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PREFACE

The methodology for the development of a numerical solution to the

transport equation is reported herein. A numerical solution procedure

will be developed in Report 2 of this series. Numerical test results

are presented in Report 3. The solution procedure will be incorporated

in a numerical model to be used for evaluating effects of proposed

dredged material disposal practices in Mississippi Sound and adjacent

areas.
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DEVELOPMENT OF A NUMERICAL SOLUTION TO

THE TRANSPORT EQUATION

Report 1: METHODOLOGY

PART I: INTRODUCTION

This report constitutes the first report in a three-report series

and develops the methodology for obtaining a numerical solution to the

transport equation. The algorithm developed is to be included within

the Waterways Experiment Station Implicit Flooding Model (WIFM) [1].

The development of both the vertically integrated hydrodynamic and trans-

port equations is presented in PART II in order to point out the assump-

tions made in a two-dimensional approach. A literature review of current

research in finite difference approximation techniques to the transport

equation has been conducted in order to determine the most effective ap-

proach for simulating salinity levels in Mississippi Sound. Results are

N detailed in PART III. The numerical method selection and proposed form

of development is the subject of PART IV.

4'. It is instructive here to note the component tasks in the develop-

ment of a mathematical model. Initially, one must decide what form of

the equations is to be approximated. Certain simplifications and assump-

tions must be made to obtain the system of equations. Secondly, one

must select a suitable numerical approximation to the equations. Next

the numerical approximations must be computationally implemented. The

efficacy of the approximation must then be tested by comparing simulated

results against known solutions under simplified boundary and flow

4



conditions. Finally, empirical coefficients (friction and dispersion)

must be adjusted during simulation of measured prototype conditions and

subsequently verified. This report presents the results for the first

two steps in this process. Subsequent steps will be presented in sepa-

rate reports.

5
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PART II: MODEL EQUATION DEVELOPMENT

The hydrodynamic and transport equations are developed in two

dimensional vertically integrated form. The time averaging concepts

necessary in describing the turbulence are introduced as necessary in

the derivations but are not treated in detail. An equation of state is

developed which effectively couples the hydrodynamics and transport

equations. Finally, the complete equation sets are presented for the

coupled and uncoupled cases.

1. Hydrodynamic Equations

The general equations of the classical hydrodynamics for imcom-

pressible flow are given following Lai's development as follows [2].
-4

' +x - + - = 0 (1.1)
ax ay 3z

Du Pp u (1.2)
t = PFx - ax(12

P pD = pFDt y y + pAv (1.3)

Dw F-n
PD pz + pA2w (1.4)F Dt =3P z

with

D 3 + u + v a + w -
Dt at Ex ay 3z

2 32 32 32
A -2a- + a-2 + a-2

ax ay 3z

where

x,y,z Cartesian coordinates

6
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u,v,w £ Velocity components in the x, y, and z directions,

respectively

F,F ,Fz  Body forces in the x, y, and z directions, respectively
x y

p Fluid density

W Fluid viscosity

p Pressure

t E Time

The following assumptions are made:

1. The water is not deep compared with the length of the wave am

the shallow water theory applies.

2. The vertical velocity of flow is small.

3. The vertical acceleration of the fluid particle is very small

compared with the acceleration of gravity, g, and, hence, can

be neglected.

4. The pressure is hydrostatic (from the above assumption).

5. The frictional resistance coefficient for unsteady flow is

the same as that for steady flow, thus can be approximated

from the Ch~zy or Manning equation.

6. Only shear stresses due to horizontal velocity components are

significant.

7. The bottom of the embayment is rigid or relatively stable and

fixed with respect to time.

8. The water is nonhomogenous but incompressible. The density

induced flow appears only in the pressure gradient terms.

1.1 Continuity Equation

If we consider (1.1) and integrate over the vertical from the

7



bottom zb(x,y) to the surface fl(x,y,t) we obtain

n n
au 3 auI x ~ dz + J dz + w(q) - w(Zb) = 0 (1.1.1)

V. z
b b

From Leibniz rule we may write

' ' _az
a f u dz =u() U(Z b + au dz (1.1.2)
ax" ax udur) (b y-+ f ax

Zb Zb

a v dz =v(n) - V(Zb) + f v dz (1.1.3)
ay f By bI -3

Zb b

Employ the kinematic boundary condition; namely, for F(x,y,z,t) = 0

as a boundary surface assume any particle on the surface rei-ains on it

implies

DF 3F + )F avF aF
Dt at ax ay az

Consider z ; f(x,y,t) at the free surface, then

F = z - Q(x,y,t) = 0 . Hence

t' F 8Jtt 88Jx 8q= w(1.1.4)LF -= 0 => n un + V My
Dt at ax ay

- At the bottom z = Zb(x,y)

Hence

aZb az
DF/Dt 0 >u 8 +v w (I.1.5)

8
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Returning to (1.1.1)

ax udz +u(Zb) ~lax ay v +V Z b 
fb u an f d vzb -

Zb Zb

-VWfl + w(rl) -w(Z )=0 (.16ay b

The sum of the terms is zero from the bottom boundary condition.

The sumi of the ___terms is equal to anf/t from the free surface

boundary conditions. Thus we obtain:

+ u udz+- f vdzO0 (1.1.7)
at ax 5 y

fb b

Denoting

ri '

Ub u dz and v bv dz

b Zb

one obtains

at ax Zb~u a-y b

Letting h = -Z and dropping the bar notation with the under-b

standing henceforth we are considering vertically averaged quantities

one obtains

+ (hu) + a h) 0(119
at ax 5-(v)=0(119

9
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* 1.2 Equations of Motion

Consider the z motion equation in winch Dw/Dt = 0 , 2A w =E0

from assumptions 2, 3 and 6, respectively. Thus we obtain

pF 0 (1.2.1)
2 az

F is replaced by -g due to the following assumptionsz

1. The vertical component of the Coriolis force is negligible

with respect to g

2. The vertical tide generating force component is negligible

with respect to g

If we integrate the above relation from an arbitrary level z to the

"" water surface obtain

p(z) = p(r) + pg dr (1.2.2)

To depth average we consider the following relations to hold, in which

the bar quantities are depth averages and the prime quantities the local

fluctuation from these averages.

p(z) = p + p'(z) (1.2.3)

p(z) = p + p'(z) (1.2.4)

ri n
f p' dz = / p' dz = 0 (1.2.5)

zb b

Taking the partial derivative of (1.2.2) with respect to x obtain:

10
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' "I

ap(n) + a - P d (1.2.6)

ax ax ax fJ Pr

Integrating (1.2.6) over the vertical we write:

I 1
3 (p + PI) r ap (n) dz + f a fC gd 127

J"ax J ax a [xj pg dr dz (1.2.7)

Zb zb zb z

-.-- - - ®

Let us consider terms GD - G , separately, in turn. Evaluating GD
invoke Leibniz rule

Ti Ti
j 8- (p + p) dz = (p + p') dz
z b zb

(P + P') (P + p  ) x (1.2.8)

. zb  ri

Note further from (1.2.5),

Ti
a- (p +p')dz- Lb

ax f ~ ax L~ Ti )
Zb

azb\ 129
= n (ib ax p ax ax/ 129

Thus we finally obtain for Q the following expression:

P, 3b P fl
p + p') dz@1 z) +P x- ia (1.2.10)

Zb

.. . .

v ( -.- 8 - .p ------------- , -2.9).



If we let h = - z and assume p' 3zb/ax , p' aQ/ax =0 , then
b Z b b

we obtain

'1f - (p + P') dz = h (1.2.11)

Zb

Evaluating © note ap(n)/ax is not a function of depth; thus we

"- obtain

ri ap

~ax ax a x,."ax dz ax()( - Zb) = h--x- (1.2.12) .

z

where

Pa = p(rl)

* Next consider the iterated integral expression for (3) as follows:

px g dr =g L (Q-z)].
* ~ 5JX f ax LIJ

z

M (n Z) (1.2.13)

Note

Q 0 -2

g ax (U f z) dz - s ds = g (1.2.14)

zb n-z b

if

S "= rl - Z

ds = -dz

Observe from Leibniz rule

12
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9dz = (n z) dzf xax ( - z) dz
Z -L..b  b

+ (n 01 r) j (1.2.15)

Letting h = - Zb obtain:

gp= f ) dz g x 2 - + h aaxx

Zb

+ph - gph (1.2.16)
-gph Lax -aJ ax

and the evaluation © is complete. Assembling all our results we

obtain finally

. ""
hx + pgh ax + g 2La (1.2.17)

Analagously, the expression for the y gradient is given by

h~h a +-gay ax P ay 8  2 ay (..8

Thus we have employed the z motion equation to evaluate the horizontal

pressure gradients in the x and y motion equations. The expressions

obtained above for these gradients include the atmospheric pressure

anomaly, the water surface elevation gradient, and the density gradient

created by horizontal variations in salinity and temperature.

Let us next consider the material derivative (left hand side) of

13
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(1.2) the x motion equation. Expanding the material derivative and

adding (1.1) we obtain

Fau~ta Lu +u u (u 8 aw)

a u + a(u2) + a(uv) + a(uw)
La ax 0 y j

2
a (Pu) + 3(pu ) +a(puv) + B(Puw) (1.2.19)
at ax By a

Integrating the last result over the vertical (which also holds for

compressible flow)

r (Pu) dz + 8(u2  dz
a t J ax

Z b zb

+ CI(Puv) dz + Bj ( 8uw) dz (1.2.20)

Z b Z b

Again employing Leibniz rule

ri ni
8 (pu) dz f (Pu)dz

Z b Z b

0

+ ZbPu (1.2.21)

'1 b

14



-(puu) dz (puu) dz
ax J f ax

Zb Zb

+ puu puux (1.2.22)ax axU
z b

ay (puv) dz J (puv) dz
Zb Zb

"' '" puv I _,  puv a YZb

, + p.va-( 1 .2 .2 3 )ay ay
fl Zb

f - (puw) dz = puw - puw (1.2.24)
•~ bnz

b
Z b. -iZb

Notice in the above azb/at = 0 , since the bottom is assumed

rigid. Denoting terms in (1.1.4) by Q, and those in (1.1.5) by 0 ,

we obtain the following

9©

aa

b . • b

atpu ( Pu u + a (pu) dz

= Z b Z b

+ puu ax au x + a-y (puv) dz

Zb b
Zb

Zb qnZb

_- ,/'."'"15



The above expression reduces to the following:

f fl

Z b fb Z b

The following terms are next defined

hu z (-Zb) u f u(z) -zh -j) v(z) dz (1.2.27)

Zb Zb

where

U(Z) u~ + uW(W)

v(z) v[El+ v'(z)]

Thus

hii u dz + f u u' dz =hu + uiJ u'd (1.2.28)

Z b Z b Zb

h v = f v dz + f v v' dz =hv + v f v' dz (1.2.29)

Z b Zb Z b

Therefore we must have

J ui' dz =f V' dz =0 (1.2.30)

Zb b

Rewriting (1.2.26) and employing assumption 8 we obtain

16
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p - (uh) + p a- J u- - [I + 2u'(z) + u'(z)j] dz

Zb

'r)

P f+ u u'(z) + v'(z) + u'(z)v'(z)] dz (1.2.31)

Zb

Let

ri
[u'(z)] 2 I dz f D + u'(z)v'(z)J dz

Zb Zb

Noting the depth integral of the product of a bar and primed quantity is

zero, we finally obtain

p (h) + Lx + (Puvh)j (1.2.32)

Analogously, one obtains the following expression for the left hand

side of the y-motion equation (1.3) after integration over depth

p L (vh) + a(uvh) + (;;h)] (1.2.33)
[at ax ay

where

f (I + [vz) 1 [1 + u'(z)v'(z)] dz
Zb Z
b b1

17



Thus P in (1.2.32) and in (1.2.33) is the same quantity and is usually

assumed equal to unity.

