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INTRODUCTION

For the past 12 years the U.S. Army Aeromedical Research Laboratory
(USAARL) at Fort Rucker, AL, has been involved in a program of evaluating
the impact performance of aviator flight helmets retrieved from aviation
accidents. From these evaluations, it has become evident the current Army
flight helmet, the Sound Protective Helmet Number Four (SPH-4) (Department
of the Army, 1975), is relatively deficient in its ability to protect wear-
ers against impacts to the lateral portions of the helmet (Haley and others,
1983; Shanahan, in press). It is believed this is due to there essentially
being no energy absorbing material interposed between the helmet shell and
the hard plastic circumaural housing for the communications headphones.
There is a foam liner incorporated into the superior portions of the helmet,
but it does not generally extend below the "hatband" region of the head at
the sides of the helmet. Consequently, the force of an impact directed at
the earcup region of the helmet is transmitted to the head of the wearer
with relatively little attenuation other than that provided by the bending
deformation effect of the helmet shell itself.

Accident statistics indicate that 26% of all impacts to the SPH-4 have
occurred in the earcup region, and impacts in this area are known to result
in substantially more severe injury than impacts to other areas of the hel-
met (Haley and others, 1983; Shanahan, in press). To provide increased im-
pact protection to the earcup region of the helmet, a crushable energy-
absorbing earcup was developed to be a direct replacement for the standard
plastic earcup.

The modified earcup is constructed of 1 mm (0.040 inch) thick aluminum
and is designed to provide 25 mm of crush at a maximum load of 4500 N. The
crush distance was selected based on available space within the current hel-
met so modification of the helmet shell would not be required. The load
limit of 4500 N arbitrarily was selected based on the little data available
on human tolerance to impact in the temporoparietal area of the skull
(Gurdjian, Lissner, Webster, 1974; Schneider, Naham, 1972; Travis, Stalnaker,
Melvin, 1977). This load level is admittedly relatively high, being close
to fracture threshold for localized impacts in the temporo-parietal area
(Schneider, Naham, 1972; Travis, Stalnaker, Melvin, 1977). However, the
size of the earcup allows loads to be spread over a large surface area (7900
mm2 ) and, because of the limited stroke distance available, a relatively high
load limit had to be used.

Acoustical testing of the energy-absorbing earcup has shown it provides
sound attenuating capability equivalent to the standard earcup. Initial im-
pact tests were carried out utilizing a flat rigid mass dropped onto a hel-
met-earcup segment in a standard impact of 90 Nm (66 ft-lb) input energy
(Haley and others, 1983). The energy-absorbing earcup transmitted a peak
load of 4500 N whereas peak loads for the standard earcup were five times
this level.
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Clearly the new energy-absorbing earcup provides increased load attenu-
ating capability over the current design. Nevertheless, since many assump-
tions were made in selecting the load limit for the earcup and since only
isolated helmet segments had been impact tested, it was felt that helmeted
cadaver impact tests would add useful information for validating the crush-
able earcup concept.

MATERIALS AND METHODS

The experimental design called for a whole-body drop test which would
result in the impact of the helmeted head against a rigid surface. The rest
of the body was to impact a cushioned surface so that the effect of body de-
celeration on head impact would be minimized. A drawing of the test appa-
ratus is shown in Figure 1. The rigid impact surface consisted of a com-
pression-type load cell 150 mm in diameter (Robert A. Denton, Inc.), support-
ed by a rigid steel frame. A canvas sling was used to hoist the helmeted
subject to the desired drop height and to maintain proper body orientation
prior to the drop. The subject was oriented with its sagittal plane parallel
to the horizontal and its head and neck projecting from the sling (Figure 1).
The head was placed in proper orientation with duct tape attached between
the helmet and the suspension sling frame. The load cell frame was position-
ed to insure contact of the earcup portion of the helmet with the center of
the load cell. A 200 nm thick foam mattress supported by a wire mesh frame

Roof

Hoist

/ P d ele.."

Trissial

ft. -" ....-

S.se.,l Tools

FIGURE 1. Photograph of Test Apparatus
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was used to cushion the body upon impact. The height of the mattress was
adjustable to permit the body to contact the mattress at or just before the
time of head impact. The sling was suspended from a pulley system that al-
lowed the drop height to be adjusted up to three meters. The test subject
and sling were released by a solenoid-controlled release mechanism.

