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PREFACE

The computational procedures of the numerical approximation to the

transport equation are reported herein. These procedures will be in-

corporated into a numerical model to be used for evaluating effects of

proposed dredged material disposal practices in Mississippi Sound and

adjacent areas.
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DEVELOPMENT OF A NUMERICAL SOLUTION TO THE TRANSPORT EQUATION:

Report 2 COMPUTATIONAL PROCEDURES

PART I: INTRODUCTION

This report develops in detail the numerical approximations to the

transport equation. In Part II, the linearized form of the equation is

the subject of investigation. The stability and truncation error char-

acteristics for the schemes proposed in the first series are developed.

In Part III, the nonlinear equation in transformed coordinates is con-

sidered. The schemes developed in the first part are extended to the

nonlinear equation. In Part IV, the numerical approximations near

boundaries, the hydrodynamic interface, and the determination of dis-

persion coefficients in terms of flow field properties are developed.

This report outlines the development of the salinity algorithm.

The next step is the numerical implementation of these procedures.

4

C -



PART II: NUMERICAL APPROXIMATIONS FOR THE TRANSPORT EQUATION
IN CARTESIAN COORDINATES

A Cartesian coordinate system is employed in all developments pre-

sented in this part. The stability and truncation error of the proposed

numerical approximations are investigated for the linearized transport

equation. In this manner the most favorable schemes may be determined

prior to programming a numerical experimentation. Unfortunately, the

transport equation is nonlinear and no formal method of analysis exists

to determine the appropriateness of numerical schemes. We follow

standard numerical practice and assume schemes which possess favorable

computational attributes for the linearized transport equation will also

be suitable for the nonlinear equation.

We therefore develop linear forms of the transport equation fol-

lowed by investigation of several numerical schemes to this form of the

equation. The schemes considered are the Leendertse [1] multioperational

scheme employing forward time and centered space derivatives (FTCS).

The use of upwind space differencing within the Leendertse multiopera-

tional scheme is next investigated. The scheme thereby obtained is

known as the forward time upwind space (FTUS) scheme. We next investi-

gate several spread time derivative (STCS) schemes and select the most

favorable for further development.

1. Linear Forms of the Transport Equation

Let us consider the two-dimensional depth integrated transport

equation as follows:

5
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(hs) + (hus) + (hvs) a K h L8s + h - (
(hus 3I y ax Bx y \y jy)

where

h = total water depth

u,v = depth average velocity components in the x and y direc-
tions, respectively

t time

x,y =Cartesian coordinates

s = constituent concentration

,K Effective dispersion coefficients in the x and y direc
Kx tions, respectively (note the * notation has been

dropped)

Equation 1.1 represents the conservative form of the transport equation.

To derive the nonconservative form, we expand the left hand side of 1.1

to obtain (noting h = - Zb):

s - i + h + a(hu) s + hu + s a(hv) +L hv (1.2)

Since the bottom is rigid, 3Zb/at = 0 . Using the continuity relation

an/at + 8(hu)/Bx + a(hv)/ay = 0 and collecting terms we obtain

t (hu) + a(hv) as as

+ x + uh - + h + u s + (1.3)5\at y) (Wty
Then finally the left hand side of Equation 1.1 becomes

h L + u L-+ v L(1.4)at ax By,

b*6
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We now rewrite the transport equation for two important special cases.

In Case I we assume h is constant and obtain

+ U K s a(Ky~ (1.5at'- i 5 6x 5 y a

This result is also obtained if Inl<<Izbl In Case II we assume h

K , and K are all constant and obtain/.x y

s s + s K 2s + K as (1

-t ax y x ax2  y aY2

We note that in Equations 1.5 and 1.6, although u , v , s are depth

integrated quantities and K and K are effective dispersion coeffi-x y

cients, the form of the equations hold for instantaneous velocity or time

averaged (over the turbulence) velocity as well. In fact Equation 1.6

or its one-dimensional form is often used since for constant velocity it

becomes a linear equation. Therefore, von Neumann st.ibility analysis may

be employed to analyze the characteristics of numerical approximations.

2. Leendertse Multioperational Schemes: One-Dimensional Analysis

The following one-dimensional transport equation is employed to

determine the dissipative and dispersive properties ,f the multiopera-

* tional scheme [1].

" --- = 0 (2.1)at ax 2

u , D constant

A multioperational analog to Equation 2.1 is written as follows:

7
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n+1 n At +I+ n+n
Pj - + A- u 1+-2ap. + (a - l

j 2onAx J+1
-IA p.n+1 - 2p. + j-} =0 (2.2a)

"' -n~ At [( a tI _n. 1 n+1 n+_ )j1 j
~2 j+I 3 l

n+2 n+1+ uL 1 + ).n+l - n+l n+1I
P. j+1

DAt/ n+1 n+1 Pn+ 1
'-Ax I -2p. +p =0 (2.2b)

where

p= p(jAx,nAt)

a= -1 0 , 1 (Note a = -1 for backward difference in space
a = 0 for centered difference in space
a = I for forward difference in space)

The solutions to the 2.2a and 2.2b are expressed by a Fourier series

p(x,t) = pm exp i(OX + wmt)1 (2.3)
[-.M m~

m=1

= p(jAx,nAt) = P* exp [i(amjAx + WmnAt)]

- .- where

w frequency

-7 = wave number

p* = complex constant for each m
m

Considering only one general term in Equation 2.3 due to the linearity

of Equation 2.2 and substituting in Equation 2.2a we write:

Note

pei[(j±l)Ax+w(n+l)At] n+1 n+1 ±ioAx
""e Pj±I Pj e

~8
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We thus are in a position to determine n+l/p. Therefore we obtain
J .

from Equation 2.2a:

n+1 n W~F)~iAX n+nlpn _p + -( + - 2p n+l + (a - 1)pe+leiAxI

(P e)2 e
i j JA

DAt n+1 iarAx n+l + n+1-i x 0  (2)

which may be rewritten as follows

n+l nIlPj = (2.5a)

n+1
P _i 1 (2.5b)

P. n

In order to simplify X recall sin 0 (e -e )/2i ,therefore

Regrouping X1 , with the above relations in mind

u 2 -ei0~ -iuAt iAx -iAXA t eG - e- X )+ o(e + e -2)

DA At ax ix
D Asn (e - 2 + e ) + 1 (2.7)

A, iuAt snax)-2uAt sinc2 + 4DAt sin2 Ia x\

A o sin ax 2- UAx llI si 1-1+in19x)+
1 A2 t\2/2 A

9
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n+2 n+1 tu + n+1 iaAX n-i + - n+1 -iYAXSp. - pj + - i(1 + a)pj e - 2p +(a - Ip
n-- n-f-i -ix

DAt ( n+l I 2CAx 2p. +p e - 0 (2.8)

Which may be written as follows:

^n+l n+2 (2.9)Ap.j  = p. 29

Where iuAt *(~ +2uAt* .2 /oAx\ 4DAt .2 ax
A 2 1 AX si (r~x +AX sin V--2) 2 sin 2)

Defining the entire transfer process as

n+2 n+l 2 nx T P2j :F 1 0 (2.10)
Pi 2Pj = ip

.I

We obtain the amplification factor X = Al which for stability

Thus

"1 + (uta - 4DAt) sn2 (a)- iuAt sin (OAX)(.1

1 + (4 2 U~)sin
2  + *it sin (GAx)

We observe in Equation 2.11 for centered space differences

(a = 0) and jXI < 1 . For backward space differences (a = -1) and

u > 0 XIl < 1 , while for u < 0 the cell Peclet number must obey the

following relation for lXI < I

Pe =fu[Ax < 2 (2.12)
c D

For forward space differences (a - 1) and u < 0 lI < 1 , while for

10
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u > 0 relation (Equation 2.12) must again be satisfied for X < 1

Upwind space differences represent a combination of backward and forward

differences. For u > 0 backward space differences are employed, while

for u < 0 forward space differences are utilized. In this manner un-

conditional stability is obtained; i.e., the restriction of Equa-

tion 2.12 above is removed. Let a = (2uAt/Ax) sin (o x/2)

*2 2
b = (4DAt/Ax2) sin (oAx/2) , and c = (uAt/Ax) sin (oAx)

then

Al 1 + aut-b -ic- 4ji-b)+at2 2(.3JAI (2.13)
I .h = + - act + ic N[1 ]2  2

" I + b) act]

Leendertse notes that the general solution to Equation 2.1 may be

expressed as

p(x,t) = p* exp [i(ox + wt)] (2.14)

Substituting Equation 2.14 into Equation 2.1 we obtain

iwp(x,t) + iuop(x,t) - Di2a2p(x,t) = 0

w + uo - iDo 2 = 0

w = o(iDo - u) (2.15a)

and

p(x,t) p* exp [ia(x - ut)] exp (-Do2t) (2.15b)

We observe then that there is a relationship between the temporal

frequency and the spatial frequency. As a result, the complete solution

may be written in terms of the spatial frequency solely. For a time pe-

riod At , each Fourier component is decreased in amplitude by

exp (-Do 2At) and is propagated a distance uAt

.?. 11



I V

In the computational procedure a different relationship exists.

The eigenvalve or amplification factor may be used to study the dissipa-

tive and dispersive effect of the computational procedure by the use of

the concept of the complex propagation factor.

The propagation factor is expressed in terms of the dimensionless

parameters m = (L/Ax) , D' = (DAt/Ax) , and U = (uAt/Ax) . It is de-

fined as the complex ratio of the computed wave to the prototype wave

after an interval in which the prototype wave propagates over its wave-

length. The modulus of the propagation is a measure of the decay of

the amplitude during computation, while the argument is a measure of the

computed phase shift.

