenced
package. If REF specs are simply translated into WITH clauses
with the compool/package name, some name conflicts may arise.
Since Ada allows name overloading in some cases, the error
may not be immediately apparent. In fact, REFerence to
single names were likely made to avoid conflict with other
names in the compool.

.••.

20

^ *•' '«*•'-• ' * -f ^T*-P'.'-I -\ \a*. •« * _ . . . * - . . *>- . V. ^.v-V-:*~V-.-« ^ . . »H_. ,%P%-' _^_* 'V »J^ ^ _^,^, — ^ -- --•

AFWAL-TR-83-1058

For DEF specs that are not contained in compools, there is

no corresponding Ada mechanism. The variable could be

encapsulated within a package and then WITHed into the

declaring module and all modules with a REF spec, but this

is terribly cumbersome and results in poorly structured

code. This further proliferation of packages should be

avoided.

(6) Overlay Declarations

J73 allows entire objects or portions of objects

(i.e. tables) to occupy the same storage space. The J73 manual states:

"2) that certain objects are to occupy the same memory locations as other

data objects." Ada strictly forbids the overlays. Section 13.5 of the

Ada LRM states: "Address clauses should not be used to achieve overlays

of objects or overlays of program units. Nor should a given interrupt

be linked to more than one entry. Any program using address clauses to

that effect is erroneous."

(c) Procedures and Functions

The syntax of J73 and Ada subprograms differ only

slightly. There are several major semantic problems, however, primarily

concerned with the definition of parameters.

(1) Procedures

All Ada subprograms can be called recursively and

are reentrant. The REC and RENT <subroutine-attributes> can be ignored

during translation.

(2) Functions

J73 uses the function name to store the return value

of the function. The J73 manual states: "... the most recent value

assigned to the <function-name> is used as the value of the function."

This value cannot be subsequently used in a formula (expression), however.

The use of a function name in a formula implies a call (perhaps

recursively) to that function.

21

!AOUS„ ... - »'- * - » -'-*«-» - -••*._» '-m. M. '-*.:*.**.: M.. »•-».•••«*, m. •

.• • .ii' .F I m »• f • • i • i. • i r i ••••»• •—»—•—•—• . « . » '».•.- J -—"•"-."

AFWAL-TR-83-1058

Ada does not use this same system. The return state-

ment explicitly identifies the value or name of the value to be returned.

In the general case, a translation would have to create a temporary

variable with a generated name for use in storing the return value into.

This will probably not impact efficiency since the value would have to

be stored somewhere in the J73 program anyway. Problems with name

generation are discussed in Section III.l.h.(2).(a).

(3) Parameters of Procedures and Functions

There are several problems in translating parameters

from J73 to Ada. They are summarized below:

J73 out parameters are equivalent to Ada in out parameters

and should be translated as such.

The colon between input and output parameters in J73 can be

ignored during translation.

Ada does not allow statement names or subprogram names as

parameters. GOTOs to statement name parameters will be

discussed in Section III.l.d.(7).

J73 allows the programmers to designate the actual binding

mechanism to be used during parameter passing. Ada provides

no such capability, allowing the compiler to make the

appropriate choice. In fact, the Ada LRM states: "A program

is erroneous if its effect depends on which mechanism is

selected by the implementation." J73 programmers who do

specify the type of binding mechanism will have done so for

a reason and will likely rely on the mechanism for the cor-

rect functioning of their program. This conflict in

definitions cannot be resolved. Therefore, any subprograms

that specify the parameter binding mechanism cannot be

automatically translated. This is a serious violation of

requirement 1.

J73 and Ada differ significantly in their methods of defining

of formal parameters. J73 allows the type definitions of

22

-*-••-•- -J-- • .-• - --• .-.-»••-.-•• - ••••- . • • .:.•.. , t ,»,-•».-. ». , •_-. ^. -- ^ ,. -^ _

% AFWAL-TR-83-1058

1 • • " ' • • " • • " • • • ".•"."'.' " m ' .'" • ' • "' »' • »••iT-i»« -vm -i.i -I-^-J

1

formal parameters to be given within the subroutine body.