Cadavers used in these tests were obtained through the Wayne State Uni-
versity donor program and were instrumented with a triaxial accelerometer
cluster of Endevco Model #2264 accelerometers. The accelerometer mount was
firmly attached to the frontal aspect of the maxilla with bone screws. The
sensitive axes of the accelerometer were oriented along the posterior-ante-
rior (x) direction, the right-left (y) direction and the inferior-superior
(z) direction. The impact was recorded on high speed film (400 fps) using a
single camera placed in front of the impact assembly. Load cell and accel-
eration data were recorded on analog tape and filtered at 1000 Hz prior to
digitization at 4000 Hz.

Embalmed cadavers were selected for these experiments based on age, an-
thropometry, and medical history. All subjects were younger than 69 (mean
age of 60.2 with a range of 56-68), had no history of cancer or other pro-
longed debilitating diseases, and no previous history of skull or cervical
fracture or surgery. Excessive obesity and craniometric measurements that
did not correspond to available helmet sizes were reasons for rejection of a
specimen. All potential test subjects underwent preimpact radiological ex-
amination of the head and neck. Evidence of preexisting fractures, marked
structural abnormalities, or excessive osteoporosis were grounds for rejec-
tion of the cadaver. Anthropometric measurements of each of the 12 cadavers
is presented in Appendix A.

Postimpact radiological examination of the head and neck was performed
prior to autopsy. The skull was opened by removal of the calvarium, and the
brain and dura excised to expose the inner surface of the skull to determine
if any fractures had occurred. The skull then was separated from the neck
at the atlanto-occipital junction and stripped of all coverings in order to
examine the external surfaces for fracture.

The experimental apparatus was tested utilizing a DOT Part 572 50th per-
centile dummy prior to experimenting with cadavers. For these drops the
method was identical to that described for the cadaver drops except that the
triaxial accelerometer was mounted in the head of the dummy.

RESULTS

Twelve cadaver impacts were performed. Six cadavers were fitted with
SPH-4 helmets equipped with standard earcups, and six were fitted with hel-
mets equipped with energy-absorbing earcups. Additionally, three dummy im-
pacts were performed for purposes of validating the test method. The drop
height was varied from 1.17 m to 2.03 m. Table 1 is a summary of anthropo-
metric data for the cadavers and the drop heights used for each of the 15
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tests. There were no skull fractures in any cadaver drops. The only sip-
nificant injury seen was a 45 mm curvilinear laceration in the scalp of the
cadaver used in Test 005. The injury corresponded to the superior border of
the standard plastic earcup used in that test. There were no lacerations on
any of the cadavers fitted with energy-absorbing earcups.

Table 2 summarizes the average peak impact forces and average peak head
x, y, and z accelerations measured for the standard and the energy-absorbing
earcup tests performed at the 2.03 m drop-height. Table 3 shows the results
of a t-test on unpaired samples performed on test data obtained from the
seven cadaver tests at a drop-height of 2.03 m. It can be seen that the av-
erage load for the energy-absorbing earcuD at 2.03 m was over 45% less than
that measured for the standard earcup (p < 0.05). Likewise, the average
head y-axis peak acceleration was 35% less (p < 0.05) for the energy-absorb-
ing earcup drops. There was no significant difference for peak head accel-
erations in the x and z directions. Figures 2, 3, and 4 show a comparison

TABLE 1

SUMMARY OF ANTHROPOMETRIC DATA AND DROP HEIGHTS

AGE/ HEIGHT WEIGHT HERD CIRCUM. DROP

TEST # SUBJECT SEX (m) (kg) mm % HT. (m)

00! DUMMY - 76.0 584 87 1.17

002 DUMMY - - 76.0 584 87 1.17

003 CADAVER 58 F 1.630 84.0 603 >99 1.17

004 CADAVER 60 F 1.645 70.0 570 65 1.17

005 CADAVER 59 M 1.790 86.0 580 86 1.17

006 CADAVER 64 F 1.500 70.0 580 86 1.70

007 CADAVER 58 F 1.535 78.0 580 86 1.70

008 DUMMY - - 76.0 584 87 2.03

009 CADAVER 66 M 1.770 77.5 610 >99 2.03

010 CADAVER 66 F 1.555 75.3 610 >99 2.03

011 CADAVER 68 M 1.585 51.3 533 2 2.03

012 CADAVER 61 F 1.820 68.5 572 70 2.03

013 CADAVER 57 F 1.710 95.0 640 >99 2.03

014 CADAVER 56 F * 56.0 585 92 2.03

015 CADAVER 59 F 1.585 79.0 610 >99 2.03

* Lower Extremities Double Amputee
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of plots of load, head y-axis acceleration, and calculated resultant head
acceleration for Tests 011 and 012. These data typify the differences seen
between tests utilizing the two different earcup designs. A statistical
analysis was not performed on the 1.17 m and 1.70 m drops. These drops were
performed to test the experimental apparatus and to find a drop height that
would provide approximately 50% crush of the energy-absorbing earcup. Load
and acceleration tracings for these tests may be found in Appendix B.

