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PREFACE

The methodology for the development of a numerical solution to the
transport equation is reported herein. A numerical solution procedure
will be developed in Report 2 of this series. Numerical test results
are presented in Report 3. The solution procedure will be incorporated
in a numerical model to be used for evaluating effects of proposed
dredged material disposal practices in Mississippi Sound and adjacent
areas.
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DEVELOPMENT OF A NUMERICAL SOLUTION TO
THE TRANSPORT EQUATION

Report 1: METHODOLOGY

PART I: INTRODUCTION

This report constitutes the first report in a three-report series
and develops the methodology for obtaining a numerical solution to the
transport equation. The algorithm developed is to be included within
the Waterways Experiment Station Implicit Flooding Model (WIFM) [1].

The development of both the vertically integrated hydrodynamic and trans-
port equations is presented in PART II in order to point out the assump-
tions made in a two-dimensional approach. A literature review of current
research in finite difference approximation techniques to the transport
equation has been conducted in order to determine the most effective ap-
proach for simulating salinity levels in Mississippi Sound. Results are
detailed in PART II1I. The numerical method selection and proposed form
of development is the subject of PART IV.

It is instructive here to note the component tasks in the develop-
ment of a mathematical model. Initially, one must decide what form of
the equations is to be approximated. Certain simplifications and assump-
tions must be made to obtain the system of equations. Secondly, one
must select a suitable numerical approximation to the equations. Next
the numerical approximations must be computationally implemented. The
efficacy of the approximation must then be tested by comparing simulated

results against known solutions under simplified boundary and flow
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conditions. Finzlly, empirical coefficients (friction and dispersion)
must be adjusted during simulation of measured prototype conditions and
subsequently verified. This report presents the results for the first
two steps in this process. Subsequent steps will be presented in sepa-

rate reports.
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PART II: MODEL EQUATION DEVELOPMENT

The hydrodynamic and transport equations are developed in two
dimensional vertically integrated form. The time averaging concepts
necessary in describing the turbulence are introduced as necessary in
the derivations but are not treated in detail. An equation of state is
developed which effectively couples the hydrodynamics and transport
equations. Finally, the complete equation sets are presented for the
coupled and uncoupled cases.

1. Hydrodynamic Equations

The general equations of the classical hydrodynamics for imcom-

pressible flow are given following Lai's development as follows [2].

du , v , Ow _
5¢ 3y t5, =0 (1.1)
Du_ .9, a2
th—pr ax+pAu (1.2)
v r .9, a2
P g = PF 3y + WASvY (1.3)
Dw . » .3, 52
th—sz az+|JAw (1.4)
with
D _& , . 3 , 98 . 9
Dt 5t " Vaax T VaytVaz
2 _ 9% 9% | d?
A" = — + —3 + —
Ix dy dz
where

X,y,Zz = Cartesian coordinates
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u,v,w = Velocity components in the x, y, and z directions,

respectively
Fx,Fy,Fz = Body forces in the x, y, and z directions, respectively
P = Fluid density
g = Fluid viscosity

p = Pressure

t = Time

The following assumptions are made:

1. The water is not deep compared with the length of the wave an
the shallow water theory applies.

2. The vertical velocity of flow is small.

3. The vertical acceleration of the fluid particle is very small
compared with the acceleration of gravity, g, and, hence, can
be neglected.

4. The pressure is hydrostatic (from the above assumption).

5. The frictional resistance coefficient for unsteady flow is
the same as that for steady flow, thus can be approximated
from the Chézy or Manning equation.

6. Only shear stresses due to horizontal velocity components are
significant.

7. The bottom of the embayment is rigid or relatively stable and
fixed with respect to time.

8. The water is nonhomogenous but incompressible. The density
induced flow appears only in the pressure gradient terms.

1.1 Continuity Equation

I1f we consider (1.1) and integrate over the vertical from the

P O T
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bottom zb(x,y) to the surface n(x,y,t) we obtain

n n
du du _
f S dz + f 5y 42 * w(n) - w(z,) = 0 (1.1.1)
Zy Zy

From Leibniz rule we may write

kel ? ) aZb . a
5% f u dz = u(n) 5% u(Zb) 5% + f 3% dz (1.1.2)
Zb

Q?lQ?
«

n 9z q
f v dz = v(n) g—g-v(zb) a—b+ j ?-‘-’dz (1.1.3)
Zy,

Employ the kinematic boundary condition; namely, for F(x,y,z,t) =0

as a boundary surface assume any particle on the surface rerains on it

implies
DF _9F , 9F , 9F  8F _
Dt ~ ot "YU T Ve tVy "0

Consider z = n(x,y,t) at the free surface, then

F=2z-n(x,y,t) =0 . Hence
" DF _ , _, 9N an an _
L Dt-o => at+u8x +vay-w (1.1.4)
Tf At the bottom z = Zb(x,y)
re
t; Hence
b
tg 8Zb azb
- = => — — =
b DF/Dt = 0 U=tV 5y w (1.1.5)
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Returning to (1.1.1)

g 9z 1 2z
2 _b_ on 8 _Db
5% f u dz + u(Zb) 5% u(n) 5x By f v dz + V(Zb)ay
Zb _— Zb E—
- 1| - -
v(n) By + w(n) w(Zb) =0 (1.1.6)
The sum of the ———— terms is zero from the bottom boundary condition.
The sum of the terms is equal to 9n/dt from the free surface

boundary conditions. Thus we obtain:

vdz=0 (1.1.7)

{E
+
Qﬂo:
]
c?x-._\;s
=
(=9
N
+
qqo:
<
cP““‘xJ

Denoting

n n
- 1 - 1
u—n_zbfudz and v—n_zbfvdz
Z Z
b b
one obtains
on , 9_ - - 9 B =1

Letting h = n - Z,_ and dropping the bar notation with the under-

b

standing henceforth we are considering vertically averaged quantities

one obtains

lm

(hu) + g; (hv) = 0 (1.1.9)

on

(o4
Lo
Q
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1.2 Equations of Motion

Lo

Consider the z motion equation in wuach Dw/Dt = 0 | pAzw =0

,_
PY

from assumptions 2, 3 and 6, respectively. Thus we obtain

pF_ - gl; =0 (1.2.1)

;
4
{
-

FZ is replaced by -g due to the following assumptions
g 1. The vertical component of the Coriolis force is negligible
with respect to g .

2. The vertical tide generating force component is negligible

ﬁ with respect to g .

3 If we integrate the above relation from an arbitrary level 2z to the y

i water surface obtain fé

“i .a

. p(z) = p(n) + j'lpg dr (1.2.2) E
-
-

To depth average we consider the following relations to hold, in which

AR
Ak,

the bar quantities are depth averages and the prime quantities the local

. ]
e idh

D)

fluctuation from these averages.

p(z) = p + p'(2) (1.2.3)

p(z) =p + p'(2) (1.2.4)
j’ d . d 0 (1.2.5)

p' dz = p' dz = 2.
“b 2{

Taking the partial derivative of (1.2.2) with respect to x obtain:

10

r D Ehshd _Iha ARGl St SRR AR AR
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bl K
{
g
- 4
3 2
3 \ n g :
% . 2pin) , f pg dr (1.2.6) |
>
' .2

Integrating (1.2.6) over the vertical we write:

n - n n ' n
f 222 4, - f 22(n) 4z + f 2 f pg dr | dz (1.2.7)
2y Zy zy 4
©) ® ®
Let us consider terms @ - @ , separately, in turn. Evaluating @ "
invoke Leibniz rule -
:
n N 5 n 5
fa—(p*rp)dz:g;f(p’rp)dz _
%p %p F |
- l z, _ an 1
t —_— - t :
t(e+tp)| - (P 5 (1.2.8) :
% n A
3

Note further from (1.2.5),

n
= [ G+ dz = 3= [p(n - 2]
%y

- az K
= - QB 5 % - _.2 %
(n-2)3-+p (ax 5n (1.2.9) ]
]
Thus we finally obtain for @ the following expression: .*
3
n - S5z ~
9 . - (n - p , b _ ’ an R
f 3% (p +p') dz = (n z) 55t P 5x P 5% (1.2.10) :

z n

b

® :4
¥
11 4
A
" S
&
4
3
B S U O SN _'i




If we let h=n- 2z

and assume !
b P Iz

b
we obtain

|Q’

n -
- , B dp
.,ﬂ ax (P + p ) dz - h 8X

%y

obtain
n
jr 20 g, = M) (g - 55 =1
Z
where
P, = p(n)

Next consider the iterated integral expression for

0

9 b} -

3% fpgdr:gg [p(fl‘Z)]
VA

=5 [2 (0 -2+ p 202

Note

b - SR

if
| s=n-2z
" ds = -dz
e
ﬁ Observe from Leibniz rule
N
N 12
K
iy
[ ;

ap

ox

®

azblax , p' N on/ax

as follows:

T A i e Y it B A A A i ARl S Al S e b S S Al A SR S R T

Evaluating (2) note 9p(n)/dx is not a function of depth; thus we

0 , then
(1.2.11) .

:
4
:

(1.2.12)

93 NI

(1.2.13)

(1.2.14)
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n n
- dn -2) o - =13 -
gp f 5% dz = gp | 57 f (n - 2) dz
2y 2y
0
oz
b
+-2)52- 0/ (1.2.15)
Letting h =n - Zb obtain:
- ey, . -a_(az_)+ha_zz
8P ox 8P 5x \2 3x
2
Y/
- | on b -2
= gph [5; + 5;—] = gph 52 (1.2.16)

and the evaluation (@) 1is complete. Assembling all our results we

obtain finally

- 3p 2..
9 ., Pa, =81, h°?d
hax “Bhax trehg*85 35 (1.2.17)
Analagously, the expression for the y gradient is given by
- ap 2-
O - —2 4 50n N h 9p
h 3y h 5% + pgh By + g 2 3y (1.2.18)

Thus we have employed the 2z motion equation to evaluate the horizontal
pressure gradients in the x and y motion equations. The expressions

obtained above for these gradients include the atmospheric pressure

anomaly, the water surface elevation gradient, and the density gradient

created by horizontal variations in salinity and temperature.

e
r::.'
e
"o

Let us next consider the material derivative (left hand side) of

- vy
P
e

"

(SR PURRPE A
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(1.2) the x motion equation. Expanding the material derivative and

Lﬂ adding (1.1) we obtain

o du du du du {3u , 3v . aw) ]
3t ox TV oy w82+u\8x+3y+3z)J

2
du _ 3a(u7) d(uv) d(uw)
[3t P 7 dy * oz ]

2
_ 3d(puw) , 3a(pu”) , 3(puv) . 3d(puw)
=3t T ax ‘'t ay ' ez (1.2.19)

Integrating the last result over the vertical (which also holds for

compressible flow)

n n
[ [ 2D
ot ox
Z Z

b b
n n
+ f %P“—") dz + f d(puw) 4, (1.2.20)
y 9z
4, Z,

Again employing Leibniz rule

n n

9 = 9_

ot f (pu) dz = f 5¢ (pu) dz
Z, Z,

21 - (pu) _b (1.2.21)

14




...................

n
(puu) dz = f ?—(%:L) d
Zb
+ puul gg
n
n
(puv) dz = f (puv) dz
2y
o]
fpou| 2
puv 3y
n
; 9
[ 52— (puw) dz =
2y
Notice in the above azb/ac =

Denoting terms in (1.1.4) by

rigid.

we obtain the following

8zb
= puu a—x—' (1.2.22)
2y
azb
= puv 57 (1223)
%p
puw - puw (1.2.24)
n Z

0 , since the bottom is assumed

(@, and those in (1.1.5) by @,

O
n 5 5 n
9_ - M , 9
3t (pu) dz - pu 5t + 3% (puu) dz
n
Zy 2y
® ©
9z 1
3 9
+ puu 5% - Puu 3—2 + 3y f (puv) dz
Zb n .
b
@ . ® ®
+ puv 5y puv g—;l + puw - puw (1.2.25)
2 n n Zy

LIREPUREN . .
~ - e lal el m e 8 a a2 .. s a
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The above expression reduces to the following:

n n n
g_t f (pu) dz + g; 2[ (puu) dz + g—y f (puv) dz (1.2.26)
Zp b 4y,

The following terms are next defined

n n
hi = (n - 2,) &= f u(z) dz,hv = (n - 2,) v = f v(z) dz  (1.2.27)
2y 2y

. :
5 where :'
b u(z) = u [1+ u'(2)] é
x - , K
e v(z) = v [1 + v (z)] '_:
b Thus
-
.- n n n
. - - - - -
hu = f u dz + f uu'dz=hu +u j u' dz (1.2.28)
i Zy, Z, 2,
a
’j n n n
: hv = f v dz + f vv'dz=hv +v f v' dz (1.2.29)