To determine the factor we use the following previous results for

the computed solution. We consider the case a = 0 corresponding to the

use of centered space differences. We note from Cquation 2.13 for a = 0

1- b - ic 4DAt .2 AxAt

i where b = sin and c = 1 sin (oAx)I + b + ic Ax 2  2 AX
2Ax~

b = 4D' sin2  2 c = U sin (oAx) (2.17)
n+2 = p2

From the solution of the PDE in Equation 2.15 itself

p(jAx,t + 2At)

=p* exp [ico(jAx -u(t + 2At))] exp [-Dc72(t + 2At)]

p(jAx,t + 2At)

22
=p* exp oi(jAx - ut) exp (Dt)exp (iau2At)

exp (-Do 22At) (2.18)

2
p(jAx,t + 2At) = p(jAx,t) exp (-Do 2At) exp (iau2At)

p(jAx,t + 2At) = p(jAx,t)A s

12



The complex propagation factor is then given by the following relation

L
Twhere n = m ~ (2.19)

m t

Let us expand Equation 2.19 using Equations 2.17 and 2.18

Tm = b -) (eO2AcuA) n/2

/2\ +4 +ic2 D; At 2(n2t2Do22t = ~~~At -Do 22At =

-"Ix

LuAt m Ax

c 41 U sin U i F\ a(n

DT covet the n fa clexAnur toe por r e the 1\ 2Dation

Tpe =p (cos 6 = = si n9

MAX" m AxA "

I= - 4D' sin - i 6U + I n n/2

o + -m= 4D' sin 2 2 + 4D' sisin 2(n/)

_ = e i Usn

2c2 2t= m) D

( - -e- e

Leendertse [11 considers D' = 0.01 , 0.04 , and U =0.1 , 0.2 ,

0.5 , Il m is plotted on log scale for the range 2 - 100 .(Only

two cyrles are used.) In working with Equation 2.20 it is instructive

to convert the first complex number to polar representation

C1 = P e =Pl (Cos 6 1 + i sin 0 1)

i0 2
c 2 = P2 e  =P2 (Cos 0 2 + i sin 0 2)

clI Pl i(0l'02)

-- ec 2 P2

13



Note

r, [( D 2 2 U2 sn: nI e ta- I[ sin (2n/I)/ (14'.,2 (/

C I + 4D)' sin 2 (1))2+ U2  sin 2 2] ei tan-1[ i 2/)(+D i (n/rn))]22"

c 2 )) 2  2 .2 i an1 U sin (2n/m) . t -I U sin (2n/m)
S 2  

+ n - e 1-4D' sin 2  (n/m) 1+4D' sin (R/M)
C2  (1 +4)' sin2 ()) +U2 sn2 2n

We therefore may rewrite Equation 2.20 in final form by defining tempo-

rary variables a = 1 - 4D' sin 2  f/m , b = I + 4D' sin 2  n/m , and

c U sin (2/m) . Note n =L/uAt mAX/At =m/U
m

a2  ~ m/2Ua 2 + c2

T 2  2 [t- c/t 1 1 m/2U(22ab + c an (c/a)-tan (c/b)-(4n/m)U-. Tm  2/2/) e (2.21a)
m2 JtU

m &20/ (2n/m)

io
,T. R e (2.21b)M m

The plot of Rm  versus m is known as the modulus of the propagation

factor. The plot of 0 versus m is known as the argument of them
propagation factor. An alternate means of considering Tm  is given by

Leendertse as T(oL) where T[(2n/mAx)LI or T[(27/mAx)Ax] = T(2n/m)

= Tm . L = Ax is a characteristic length equal to the grid size. Al-

though we have not shown the above plots here, Leendertse comments that

amplitude and phase characteristics of the multioperational scheme are

good for m > 10 , JL > 1Ox.

In the simulation of Jamaica Bay Ax = 500 ft* and L > 5000 ft.
m-

* To convert from feet to meters, multiply by 0.3048.

14



For wavelengths less than 5000 ft the amplitudes will be amplified. The

flow conditions considered for initial testing are given in Table I.

Table I. Leendertse Flow Conditions

u 0.1 0.2 0.5 1.0 v 0.1 0.2 0.5 1.0
D 0.01 ' 0.01 ' 0.01 ' 0.01 D 0.04 0.04 0.04 0.04

P 10 20 50 100 P 2.5 5 12.5 25
ie e

3. Leendertse Multioperational Schemes: Two-Dimensional Analysis (FTCS)

The following two-dimensional transport equation is considered.

,.-

+_ f +P (3.1)
at a 8y 22 2 !

where

n constituent of concern

u,v F constant velocity components in the x and y directions,
respectively

a H constant dispersion coefficient

x,y,t are as previously defined

Leendertse [1] employs the scheme originally proposed by Peaceman and

- Rachford [2] for diffusion problems. Namely, for the X-sweep

+ !A-t 6x qAt 6 2 n+1/2 2)n
(2 nI/2 vat 6y + 9!Ayt 6 n (3.2a)2- 2 2 2 y(.a

For the Y-sweep

(+ vAt 6y - At 6y 2) nn+1 = 6x + 2a 6 x 
2) n+1/2  (3. 2b)

2y 2 = 2 /

15
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where

6x = (,m l" ,-) 2Ax 6x2 - (r1,m+1 + q£,m- 2flm) A x

= (.2 += + £ - 2nkm) Ay2
,' 6y =(ne+l,m n£_l,m ) 2Ay _I'q£lm1m

x = MAX

y = A

t nAt

*../ - If we eliminate the intermediate level 1n+1/2 , we obtain

ciA-t (I v At 6 c I~t 2,l"<'...6y -, 2 -- 8 _ -t6 (3.3)

( At 6x _ At 6x2 ( 1uAt 6x + 9at 
6 x 2)

/. 2 2

Expanding Equation 3.3 we obtain

(1 v t- i~ 6 2) (+ u~ 6x ~ - 6 2)rln+1

(3.4)
"" : ( at a-t u 1_ _t 6x +__ _- 6x2)

2 2 2- 2y 2 rl

Let us substitute ri,m e ot iyeAy e iAx into Equation 3.4 and de-

fine the following auxiliary variables.

uAt vAt
-1 4Ax a 4Ay

(3.5)

b.- 1 At b At
2 2 22Ax 2y

If we employ, the results of Equation 2.6, we obtain the following

expression for the eigenvalue A of the numerical approximation.

16
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n+1

r= n
m
'. 

(3.6)

(-- 2ia1 sin PAx 4b sin 2  - 2ia siny Ay 4b sin 2

-b1  2 1 2a 2  4 2

(+ 2ia I sin P~x + 4b1 sin + 2ia 2 sin yAy + 4b2 sin
2

We note then JAl < I , thus the scheme is unconditionally stable.

-: .If we expand Equation 3.4, we obtain the equivalent two-dimensional

difference scheme.

2 2
vAt 6y t 6 y2 + uAt6x + 6x6y a 6y26x

2 2 26X 42 4~ 2 2

UAt 6x 2 - avAt2 6x26y + (Ot) 2 6y26x2) qn+l
""2 4

i..'-(3.7)
1 uv~2 vt2

= 2t 6x + -At 6x2  vat 6y + 2 6x6y- At 6x2 6y4 y

+ 94 6y2 "uAt2 6y26x + (O)2 6y26x2 ) n

We observe further that Equation 3.7 may be rewritten as follows

n+1 n (n+1 ni I *::"n iqnl + qn) +,A x( n + n)

.tn + vAt 6y 2  + uAt6x 2

-At 6y 2 At 6 x 

2 )
(3.8)

2 auAt2
+"uvAt y ( l ) y2 (rn+ I n)+ -x:y 6Y 64

4 4 yxr

2  2
vAt 26x26y (n+1 2 21n) + (At 26x) yx2 (n+l n)0

n+1 nwhere 6t= nl . We note the underlined terms are additional

17



terms required by the factorization necessary to obtain the multiopera-

tional scheme.

4. Leendertse Multioperational Schemes: Two-Dimensional Analysis (FTUS)

A forward time upwind space scheme may be developed by considering

the following general space derivative in operator notation.

T = 6 + g 6x2  g S (-1,0,1)
x x 2

(4.1)

T = 6y + g AY 6y
2

y 2

Where

T x,Ty general first derivative operator

6x,6y centered first derivative operators as previously defined

6x2,6y2 = second derivative operators as previously defined

For g = -1 , backward space differences are employed. For g = 0

the previous scheme with centered space derivatives is obtained. For

g = +1 , forward space differences are developed.

If we replace 6 and 8 by T and T , respectively, in
x y x y

Equations 3.2-3.4 and in Equations 3.7 and 3.8 a very general scheme is

obtained equivalent to Leendertse's [11 one-dimensional analysis. Corre-

spondingly, in Equation 3.6 it is necessary to make the following assign-

ments to obtain the relation in Equation 4.3 below for the eigenvalue of

the general scheme.

2ia sin PAx -p 2ia sin Ax - 4alg sin 2

(4.2)

2ia sin yAy - 2ia sin yAy - 4ag sin
2 2 sn 2

18

__ _ _ *---*-------[



+ (4a g -4b) sin'~ 2ia1 sin Ax 1 ;+ 2 0 ~ Y 2i. i
1 1 2 1 a2g -4 2 ) si 2 2 Yl yy

+(4b1 4a~g) sin2 
04L + 2ia1 sin +ex~ (4b2 4a~g sin2 

j + 2ia2 sin (4-3

in which

4a 1 g - 4b = ( - 2At)

(4.4)
4a g - 4b2 = IvAtg _ 2aAt)
a2g -4 2  AY AY2 /

We observe that if we set At -> At/2 , -> g , D a in Equation 2.11,

for a2 = b = o , we obtain the result given by Equation 4.3. Analogous
22

to the one dimension case, for upwind differencing an unconditionally

stable scheme is obtained which we denote as FTUS.

5. Spread Time Derivative Schemes

Let us first define the following average space operators

= 2,m+l + £,m-15.a"' P x = ( 5 .1 a )

+J +£ 2 -l~m (5.1b)
y 2

If one studies the relationship between Equations 3.3 and 3.6 and

replaces 1 by (2 + px)/3 or by (2 + P y)/3 , appropriately, several

schemes suggest themselves. In each case, the appropriate time deriva-

tive is averaged spatially and a "spread" in space time derivative

scheme is obtained. Several such schemes are investigated in turn below..

Intermediate level differencing

If we replace 1 by (2 + p )/3 at the intermediate level we

obtain the following relation.

19



+a 6Y at 6y + +it 6x U 6xQ
22 3- 2 km

tx - uAt 6x + OAt 6x2) 1 vat y + 'Kt (5.2)
3 2 2 2 2 - '2,m

If one substitutes e nAteiyYei m x  into Equation 5.2 and em-

- ploys Equation 3.5, the following eigenvalue for the numerical scheme is

obtained.

_ _ 2

i + x 4b sin 2 2ia sin y 2y 4b

(5.3)

."~~ • j 8 y6 nl= + Co3 2 -P- x

2isinin yY)(+ 4b sin + 2ia si ~ 4b sin2

X < I and the scheme is unconditionally stable. The scheme is given by

the following relationship.

/2 'x ut nAt 62) n+1/2 vAt uvt 2 n2 --At 6x2 At 6 6y2 + 6
3 3 2 2 2

(5.4)

1'+ c t 2 n+(2 Px uAt At 2 +/

Expanding Equation 5.2 we obtain the equivalent two-dimensional scheme

2 tx + ,At 6x + aAt 6x2 vAt 6y vAt uvAt2(3 +3 2 -- 3 6 x

2 3 6 x y

av2 2 t 2 2  

(.. Xv -t24 6x + ! v62 6At - 1 uAt2y28x --UvAt2 8y q?3+3 42t 2 3j-- 6 vt6P X 4 x

avt2 2 2 uAt 2 UAt 2 y26 U2&2 6 6~

%"" 6  6v0 6y 64

20



If we combine like terms in Equation 5.5 we obtain the following

relation in which the additional factorization terms (see underlined

terms in Equation 3.8) have been omitted.