Type definitions may also be any type definition. Ada

requires that formal parameters be given an immediate sub-

type indication. This means that the formal parameter must

be declared as a subtype of some previously declared and

visible type name. (Formal parameters cannot be directly

declared as arrays or records or as enumeration types.) In

order to be translated from J73 to Ada, the type definitions

must be elevated to a level where both the subprogram

definition and the module containing the subprogram call

can see them. This elevation not only complicates the

^ structure of the program but can also cause name conflicts.
.-

(4) Inline Procedures and Functions

The PRAGMA INLINE could be used for translation.

The J73 and Ada definitions seem compatible.

(5) Machine Specific Procedures and Functions

Any implementation or machine dependent functions

provided within the language have no guarantee of having a correct

translation.

(d) Statements

(1) Assignment Statements

In Ada, the assignment operator is ":=" not "=".

J73 assignments to a variable list will have to be expanded

before translation. In order to avoid evaluating the right

hand side of the assignment each time, assignments to sub-

•4 sequent variables should be made from either a temporary

variable or the first variable assigned from the list. A

temporary variable will require a name to be generated for

it.

I

ii 23

>.i.-:.f".i.,^...'-,.:..•..•-.-••,*.• :J\•.»,.J\ •* -„I J.•.!»,'•»'..- -,j - .•>. -..'• .-.....•,_ ,'.»',•„*_•.'. .• -.*. --.-•. .-.•-•• . _ !

^^^^m '.,• .' ,,P^^^^T •.•'•• ? • • • ' • ' " - ' l ' * V ' *• ' ' •••«•'•• ••.•»••.••••»- •_. »i»\ »-,.•• «i V V ' T' •*•"'•*,- "l'% - * '"* ^"*""* ^Tl

ä . *

KV

'••• AFWAL-TR-83-1058

(2) Loop Statements

m J73 and Ada differ in the definition of loop state-

ments:

Simple WHILE and FOR statements translate easily.

: - Ada allows incrementation through a scalar range only by 1. Thus,

J73 BY and THEN statements will have to be fabricated. An

expression to calculate the correct value at each iteration must

be formed as dictated by the original BY or THEN formula. A

i temporary variable to hold this value will also be required and

all references to the original loop variable will have to be

changed to reference the temporary variable. A <while-phrase>

attached to a BY or THEN phrase will have to appear as an explicit

i test and EXIT. All this may require extra storage and additional

computations though the impact should be minimal.

8 A major problem occurs when the <control-item> in a J73 loop is

a <control-variable> (is declared as a variable in the local

scope). J73 allows modifications to such variables within the

loop and use of their value after the loop statements is

terminated. Ada does not allow this. Temporary variables will

not work in this case. One might try to assign the value of

the loop parameter to the variable declared in the outer scope

just before exit from the loop. But the generalized GOTO will

prevent a guarantee that the assignment will happen in all cases.

Loop statements that have <control-variables> cannot be trans-

lated.

(3) IF Statements

Ada provides an "elsif" clause to allow for

additional conditional tests before the final alternative "else".

Translations from J73 will not take advantage of this feature (require-

ment 6).

(4) CASE Statements

The one problem with the CASE statement is the

FALLTHRU clause. Ada does not have an equivalent construct. A correct

24

m^m^mr- I l,i,iL»i-l ,,.,.-...•• i i ;—• "•' - -. F" '.-. •• •-.»•.•—"~ - - -

AFWAL-TR-83-1058

translation can be constructed by copying the executable statements from
the following <case-alternative> into the previous statement list. Of
course, this must be done in a "bottom up fashion" as there may be
multiple FALLTHRUs. There are two possible problems with this. Copying
can become excessive, resulting in messy redundant code. If the Ada
compiler that will compile the resulting code is not able to notice that
the copied code sequences are identical, additional machine code may be
unnecessarily generated. The extent of the additional code is
proportional to the number of FALLTHRUs in the original code.

(5) Procedure Call Statements

The colon between input and output parameters can
be ignored during translation.