TABLE 2

ER VS STRNDRRD EARCUP

2.03-m DROP TEST

AVERAGE PERK VALUES ± I S.D.

PARAMETER IMPRCT FORCE (N) HEAD ACCELERATION (g

y-RXIS x-RXIS y-RXIS -HXIS

ER EARCUP 5995 t 1256 37.8 + 8.2 121.0 ± 22.? E 17.2

STD. EARCUP 11039 + 2971 73.0 + 32.6 187.3 + 43.9 52.3 + 7.6

TABLE 3

ER VS STANDARD ERRCUP

2.03-m DROP TEST

RESULTS OF UNPRIRED t-TESTS

PARAMETER DF tp ()

IMPACT FORCE 5 3.12 5>p>2.5

HERD x-ACCELERATION 5 2.14 10>p>5.0

HERD y-ACCELERATION 5 2.64 5>p>2.5

HERD z-RCCELERATION 5 0.19 p>5 0
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Figure 5 is a photograph of the helmet impacted in Test 009, It is re-
presentative of the damage sustained by most of the helmets used in these
tests. Note the scuffing and the horizontal fracture through the right
earcup region of the helmet shell. Figure 6 shows the two energy-absorbing
earcups used in this test. As expected, the left earcup was undamaged. The
right earcup reveals the unsymmetrical nature of the loading it received dur-
ing impact as most of the crushing is confined to the superior half of the
earcup. The average compression was 6.9 mm or 27.6% of the available 25 mm.
For ourposes of comparison Figure 7 is a photograph of the standard earcup
removed from the impacted side of the helmet used in Test 013. There is
minimal damage to this earcup consisting only of a hairline fracture of the
flange along the superior border of the earcup (see arrow). This was the
maximum damage sustained by any of the standard earcups used in the cadaver
impacts.
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FIGURE 2. Comparison of Force for EA

and Standard Earcups
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Table 4 is a summary of the measured compression for each of the energy-
absorbing earcups used in this study. Since most of the earcups were not
symmetrically loaded, a means of mea"iring average compression was developed.
The point with the greatest compression and the point with the least compres-
sion were identified and a line drawn through them on the back of the earcup.
A line perpendicular to this line passing through the center of the earcup
then was drawn. Four measurements of height then were taken where the lines
crossed the edges of the earcup. These heights were averaged and compared
to the height of an undamaged earcup. This was the average loss in height or
average permanent crush. This was compared to the total compression avail-
able (25 mm) and reported in Table 4 as a percentage of crush available.
Note that the greatest permanent compression seen was 53%. However, based on
the elasticity of aluminum, it is probable that the maximum dynamic compres-
sion depth was 8-12 percent greater, or 61-66%.

EARCUP IMPACT
* TEST5

No. 009

FIGURE 5. Impacted Helmet in Test 009
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EARCUP IMPACT
~TEST"

~No. 009

FIGURE 6. EA Earcups Used in Test 009

FIGURE 7. Standard Earcup from the Impacted Helmet
Used in Test 013
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DISCUSSION

In this series of blunt impacts to the earcup region of the helmet shell,
peak loads and peak y-axis accelerations were considerably less for those
subjects wearing SPH-4 helmets equipped with the energy-absorbing earcup than
for those wearing helmets equipped with the standard plastic earcup. Al-
though the difference in loads between the two earcups was significant, it
was considerably less than expected based on the results of previous impact
tests performed with metal headforms. In the helmeted cadaver impacts, there
was only an average 45% reduction in peak loads for the energy-absorbing ear-
cup for the 2.03 m drops as compared to loads measured for the standard ear-
cup while the flat metal mass tests showed a 5-fold reduction at roughly
equivalent input energies (Haley and others, 1983). There are several rea-
sons for these discrepant results. In the flat metal mass tests, a metal
mass was dropped vertically onto the earcup section of helmet shell with the
earcup resting directly on the load cell. The entire load was transmitted
directly through the shell to the earcup and the system was not free to ro-
tate or translate.