(2 n+l + ' 1-1 ~l +
x(2 Px)6n + w t6x n) -At6x

n+1 n 2
S"+ 2 vAt6y + 2 U At6y 2 (5.6)

3

+ ! vAt6ypx !n ) - ! LtyPxn 1  0

Opposite inter-
mediate level differencing

If we replace 1 by (2 + p )/3 at time levels n and n+l and

employ standard time differencing at n+l/2 the following relation is

obtained

S. + Avat 6y cAt 6y2 ( + 6x aAt 6x2 qn+1

uAt 6x + 9At 6 2 vAt (57).. [2 2 -3 6 3 2 2 yq 57

If one substitutes = e teiyAYeimAx into Equation 5.7, theL Ifone sbstittes 9,m'

following eigenvalue is obtained.

2ia1 si ~ - 4b sn 2 oYAy -i si -~ 4 i 2 y~y
sA b1 Sf 2 (33 2i 2  b2 Sll2 / (5.8)

h + + 2ia sin yAy + 4b sin + 2ia I sin P + 4b sin 2_)
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Since K < 1 , this scheme is also unconditionally stable. The scheme

is given by the following relationship.

"(i u_ 2 cvIt 2n+1/2 2 vAt y At 2)

(-.+ t!! At- 6x 2 -= + 3 -- 6y + t 6y rin
S +2 (-- 6x3 2

b -.- k...--(5.9)

Expanding Equation 5.7 the following equivalent two dimensional scheme

is obtained.

+ ( b  vAt 'cAt 62 +uAt u+At a+t u 2 6+/

+3 y= I - 6 6i x

3 2 2 2

-cUUAt 2 Y2 x At 62 crAt 62 civAt 2x2y
4 3 6 - 4

2 2
iAt 2 6)n+

4 (_(5.10)

".i'" + '3 + vAt 6 yaA__t 
y 2 + 6 + 8t6  + uvAt2 6~

" cAt vAt2  .

,'-""..." . c ut2 6y 2  O At 36 2  t 6 x by !At-2UP

2. 3 2 2 23 6nyl

auAt2 2- 2 +xAt 6 2 -vAt 2 6 yaAt 2 1nS3 6 4 4

Equation 5.10 may be written neglecting the factorization terms as

follows.

(6 t2 n ,'n+ + n\2n+n

Sn3 + vAt6y2 t-3 - u At 2
2 2 2

+ uAt6xAt v 2 
-x2n (5.11)

".'".~ 4 x 2  3 2 i~'l

+ - uAt6 ! n At6 y( n + 1 +  n

3 yt 2 3~~ 2

22 (1n~
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Advanced level differencing

If one employs spread time derivatives at the most advanced levels

n+1/2* n+1
in each sweep (fl/ and rn~) and utilizes previous procedures, the

following eigenvalue is obtained for this scheme.

2ial sin P - 4b sin
2 P - 2ia sin s6¥ - 0 in

2

A _ _ 2 --2 2 2~ s_4b 2 (5.12)_

3A si3 sin
2  + 2ia, sin ily +(4h 2 sin2 Y )

Consider a stability investigation in the following manner. First, note

by trigonometric identity

si2 . 1- cos PAx and sin2 yAy - cos yAy
2 2 2 2

* Consider yAy = (0) = PAx , then since sin (0) 0 and

*cos (0) = 1 , Equation 5.12 becomes

A, = _ -+ I x > 1

and the method is unstable. Therefore, this scheme will not be further

considered.

Retarded level differencing

If one employs spread time differencing at the most retarded time

level in both sweeps, the eigenvalue is given by the following relation.

+ Cos - a i 
2  + -Y Y - 2ia 2 sin yAy - 4b 2 sin

2  )(3 3o B 2ia, sin PBx - 4b I sin 
2  

X -. os 3 2 2s 2

2= 2 3 (5 .13)
= + 2ia 2 sin yAy + 4b2 sin

2  (1 + 2ia1  sin Px + 4b sin
2 

2
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This scheme is unconditionally stable and is given by the following

relation.

(+ -! tx- 6x 2 + vAt 6y -At 6y nl

(5.14)

+ c 6 At 6y)2 x t~ 6x2+y2 +~ 6x + S x)f(g33 (2 3 2 2
The sweep equations then become

(1 + x-C-At x2) n+1/2 2 6 6 +

22 3 2

(5.15)

vat t6y 2arn+l ( x nx +ix
2T~ 2 = 3 2 -2-

If Equation 5.14 is expanded the following relation is obtained.

u t at 6x2 +yvat uvAt2  avAt2 6x26y+ ~~ -A- 6 2--6y + 6Yx~
At U y 6 y + 6x6y 4 l

2 4 4
xAt 2 auAt 2 + At 2 2 n+1
2 6+ 4 6y 6x + 6x + 9(

(4u2tvAt 
Y2t 2 2 + y vAt-a 2 _ -__tt 9t 6yx (5.16)

9 9 8y 3 3 9-x-- 6X~

+ At a2 uAt 6X nAt u At2 _6x2 6yn+ 6 Y x 3 6 y 4 4yx ~6~

2 U2t2
+ -t 6x2 + 6x2 4 6x 2 6y 2 2) n

6 y 4 /

24



Equation 5.16 may be recast into the following form (ignoring At2

factorization terms).

n+l 4 + 2(Px + + Pxy A6&n2+ (2 + ) nq - 9 n + vAt6y --+ 6

2 6 6

+ ) n At2 n+1 + ry n
2 62 6 n~ (.7

2 n+l (2 )
2 n

Complete time level differencing

If one employs spread time differencing at all time levels in both

sweeps, the scheme eigenvalue is given by the following relation

(?-2ia 1  inO - 4b sin2 P-) + S Osk - 2. sin y~ - 4b sin 
2 
X

( 3 2ia 2 sin yAy + 4b2 sin
2 x )( + cos x + 2ia sin. PA. + 4b, in2 E _) (5.18)

This scheme is unconditionally stable. Corresponding to Equation 5.18,

the scheme becomes

/2 x uAt 6 c+At x2\(2 +Y v~t 6 '5 +At 62'rln+- 3 2 +- 6x + - 2 +- -6y rn

(5.19)

2 ~ ~ y 2+P ~ crAt 2)~ n+1
= + y3 +  vt6 6y y+ - 6x 2 6x q~

3 3 2 3 3 22

In multioperational form, the scheme is given by

+t 62)n+1/2 2t uA6t 2 + 2 )(3 3 + 2-t y 2 0 + 3 2 -- 6 2

(5.20)

2 P + -- x 2 ) n+1 2 + v!At 6y + OAt y2,n+2/2
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If we expand Equation 5.19

( 2 v t aAt 6y2 + 2 2

uvt2 6y6x- 6y6x 6x
9 x 3 34 3

X2y 2 22

aAt 2 a tvAt 2 + aAt 28x2 n+l
6P6x 6y + 6x 6 r)

6 p 4 4

+2 - !!t 6x + 9't 62 2 +,At "Xp + aAt 6x2 (5.21)
x 3 3 + + 9 -6 -6-

vAt 6y - vat uyP + uvAt- 6y6x- Ovt 2 6x26y + At
3 6 x 4 4 3

6aAt 6y2p aunt246y26x +  2u t 2 6 x 2 6y2) 2n

+6 
6 ~x 4 4yx

Collecting similar terms (ignoring factorization terms) we obtain

4 + 2(p +Ix) + PnPx nl n + n+1 + nn

- r At6y + -(n + 6 [

/n+1 n+ ln+1 +n)) 3 66+n+ + n) (5.22)
3 3

" - aAt~x2 6 tq + 0

Summary of spread

time derivative schemes

The following four unconditionally stable schemes have been intro-

duced: (a) intermediate level differencing, (b) opposite intermediate

level differencing, (c) retarded level differencing, and (d) complete

time level differencing. The first two of these schemes employ spread

time derivatives in only one coordinate direction, while the second

.-
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two schemes employ spread time derivatives in both directions. For a

two-dimensional computation, the first two schemes appear less desirable

than the last two schemes. These last two schemes are therefore further

investigated within a formal truncation error analysis.

6. Formal Truncation Error, Eigenvalue, and Complex Propagation

Factor Analysis

In order to compare the schemes developed with respect to trunca-

tion error, Taylor series expansions were developed for the constituent

terms common to all schemes. In Tables II and III the expansions are

carried through third order, while in Tables IV and V the expansions are

carried through fourth order terms. Substituting the appropriate expan-

sions for the terms in each scheme, it is shown that all schemes are

consistent with the linearized transport equation. The order of the

principal truncation error is given in Table VI for each scheme.

We note that the complete time level differencing spread time

derivative scheme is truly second order. Therefore, it is the more ac-

curate of the two spread time derivative schemes and will be the subject

of further numerical development.

The Leendertse multioperational schemes in tandem form a lower

order (FTUS) and higher order (FTCS) pair, which may be developed within

flux corrected transport.
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Table II. Time Level n Taylor Series

Expansions (Third Order)

n . nrl2,m £,m

n n + Ay2 a 2

P y',m = "i, m + 2! 2ay

ax 33

6n n f 2lP

Pxm ri2! nx2 2 n
2

X ,m 2Am x 2

m2n = X +2 A+

.e~m aax

PxPyF2,m n', m + x x2 +2! 8 y2

6Y lx Rl,m =2Ay ay U x2 Zy 3 3

nX~ q , I - Ax 3nJx + xAy2 33 +
UP2 ylxm (2ax2 3 @3

L30y

1 €x $Yr) ,m 4A 7 Ay A aa



Table III. Time Level n+l Taylor Series Expansions

(Third Order)

nl nAt 2 32r, At 3  3 1Qn+l = n+ At + + 3

",m i£,m at 2! 2 3! 3At2  at2

n+1 n
PyQ£ m - ,,m + At at 2! 2 2! 2 2 2 3' 3ay at 3y2at at

6 y y2,m M + ++

y Zm2y ay a3yat 3 32ay aya

n+1 n t + 2 Ax2At 3++ At3 3
2l 2 2 ' + 2 2 3'

x,m 2,m at x 2 2! ax 2 3at

n+1 1 , Ax3 3  2 3r
6 x~yA,m : ,At a + 2AxAt a a 2 + AxA2 At 3

2t2 22+ 2,+At
+ + At + _ Axn

x ynkm nim at 2! at2  2! ax2  2! ay2 3! at3

•AtAx 2 83L +AtAy2 a3Q
2 2 2 2
2atax 2 2atay2

n+1 2 A a3 y3 3 q
"6 yl , = (2Ay -t 2AyAt + 2y _2 + Ax 2Ay 2 + 3 3

y x 2,m 2Ay Ay ayat ayat ,x 2  a

n+x1 22 2 Ax 3 3
6 Pn (2 Ax M+y tx+x y ,m 2Ax' ax axat 2 2 3 3axat axay a

6x6yn 1 4Ax %y xa 4AxAyAt axayat/
£,m 4AxAy ax )y

i,.9
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Table IV. Time Level n Taylor Series Expansions

(Fourth Order)

6y~ ~ 11 A2e+ y 4

-' m  AY2  8y2 12 ay

2 n 1 (,Y 2  ! +L + +Yp-l6Y V xfl,m A2 y 2 2 2 12 4/
AY ay ax ay

2 n _ I (AxAy2 3_3_r
6y&Cx2,m 2AxAy2 xy2(2)