(6) RETURN Statements

Return statements within functions will have to be
modified to return a value as discussed in Section III.I.e.(2).

(7) GOTO Statements

Ada does not allow labels as parameters or allow
GOTOS' to reference labels outside the scope of the GOTO statement itself.
This type of GOTO cannot be translated. This J73 feature might be
comparable to the Ada exception facility. Labels passed as parameters
could designate "handlers" for errors within the subroutine. GOTOs to
these labels could act as the Ada RAISE statement. Although a GOTO to a
label passed by calling procedure may be used in this way, it can also
be used in other ways that do not map into the Ada exception facility.
It is safe to say that GOTOs to labels cannot be translated and that the
Ada exception facility will not be used by a translation system.

'*- J73 does not allow GOTOs into statements within a
loop refered to in the manual as a <controlled-statement>. The manual
does not prohibit GOTOs into a <conditional-statement> or into IF state-
ments. Ada does not allow this. Such "out of scope" analysis will have
to be performed prior to the translation of a GOTO.

I

".'•".• V • -". •-."-. ' . . - . - ."•' • •' > • '• • • V '.-V . ".
--.. . .- .• ^ _.-J>_..-J..-- . . . •. - • •• • .-•••• . •- - - - - •»- - • --»— -*

p ipWmW ••-••'-• Uilim.Hili'Hiii',iii|i.i-7-t7PiM i ...— •... IT. •—-
< •>

b
AFWAL-TR-83-1058

(8) EXIT Statements

1 Ada EXIT statements are more powerful than those

in J73 in that they can contain a WHEN clause.

(9) STOP Statements

| Stop statements have no parallel in Ada.

(10) ABORT Statements

Abort statements, similar to GOTOs to statement

(names passed as parameters, cannot be translated into Ada. They are in

no way equivalent to the Ada abort statement that relates to the Ada

tasking facility.

(e) Formulas

It is unclear whether <compile-time-formula> functions

are available in Ada. There are similar attribute functions available

for some Ada types, but the J73 manual says that: "LBOUND, FIRST, and

LAST are available reguardless of their arguments." The availability of

functions such as NEXT, BIT, BYTE, SHIFTL, and SHIFTR will be discussed

in Section III.l.f.(3).

(1) Numeric Formulas

The definitions for all numeric formulas are

incomplete in that they do not specify what happens for error conditions.

For example, the J73 manual specifies that: "The right operand of / and

MOD must be non-zero." But it does not say what happens when it is zero.

Range constraints are also specified but nothing is defined when they

are violated. This is a serious semantic difference between J73 and

Ada. An Ada exception is defined for all possible violations of language

restrictions. !

(a) Integer Formulas

The modulus operator is defined differently in

J73 and Ada. Section 4.5.5 of the Ada LKM gives this definition for

modulus:

26

. •^,.v.'X"Iv,2:*'I'*lv';l-«"!!!vvolv'r.'-,*'.-./ .•-. . . .'.-.-I .- _ .-,._ ^ . . . - - . . - -•-•--- ^J

J

I

AFWAL-TR-83-1058

A mod B = (A + K*B) mod B

J73 gives the following:

A mod B = A - (A/B) * B

These definitions do not give the same answer when A is negative and B

is positive. Therefore, the MOD operator cannot be directly translated.

Ada also defines a REM (remainder operator). J73 does not.

(2) Bit Formulas

The only logical operator that Ada does not provide

on BIT_STRIN6s is the NOT operator. J73 does provide this. It is unclear

whether the NOT operator can be composed from the operators provided in

Ada and also be efficient.

(a) Relational Expressions

The definition of the relational operators

relies heavily on the J73 definition of type compatibility for conversions,

This will be discussed in Section Ill.l.g.

(b) Boolean Formulas

Ada defines additional short circuit forms for

logical operators.

(f) Data References

(1) Variables

There are two problems concerning the translation

of data references -- one major, the other minor. The minor problem

concerns the name referencing of items within tables. J73 allows the

name of the internal item to be used directly. Ada requires use of the

dot qualifier to reference internal variables. All names referencing

items declared within tables must be reconstructed by adding the outer

scope name. This will complicate the translator.