In the helmeted cadaver impacts, the impact force was transmitted to the
head not only through the earcup, but also through several points in the hel-
met shell and through the foam liner over the superior portion of the impact-
ed side. These factors tended to reduce the loads delivered to the earcups

TABLE 4

MEASURED COMPRESSION OF ENERGY ABSORBING EARCUPS

TEST SUBJECT DROP RVERAGE PERCENT OF

NO. HEIGHT DEFORMATION AVAILABLE

(M) (mm) CRUSH

001 DUMMY 1.17 3.6 14

003 CADAVER 1.17 3.3 13

004 CADAVER ..17 6.6 26

008 DUMMY 2.03 11.4 46

009 CADAVER 2.03 6.9 28

010 CADAVER 2.03 9.4 38

Oil CADAVER 2.03 12.7 51

015 CADAVER 2.03 13.2 53
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during the cadaver impacts. This situation reduced the difference in mea-
sured performance between the two earcup designs when compared to the metal
headform drops since the condition aids the perfor-ance of the standard ear-
cup and prevents the energy-absorbing earcup from realizing its full crush
capacity for the input energy used in these tests.

At higher input energies, the difference in loads would be expected to
become greater as the crushable earcup continued to limit the loads to the
same approximate level seen in these experiments until it reached full crush.
On the other hand, the rigid earcup would transmit increasingly higher loads
as the input energy increased. This difference in measured loads between
the two earcup designs in helmeted cadaver impacts would probably never at-
tain the magnitude seen in the rather idealized metal mass tests for the
reasons enumerated.

One major problem encountered in this study relates to the use of em-
balmed cadavers. Embalmed specimens were used since they were available much
more readily than fresh cadavers. However, after embalming, the subcutaneous
tissue in the scalp becomes engorged with embalming fluid and swells consid-
erably. Whereas the thickness of the skin in the posterior auricular area
in the live subject is normally only 2-3 mm, many of the cadavers used in
this study had thicknesses approaching 15 mm. This situation is reflected by
the preponderance of extremely large head circumferences seen in the cadavers
used in this study (Table 1). Clearly, this artifactually-increased subcu-
taneous tissue depth provides the embalmed cadaver with a very high degree of
impact attenuation capability not present in a live subject. This explains
in large part why the relatively high input energies used in these experi-
ments (approximately 136 Nm or 100 ft-lb for the 2.03-m drops) failed to
produce skull fracture in the standard earcup tests or to produce high levels
of crush in the energy-absorbing earcup tests (Table 4). In all probability,
if fresh cadavers had been used, the same drop heights would have produced
markedly c'eater loads and accelerations for the standard earcup tests and
higher le, "s of crushing in the energy-absorbing earcups.

CONCLUSIONS

This study failed to provide any definitive data on the adequacy of the
stroke level or distance selected for the energy-absorbing earcup. The en-
gorged subcutaneous tissue in the scalp of the cadavers used appears to be
the primary reason. There is no question that the energy-absorbing earcup
offers significantly increased impact protection over the standard (rigid)
earcup design, and this fact alone is believed sufficient to recommend its
incorporation into all U.S. Army flight helmets. In the meantime, it is
hoped that these experiments can be repeated, using fresh cadavers and per-
haps a modified procedure to try to obtain more definitive data on the per-
formance of the crushable earcup.

15
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APPENDIX A

ANTHROPOMETRY OF TEST SUBJECTS
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Subject Cadaver 5146, Female, Test 003 Date 7-13-81

Age - 58 yrs.