Zp 2y 2y,

Therefore we must have

’i n n
x f u' dz = f vi dz =0 (1.2.30)
¥ Zy, 2y,

Rewriting (1.2.26) and employing assumption 8 we obtain

16

%
1
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-. n

i pg{ (uh) +pg—x f uu [1 + 2u'(z) +u'(z)2] dz :
) zb 'i
! n -

i +p g; f uv [l +u'(z) + v'(2) + u'(z)v'(z)] dz (1.2.31)
; % -

Let

n n
B = :-1 f 1+ [u' ()]} dz = llx f [1 +u'(2)v'(2)] dz
Zb Zb

Noting the depth integral of the product of a bar and primed quantity is

zero, we finally obtain
p [3— (Gh) + & (paah) + & (Bavh)| (1.2.32)
3t % ay ] e

Analogously, one obtains the following expression for the left hand

side of the y-motion equation (1.3) after integration over depth
3 .- 9 == 9 oo
p [3t (vh) + 5% (Buvh) + 3y (vvh)] (1.2.33)

where

n
p=+ f 1+ [v@1% =2 [1+ u'(2)v'(2)] dz
Z
b

&Nt“\:

PR S U T T S
4 LLJ'A“".‘J

h
" »
3 1
E: 17 ]
b
) g}
: :

e e

» . LT . . - Al -
~ - . o) ~ - et r . N N
LDt D e D B i B . 8 laldoalabead s axma’ e o mbial a P nia s e ot vl Nl e




Thus B in (1.2.32) and in (1.2.33) is the same quantity and is usually
assumed equal to unity.
Let us now consider the right hand side of the x and y motion

equations. Cnsidering the Fx and Fy terms, we obtain
= + = - + VAR
Fx Qv 8, * Gx Fy Qu gy + Gy (1.2.34)

where G is the tide-generating force, Q is the Coriolis factor,
Q = 2w sin ¢ (w = angular velocity of the earth rotation, ¢ is lati-

tude), and 8, » 8 are the components of gravity in the horizontal.

Assume the following:
1. 8y » Gx <K< v,

2. g, Gy <«<<<qu,

then,

n n
f Qv dz = Qvh f -Qu dz = -Quh (1.2.35)
Z, Z,,

where u , v are vertically averaged velocity components, and
For a turbulent flow an eddy viscosity €& is employed in the

place of the dynamic viscosity | . The terms become using Ch and g,

for horizontal and vertical eddy viscosity, respectively:
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azu 32u Szu
*n\o2% 2] & 2
9x 9y dz -
2 2 2 (1.2.36) 5

v o°v v

*n\ 27 2] *&% 2
ox oy oz -

.
-
‘e
-
»

The horizontal eddy viscosity terms are much smaller than the ver-
tical eddy viscosity terms and have been neglected by some modellers. We
consider the terms here in the following manner. If we consider the u
equation and note u = u + u' , integrate over the vertical, and employ

Leibniz rule, the following relation is obtained for the € terms.

n 2(_ " n 5
9 (u+tu _ 9 9 - '
f o2 dz‘ax_[ax(“*“)dz
Z x 3 -]
b b ;
Z '
du b du an -1
+ — = - o= 3
9x ax ax ax (1.2.37) 5
Zb n ﬁ*
2@ + u') 2 lo :;
u+u _9 19 - , 1
f o 2T ox |ox f (u+u') dz
<ol
Zp 2 1
Y/ az .
_b _ an 9u _b _3u an :
tu ‘ ax v | Ix Ix ax 9x Ix (1.2.38) -
It is assumed that all derivative terms may be neglected, thus E
h
1
n
2.~ . 2 2- -2
fQ—Q;—‘i—)dz=§—2—(hu)=ha—;+zg£g—;‘+ua—% (1.2.39)
3 Ix Ix ox dx “
' Z
b :
, N
E It is further assumed the second and third terms are neglible. If simi- g
;
n lar assumptions are made for the other terms in (1.2.36) we obtain gﬂ
: ¥
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n - -
2%y . 2% _ 32(ha) . 9%(hm)
sh — + — dz = sh > + 2
. x dy ox dy
2y,

25 9%
= Ehh ——2 + —2 (1.2.40)
9x dy f
1 2 2 2, - 2, - f
v v _ 9 (hv) 97 (hv) !
eh — + — dz = sh > + 2
ox oy 9x dy
Zy
2- 2-
= &h <§—§ + 9—%) (1.2.41)
Ix ay

These terms are retained in the motion equations and serve to stabilize
the numerical approximations. The vertical eddy viscosity terms are in-

tegrated over the vertical as follows.

n
2
e Bug o, [ | L Sy -
Jf .25 (5 | < ‘ =T, - T, (1.2.42)
n Zy
Y/
b
L2 2
Vo - v . v = -
[eva—zdz—sv 5z l 32 | tsy Iby (1.2.43)
z
. n Z
7 b
b
where 1 y T are surface stresses and T ,y T bottom stresses.
sX sy by bx

Consider the bottom stress, T, » s follows:

where C is a drag coefficient and V_, is the fluid velocity. Letting

f
Chézy ¢ = JZg/Cf

f

20




2% - Y40

VT

-

50 - S

e

L AN

BN Y
- R 40‘

&

A ) l.“t"‘k. E -';:,';. - -’

[

e e

S P W DU S WP WP PRI N A R, DRI R IR R

obtain:
T, =8 p 2 (1.2.44)
b 2 f T
c
. . . - -2 -2
Resolve tb along the x and y directior:- noting Vf = u tv to
obtain:
= kg 4 = kg 3
Tox c2 Vf u tby C2 Vf v (1.2.45)

The surface stress ts may have a similar form; namely,

P Vz
= ¢! 2V
s =% 2
where
c% = drag coefficient
P, = air density
v, = wind speed

Assuming the shear stress varies linearly with depth we obtain

ot S T s (L, ) oM | %P (1.2.46)
9z h h T h ds i
where
A= (tb/rs +1)
P,q = Pressure intensity produced by the wind
s = distance in the downwind direction

Integrating (1.2.46) over the vertical

21
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n n
2
clAp V
]g—;—dz= f —th"’-—w=Kv‘2v (1.2.47)
Z, Zy,

with
K = (cfkpa)/z

If 6 is the angle between the wind direction and the + x axis,

KV™ cos 6 (1.2.48)

-
1]

SX

T Kv

sy

£ N

sin O (1.2.49)

Assembling our results, we obtain the final expression for the

depth integrated motion equations

o 57 (W) + o 5= (Bi’h) + p & (Bi%R) = pO%h + he

1/2

[~

ap _ - - -
-h(—a'*’pggﬂi-ghgx)‘.gg_(u.*ZV)
c

+ Kvi cos 8 (1.2.50)

+
=
m

> - 9 - d g2 -
P 3c Wh) + p 5o (Buvh) + p oo (Bv"h) = - pluh

1/2
. - T
-h<_a.+pg§n+&nae>-es<u+2v> Vg sine (1.2.50)
C

Setting P = 1 and expanding the left-hand side of the above two

equations one obtains
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dh/dx 3h/dy
O — " —————
du - fan _ 2z cpdu o, (o _2z) -2, - (on _ 3z
P h8t+u<3t /35 t2uh 5 * <8x ax> wot v (ay'5§>
G v, 5 ou)| du, - (@, 8 -3 -3 v
th (u dy * 8y> - Bae * <8t thggtua TV 3y *h 5§>
0
5 du duf _ qu , - du -3 u [og, 9 -
thu g thvg=eh 8t+u3x+v3y+h[3t ax(/h“)
\
3 .- _ ., Du
t 5y (hv)] = ph 57 (1.2.52)

av , - (an _ 2z ch &V, ;22h  ~-dh S v, o du
p | h 5t TV <8t /at> + 2vh +v v + uv ” + h (u tv )

- - a\ - 9% - 9V
=p l-h g% + v (5% + h + v g% +u g% + h %E} + hv AN hu v

/‘O
- v ,cdv -3 v [an,8 - 3
h{3t+u3x+v3y+h[8t+ay‘h) + (vh)]}
= ph g‘f (1.2.53)

Letting €, = PE (¢ is a kinematic eddy viscosity) and dropping the

bar notation we obtain the final form of the equations:

1/2
du + du 3u 3 8 u v g (u + v) + K Vi cos B

= tu +
at ox By 9x 2 3y o2

ap -
_1(a .5 91, ghod
5 <8x + pg 5x + 5 5 (1.2.54)
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2 2 1/2
- g% +u g% + v gg = =-Qu + ¢ §—% + —*% ~ g £E—%‘!l + gﬁ V: sin 6
i?l! Ix dy c“h
::"-. .1 3& + 0 %+&t_‘§_é (1.2.55)
- p \8 P& 5y " 2 3y .

2. Transport Equation

The general transport equation is given for laminar flow as

Js ds ds 9s - I ds
oc Tuax TV dy TV 5z T ox <Px 8x>

+ g§ <Dy g%) ¥ gz (DZ g%) (2.1)
where
s = concentration of the material of concern
Dx = molecular diffusion coefficient in the x direction
Dy = molecular diffusion coefficient in the vy direction
Dz = molecular diffusion coefficient in the =z direction

t,x,y,2,u,v,w are as previously defined.
For a turbulent flow, the eddy dispersion is significantly greater than
the molecular diffusion. The following analogous formula holds where

time averaging over the time scale of the turbulence has been performed.

3s 3s 3s 9s _ 9_ 9s
ot T Uax 'V dy YV 3z ax <Kx 8x>
3 s 9 Js
* dy (Ky 5;) * b4 <Kz 3z> (2.2)
where

Kx’ Ky’ and Kz are turbulent eddy dispersion coefficients.
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ds , d(us) _ 3(vs) , 3(ws) _

Pl Pl it

Equation (2.2) may be written in conservation form by adding

Equation (1.1) (namely, zero) to the left hand side to obtain

at Ix

left hand side

are obtained

® 5
@ 5
® 3
® ws

dy

This form of the equation is then depth integrated.

cPl"'“'n.s c34k""\.3 cPl“"‘-;.s

R S - .
CRA Y ) Py -
P S S R N SR SO PR S T R R R U WAL Y

[e-3¥eV)

ds 9 s )
ax (Kx 3x>+ 3y (Ky By) * oz (K

oz

n n n n
T ECTTE T
Zb Zb Zb Zb

@ @ ©) @

/o

9z
_b o
s dz + 5t s 3t s
Z n
bottom rigid
VA
_b .o
us dz + 5w (us) 5% (us)
Zb n
oz
_b Rl
vs dz + 3y (vs) 3y (vs)
Zb n
ws
zb
25

S

R A PR AN

times

as
%) .

Considering the

(2.4)

Each term is expanded employing Leibniz rule, and the expressions below

(2.5)
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Note

s ugz+v§5—w
9x Jy

and

from kinematic considerations.

The left hand side (2.4) then reduces to the following expression

n n n
3 9 9
5t f sdz+a—x f (us) dz+$ f (vs) dz (2.6)
Zb Zb Zb
Let
s=s+s', v=v+v', u=zu+u ,h=n-z
where

n n n
f s' dz = f v' dz = f u' dz =0 (2.7)
Zy 2y 2y

Each of the three terms in (2.6) is expanded to yield

(D'QJ
o

n
f s dz = Oo (n3) (2.8)
Zb

n n
g; f (us) dz=g; f (us + u's + s'u + u's') dz
Zb Zb
= & [mas) + n's") (2.9)
Ix h :
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where
n
f u's' dz = h(u's')h
Zb

(vs) dz = (vs + v's + s'v + v's') dz

MY
|
UNk_-\J
quy
<
cwk“\s

%; [(h§§) + h(V's')h] (2.10)

where

v's' dz = h(v's')h

U‘NLﬁ:

For the left hand side we then finally obtain
a__ = a_ o §_ o Q_ [ tat Q_ tat ]
St o) + 5 sy + ) + & [haurs )h] + 5 [h(v sy | (21D

Consider now the right hand side of (2.2). As previously men-
tioned, the turbulent dispersion coefficients are developed from time

averaging the turbulence. Specifically,

8_ §_§> - - ?_ nan

ox (Kx 9x/ T~ ax (u"s )t (2.12)

2— a_s_ - a_ t tH

2 (Ky ay) = -5 ("), (2.13)

8_ 8_5 - - é_ ot

9z (Kz 82) T 9z (w''s )t (2.14)
27
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where t denotes time averaging and the double prime denotes a time

fluctuation. The terms on the right hand side can now be integrated

‘r" '; e ] .l.
o5 ,’ O
g Le e et '.'