27

•VJ.:.:A'.U;-..-.:A-V...-. ... ••-.AA.../..- -• -. -.--L. -._•_ . •. -w . •_ . . ^ ^ •^^-. k. I »^\ ^ •*

. - — . - , ,—,—,—- - -- » - -. -. _-«l, - . -.-.-.-. -J

AFWAL-TR-83-1058

Ü

A more serious problem already discussed is the

definition of pointers in J73. Pointers cannot be translated directly.

A human translator may even have to drop into assembly code to implement

certain pointer properties unless a larger scope redesign can be found.

(2) Named Constants

(3) Function Calls

User defined function calls have no trouble being

translated at the name reference level if they can be seen. Intrinsic

function calls have more problems.

The LOC and NEXT functions are excellent examples

of why pointers are not equivalent to access types. The NEXT function

cannot be applied to enumeration types either unless the <next-argument>

has a constant value of 1. Enumeration types do have the SUCC attribute

but it does not take an argument.

The BIT function looks similar to an array slice

operation on 8IT_STRINGS. Right justification and padding with zeros,

however, shows that they are not equivalent. The BYTE and SHIFT functions

do not have Ada equivalents, but they could be included explicitly in a

TRANSLATION_PACKAGE of sorts and be made visible to the whole program.

The NEXT function on status types could also be implemented in this

package.

The ABS function has an Ada equivalent. The SIGN

function can be easily translated with relational operators. The BOUNDS

functions LBOUND and UBOUND can be translated into the array attribute

functions FIRST and LAST. The Status Inverse Functions can be translated

in a similar way.

The SIZE and NWDSEN functions have some equivalents

in Ada, although not all J73 variations are accepted. Length specifica-

tion control is also available to assign the amount of storage in bits

to be used for the representation of a certain type. Functions that

return a size are not available in Ada.

28

fcv:.:-:-:>.; ntl.fc.lh *.,„ fcll ,?b m i— '» •• • • *

.v •; • ' •;••" ' - I

j

I

I •' ^"-"- I * ' "• .*• '-'." L^'^ .*-1*1 • • ".•'"» T- .» .^~- "

AFWAL-TR-83-1058

(g) Type Matching and Conversions

In general, the rules governing type conversions are

much less restrictive than they are in Ada.

Ada allows (explicit) type conversions in three cases.

The following is a summary of the rules for allowed conversions. Complete

definitions appear in Section 4.6 of the Ada LRM.

1. Numeric types can be converted to other numerics types.

Conversions from a real value into an integer type involves

rounding.

2. Conversion is allowed when the type of the operand is

directly derived from the type mark of the conversion.

3. Array types can be converted when both the operand type

and the type mark of the conversion have the same index

and component types.

J73 allows many other legal conversions. The following is a

list of incompatibilities:

All conversions must be explicit in Ada. A typejnark is used to

indicate the desired result type. Any implicit J73 conversions

that are also legal in Ada must be given an explicit typejnark

for conversion.

Numeric conversion seems to be ok. Questions of accuracy are

still unclear.

By allowing any data object to be converted into a bi string

and any bit string to be converted back to any other type, J73

completely destroys the concept of information hiding and data

consistency. This capability allows anyone to access the "guts"

of any data objects. Thus everything is available to anyone who

can see it. This conflicts with one of the basic design tenets
of Ada.

The allowance for converting pointer types to integers and bit

strings is a primary reason why pointers cannot be translated

into access types,

29

^•^«v-i /:, &Ü& ; ^/ic.v.. -

».'•_•• ' • - - •-— .- —

p"
AFWAL-TR-83-1058

•V

I

BIT_STRINGs are implemented as an array of BOOLEANs in Ada, and

as such are governed by the rules for array conversion in Ada.

J73 implicit conversions between bit strings of different sizes

can therefore not be translated.

Character strings are also implemented as arrays in Ada, along

with the appropriate restrictions on conversion.

