

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS - 1963 - A

and a strength of the second second

A STATE OF A STATE

NOTICE

1

Qualified Requesters

Qualified requesters may obtain copies from the Defense Technical Information Center (DTIC), Cameron Station, Alexandria, Virginia. Orders will be expedited if placed through the librarian or other person designated to request documents from DTIC.

Change of Address

Organizations receiving reports from the US Army Aeromedical Research Laboratory on automatic mailing lists should confirm correct address when corresponding about laboratory reports.

Disposition

Destroy this report when it is no longer needed. Do not return it to the originator.

Disclaimer

The views, opinions, and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy, or decision, unless so designated by other official documentation. Citation of trade names in this report does not constitute an official Department of the Army endorsement or approval of the use of such commercial items.

Reviewed:

AARON W.

LTC, MSC Director, Biodynamics Research Division

JUD. LAMOTHE,

LTC, MS Chairman, Scientific Review Committee

Released for Publication:

K Ina ma)

v

DUDLEY R. PRICE Colonel, MC, SFS Commanding

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
REPORT NUMBER 2. GOVT ACCESSION	NO. 3. RECIPIENT'S CATALOG NUMBER
USAARL Report No. 83-14 AI34Y	
TITLE (and Subtitie)	5. TYPE OF REPORT & PERIOD COVERED
IMPACT RESPONSE OF AN ENERGY ABSORBING EARCUP	
	6. PERFORMING ORG. REPORT NUMBER
	8. CONTRACT OR GRANT NUMBER(*)
AUTHOR()	6. CONTRACT OR GRANT HOMBER(5)
Dennis F. Shanahan and Albert I. King	
PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
SGRD-UAD-IE	AREA & WORK UNIT NUMBERS
US Army Aeromedical Research Laboratory	62777A, 3M161102BS10,
Fort Rucker, Alabama 36362	AG, 281
. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE
	August 1983
US Army Aeromedical Research Laboratory	13. NUMBER OF PAGES
Fort Rucker, Alabama 36362 MONITORING AGENCY NAME & ADDRESS(II different from Controlling Offi	40 (ce) 15. SECURITY CLASS. (of this report)
	Unclassified
	154. DECLASSIFICATION/DOWNGRADING
DISTRIBUTION STATEMENT (of this Report)	
Approved for public release; distribution unli	mited.
7. DISTRIBUTION STATEMENT (of the ebetrect entered in Block 20, 11 differe B. SUPPLEMENTARY NOTES	nt from Report)
DISTRIBUTION STATEMENT (of the ebetrect entered in Block 20, 11 differe B. SUPPLEMENTARY NOTES This report was presented at the Tenth Annual Human Subjects for Biomechanical Research on 1 Michigan	nt from Report) International Workshop on 9 October 1982, Ann Arbor,
7. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, 11 differe 8. SUPPLEMENTARY NOTES This report was presented at the Tenth Annual Human Subjects for Biomechanical Research on 1 <u>Michigan</u> 5. KEY WORDS (Continue on reverse eide If necessary and identify by block nu	nt from Report) International Workshop on 9 October 1982, Ann Arbor,
DISTRIBUTION STATEMENT (of the ebetrect entered in Block 20, 11 differe S. SUPPLEMENTARY NOTES This report was presented at the Tenth Annual Human Subjects for Biomechanical Research on 1 <u>Michigan</u> MEY WORDS (Continue on reverse eide If necessary and Identify by block nu Flight helmet	nt from Report) International Workshop on 9 October 1982, Ann Arbor,
DISTRIBUTION STATEMENT (of the ebetrect entered in Block 20, If different s. SUPPLEMENTARY NOTES This report was presented at the Tenth Annual Human Subjects for Biomechanical Research on 1 Michigan KEY WORDS (Continue on reverse elde If necessary and Identify by block nu Flight helmet Aircraft accident	nt from Report) International Workshop on 9 October 1982, Ann Arbor,
DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different Supplementary notes This report was presented at the Tenth Annual Human Subjects for Biomechanical Research on 1 Michigan KEY WORDS (Continue on reverse eide If necessary and Identify by block nu Flight helmet Aircraft accident Head injury	nt from Report) International Workshop on 9 October 1982, Ann Arbor,
DISTRIBUTION STATEMENT (of the ebetrect entered in Block 20, If different Supplementary notes This report was presented at the Tenth Annual Human Subjects for Biomechanical Research on 1 Michigan KEY WORDS (Continue on reverse eide If necessary and Identify by block nu Flight helmet Aircraft accident Head injury Earcup	nt from Report) International Workshop on 9 October 1982, Ann Arbor, mber)
DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different Supplementary notes This report was presented at the Tenth Annual Human Subjects for Biomechanical Research on 1 Michigan KEY WORDS (Continue on reverse eide If necessary and Identify by block nu Flight helmet Aircraft accident Head injury Earcup	nt from Report) International Workshop on 9 October 1982, Ann Arbor, mber)
 DISTRIBUTION STATEMENT (of the obstract entered in Block 20, If different is supplementary notes SUPPLEMENTARY NOTES This report was presented at the Tenth Annual Human Subjects for Biomechanical Research on 1 Michigan KEY WORDS (Continue on reverse eide If necessary and Identify by block nu Flight helmet Aircraft accident Head injury Earcup ABSTRACT (Continue on reverse eide If necessary and Identify by block number of the second second	nt from Report) International Workshop on 9 October 1982, Ann Arbor, mber)
 DISTRIBUTION STATEMENT (of the ebetract entered in Block 20, If differents SUPPLEMENTARY NOTES This report was presented at the Tenth Annual Human Subjects for Biomechanical Research on 1 Michigan KEY WORDS (Continue on reverse eide If necessary and Identify by block nut Flight helmet Aircraft accident Head injury Earcup 	nt from Report) International Workshop on 9 October 1982, Ann Arbor, mber)
 DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 difference SUPPLEMENTARY NOTES This report was presented at the Tenth Annual Human Subjects for Biomechanical Research on 1 Michigan KEY WORDS (Continue on reverse elde 11 necessary and Identif's by block nut Flight helmet Aircraft accident Head injury Earcup ABSTRACT (Continue on reverse elde 11 necessary and Identify by block nut Flight helmet Aircraft accident Head injury Earcup 	nt from Report) International Workshop on 9 October 1982, Ann Arbor, mber)
 DISTRIBUTION STATEMENT (of the ebetrect entered in Block 20, If differents SUPPLEMENTARY NOTES This report was presented at the Tenth Annual Human Subjects for Biomechanical Research on 1 Michigan KEY WORDS (Continue on reverse elde If necessary and Identif's by block nut Flight helmet Aircraft accident Head injury Earcup ABSTRACT (Continue on reverse elde If necessary and Identify by block nut for the formation of the second seco	nt from Report) International Workshop on 9 October 1982, Ann Arbor, mber)
 DISTRIBUTION STATEMENT (of the ebetrect entered in Block 20, If differents SUPPLEMENTARY NOTES This report was presented at the Tenth Annual Human Subjects for Biomechanical Research on 1 Michigan KEY WORDS (Continue on reverse elde If necessary and Identif's by block nut Flight helmet Aircraft accident Head injury Earcup ABSTRACT (Continue on reverse elde If necessary and Identify by block nut for the formation of the second seco	nt from Report) International Workshop on 9 October 1982, Ann Arbor, mber)
 DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If differents SUPPLEMENTARY NOTES This report was presented at the Tenth Annual Human Subjects for Biomechanical Research on 1 Michigan KEY WORDS (Continue on reverse elde If necessary and Identif's by block nut Flight helmet Aircraft accident Head injury Earcup ABSTRACT (Continue on reverse elde H necessary and Identify by block nut Flight helmet 	nt from Report) International Workshop on 9 October 1982, Ann Arbor, mber)
DISTRIBUTION STATEMENT (of the obstract entered in Block 20, 11 different Supplementary notes This report was presented at the Tenth Annual Human Subjects for Biomechanical Research on 1 Michigan KEY WORDS (Continue on reverse eide 11 necessary and Identif's by block nu Flight helmet Aircraft accident Head injury Earcup	nt from Report) International Workshop on 9 October 1982, Ann Arbor, mber)
 DISTRIBUTION STATEMENT (of the obstract entered in Block 20, If different is supplementary notes SUPPLEMENTARY NOTES This report was presented at the Tenth Annual Human Subjects for Biomechanical Research on 1 Michigan KEY WORDS (Continue on reverse eide If necessary and Identify by block nu Flight helmet Aircraft accident Head injury Earcup ABSTRACT (Continue on reverse eide If necessary and Identify by block number of the second second	nt from Report) International Workshop on 9 October 1982, Ann Arbor, mber)