Let us now consider the right hand side of the x and y motion

equations. Cnsidering the F and F terms, we obtain
x y

F v + g + G F -Qu + g + G (1.2.34)
x x x y y y

where G is the tide-generating force, 0 is the Coriolis factor,

0 = 2w sin * (w - angular velocity of the earth rotation, 0 is lati-

tude), and gx , g.. are the components of gravity in the horizontal.

Assume the following:

1. gx G <<<< !Qv,

4. 2. g G <<<< u
y y

then,

F =fv, F= -Qu

x y

Integrating over the vertical

-. n n

- v dz = th f u dz -uh (1.2.35)

Zb Zb

where u , v are vertically averaged velocity components, and

h = -Z

For a turbulent flow an eddy viscosity E is employed in the

- - place of the dynamic viscosity p • The terms become using £h and e

for horizontal and vertical eddy viscosity, respectively:

18



+h (a U2 + a
h- 2 2 v 2

82v  2\ 2 (1.2.36)

~h 2 2 v 2

The horizontal eddy viscosity terms are much smaller than the ver-

tical eddy viscosity terms and have been neglected by some modellers. We

consider the terms here in the following manner. If we consider the u

equation and note u = u + u' , integrate over the vertical, and employ

Leibniz rule, the following relation is obtained for the E terms.

dz 2a 2 (u + u') dz a - +i u') dz
ax2  ax ax (

Zb Zb

+ b c u af (1.2.37)

ZbI ax 5x ax

_z a (iu') dz
f ax 2ax axf

Zbz baxZ Z
b b

+ u bx + bu 3u al (12.8ax a~x a~x ax ax ax-8 azb x au xa (1.2.38)

Zb q Zb i

It is assumed that all derivative terms may be neglected, thus

ri 22 2- - 2
(U a(+ U') az= - au aha3u +-a3h (..92dz - (hu) = h 2 + 2 ax ax + u 2 (12.39)

J x2 ax ax ax
Zb

It is further assumed the second and third terms are neglible. If simi-

lar assumptions are made for the other terms in (1.2.36) we obtain

19
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/2 [2(hi 1
,.2 a2 u h2 x
~ha~u dz= ~ Lax '9a2(h)

Zb

' hh 2  a2 (1.2.40)
h a2 y2!

av,~E~ av z - -rr

32v 2- Ieh[L(h) a+ hvJ h (x2 )y2 / 3 h[x2 +a

Zb

• ."':"". : h \- -+ y2 (1.2.41)

These terms are retained in the motion equations and serve to stabilize

the numerical approximations. The vertical eddy viscosity terms are in-

tegrated over the vertical as follows.

f& n dz ( T
bx (1.2.42)f z 2  v 8Z sx Ibx

Zb

av2vN v -v

azdz L - T s b (1.2.43)v 3z 2  v 3z Z ) sy Iby

Zb

where T T s are surface stresses and Tby Tbx bottom stresses.
sx syby b

Consider the bottom stress, Tb ' as follows:

V2Vf

= Cf P

where Cf is a drag coefficient and Vf is the fluid velocity. Letting

Ch~zy c = 2g/Cf

20



obtain:

b 2 p vf (1.2.44)
c

Resolve Tb along the x and y directiol,: noting Vf = u + 2  to

obtain:

bx bVu = V v (1.2.45)

Cbx 2 fby C2

The surface stress T may have a similar form; namely,

2
p v

Tm~ C a-

where

c -=drag coefficient

. air density

v = wind speedw

Assuming the shear stress varies linearly with depth we obtain

aT _ s b _ + b pwd-z = - - - 1 + -sh - --s (1.2.46)

3z h h Th as

where

A (Tb/ts + 1)

Pwd pressure intensity produced by the wind

s - distance in the downwind direction

Integrating (1.2.46) over the vertical

21



1:7 ..,f .- . -

r,,n

T dz f a XPaV - 2 (1.2.47)
J az f 2h -

Zb b

with

K = (CXPa)/2

If 0 is the angle between the wind direction and the + x axis,

T = KV2 cos 0 (1.2.48)sx w

T,'. KV 2 sin 0 (1.2.49)%'-" sy = w

Assembling our results, we obtain the final expression for the

depth integrated motion equations

3 2 a a (2 a2
t ax hh +2u +p (uh) +p- (uh) (uv) PQvh +h 2 v2/

(ax av/
1/2"apa g _ _+ h (u + G) + K2

-h a + Pg + 2 3x 2 w Cos 0 (1.2.50)l c

a ~h + a a -~2 ) ((12p pvh) + p (Ouvh) + p = (Pv - pmuh + heh \ax2  ay--/

1/2

-h - + pg (u+v) + KV2 sin 0 (1.2.51)
c

Setting 1 and expanding the left-hand side of the above two

equations one obtains

22



ah/ax ah/ay
0

a.u - + 2uhA z) -2 + z)T.t-  /at + +  _ L+ uv-
h + at at ax ax au x h ay ay

. 3 + - 3 h

"hu uu u au u + + +h (hu)

.+hu- + hv ]= h - + u ax +y h + at a-x

+('" hi . p Duay (1.2.52)

/°0
p ph - ( az) + 2vh-+v y + uvat+h

Fav av -ah -ah aiiX -av 8
P p h - + v~ + h + v + u + h + hv + hu~

L{. + h- ~ /0 5

xh + - + y --- ([h u

( ph (1.2.53)

T v Dt

Letting Ch - p  (8 is a kinematic eddy viscosity) and dropping the

bar notation we obtain the final form of the equations:

au u u (+)2 v (u+v) 1/2 K 2

at (t T V y ax 5ay Y~ ph
ph+ +v = y+ + + guh + cos

i/aph 6-tE+&!~ (1.2.54)

at ax a ax 2 ax, ~p

23



..- Dv + v. av , . 2v + 32v) (u + v)1/2  Kv
+ ~ -- +c g +2 KL V2 sine0

at ay 2 avy 2 hph

,- a + pg M+ &-(1.2.55)

2. Transport Equation

The general transport equation is given for laminar flow as

as + a as + as + s - (D s
at a + ay azax xax

(D.- Ls +- a - Dz - (2.1)

where

s E concentration of the material of concern

D = molecular diffusion coefficient in the x direction
x

D = molecular diffusion coefficient in the y direction
-.. y

D molecular diffusion coefficient in the z directionz

. .t,x,y,z,u,v,w are as previously defined.

For a turbulent flow, the eddy dispersion is significantly greater than

the molecular diffusion. The following analogous formula holds where

time averaging over the time scale of the turbulence has been performed.

as + u as + as + was (Kas
atx ay+ a xs

a' - y y- z  3-z (2.2)

where

Kx, Ky and K are turbulent eddy dispersion coefficients.
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Equation (2.2) may be written in conservation form by adding s times

Equation (1.1) (namely, zero) to the left hand side to obtain

I / a\ I

a (us) + (vs) + a(ws) = (K 5as+ a K 8y- + L Kzys) (2.3)
at ax ay az ax x a y ay az

This form of the equation is then depth integrated. Considering the

left hand side

as dz + fa(us) az+ (vs) dz+faw)dz (2.4)

bb b

Each term is expanded employing Leibniz rule, and the expressions below

ri Ir

Eq~~~aeotined.)(aey er)th ethadsd ooti

,'."""~ as_ b arsl +_O/ -
• ~~a s 8t 8 dz + x

f .a.-t lef atn sid

ri az
a f us dz + ( as) (us2

-.% - d +I, z y i z

Z b o t o r i g i d)

: © -usz - (us

Zb (2.5)

a b

-s dz + (vs) (vs)
aY f aly ay

Zb r
Z b

.b
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Note

a Z + v aZ W) 0( a a8z 8z

Zb

and

( at ax ay)I
r'

from kinematic considerations.

The left hand side (2.4) then reduces to the following expression

Sf s dz +- f (us) dz +- f (vs) dz (2.6)

Zb Zb Zb

Let

s s +s' , v v' , u u + u' h z

where

s' dz f v' dz - u' dz - 0 (2.7)

z b Zb Zb

Each of the three terms in (2.6) is expanded to yield

'1

t s dz (hs) (2.8)

Zb

fs(us) dz f (s + u's + s'u + u's') dz

Zb Lb

5x [(hus) + h(u's')h] (2.9)
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where

ri

f u's' dz =h(u's') h

Zb

~- f (vs) dz = -f (s+ Vt- + St-+ '')d

b Zb

- hvs + h(v's') h] (2.10)

where

f v's' dz h(v's') h
Z b

For the left hand side we then finally obtain

(h~~~ ~ ~ a L h- h- +arIlt h(v's') (2.11)

S a us 5y a ~0  h] 5y h ]

Consider now the right hand side of (2.2). As previously men-

tioned, the turbulent dispersion coefficients are developed from time

averaging the turbulence. Specifically,

a K ax) ax (uIIsI)t (2.12)

az( -(wS") (2.14)5- 5Z5-
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where t denotes time averaging and the double prime denotes a time

fluctuation. The terms on the right hand side can now be integrated

employing Leibniz rule to obtain

" S") dz = f (u"s" dzax t ax
Zb Z b

.' 8(uZb (u"s") (2 .15)
ts ax

Zb

f. y (v"s") t dz = (v"s") dz3 y t ay
Zb Zb

+ (v"s")t b (v"s")t (2.16)
ty t ay

Zb

"f S(w"s") dz {(wisl)t wIs1)t (2.17)
J qZb

Zb

If we assume all terms in the above three relations are zero except the

integrals, the last equation is removed from further consideration.

Additionally if we bring the last two terms in (2.11) to the right hand

side we obtain

S(hs) + a (hvs) a (hvs)

(h) ay - h [(u's')h + U th]

a [(v's')h + ("s")th] (2.18)
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where

h(Us (u"s")t dz and h(v"s")th = (v s") dz"t' h ut" th

b Zb

Letting, after Pritchard [3],

(u's') + (u"") = - K* as (
h th xa (219) I

(v's') + (v"tS") = - K* as
h th y (2.20

one finally obtains, dropping the bar notation, the vertically inte-

grated form of the transport equation as given below.