(h) Basic Elements

(1) Characters

In Ada, the predefined enumeration type CHARACTER

is provided in the STANDARD package defined in appendix C of the Ada

LRM. MIL-STD-1589B states: "Each implementation must define these

characters, as well as the ordering of all <characters> in a collating

sequence." The fact that J73 character ordering is implementation defined

is incompatible with Ada.

(2) Symbols

(a) Names

As discussed in previous sections, there are

instances when the translator will have to generate a name. To prevent

conflict with other names declared within the same scope, the name must

be unique. Identifier names should also be readable and imply something

about the object which they denote. The combined requirements of

uniqueness and readability are incompatible. In order to guarantee

uniqueness, readable names cannot be used; they are likely to already

exist. One possibility is to use a character allowed in Ada but not in

J73 such as the underscore character. Names with an underscore anywhere

would always be unique as long as the translator did not generate the

same name twice. The key problems with this is making the generated

name make sense in the local context. This requires a handle name

already declared in the local scope and the attachment of and underscore

and a suffix or prefix. Even this does not guarantee a suitable name.

The best solution is to generate a definitely unique name and do the

best possible with its actual content.

30

»•- «-• • 1 - •>-' •-' I- --11" ^ ^.-.• I.- ^- 1.- *•«.-..•. . ^ ^- --•>. 1. .•. «*. ••. .^t'.•»•. .•.
.••V

w^^m* .1 . . i «...._,.-. ^ . , r a ,

AFWAL-TR-83-1058

Ada allows the use of the underscore character

in identifiers to make them more useful. Jovial does not allow this.

Thus, since identifier names are translated verbatim, they will not appear

in the same style as Ada identifiers. This conflicts with requirement

4.

Jovial allows the use of dollar sign characters

in identifiers and claims that they are "translated to an implementation-

dependent representation". This is incompatible with Ada.

(b) Reserved Words

Any name that is not in the J73 reserved word

list can be used as an identifier in a J73 program. There are, however,

some Ada reserved words that do not appear in the J73 reserved list.

They are:

ACCEPT ACCESS ALL ARRAY AT
BODY DECLARE DELAY DELTA DIGITS

DO ELSIF ENTRY EXCEPTION FUNCTION

GENERIC IS LIMITED LOOP OF
OR OTHERS OUT PACKAGE PRAGMA

PRIVATE PROCEDURE RAISE RANGE RECORD

REM RENAMES REVERSE SELECT SEPARATE

SUBTYPE TASK TERMINATS USE WHEN

This poses the potential for conflict.

(3) Literals

Ada has the concept of enumeration literals. J73

does not have a corresponding status literal.

(a) Numeric Literals

Some numeric literals may have to be slightly

reformatted.

(b) Bit Literals

J73 bit literals will have to be converted

into BIT_STRING aggregates.

31

• • - , .•-.•.-. •. •

* "***-••-•••' • -» • ' • ~. .*...•.

1 . • ^••'.--VW rrr«r.'.--

AFWAL -TR- -83-1058

t .-

(c) Boolean L

J73 IB'1'

iterals

and IB'0' will have to be converted

into the TRUE and FALSE 1 iterals.

;-;.
(d) Character Literals

V T- «:-

.-.

-.".

J73 character literals will have to be converted

into Ada character and string aggregates.

(4) Comments

Although seemingly innocuous, comments pose a very

serious problem. The syntax translation from the J73 "comment" or

%comment% to the Ada —comment is obviously trivial. But the translation

•':• of the actual wording of the comments themselves is not.

Comments often refer to language constructs.

A Comments in a J73 program might read: "This table is used to store air-

;-.- craft attitude vectors." Or: "Value-result binding is used here to

 " If these comments were to be translated verbatim, they would be

confusing and self defeating. Comments may also refer to names which

have disappeared during translation. The names of DEFINE constructs

which have been expanded during translation is an example. J73 numeric

type designators are another.

A complicating factor is our ability to recognize

when comments are relevant and helpful and when they are not. Unless a

translating system is prepared to solve the problem of deciphering the

English language, it can safely be said that all comments must be suspect

and therefore discarded. This is extremely damaging to the quality of

-. the resulting code. Of course, a human could run through the code and

fill in comments by looking at the original code, but this would sub-

stantially increase the percentage of work required after translation.