I
e
»

employing Leibniz rule to obtain

Camn
)

F f _3_ (U"S")t dz = g; f (unsn)t dz
.:':_- Zb Z

ox
b
oZ
1" n _l), - 1ttt %
+ (u"s )t 5% (u"s )t 3x (2.15)
Zb n
n 5 5 n
f g (V"S")t dz = 5}; 'f (V"S")t dz
2 Zy,
9z
(1 ] —_— o "t aj
+ (v's )t 3y (v'"s )t By (2.16)
z, n

(w"s")t dz = (w"s")t (2.17)

- (W"S")t

oplg"‘ﬁ.:
qu:
N
3
N
o

- If we assume all terms in the above three relations are zero except the

integrals, the last equation is removed from further consideration.

Additionally if we bring the last twe terms in (2.11) to the right hand

side we obtain
?_ o ?_ ve i o) = - a__ et TIRT)
5¢ (hs) + 5% (hvs) + oy (hvs) = 5% { h [(u s )h + (u"s )th]}

a ] 1] "n "
" 5y { h [(v s )h + (v'"s )th] } (2.18)
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where

h n
h(u"s")th - j‘ (u"s")t dz and h(v"s")th = .]. (v"s")t dz
Z

Aer 4 . amm &

b b

Letting, after Pritchard [3],

L ARk .1

s

L (u's )h+ (u"s )thz'K§5§ (2.19)
P tat e 1t - - ¥ ?_é I
(v's )h + (v'"s )th = Ky 5y (2.20) E

one finally obtains, dropping the bar notation, the vertically inte-

a2

grated form of the transport equation as given below.

3 9 9 —§_ ‘k?ﬁ 3_ -,':a_s
5t (hs) + 5% (hus) + 3y (hvs) = 3% (PKX 8x> + 3y (hKy 8y> (2.21)

O B S R

oA,

3. Equation of State

The density of water is a complex function of temperature, pres- 1

sure, and salinity. The Tumlirz equation is used to define this rela-

tionship as follows

(p+tp) (v-v)=A (3.1)
where
P S pressure in atmospheres
p, = baseline pressure in 2tmosphere
v = specific volume in ml/gm
v, = baseline specific volume in ml/gm
A = constant [(ml/gm) atm]
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and A, P, » and v, are functions of temperature and salinity. Eckart

has reported the following relationships

A= 1779.5 + 11.25T - 0.0745T% - (3.8 + 0.01T)S
v = 0.698

o]

p, = 5890 + 38T - 0.375T% + 35

Since water 1s only slightly compressible, we may neglect pressure

effects in (3.1) by setting p = 0 and obtain

P=%=r+£3T (3-2)
o' o
where p is the density in (gm/ml) . 1In (1.2.54) and (1.2.55) p is
given as in (3.2) with p set equal to 1(gm/ml). In order to de-
scribe temperature an equation similar to (2.21) must be considered. It
is proposed at this time to specify a temperature distribution directly

from measured data rather than approximate (2.21) for temperature.

4. Compilation of the Complete Set of Equations

Relations (1.1.9) (Cratinuity), (1.2.54) (x-motiomn), (1.2.55)
(y-motion), (2.21) (Salinity transport), and (3.2) (State), constitute
the complete set of density coupled equations.

In cases where density effects may be neglected within the hydro-
dynamics, the system assumes an uncoupled form with the following for-
mat. Equation (1.1.9) remains unchanged. Equation (3.2), the state
equation, is no longer nceded. The pressure gradient terms in (1.2.54)

and (1.2.55) reduce to the following relations:
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ap = Jp
_—a , -, 9 , ghdp ""a on _
Ix * P8 ox * 2 9x 7 Ix M Ix (4.1) -

9p 5 op
a - 9n _ gha a an :
5y "PRay T2 ay 3y ' PEay (4.2) ;

| )

It is proposed to initially consider the uncoupled system of
equations. In this manner the suitability of the numerical approxima-

tion to (2.21) can be assessed directly.
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PART III: LITERATURE REVIEW

The transport equation exhibits both hyperbolic and parabolic
characteristics. For convection much larger than dispersion as is the
case in estuarine systems, the equation's character becomes predomi-
nantly hyperbolic. It is this property which makes numerical approxi-
mation difficult. In order to most effectively develop a numerical

approximation the Water Resources Research, Journal of the Hydraulics

Division, Journal of Waterways Harbors and Coastal Engineering Division,

International Journal for Numerical Methods In Engineering, Advances in

Water Resources, and Applied Mathematical Modeling were searched over

the period of holdings at the Waterways Experiment Station Library.

Additional references were also obtained from the Journal of Computa-

tional Physics.

The numerical approximation of the transport equation is an active
research area within each of three major numerical analysis disciplines:
finite difference, finite element, and method of characteristics. Re-
view was limited to finite difference techniques. The following eight
major methods presented in Table I were investigated and are reported in
turn in detail. Additional techniques found in the literature are
briefly outlined along with practical considerations in selecting a
numerical method.

1. Sheng Work at Aeronautical Research Associates of Princeton (ARAP)

Sheng [4] considers the following equation

dc duc Iwe _
5E+aT+8—z_-0 (1.1)
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Table I

Major Numerical Methods

Rt il Jen aasts 4w oo anan -y

TV Ty

o b

~
o
“d

“
—d

Method

1. Centered space
differences with
ARAP smoothing

2. Flux-Corrected

Transport

3. Holly-Preissmann
Scheme

4. Method of Second
Moments

5. Balanced Expansion
Technique

6. Stone and Brian
Technique

7. Gray and Pinder

8. Leendertse Scheme

Advantages

Consistcul with present
hydrodynamics (ADI)

Positivity of
concentrations

Explicit (coding may
be simpler)

Explicit (coding may
be simpler)

Phase error may be
systematically
reduced

Consistent with present
hydrodynamics (ADI)

Consistent with present
hydrodynamics (ADI)

Consistent with present
hydrodynamics (ADI)

Disadvantages

Potential for negative
concentrations

Two schemes must be
implemented (higher
and lower order)

Explicit time step ;
limit. Not devel- N
oped for two
dimensions

.‘J'J G

Diffusion not consi-
dered. Explicit
time step limit.

Explicit and diffusion
time step limit.
Not developed for
two dimensions.

Potential for negative
concentrations

Potential for negative
concentrations

Potential for negative
concentrations

o
-
v,
(-
s
W
N
v
v
N
b
H
|-'I
f-_..- -
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The following finite difference form of (1.1) is considered.

ntl _ n At

ik T %i,k T Bxbz

(fg = £ + 87 — &p)

where
f_ = right flux for grid cell surrounding c,
R i,k
fL = left flux for grid cell surrounding Cix
g, = top flux for grid cell surrounding c,
T i,k
gg = bottom flux for grid cell surrounding Ci x

1.2)

The quantities in (1.2) are indicated in Figure 1. Several approxima-

tions are presented for f £, Br > and gy based upon several

R’ L

alternative difference schemes. These are presented in turn below.

UPWIND SCHEME

Uk 41,k (82 Uik <0
fo =

ui,k . Ci,k(Az) ui,k > 0

U1,k " G,k (82) Ui,k <0
£ =

U1,k " Ci-1,k®®) Yk >0

Wik Ci ke (8%) ik <0
8y =

wi,k . Ci,k(Ax) wi,k >0

Wik 1 " Cq,8® Yik-1 <0
gy =

Vik-1 ® Si,k-108%) ¥y g 70

34
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(1.3b)

(1.3¢c)

(1.3d)
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Figure 1. Notation for presentation of Sheng schemes
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- Let us consider the case ui,k >0, ui—l,k >0 and wi,k . -
E' Yoo > 0 to illustrate the final form by substituting the above re- ﬁ
8 ’ i
{. lations under these conditions into (1.2) above: .
;:' '::
k; Cn+1 - ( _ ) l;
p ik~ S,k - U5 kCi,k T Yi-1,k%-1,k I
At Ax

& (1.4)
o _ 5 6%,k 7 Y, k-1%, k-1

Ei Az

-. If

» ui,k = ui—l,k and wi,k = wi—l,k , then the above equation reduces
E~ to the following form:

*5 cn+l ct u w

< . - . . .

A,k i,k ik _ _ Lk -

= At ax (Sik T Si-1,K) pz ik ci,k—l) (1.5)

e s
y e v I

and the space differences are only first order accurate. In computation,

. .
1oy S

an artificial (numerical) dispersion is introduced.

CENTRAL DIFFERENCE SCHEME

(Cipg e ¥ %0

fR = ui,k 5 (Az) (1.6a)
(c, +c, )
_ i-1,k i,k
fL = ui—l,k 5 (Az) (1.6b)
(c. + c, )
- ik i,k+1
81 wi,k 5 (Ax) (1.6c)
(e k¥ %4 k-1
- 3 >
8p wi,k-l > (Ax) (1.64)

Substituting the above relations in (1.2) obtain
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- + j -
{ SOt _on el (Ciap i * %50 _ Ceg i ¥ Ci1 ) ;
- i,k “ik T oax [Mi,k 2 Yi-1,k 2 -
! (1.7) g
[ + ] .
& _ae | ey e ¥ 4,141 _ (i ¥ %4 -t E
Az | i,k 2 Yi, k-1 2 . =

- - - :
.- Note if ui,k = ui—l,k and wi.k = wi,k—l , then (1.7) becomes, i
4

-

S, (c -c ) ( e ) 1

i,k %1k itk ~ G-l Ci,k41 T % k-1 1.8) ',

At Uik 240% i,k 2Az . ¥

We note in (1.8) above that the spatial differences are centered in the
x and z directions and are thus second order accurate. Although these
forms are more accurate than upwind differencing, an oscillatory behavior

has been observed when they are used to propagate steep fronts. Nega-

tive concentrations are thereby obtained. j
COMBINED UPWIND AND CENTRAL DIFFERENCE

In order to avoid negative concentrations but reduce the smearing

md A

effect, the following combined scheme has been suggested.

R 4

“1,k,k (82) Uk 0 C1,k < Ci4l,k 4

N ey * S0 (42) s o § ;
- Y4,k 2 Ui,k €4,k 7 Ci41,k (1.9a) .
fg = < > : -1
- U ke, (82) vk <0 Sk S141,k X
.. .
!’ Coet fmpd oo <o <. 4
{ kui.k 2 ! Yk Sk i,k .

" ’T‘uw"'“,‘ -
. & . N . n e
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. : A
Uiy kC4-1,k (8%) Uk 29 Cio1k < i,k
(¢ + c )
i-1,k ¥ 1k
u (az) u >0 c > c
_ -1,k 2 i-1,k -1,k 1,k
£ = ; X > (1.9b)
U1k, (82) Yilk < Ci-1,k 7“1,k
eyt 1,0 0 )
] 2
Y41,k 2 (8z)  ug g < C4-1,k °1,k}

Analogous expressions hold for gT and gy - This scheme is
similar to second upwind differencing and uses the central difference
approximations as often as possible. Lower order differencing (first
upwind) is employed as necessary to eliminate negative concentrations.
The effective advective concentration employed in an outgoing flux is
always less than or equal to the concentration of the cell providing the
flux.

CENTRAL DIFFERENCE SCHEME WITH SPATIAL SMOOTHING

A smoothing scheme developed by Sheng was employed to the central
difference scheme (1.7). It appears in most instances negative concen-
trations may be prevented. However, it is highly desirable to avoid all
negative concentrations.

The smoothing scheme examines the solution surface in both coordi-
nate directions, independently, and determines whether oscillations are
short or long wave phenomena. Short wave oscillations are smoothed.

The smoothing procedure is as follows for vj

1f

T
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where
AR = le._H - vj ’/Ax
A = . — V., AX
L 'VJ J'll/
A —

T = ‘Vj+l - vjhl‘/ZAx
u>2

then the following curvature check is performed.

If
A2 X Az <0 or A2 x A2 <0 (1.11)
R L
where
Az = (vj+1 + Vj-l - 2vj) sz
Aé = (vj+2 + vj - 2Vj+l) sz
Ai = (Vj + VJ,_2 - 2vj_l) sz

then smoothing is applied in the following manner.

. = v, + B, + v, - 2v, 1.12
Vo= Bl v - 2v) (1.12)

A~

where v, is the smoothed value for vj and B 1is a positive con-
stant. In practice, tests have suggested u = 4 and B = 1/4 are the
best valves to employ in this smoothing procedure.
FLUX-CORRECTED-TRANSPORT (FCT) SCHEME

This method was originally developed by Roris and Book [6]. It
has been subsequently improved and generalized by Zalesak [7]. It is a
two step method, first involving a low order calculatien and then a cor-
rection to a higher order. The upwind scheme is used to compute the
first order result
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R
td _ n At 1 1 1 1 ;
°i,k - %i,k ~ Dxbz (fR fl t8r - 8 1.13) :
where Cidk is the first order (transported and diffused) concentra- }
bl

tion. A higher order scheme, e.g., the central difference scheme, can f
be applied to compute higher order fluxes fi s f? s g% , and gg . é
L
Antidiffusive fluxes are then defined as Q
21 -
Ag =g~ Iy P
_ 2l 1
A=t - £y i
o - 2 1 (1.14) ;
T 61~ Br i

_ 2 1
Ap = By ~ By i

It is these antidiffusive fluxes which are limited in the

Zalesak [7]) procedure such that

C - .
Ag=Ag Dy 92Dy kil
€ = « D 0 <D <1
AL =80 " Dy y/0.x <Digm2xs
(1.15)
C
=Ap oDy ke172 02Dy 21
AS = A - D 0 <D <1
B~ A8 " Py k-1/2 2Dy k172 =
Finally
n+l _ td _ _At c _ ,C c _ ¢
ik - i,k T dxAz (AR A+ Ap AB) (1.16)

The determination of the D coefficients will be presented subsequently.
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2. Fully Multidimensional Flux-Corrected Transport Algorithms for Fluids

In this article, Zalesak [7] develops a new flux limiter which

generalizes to multidimensional problems.