, i-62n = 1 ( 2 +~A~ fem 2 :2 12

2 n 1 (2 82 + 24 4

6x nx4/

6x Pyfm = - +2 2y .2!y2 + ax 2x42

n 22 _ 2I (Ax2Ay2 4n )
-x Oy ,m 2+Ax2Ay 8x 8y 2 +

,m X2 y2 (yAx2

2AyAx' ayax/
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Tajle V. Time Level n+l Taylor Series Expansions (Fourth Order)

21 2 3+ A + 4 22 t2
'Un y2 + by 4yAt 2 _4_

b,m Ay! 3y2 3y 2t 12 ay ay2t 2 )

2 n+l I1 y 2Dn 2 + At 2 33n_ + y a
x Z,m 6y2 ay2 3y2 t 2 22

8Ay Ay1t at
22 4 4

6y~~~~~~ 2 xnnlA~ AAxAy an

9" " 2 2x2y 2 12 41

n+l 1 2 aY 2  + 2 a4n
ky6x 'U,m 2A Dx2 ax x at a32)

/-- 2a 2 3n 44

n+l 1 2an 2t n +x4 an + 2x Att 2
_

6x Z A 2 (Ax ax t aX 2at 12 a aa2

2x 2 44 4

/ 2 3 2 a2 2 1

3 4

2 n+l 1 2'an 2 an x a.,xj . .. A.+x~ + t
6 6y Z9,m 2 A2x 2 t x22

Ax.y a Ax4 anL',:+ 2n2 2
2 ax ay2ax

°. 'x2 y2 n+l = t xb2Ay2 a4n + AtAx 2 Ay2 a5n

-x ,y n ,m Ax2 Ay2  x b x2 ay- - - -  ta xay2)

2 n+1 I 2yx2 3 2 an
2tAyAx2 

-t_ x2
6x y 'U,m 2Aybx2  ayax 2  --ya
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K Table V1. Truncation Error Analysis Results

Order of
Scheme Equation Truncation Error*

Multioperational
Leendertse

FTCS 3.7 0 (At, Ax A2)

* 2FTUS 3.7 and 4.1 0 (At ,Ax, Ay)

Spread Time Derivative

2 2 2Complete Level 5.21 0 (At ,Ax ,Ay)

Retarded Level 5.16 0 (At2 , 2At' At

kr r r r.
* a1,A 2'..4 )- i L H.Aa. 1 where the

(0 1 2 k ,a . k

H. are bounded and L is the finite difference operator and L
1 0

tedifferential oprrn .x .

** Ax, AY, At -4 o :=o IthscnAx, At 40 At 6 y, At +0 At
dition does not hold the scheme is not valid.
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Eigenvalue analysis

To facilitate this analysis, the following dimensionless quantities

are defined. In the general two-dimensional case, the dispersion coeffi-

cients are different in each coordinate direction and are represented by

D and D , respectively.
X y

In previous paragraphs, D and a have been used to represent,

*. a constant dispersion coefficient in the one- and two-dimensional cases.

2. 2T 21 uAt vAt
n nAx L m mAy Ax AV

n

(6.1)
2 D2 DAt DAt

2 (2'n ak 2 = XT D'- ' y
7= 2 Ax2 ~Ln) Gm 2 y2 x Ax2 Vy A 2nx n/myAx 2  Ay

General two-dimensional scheme

Consider equation (4.3) which determines the eigenvalue for the

following three schemes if u,v > 0

(i) g = -1 Upwind differencing (FTUS)

(ii) g = 0 Centered differencing (FTCS)

(iii) g = +1 Forward differencing (FTFS)

Noting a, = U/4 , a2 = V/4 , b I = D'/2 , and b = D'/2 the1 x 2 y

following expression is obtained. (0 a , y = a )
n m

I + (gU - 2D') sin 2 ( - i_ sin (2,)]-

s [I + (2D' - gU) sin () + i sin

(6.2)

1 + (gV- 2D') sin2 I sin

(2D -sin 2 () + i sin () 'T
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Spread time derivative scheme

The complete spread time derivative scheme eigenvalue given in

(5.18) may be written as follows in terms of dimensionless quantities.

+ 3__ i _ _ sin t -7T 2D' 
s in 2

s[ 7

3+ c + i sin 027)+ 2D' sin2
mj X I

(6.3)

[ + 3  i Y sin ( - 2D' sin2(-r
[3 3 2 •~ y0

+ 3 ( + i 1 sin + 2D' sin2(T!S)]

.Computation

The eigenvalue of each scheme, X , has been expressed in terms
5

of the x and y wave numbers, n and m respectively. The eigen-

values are compute tor n and m values from 2-9 over three log

cycles. Note L = nAx and L = mAy , such that the wavelengths aren m

expressed in terms of the grid spacing interval.

Complex propagation factor analysis

In order to compute this quantity, it is fir-'- nf,cessary to deter-

mine the eigenvalue of the analytical solution, Xa onsider
a

2 2
an Tn 2n an

n+ u -+ v - D - + D n (6.4)
at ax ay x a 2  y ay 2
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Then n % C exp [i3 t + i(a x + a yjis attempted as a solution.n n n J
Calculating the derivatives:

irD i
n

2 jT 2 (6.5)

-ona2 2

In 3 y2 In

(3+ ua + va )i -a D - a 2D (b.6)
n n in n x m y

or

6 + aiD 2 Da + va2D (6.7)

8 = a n iD xa n- u) + a m(iD ya - V)

Thus the solution may be expressed as follows.

C C exp [(aD + a D) a i~a +V) x + a Y4

C C~ en [Pan + c 2 Y)t] exp [ian(x -ut) + Li (y -vt)]

(6.8)

C C exp (a D t) exp [ax-U)

xexp (ya2 Dt) exp [iom(y -vt)]
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Therefore the analytical eigenvalue is given

C
A=t+At

a C
t

(6.9)

- x (aDAt) exp (-ic uAt) exp CY 2 D At) exp (-iamvAt)

In terms of dimensionless quantities, we finally obtain:

pex 2 exp . n

(6.10)

I2 Tr~, 2.2r~
exp i Dy] expU

{ ep [( )D'y ex [-( )] }= ax • ay

The complex propagation factor, C , is computed as follows.

C X = (6.11)C ('\-ax) Xy

m n

where M = - and N =

U V

We note: uMAt = L = mAx
m

vNAt = L = nAy
n

A computer program has been written to determine both the eigenvalue

and complex propagation factor for the previous schemes at different

values of x and y wave numbers, m and n , respectively.

Initially the one-dimensional case with U = 0.2 , V = 0.0

D' 0.01 , and D' = 0 was computed and results compared with

Leendertse's analysis. The results matched exactly.

36
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Next, a two dimensional case with U = 1.0 V and D' = D'= 0.1
x y

was considered. Finally, the following prototype condition case was

considered.

U uAt (3 fps)(360 sec) 0.27= vAt V
Ax (4000 ft) Ay

I) At 2 A

1- x A (100 ft 2/sec)(360 sec) -.02--D AtDx L2 (40 t 2  =0.00225 = 2 y (.2
(4000 ft) Ay

Results for the three cases above and the program listing are

presented in Appendices A-D.

* 7. Flux-Corrected Transport

In the implementation of this method, both higher and lower order

in space schemes are corsidered. The schemes are written in the follow-

ing flux formats.

I n (AxAy) - -F +F, - F1 (7.1)

* ,m F ( +i/2,m -i/2,m F. m+1/2 m-1/2 )

where t = nAt , x = mx , y = Ay

n concentration at location (k,m) at time level n
aem

Ax x space step

Ay E y space step

I general index at time level n+l which we set equal to
H and L for the higher and lowee order schemes,
respectively.
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F fluxes through the appropriate cell faces of cell
Q+l/2,m+l/2-
-- - (L,m). Form dependent upon the finite difference

formulation.

We observe from (7.1) that the difference between the higher and lower

order scheme at (Z,m) may be written as follows:

H _ L =(Ay)- [(FH+l/ 2  - F l/2,m

F HF~i 2  - F L_/ 2 m+ (F m / - F m /2  (7.2)

nZm 2,,m/, ~ m12 Xm12

-'(Fml/ F L i/)

Note this difference is expressed as an array of fluxes between adjacent

grid points and is the condition required to implement flux-corrected

transport. We next develop the expressions for the above fluxes for the

higher (F H ) and lower (F L ) order schemes.

For the higher order scheme we employ the FICS scheme written be-

low in which the factorization terms necessary for the multioperational

method are underlined.

n+l n vAt (n+l n) uAt 6x( n+l nn)

HnH  n 2 \ynH + nH 

+at 6y 2(nn+l + nn) +At 6x2(n+l + nn).~~~ +- oy m +n +T 2  +i

(7.3)

uvAt 2 6y6x(n+l nn) + uAt 2 6 y26x(nn+l - nn)

avAt2  2 ,y( n+l n2 2 n+l

S 6x2y - nn ) - 2At26y2ox2(nH - n n )

i" 3 8
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Ignoring the factorization terms (7.3) may be written in the form of

(7.1). The total fluxes are presented as the sum cf the advective and

diffusive fluxes by defining:

H HA HO
F +I/2,m = +1/2,m + F1+I/2,m

(7.4)

F H  HA FHOZ- Z, m+1/2 = F£m+i/2 + Fk,m+I/2

where,

. FH
-H+/2,m+l/2 higher order scheme fluxes

FHAF Z+1/2,m+1/2 = higher order scheme advective fluxes
FHO

SZ+=/2,m+/2 higher order scheme diffusive fluxes

Expanding Equation (7.3) using the definitions listed at the top of

page 16 one then obtains:

F H vAtx[9 n)_ ( + (7.5)
Z+1/2,m 2 2

u y( + l + n )  (n+l n)

'iHA __,Hm+l H (.F ,+_/ HA uAtAy -- .,+ + ' (7.6)

FHO - aAtAxrl + n rlH _ )/2AY (7.7)
Z+i/2,m +lm nZ+l,m Tm ,Z

HO _ H n H n
F -aAtAx + - n..l ) 2Ay (7.8)
F-1/2,m Zm ,m Z-1,m Z I'm)/
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FHO - ~ztyrH +n H n
Z,m+1/2 - y ,m+l + n,m+l - n2,m ,(7.9)

HO /H n Hn
F --AtAyri + n H n )/2Ax (7.10)
Z,m-112 Xm i,m n.,m-- n,m-iJ/

Next consider the FTUS lower order scheme given below. For

g +1 , u,v 0 respectively. Factorization terms are again

underlined.

n+ n---Y + g (Ij J(n+ + n)

- L2

+ " n- Y .2JknL n)+ 6y + x + (

g x1 V n 1n) + ub2( ~ )1n+1 n

ouo+1 ,°+,_
[.".- + x+ n n + nn

4vt .2LY + n) a tdY2 x2(n

If, as in the previous case, the factorization terms are ignored, (7.11)

may be written in the form of (7.1). Total fluxes are, as before,

presented as the sum of advective and diffusive fluxes. Thus

FL FLA +FLO
RA-l/2,m Z+1/2,m Z+112,m

(7.12)

L LA LOF F +F
k,m+l/2 k,m+l/2 + ,m+112
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where,

FL+1/2,m1/2 l ower order schuine fluxes

FLA Z+1/2,m+1/2 = lower order scheme advective fluxesLA

F+l/2,+l/2 lower order scheme diffusive fluxes

Expanding Equation (7.11) one then obtains:

uAtAv ' u > 0LA2 Z,m

) LA L(7.13)(,m+l/2 /) n+l n

uAty 1 2 .< 0
\ 9. m + l

uAtAy 2  u > 0

LA (7.14)

'-. F ,,m9 l / 2m--1 n

-At1/ 
2 

ty) 
,m u < 0

vAtAx 2  v> 0

LA (7.15)

Z + / 2 , m v n n+ l + n nj )

. . .+ 
,

vAt~x L  - V > 0

L A  

(7.16)F - I/2,m 
/ n l + rnv L~ v < 0

vkt~x 2 / ,mo
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,-FLO
F i/2,m+I/2 are as given in (7.7)-(7.10) if one replaces H with L

The flux-corrected transport method is completed as follows:

1. Compute the anti-diffusive fluxes, Ai+l/2,m+1/2

H L
AZ+i/2,m+1/2 :F+l/2,m+1/2 F Z+i/2,m+1/2

2. Determine the limited anti-diffusive fluxes, Ai
Z+l/2,m+112

AC C *A < cAZ±1/2, __1/2 = Ca1l2,mi1/2 • A+/2,m+_._/2 0 <C1±/2,m±I/2 1

The determination of C +1/2,m+1/2 is given by Zalesak as outlined

in [3].