.- 8(hs) + a a a ahxs a

"_") +-t - (hus) + (hvs) 5 (- K as) + a -hKa (2.21)

3. Equation of State

The density of water is a complex function of temperature, pres-

sure, and salinity. The Tumlirz equation is used to define this rela-

tionship as follows

(p + po) (v - v) = (3.1)

where

p F pressure in atmospheres

P 0 baseline pressure in i2tmosphere

v - specific volume in ml/gm

v - baseline specific volume in ml/gm

A constant [(ml/gm) atm]
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and X , P , and v are functions of temperature and salinity. Eckart

has reported the following relationships

A = 1779.5 + 11.25T - 0.0745T - (3.8 + 0.O1T)S

v = 0.698
02

P =5890 + 38T -0.375T + 3S

Since water is only slightly compressible, we may neglect pressure

effects in (3.1) by setting p = 0 and obtain

1 _ POPVP (3.2)
0 0

where p is the density in (gm/ml) . In (1.2.54) and (1.2.55) P is

given as in (3.2) with p set equal to 1(gm/ml). In order to de-

scribe temperature an equation similar to (2.21) must be considered. It

is proposed at this time to specify a temperature distribution directly

from measured data rather than approximate (2.21) for temperature.

4. Compilation of the Complete Set of Equations

Relations (1.1.9) (Cratinuity), (1.2.54) (x-motion), (1.2.55)

(y-motion), (2.21) (Salinity transport), and (3.2) (State), constitute

the complete set of den,3ity coupled equations.

In cases where density effects may be neglected within the hydro-

dynamics, the system assumes an uncoupled form with the following for-

mat. Equation (1.1.9) remains unchanged. Equation (3.2), the state

equation, is no longer Lieeded. The pressure gradient terms in (1.2.54)

and (1.2.55) reduce to the following relations:
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a + + Ih x Pa + oPg ' (4.1)
ax ax 2 ax ax ax

ap a apa
+P (4.2) "

3y + a9 y 2 3y +ay ay(42

It is proposed to initially consider the uncoupled system of

equations. In this manner the suitability of the numerical approxima-

tion to (2.21) can be assessed directly.

-- °9

V.
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PART III: LITERATURE REVIEW

i7

The transport equation exhibits both hyperbolic and parabolic

characteristics. For convection much larger than dispersion as is the

case in estuarine systems, the equation's character becomes predomi-

nantly hyperbolic. It is this property which makes numerical approxi-

mation difficult. In order to most effectively develop a numerical

approximation the Water Resources Research, Journal of the Hydraulics

Division, Journal of Waterways Harbors and Coastal Engineering Division,

International Journal for Numerical Methods In Engineering, Advances in

Water Resources, and Applied Mathematical Modeling were searched over

the period of holdings at the Waterways Experiment Station Library.

Additional references were also obtained from the Journal of Computa-

tional Physics.

The numerical approximation of the transport equation is an active

research area within each of three major numerical analysis disciplines:

finite difference, finite element, and method of characteristics. Re-

view was limited to finite difference techniques. The following eight

major methods presented in Table I were investigated and are reported in

turn in detail. Additional techniques found in the literature are

briefly outlined along with practical considerations in selecting a

numerical method.

1. Sheng Work at Aeronautical Research Associates of Princeton (ARAP)

Sheng [4J considers the following equation

ac + auc +wc 0
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Table I

Major Numerical Methods

Method Advantages Disadvantages

1. Centered space ConsistL, i with present Potential for negative
differences with hydrodynamics (ADI) concentrations
ARAP smoothing

2. Flux-Corrected Positivity of Two schemes must be
Transport concentrations implemented (higher

and lower order)

3. Holly-Preissmann Explicit (coding may Explicit time step
Scheme be simpler) limit. Not devel-

oped for two
dimensions

4. Method of Second Explicit (coding may Diffusion not consi-
Moments be simpler) dered. Explicit

time step limit.

5. Balanced Expansion Phase error may be Explicit and diffusion
Technique systematically time step limit.

reduced Not developed for
two dimensions.

6. Stone and Brian Consistent with present Potential for negative
Technique hydrodynamics (ADI) concentrations

7. Gray and Pinder Consistent with present Potential for negative
hydrodynamics (ADI) concentrations

8. Leendertse Scheme Consistent with present Potential for negative
hydrodynamics (ADI) concentrations
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The following finite difference form of (1.1) is considered.

c n+l n Ati c.k =c i (fR- f T B i2

i,k i,k AxAz R

where

fR right flux for grid cell surrounding c.k

f L left flux for grid cell surrounding ci, k

ST - top flux for grid cell surrounding ci, k

gB bottom flux for grid cell surrounding ci, k

*i The quantities in (1.2) are indicated in Figure 1. Several approxima-

" tions are presented for f f ' and g based upon several
R L T ,ad Basduo eea

alternative difference schemes. These are presented in turn below.

UPWIND SCHEME

(u * (Az) uu~i, k • i+l,k(Z ui, k <0

fR k (1.3a)

(uk c (Az) u >0
i,k k(AZ) ui k

L "Uil,k c i,k (A) ui-l,k < 0

f fL i (1.3b)

U k C (Az) U > 0

i- k b iOl (11-3,)
SWik c (i,k+l(AX) wi, k < 0

i- gT = (1. 3c)

w C (Ax) w >

i,k  i,k i,k 0

W i~k i " Ci,k (AX) W i,k-i < 0

"[" B =(1. 3d)

= . c1~ (Ax) wi..l (l3
" i . Wi,k-i • i,k-lAX Wik-I

34
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L k

LA. ,+ ",I
ik

'-" . C .

Figure 1. Notation for presentation of Sheng schemes
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" Let us consider the case uik > 0, U. k > 0 and w.
ilk -l~kIlk

w. > 0 to illustrate the final form by substituting the above re-1 ,k-1

lations under these conditions into (1.2) above:

n+l n

ilk - cik - i(Uikck i-Ulki-l k)

At Ax

(1.4)
(w iCk k -w ci,k-iikI

Az

* If u.k = U and w k = w then the above equation reduces
i-lk ilk i-lk

* to the following form:

n+l n
c i,k - ilk Uilk (c Wi'k

At - Ax k c i-l,k) Az (cilk c ,k I) (1.5)

and the space differences are only first order accurate. In computation,

an artificial (numerical) dispersion is introduced.

CENTRAL DIFFERENCE SCHEME

(c ilk+C il)
f R u (i+lk i'k (Az) (l.6a)
R i,k 2

(c + c )
f ( i-lk elk (Az) (l.6b)
L i-l,k 2

(ci +c ik+)

= -c ik + 2 +c(Ax) (1.6c)g= Wi,k 2

k- (C ilk + cik-l) (Ax) (1.6d)gB =  i,k-I

Substituting the above relations in (1.2) obtain
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n+l n At (c i+lk + cik) (Cik + ci-lk)

i,k i,k Ax i,k 2 Ui-lk 2

(1.7)

At (Ci,k +Ci,kl) (C + Ci,k-
Az i,k 2 -Wik i,k- 2

Note if uik Uilk and w. w then (1.7) becomes,

-l 1,k i,k-1

n+l n(c -c )(.c )
1lk - i,k (Ci+lk i-1,k i,k+l i,k-1  (1.8)

At 1,k 2Az

We note in (1.8) above that the spatial differences are centered in the

x and z directions and are thus second order accurate. Although these

forms are more accurate than upwind differencing, an oscillatory behavior

has been observed when they are used to propagate steep fronts. Nega-

tive concentrations are thereby obtained.

COMBINED UPWIND AND CENTRAL DIFFERENCE

In order to avoid negative concentrations but reduce the smearing

effect, the following combined scheme has been suggested.

C A)U 0 C <Si,kClk (Az) ul k i,k < Ci+1,k

(ik + ) + k
U (ilk 2 1 (Az) Uik > 0 Cik> Ci+lk

f i. 
i+,k (1.9

Uilk i+.L,k  (z ilk < 0 ilk > Ci+l,kl

(Cilk i+k) (Az) u < 0 < C
Uik 2 ik i,k <+1,k
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j
>0 -C <C~

i-l,k il,k ( il, k j0< i,k

ui-i i-lpk 2 1ik) (Az) u > 0 c > Ci,k
'"1,k 2 Ui-l,k Ci-l,k ,c(9b

fL 
(. 9b)

U i.l,kC i,k (Az) U i-l,k <0 Ci-l,k Ci,k

(Cik + Ci-l k) < 0 ci< k

" i-lk 2 (Az) U i-l,k Ci-l,k ik

Analogous expressions hold for gT and gB This scheme is

similar to second upwind differencing and uses the central difference

approximations as often as possible. Lower order differencing (first

upwind) is employed as necessary to eliminate negative concentrations.

The effective advective concentration employed in an outgoing flux is

always less than or equal to the concentration of the cell providing the

flux.

CENTRAL DIFFERENCE SCHEME WITH SPATIAL SMOOTHING

A smoothing scheme developed by Sheng was employed to the central

difference scheme (1.7). It appears in most instances negative concen-

trations may be prevented. However, it is highly desirable to avoid all

negative concentrations.

The smoothing scheme examines the solution surface in both coordi-

nate directions, independently, and determines whether oscillations are

short or long wave phenomena. Short wave oscillations are smoothed.

The smoothing procedure is as follows for v.
bJ

If

R + AL > hAT (1.10)
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where

AR = -~ v.

AL = lvi- Vj l/Ax

AT = lvj+ - v 1j1/2Ax

S> 2

then the following curvature check is performed.

If

2 2 2 2
A xA < 0 or A XA <Q (1.11)

R L

where

=(vj+ I +v I - 2v/ x2

A= (v+2 +v -2v )/Ax2
2 = + - j+ x

AL (vj v_ 2  j

then smoothing is applied in the following manner.

V = v + O(vj+ 1 + vj 1 - 2 vj) (1.12)

where v. is the smoothed value for v. and 6 is a positive con-J J

stant. In practice, tests have suggested p = 4 and 8 = 1/4 are the

best values to employ in this smoothing procedure.