The new flux limiter in one

dimension is shown to exhibit superior characteristics over the original

limiter,

Zalesak considers the two-dimensional problem in the following

fashion. Consider
Ltd n —1( L L
=w, . - . LAY, . F, . = F, .
Vi, 0 Yi,5 " %a3®s5) "Finr2,5 7 Ficage, g
L
tF ie1/2

and

'

Htd n -1/ H H
= - j -F .
Vi, T Vi, T (Bxgyhyyy) 6?1+1/2,j 1-1/2,

H

+ Fi,j+l/2

Ltd

where w, ,
1,)]

Htd

solution and Wy j the higher order solution.
’

(2.1)

L
y Fi,j—l/z)

(2.2)

- F?,j—l/Z)

represents the lower order transported and diffused

We observe that the

difference between the time advancement may be written as

Hed _ Ltd _

-1 H L
- X F, . - F, .
Vi3 T Vg T T %y 0y y) [( 141/2,5 ~ F141/2,3

H L H
- (Fi—l/Z,j Fi—l/Z,j) * (Fi,j+l/2

F?,j—l/Z)]

- H -
(Fi,j—l/Z
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Note this difference is written as an array of fluxes between different -
grid points and is the condition required to implement flux corrected
transport.

Flux-corrected transport is implemented in the following fashion

Ltd Htd ~i

using implicit difference schemes for w, ., and w, ., : 1
i,] 1,] 1
1. Compute w§t§ from (2.1) above
b
2. Calculate FL (yn .y w%tq
i,j] 1,]

3. Compute w?t? from (2.2) above
H]

4. Calculate FH (w? . s wgt§>
i,) 1,]

5. Determine the antidiffusive fluxes FH - FL as in (2.3) above

6. Limit these antidiffusive fluxes as follows

C —
Aj1/2,5 = Ai41/2,3%4172,5 O 2 Cae12,5 21
(2.4)
c -
Afser/2 =By 541720, 54172 024 54172 21
7. Apply the limited antidiffusive fluxes:
n+l _ Ltd ~1/.c _ aC
HRRRREC R CRPRER SV
c c
FAL T Ai,j—l/z) (2.3)
The crucial step in the above process is Step 6, the flux-
limiting stage. The following quantities are computed;
PI j = the sum of all antidiffusive fluxes into grid point (i,j)
’
= max(o, Ai-1/2,j) - min(o, Ai+1/2,j) (2.6)
+ max(o,Ai’j_l/z) - min(o, Ai,j+l/2)
42
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+ _ (. max _ Ltd .
qQ . = (V W ) (8% 4, ) 2.7)

+ + +
min(l [P, .) P, . >0
+ (’ Qi,J/ i,3 i,]
R, . = ' (2.8)
1,] +
0 P, . =
1,]
and
P; ;= the sum of all antidiffusive fluxes out of grid
point (i,j)
+ max{o, Ai,j+1/2) - min(o, Ai,j—1/2)
- Ltd _ min
= . . = W, . Ax, Ay, . 2,10
Qi,j wlaJ wlﬁJ) ¢ xl’J y19J) ( )
) min(}, Qi,j/&i,j) Pi,j > 0 - )
R, . = .11
i,]
0 pi,j =0
The limiting coefficients are then given by
L min(}l+ R, A 0
- i+1,3° i,j)- i+1/2,i =
- Ci1+1/2,§ N (2.12)
ﬁ,! ‘“i“(Ri,j’ Ri+1,j) Ajyr/2,5 <O
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s -
mln<Ri,j+1’ Ri,j) A,541/2 20

Ci,j41/2 T N )
mi“(?i,j’ Ri,j+1) A 4172 <0

(2.13)

Prior to determining these quantities the following procedures are

employed.

_ Ltd Ltd
Ajgrr2,5 =90 for A0 5\Wiel, g wi,j) <0

. Ltd Ltd
and etcher Ay 555 - R g) <O

or A (@Ltd - wtd <0
i+l/2’j i’j i-l,j

B Ltd Ltd
Ay jer72 =0 for Ay Lo\ e T Yi,5) <O

. Ltd Ltd
and either Ai,j+1/2(§i,j+2 - wi,j+1) <0

Ltd Ltd
o Ai,j+1/z(Vi,j T Vi) <O

w2 = max@r1 thd)
i,] i,3 74,3
wb = min(\wn thd
i,] i,i7 1,3
max _ (&a W3 W2 Wi @
1,5 7 -1, 50 T i, g T 51 Tk

b b b b

min w W W
1,3 "i4l,30 i,3-10 74,34

. b
wi,j = m1n(§i_l,j, )

Zalesak notes that while the solution will be kept between

and w

44

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

min
w

max . . .
monotonicity in one coordinate direction in rare cases may be

SOUS SRR
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violated., Additional, more stringent limitations are given to prevent
this occurrence but will not be presented here.

3. Holly-Preissmann Scheme

In developing the scheme the following one-dimensional advection

equation is considered for constant velocity by Holly and Preissmann [8]

dc(x,t)
ot

dc(x,t) _

+ u(x,t) x

0 (3.1)

where

c(x,t) = concentration at x for time ¢t

u(x,t) u  a constant velocity

For this case, the formal solution to (3.1) becomes
c(x,t + 1) = c(x - uor,t) (3.2)

Therefore the concentration at x for time t + 1t 1is determined from

a knowledge of the concentration for time t at x - u,T . This forms
the basis for the development of many explicit direct calculation methods.
Holly and Preissmann consider the situation shown in Figure 2.

. n . .
In order to determine c, an interpolation procedure is needed.

In this scheme information at only the two adjacent grid points is used,.

n n

i %i1 are employed, where

n n
and cxy , cX

Knowledge of ¢ i-1

n = =
cx; = 9c/Ix at x = X, , t=t .

A dimensionliess argument o , known as the Courant number, is

defined:
ut
@ = (3.3)
- i i-1
b
'P'.
- Letting u,T=x, a general distance measured from X, to %X, 5
Lo
I..'
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Figure 2. Holly-Preissmann scheme notation
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'3 -
N §
b ::
da _ o -1 dy _dy da _dy . _ -1 3
dx - g T X)) oand gt g ax T aw i T *iop) (3.4) _
The following interpolating polynomial is considered. ';
I 2 g
y(a) = Ao” + Ba” + Da + E (3.5a)
n n )
y() =¢c; =E, y(@)=¢c; ,=A+B+D+E (3.5b) -
. (3A0® + 2Ba + D) =
y(a) = x. - x. ) (3.6a) -
i i-1
. n D o (3A + 2B + D) n
y(o) = cx, = — , y(@) = — = cX, _ (3.6b)
i (x;_L xi-l) (xi xi—l) i-1

Equations (3.5b) and (3.6b) are employed to solve for A, B, D,

and E . We note E and D are available directly; namely,

- _ n _ _ n

- E = ¢y > D= (xi xi_l) cx, (3.7) :
r:' _’
. From y(l) , we obtain ]
\ 3
- n n 3
d. _ _ n _ _ _ . _.“
- A=-B + ¢i1 (Xi xi—l) cxy s (3.8) ]

Substituting in ;r(l) , we obtain

n _ n _ n)_ _
ex; (x5 - Xy q) = 3B + 3(ci—l Ci) 3(xg = x5_q) exg

oLt ETToe e e
oot i Mhddad 2

(3.9)
+ 2B + (x, - ) cxy .

1T X)) oy -
y :.j
b "~
»
b‘ .-
- _ n _ n\_ n n _ . . i
El B = 3(Ci—1 ci) (2(:xi + Cxi-l)(xi xi_l) (3.10) >
F.
1
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Substituting B into (3.8) we obtain

- ofmn _ n n n _ '
A= Z(Fi~l Ci) + (in + Cxi—l)(xi xi—l) (3.11)

Substituting these results into (3.5a), we obtain

y(a) = [(cxti1 + cxlil_l)(xi - %) - 2(c2_1 - c;l)]a3 +'[3(c2_1 _ Crll)

(3.12)

n n 2 n n
- (2cxi + cxi_l)(xi - xi_l)]a + cxi(xi - xi_l)a + ey

Collecting terms (3.12), y(a) 1is rewritten as

]
]
:

y(@) = (-20° + 3a%) i 1

R T DI A YO T D I =S ¢ R
+ (a3 - 202 + a)(xi - xi-l) cxg
Thus we have
cr;+l = y(a) (3.14)

In order to advance the solution in time the concentration derivative

also must be determined. For the constant velocity case, differentiating
the transport equation with respect to x and interchanging the order

of the x and t derivatives

) 3¢ ) ac
—_— =S + —— —_— =
.t (ax) Yo Ix (ax) 0 (3.15)

B
i

v e - .
. . .
ol e ot
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Using c¢x = 3c¢c/3x the equation above may be written as

3cx 9CcX _
3t Uy ko 0 (3.16)

We note that this form is exactly analogous to that in (3.1) for the
concentration itself. Considering (3.6) and employing previous results

for the A, B, and D coefficients
y(@) = { |3(x, - )“+“-6“-c“)2
yie) = T R\l T €i-1 7 ¢1)| @
nn n, 0
+ [6(;1_1 - Ci) - 2(2(:xi + CXi—l)FXi - xi_l)]a (3.17)
+oexy (x - ox, Dy [ = %))
X3 VT X 17 %4

Upon rearrangement we obtain

6(;? - c?)
n\ _ i-1 i 02
)- %

. 2 n
y(a) = 3a (;xi-l + exy

i~ xi-l)
(3.18)
6(ct.1 - cn)
+ ———333;——-3;-a -2 Zcx? + cxo ) o + cx?
(xi - xi—l) i i-1 i
or
6(a - a’) n 6(a2 - o) n Lo 2 _ 20) oxD
V) = T - xp) Al T g - X i (307 - 20) ex;_,
(3.19)
2 n
+ (3a° - 4a + 1) Xy
Then by analogy
I = () (3.20)
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A linear stability analysis is performed to demonstrate the following

stability criteria

- T

<A

1

l A

2 <1 for o<1 (3.21) -

where

- le| = primary mode
= a parasitic computational mode sufficiently small relative

to unity so that the mode disappears from the solution

L l‘...J.‘.J.;""_A. Ao

quite rapidly

In order to perform the computations, initial and boundary condi-

>

d
!
- "’
i

tions for both the concentration and its space derivative must be speci-
fied. The specification of the spatial derivative may not be straight-
forward in practical computations.

The method is extended to the non-uniform velocity case in the
following manner. 1In this case the exact solution to (3.1) requires
that the concentration be constant on the trajectory or characteristic

curve
SX - ou(x,t) (3.22)

Thus, in the application of (3.14), the interpolation argument corre-
sponds to the point on the x-axis where the trajectory defined by (3.22)
crosses it. This point is estimated by means of a suitable integration
of u(x,t) from point i to i-1 over the time interval = . In
order to compute the advection of the concentration derivative, equa-

tion (3.16) is written more generally as

acx acx du(x,t) _
e T ulxt) 5=+ ex 225 = 0 (3.23)
. 50
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The first two terms are evaluated using the trajectory-estimated «
in the application of (3.20). The contribution of the third term is
determined by averaging cx and 3u/3x from the point i to i-1 .
The extension of the technique to two dimensions for .he constant
velocity case is briefly outlined. However, the treatment for the non-
uniform case is not completely apparent. Diffusion may be incorporated
within the interpolation scheme but only at the expense of a more severe
restriction on the time step than a < 1 . By decoupling the diffusion
calculation+ from advection the authors suggest this restriction may be
avoided.

4., Method of Second Moments

Egan and Mahoney introduced this scheme in meteorological studies
(air pollution transport) [9]. Width correction adjustments were re-
ported by Pedersen and Prahm [10]. Pepper and Baker [11] have developed
an elaborate three-dimensional transport algorithm for predicting tritium
releases from the Savannah River Nuclear Power Plant.