3. Apply the limited anti-diffusive fluxes:

n+l n L (AxAy)-l(AC c + c C
"m =Zm -+y/2,m A-A/2,m A,m+i/2 -h,m-I/2
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PART lI: NUMERICAL APPROXIMATIONS FOR THE TRANSPORT

EQUATION IN TRANSFORMED COORDINATES

The transport equation is transformed from x-y space to Y1 - a2

space by means of an exponential stretch. Subsequently, the extensions

of the numerical approximations to the nonlinear transformed transport

equation are presented. It is instructive to note, that even the lin-

earized transport equation becomes nonlinear in transformed coordinates.

1. Development of the Tranformed Equation

The following coordinate transformation is considered by Butler

1/c1
x -A

x a1 +ba 1  1 b 1  (1. 1)

S1/c2

y = a2 + b2Oa2  .0- a2 = b (1.2)

Tien for an arbitrary hydrodynamic variable p(x,y,t)

daf du
,._ 1 =p p 2(1.3)

ax 3(1 dx ay au 2 dy

2 adua /k dua dot dot I 2 dot + a da

2 a ax) dx aa dx dx dxI 2 dx a a dx
ax 1 1 1 /a 1 1

(1.4)
2 P a da2_ da dua2 du do2 +p 3 _2/

y 2aa (y)dy a 2  a 2 dy ) dy dy aa 2 dY - +  
2  - 2 'd (b)a3y 2 2[~f22
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If we introduce pl = dx/dal and p2  dy/dct2  then

2x Pl al 3Y P2 02

?-! L (LI (1.6)
ax 2  p I P iaU2  8a I au I Vii

2 au 30_
ay 2  p2 [P2aa au 2~

Considering Equation 1.4a in an alternate manner

2
2P 7, dot, ( ot + da

2 =3x au d x -x aI dx a 2ax k 1 /,1 (IX

Noting a/ax = (3/3a )(dot /dx) =(aa P

I = + 1 91

2 dc 2a
ax a2 0 -x--] l.1  dx

2

Employing previous notation, Equation 1.9 is rewritten as follows:

2_2
+ P- (L(0. 10)

ax 2  3a21 3 11 dx p

Note, however, from the relation between a/ax and 3/au we obtain

2 2 2

ax + ?a_ L (L) L
2 au 2 P) al p
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This relation is equivalent to Equation 1.4.

If we consider a hydrodynamic variable p(cl,, 2 ,t) and let

i*,j*,n be defined such that

S p ( i*Aa 2 , j*A 1 ,nAt) (1.12)

Then let i j , n be such that

c- c

"'- = 2 + ba(i 12a +c1 1  nAt] (1.13)

We em trnplov uniform spacing in Y - ty2  space and irregular spacing in

x-v spa-e. We may evaluate the derivatives with respect to x and y

A-,S to lows.

n n d-"i ld (1.14)
ax auIdx j

x -.. ( 1 -C ) / C 1

dx clb 
b  f(x)

f(I + blc) = cc d(O -- f(j*A):".,~ ~ f 1 llb 1  l I (l dx j,

andx

n n du
=  2 d2- i(1.15)

. i d,j*

whe re

d 1 (____ s (1-c 2 )/c 2
da~2 1 .- a2=g(y)

, dy c2b2  b2  / gy

ddy c
,' g 2 + b~a2 c 2b2  2~ 2 y =gi"c2

Si* (*a
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For the second derivative term we obtain

n In ni a 
,  

(

d d-- 8a d 1- } (1.16)
Ox2  i dI * j*

where
d Odol_) d c( 1 - c Iao,- (ax) - [f (a, + bluc)] O 1cbc (

d Ot
d x j* h(J* A 1)

2 n
Similarly, for 2 The underlined terms in Equations 1.6 and

£ i ,j

1.7, although they may be computed exactly, are approximated using finite

differencing on p1  and P2 "

Transforming Equation 1.1 in Part I in x-y space to (Y -U2

space we obtain the following result.

(duS)a (dvs) Of K 1  O (s) OL [2

(dus a + d - d + -Ja1  a - _• (1.17)

where d is introduced as the depth in place of h

S) =OOt

2

)al~ = a/a21

2

Equation 1.17 is the relation that is the subject of numerical approxi-

mation. Let us consider the space staggered grid shown in Figure 1.

*- . The datum convention is illustrated in Figure 2.
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Figure 2. Datum convention employed within the space staggered
grid system
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Let us introduce the following notation as a prelude to the approx-

imations. Define for an arbitrary variable Fk  where t = kAt

= nAy, x =mAx:

sk(Fk'm Fk+1 /2  Fk
t\ n,mJ n,m n,m

S6 k(Fk )m = Fk + l  
- Fk (1.18b)i:. t ~ l n'm n'm"

S= (FmkiF - Fk (1.18c)aI n,m n+/2 n,m-1/2

6 (Fm k k /2  - Fk(1.18d)2  m F n+I/2,m n-1 /2 ,m (. 18d)

2  (k, + F k 12

Lq -- n~nm+1/2 nm-/
n,m = 2 (1. 18e)

F F n+i/2,m n-i/2,m)
Fn,m 2 (1.18f)

2. Leeniertse FTCS Multioperational Scheme

The following finite difference equation is considered as an ap-

proximation to the nonlinear transport equation (1.17)

k () At (a±k+l =k+lk+l -. k~uk)
- ' s+ a +x

l m  1

At -;2 +i +k+l + - 2k--kvk
++ 2Aa2 at2 )(

49(sk+ ) 1  
k

_ At k+1 Kk+l +--1 1k Kk  a1
2 (Actl) 2 (Vi) m  all Ol 1 ( l1) m C i (-lOm(2)

(u2)~ kkla

At +12 k+ 2 (l~ -k Kk  a2

2(A 2 2(lj)n 6 '2 KOL 2)n (2 (lj2) = 0 at (n,m)
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The above equation is assumed to be contained within the following

multioperational difference equations. For the linear case obtained for

S2) n = I)m= K 2 K i constants in space and time, and

u , v , d constant in space and time, the constituent intermediate

time level may be eliminated in the multioperational approach and the

total difference equation obtained equals the above difference equation

plus some higher order in time factorization terms. The total differ-

ence equation is consistent with the linear transport equation. For

the nonlinear case considered, it is not possible to eliminate the con-

stituent intermediate time level. Thus the exact form of the factoriza-

tion terms may not be determined. However, their numerical effect may

be tested.

The approximations for the X-Sweep may now be written as follows

At 6a c al 1I

k _____ k+l/2* k/2+1/2
6 (ds) + 2A d s u2

At 6 -[k+I/2" k+1/2* ()
- Id K
2 Di

2Aa 1 ( 1 )m

62d k(2.2)
' 2 '12

At k k 1t. 2(12)nAa 2 a 2'

2Ac(i 2 ) n  d K 2 J 0 at (n,m)
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Expand (2.2) using (1.18) and collect all terms at time level k+1/2*

to obtain: (KxE K 1)

k+I/2* + -* + kI h +12 k+1/2* +8 k+1/2*)

(ds) n~m 
2
a(i) L2. un.m+l/

2  
2.

(k+1/2* +nk+I/2* h k+l/2* k+1/2*

Inm- +%m nm n..) k+I/2* (n,m- ~
2. UnM 1 /2  2. J

rk+I/2* + +1/2* - +1/2* -k+1/2* (2.3)
At I (n,in+i - + nm h nm} ',in+i - n,m ) +1/2*

- A 25tG ~) [ 2. ('j1)m-u/2 Xnm+x/2

( +/*-h + k+l/
2
* - h )( 1+1/2* _ k+1/2*)1

- ,n,m- n.m-I1 n.m n~m lmi nm-1 K k+1/
2 I

*Collecting all terms in (2.2) at time level k denoting the result as

B , we obtain: (Ky =K )c

k At [&,n+1.m - hnIM+n )k nlm+"

B (ds? A ' 2. i n+1/2,m 2.
m s1nm - A ~2(P2)n L

-(k - hnr + gkin _ h) V
1

1 2
( 1 + k

(2.4)

+ At r(k5 I' hnIum + -n~ n+ (n++ -~m Kk

(nin - h n-i rn + nk-n m -n i UnI K k ]
In (2.3) we define -an~~ an l and a as followsn~m-1 n~m~ln,m

A +(d2k l+12 F k+/2
,ml/ udl 2  (K) 2

___________ I n,m-l/2 x n ,m-l/2

-anml= 2 aG)m L 2 + I (2.5)

A dk+l/2* uk+1/2* K k+l/2*1

an~l= l,m+l/2 [n ,m /2 x n,m+l/2I
aAz(1 1  m cz+ 1) 1  (2.6)
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k+i/2* (-- \k+1/2*

a dk+l/2* + At I\  nm+i/2 \ U/n ,m-1/2
n,m n,m 2AaI(I) 2 2 J

al (2.7)

ii- l2 )k+l/2*1
+ At lml/n 2 + aKxnm-l/2
+2Aa Gl~ ("1)m+1/2 ("1)m-1/2

Collecting all results we obtain the following interior equation

for the X-Sweep

k+1/2* k+1/2* k+l /2*(a a s+ a s= B (2.8)
n,m-i n,m-l n,m n,m n,m+l n,m+l m

The approximations for the Y-Sweep may now be written as follows:

A. t so a 2  2 At 6 ar 2  6 (k+1

k+1/2* 2d) + k+I k+I 2 [! k+l a2
2'A2 J

2
)n 

2
Aa2 (i 2 )n L 2 .

(2.9)
______ _l ____ 6t 6 °1 6 (a k+1/2*)

+ I d k+Iu2* sk+1"2*uk+1/
2 

- - dk+I/
2* 

Kk+1/
2
* 1 0 at 0nM)

+ 2P(.l)- 2(ad2(l*1 )m ( 1

Expanding (2.9) by employing (1.18) and collecting terms at time level

k+l on the left hand side and leaving terms at time level k+1/2* on

the right hand side the following interior equation for the Y-Sweep is

obtained.