FLUX-CORRECTED-TRANSPORT (FCT) SCHEME

This method was originally developed by Boris and Book (6]. It

has been subsequently improved and generalized by Zalesak [7]. It is a

two step method, first involving a low order calculation and then a cor-

rection to a higher order. The upwind scheme is used to compute the

first order result
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t d n A t /1 1 1C =C - xAz - L+ - gB (1.13)
i,k i'k (AxA 91

d-td
where c. k  is the first order (transported and diffused) concentra-

i-

tion. A higher order scheme, e.g., the central difference scheme, can

2 2 2 2
be applied to compute higher order fluxes fR fL gT and gB

Antidiffusive fluxes are then defined as

2 _1
AR = fR - R

2 1
AL = f L fl

2 1 (1.14)"- 2 i

T T T

2 1AB = gB - gB

It is these antidiffusive fluxes which are limited in the

Zalesak [7] procedure such that

c!
A= AR * Di+l/ 2 k 0 e Di+l/2 k <1

= AL Di_l/2,k 0 < Diil/2 ,k <

(1.15)

= AT Di 0 < Dik+l/2  1

Ac =A *D 0 D_
B B i,k-1/2 0 i,k-i/2 < 1

Finally

n+l td At c c (.6
i,k Cik xAz kR B

The determination of the D coefficients will be presented subsequently.
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2. Fully Multidimensional Flux-Corrected Transport Algorithms for Fluids

In this article, Zalesak [7] develops a new flux limiter which

generalizes to multidimensional problems. The new flux limiter in one

dimension is shown to exhibit superior characteristics over the original

limiter.

Zalesak considers the two-dimensional problem in the following

fashion. Consider

Ltd n -lIL L:::wi j = w. .- (x.y.)-I(FL - F L

ij , (AxijAYij i+I/2,j i-i/2,j

(2.1)

L -L

+ ,j+1/2 Fj-1/2

and

"Htd n (Ax AYi1)- H FH, j = wi,j j i+1/2,j i-1l2,j

(2.2)

H+ FH _ H 1)

i,j+1/2 i,j-i/2

Ltd

where wiLtd represents the lower order transported and diffused

Htdsolution and w the higher order solution. We observe that the

difference between the time advancement may be written as

Htd Ltd =- (x A )1[(FHL
wi'j-j =j , i~j) i+i/2,j i+1/2,j

HL + FF ' L ( 2 3
- (FH- 1 /2,j -Fi-/ 2 ,j)+ (FHj+1 / 2  i,J+ 1 / 2 ) (2.3)

-(FH' 1 1  -L

1j-/2 ij-i/2
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Note this difference is written as an array of fluxes between different

grid points and is the condition required to implement flux corrected

transport.

Flux-corrected transport is implemented in the following fashion

Ltd Htdusing implicit difference schemes for w. and w. : -1
ij i,j

Ltd
1. Compute w.. from (2.1) aboveIj

2. Calculate FL w Ltdij wi,j -

Htd3. Compute w. from (2.2) above

4. Calculate FH ( n Htd )Wi j  Wi,j

H L5. Determine the antidiffusive fluxes F - F as in (2.3) above

6. Limit these antidiffusive fluxes as follows

cA c  Ai~/,c+/, 0 < ic
i+ 1i/2,j 1 /2 .ci 1 2  O< c.i+1 /2, j <1

(2.4)

A = A 0 < c < 1
ij+1/2 ,j+ 1i/ 2 c,j+ 1i/ 2  - i,j+i/2 -

7. Apply the limited antidiffusive fluxes:

n+l Ltd -1/c c
wi, j =.,. - (AxijAYij) Ai+i/2,j i-i/2,j

+ Ac Ac (2.5)i,j+1/2 - i,j-1/2)

The crucial step in the above process is Step 6, the flux-
L.

limiting stage. The following quantities are computed;

+i
P the sum of all antidiffusive fluxes into grid point (i,j)
i,j

max(o, A min(o, A (2.6)

+ max(o,Ai,j-i/2) - min(o, Ai,j+l/ 2) Qa
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+ /max Ltd)
Qi = w - w j (AxijAy.j) (2.7)

." + + > 0V ' mn~lQi~ji~j) Pi,j >

S= :+ j(2.8)
.-. ' 01,j

and

Pi, = the sum of all antidiffusive fluxes out of grid

point (i,j)

- max(o, Ai ) - min(o, Ai/ ) (2.9)
i+112,j 1-1/2,

+ max(o, A. ./) -min(o, A.
i,j+112 i,j-1/2

-- t::'- fLtd min\

Q = wij -wi) (Axi AYi ) (2.10)

, i 
(2.11)

-" Pi~j =

The limiting coefficients are then given by

min l j I R -->j) i12l
-- (2.12)

.Ci+l/2'J - min(R,+ R ) Ai(2.2 )
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m~in(R~ji R~ A,~ 1 2

c i.+1/2 -(2.13)

Prior to determining these quantities the following procedures are

employed.

A . =0 for A. ( Ltd wLtd <
i+1/2 ,j i+l/2,j W w / <0j

and either A . w Lt w Lt < 0 (2.14)
i+l/2,j( i+2,j i+1,j /

or A. - < 0

A~,~I 0 for Ai+, w~td+ - Ltd) <0o

(wLtd Ltd <and either A i~j+ 1i , +2  w Wi ~ )< (2.15)

(Ltd Ltd\
or A. wt W. 1  < 0

wa max (-nj w t (2.16)

i,j \i,j i,j/

max a a a a a (.8
i~~j ii ,j i+l,j' i,j-1 Wj~~l

wminm i /b b b b b (219

Zalesak notes that while the solution will be kept between wmi

6and wmax monotonicity in one coordinate direction in rare cases may be
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violated. Additional, more stringent limitations are given to prevent

this occurrence but will not be presented here.

3. Holly-Preissmann Scheme

In developing the scheme the following one-dimensional advection

equation is considered for constant velocity by Holly and Preissmann [8]

Dc(x,t) + (t) ac(x,t)

at X x 0 (3.1)

where

c(x,t) concentration at x for time t

u(x,t) u a constant velocity0

For this case, the formal solution to (3.1) becomes

c(x,t + t) = c(x - u ,t) (3.2)

0

Therefore the concentration at x for time t + T is determined from

a knowledge of the concentration for time t at x - u0 . This forms

the basis for the development of many explicit direct calculation methods.

Holly and Preissmann consider the situation shown in Figure 2.

In order to determine cA an interpolation procedure is needed.
+A

In this scheme information at only the two adjacent grid points is used.

n n n nKnowledge of ci , ci_ and cxi , cxi_ are employed, where

cx = ac/ax at x xi , t= t

A dimensionless argument a , known as the Courant number, is

defined:

BT

0 (3.3)
x i - xi_

Letting uot = x , a general distance measured from x. to x
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d x - - and y d __ - dy (x x (3.4)
-1 dx da dx da - i-l

The following interpolating polynomial is considered.

y(ca) A 3 4- + Dct + E (3.5a)

y(o) = c. = E , y() ci_ = A + B + D + E (3.5b)

(3A 2 + 2Ba + D) (3.6a)
(x - x

n(o) cxn D (3A + 2B + D) n

i  (x x (i = ) cx. (3.6b)

*] Equations (3.5b) and (3.6b) are employed to solve for A , B , D

and E . We note E and D are available directly; namely,

E c D (x -x ) cxn (3.7)
i i

* From y(l) , we obtain

A =-B +c - - nx -ncn (3.8)

i -

Substituting in y(1) , we obtain

n In n) n
eXi (xi - xi) = -3B + 3 Ci- - c - 3(xi - xi-1) cxi

(3.9)

+2B + (x -x )cx "

/n n)n+
B cn _ cin - (2cxi + cx. 1(Xl - xi) (3.10)B = 3 i-1
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Substituting B into (3.8) we obtain

A n n + cxi-i(x. _ xi-) (3.11)

Substituting these results into (3.5a), we obtain

i~ ( n + n )c n  n )],, 3 (cn n)

y() = i + cxi_ I)(x i - xi_l) - 2(i-i - ci)e +"{3(c i_ 1  c i)

(3.12)

2cxi + cxi l)(xi - a- 2 +n( -xi)a +cn

Collecting terms (3.12), y(a) is rewritten as

y(a) = (-2a3 + 3a 
2) ci

3 2 +1 n +a3 2 n+ (2a - 3 2 + 1) c i + (i a _ )(xi _ xi-i) cx_ (3.13)

+ (ct3 - 2ci2 + ca)(x. - x ) n

Thus we have

n+l (.4• "c i  y(a) (3.14)
i

In order to advance the solution in time the concentration derivative

also must be determined. For the constant velocity case, differentiating

the transport equation with respect to x and interchanging the order

of the x and t derivatives

+ u -0 (3.15)
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Using cx = 3c/3x the equation above may be written as

c___x + __x 0 (3.16)

at ax

We note that this form is exactly analogous to that in (3.1) for the

concentration itself. Considering (3.6) and employing previous results

for the A , B , and D coefficients

F(n n n n 2
=a [3(x x~ 1  cx 1 + cxn) 6 (c 1 -ci)

+ [6 (c ) (2 x ) - xi)]ci (3.17)

n+ cx. (xi xiI) x x1)

[ .'i + 6 -I - c

Upon rearrangement we obtain

2 n c 6 -c 1 - ci) 2c 3a ncx + cx (- x. 1)

(3.18)

6(cn 1 n) n n
+ - 22cx +cx a+cx.'(x i  xi I  I" 1

or

6(a-a 2 ) + 6(2 - c) n 2  n

(xi _ xi) (xi _ xi-)

(3.19)

+ (32 -4a + 1) cxi

Then by analogy
.- ',n+l

cxi  y(a1 (3.20)
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A linear stability analysis is performed to demonstrate the following

stability criteria

< ~~jzi for av < 1 (3.21)

where

lX1i = primary mode

Ix2I = a parasitic computational mode sufficiently small relative

to unity so that the mode disappears from the solution

quite rapidly

In order to perform the computations, initial and boundary condi-

tions for both the concentration and its space derivative must be speci-

fied. The specification of the spatial derivative may not be straight-

. forward in practical computations.

The method is extended to the non-uniform velocity case in the

following manner. In this case the exact solution to (3.1) requires

that the concentration be constant on the trajectory or characteristic

curve

dx _d- = u(xt) (3.22)

Thus, in the application of (3.14), the interpolation argument corre-

sponds to the point on the x-axis where the trajectory defined by (3.22)

crosses it. This point is estimated by means of a suitable integration

of u(x,t) from point i to i-1 over the time interval T In

order to compute the advection of the concentration derivative, equa-

tion (3.16) is written more generally as

Dcx acx au _~t

-t + u(x,t) x + cx -(x't) = 0 (3.23) Pat ax +  ax
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The first two terms are evaluated using the trajectory-estimated a

in the application of (3.20). The contribution of the third term is

determined by averaging cx and 3u/ x from the point i to i-I

The extension of the technique to two dimensions for Lhe constant

velocity case is briefly outlined. However, the treatment for the non-

uniform case is not completely apparent. Diffusion may be incorporated

within the interpolation scheme but only at the expense of a more severe

restriction on the time step than a < 1 . By decoupling the diffusion

calculation. from advection the authors suggest this restriction may be

avoided.

4. Method of Second Moments

Egan and Mahoney introduced this scheme in meteorological studies

. (air pollution transport) [9]. Width correction adjustments were re-

ported by Pedersen and Prahm [10]. Pepper and Baker [11] have developed

an elaborate three-dimensional transport algorithm for predicting tritium

releases from the Savannah River Nuclear Power Plant.