(i) Directives

The J73 manual states: "<Directives> are used to provide

supplemental information to a compiler about the <complete-program>, and

to provide compiler control." This makes them comparable to Ada pragmas.

Some of the predefined J73 directives match well with Ada predefined

32

•-:•>:• :v>.-Xta>. v^x-:>

I

^+m*jmvwm^^mit yw f . > . • 1/ >• m m r- r-i •» •. • •.- ^--;« •. •. • •. ;•- — -. ^-7-5

AFWAL-TR-83-1058

pragmas. These are primarily text and listing control directives such

as COPY, SKIP, BEGIN, and END.

Some J73 directives violate the Ada language definition

such as expression evaluation directives, initialization directives, and

allocation order directives. The use of the 1LEFTRIGHT directive in a

J73 program has very serious consequences. This directive forces left

to right evaluation of operators at the same precedence level. This is

incompatible with the Ada LRM statement that "A program that relies on a

specific order (for example because of mutual side effects) is therefore

erroneous." The reason that this is so serious is that Ada programs

that contain dependencies in the evaluation order of operands will compile

without error, but may not execute as intended. All code within the

directive ILEFTRIGHT must therefore be suspect and can not be guaranteed

to be semantically equivalent.

Other directives do not violate Ada but are unlikely to

be included in the Ada compiler on which the resulting code must be compiled.

These include linkage directives, trace directives, reducible directives,

and register directives.

As mentioned in Section III.1.a.(2).(a), compool directives

can be translated into Ada WITH clauses. This is not entirely true.

J73 allows any name declared within the compool to be directly referenced

by a compool directive. Ada allows reference only to package a subprogram

modules that appear as library units. A reference to a particular item

or table in a compool was probably made to avoid a name conflict with

some other name in the compool. This problem is similar to the REF - DEF

problem described in Section III.l.b.(5).

2. SUMMARY OF UNTRANSLATABLE FEATURES

J73 and Ada have a variety of incompatibilities. There are several

basic design tenets of each language that do not match well. This results

both in constructs that have no equivalent in Ada and ones for which a

correct translation has a major impact on the quality of the resulting

software. Still other J73 features are considered to have high risk for

translation. These features have definitions that are very similar to

Ada, but anomalies in their implementations may result in some incom-

patibilities in some translations. These classifications are summarized

in Figure 1,

3:

•*/*.
. '••'•— '-*'• •>'•-- •--'•-• .'-f "- • •• '-- . • "-• .- • • • • -«••- * - I• - -•-•.•-•.-•.-.••-.. -^^^^^-^J-i-^**»^**

•'•'»•••

S

A'

AFWAL-TR-83-1058

Conflicting Design Concepts:
Information Hiding
Type Composition
Type Conversion
Data Representation and Access
Name Importation/Exportation
Error Hand!ing

Specific Untranslatable Constructs:

Declarations:
Pointers
Table Structure Specifiers
Statement Name Declarations

Procedures and Functions:
Formal Parameter Declarations
Machine Specific Procedures

Statements:
LOOPs with Control Variables
GOTOs to Statement Names
STOP and ABORT Statements

Type Conversions:
Primarily Conversions to and from INTEGER and BIT Types

Directives:
LEFTRIGHT Directive
Some C0MP00L Directives

Translations Impacting Quality:
Static Allocation
Define Declarations
External Declarations
LOOP temporary variables
CASE FALLTHRU option
Name Generation
Comments

High Risk Constructs:
S> Numeric precision
\ Numeric truncation and rounding

Blocks
Bit string operators

*] Figure 1. J73 - Ada Definition Conflicts

34

•. .-.„ .'...•. •.•V'--.-V:.-\ . .-.-•. -.'_-.. .'•---.--.-•-•-_».,•- ••.•„...•..••

* v m % * |

AFWAL-TR-83-1058

3. PERCENTAGE TRANSLATABLE

The percentage of J73 constructs that can be automatically translated
into Ada can be measured in two ways. The first method is a straight
ratio between those constructs that can be translated and those that
cannot. This measure has limited utility, however, since our goal is to
translate real J73 programs, and not just the reference manual. A more
useful metric is the average percentage of real J73 programs that can be
translated. This measure takes into consideration the relative frequency
of constructs appearing in real programs. It also considers the amount
of local translatable code that is "poisoned" by constructs that cannot
be translated.