- k+l k+lkl
a .k, + a s kl+ a= B (2.10)
an-l,m Sn-l,m n,m n,m an+l,m Sn+l,m n (

where (Kx  K K K )
x a1  y 2

25

.1
-l
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-an ~ ~ 1/td)i~2'M v+ + (K -1/~2 ,m (. 11)n-lm A )2 AciP

ta2(d +1 [k+1 (Kk+l 1
a At - n+1/2m. n+1/2,m (K y n+1 2, m(.2an+1,m = 2Aa (p) 2 A a (p) J (2.12

k+1 Av 2k+1/m
*a =d k + At n+1/2 dv ]

n,m n,m 2Act2(112)n[ 2 2 J
(2.13)

/a 2d Jk+1 aK 2 jk+l
+ At \dy/ n+1/2, m \ y/ n-i/2 ,m

+2Acta 2 ) ("2)n+1/2 ("2)n-1/2 ]
k*/2 at 41 - /2* k+1/2* +1*k12

_____ 2( /.A da +/ U1/2j

-'I. (2.14)

2
(~~fca )[( )~~~2 k+112* k+112*-i ) n,./ (.k+i/2* :k+,I/~

3. Leendertse FTUS Multioperational Scheme

The following finite difference equation is considered as an

approximation to the nonlinear transport equation (1.17):
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/lk uk + l  ikk k

'k At (.1k!l k+l -k!k)
6 t(ds) + 2Aa( i\ d u1 + dSU

(2k k+l  2 v k

At 6-(2 k+
+ 2Aa2 (P2) a2d 2 +

. (sk+l  (sk

A a 6 G ) a1  
6  )

2(Aa2 6 1  + Kk+l + d K 1 (3.1)
1 (AI 2(im (h l l)m + 1 ~i~

[ 2 (k+l) 6 k
At [ 2 a226t -:k+iLKk+l

2(Aa2)2( 2)n (K2)n + 2 0 at (n,m)

The following upwind difference operators used in the above equa-

tion are defined at (n,m) as follows:

fk 1,m-/2 n,m -
s 1Sl k f k < 0

n,m+/2 n,m

(3.2)

s k fk >0f k Sn-i/2,m n,m -

-2 k fk < 0".. n+i/2,m n,m

For the linear case [(K) (2) 1 , , u, v
1m (2n a1  a 2

and d constant], the constituent intermediate time level in the multi-

operational approach, may be eliminated. The difference equation
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obtained is consistent with the linear transport equation and equals the

above difference equations plus some higher order in time factorization

terms. For the nonlinear case considered here, it is not possible to

eliminate the constituent intermediate time level. Therefore the exact

form of the factorization terms may not be determined. However, their

*. numerical effect may be assessed.

This sche-P is similar to the standard ADI technique except that

upwind differencing is employed for the advective terms. The necessary

modifications for the X-Sweep are shown in Table VII while those em-

ployed for the Y-Sweep are given in Table VIII.

Thus the FTUS scheme may be obtained from the FTCS scheme program-

ming with only modest programming modification. In CRAY-I FORTRAN three

vector functions may be employed to define the FTUS modifications as

follows:

CVMGP (xi, x2, x3) xI  x3 > 0 (3.3)

x2  x3 < 0

AMAXl (Xl, x2) x x x2 (3.4)

AAx 2  xI < x
2 x1  x 2

AMINI (x, x2) x x < x2  (3.5)

xI > x2

These functions eliminate the need for IF type statements.

55

. . .



I 4

Tabje VII. X-Sweep Modifications FTUS

Equation FTCS FTUS

k k
5n+1,m Vn+/, k<0

2.4 (ssi +m k >0
2. n-,m n-l/2,m-

k k
s v < 0
n,m n-1/2,m

2.5 ~ r-l/2. max~ ( n. /2,m'

n~mn-i /2m

k+1 /2*

2.7' (n)m:2 max (0., (u k+12*1
2 , m1/2j

2.7~ (%u)+2 m uk+/2*J

2 L0' 1/2

L' 56-/* a
2. Iunml 

a .,kWk12

2 .nL. -. -



Table VIII. Y-Sweep Modifications FTUS

*Equation FTCS FTUS

k+1

2.11 v n-1/2,m max (o. v..i 1

~k+1
2.2vn+1/2,m mn vk+1
2.122 mm ~* n+1/2,m)

-Jk+1
kdv, n+1/2,m Ia I+

2.13 2max [0,kI~+1,m

2.13 2 min 0. n-1/2, M

/aL 1  a1
i- ik+1/2* -k+1/2* k+1/2* k+1/2*

21 s n,m-1/2 dn,m+1/2 Sn,m un,m+1/2>0

-k+1/2* k+1/2* k+1/2*

d s u <0
n,m+1/2 n,m+1 n,m+1/2

a al) k+1/2* k+1/2* k+1/2* k+1/2*
2.14 -ds d s u >0

0' k+112* k+1/2* k+1/2*

n,m-1/2 sn,m un,m-1/2<0
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4. The Spread Time Derivative STCS Scheme

Using previous notation, the approximations for the X-Sweep may

now be written as follows

axt 6 I a.,

2 k x k+/2* .)k a I 1  k+./2,uk+'123 9 (da) + - WS) (ds) + o( )
'.Q

At 6 /2a 6 k+1/2* At 6 a
Kk+l/2* + (.

At 6a 2s
Ed K10 at (n,m)

2a2(2 2)n )2 k n~ 
2

If we place all terms at time level k+i/2* on the left-hand side of

the equation and expand we obtain (2.3) if

2 l k+l/2* )+ (ds)k+l/
2 *

2 k+/2* + nm+l nm-l _ k+1/2*
(dS) n,m + -6 (dSs)m- - ~ (4.2)

and (2.4) for

s k

sk 3 (d(ds -(ds) (4.3)
n,m 6 n,m

All other terms in (2.3) and (2.4) remain the same. Equation (4.2)

necessitates the following modifications to (2.5)-(2.7).

d k+l/
2 *

-an ~~ a n, 1- (4.4)
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a a +nini(5n, m+i n,m+i 6(45

k+/2*
d

a a -n- (4.6)
n,m n,m 3

The approximations for the Y-Sweep are as follows

k+l k+1 At 6 [02CSP (ds) v (d k  CL k+lk+]
"""l/t(ds) + ( + 2YT kdn L j
t 3 3 2A2 (2) n

"."" Kk~la2 --At-6 [ 2 6 (s ) At6 dsa

2 -k+l k+l a2 +2c 1(i~ O k+1/2* k+1/2]
2Aa 2 2 (212) 2 (

At 6 c a+1/2* k+i/2* 6 aI ( k+i/2*

2A2.(p)K a (l) m m d0 
at (n,m)

If we place all terms at time level k+l on the left-hand side of (4.7)

and expand we obtain relations similar to (2.11)-(2.14).

In fact for (2.11)-(2.13)

dk+l
n-i in

-- a (4.8).q?'"-n-l,m n-l,m 6

d k+l
an+l,m a + "'l).. (4.9)
.. n+l, 6

dk+l

a a n,m (4.10)
n,m n,m 3
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In Equation (2.14), we employ (4.2),

- (sk+1/2* .. k+l/2* .. k+1/2*

2 (ds) (ds) + l + (ds ) ( 4 .11)
k+l/2* nm n 3 6

(dS)nm n n 6 (4.11)

We therefore note that the spread time derivative scheme may be

obtained from the standard scheme with only minor modifications.

5. Flux-Corrected Transport

As in the linear case, both higher and lower order in space

schemes are employed. For the nonlinear case, the following flux format

is needed.

k+1I = k -

n,m n,m n,m n,m +I/2 m

(5.1)

-F I  +F FI
n-1/2,m n,m+l/2 n,m-1/2)

where t =kAt , x=I ( &a)A1 , y Aa

s k 2 concentration at location (n,m) at time level k
n,m

AaI(pI)m  x space step at m

Aa2(p2) 2 y space step at n

I 2 general index at time level k+l , which we set to
H or L for the higher or lower scheme,
respectively

F fluxes through the appropriate cell faces of cell
-+-/2,m+1/2 (n,m). Form dependent upon the finite difference

formulation,

We observe from (5.1) that the difference between the higher and lower
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order scheme at (n,m) may be written as follows:

(S S -[a~l sAm) d FL•n~ - L m m 2 (12 n n,mRA1/, n+1/2,m

n n-1/2,m n-1/ 2 ,m n nm+1/ 2  n+12 (5.2)

- n,m-1 /2 -FLm-1/ 2)]

- Note this difference may be expressed as an array of fluxes between

*adjacent grid points. We next develop the flux expressions for the

higher (F ) and lower (F ) order schemes. In order to aid in notation,

we make the following definition for an arbitrary variable, F

Fk+1/ 2 = Fk+l +Fk ) /2. (5.3)
n,m n,m n,my

For the higher order scheme we employ the FTCS scheme written in

* (2.1) in which the factorization terms developed in the multioperational

method are not shown. Equation (2.1) may be written in the form of

" (5.1), where the total fluxes are presented as the sum of advective

and diffusive fluxes as given in Part II (7.4) with Z = n

From Equation (2.1) one then obtains for the advective fluxes:

F HA Vk+i/2 SAt( A[(SH + Sk  dk+1/2
n+12,m n= +/2,mt(lm) 2 n+l,m n+l,m

(5.4)

+ (sH 2Sk)n,mdk:nm/2]/2.
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F HA _1/ U n, 2 At( 2  n l 2 H 2_),~ ~

(5.5)
1sH Sk) kl2]

The diffusive fluxes are then given by the following relations.

(K =K ,K =- K

FH0 +Kk+1/2 At~l m)Aa1
n+1/2,m y n±1/2,m 2

(5.6)
(S + S(S + S I~ (d 1/2 dk+1/2)

n,m n++l,m n,m

c2 (1.2)n+1/22

F 0 +i k+1/2 ____2_n____

n, m-112 -x 1 2  2

FH k (H + k 1(k+1/2 + k+1/2 (7
(S + S) -S + nml nm+ nd

n,m n, it] 2d /~~

For the lower order scheme, the FTUS scheme written in (3.1) is

employed. Factorization terms generated by the multioperational method

are not considered. Equation (3.1) is written in the form of (5.1).

The total fluxes are presented as the sum of advective and diffusive

fluxes.