The basic method involves describing the concentration distribu-

tion within each cell of an Eulekian mesh by its first three moments,

zeroth (total mass), first (mass center), and second moment (variance).

The cell distribution representations are then advected using the veloc-

ity components developed from a separate solution scheme. At the end of

the time step the resulting individual distributions are combined in a

composite and the process is repeated over the subsequent time steps.

The scheme is explicit and quasi-Lagrangian. Due to the explicit nature

of the advection scheme the particle Courant number must be less than or

equal to one to maintain stability.
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The method is presented in one-dimension by considering a concen-

tration distribution to be represented by three parameters defined as

follows

+0.5

Cm fm  J C(s) dE

-0.5

+0.5

Cm F = f C( m ) em de (4.1)

-0.5

+0.5

R2  2 f C(cm)( m  Fm)2 ds

-0.5

where

e relative displacement of material in the mth cell relative to

the cell center

Cm  mean (cell) concentration of the distribution

F center of mass of concentration distribution
m

R scaled second moment of concentration distribution
m

2
R is scaled, multiplied by a factor of 12, such that a rectangular
m
distribution of length L has R2 = L2. In applying the method,

m

rectangular type distributions are maintained in each grid cell. Ini-

tially, C is specified and the distribution is assumed to occupy them

entire cell. For rectangular type distributions, the integrals in

(4.1) above are evaluated by considering for each grid cell the material

distribution remaining in the cell and those which entered during the

time interval.

Figure 3 illustrates the procedure for advection in one time step
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Figure 3. Method of moments advection procedure (one dimension)
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of a = uAt/Ax A proportioning parameter is defined as P = (F + a
m m

+ R /2 - 0.5)/R For P < 0 none of the material is advected into
m m -

cell m+l . For P > 1 all of the material in cell m is advected
m

into cell m+l . For 0 < P < 1 , P C is advected into cell m+l
m m m

while (1 - P m)Cm remains in cell m . Thus in general, one obtains

C m = C + C (4.2a)
K'-m r a

cT+l FT+l C F + C F (4.2b)
m m rr aa

cT+l (R2 "T+ I  [R2 + FT+l r)2] [R2 + 12 (FT+l F)2]Cm (Rm C rCr  + 12( - F r)]+ Ca  a- 2Fm Fa2 (4.2c)

where subscripts r and a indicate quantities remaining and newly-

advected into cell m , respectively.

For P < 0: C CT F FT R RT
m r m r m r m

P > : C 0, F 0, R = 0 (4.3b)
m r r r

" 0 < P < 1 : C = (I - m)CT
m r-' m m

1 (l RT + P RT)
F m (4.3c)
r 2

R = (1 - P )RT
r m in

P < 0 C a  0 F a 0 , R = 0 (4.3d)

P > 1: C T , F FT +o-

a i-i a in-i a -
(4.3e)R R T

a m-I
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mT

: ''20 < Pm- < 1: Ca P-CT-
m Ca ~r-1 rn-i

F ((4. 3fa 2 "

R P RT
a r- m-i 1

A step-shaped distribution will be advected downwind without

change of shape. Small diffusive errors will remain when more com-

plicated distributions are advected.

The technique may be extended to two dimensions and, in the fol-

*lowing, we employ the notation of Pedersen and Prahm [10]. Two por-

tioning parameters are defined as follows.

[sign + a) (1- Rx/
[sign (ax)(F + 2x) R (4.4a)

" x 2 x

Py = Sign (ay) (Fy + ay) 2 Ry (4.4b)

These concepts are illustrated in Figure 4. In the most common case,

0 < P < 1 , and 0 < P <1 , and the computational formulae analogous""x y '

to the one-dimensional case, are given as follows.

Contributions in grid cell (mn)

(CT+l)r  (1 - P x)(l - P y)CT

(T+l) (1 - RT + P RT)
(F 2 sign (a)

RT+l)  (1 - RT + PRT)
Fy-yYsign (a )(4.5)

T+lT( r (1 - Px)R

(RT+l)r (-P ) RT
yPy y
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C4 ,(M+ , A)

Figure 4. Method of moments advection
procedure (two dimensions)
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Contributions in cell (m+l sign (o),n)

C.T+l T

(C) = P (1 -p )C
a x y

x a 2 sign (y

(FI -R T +PR) sign ( (4.6)y a 2 s

T+ P T
(R) =PR
xa xx

(R) T+ (l Py)RT
y a y y

Contributions in cell (m,n+l sign (cy))

(C) T+I P ( - P )CT

a y x

1_ T R)
(F)T+l ( R +P sign (Ox)

u_ ,

x a 2 

RT~
T+1 - p(F) sign (cy()7

y a 2 y

T+l (l p T
(R) =( )R
x a Xx

C (R)T+l =PT
y a y y
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Contributions in cell (m+l sign (a ),n+l sign (a))
x

T+1 P P CT
(C) a = Pa x y

T~l T
(Fx)a 2 sign (ax)

T~l T
(F T+ = Y sign (ay) (4.8)
y a 2 y

T+l T(R) =P R
x a x x

T+1 T
(y a y y

When P and/or P are greater than 1 and/or less than zero, differ-4x y -

ent equations analogous to the one-dimensional case must be applied. We

note for an arbitrary cell (m,n), 3 distributions may be advected into

the cell and 1 may remain. Formulae analogous to (4.2) are employed to

T+1 T+1 T+1 T+I T+1
compute (C) m , (Fx)m,n (Fy) m,n (Rx)m,n, and (Ry)m,n

Pedersen and Prahm [10] also limit the width of the distribution

such that it must fall within one-cell after the combination process

in (4.2) is completed. Analogous limiting may be performed in both

coordinates for the two-dimensional case.

This technique may be extended using fractional steps to include

the diffusion process as performed by Pepper and Baker [11].

5. Balanced Expansion Technique

Chan [12] has developed a new procedure to construct accurate

finite difference advection schemes which are neutrally stable (lXI = 1).
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' By applying the procedure in a systematic manner, the phase error can

be reduced. In his development, the following model equation is

considered.

4 + u i 0 (5.1)at ax

where

" E passive scalar

x space coordinate

t time

u > 0 and is a constant velocity

A Lagrangian approach is employed by noting that the value of 4 is

preserved along the characteristic dx/dt = u in (x,t) space. The

general solution is O(x,t) = F(x - ut) , which leads to the following

equations in the discretization of (5.1).

- (x,t + 6t) = O(x - u6t,t)

(5.2)
O(x + udt,t) = O(x,t - 6t)

-. where

x = j6x

t = n6t

6t = time increment

6x = space increment

The Courant number a = u6t/6x is introduced and the procedure is

n+lillustrated in Figure 5. The positions of the six quantities 0j-1

1n n- n+l n n-l
1j-i -i j , 4) are symmetric about 4o , which is

midway between j-1 and j . Each of these six quantities is expanded
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in a Taylor series about 4o The following balanced differences are

constructed. In this manner, all even derivatives in the Taylor's

series are eliminated.

n-l j = 2 +-1.) + -i-(a +i1)3 6x 3

i j- (OL 2) x 3! 2xxx

(5.3)

5!5
+ ( + 5 (5)

+ 2 6x5 +

n n = 231 + 2
xj 3! 2) xxx

(5.4)

+_ 1) 5 (5) +

n+l n-1 2(1 a) + 2
Sxxx

(5.5)

+ (\ - 5x5o(5) +
5!(

From (5.4) let us solve for 6xox

n n 2 (1 3 5! (1)5 5 (5.66x x = 0 - 0 - T . 6X3xxx 6x (5.6)

Substituting (5.6) in (5.3) we have

3
n-l _ #n+l = (2n + 6I - - - 3-- .

S j-1 2a+ ) - 3! (2) XXX

(5.7)

! &. + + 3X1xx + + ) sx2
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Solving for xxx

: " 2 *j - - -~i +2 /5 ( 5 .8 )
A'C 3 31+ i ) 3  1 3

- - (2as 1) ( -

Substituting (5.8) into (5.6)• I -I

X *+ - (2a+ )(1) (5.9)

Using (5.8) and (5.9) in (5.5), we finally obtain
m5

-n+l n-l [ n 2 5

j j-l =  - - (j- - ) A3 ! 6x5 j

(5.10a)

S+ -t 3 A3 + 2 c- 5 6x 5 5

n+l n-i 
j 

n 3

(.- 5_ [ -+- (1 - 2 ) (A3

6x5€ 5  
_ )51 

5

From auxiliary relations developed in Table II, we simplify the above

n+ 1 n-I

!l - 'ji- (2a + -), "*1 (2 )~ - ( T 6x5*5  (5.11)
S(2 + 1)(( + 1))(.

2 + 
.1).cL 6.5

# -1,- 2. 51

L .1 [ a - (1 - 20),

62 7,



Table II. Chan Auxiliary Relations! ,-4

3 3

+(2a 1 )(12) (2a 1 )(a 1 )

a) - (3 - 2a) (2a - l)(a- 1)

4 4

(c + - -)4 _ 4 - (oi3 + 2c2 + - + )

4 )4 c 2o 2  "

a )4 3 2a a.
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n+l n-i + (1- 2a)(1 - a) / n+l n-i
(l)j =. + (1+2a)(1 + a) Nj-i )

(ai + Ml1 2ai) + ( 2 ai Ma 1)c 1) n-

m+
a .+.1)

(5.12)

I(2c -1) (a -1) [c+ 1)(1)5 a- .(2a + 1)(a + 1) 2ci(I)J -

- . a + (1 2a*) - 6x 5 5

We continue to simplify by noting

... ,(a + 1)(1 2a) + (2a 1 )(a 1 ) =-2a 2  a + 1 + 2a2  3a + 1

= -4a + 2 = 2(1 - 2a)

and the 6x 5 5  term may be written as

(2a -
-1) 1) - .14 (1 2) 65f- -

(5.13)

__ _ _ __ _( "_ _
2 ~ 2) 2) 51

Thus

n+l n-i (1- 2a)(1 - a) /ln+l n-1i- Cj j + (1 + 2) (1 ) \V i -

(5.14)

2(i - ) () + f5
(6 + ) ,j
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"5 n+l
Dropping the truncation error a discrete formula for calculating nj

is developed without attempting to evaluate derivatives. The computa-

tional scheme in (5.14) is a three time level scheme containing informa-

* tion at only two space points (j and j-l). The scheme is explicit if

computations are performed sequentially in the downstream direction.

Chan obtains several other formulae by using balanced pairs

(centered about 4o). In all cases, stability is governed by 0< a <1

By including more points symmetric about 4o , it is possible to develop
0

formulae which successively eliminate higher order odd space deriva-

* tives. In (5.14) 4x and xx have been eliminated. Chan presents

5
schemes which eliminate 45 as well, along with two additional formulae

. in which xx is eliminated. The essential characteristics of the
xxx

balanced expansion scheme are: (1) all even space derivatives are

eliminated, which Chan notes is sufficient to insure HXJ = 1 , and

(2) s,,cessive elimination of higher order space derivatives reduces the

phase error.