It is very difficult to estimate how much code will be poisoned by
other local untranslatable statements. This can happen in several ways.
1) The construct may be an integral part of the local algorithm. Even
though most of the algorithm can be translated, the lack of the
untranslatable construct will likely prohibit the module from performing

| its assigned task. It is also unlikely that there is a quick, local
patch. If there were, the translator would be able to substitute it as
an equivalent construct. 2) Illegal declarations can invalidate references
to those objects. 3) The LEFTRIGHT directive is very pervasive. Any

pi code within the area affected by this directive must be suspect. 4)
DEFINES are heavily used in J73 programs. If their negative impact on
program modularity cannot be tolerated, large chunks of code will not be
translated. 5) GOTOs into IF statements or to parameters. It is safe

1$ to say that most J73 constructs that violate the rules of Ada will poison
much of the surrounding code.

i

Ü

What then is the average percentage translatable? With the above
discussions in mind, 30% to 40< of all J73 programs should be achievable
with a good system.

4. SUMMARY OF UNUSED ADA CONSTRUCTS

The following Ada features have no equivalent J73 constructs and
will therefore be absent entirely from automatically translated programs.
Programs translated into Ada will use a subset which does not include

35

L:'.:'-•*.-.' .-.'..-•.'- .'-•'.%'. ^ , -'--•'--•-•'-•"-'---•- ••-•-'•-•-•-• •-•-.. -•-.• -i-i. .V- •.-.-»...,,••.

wjmvmm • • •.•.»•.••' •.•»•'« ••••••'••.* •.• -.• -T.1-' -•V'.'V-'* ,*•-".' V*.'-".'T'.'".'"*"'.'r-'r '--'•'• .-»•;-«-. .

AFWAL-TR-83-1058

these features. (If translation is augmented by human translation, some
of these features may be used.)

- Tasking Facility.
- Exception Handling Facility.
- Generics.
- Ada I/O.
- Access types; dynamic data allocation.
- Overloading

The following Ada features are not utilized to their fullest potential
due to restrictions in J73.

- Packages - Private types, variable declaration.
- Typing system - general type composition, subtyping,

some type attributes, discriminant records, array slice
operations.

5. COST EFFECTIVENESS

The stated objective was to remove the need for maintaining a J73
programming environment by switching all code into Ada; thereby removing
the cost of maintaining it. These cost savings must be weighed against
the cost of developing a translation system, the cost of translating
large amounts of complex software, and the differential cost, if any,
between maintaining the program in the J73 and Ada environments. This
section will not attempt to attach actual figures to each cost but will
outline the types of costs that can be expected. Estimates will be given
when known.

a. Translation 8ystem Development Costs

As stated in Section III.2.a., the complexity and thus the cost
of a translation system would be similar to the cost of a compiler. It
is unclear, however, whether just one translator can handle all J73

'/• translations. The analysis in Section III.l provides several examples
[g where MIL-ST0-1589B is ambiguous and contains many implementation

dependent features. Several interpretations of MIL-STD-1589B exist and
are embodied in J73 compilers used today. Programs that work correctly

36

 - -. , •.-• \

'.-.

v •• i •; _'j « ^ J . ••. • •. ••• • . • "_• "T •.« .'. • "

'-"'•

AFWAL-TR-83-1058

when compiled on these systems will require the same interpretation set

in the translator in order to be translated correctly. Each point of

interpretation must be reflected ii1 a translator option in order to

provide a correct interpretation and translation.