From Equation (3.1) one obtains the following set of advective

fluxes.
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k+1/2 k+1/2 . AS
L 
+ s k+1/

2

Vni2 >i0 Vn. l2m (sm~ l ..-) mki2
LA n,m n,m

n+1/2,= = (5.8)
( k+l/2 <0 Vk+l/2 .... SL + sk+ k k+l/2
n+1/2l2,m n+l/2,mtlml - - n, n+l,m

k+1/2 k+1/2 L sk'
vn-i/2,m 0 nd1/2,m 1 1 k+i/2

n2 LA n-l,mLA
n-1/2,= (5.9)

k+1 /2 L k
V 1 l 2  k+l/2 .... ) S

L 
+ s dk+l/2Vn1/2, m < 0 vn/2,m lma1(\2 dn,m

k+1/2 k+l/2 S S
L 

+ sk k+l1/2
n ,m+l/2 2/n,m+2nt 2 n a2V dn,m

FA (5.10)
n , m+1/2n

( k+1/2 < 0 Uk+1/2 . . (S
L + sk) dk+1/2Un,m+i/2 < n,m+i/2At (Ij2 n a2V n.,M+1 n,m+l

Uk+1/2 0 Uk+1/2 At. (S
L 

+ sk dk+1/2
Un,m-i/2 > 0 n,m-1/2 t(Y2 2 /n 'm_lan,m-l

A k
Fn,m-l/2 "1 (5.11I)

U m k+112 k1/2 .. .. (S
L 
+ sk) dk+l/

2

Un,m1/2 < U,m-1 /2 tU 2 nn 2 V 2 ,/ n,m

The diffusive fluxes are obtained from relations (5.6) and (5.7) with

% H replaced by L.

The Zalesak flux-correction procedure as reported in [3] for the

linear case proceeds analogously as follows:

First, the anti-diffusive fluxes are computed.

H L H L
A =F -F + -F (5.12)
n+1/2,m n+1/2,m n+1/2,m n+1/2,m n+1/2,m
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HLH L

HA A 0 0
An,m4-l/2 Fn,m+1/2 IFX1m+l/2 +Fn,m+l/2 Fn,m+1/2 (5.13)

In computing the difference bet.een the diffusive fluxes (third and

fourth terms in the above expressions), note that the terms with S m

may be completely eliminated.

The above anti-diffusive fluxes are screened in the following

manner.

An /m =0 if Anl m( +m - S~m < 0

and either A n+lI2,m(Sn+2,m - S n+ 1 M) < 0 (5.14)

or A n+i nm(S,~ - S _ 1 ) < 0

An~/ 0 if An L(S~ - SL) < 0

and either A ,- 2(S-1) -< 0 (5.15)

or AnLii2 L -m -< 0

Next the maximum and minimum cell values are determined.

a~ ~a~~ k Lm Sbm mi(Skm,SLm) (.6

S max miS~ S , ' S a S a (5.17a)n,m ~ nlm n m' n+l,m' n, M-1'n M+lI
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S i min(Sbl S b Sb Sb b (5.17b bis)

* The author has also employed only quantities at time level k ,obtain-

ing the following alternative relations:

= max(S S PSk+1 S i S+) (5.18a)

= mi 9 (5.18b)

Next the sum of all anti-diffusive fluxes into cell (n,m), P m

is determined.

P+ max(O,An / min(O, An 1  )

(5.19)

+ max(O,A -min(O,A~ 1

n+ -/ +/

*The maximum allowable mass into the cell, Q ,is then computed.
n,m

+ (max sL k 5.0a
Qn,m (Snm - n,m Ii1mA a2dnm 52a

Note S nax is as given by (5.17a). The author has employed two alter-

native formulations.

Q ~ a - nS )Ij)Act1 i 2 Aa dj (5.20b)
n,m L m n ,m (2n a nm
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where Smax is now given by (5.18a).
n ,m

The second formulation considered is given by:

+ (max Sn dk+11 (.0cbs
Qn,m = n,m n Snm )[~~~~x p nctdm 2cbs

where Sma is given by (5.18a).
n ,m

Similarly, the sum of all anti-diffusive fluxes out of cell (n,m),

P n, is determined.

P n,m =max(Q, A +1/2, - min(O,A n 1 /2 m)

(5.21)

+ max(O,A n , +1/2 min(O,A m 1 /2 )

The maximum allowable mass to leave the cell, Q n, is then computed.

- (SLm Smin)[(PIl)mcal p)ad k+1] (5.22a)

min
Note S is as given by (5.17b).n ,m

As in the case of Q + the author has employed two correspond-
n,m

ing alternatives. Under the first alternative, (5.22a) is employed

min
with S now given by (5.18b). Under the second alternative,

n ,m

Q S - S )l 1m Aa (V 2 )na 2 dk2] (5.22b)

with S mngiven by (5.18b).
n ,m
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The following ratios are next computed for use in determining

the limiting coefficients.

'I:

(min~l i ,m > 0

...~~~ _+ \ nM/ n,m/ n,m (.3

R = (5.24)

n,m 
+

(0 P 0)

n,m

min (Q,Q m ) 0

".Ri R, m =(5.24)

The limiting coefficients are then given by

= min R +l mRm An~/, } (.5

Cn~/2m m n R , m nI m )  An+i/2,m <> 0

C n+/2 = + (525

m n In m' Rn, m+l) An,m+i/2 0

The anti-diffusive fluxes in (5.12) and (5.13) are limited by

multiplying by the limiting coefficients and the solution is advanced

to the next time level.
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k+l L r kl
n,m n,m L ll(ml)mA2(m2)ndn, (Cn+1/2,mAn+1/ 2 ,m

(5.26)
-CA+C A-

n-l/2,m An_/2,m n,m+l/2 An,m+1/2 Cn,m-l/2 An,m-/2 )

We observe that for CC = 0 Sk+l = L and for

n+/2,m n,m+1/2 ' n,m n,m

CC= = 1.0, Sk+l SH
C n+l/2,m Cn,m+l/2 1 n,m n,m

6. Additional Flux-Corrected Transport Limiters

m1
S~mi n l  0

In conjunction with (5.18a), one could insist S = max 0.0,
n,m

min\ minSi where S on the right hand side is as determined in (5.18b).n,m; I n,m

Equation (5.22a) would be employed for Q , where S would be
mm1 n,m n,m"= sminI

replaced by S

As another alternative, one could consider the following relations

max in
for S and Smn,m n,m

Smax max(Sk Sk Sk  Sk  Sk  Sk+ l (
n,m \.n-l,m' n,m' n+l,m' n,m-l n,mIl n,m/ (527a)

S mn in(k ,k ,k k k k+l (5.27b)

n,m m n\n-l,m n,m n+l,m' n, m-l' n,m+l n,m(

These relations could be employed with (5.20a) and (5.22a).

As an additional alternative, one could employ the second alter-

nate limiter of the previous section; e.g., (5.18a), (5.18b), (5.20c)

and (5.22b), on the first time step and the original Zalesak limiter on

subsequent time steps.
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Clearly, many different forms of the limiter are possible. We have

presented these additional limiters to outline the direction of possible

future research.

S
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PART IV: ADDITIONAL NUMERICAL CONSIDERATIONS

In order to develop a numerical model it is necessary to develop

the necessary approximations near both open and closed boundaries. This

then leads to a discussion of the tridiagonal matrix solution scheme

necessary for each sweep.

The development of flow field influence on the effective disper-

sion coefficients is presented to close the numerical model. This

closure is by no means perfect; however, it is sufficiently general to

permit model calibration. Additional approaches may be necessary to

incorporate wind effects. The approach followed here allows a determi-

nation of the anticipated range of physical dispersion. In general,

the numerical scheme will also produce dispersion. The model should be

calibrated by adjusting the dispersion coefficients to values within the

acceptable physical range.

1. Approximations Near Solid Boundaries

In the hydrodynamic equations, the convective acceleration terms

and the eddy viscosity terms must be modified in the vicinity of the

boundaries. This is due to the fact, that if the standard differencing

formulae at the boundary are used points are referenced outside the grid.

No modifications are necessary for the continuity equation. Since the

transport equation is nothing more than a constituent continuity equation,

we would anticipate no need to modify the formula. This is indeed the

'S case, for the difference formulae for continuity are cell centered;

namely, fluxes are evaluated at each cell face. The fluxes are merely

set to zero in the standard formulae for no flow conditions across the
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appropriate faces. Let us investigate this procedure in turn for each j
difference scheme. In the X or a1 sweep each column in the grid is

swept from top to bottom starting and ending at a boundary. In the Y

or a 2 sweep each row is swept from left to right again starting and

ending with a boundary.

Let us consider Equation (2.8) of Part III, which we rewrite below

as the standard equation for the X-a1 sweep

k+i/2* k+i/2* k+i/2* "I.-

a~1 n~m +n,m nk~/2 anm+l n5 k+l* Bm (1)

TOP BOUNDARY

1. FTCS Scheme

k+1/2* Kk+1/2* - 0 ; i.e., there is
In (2.5) of Part III Un,m1/2 Xnm2

no mass transfer through the solid boundary. Therefore a nm_ = 0

and one obtains

k+i/2* k+l/2*
n,m n,m n,m+l n,m+l m

2. FTUS Scheme

Exactly the same conditions hold for this scheme and (1.2) is

again obtained.

3. STCS Scheme

In this scheme referring to (4.4) of Part III -a =n,m-I

-a(d k + / 2* (/ d k + l / / 2 6  Foatreln
-an,m-i - (n,m-I )/6 and anm.l = (dn~-i)/ . For a true land

bound dk+1/2 2* /6

boundary (dn I )/" = 0 and again (1.2) is obtained. For the case of
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a flux restriction only at a barrier, (d k+m1/ 6  0 and for this

scheme a barrier may not form the end of a computational segment.

BOTTOM BOUNDARY

All statements previously made regarding the top boundary hold

directly if (n,m-l) is replaced by (n,m+l). Equation (1.1) now

becomes

k~l/2*k+i/2*

a sk+n/2* + a s = B (1.3)
n,m- Sn,m-i n,m n,m m

Let us consider (2.10) of Part III, which we rewrite below as the

standard equation for the Y-z2 sweep

k+l k+l k+l
an-l,m Sn-l,m n,m n,m an+l,m Sn+l,m n

LEFT BOUNDARY

1. FTCS Scheme

In (2.11) of Part II vk+l Kk+l 0 ; i.e., there isIn 2.1) o Pat II n-i/2,m  Yn-i/2,m

no mass transfer through the solid boundary. Therefore an-l,m 0
-p.

and one obtains

k+l k+l
an,m Sn,m an+l,m Sn+l,m n

2. FTUS Scheme

an.lm - 0 and (1.5) is again obtained.

3. STCS Scheme

a -m dk+ Jl /6 and (1.5) is obtained for a land boundary.an-l,m n-l~
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RIGHT BOUNDARY

All statements previously made regarding the left boundary hold

directly if (n-l,m) is replaced by (n+l,m). Equation (1.5) now becomes

k+l k+l
an-l,m Sn-l,m n,m n,m n (1.6)

2. Approximations Near Open Boundaries

In the hydrodynamic equations, convective and eddy viscosity terms

in both motion equations must be modified in the vicinity of these type

boundaries. No modifications are necessary for the continuity equation

nor for the transport equation. However fluxes must be specified across

the appropriate cell faces. Let us investigate this procedure for each

sweep in each scheme.