The basic method involves describing the concentration distribu-
tion within each cell of an Euleiian mesh by its first three moments,
zeroth (total mass), first (mass center), and second moment (variance).
The cell distribution representations are then advected using the veloc-
ity components developed from a separate solution scheme. At the end of
the time step the resulting individual distributions are combined in a
composite and the process is repeated over the subsequent time steps.
The scheme is explicit and quasi-Lagrangian. Due to the explicit nature
of the advection scheme the particle Courant number must be less than or

equal to one to maintain stability.
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The method is presented in one-dimension by considering a concen-

tration distribution to be represented by three parameters defined as

follows
+0.5
c_ = f Cle ) de ,
-0.5 |
+0.5
CmFm = ]. C(em) e de (4.1) :
~0.5 |
+0.5 ;
¢ R? = 12 fc(e)(e - F)? qe :
m m m’ ' m m
-0.5 !
where }
€ = relative displacement of material in the mth cell relative to ;
]
the cell center
Cm = mean (cell) concentration of the distribution
Fm = center of mass of concentration distribution
Ri = scaled second moment of concentration distribution
Ri is scaled, multiplied by a factor of 12, such that a rectangular

distribution of length L has Ri = L2 . In applying the method,

rectangular type distributions are maintained in each grid cell. Ini-

tially, Cm is specified and the distribution is assumed to occupy the

entire cell. For rectangular type distributions, the integrals in

F’ (4.1) above are evaluated by considering for each grid cell the material
;{ distribution remaining in the cell and those which entered during the

gg time interval.

| Figure 3 illustrates the procedure for advection in one time step

R
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Figure 3. Method of moments advection procedure (one dimension)
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of o = uAt/Ax . A proportioning parameter is defined as P = (Fm + o

+ Rm/2 - 0.5)/Rm . For P <0 none of the material is advected into

cell mtl . For Pm > 1 all of the material in cell m is advected

into cell mtl . For O < Pm <1, PmCm is advected into cell m+l , 1

while (1 - Pm)Cm remains in cell m . Thus in general, one obtains

o +c (4.2a)
m Tr a
™M e r 4 cF (4.2b)
m m rr a a
I RHI - ¢ [}2 + 12(fT+1 - F )2] +C [%2 + 12(%T+1 - F )é] (4.2¢)
m m r|jr m r al a m a

where subscripts r and a indicate quantities remaining and newly-

advected into cell m , respectively.

For P <0: C =C., F_.=F +g, R =R (4.3a)
m r m m m
Pm > 1 Cr =0, Fr =0, Rr =0 (4.3b)
T
0<P <1 C =(1-P)C
m r m m
(1 R+ P RT)
F = L mm (4.3c)
T 2
_ T
Rr = (1 Pm)Rm
P ,<0: C =0, F =0, R =0 (4.3d)
m-1 a a a
T _ T _
Pm—l > 1 Ca Cm—l , Fa = Fm—l 4+ 0 1,
T (4.3e)
Ra = Rm—l
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Fa 2 (4.3f)
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A step-shaped distribution will be advected downwind without
change of shape, Small diffusive errors will remain when more com-
plicated distributions are advected.

The technique may be extended to two dimensions and, in the fol-
lowing, we employ the notation of Pedersen and Prahm [10]. Two por-

tioning parameters are defined as follows.

(1 -R)

,Px = [sign (ox) (Fx + ox) - Rx (4.4a)
(1 -R)

Py = [slgn (cy) (Fy + cy) - —_LZ - Ry (4.4b)

These concepts are illustrated in Figure 4. In the most common case,
0 < Px <1, and O < Py < 1 , and the computational formulae analogous
to the one-dimensional case, are given as follows.

Contributions in grid cell (m,n)

T+, _ 4 _ _ T
(€™, = A -P)HA - P)C

T T
(FT+1) - (1 i Rx + PxRx
X r

i 7 sign (ox)

T T

; - P R

m T+1 (l Ry + )’J) .

T (Fy )r = 5 sign (oy) (4.5)
fzf (FT+1) = (1 -7P )RT

x Jr x’ "x

T+1 T

: R = (1 - P )R

® (57)e = a -

i 55

*

.':;'__‘- P o:f:: - L‘t'.._'-‘._:.L - ."-«'A;'L' ;-' PR S " -_'L-": . . ';. S R .."".' I A R -




1®

s

A
B

T i e b Mt S M I i b St I SR AR R SR SR eah A Satie ot , o W

Call

A"‘*‘)ﬂ) (mer, av)

Cell

(P, %) Call

Cel

R (m,n) (mer1,a)

\

Figure 4. Method of moments advection

procedure (two dimensions)
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Contributions in cell (mt+l sign (ox),n)

b
2

(C)§+1

T
P (1 - Py)C

T
(F )T+l - (PxRx K 1)
X' a 2

T
T+ _ (1 - R+ PyRy)

sign (o
gn ( y)

(Fy)a 3 sign (oy) (4.6)
T+l _ _ T

(Rx)a - PxRx
T+ _ ., T

(Ry)a 1 Py)Ry

Contributions in cell (m,n+l sign (Ey))

T+ _ _ T
©," =2 -P)C

T
T+1 - (1 - Rx + PxRx>

(Fx)a 5 sign (ox)
T

T+1 (Psz - l)
(Fy)a = 5 sign (cy) 4.7)

T+ _ . T
(Rx)a = (1 POR,

T+ _ _ T
(Ry)a = ByRy

3
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(c)z+l =ppct

T
41 \Uxlx ~ )

'S
(FJo, = ) ~ sign (o)
41 (P RY - 1)

(Fy)a = —-li%%————— sign (oy) (4.8)
(R )T+l - p RT

x’a X X
(R )T+1 =p RT

y a Yy

When Px and/or Py are greater than 1 and/or less than zero, differ-
ent equations analogous to the one-dimensional case must be applied. We
note for an arbitrary cell (m,n), 3 distributions may be advected into

the cell and 1 may remain. Formulae analogous to (4.2) are employed to

T+1 T+1 T+ T+1 T+1
, EHT L o(pyIH

m,n x'm,n y'm,n °’ R » and  (Ry) '

compute (C) <m,n v m,n
H]

Pedersen and Prahm [10] also limit the width of the distribution
such that it must fall within one-cell after the combination process
in (4.2) is completed. Analogous limiting may be performed in both
coordinates for the two-dimensional case.

This technique may be extended using fractional steps to include
the diffusion process as performed by Pepper and Baker [11].

5. Balanced Expansion Technique

Chan [12] has developed a new procedure to construct accurate

finite difference advection schemes which are neutrally stable (|A| = 1).
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By applying the procedure in a systematic manner, the phase error can

be reduced. 1In his development, the following model equation is

considered.
3 39
ot + u - 0 (5.1)
where
¢ = passive scalar
X = space coordinate
t = time

u > 0 and is a constant velocity
A Lagranglan approach is employed by noting that the value of ¢ is
preserved along the characteristic dx/dt = u in (x,t) space. The
general solution is ¢(x,t) = F(x ~ ut) , which leads to the following

equations in the discretization of (5.1).

d(x,t + 8t) $(x - udt,t)
(5.2)

¢(x,t - &t)

¢ (x + udt,t)

where
x = jéx
t = nét
6t = time increment
§x = space increment

The Courant number o = udt/8x is introduced and the procedure is

+
illustrated in Figure 5. The positions of the six quantities ¢g_i .
n n-1

i ¢j are symmetric about ¢0 , which is

midway between j~1 and j . Each of these six quantities is expanded

n n-1 n+1
¢j-l ’ ¢j_1 ] ¢j ’ ¢
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in a Taylor series about ¢o .

constructed. In this manner, all even derivatives in the Taylor's

series are eliminated.

3
n-1 n+l _ 1 2 1 3
¢j - ¢j-1 = Z(a + 2) 5x¢x + 31 (a + 2) §x ¢xxx

5!

3
oL 2 (1\} .3
o5 = %5 < 2(2) Sxé, + 37 (2) 8% ¢ exx

5'\2

3
- o1 _ 2_(1 - ) 3
- 2(2 a) 6x¢x * 31\2 ¢ dx d’xxx
b (3 °
5t \2
From (5.4) let us solve for <Sx¢x .

3
R S S 6 P A
6x¢x B ¢j - ¢j-—1 Y (2) 8x <t)xxx 5!

Substituting (5.6) in (5.3) we have

3
a-l _ .o+l _ a_on _2 (1Y ..3
by " T4y = (2 1)[‘53' ®5-1 7 3 (2) 8270 pxx
5 3
2 (1Y 55|, 2 1\ 3 2
‘5!(5 5x¢]+3!(°‘+2) % 0 xx ¥ 5T
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a) 6x5¢(5) + ...
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The following balanced differences are

(5.3)

(5.4)

(5.5)

(5.6)

(5.7)
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Solving for ¢xxx :
i
n-1 n+l n n 1 q
[} - ¢ - (2a + 1)Lé; - ¢, +[(2 + I35 + ]—6x¢ .
8 .g_'“% - 3= 7 % (,L i 1) ‘ (2) (" ) ‘ (5.8) i’
XXX 1 3 1 3 .
(u + E) - (20 + 1)(—2—) ) .
Substituting (5.8) into (5.6) i

) (1)3 SRR R A [<2u + 1)(%)5 -(+3) ]— 8x°6>
2 o (o %)3 o nd) (5.9

. ) @) B

sx9, = o5 - 9]

RLPEFRPCALIE-: = 3 AN

Using (5.8) and (5.9) in (5.5), we finally obtain

23 54

s . e
PO v o4 .
. L B ey

3
: S EPTESNY L €
: (5.10a)
i (2 )3 2 (1 YV 5,5
3 2~ %) 37 (2 - “) ox"¢
Eﬁ
:..‘; n+l n-1 _ n n 1 3 1 3]
4)3. - ¢j = (1 - 2a) (¢j.-‘ ¢j—l) + [(5 - a) - Q1 - 2a)(5) A3
' (5.10b)

g' e [ 1 a)s - Q- 2a)(%)5]

From auxiliary relations developed in Table II, we simplify the above

A n+l _ n-1 _ n_ .n a
» ’ L)) Q 20;)(0_1 03_1) -3 (2a - D(-1)

%03' - 4]0 - (a4 1)(.‘1‘ - o;‘_g + [(Zu + 1)(%) (a + ) ] x93 } (‘5.11)

% (2a + 1)(a + 1)

e W [ - 0 - ]

x

|
1
|
;
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Table I1. Chan Auxillary Relations

(a + %)3 - (a + 1)(%)3 =% (20 + D+ 1)

(3-9)°-a- m)(%)B -2 (2a - V(- D)

4 4
1 1\ _ (.3 2,3 1
(0. + 'E) - (7) = 0.(0. + 207 + 2 a + 2

4 4
1 1} _ 3 2 3 _1
(-E-a) _(E) —a(a - 20 tsa-5

o
-

3

Ll JI_ e e .
. Pty e
. andead ol ol o8
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n+tl _ n-1 (1 - 2a)(1 - a) n+l _ n 1
T Y +(l+20)(1+a)( )

(a + 1) - 20) + 20 - D(a - 1) {.n n
(o + 1) QL -9 )

(5.12)

5 5
(20 = 1)(a - 1) 1 1
") @ F D@D [kza + 1)65) : (; * E) ]
5 51
+ [T (% - a) + (1 - 2a)(%) J 57 Gx ¢
We continue to simplify by noting

(o +1)Q1 - 2a) + (20 - DD -1) = —2a2 -a+ 1+ 2a2 -3 +1

= ~4o + 2 = 2(1 - 2a)

and the 6x5¢5 term may be written gg

{ = ;al+(;)- : [(%)A - (“ * _;_)“] - zu)[(%)h ) %_ u)“] } ﬁ’%ﬁi

(5.13)
'iﬂ‘*—zs%:—;-ﬂ[%)“-(u+1>]+<1-2u><o+n[(> (9] 5
+1 _ n-1 (1 -20)(1 - a) +1 -1
S A S [ (¢n n)
(5.14)

2(1 - 2a) n n 5
(o + 1) (¢j - ¢j—1) + £¢
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Dropping the truncation error a discrete formula for calculating ¢? 1

is developed without attempting to evaluate derivatives. The computa-
tional scheme in (5.14) is a three time level scheme containing informa-
tion at only two space points (j and j-1). The scheme is explicit if
computations are performed sequentially in the downstream direction.
Chan obtains several other formulae by using balanced pairs
(centered about ¢0). In all cases, stability is governed by 0 < o <1 .
By including more points symmetric about ¢o , it is possible to develop
formulae which successively eliminate higher order odd space deriva-
tives. 1In (5.14) ¢X and ¢xxx have been eliminated. Chan presents
schemes which eliminate ¢S as well, along with two additional formulae
in which ¢xxx is eliminated. The essential characteristics of the
balanced expansion scheme are: (1) all even space derivatives are
eliminated, which Chan notes is sufficient to insure lxl =1, and
(2) srccessive elimination of higher order space derivatives reduces the
phase error.