A translation system would be a short-lived system. Once all J73

was translated into Ada, the system would have not further use. Thus,

it would not require the normal maintenance to fix bugs. This is a

blessing in disguise, however. It means that all (or an extemely high

percentage) bugs must be removed before it can be successfully used at

all.

b. Code Translation Costs

Once a translator is built and functioning correctly, the primary

cost will be the labor of programmers skilled in both J73 and Ada. They

would be required to clean up the translation to provide a full trans-

lation. These cost are directly proportional to the amount of human

translation required.

Of course, the resulting translated code must be entirely retested

to certify that the new program satisfies all of the functional require-

ments. This is \/ery often non-trivial, expensive operation. At this

stage the program could be considered an Ada program and all modifications

made in Ada.

c. J73 versus Ada

Ada was designed to reduce the cost of maintaining software

through the use of new concepts in the structuring of programs and data.

These concepts were not placed in J73. As we have seen in Section III.l,

the features in Ada that were designed for this purpose could not be

correctly utilized by a translator. We, therefore, cannot expect to

realize the advantages of Ada. We can expect the resulting programs to

require the same effort to maintain as the originals.

37

- .. I,. .• • . «• .

r ••• .M..UJ.L ALU'/-!' "^TTT,TW^^T" - • i • i • i - r • 1 . • - • l - • •

3 AFWAL-TR-83-1058

i

\i

i,

SECTION IV

CONCLUSIONS AND RECOMMENDATIONS

Several conclusions can be drawn from the discussion above:

- A high percentage of real J73 programs cannot be automatically

translated.

- The translation of numerics is risky. Some precision errors must

be anticipated in some translations.

- A large amount of human supplement is required to fully translate

J73 programs into Ada.

- The resulting code may be poorly structured. Several of the program

structuring facilities in J73 and Ada have incompatibilities.

Several Ada structuring facilities will not be utilized by a trans-

lator.

- The resulting code may be hard to read and understand. The lack of

translatable comments constitutes the largest impact. Name trans-

lation and name generation also effect readability.

- The style of the resulting program will still be J73 style. A

translator will only rewrap J73 style programs in Ada syntax.

- The resulting programs will not be as robust as they should be.

Several Ada features are not used by the translator.

Due to the overwhelming number of negative conclusions development

of a J73 to Ada translation system is not recommended at this time. The

best solution to the problems is to leave the J73 programs as they are

until their life cycle is terminated. If programs must be translated

into Ada, it is recommended that they be redesigned in Ada and entirely

hand translated into Ada.

One possible use for our capability to translate some J73 constructs

might be the development of a "local" translator. A human could bracket

off portions of code that can be translated effectively. If some portion

38

. - -• - • •-»..«_»jL« :.•*..,. : :.T,^ *•• *•» *•« icA

M
fv*

^... ^V.HI.M.LJ............ • • il

AFWAL-TR-83-1058

p p» T-» • • —•"*"«

of the bracketed code could not be translated, then no part would be

translated. These segments of translation could be used in conjunction

with an editor to hand translate programs. Such a "local" translator

could remove the tedium of translating these portions of code.

u ~

39
GU.S.Govtrnm«nt Printing Oltlc«: 1983 - 759-062/542

•V.-\ ••.••.--.••..•. •. . •. • •" ".•;.••-•.'.•.• ,v.v

-•

iß wmM 3 ifj mt

3 '1*
1 V

••?. -.,. •/.' .' -> '•"•».... •

(i) Directives

The J73 manual states: "<Oirectives> are used to provide

supplemental information to a compiler about the <complete-program>, and

to provide compiler control." This makes them comparable to Ada pragmas.

Some of the predefined J73 directives match well with Ada predefined

32

correct translation has a major impact on the quality of the resulting

software. Still other J73 features are considered to have high risk for

translation. These features have definitions that are very similar to

Ada, but anomalies in their implementations may result in some incom-

patibilities in some translations. These classifications are summarized

in Figure 1.

33

4. SUMMARY OF UNUSED ADA CONSTRUCTS •

The following Ada features have no equivalent J73 constructs and

will therefore be absent entirely from automatically translated programs.

Programs translated into Ada will use a subset which does not include

35

