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L ABSTRACT

The methods currently used for calculating the
inception and location of separation in the discrete
vortex model developed by Shoaff and Franks are de-
scribed. Sensitivity studies of these methods were
conducted to determine whether they cause the differ-
ences between experimental and numerical results seen
during early flow development for the non-circular
cylinders A and B, The method for calculation of the
inception of separation was found to cause scme differ-
ences in the data for both bodies. The remaining dif~
ferences can be attributed to the inaccurate modeling
of the generation of vorticity in the initial flow
region. The method described for computing the location
of sepdration oan the upper protrusion of cylinder A was
found to be adequate.fi\

ADMINISTRATIVE INFORMATION
The work presented in this report was conducted with funding from Naval Sea
Systems Command (03R22) under Task Area SK040301, Program Element 61153N, and
Work Unit 1808-010 at the David W. Taylor Naval Ship Research and Development
Center (DINSRDC).

INTRODUCTION

This report deals with the discrete vortex modeling of two—-dimensionail
impulsively-started flow about bluff bodies. This type of modeling is of incer-
est to the Navy because of its applicability to maneuvering underwater vehicles.
Other numerical methods, such as finite differencing of the Navier-Stokes equa-
tion, show promise for application to realistic Navy problems but are now limit-
ed to relatively low Reynolds numbers and require large computation times. The
discrete vortex method does not share these limitations and has shown good re-
sults in predicting loads on a circular cylinder.l,z* Telste and Lugt3 extended
the discrete vortex method to finned circular cylinders using exact conformal
mapping techniques, and Shoaff and Franks4 applied the method to other non-
circular bodies by using both exact and numerically generated conformal
transformations. At Reynolds numbers on the order of 104, Klined carried
out experiments on cylinders A and B, shown in Figure 1, which are the same
bodies studied by Shoaff and Franks.% Sarpkaya and Kline2 published an

*A complete listing of references is given on page 15.
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encouraging comparison of the experimental results from Kline's? work with

the numerical results from Shoaff and Franks.% They showed that the discrete
vortex model gives promising predictions of the asymptotic flow period but
that significant differences between numerical and experimental results occur

during the early flow development.

CYLINDER A CYLINDER B

Figure 1 -~ Non-Circular Cylinders

Some of these differences noted by Sarpkaya and Kline2 can be attributed
to empirical assumptions needed in the model. This report presents the results
of an investigation of the sensitivity of discrete vortex method calculations
to assumptions dealing with the inception and location of flow separation.

The details of the method are not described here but are given in the paper
by Shoaff and Franks. %

PREDICTION OF INCEPTION AND LOCATION OF SEPARATION

The prediction of the inception of flow separation and the computation
of the locatlon of separation points are important for discrete vortex method
calculations. The method is not used until separation occurs and shear layer
development begins. Thereafter, the amount of vorticity introduced into the
separating shear layers will depend on where these layers originate. For
bodies with sharp corners, separation occurs at these corners and can, for
practical purposes, be assumed to start instantly. For smooth bodies, how-
ever, the location of separation must usually be computed. Other difficul-
ties arise with cylinders A and B which are not symmetric with respect to

the longitudinal axis, but sre symmetric only with respect to the centerplane.
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When the direction of the oncoming flow is not parallel to the centerplane of
such a non-circular cylinder, the two or more shear layers emanatin, from this
type of body begin to develop at different times. For such a case, an accurate
time history of forces can be obtained only if the time difference for inception
of separation for the shear layers can be computed accurately. Sarpkaya and
Kline?2 speculated that the differences that they noted between numerical and
experimental results could be due to inaccurate computation of this time dif-
ference. Their spaculation is based on the fact that cylinders A and B each
exhibit time histories of drag which have two peaks early in time, each peak
corresponding to the development of one shear layer. In this time span the
difference between numerical and experimental results is greatest.

The method presently used by Shoaff and Franks¥ to calculate the time at
which each shear layer starts to evolve consists of two parts. The first part
computes the time necessary for the boundary layer to develop and initially
gseparate. This initial separation occurs at the point of maximum adverse

pressure gradient at a time (t;) of

2 = -é— .d_u >-1

' ‘1 ([H 3 dxlmax

:i where |du/dx|pax 18 the maximum adverse velocity gradient. This equation is

5 derived in Schlichting6 using the second approximation to the velocity distri-

bution calculated by Blasius.’ The second part of the method computes the time
it takes the separation point to move upstream to a location at which distinct
shear layer development begins, During this time the boundary layer is still
Zrowing but there has yet toc be any noticeable development of a separated

8 analysis.

shear layer. This value (tz) is calculated according to Schuh's
Schuh8 devised a method for calculation of an unsteady boundary layer using
the integral form of the unsteady momentum equation. Schuh's8 method is used
to calculate the growth of boundary layers for instantaneous flow so that the
time taken for the separation point to travel from its initial location to
the location at which shear layer development begins can be determined. The

inception time of each shear layer is the sum cf t; and t9.

The high curvature at the top of cylinder A presents additional diffi- |

culties. The irregular shape of this region made it necessary to run an
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extensive boundary layer analysis to determine the separation location. The
initial assumption was that separation would occur at both regions of large
curvature during early development of the flow, similar to the development of
two shear layers on the top of cylinder B, However, results from a houndary
layer program by Cebeci? and experimental results from Kline? show that only
one shear layer separates from the top region., Because Cebeci 's? program used
too much computer time to be used at every time step in calculating the
separation point, another method had to be devised. On the basis of results
from numerous velocity profiles run on Cebeci's?d program, the separation
point is predicted to be just downstream of the point of the maximum velocity
where the velocity is 97.5% of the maximum.