Chan modifies (5.14) for the case of diffusion; namely,

2
3 L 8,20 (5.15)
ot ax aX2

where v 1is a diffusion coefficient. Figure 6 is employed in develop-

“n+l
ing the method. Unlike in Figure 5, ¢?+1 is not equal to ¢? s

which is the value of ¢ 1located at aéx to the left of ¢; . He
“n+l

notes that the fluid particle originally at ¢j does move to position
¢;+1 at the end of the 6t increment; however, the diffusion process

has changed the ¢ value associated with the particle. Using a [orward-

2 2
time, central space, finite diffcrence scheme for Dé/Dt = v5 /9% ,
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D/Dt is the Lagrangian derivative, Chan obtains

5

n+l _ n ntl  'n +
o = ey ¥ B(¢ + 000 (5.16)
where B = v8t/8x . For stability O < B <1/2 . Similarly, because ;
of diffusion, ¢?—l is not equal to $?+l . They are related by
“n-1 _ n— o n- 1 -
S N e T (5.17) =

In analogy, with the original development for advection only, the six
, “n+l n “n-1 o+l A
quantities ¢j—1 R ¢j-1 , ¢j-1 R ¢j

panded in Taylor series about ¢0 to give

s ¢? , and ¢§-1 are ex-

n-1 (1 - 2a)(1 - a) ( nt+l _ n- )
i-1 P O FZa) (0 ¥ o) % i

(5.18)

+2(i;§‘;) (¢ 3 )

The solution procedure consists then of the following three steps

1. Compute ¢?_1 using (5.17) for the entire space domain

2. Use (5.18) to compute ¢?+l over the space domain

3. Use (5.16) to compute ¢?+1

The techniques presented and preliminary testing by Chan show

M IR

that the advection-diffusion schemes are very accurate. Unfortunately
only the one dimensional case is considered with constant coefficients.

l Extensions to multi-dimensional problems, flows with non-uniform

et 'F P C
.. ‘; LN . I L T T T T . R P
. . e ata ) OUCIITY 14 . R PR .

Y Ada L aat L s : IR ¢
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velocity and diffusion, and mesh with variable spacings have not been
reported.

6. Stone and Brian Technique [13]

In their development, the usual one-dimensional equation is

considered
32u Ju du
D—7—V§;—EE=0 (6.1)
9x
where
D = diffusion coefficient (assumed constant)

V = constant velocity

[=4
"

= concentration of a given material

© 2 2
Since wu(x,t) = z; Awe"w ™ Dt sin wr (x - Vt) satisfies (6.1), it
w=1

constitutes a solution for the appropriate boundary conditions.
A general form of finite difference approximations to (6.1) is

considered as follows

2 -
D Liu) + VL (W # L () =0 (6.2)
where
Li(u) = approximation to azulaxz
Lx(u) = approximation to du/3dx
L (u) = approximation to du/3t

Stone and Brian note, that the corresponding finite difference solution

to (6.2) with the corresponding boundary conditions may be written as
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: J-1 .
b g, = z A p" sin wn (jAx - VénAt) (6.3) -

' j,n
p:' W=l

in which p and ¢ depend upon wrmAx , VAt/Ax , and DAt/Ax2 , and
on the finite difference approximation employed and J represents the f

b~ number segments into which x is divided.

It is their objective to evaluate the accuracy of various finite- :
difference approximations to (6.1) by comparing V with ¢V and -
—wzﬂzDAt 5
e with p . For a perfect equation ¢ =1 for all J-1 .
Q
frequencies. In the special case, D=0, p =1 ; however, for
D>0, p would be smaller for high-frequency harmonies than for low
frequency harmonies.

The general finite difference analog to (6.1) is written as

follows.

(u, + u, )]
2 *7i,n j,n+l \
-D [Ax > + (a(u. )

j+l,n - uj,n

€
+ 2 (uj,n - uj-l,n) + c(uj+1,n+l uj,n+l)
(6.4)
+d - )] +'l— (u -u, )
(“j,n+1 Yi-1,n+1 at {85,041 j,n
_J
9 ] 0 3
Z - - = )
*7 a7 Yen,n’ Y 0 U410 ,
"3
i' where 3

I
OO

P‘_‘

.. €

L a+s+c+d=1

2

i 3
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v, -
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1

2
Ax uj,n = (uj+l,n - 2uj,n + uj-l,na/gx

A Crank-Nicolson approximation is employed for the diffusion term, and

)
g + 2 +m

the approximations for 3u/3x and 93u/3t involve the same six points.

n _iwnjAx

If one considers u =ne and substitutes this relation in

jon
(6.4), one obtains a relation for n = pe_lwnv¢At wherein,

b9 (g - ol D)o (59
2 ' {[B(a +5)+ G- =) stn (werx)}2

p- = 5 (6.5)
{ g+B8(d-c)+ [(% + m) - B(d - c)] cos wmAx + a sin’ (E%A—) }
+ {[B(c +a) - (5 - m)] sin (wnAx)} 2
and .
,- B;Ax tan-l i c‘ [Bea + %) + (% - :)] sin wrAx —
g+ 8 8—5)+|:(5+m)- B{a -—2-)](:05 wrAx - a sin (2—)
(6.6)
-1 B(c + d) - (% - m) sin wrax
+ tan 27 wnb
g+ B8(d - ¢c) +[(-g-+m)— g(d - c)] cos wnAx + a sin (—2—1)
where
o o 2DAt
sz

From (6.5) in order for p=1 for D=0->0a =0, we must have

d-c=a-¢€/2 and c+d=a+¢e/2+a=d, c=¢/2 and

-08/2+m=06/2-m>m=26/2 . Considering the previous restricticas

on these coefficients we obtain ;‘
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Considering the above relations, and D = 0 , we now evaluate (6.6)

"

8
1 -1 2

(1'9)+B%-€)+[e-8%- )] cos wrAx

sin wnAx

8 (6.8a)

2 sin wnAx

+ tan-'1 1 : 1
(1 -86) + B(-E - e) + [B - B(E - s)] cos wmAx

2 -1 —g— sin wmdx )
¢ = Bunbx tan 1 (6.8Db)
1+ [B—Z- - e) - e](l - cos wmAx)

If one takes the limit of (6.8b) as B8 - 0 , noting tan—lx * X , as

x>0

sin (wrnAx)
lim ¢ _ (wrAx)
B>0 1 -06[1~ cos (wnax)] oy

(6.9)
1 - (w1rAx)2 + (w*rrAx)4 _ (wwa)6
- 3! 5! 7! 7
) - e[wg?x)z | Gt (emin)” ]

i
If 6 = 1/3 , we match terms through the second order and é T g 1.

L$ B . P P v & * -
i 1 | AR .o .
PRTRPRVLEE S I &

]

4 ‘.

2
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F AT |

Stone and Brian note that € = 1/2 1is the best value for the single

remaining degree of freedom. They note éiz 0 g% =0 for € =1/2,
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TS
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quency harmonies (wm small) as B > 0 , and

than zero.

following scheme.

(u, + u, )
plag? —Jdon__j,ntl v (1 -
D[A" 7 *ax (5 Y4e1n

1 1
M (uj sN “j—l,n) 3 (uj+1,n+l - uj,n+1)

1

the scheme in (6.10)

2

2
2.1 _ 2 [(wmh
2 ) [3 + 3 cos wnAx a sin ( > )] + [

u,
J,n

TN T

@ =1/3 . Thus 6 = 1/3 insures good values of ¢ for the low fre-

€ = 1/2 insures that these

=d, c=1/4, m=1/6 , g = 2/3) we obtain rewritting

)

1 1 [2
*% (% ne T uj-l,n+1)] Y3 [’5 Uy a4l ™ 94,0

sin (wwa)]2

|l o]

N

2
2.1 2 (wwa) [
[3 + 3 cos wrAx + a sin 5 ] +

72
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ditionally stable with no time step restriction.

2
sin (wwa)]

Collecting all previous results (e =1/2 , 8 =1/3 ,

1
% U510t T Y5-1,0) Y6 Cyel,nn T uj+1,n)] =0

<1
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values of ¢ do not change rapidly for a range of B slightly greater

a=1/4
(6.4) the
(6.10)

The interesting feature in (6.10) is the spatial time derivative or

"spread" time derivative. If we also return to (6,5), we now obtain for

(6.11)

for all wrnAx and for all o and R . Therefore the method is uncon-

Stone and Brian also
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. consider a scheme with e¢=2/3, 6=1/3, a=1/6=d, g=2/3,

St
| PEVRPEUEPU

c=1/3, m=1/6 ; then one obtains

(u + u, ) {:
ol T Y’ v 2 _ &
D[Ax 2 + Ax )6 (uj+1,n uj ,n) <
1 1 =
T3 (uj ,n uj-l,n) +3 (uj+1,n+l - uj,n+1) )
|
(6.12) -
1 1 |2 3
*% (4 ona T uj—l,n+1)] tAc [’5 (uy n1 ™ Yy,n0)
1 1 -
*% (“j—l,n+1 Yo, e (“j+1,n+1 - “j+1,n):l =0
If we evaluate (6.5) for this scheme, we obtain
2+B(-l)+(}-+—8~>cosw.é ~ s:l2 LLEE S ’
3 6 37% mex = o 8in (72
8 2
+ [5 sin (wwa)]
2 _ 5 (6.13)
2 1 1 _@) 2 (wnAx)
[3 + B( 6)+(3 + 6/ cos wrAx + a sin 5
8 2
+ ,:—2— sin (wwa)]
Letting B =1,
2 2
2 [l +1 cos (wnAx) - a sin’ W“AX)J + [—1- sin (WTTAX)]
p2. 1272 2 12 |
2 2 :
[-]= +1 cos (wrAx) + a sin® (werx)] + [l sin (wrAx) -
2 2 2 2
From the above, if B > 1 , the scheme will become unstable. For this ::’]
‘j
73 »




EaNO N o a A RN LA AR R R It etk pat Sreal e vl e SR SR AN e
e N RN P

N I N N <

- reason, the scheme is not further considered.
Stone and Brian consider the use of a cyclic set of difference
equations. If N different finite-difference equations are used over

N time steps and the cycle repeated, then in (6.3)

_ 1/N
P = (pIpII"'pN)

(6.14)
=¢I+¢II+... ¢N
¢ N

Stone and Brian considered N = 3 and developed a different 6 for
€ = 1/2 in each of three finite difference schemes. In each scheme

’ p=1 for D=0 and the previous relationships among the coefficients

are sufficient to completely define the scheme once 6 is determined.

Consider (6.9) as follows:

lim lim lim '
lim ¢ _ [s IS U T U (¢111)] L 6.15) ]
g >0 3 ) i
9
L
Letting ]
N
o - - Gman? | ema® | man)® '
- 3! 51 7! '
A

oo o Gman®  man)® | Gmax®

20 41 6!
1l + ND 1l + ND 1+ ND
— + = + = 3 (6.16)
(1 elDD 1 ezDD 1 - 93DD>
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Equating the first three powers in (wnAx) three simultaneous equa-
tions are obtained in terms of 61 R 62 , and 93 . This cyclic use of
three different difference equations is shown to be superior to the
multiple application of the single equation considered previously.