Chan modifies (5.14) for the case of diffusion; namely,

-+ u V v2(5.15)
at ax 2

ax

where v is a diffusion coefficient. Figure 6 is employed in develop-

n+l n+l
ing the method. Unlike in Figure 5, 4,. is not equal to

n
which is the value of 4 located at a6x to the left of 4,. He

notes that the fluid particle originally at n+l

n+l
at the end of the 6t increment; however, the diffusion processJ

has changed the 4 value associated with the particle. Using a forward-

2
time, central space, finite difference scheme for D4/Dt = v /ax
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L-.

D/Dt is the Lagrangian derivative, Chan obtains

'n+l -n+l 'n+l n+l n+l)j+ j+l - 2j + Oj-i (5.16)

where 6 = vSt/6x . For stability 0 < a < 1/2 Similarly, because

n-l n+l
. of diffusion, is not equal to They are related by

n i + a (j+1 - 2c + nj--I (5.17)

. In analogy, with the original development for advection only, the six

qn+l n n-i -n+l n n-I
quantities j-1 1 -l %-i and 0 are ex

" panded in Taylor series about o to give

n+l n-l (1 - 2a)(1 - a) /n+l -n-
Oj-i (1 + 2a)(1 + a) R-l

(5.18)

( 2a) -n nl

The solution procedure consists then of the following three steps
1. Copute n-i

1. Compute n. using (5.17) for the entire space domain

n+l
2. Use (5.18) to compute 4. over the space domain

n+l
3. Use (5.16) to compute

The techniques presented and preliminary testing by Chan show

that the advection-diffusion schemes are very accurate. Unfortunately

only the one dimensional case is considered with constant coefficients.

Extensions to multi-dimensional problems, flows with non-uniform
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velocity and diffusion, and mesh with variable spacings have not been

reported.

6. Stone and Brian Technique [13]

In their development, the usual one-dimensional equation is

considered

9- V =L 0(6.1)

ax2  ax at

where

D diffusion coefficient (assumed constant)

V H constant velocity

u E concentration of a given material

00 2 2
Since u(x,t) = w Awe sin wn (x - Vt) satisfies (6.1), it

w1

constitutes a solution for the appropriate boundary conditions.

A general form of finite difference approximations to (6.1) is

considered as follows

2-D L + V L (u) + L (u) 0 (6.2)
x x t

Nwhere

L (u) z approximation to 2u/ax
x

L (u) E approximation to au/ax

L t(u) F: approximation to auat

Stone and Brian note, that the corresponding finite difference solution

to (6.2) with the corresponding boundary conditions may be written as
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J-1

Sj, n  A pn sin w r (jAx - V~nAt) (6.3)

W=1

2
in which p and 0 depend upon wAx , VAt/Ax , and DAt/Ax and

on the finite difference approximation employed and J represents the

number segments into which x is divided.

It is their objective to evaluate the accuracy of various finite-

difference approximations to (6.1) by comparing V with OV and
' -w2iT2DAt

e-W 2et2 with p . For a perfect equation =1 for all J-1

frequencies. In the special case, D = 0 , p 1 ; however, for

D > 0 , p would be smaller for high-frequency harmonies than for low

frequency harmonies.

The general finite difference analog to (6.1) is written as

follows.

• .'

-D x 2Ujn + j l + -V- a(u. l u )
L 2  j Ax LJjln

+2 (Uj,n - Uj-l,n) + c(u+ln+l -uj,n+l )

2 j~n -l~nj~lnnl

(6.4)

+ d(uj,n+l - Uj-ln+l) + l [(j,n+l u. )

2-+ (jl,n+ I  -l,n j+l,n+1 .Uj+l,n)

,. + 
,-. )m~ Jl)

where

a + + c +d = 1
2
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m0

2

Sjn j+l,n 2 ,n +2

A Crank-Nicolson approximation is employed for the diffusion term, and

the approximations for au/3x and au/at involve the same six points.

If one considers u. = n e wjAx and substitutes this relation in
J,n

(6.4), one obtains a relation for n T pe - iV At wherein,

{+ (a_ )+ [(_" +m) - (a- )]co w. r Axoa sin2 (w )}_

-+ [$a + I - m)] sin (wirAx)

2xA

• p (6.5)

+ '[(c + d) - m)] sin (wtAx)

and

___"_"t°n-1 [(+ -)]

-+ -+ [ + - - cos wwAx -a sin2 1")

(6.6)

S+ tan-I  (c + d) -(-)sin wrAx

-(d c) + [ + ) (d c) cos wwAx + as

where

VAt
=Ax

2DAt

Ax2

From (6.5) in order for p = 1 for D = 0 a c = 0 ,we must have

d - c = a - e/2 and c + d = a + e/2 - a = d , c = c/2 and

- e/2 + m - 6/2 - m - m = 6/2 . Considering the previous restrictien-fs

on these coefficients we obtain
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a + -+ c + d = 1 = 2a + e

(6.7)

* e
g + +m =1= g + e

Considering the above relations, and D 0 , we now evaluate (6.6)

1( )-- sin wnAx w• € ff 8w Ax tan-2

i (I l + 2 2 cos wwAx
C(f ) + [0- K!~ - )

- sin wwAx (6.8a)

+ -1 2

+ n (1 + 8(- - + [6 - 0(l e cos wiTAx

2 - sin wffAx)

8w'rAx-
jtan 1 -2 ej(1- cos wirAx)j(6 b

If one takes the limit of (6.8b) as 8 0 , noting tan x x, as

xI 0

sin (wnAx)
llm * 1 (wirAx)
8 - 0 - [l - cos (wrAx)]

(wrT~x) 2  (wrrAx) 4  6 (6.9)

3! + 5! 7 wix
24 6

i (wAX)2 (wirAx) (wirAx)
! 4! 6!

If 0 = 1/3 , we match terms through the second order and lim 1
8 ~0

Stone and Brian note that c = 1/2 is the best value for the single

remaining degree of freedom. They note lim 0 for e 1/28 -0 3B
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o = 1/3 . Thus 6 = 1/3 insures good values of 4 for the low fre-

quency harmonies (ww small) as B 0 , and E - 1/2 insures that these

values of 4 do not change rapidly for a range of B slightly greater

than zero.

Collecting all previous results (e = 1/2 , 0 = 1/3 , a = 1/4

d , c = 1/4 , m 1/6 , g = 2/3) we obtain rewritting (6.4) the

following scheme.

[2 (u jn+un+l) Fl
+u u. (.

-D A 2 + x 3 -, u i n) .

1 (u + i (U
4. + (j,n - -l,n )  4 Uj+l,n+l - j,n+l)-

~(6.1) .-

.4 + (j,n+l 1-4 t (Uj,n+l -

+6 Uj.l,n+ -Uj1 , n  Uj+l,n+

The interesting feature in (6.10) is the spatial time derivative or

"spread" time derivative. If we also return to (6.5), we now obtain for

the scheme in (6.10)

2wAx - sn 2  A xl2
2 + siwn ~ x12 ' sin (~~

L +1 cos witAx + a sin2  + sin (wAx
(wr3 )2 Lj 2  (r~~

for all wrrAx and for all a and 8 Therefore the method is uncon-

ditionally stable with no time step restriction. Stone and Brian also
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consider a scheme with e= 2/3 , 0=1/3 a =1/6 =d , g =2/3

c = 1/3 , m = 1/6 ; then one obtains

2 Ju~n Iu n+1~I FL: -D x2 (un , + V (u
IA 2 x+ 6 [~ n uj ,n.

+ 1 1u+ (
3+ (uj,n Uj-l,n 3 j+l,n+l ,n+l)

(6.12)

+ -(U . u + + ( u n
6! + un+l j-l,n+l At [(uj,n+l j

' + ~~ {j-l,n+I  -jl,n )  6- (J+l,n+ I l jl n

If we evaluate (6.5) for this scheme, we obtain

+ 1) + (1+ acos wgbx a sin 2 (~~

+ [ sin (wrAx)2 2

P2 (wrx) 2  (6.13)

+ sin (w rAxj"

Letting 8 = 1

[2 + I cos (w rAx) - a sin2  + sin (w rAx,.
p 2 (2 2 22

+ 4 cos (wrAx) + a sin2  + sin (wffAx

From the above, if 8 > 1 , the scheme will become unstable. For this
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reason, the scheme is not further considered.

Stone and Brian consider the use of a cyclic set of difference

equations. If N different finite-difference equations are used over

* N time steps and the cycle repeated, then in (6.3)

(6.14)

N

Stone and Brian considered N =3 and developed a different e for

e 1/2 in each of three finite difference schemes. In each scheme

p = 1 for D =0 and the previous relationships among the coefficients

are sufficient to completely define the scheme once 0 is determined.

Consider (6.9) as follows:

nm~_ lim ~ lim lim+ (.5

4 +

:%".

.4 Letting

=_(wirAx) 2 (wiTAx) 4 (wiTAX)6

.ND - +

3! 5! 7!

and

* (A)~ 2 
_ A 4  ( )

DD= 2!1 4! + 6!

1f _+OND 1 + ND _1 + N6.

:":.. DD +N 1/5 _

-ODD -O 2Da - 3 DD)
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Equating the first three powers in (w7Ax) three simultaneous equa-

tions are obtained in terms of 01 , 02 , and 03 . This cyclic use of

three different difference equations is shown to be superior to the

multiple application of the single equation considered previously.

7. An Analysis of the Numerical

Solution of the Transport Equation

Gray and Pinder [14] consider the one-dimensional transport equa-

tion with constant velocity, written in their notation as

ac ac a2c
.'."ac +u D(7.1)

2~ax 2

where

c E constituent concentration

u transport velocity

x space coordinate

t a time coordinate

D = diffusion coefficient (constant)

As in previous work, the general solution to (7.1) is considered as a

Fourier series.

C= c exp (i nt + ic x) where ix - utj < 1 (7.2)

n=-w

and an is the (time) frequency of the nth component, y is the

spatial frequency, and i = 1 . If one considers a single component

in (7.2) and substitutes it into (7.1), the following relationship is

obtained
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+ Un - iD 2 =0 (7.3)

n a i - u) (7.4) 14

n nn

Thus for a single component solution, one obtains

C ' c exp [ian(X - ut)] exp Da 2t) (7.5)

where the first exponential describes the translation and the second

describes the amplitude modulation of a Fourier component with time.

2rom (7.2) for a single component

ct+At =c exp [is (t + At)] exp (ianX)

t+t n n n

(7.6)

=C exp (isnt + ionx) exp (isnAt) =c t exp (iS At)

Thus exp (isnAt) is considered an eigenvalue, Xn

Let the eigenvalue of the nth Fourier component obtained from the

numerical scheme be denoted by X' . Considering the computed and ana-
n

lytical components after a time such that the analytical wave has propa-

gated one wavelength, the number of time steps required is given as

follows.