To determine the model's sensitivity to both the inception and location
of separation, and to determine whether the differences between experimental
and numerical results are directly related to these phenomena, two sensitivity
studies were carried out. To investigate the importance of the difference
between the start times of the shear layers, the model was run for both bodies
holding the starting time fixed for one shear layer while varying the starting
time of the other. In addition, several runs were made for cylinder A using
different percentages of the maximum velocity to locate the separation point
at the top. The results of these studies are presented in the following

sections,

SENSITIVITY TO SEPARATION INCEPTION

CYLINDER A RESULTS

For cylinder A the method described in che preceding section for the
calculation of the inception time of each shear layer produced a normalized
inception time (Ut/c) of 0.35 for the upper shear layer and 1.0 f-r the lower
shear layer, where time is normalized by the free stream velocity (U) and the
body radius (c). However, Sarpkaya and Kline? state that, based on the exper-
imental data, shear layer development does not start on this body until a
normalized time of 0.6 and that when it does, it starts on the upper protru-
sion of the body. Therefore, for this analysis the upper shear layer was set
to start at a normalized time of 0.6 for all runs, while the lower shear layer

was varied with values of 0.6, 1,1, 1.6, and 2.6. The results are shown in
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the 1ift and drag curves in Figures 2 and 3, respectively. The lift and drag
forces are nondimensionalized by density (p), free stream velocity (U), and
body radius (c) as shown on the figures. Both experimental and numerical
results show a drag overshoot in Figure 3, which, as pointed out by Sarpkaya
and Kline,2 is due to the rapid increase in vorticity in the first two shear
layers. The double peak region s=en in the experimental data shows up in the
numerical results as the time difference is increased, although the numerical
results still do not compare well with the experimental data. The comprted
peaks occur at different times and at different magnitudes than the observed
peaks. A possible cause of these differences may be the inaccurate modeling
of the vorticity generation during the early shear layer development. This
explanation is indicated by the differences in the slopes of the drag and
1ift curves in the early development. An unrealistically high slope, indicat—
ing a high rate of vorticity generation, causes the numerical results to peak
too early, The 1lift and drag curves do show that the forces are sensitive to
the relative inception times of the two shear layers and that this phenomenon
must be modeled correctly before reliable force values can be obtained for

the early flow development,

CYLINDER B RESULTS

For cylinder 5 the top shear layers were held at an inception time of
0.0, because they are generated at sharp edges. The bottom shear layer
inception was varied with times of 0.5, 1.0, 1.5, and 3.0. The results are
shown in the 1ift and drag curves in Figures 4 and 5, respectively. Cylinder
B experimental data show a more distinct double peak in the drag overshoot
region (Figure 5) than do the data for cylinder A, Again the reason for this
double peak is the time difference between the starting of the upper shear
layers and of the lower shear layer. In cylinder B numerical results a dis-
tinguishable double peak appeared as the time difference was increased. As
with cylinder A, cylinder B numerical results do not agree with the experi-
mental data in magnitude and time of occurrence of the peaks, Thus the
results of both bodies show that the model is very sensitive to the time
difference between inceptions and that the early vorticity generation is not

modeled accurately.,
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SEPARATION LOCATION RESULTS FOR CYLINDER A

In runs for cylinder A the upper separation point was assumed to be
located where the velocity decreased to 100%, 97.5%, 95X, and 90% of the
maximum velocity. The results are shown in the lift and drag curves in
Figures 6 and 7, respectively. These results show that the forces are
relatively insensitive to variation between 95 and 100 percent of the maximum
velocity. For 90 percent the numerical results were substantially below the
experimental data. The separation point varied about 2 to 3 degrees with
each increment, showing that for this particular body the separation point
can vary within a 4-degree region without affecting the results. However, this
range probably depends on the severity of the curvature of the body in the
region of separation., Therefore, whenever an arbitrary method like this must
be used, a sensitivity study should be included. These results indicate that

the current predicticn scheme for this particular body is reasonable.

CONCLUSION

The discrete vortex model described by Shoaff and Franks# has been shown
to be very sensitive to the modeling of the difference between the starting
times of the shear layers. This time difference is important when modeling
bodies that are nonsymmetric with respect to the oncoming flow, and small
errors in it can lead to large errors in the early time force calculations.
But this is not the only cause of differences seen between numerical and
experimental results. Also suspect is inaccurate modeling of the early
vorticity generation. Both of these inaccuracies are seen in the early
development of the flow during the drag overshoot time period. After this
period the model appeared to predict a level of drag very similar to that
of the experimental data.

The separation location problem depends on the shape of the body being
tested. In most cases an extensive boundary layer analysis can be used to
devise a method for predicting separation on irregularly shaped bodies. But
for some highly irregularly shaped bodies, this analysis may not provide an
adequate separation predictor, which would limit the model to certain shapes.

In general, this method currently does not accurately model the early

development of forces for impulsively-started flow about bluff bodies., Most
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: of the improvements are needed in the initial flow development prediction
where the drag overshoot occurs. Even with such improvements, this method

requires experimental corroboration and guidance before the numerical results

can be used with confidence,
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