7. An Analysis of the Numerical

Solution of the Transbort Equation

Gray and Pinder [14] consider the one-dimensional transport equa-

tion with constant velocity, written in their notation as

2

ac dc _ a ¢
3 TV P2 (7.1)
oxX

where
¢ = constituent concentration
u = transport velocity
X = space coordinate
t = time coordinate
D = diffusion coefficient (constant)

As in previous work, the general solution to (7.1) is considered as a

Fourier series.

c = z ¢ exp (iBnt + ionx) , where |x - ut| <1 (7.2)

n= -—00
and Bn is the (time) frequency of the nth component, o, is the
spatial frequency, and 1 = Y=1 . 1If one considers a single component

in (7.2) and substitutes it into (7.1), the following relationship is

obtained
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2 _
B, +uo - iDo_ = 0 (7.3)
Bn = on(iDon - u) (7.4)

Thus for a single component solution, one obtains

cn c, exp [ion(x - ut)] exp (-Dorzlt) (7.5),

where the first exponential describes the translation and the second
describes the amplitude modulation of a Fourier component with time.
From (7.2) for a single component

Copar = C, ©XP [1Bn(t + At)] exp (ionx)

(7.6)

¢ exp (iBnt + ionx) exp (iBnAt) = c, exp (iBnAt)

Thus exp (iBnAt) is considered an eigenvalue, X

Let the eigenvalue of the nth Fourier component obtained from the
numerical scheme be denoted by A; . Considering the computed and ana-
lytical components after a time such that the analytical wave has propa-

gated one wavelength, the number of time steps required is given as

follows.
N =D& - BAX (7.7)

where Ln is the wavelength of the nth component. The ratio of the

computed to actual amplitude after one wavelength is given by
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N - a ~ SR TRV A M i b Jioe y |
N N
' n ' n Ln/AX\)
|A |A!] A
n n
l i N 2 = 2 (7.8)
exp ( BnAt)l exp (—onDAt) exp 4D (%§>
- n
where
v = ult
Ax
v - DAt
D 2
Ax

The phase lag en after one complete wavelength is defined as

ie; X;
6, = GaNn - 27 with e = — (7.9)

Equations (7.8) and (7.9) provide the mechanism for evaluation of al-
ternate schemes for (7.1). Gray and Pinder present a finite element

scheme using chapeau basis functions as follows

[+,

1| Sa, k4 T Ciel,k v 4 ikl ~ i,k . €i-1,k+1 - Si-1,k
At At At

Ci+1,k T %i-1,k
2Ax

C. - C
+u [} WL~ Ticlktl

2Ax
(7.10)
2¢5 bl T Cio1, k4l

Ax2

C, -
-D [e i+l,k+1

c, - 2c, + c,
+ (1 -¢) i+l,k ik i l,k]

sz

If we rewrite (7.10) in operator notation with

c + c

5 X i+1 i-1

X = cC - C, = T
i+l i-1 2

v

k. 77
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we obtain the following compact relation. :{
ij
2, px  uAt _ 6x _ DAt 2\ ktl 2
(3 + 3 + s € o 2 edx ) c o
Ax o]
(7.11) -
- g_+435 _ uAt (1 - ¢€) S8x + DAt Qa - e)6x2 ck Ea
3 3 Ax 7 2 2 “1
Ax .
4
4
io_Ax -
_ _ akAt n ~ o
If we consider Cipy = Ci+1,k = e e for the nth Fourier com .
-
ponent and substitute into (7.11) and note for 6 = onAx e
sin2 o = 1 - cos 26 _ eize + e-iZG -2
2 =4
i0 -if ie -i6
isin 8 = e - ° cos 6 = & te
18 2 2
we may write directly the relation for X; . IO
N
, cos o Ax , , :f:
. ck+1 . 3 + 3 - (1 - €)[vi sin onAx + 2D(1 - cos onAx)] (7.12) ~
n ck 2 cos o _Ax , E;
t' 3 + — + e(vi sin anAx + 2D(1 ~ cos anAx)] J
’ For stability |A&| <1, which requires 1 > € > 0.5 . 1;3
-4
i In their paper, Gray and Pinder consider the following finite dif- %t |
X -
f ference approximation to (7.1) written in compressed operator notation. ;3
- (1 + %ﬁ£ £ é% - QA% eéxz) ck+1 ;;
9 Ax ?4
: (7.13) +3
r -
A At .
s = |1 -2= (1 - ¢) $x + Dat (1 - ¢) 6x2 ck ﬁ
. Ax 2 AXZ i




The essential difference between (7.11) and (7.13) is embodied
in the treatment of 23c/3t . In (7.11) a spatial weighted "spread"”
time derivative approach is employed, while in (7.13) the time deriva-
tive is not spatially weighted.

The corresponding eigenvalue for (7.13) is written below as
follows

Ck+1 1 - (1 - s)[vi sin onAx + 2D'(1 - cos onAx)]

LI -
A k 1 + e[vi sin o Ax + 2D' (1 - cos o _4x)] (7.14)
n n

Again lkél.i 1, for 0.5<e<1.

Gray and Pinder employ equation (7.7-7.9) to study the character-
istics of the two schemes. An eigenvalue amplitude plot for ¢ = 0.5
and 1 is developed versus onAx = (2ﬂ/Ln)Ax = (2n/nAx)Ax = 2n/n  for
n > 2 for both (7.12) and (7.14).

Equation (7.8) is employed to provide amplitude ratio plots for
both schemes tor ¢ = 0.5 and 1 , while, Equation (7.9) is used to
develop phase angle plots for € = 0.5 and 1 . Based upon these plots
and direct numerical simulation of a step function concentration dis-
tribution the spread time derivative scheme is shown superior to the
standard time derivative formulation.

8. The Leendertse Formulation

Leendertse [15] considered the space staggered grid illustrated
in Figure 7 in applying the finite difference approximations to the

following equation sets
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Figure 7. Leendertse space staggered grid system
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oP
o\HD —
3(HP) , 3(HuP) _ 3(HVP) _ 3 ( 3P\ _ ( zaz)_ _ 1

TR + oy 9% HD, ox oy HS, 0 (8.1

2 2,1/2 .
%%-+ %% + %E - fv + 3'52 + g 4l :2; ) %ﬁ Ti (8.2) ?
v v ov an v(u2 + vz)l/2 1 s -
5t + u ™ + v 3§-+ fu+ g By + g c2H = o Ty (8.3) ;
—3—2 + a(gz) + a(gz) =0 (8.4) i
where i
t = time _:
X,y = Cartesian coordinates
H = water depth
u,v = depth integrated velocities in the x and y directions,
respectively
f = Coriolis parameter
¢ = Chezy coefficient
;} p = density of water
g: Ti,T; = surface stresses in the x and y directions,
e respectively
E: P = pollutant concentration
;? n = water surface elevation
v

PENRE N
0
1]

Z acceleration of gravity

4
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4

Dx’Dy = dispersion coefficients in the x and y directions, é
respectively f

A

SA = source strength (concentration/unit/time) ;

"

We note in the above equation set that P 1is considered an arbitrary }
pollutant, %

The finite difference scheme is ADI with the time step At being

split in half to advance the solution to t + At . 1In following the fi-

'-i
]

nite difference formulations, the reader is referred to Leendertse [15b]
for details of notation. In the first sweep from t - t + At/2 the fol-

lowing finite differences are employed in an x sweep of the grid.

X-sweep t > t + At/2
jdx » x
kdy » y

nAt »> t
For continuity we write

2 n+l/2 n n
At (“j,k “j,k) M [(hj+l/2,k+l/2 *Pivy2,k-172 ¥ M4,k

n n+l/2 n

+ -
N5 k) Y341/2,k (Pj—l/Z,k+l/2 t /0, k-172 T M4-1,k .

n n+l/2 1 n
* “j,k) uj—l/Z,k] 2ax [(hj+1/2,k+1/2 th 2 P e 89 1
+

n n n b
nj,k)"’j,kﬂ/z (hj-l/Z,k+1/2 th 2k Tk 3

n n 1
+ “j,k-l) vj,k-l/%] ay - °
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which may be written in general as:

n+l/2 n+l/2 n+l/2 _ 0
T5-1/2%-1/2,6 T 5,k Tien2%en/2,k T A (8.6)
For u momentum:
n-1/2 n-1/2
1/ n+l/2 A2 Y = Wryo T %172,k 22
(uj+1/2,k Yi41/2, k) fv + 2h% Y541/2,k

[Centered Difference]

n-1/2 n-1/2 v /2 n+l/2  n-1/2 _ n-1/2
+ ( §41/2, k41 j+l/2,k—1) Zay ¥ (nj+1,k Mkt ek T Mk 7oy (8.7)

[Time averaging at n+l/2]
Derivative centered at
time level n

[Centered Difference)

) 1/2
n+l/2 n-l/Z n-1/2 =
s( k%+unk *"] )

Yi+1/2, kt Yi41/2,k 1 S
@ + 7 @E? o + 7% X
where
=_1/{(n n n n
V% 6’3‘+l,k+l/2 * Vi, kt1/2 + Vi,k~1/2 t Vj+1,k—l/2>
=y l
b7 =2 (2,072 ¥ Bya1/2,001/2)
-x _ 1 ( n + o0
n 2 \"j+1,k T Ni,k

21 ot + 0
¢ 2(j+1,k €5,k

The above equation may be written in the following form:

n+1/2 1 n+1/2 n+1/2 n
j ik tr J+l/2 J+1/2 k + ]+1 J+1 k Bj+1/2,k (8.8)

For the constituent of concern we obtain: (Note i has been dropped,

since we are considering only a single constituent.)
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Pn+1/2Dn+1/2 _pt pt
ik i,k fki,k [ on n+l/2  (pp+l/2 Pn+l/2)
At X5-1/2,k%-1/2,k\ §-1/2,k 7 “j,k
2
n n+l/2 (on+l/2 | on+l/2)| 1 _ [ n n
“SXi/2 %+ /2, k85,0 T Pj+l,k] hAx Lsyj,k—1/2vj,k—1/2

n n n n n n 1
x (Pj k-1 Py ,k) - 595 /2 e /2(5 e * Pj,k)] hby

_ (8.9
1 [ n+l/2 _ n+l/2 (n+l/2 n+1/2) n+1/2
+ ———— | sx D P, - P, - SX,
j— Lk -1,k +1/2,k
22 L 372k g5 4 V3 J i+/
n+l/2 nt+l/2 n+l/2 1 n n
* Dy (Pj+l,k - Pk )] + 2 [Syj,k-l/ZDy.
j+1/2,k 2(ay) j,k-1/2
n n n n n n
x (P_ - P _ ) - 8y, D (?. - P, )] =0
i,k jrk-1 j,k+1/2 yj,k+l/2 j.k+l j,k
where
n _ (n n
B S%541/2,k (njil,k gk P Pa2,k-12 7t hj-_i-l/z,k+1/2)
- n _ {n n
Yy kt1/2 - (nj,kil Ty PR k2 t hj+l/2,kill2)
;;: This equation is then written ir the following general form:
s
B2
N n+l/2 n+l/2 n+l/2
[ =
aij—l,k + bij,k Cij+l,k Dj (8.10)
»
ﬁ? Let us now consider the y sweep in which the solution is advanced
>“'.'.
fre
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from time level n+l/2 »n or t + At/2 > t + At . Leendertse ex-

presses the continuity equation as follows:

B+ 7% W+ v | =0 3 11
Spr/oen * 8, LG + D] + Gyl}h + 71 )vt] 0  j,k,n+l/2 (8.11)

where:
n+l _.n

6 _ n-,k n-,k
+1/2¢" At

2

n+l/2 n+l/2
h. + h, n. +n
= - Jk+1/2 j,k~1/2 i+1/2,k '4-1/2,k
Gx[(hy + 1) = cx[(ﬂ L + = 22 1y

n+l/2
+
|:(hj+l/2,k+1/2 Fhivox-172 T ek

. n+l/2\ n+l/2 h
"3,k ) Y541/2,k (j-—1/2,k+l/2

n+l/2 n+1/2) n+1/2 k] .

+ + !
*hioe-2 Tkt "en,k) -1/,
n+l/2 nt+l/2
s [(Ex N —y)v] s Bivi/a,k * Byo1y2,k L Makrry2 t nj,k—l/Z) )
y Ve y 2 2 t

n+l/2
[(hj+1/2,k+1/2 + hj—1/2,1l<+1/2 + N, k+l

+ n+l/2 L —(n
"5,k i k+l/2 §+1/2,k-1/2
n+l/2 n+l/2 n+l
Y22t e Y e Vj,k-l/Z] /2“y |
|
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The v momentum equation for the y sweep is given as: -

QN

2]1/2

FURSF Ry

Gt[(ﬁ>2 + (V)

& + V) @)?

Gtv+fu+ux_+vt6yv_ +g6yn g

I TR
..’.L.AA-A PRrars

(8.12)
c—— 520 at §,k+1/2,041/2 o
p(h* +77) 7 by
4
;‘.1.
where _}
i[:.
Vn+l _ Vn+l/ 2 )
_ 3,k#1/2 T Vi k+1/2 K
- At gy
A d
- n+l/2 n+l/2 n+l/2 n+l/2
f(}‘j+1/2,k+1 T Uai72,k Y Y-1/2,041  Y5-1/2,K
W - - o _.n
o _3+1/2,k41/2 " V3-1/2,k41/2 _ Vi+l,ke1/2 T Vi-1,k41/2
Ax 2Ax
Vn _ vn y n - n
_ ot Lk Yk ) el Vi, k#1/2 T Vi k-1/2
j,k+1/2 Ay j,k+1/2 20y

Syn 28y

n+l _ n+1 + n _.n
—t _ Mkl T "k T Nk ”j,k)
y
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4

1/2 .