Measurement Description Millimeters

Standing Height Heels, Shoulders, Buttocks & Head Erect 1630

Sitting Height Head to Seat with Body Erect 895

Neck Breadth (y) Lateral 105

Neck Depth (x) A to P 125

Upper Torso Breadth (y) Chest Breadth at Xiphoid 315

Shoulder Width (y) Biachromial Breadth 350

Lower Torso Breadth (y) Right to Left Iliocristale 390

Upper Leg Length (z) Trochant- to Femoral Condyle 310

Lower Leg Length (z) Tibiale to Heels 365

Head Height (z) Gnathion to Vertex 230

Head Breadth (y) Right to Left Tragion 150

Head Depth (x) Ophistocranon to Glabella 185

Head Circumference Above Brow Ridge 603

Upper Torso Depth (x) Chest Depth at Xiphoid 225

Lower Torso Depth (x) At Anterior-Superior Iliac Spine 225

Chest Circumference At Xiphoid 940

Waist Circumference At Most Superior Point of Pelvis 1070

Top of Head to C7 225

Neck Height (z) C1 to C7 60

Upper Torso Height (z) C7 to T12 335

Ti to T3 (z) At Posterior Processes 40

T7 to T9 (z) At Posterior Processes 40

Li to L3 (z) At Posterior Processes 40

Lower Torso Height (z) T12 to Coccyx 275

Weight Of Whole Body 84.0 kq
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a1
Subject Cadaver 5145, Female, Test 004 Date 7-13-81

Age - 60 yrs.

Measurement Description Millimeters

Standing Height Heels, Shoulders, Buttocks & Head Erect 1645

Sitting Height Head to Seat with Body Erect 830

Neck Breadth (y) Lateral 110

Neck Depth (x) A to P 110

Upper Torso Breadth (y) Chest Breadth at Xiphoid 310

Shoulder Width (y) Biachromial Breadth 350

Lower Torso Breadth (y) Right to Left Iliocristale 380

Upper Leg Length (z) Trochanter to Femoral Condyle 335

Lower Leg Length (z) Tibiale to Heels 390

Head Height (z) Gnathion to Vertex 225

Head Breadth (y) Right to Left Tragion 160

Head Depth (x) Ophistocranon to Glabella 175

Head Circumference Above Brow Ridge 570

Upper Torso Depth (x) Chest Depth at Xiphoid 210

Lower Torso Depth (x) At Anterior-Superior Iliac Spine 210

Chest Circumference At Xiphoid 900

Waist Circumference At Most Superior Point of Pelvis 1015

Top of Head to C7 215

Neck Height (z) Cl to C7 80

Upper Torso Height (z) C7 to T12 290

Tl to T3 (z) At Posterior Processes 50

T7 to T9 (z) At Posterior Processes 40

Ll to L3 (z) At Posterior Processes 55

Lower Torso Height (z) T12 to Coccyx 240

Weight Of Whole Body 70.0 kg
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Subject Cadaver 5066, Male, Test 005 Date 7-13-82

Age - 59 yrs.

Measurement Description Millimeters

Standing Height Heels, Shoulders, Buttocks & Head Erect 1790

Sitting Height Head to Seat with Body Erect 950

Neck Breadth (y) Lateral 120

Neck Depth (x) A to P 120

Upper Torso Breadth (y) Chest Breadth at Xiphoid 350

Shoulder Width (y) Biachromial Breadth 375

Lower Torso Breadth (y) Right to Left Iliocristale 360

Upper Leg Length (z) Trochanter to Femoral Condyle 340

Lower Leg Length (z) Tibiale to Heels 440

Head Height (z) Gnathion to Vertex 230

Head Breadth (y) Right to Left Tragion 155

Head Depth (x) Ophistocranon to Glabella 200

Head Circumference Above Brow Ridge 580

Upper Torso Depth (x) Chest Depth at Xiphoid 240

Lower Torso Depth (x) At Anterior-Superior Iliac Spine 225

Chest Circumference At Xiphoid 990

Waist Circumference At Most Superior Point of Pelvis 990

Top of Head to C7 230

Neck Height (z) Cl to C7 70

Upper Torso Height (z) C7 to T12 335

Ti to T3 (z) At Posterior Processes 65

T7 to T9 (z) At Posterior Processes 70

Ll to L3 (z) At Posterior Processes 55

Lower Torso Height (z) T12 to Coccyx 425

Weight Of Whole Body 86.0 kq
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Subject Cadaver 5161, Female, Test 006 Date 7-27-81

Age - 64 yrs.