L L
N nnAx

N = x(7.7) :

n uAt Ax uAt

where L is the wavelength of the nth component. The ratio of the
n

computed to actual amplitude after one wavelength is given by
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N n N L /AxV

2 2 (7.8)Lexp (i At)] (-o aDAt )12pIA ]

* .,*: where

uAtV = A-f
Ax

D' DAt

The phase lag n after one complete wavelength is defined as
n

e O'N - 2 f with e = (7.9)n nn ,
1n

Equations (7.8) and (7.9) provide the mechanism for evaluation of al-

ternate schemes for (7.1). Gray and Pinder present a finite element

scheme using chapeau basis functions as follows

ccil (c~k ci\ cl l•~ ~~ ."~k+ i~k+l - ik) +Ci-l,k+l -Ci-lk].At -g ' tAt

+ u [ 2Ax +(lc) 2Ax J

(7.10)

c ~2c +
D i+lk+l i,k+l i-l,k+l-D E

Ax
2

c - 2c + 'ci+l,k i,k lk+ (l-) 2  1]

If we rewrite (7.10) in operator notation with

c + c
Sx = ci+ ci I  

ix -
c ixc -1 2
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" we obtain the following compact relation.

2 +x +uAt 6x DAt )2 k+l

3 3 Ax x2  )
(7.11)

x - 'At ( Ix At -)x c

[L A x 2 + 2 ed 2 c

icy Ax
k ckAt n

If we consider ci+ 1  c i+l, k  e e for the nth Fourier com-

ponent and substitute into (7.11) and note for e = anAxn

i20 -i120
2 - cos 26 e + e -2sin -4=
sin 0- 2 -4

ie -io ie -i-
e -e e +e

isin 0 2 cos 22 2"-

we may write directly the relation for Xnn

2 Cos OnAx 
.

k+ 2 + - (1 c) [vi sin aAx + 2D'(1 - cos a (712)
kcos o AX m.

c 2+ n + [vi ino Ax + 2D'(1 - cos a AX)]
3 3 n n

For stability JVnJ < 1 , which requires 1 > E > 0.5

In their paper, Gray and Pinder consider the following finite dif-

ference approximation to (7.1) written in compressed operator notation.

1 U- 6x DAt 2) k+l
I AX £2 2cx 1AX /

(7.13)

-UAt - x+ DAt -) 6x k

Ax 2  Axc
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The essential difference between (7.11) and (7.13) is embodied

in the treatment of Dc/Dt . In (7.11) a spatial weighted "spread"

time derivative approach is employed, while in (7.13) the time deriva-

tive is not spatially weighted.

The corresponding eigenvalue for (7.13) is written below as

%" follows

c! k~l 1 - (1 - E)[vi sin a Ax + 2D'(1 - cos OnAX)]
n - ck =  1+ E[vi sin anAx + 2D'(1 - cos a Ax)] (7.14)

"* . Again iA'I < 1 for 0.5 < E < 1

- Gray and Pinder employ equation (7.7-7.9) to study the character-

istics of the two schemes. An eigenvalue amplitude plot for c = 0.5

and 1 is developed versus un Ax (2wIL )Ax (27/nAx)Ax 2n/n for

n > 2 for both (7.12) and (7.14).

Equation (7.8) is employed to provide amplitude ratio plots for

both schemes for 6 = 0.5 and 1 , while, Equation (7.9) is used to

develop phase angle plots for E = 0.5 and 1 . Based upon these plots

and direct numerical simulation ot a step function concentration dis-

* ~ tribution the spread time derivative scheme is shown superior to the

standard time derivative formulation.

8. The Leendertse Formulation

Leendertse [15] considered the space staggered grid illustrated

in Figure 7 in applyiXng the finite difference approximations to the

following equation sets
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o .

a(HP) + a(HuP) + a(HvP) a HD - - y a HS =0 (8.1).at- ax ay ax x x ayA

A.

2 2 1/2
au au u(u +v) 1 s

-+ u - +v--fv+ g +g (8.2)
at ax ay a x c2H pH x

2 2 1/2
av av av a+ v(u + v) 1 s

+vU+ 2 + v + fu + g - (8.3)t ax 3y a~y 2 pg'cH° pc H y

an a (Hu) + a(Hv) 0  (8.4)
at ax ay

where

t E time

x,y Cartesian coordinates

H water depth

u,v depth integrated velocities in the x and y directions,

respectively
A.]

f - Coriolis parameter

c E Chezy coefficient

p = density of water

Ts Ts_ surface stresses in the x and y directions,
x' y

respectively

P E pollutant concentration

E water surface elevation

g acceleration of gravity
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D,Dy- dispersion coefficients in the x and y directions,

respectively

SA source strength (concentration/unit/time)

We note in the above equation set that P is considered an arbitrary

pollutant,

The finite difference scheme is ADI with the time step At being

split in half to advance the solution to t + At . In following the fi-

nite difference formulations, the reader is referred to Leendertse [15b]

for details of notation. In the first sweep from t - t + At/2 the fol-

lowing finite differences are employed in an x sweep of the grid.

x-sweep t t + At/2

jAx x

kAy y

nAt t

For continuity we write

Et- ( k - njk) + [(J+1i/2, k+l1/2 + hj 1 /2,k-l/2 + nj+l,k

i+n N _n+1/2 (hn
+ j/,k) " k - (j-/2,k+/ 2 + h.j- 1/2,k-1/2 + nj-l,k

n In+/2 1 1 [(h +h n

jk) k] [~j+/2,k+i/2 hj-l/2,k+i/2 ,k+l (8.5)

11 n nv (
:"+ n ilk) ,k 1/2 (j-i/2,k+i/2 + hj -1/2,k+1/2 + nj,k

-1 v ,~ Vj~k 2A-- -0n k k-1/2] 0
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which may be written in general as:

n++/2 n+l/2 + n+1/2 n-r j-1/2Uj-1/2,k + j,k + rji/ 2uJ+i/2,k A1  (8.6)

For u momentum:

- U1/2 n-1/ 2 1) n+1/2-: " "j+1/2,k U J+1/2,k) - fv + 2Ax j+1/2,k

[Centered Difference]

S(un-l/2 n-1/2 vt + ,n+1/2 n+1/2 + n-1/2 -1/2 9J + I / 2 , k+ l - j + 1 / 2 , -  + J+l, k - j,k J+l,k J,k 2tx (8.7)

[Centered Difference] [Time averaging at n+1/2]
Derivative centered at
t'ime level n

2 J+/2k + u,+l 2 k uj+( n-l/2 ) + ;2 ]/0

(hy + nx)(c X)2y + nx)

where
= = 1 ( n n + n~ l k*vj+lk+1/2 + Vjk+1/2 +Vj k-i/2 + Vj+lkl 2 )

EY 1 (hj+i/2,k+i/ 2 + hj+i/ 2 ,k-i/ 2 )

-x 1 (n+ n

= 2 +l,k + Cj,k

+l,k + c ,k)

The above equation may be written in the following form:

-r TI n+1/2 1 n+1/2 n+1/2 n
i j,k j+i/ 2uj+i/ 2 ,k j+l~j+l,k j+i/2,k (8.8)

For the constituent of concern we obtain: (Note i has been dropped,

since we are considering only a single constituent.)
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n+1/2 n+1/2 n n
jk j,k i k Jk SX71 +12 'P+/ n+1/2~

At Lsj-1/2,kuj-1/2,k j-1/2,k j,k/
2

n /2ku+1/2,kP~ 4n Skl 2 k

(n+1/2 n+1/2nnl/

(P i k- + s~k+lI2 j k+1/2e( jk+l + A

(8.9)

+2 (Ax)2  s -j-/ SjlJ

x D n+1/ 2  (Pn+1I2 -Pn+112) + 1 2 Sy nk-1./2 D yn

xj+1/2 kl,k' j,k A 2 (Ay) I ~-/

il - 'jk-1) - i k+1/2Dy k+/(Pik+l -ilk)]

where

=y. + rj + h +hjl2kl)
ji/2,k (T)j~l,k jik j+112,k-1/2 + _±/,k12

5 y J,k±l/2 =(Yl k+l + njk + h j-.1/2 ,k+12 hj+l/ 2 ,k+l/2)

This equation is then written ir the following general form:

n+/2 n+1/2 n+1/2
je j-l,k +bj Pj,k +j j+l,k D (8.10)

Let us now consider the y sweep in which the solution is advanced
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from time level n+1/2 -~n or t + At/2 -*t +At .Leendertse ex-

presses the continuity equation as follows:

+12"+ x 6y + nlX)u] + 6 + P Yv + 0I j,k~n+1/2 (8.11)

where:

A.n+l n

6+1/2tn At
2

n+/2 
n+/2 

U
6 j~~-x 1  6 1k+2 k-1/2 j+1I2tk + J-1/2,k6x [(y+ nljU] - x[\ k+/ 2 _jk + _j2/ j

S(h+l/,k+l, 2 + hj+1/2,k-l/2 + nj+1,k

+nn+1/2) n+1/2
~j,k j+l/2,k - k j-l/2,k+1/2

+ h n+1/2 +nn+1/2 'u n+1/2k/2Axj-1/2,k-l/2 + nj,k + j-l ,k/ -/2

+ j..,k n+1/2 + ~ 1 +/
6[(hX + = 6 [(il/y + ~J,k+l/2 + -12

2 -x 2t1

-[(hj +1 , k+l, 2 + jl 2,k+1/2 + j,k+l

fl+1/) j,k+112 - +/,-/

+ +n+1/2 + n+l/2N n+l
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The v momentum equation for the y sweep is given as:

v () + (v-)]

6hx+ rY)(-Y)
2

(8.12)

p~h ~ Y) T =0 at j,k+1/2,n+1/2 I

where

u=f(n+l/2 +~~/ n+1/2+n~/
j+1/2.k+ j +12,k j12k1 j12

fu f u n+1/2 n1/2 + +1/2 -" +1, u 1/ 1/2

(vi 2 k+ 1 /V k +1 (v'.~l j1/2,k

Vt yk1/ - ,1/,k+1/2 /i~ vr± L

n+ n n
(k+1 -, 1j k j,k +l ~ +/ ikv t y V- v j~k~l/2 Ay v i~k ) 2
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+ 2 v) 12 n+l n 1/-J ( 2] vjk+1/2 + v-k+l 2 ) )2~ 1n/2

71Y) (cY)
2  2 / \U k+ki1/2)

h. h n+1/2 +n+1/2
J+12,+1/ +J-1/2,k+1/2 + ~J,k+1 J, k/

2

[(.. k+1+ c. k]1

S s
T T

y -Y

-P p
X+ y (h. + h +n+1/2 n+1/2\

\+1/2,k+1/2 j-1/2,k+1/2 + j,k+l + T'Ijk
2

The constituent equation for the y sweep is expressed as:

6 6LP(. + n)I + 6 [6BY + nrl)uPIx + 6[E ryvy
+t/2 x 6 Lh rJtt

-6y.rKhy + rIx)D6P] - [(x + ny)D 6 Pt] =0 at ,k,n+1/2 (.3

yt Y

where

PnlR+ n+l) Pn+1/2( + n+1/2\

6+ ,2 P(h + n)] _j k J,k/ J 0 j,k/

with

4h j+1/2,k+1/2 + j+1/2,k-1/2 + j-1/2,k+1/2

+h.-
+ -1/ 2 , k-1/2
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n+1/2 n+1/2
[(Ry~ ~ ~ ~~h + x ,ik12+jk-1/2 + j+1/2 ,k + J-1/2,k/

n+ n'2/ 1/ n+n11/
x + . 2 + n1/2 ,n+

j+/2k-/2 j+/2+,kjJ~+/ 2 k +,

n+1//2A j-/2 n1/2,k-n1/2

+ h~~/ + k pi+/

+h n+1/2)/, x] +[1h2+ ~Y)~Y] j-12 ,k+1/2 +J-/,k-1/2

n+2. n12 n+1/2 (n12 n12/ 6
2 j [-l~k]J-1/2kk /2

+ h ~~n+1/2 n1/2 +
n py (j1/2,k/ + jk+12 + ri. V~+/ lj.-/

x~ ~ /Pz+/ + k+1/2 j1k+1

2 [(~j112, k1/ 2

+ h n+1/2 + +IT+J n+1) ~n-4-1n~

j,k j,k-1/ j~-/ ,k + j,k-1
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+hn+1/2 n+1/2
+ X)D6P] k=1 L k-1/2 +j12 + -/,

+~ ~ ~ ~ + 2,k 1 I 6x2j1/, 
-/

n12n+1/2 n12 +/
x j+1/2,k1/2 'j+,k jk Jx

- pnAx/= [/2 j211- ikh./+

j1,k -/ q j L~kjl ,k x j1/2,k-1/2~

pn+1 /2/ /A ]+h

j~~k [(hj-1/2, 1/ k12k-/

nyD -i, 6 h 1/, + hn,1/2 n+1/ D
-VIE [+il 2 y--~ 2jk~/ Sk-1/2) Y

6f~ph + ni+-P'

n+1l/2 j [n+1/2 k+l/

+ h j 1 /2 ,%+1/ 2 + n+1/2 + n i2Dn+
j j,k+1/2

**~x ( + l+ - p nj+l)/ 2 ,y2] [ j 1 2, -/

+h+ nn1/ + n+ 12Dn+l
j-1/2,k-1/2 ~j,k + nk7-f)D y,k-1/2

Note that the above equation may be written as
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n+l n+l n+l
a P +bP +cD
k-l j,k-l + k j,k + k+ipj,k+l k

In this approach the constituent equation is solved directly within the

hydrodynamic computation sweeps although there is no coupling.

In the application to Jamaica Bay, salient simulation character-

istics are as follows:

a. As = Ax = Ay = 500 ft (15.24 m)

At = 120 sec

b. The explicit time step, At , is given as follows.
e

As 500
At 48 12.5 sec

gDe 40
max

c. The gravity wave Courant number Crw is given by

At
Cr z 10
w At

d. The particle Courant number Cr is given by
p

Cr =--=uAt (0.5 ft/sec*)(120 sec) = .0120
Sp S 500 ft**.002

e. The dispersion coefficient formulation is given by

D = 14.3/2 uHc + D , where D e(25, 45) ft /sec
x w w

"J where

DX dispersion coefficient

.4g gravity

* 0.1524 m/sec.
** 152.4 m.
t 232,4.18 m 2/sec.
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c Chezy coefficient

H local water depth

D £ background dispersion coefficient
w

f. The Chezy coefficient is given by

1.49 1.49

1/6 (0.01)(11) 100
nR

where

c E Chezy coefficient

R hydraulic radius

n Manning's roughness

g. The dispersion coefficient used becomes

D (112)(0.5)(25) + 25 =37.5 ft2/sec [3.484 m 2/sec

x 100

with

D At
x (37.5)(120) = 0.018

As 2 250,000

and a cell Peclet number, Pe = u (0.5)(500) 6.7
D 37.5
x

9. Additional Methods and Considerations

Bram van Leer [16, 17] has developed several upstream centered

higher order convective schemes. His work is highly theoretical within

the domain of numerical analysis but seems to indicate a general ap-

proach to constructing extremely accurate finite difference schemes.
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Forester [18] has presented a non-linear filtering technique for higher

order even (greater than two) finite difference schemes which preserves

the peak of an external type distribution unlike flux corrected trans-

port filtering. The application of the filter to points near the

boundary was not reported and the determination of the coefficients must

be made through direct numerical experimentation for each problem

individually.

Narayan and Shankar [19] have employed a multi-operational scheme

% similar to the Leendertse scheme previously outlined in an application

to Galveston Bay. Oster et al. [20] employed Leendertse's scheme [15]

with upwind differencing in a two-dimensional computation. Hinstrup

et al. [21] at Danish Hydraulic Institute have developed a two-

dimensional explicit scheme employing 12 point Everett interpolation.

The treatment of boundary cells appears to result in some mass

falsification.

Runchal [22], Siemieniuch and Gladwell [23], and Lillington and

Shepherd [24] demonstrate the oscillatory nature of central difference

approximation to the steady state eq .ation in convection dominated prob-

lems for cell Peclet numbers greater than 2. Jensen and Finlayson [25]

note this oscillatory behavior may be observed in transient simulations

of sharp fronts as well for improper time and space scales.

Molenkamp [261 has provided a review of several finite difference

approximations and compared them for a rotation of a circular distribu-

tion. This test problem provides for a non-uniform velocity field
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within two dimensions and will be employed as a test case for the to be

developed salinity algorithms.

The cell Peclet number as mentioned above plays a major role in

[ characterizing the relationship between the grid resolution and the

numerical scheme. It is defined as

Axu AyvPex  Pey (9.1)"
P-X K Py IC

x y

where

Ax grid spacing

u maximum magnitude of the velocity in the x direction

v 2 maximum magnitude of the velocity in the y direction

K 2 dispersion coefficient in the x direction

K dispersion coefficient in the y directionKy

The Peclet number limit of two is required to prevent oscillations in

the solution in the vicinity of a sharp concentration front for central

space differencing. For typical velocities and dispersion coefficients,

Ax and Ay would be in the scale of hundreds of feet. This space

scale is too severe to be applied over the entire area of Mississippi

Sound. The Peclet number limit, however, is only significant for sharp

fronts and although there may be significant horizontal gradients in

salinity, these gradients are not as severe as a shock or discontinuity

in the distribution. If first order upstream differences are applied

no oscillations will develop, but accuracy limitations (such as those

developed by Leonard [27])usually require a dense grid. In practical
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computations, one normal decides on a space scale of significance, S

and selects the grid spacings, e , such that c < S/iO . Higher order

schemes may allow this limitation to be relaxed. However, these higher

order methods normally involve more complicated algorithms and increased

computational cost and model development time.

In conclusion, it should be noted that there is no one best com-

putational finite difference scheme for the transport equation. How-

ever, the necessity to perform computations over a two-dimensional grid

,* - with irregular boundaries, suggests that a simpler lower order method

be selected which is not too inaccurate.

.4
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PART IV: NUMERICAL METHOD SELECTION AND DEVELOPMENT

The method of solution for the transport equation must be compat-

ible with the hydr-dynamic scheme employed in WIFM. Since the convec-

tive terms must be treated in the hydrodynamics for tidal circulation,

the following explicit type time step limitation must be obeyed

uAt < min AxAy - min [\DiArea (3.1)
utm n~ 2 +A2) ~ Dagonal)j, WAX 2 + Ay2

where

u maximum particle velocity magnitude

Ax spatial increment in x direction (variable)

Ay Espatial increment in y direction (variable)

* It is desirable to leave open the option of coupling the salinity

* transport through an equation of state to the density involved in the

pressure gradient terms within the hydrodynamics. If this is to be

. accomplished the method of solution of the transport equation must also

* satisfy the above equation. This allows both explicit and implicit

methods for solution to the transport equation to be considered. Ex-

plicit methods must obey (3.1), whereas for implicit methods the only

" time step limit is one of accuracy.

If density coupling is not necessary and explicit methods are

employed then it may be possible to employ a time step in the transport

T H H
. solution, At= n At , where n is an integer and At is the time

step in the hydrodynamic solution. In this case the following limit
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must be obeyed for an explicit method

"'"uAt 
T < min / AxAy (32

<m ( x Y2 (3.2)x2 2

where u represents the maximum magnitude of the particle velocity aver-

H
aged over nAt . The explicit time step transport limit will be less

than an implicit time step transport limit. Thus an implicit method may

accommodate larger time steps than an explicit method. Leendertse [15]

notes the problem of conservation in averaging velocity fields. How-

ever, in order to develop long term transport patterns, it may be desir-

able to employ much larger time steps in the transport equation solution

than in the hydrodynamics. For this reason and to maintain consistency

of approach with the hydrodynamics a multi-operational implicit scheme

will be developed for the transport equation.

As has been previously presented, the work of Stone and Brian [131

and Gray and Pinder [14] illustrate the improved computational character-

istics of the spread time derivative method over the standard forward

time centered space method in one-dimensional problems. Siemon [28]

has investigated the extension of the method to semi two dimensional

problems (advection in one coordinate direction, diffusion in both

coordinate directions) and reported favorable results. To the author's

knowledge, the extension to completely two dimensional problems has not

been reported. It is proposed that this extension be investigated in

this project. By employing appropriate coefficients in the numerical

formulation, the method could be degenerated to Leendertse's approach.
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In this manner, two computational schemes may be coded in one operation.

The format of the spread time derivative scheme is such that it may not

be expressed in a form suitable to flux corrected transport. As a re-

sult, oscillatiov- in the solution may be smoothed using filtering

techniques. The necessity of filtering cannot be determined until nu-

merical experiments are conducted.

As an alternative, Leendertse's approach will be implemented with

flux correction. The higher order scheme will correspond to the stan-

dard Leendertse formulation. The lower order scheme will employ upwind

differencing of the advective terms. Thus, two schemes must effectively

'be programmed (a higher and lower order scheme) for flux correction.

The two alternative schemes spread time derivative and Leendertse

flux corrected will be compared through numerical experimentation to

determine the most appropriate technique for application in Mississippi

Sound.

o* The flux correction method is such that any higher order method

may be employed. Leendertse's method is 0(At 2 , Ax , Ay ) and is amenable

to adaptation to variable grid spacing using the exponential stretch

transformation in WIFM. In the future, it may be desirable to consider

higher order compact differencing schemes such as the Kreiss scheme as

reported by Roache [29]. The flux correction method will accommodate

further research in the development and implementation of higher order

schemes.

The general strategy and development of the numerical approxima-

tions to the transport equation for application to Mississippi Sound is
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shown in Figure 8. This approach provides for development of an optimal

second order method.
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Figure 8. Development of a numerical method for the transport equation
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