—t[,=.2 2 n+l n 1/2 %
8v [}“) + (V) ] o V572 Vg 72) | =2 n 2 —
@+ e ° 2 AR \ERNE R "
n’)(c 3

n+1/2 n+1/ 2)

(hi+l/2,k+l/2 Rz TN e T Yk =3

) "

3

. 2 K

§ [(~J-,k+1 * °j,k)] g

2 -4

b

s
T

J

P

o '\J‘m

~X |, -y, n+1/2 . n+l/2
(a™ + n?) (Ej+1/2,k+1/2 2,2 e T Yk
2

The constituent equation for the y sweep is expressed as:

Spp/o PR+ )] + 6 [(B + WHup™] + sy[kﬁx + ﬁy)vt§Z]
(8.13)
7Y + 72X e S 4 - .
_le-(h +n )DXGXP] - Gy[(h +n )Dy GyPt] =0 at j,k,n+l/2

t

where

Pn+l(ﬁ AT P9+1/2(§ + itL/2 R
5, . [B(H + n)] = —LK Lk Lok Ak g
+t/2 n At

2

with u

&
=g

= Maasz,ens2 Y072, k-172 T Pye1/2, 04002 3

12, k-1/2
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5, [(RY + n¥uP*] = s

6y [(h +n )vtPt]

h + h

441,k+1/2

j,k=1/2

n+l/2
j"l/z’k

n+l/2

i+1/2,k T 0

+ n,

(Pn+l/2 + P

2

n+l/2

2

e ) [(h 1/2,k+1/2
41/2, ke

/2, k172

+ P?+l/2)//LAx] -
i,k

+ nn+1/2

+n

n+l/2
. + n,
sk nJ‘l,

n+l/2 n+l/2

n+l/2 n+l/2
j+1,k T N5k P

Yi41/2,k\ 541,k

[(hj-l/Z,kﬂ/Z *hyl1/2,%-1/2

n+l/2 n+l/2 n+1/2
K uj-l/2,k(Pj,k Fi-1 k)/"A ]

(h + n+l/2 n+l/2 )

5 |\li+l/2, kP P12t Y /2 YN k-1/2

y 2 t

(?n+l n+l )
5 j,k+l/2 Py k-1/2
J+1/2,k+1/2
n+l/2 n+l/2\ n+l n+l

TR 02 Y Y, Lk vj,k+l/2(Pj,k+l

n+1
t Pk )/’Ay] - [(hjﬂ/z,k—l/z R 1/2,%-1/2

N r]n+1/2 +

e
.. .
CERC T W R

n+l/2\ n+l n+1 o+l
Lk Tkl Vj,k-l/z( Pk Pkl )/‘Ay]
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n+l/2 n+l/2
. + h,
s [ + s SEE (" a2 Pik-1/2 F M2t o1k
X n X X X 2 x

_ Pn+1/2
j-1/2,k

(Pn+l/2
Ax - [(£j+l/2,k+l/2

j+l/2,k

x

+h n+l/2 n+1/2)Dxn+1/2 Pn+1/2

_ + n, + n, i
+L/2,k-1/2 7 341,k T N4,k j41/2,K Y IHLk

nt+l/2 2
BRER" 2//2Ax ] - [ Bi1/2,141/2 * Po12, 6012

n+l/2 n+l/2 n+l/2 ( n+l/2 n+1/2>
nj’k + j -1,k D Pj,k 1.k 2Ax

+
*5-1/2,k
n+l/2 n+l/2 )
s |@* +7)p s p | =5 (hj+l/2’k M BV R Malet/2 T k172
y Yy ¥t y 2 Ye
( Pn+l _ Pn+l )
A iLk+1/2 i.k=1/2) 1 _ (£
Ay J4+1/2,k+1/2

+h. n+l/2 r1+1/2)D n+l

+ n, + n,
- 1.
j-1/2,%+1/2 s k+l j,k yj,k+l/2
n+l n+l 2 (
) (Pj,k+1 B Pj,k)/ZAyJ B [hj+1/2,k-1/2

n+l/2 n+l/2)D n+l

_ + n, +n, 0
j-1/2,k-1/2 jsk jsk-1 Yy, k-1/2

n+l n+l 2
x ( Pj,k - Pj,k—l)/ZAy]

Note that the above equation may be written as

+ h,
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In this approach the constituent equation is solved directly within the
hydrodynamic computation sweeps although there is no coupling.

In the application to Jamaica Bay, salient simulation character-

istics are as follows:

a. As = Ax = Ay = 500 ft (15.24 m)

120 sec

At

b. The explicit time step, Ate, is given as follows.

Ate = —Abs =-§%% = 12.5 sec
vgD
max

d. The particle Courant number Crp is given by

_uAt _ (0.5 ft/sec*)(120 sec) _
Crp =% = 500 Lok* 0.0120

e. The dispersion coefficient formulation is given by

D = 14.3/2g utic L+ D, , where Dws(25, 45) ftzlsec+
where
Dx 3 dispersion coefficient
g = gravity

* 0,1524 m/sec.
*% 152.4 m. 2
+ 232,4.18 m"/sec.
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¢ = Chezy coefficient
H = local water depth -
AN Dw = background dispersion coefficient i

f. The Chezy coefficient is given by

1,49 . 1.49

= = = 100
an/6 (0.01) (11)

where

¢ = Chezy coefficient

.

R = hydraulic radius

«
..1
R
2
Al

n = Manning's roughness

g. The dispersion coefficient used becomes

- (112)(0.5)(23) | 55 = 37.5 £e2/sec [3.484 m%/sec]

- Dy 100
with
Pl | (37.5)(120) _ | 016
2 250,000 :
As
and a cell Peclet number, Pe = ubx _ €0.5)(500) _ 6.7
Dx 37.5
ﬁf 9, Additional Methods and Considerations
‘e Bram van Leer [16, 17] has developed several upstream centered
:i higher order convective schemes. His work is highly theoretical within
-t
:j the domain of numerical analysis but seems to indicate a general ap-

B

proach to constructing extremely accurate finite difference schemes.

“eTaTi
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Forester [18] has presented a non-linear filtering technique for higher

CanCaatire LTV T
R -!ii r",_'.‘..‘_ A
1

order even (greater than two) finite difference schemes which preserves -

the peak of an external type distribution unlike flux corrected trans- -

port filtering. The application of the filter to points near the

(it T B M} i
P T I EI .
LA A I .

boundary was not reported and the determination of the coefficients must
be made through direct numerical experimentation for each problem

individually.

-
-
—
-
T -
e
~e

Narayan and Shankar [19] have employed a multi~uvperational scheme
similar to the Leendertse scheme previously outlined in an application
to Galveston Bay. Oster et al. [20] employed Leendertse's scheme [15]
with upwind differencing in a two-dimensional computation. Hinstrup
et al. [21] at Danish Hydraulic Institute have developed a two-
dimensional explicit scheme employing 12 point Everett interpolation.

The treatment of boundary cells appears to result in some mass

falsification. Ef
Runchal [22], Siemieniuch and Gladwell [23], and Lillington and
Shepherd [24]) demonstrate the osciliatory nature of central difference N
approximation to the steady state eq .ation in convection dominated prob-
lems for cell Peclet numbers greater than 2. Jensen and Finlayson [25]

note this oscillatory behavior may be observed in transient simulations

of sharp fronts as well for improper time and space scales.
s Molenkamp [26] has provided a review of several finite difference
approximations and compared them for a rotation of a circular distribu-

tion. This test problem provides for a non-uniform velocity field
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within two‘dimensions and will be employed as a test case for the to be
developed salinity algorithms.

The cell Peclet number as mentioned above plays a major role in
characterizing the relationship between the grid resolution and the

numerical scheme. It is defined as

< Oxu < Ayv
Pex =K Pey X (9.1)
X y

-1
-

where
Ax = grid spacing
u = maximum magnitude of the velocity in the x direction
v = maximum magnitude of the velocity in the y direction ﬁ
Kx = dispersion coefficient in the x direction ?
x .

y

dispersion coefficient in the y direction 21
The Peclet number limit of two is required to prevent oscillations in

the solution in the vicinity of a sharp concentration front for central

space differencing. For typical velocities and dispersion coefficients,

Ax and Ay would be in the scale of hundreds of feet. This space

scale is too severe to be applied over the entire area of Mississippi
' Sound. The Peclet number limit, however, is only significant for sharp
g fronts and although there may be significant horizontal gradients in
i salinity, these gradients are not as severe as a shock or discontinuity
! in the distribution. If first order upstream differences are applied

no oscillations will develop, but accuracy limitations (such as those

developed by Leonard [27])usually require a dense grid. In practical
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computations, one normal decides on a space scale of significance, S ,
and selects the grid spacings, € , such that € < S/10 . Higher order
schemes may allow this limitation to be relaxed. However, these higher
order methods normally involve more complicated algorithms and increased
computational cost and model development time.

In conclusion, it should be noted that there is no one best com-
putational finite difference scheme for the transport equation. How-
ever, the necessity to perform computations over a two-dimensional grid
with irregular boundaries, suggests that a simpler lower order method

be selected which is not too inaccurate.

-
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PART IV: NUMERICAL METHOD SELECTION AND DEVELOPMENT
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¥ -
N

s alnss
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The method of solution for the transport equation must be compat-

ible with the hydr~dynamic scheme employed in WIFM. Since the convec-

!,‘ 8"
4

-

tive terms must be treated in the hydrodynamics for tidal circulation,

N
N -
'ﬁ the following explicit type time step limitation must be obeyed
: uAt < min —Axdy . min (_A_re_a_ (3.1) 3
» - 2 2 Diagonal '
Y AXT + Ay 3
".; 7
XN
f where
oy
P~ u = maximum particle velocity magnitude
’i Ax = spatial increment in x direction (variable)
> Ay = spatial increment in y direction (variable)
It is desirable to leave open the option of coupling the salinity
transport through an equation of state to the density involved in the
pressure gradient terms within the hydrodynamics. If this is to be
e accomplished the method of solution of the transport equation must also
Z: satisfy the above equation. This allows both explicit and implicit
» methods for solution to the transport equation to be considered. Ex-
B plicit methods must obey (3.1), whereas for implicit methods the only
'ﬁ time step limit is one of accuracy.
.i If density coupling is not necessary and explicit methods are
s
. employed then it may be possible to employ a time step in the transport
~ solution, AtT =n AtH , where n 1is an integer and AtH is the time
3; step in the hydrodynamic solution. In this case the following limit
i
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must be obeyed for an explicit method

uat’ < min —OxAy - (3.2)
\/sz + Ay2

where u represents the maximum magnitude of the particle velocity aver-
aged over nAtH . The explicit time step transport limit will be less
than an implicit time step transport limit. Thus an implicit method may
accommodate larger time steps than an explicit method. Leendertse [15]
notes the problem of conservation in averaging velocity fields. How-
ever, in order to develop long term transport patterns, it may be desir-
able to employ much larger time steps in the transport equation solution
than in the hydrodynamics. For this reason and to maintain consistency
of approach with the hydrodynamics a multi-operational implicit scheme
will be developed for the transport equation.

As has been previously presented, the work of Stone and Brian [13]
and Gray and Pinder [14] illustrate the improved computational character-
istics of the spread time derivative method over the standard forward
time centered space method in one-dimensional problems. Siemon [28]
has investigated the extension of the method to semi two dimensional
problems (advection in one coordinate direction, diffusion in both
coordinate directions) and reported favorable results. To the author's
knowledge, the extension to completely two dimensional problems has not
been reported. It is proposed that this extension be investigated in
this project. By employing appropriate coefficients in the numerical

formulation, the method could be degenerated to Leendertse's approach.

96

EER TR e "
.«

LR . . . AR G e . . - LR T et . LI - e e
FOP PV R Yy W WA TR O Wy ¢ ‘-__‘.’;\&".‘3-'-!.k}“"-"-\; h‘.\.A_!_~L.LL




In this manner, two computational schemes may be coded in one operation.
The format of the spread time derivative scheme is such that it may not
be expressed in a form suitable to flux corrected transport. As a re-
sult, oscillatior< in the solution may be smoothed using filtering
techniques. The necessity of filtering cannot be determined until nu-
merical experiments are conducted.

As an alternative, Leendertse's approach will be implemented with
flux correction. The higher order scheme will correspond to the stan-
dard Leendertse formulation. The lower order scheme will employ upwind
differencing of the advective terms. Thus, two schemes must effectively
be programmed (a higher and lower order scheme) for flux correction.

The two alternative schemes spread time derivative and Leendertse
flux corrected will be compared through numerical experimentation to
determine the most appropriate technique for application in Mississippi
Sound.

The flux correction method is such that any higher order method
may be employed. Leendertse's method is O(Atz, sz, Ayz) and is amenable
to adaptation to variable grid spacing using the exponential stretch
transformation in WIFM. In the future, it may be desirable to consider
higher order compact differencing schemes such as the Kreiss scheme as
reported by Roache [29]. The flux correction method will accommodate
further research in the development and implementation of higher order
schemes.

The general strategy and development of the numerical approxima-

tions to the transport equation for application to Mississippi Sound is
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shown in Figure 8. This approach provides for development of an optimal
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second order method.
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Figure 8. Development of a numerical method for the transport equation
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