Measurement Description Millimeters

Standing Height Heels, Shoulders, Buttocks & Head Erect 1500

Sitting Height Head to Seat with Body Erect 805

Neck Breadth (y) Lateral 110

Neck Depth (x) A to P 125

Upper Torso Breadth (y) Chest Breadth at Xiphoid 305

Shoulder Width (y) Biachromial Breadth 320

Lower Torso Breadth (y) Right to Left liiocristale 315

Upper Leg Length (z) Trochanter to Femoral Condyle 310

Lower Leg Length (z) Tibiale to Heels 320

Head Height (z) Gnathion to Vertex 220

Head Breadth (y) Right to Left Tragion 155

Head Depth (x) Ophistocranon to Glabella 175

Head Circumference Above Brow Ridge 580

Upper Torso Depth (x) Chest Depth at Xiphoid 245

Lower Torso Depth (x) At Anterior-Superior Iliac Spine 235

Chest Circumference At Xiphoid 910

Waist Circumference At Most Superior Point of Pelvis 910

Top of Head to C7 200

Neck Height (z) Ci to C7 45

Upper Torso Height (z) C7 to T12 325

Ti to T3 (z) At Posterior Processes 60

T7 to T9 (z) At Posterior Processes 65

Li to L3 (z) At Posterior Processes 70

Lower Torso Height (z) T12 to Coccyx 210

Weight Of Whole Body 70.0 kg
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Subject Cadaver 5155, Female, Test 007 Date 7-28-81
Age - 58 yrs.

Measurement Description Millimeters

Standing Height Heels, Shoulders, Buttocks & Head Erect 1535

Sitting Height Head to Seat with Body Erect 800

Neck Breadth (y) Lateral 95

Neck Depth (x) A to P 120

Upper Torso Breadth (y) Chest Breadth at Xiphoid 310

Shoulder Width (y) Biachromial Breadth 320

Lower Torso Breadth (y) Right to Left Iliocristale 360

Upper Leg Length (z) Trochanter to Femoral Condyle 325

Lower Leg Length (z) Tibiale to Heels 410

Head Height (z) Gnathion to Vertex 245

Head Breadth (y) Right to Left Tragion 145

Head Depth (x) Ophistocranon to Glabella 170

Head Circumference Above Brow Ridge 580

Upper Torso Depth (x) Chest Depth at Xiphoid 210

Lower Torso Depth (x) At Anterior-Superior Iliac Spine 250

Chest Circumference At Xiphoid 980

Waist Ciy:umference At Most Superior Point of Pelvis 980

Top of Head to C7 200

Neck Height (z) Cl to C7 35

Upper Torso Height (z) C7 to T12 310

Tl to T3 (z) At Posterior Processes 40

T7 to T9 (z) At Posterior Processes 40

Ll to L3 (z) At Posterior Processes 50

Lower Torso Height (z) T12 to Coccyx 195

Weight Of Whole Body 78.0 kg
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Subject Cadaver 5236, Male, Test 009 Date 12-14-81
Age - 56 yrs.

Measurement Description Millimeters

Standing Height Heels, Shoulders, Buttocks & Head Erect 1770

Sitting Height Head to Seat with Body Erect 840

Neck Breadth (y) Lateral 125

Neck Depth (x) A to P 125

Upper Torso Breadth (y) Chest Breadth at Xiphoid 340

Shoulder Width (y) Biachromial Breadth 380

Lower Torso Breadth (y) Right to Left Iliocristale 350

Upper Leg Length (z) Trochanter to Femoral Condyle 425

Lower Leg Length (z) Tibiale to Heels 485

Head Height (z) Gnathion to Vertex 235

Head Breadth (y) Right to Left Tragion 170

Head Depth (x) Ophistocranon to Glabella 205

Head Circumference Above Brow Ridge 620

Upper Torso Depth (x) Chest Depth at Xiphoid 250

Lower Torso Depth (x) At Anterior-Superior Iliac Spine 220

Chest Circumference At Xiphoid 1028

Waist Circumference At Most Superior Point of Pelvis 953

Top of Head to C7 205

Neck Height (z) Cl to C7 195

Upper Torso Height (z) C7 to T12 355

T1 to T3 (z) At Posterior Processes 55

T7 to T9 (z) At Posterior Processes 75

L1 to L3 (z) At Posterior Processes 55

Lower Torso Height (z) T12 to Coccyx 235

Weight Of Whole Body 77.5 k1
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Subject Cadaver 5211, Female, Test 010 Date 12-15-81
Age -_66 yrs.