TOP (-) AND BOTTOM (+) BOUNDARIES

1. FTCS and FTUS Schemes

k+l/2* K + /2* must be specified. In (2.8) of Part IIIUnm.m.l/2 and Kk'+l/ 2

+ n,m:-l/2

S k + 1/ 2* must also be given.- n,m¥1

2. STCS Scheme

uk+/2* Kk+l/2  and dk+l/2  must be specified. In (2.8)

nmln,mpe/2 i fie d
+ +

of Part III Sk+1 /2* must also be given.
.m;1I;

As a result, Equations (1.2) and (1.3) are again obtained.

LEFT (-) AND RIGHT (+) BOUNDARIES

1. FTCS and FTUS Schemes

k+l k+1
v and K must be specified. In (2.10) of
n +1/2 ,m  Yn+i/2,m
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k+1
Part III s must also be given.

n~l,m

2. STCS Scheme
k+l Kk+l dmust be specified. In (2.10)•.v ,and mutk e peife
n;-i/2,m Yn~/, n$1,m

k+l
of Part III sn-l,m must also be given. As a result, Equations (1.5)

and (1.6) are again obtained.

The specification of s deserves further attention. In the

general case, s must be given as a function of time over the period

of concern. However, in estuarine type (oscillating) flows, it is pos-

sible to compute s based upon the values at interior points during

ebb tide. The following procedure due to Leendertse [1] is presented

subsequently with reference to Figure 3. Diffusion is allowed only on

one face of the boundary cell.

TOP (-) AND BOTTOM (+) BOUNDARIES

k - s k

s k+i/2* sk + uk+1/2* n;m 6t
n, m: l n,m~l n,m;i/2 Aal(l)mQi/2 2

+ (2.1)

- Kk+l/2* n,m n,m At

rX 2 2

n,m-l/2 Puji)

LEFT (-) AND RIGHT (+) BOUNDARIES

sk+ I /2 * - sk+i/2*h

k+l k+l/2* - k+l ( 1n,m n 1,m / At

Snlm n:;l,m n-i/2,m A2(12)n-1/ 2  2

(2.2)
; k+l/2* - k+l/2*)

; k+l (s n,m Sn$1,m A __t

Yn;1/2,m [(a2)ni Ac 2] 2  2

74



- '. r r W if

k. 43k-,

14SA o k+ . kI/.

k.

0 X

FigureI 3.Oe1onayseiiaino

k.'~w,~ j~tf 4~75



- ,* , -m . . . .

Consider at an arbitrary boundary location b , ebb flow conditions

to endure over N time steps. Compute at each time step of length

At the following variables.

Me, Sel Ve be A t(Vd) (2.3)

where

Me, mass flux across boundary face during time step i

iVeb volume through boundary face during time step i

Seb concentration at the boundary face during time step i

(Vd) average discharge through boundary face during time step

Compute totals over the ebb flow period as follows

N N

Mebb= Mei W = Ve (2.4)eb i i ebb

where

M = total mass flux across boundary face during ebbebb-

V - total volume across boundary face during ebbebb

For the next M time steps occurring during the flood period, compute

the following quantities.

Vfl V Mfl M1 ebb 1 ebb

(2.5)
i-l i-l

Vfi Vebb - Ve -  Mf. =Mebb - Me i > 2

k=l k=l

Then the boundary concentration during the flood period is given by
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+rc , Vf. > 0

Vf. b b1

Sf = (2.6)

b"cb , Vf. < 0

where

Sf - boundary concentration during flood for time step i
b

Mf. mass in ebb storage remaining prior to time step i
1

Vf i  ebb volume remaining prior to time step i

r exchange ratio for the boundary (0 < rb <1)

cb ocean background concentration

The method above represents one approach toward specifying s during

the flood period. Other approaches similar in concept are available.

Usually one must select individually the most appropriate approach for

each area to be modelled.

3. Tridiagonal Matrix Solution

Consider the following system of equations, which is termed a

tridiagonal system. We note from our previous sections on boundary con-

ditions that this system of equations is obtained.

byv + cv d1 1 1 2  1

a2 a2v I1 + b 2 v 2 + c 2 v 3  d d 2

a3v 2 + b3 v3 + c3 v4  d

(3.1)

aivi- + b v + cv d
Si1 i i i i+l i

aNiv + b v +c v =d
N1N-2 N-1 N-1 N-1 N N-1

aNv + bv = d
N-N- NN N
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A numerically effective approach in solving this system is forward

elimination and backward substitution. Each step is discussed in turn.

* Forward elimination

-1 b b 2 (3.2)

I I•

Substituting (3.2) into the second equation in (3.1)

(dd

a2  - C 2  + b~v + c v3  d

(3.3)

d -a
2 2 2'3.v 2 = 1~ c

2 a c
b 2 21
2 b

Let us define 86 bI  and = d1/1 then we note (3.2) may be

written as v 1  - (C1 /B1 )v2  and (3.3) may be written as

(d 2 - a 2y1 ) - c 2 v3  c 2
v =v2 c 2 Y2 - v 3

2 2 b

(3.4)

b cI  d2 2 a2
2 1= 2

Let us suppose that for equation i , we have the following quantities
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ac d. -aiyi0. B = b.- - 1i 1 -1 1i _ 1

and (3.5)
• C.

1
vi = -i V+l

For the (i+l) equation we have,

ai+ivi + bi+Ivi+I + c i+vi+ 2 =di+ (3.6)

Substituting for v. , we obtain

v +c v =
a i+l i - ,i v  + bi+iVi+l + ci+ivi+2 = di+l

c c (3.7)
di+I  ai+iY i - i+1iv+2 i+1

Vi+= a i+c = 'i+1 vi+2

i+l1

where

d,+1 -a+ly i  ai+lc i

Yi+l= li+l = bi+l - i; i+i

Therefore we have obtained the general form of the recursion relations.

For proceeding to N from N-i

CN- dN- - aN-1YN-2
VN-l = N-1 a- 1 N NN-1

0N-1 0N-1
(3.8)

b =NbN - N N -2
N-i N-i 0N-2

Substituting the above relation for vN-1 into equation N we obtain:
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-- V I b~v N
NN) =

.N-lN-I

(3.9)

dN - aNYN-1
V N a ac

N N-i
b-
N ~-.' BN-1

where aN = bN - (aNCN_/Nl) . This completes the forward elimination

step. The y, ' i  are computed for i = 1, N as summarized below.

(3.10)

di - iyi_ 1
= 1 i =2, N-" Yi =  8

Backward substitution

We note vN = YN and it is therefore possible to then employ

v- Y . for i = N....2 (3.11)

thereby computing v ..v1  employing the previously computed values

YN-- ' N- .... YlI a1 on the forward elimination step.

Let us make the following variable assignments in anticipation of

coding efforts.

Qi Yi

(3.12)

C.
Pi - i
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Thus we may reformulate our solution procedures as indicated in Table IX.

Mitchell and Griffiths [5] report that in order for this algorithm to

be implemented on a digital computer the following characteristics must

be possessed by the coefficient matrix elements.

a < 0 1 . > 0 , . < 0 1 1, N

(3.13)

b i  - (a. + ci )

In this case IP.I < 1 for i = 1,N and the growth of errors

will be eliminated. The values of S , P , and Q may be output dur-

ing preliminary computations to check the numerical formulation.

* 4. Hydrodynamic Interface

Within the hydrodynamics program, a three time-level stabilizing

correction scheme is employed to compute the field variables n , u

and v at each time step. Within the two time-level transport scheme,

u and v are employed at k , k+1/2* , and k+l . Two approaches

suggest themselves for interfacing the two schemes.

Approach I

i. Employ AtT in the transport scheme equal to At in the
T H

k+li2* uk+l + k)2 an
hydrodynamic scheme. Define u (u + u )/2. and

k+1/2* k+l k
v =(v +v )/2.

2. Perform one sweep in the transport scheme for each sweep in

the hydrodynamic scheme.

Approach 2

1. Employ At in the transport scheme as twice AtH in the
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Table IX. Tridiagonal Matrix Solution Procedure

Forward Elimination Backward Substitution

c d
V 1 = Q-Pv

1 2Q

b -a P

- c k

2
28



hydrodynamic scheme. Thereby obtain u k+/2 u ,

T H'
k k-i k+l k+l

uT =uH , uT uH

2. Perform one sweep in the transport scheme for every two sweeps

in the hydrodynamic scheme.

Approach 2 would certainly je the moe economical of the two approaches.

Approach 1 may be more accurate. Numerical testing may be necessary to

determine the most suitable approach.

5. Dispersion Coefficient Determination

The effective dispersion coefficients in Equation (1.1) Part II

must be related to the flow properties to close the numerical approxi-

mations. This represents an active area of research with several

alternate approaches available.

Elder [6] has determined the longitudinal dispersion coefficient

in the open channel flow experiments to be given by the following

relation.

K 5.93 h u* (5.1)
x

where

K longitudinal dispersion coefficient

h water depth (hydraulic radius)

u* E shear velocity

For open channel flow u* = gh and from the Chezy relationI e

u = c/-- As a result, we obtain
e

c (5.2)

where
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u E velocity

g 2 gravity

c 2 Chezy coefficient

Therefore, Equation (5.1) becomes

K = 5 .93  u h (5.3)
x c

Taylor [7] has conducted pipe flow experiments to determine the

longitudinal dispersion coefficient. By assuming the hydraulic radius

as half the pipe radius in the pipe experiments and equal to the water

depth in a uniform steady flow open channel, the coefficient in (5.1)

and (5.3) is determined to be 20.2 rather than 5.93. As a result, we

would expect a general relationship of the following form to hold.

= 4
K-- , c c (5.93, 20.2) (5.4)x x

Wind and wave effects will increase the effective dispersion coeffi-

cients. The relationships are not well known. However, Swain [81 has

suggested the addition of the following term to (5.4) to account for wind

effects

KW ha (5.5)Kx f6c w

where

KW 2 wind effect addition
x

8 ratio of sediment mass transfer coefficient (s) to turbu-

lent transfer coefficient (cm) (1 < 8 < 5)
m

u 2 wind velocity
w
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c R Chezy coefficient

h water depth

K von Karman's constant (.41)

Elder [6] has reported a lateral dispersion coefficient similar

to (5.1) with 5.93 replaced by 0.23. For a general model formulation,

the following relations will be initially considered.

K =c g uh+cw (U~h+ K' (5.6)
Kx x c c x(56

(u ) hK c C g vh+ cw (U~h+ K' (5.7)
y y c c y

where c , c e (5.93, 20.2) or 0.23 and are spatially variable, cw
x ypy

equals (K/g 8/6) , K' , K' are additional constants.
x y

The above relations represent a first approach toward describing

the dispersion mechanisms. Additional approaches may need to be con-

sidered to develop suitable results in Mississippi Sound.
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