Measurement Description Millimeters

Standing Height Heels, Shoulders, Buttocks & Head Erect 1555

Sitting Height Head to Seat with Body Erect 880

Neck Breadth (y) Lateral 130

Neck Depth (x) A to P 130

Upper Torso Breadth (y) Chest Breadth at Xiphoid 315

Shoulder Width (y) Biachromial Breadth 360

Lower Torso Breadth (y) Right to Left Iliocristale 32b

Upper Leg Length (z) Trochanter to Femoral Condyle 350

Lower Leg Length (z) Tibiale to Heels 425

Head Height (z) Gnathion to Vertex 230

Head Breadth (y) Right to Left Tragion 155

Head Depth (x) Ophistocranon to Glabella 180

Head Circumference Above Brow Ridge 610

Upper Torso Depth (x) Chest Depth at Xiphoid 235

Lower Torso Depth (x) At Anterior-Superior Iliac Spine 285

Chest Circumference At Xiphoid 940

Waist Circumference At Most Superior Point of Pelvis 965

Top of Head to C7 220

Neck Height (z) Cl to C7 40

Upper Torso Height (z) C7 to T12 330

TI to T3 (z) At Posterior Processes 60

T7 to T9 (z) At Posterior Processes 75

Ll to L3 (z) At Posterior Processes 75

Lower Torso Height (z) T12 to Coccyx 220

Weight Of Whole Body 75.0 kg

24



Subject Cadaver 5246, Male, Test 011 Date 12-15-81

Age - 68 yrs.

Measurement Description Millimeters

Standing Height Heels, Shoulders, Buttocks & Head Erect 1585

Sitting Height Head to Seat with Body Erect 850

Neck Breadth (y) Lateral 105

Neck Depth (x) A to P 95

Upper Torso Breadth (y) Chest Breadth at Xiphoid 270

Shoulder Width (y) Biachromial Breadth 305

Lower Torso Breadth (y) Right to Left Iliocristale 280

Upper Leg Length (z) Trochanter to Femoral Condyle 380

Lower Leg Length (z) Tibiale to Heels 405

Head Height (z) Gnathion to Vertex 205

Head Breadth (y) Right to Left Tragion 140

Head Depth (x) Ophistocranon to Glabella 150

Head Circumference Above Brow Ridge 533

Upper Torso Depth (x) Chest Depth at Xiphoid 185

Lower Torso Depth (x) At Anterior-Superior Iliac Spine 150

Chest Circumference At Xiphoid 813

Waist Circumference At Most Superior Point of Pelvis 737

Top of Head to C7 200

Neck Height (z) Cl to C7 70

Upper Torso Height (z) C7 to T12 305

Ti to T3 (z) At Posterior Processes 50

T7 to T9 (z) At Posterior Processes 60

Li to L3 (z) At Posterior Processes 50

Lower Torso Height (z) T12 to Coccyx 225

Weight Of Whole Body 51.2 k
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Subject Cadaver 5213, Female, Test 012 Date 12-15-81
Aqe- b yrs.

Measurement Description Millimeters

Standing Height Heels, Shoulders, Buttocks & Head Erect 1820

Sitting Height Head to Seat with Body Erect 895

Neck Breadth (y) Lateral 110

Neck Depth (x) A to P 90

Upper Torso Breadth (y) Chest Breadth at Xiphoid 345

Shoulder Width (y) Biachromial Brpadth 305

Lower Torso Breadth (y) Right to Left Iliocristale 380

Upper Leg Length (z) Trochanter to Femoral Condyle 380

Lower Leg Length (z) Tibiale to Heels 425

Head Height (z) Gnathion to Vertex 225

Head Breadth (y) Right to Left Tragion 140

Head Depth (x) Ophistocranon to Glabella 170

Head Circumference Above Brow Ridge 572

Upper Torso Depth (x) Chest Depth at Xiphoid 215

Lower Torso Depth (x) At Anterior-Superior Iliac Spine 210

Chest Circumference At Xiphoid 1029

Waist Circumference At Most Superior Point of Pelvis 1029

Top of Head to C7 240

Neck Height (Z) Cl to C7 50

Upper Torso Height (z) C7 to T12 330

T1 to T3 (z) At Posterior Processes 65

T7 to T9 (z) At Posterior Prc._esses 65

Ll to L3 (z) At Posterior Processes 65

Lower Torso Heignt (z) T12 to Coccyx 100

Weight Of Whole Body 68.5 kg
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Subject Cadaver 5350, Male, Test 013 Date 5-25-82
Aqe - 57 Yrs.

Measurement Description Millimeters

Standing Height Heels, Shoulders, Buttocks & Head Erect 1710

Sitting Height Head to Seat with Body Erect 920

Neck Breadth (y) Lateral 130

Neck Depth (x) A to P 170

Upper Torso Breadth (y) Chest Breadth at Xiphoid 350

Shoulder Width (y) Biachromial Breadth 380

Lower Torso Breadth (y) Right to Left Iliocristale 345

Upper Leg Length (z) Trochanter to Femoral Condyle 460

Lower Leg Length (z) Tibiale to Heels 420

Head Height (z) Gnathion to Vertex 265

Head Breadth (y) Right to Left Tragion 170

Head Depth (x) Ophistocranon to Glabella 205

Head Circumference Above Brow Ridge 640

Upper Torso Depth (x) Chest Depth at Xiphoid 250

Lower Torso Depth (x) At Anterior-Superior Iliac Spine 270

Chest Circumference At Xiphoid q90

Waist Circumference At Most Superior Point of Pelvis 1040

Top of Head to C7 280

Neck Height (z) Cl to C7 115

Upper Torso Height (z) C7 to T12 320

Tl to T3 (z) At Posterior Processes 60

T7 to T9 (z) At Posterior Processes 55

Li to L3 (z) At Posterior Processes 75

Lower Torso Height (z) TI2 to Coccyx 250

Wniaht Of Whole Body 95.0 kq

27



Subject Cadaver 5288, Female, Test 014 Date 5-25-82

Age - 56 yrs.

Measurement Description Millimeters

Standing Height Heels, Shoulders, Buttocks & Head Erect *

Sitting Height Head to Seat with Body Erect 870

Neck BreaJth (y) Lateral 130

Neck Depth (x) A to P 120

Upper Torso Breadth (y) Chest Breadth at Xiphoid 3b0

Shoulder Width (y) Biachromial Breadth 390

Lower Torso Breadth (y) Right to Left Iliocristale 355

Upper Leg Length (z) Trochanter to Femoral Condyle 360

Lower Leg Length (z) Tibiale to Heels *

Head Height (z) Gnathion to Vertex 270

Head Breadth (y) Right to Left Tragion 160

Head Depth (x) Ophistocranon to Glabella 195

Head Circumference Above Brow Ridge 585

Upper Torso Depth (x) Chest Depth at Xiphoid 240

Lower Torso Depth (x) At Anterior-Superior Iliac Spine 255

Chest Circumference At Xiphoid 1015

.aist Circumference At Most Superior Point of Pelvis 1070

Top of Head to C7 245

Neck Height (z) Cl to C7 80

Upper Torso Height (z) C7 to T12 320

Ti to T3 (z) At Posterior Processes 60

T7 to T9 (z) At Posterior Processes 50

Ll to L3 (z) At Posterior Processes 35

Lower Torso Height (z) T12 to Coccyx 215

Weight Of Whole Body 75.0 kg

• Specimen had bilateral below-knee amputations.
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Subject Cadaver 5358, Female, Test 015 Date 5-25-82
Aqe - 59 yrs.

Measurement Description Millimeters

Standing Height Heels, Shoulders, Buttocks & Head Erect 1585

Sitting Height Head to Seat with Body Erect 910

Neck Breadth (y) Lateral 110

Neck Depth (x) A to P 130

Upper Torso Breadth (y) Chest Breadth at Xiphoid 215

Shoulder Width (y) Biachromial Breadth 340

Lower Torso Breadth (y) Right to Left Iliocristale 360

Upper Leg Length (z) Trochanter to Femoral Condyle 345

Lower Leg Length (z) Tibiale to Heels 390

Head Height (z) Gnathion to Vertex 240

Head Breadth (y) Right to Left Tragion 110

Head Depth (x) Ophistocranon to Glabella 190

Head Circumference Above Brow Ridge 610

Upper Torso Depth (x) Chest Depth at Xiphoid 330

Lower Torso Depth (x) At Anterior-Superior Iliac Spine 360

Chest Circumference At Xiphoid 990

Waist Circumference At Most Superior Point of Pelvis 860

Top of Head to C7 225

Neck Height (z) Cl to C7 80

Upper Torso Height (z) C7 to T12 255

Tl to T3 (z) At Posterior Processes 40

T7 to T9 (z) At Posterior Processes 35

Ll to L3 (z) At Posterior Processes 50

Lower Torso Height (z) T12 to Coccyx 280

Weight Of Whole Body 79.0 kg
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APPENDIX B

FORCE AND ACCELERATION TRACINGS FROM TEST 001-015
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APPENDIX C

LIST OF MANUFACTURERS

Robert A. Denton, Inc.
1693 Hamlin Road
Avon Township, MI 48063

Endevco
Rancho Viejo Road
San Juan Capistrano, CA 92675
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