UNCLASS1FIED

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

Twelve impact tests on instrumented human cadavers were performed at Wayne State University to compare the load attenuating capability of an energy absorbing earcup with that of the standard rigid earcup used in SPH-4 flight helmets. SPH-4 helmeted cadavers were dropped from heights varying from 1.17 to 2.03 m. so as to receive a direct impact to the right side of the helmet. The helmet was equipped with either standard or energy absorbing earcups. Loads were measured at the impact surface and accelerations were measured through a triaxial accelerometer mounted to the cadaver's maxilla. Analysis of the data shows a significant decrease in both peak load and acceleration in the y axis for the energy absorbing earcup equipped helmets.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

TABLE OF CONTENTS

								PAGE NO.
List of Illustrations	•	•	•		•		•	4
List of Tables	•	•	•		•		•	4
Introduction	•		•		•	•	•	5
Materials and Methods		•			•	•	•	6
Results		•	•	• •	•	•		7
Discussion					•			14
Conclusions	•			• •	•	•	•	15
Bibliography	•				•	•		16
Appendixes								
Appendix A - Anthropometry of Test Subjects					•	•	•	17
Appendix B - Force and Acceleration Tracing Test 001-015					•			31
Appendix C - List of Companies	•	•	•	•			•	40

v CLARS 100

LIST OF ILLUSTRATIONS

FIGURE

.

PAGE NO.

6 1 2 Comparison of Force for EA and Standard Earcups 10 Comparison of Head Lateral (y-axis) Acceleration for 3 11 Comparison of Resultant Head Acceleration for EA and 4 11 5 12 13 6 7 Standard Earcup from the Impacted Helmet Used in 13 Test 013

LIST OF TABLES

TABLE		PAGE NO.
1	Summary of Anthropometric Data and Drop Heights	8
2	EA vs Standard Earcup - 2.03-m Drop Tests - Average Peak Values <u>+</u> 1 S. D	9
3	EA vs Standard Earcup - 2.03-m Drop Tests - Results of Unpaired t-Tests	9
4	Measured Compression of Energy Absorbing Earcups	14

INTRODUCTION

For the past 12 years the U.S. Army Aeromedical Research Laboratory (USAARL) at Fort Rucker, AL, has been involved in a program of evaluating the impact performance of aviator flight helmets retrieved from aviation accidents. From these evaluations, it has become evident the current Army flight helmet, the Sound Protective Helmet Number Four (SPH-4) (Department of the Army, 1975), is relatively deficient in its ability to protect wearers against impacts to the lateral portions of the helmet (Halev and others. 1983; Shanahan, in press). It is believed this is due to there essentially being no energy absorbing material interposed between the helmet shell and the hard plastic circumaural housing for the communications headphones. There is a foam liner incorporated into the superior portions of the helmet, but it does not generally extend below the "hatband" region of the head at the sides of the helmet. Consequently, the force of an impact directed at the earcup region of the helmet is transmitted to the head of the wearer with relatively little attenuation other than that provided by the bending deformation effect of the helmet shell itself.

Accident statistics indicate that 26% of all impacts to the SPH-4 have occurred in the earcup region, and impacts in this area are known to result in substantially more severe injury than impacts to other areas of the helmet (Haley and others, 1983; Shanahan, in press). To provide increased impact protection to the earcup region of the helmet, a crushable energyabsorbing earcup was developed to be a direct replacement for the standard plastic earcup.

The modified earcup is constructed of 1 mm (0.040 inch) thick aluminum and is designed to provide 25 mm of crush at a maximum load of 4500 N. The crush distance was selected based on available space within the current helmet so modification of the helmet shell would not be required. The load limit of 4500 N arbitrarily was selected based on the little data available on human tolerance to impact in the temporoparietal area of the skull (Gurdjian, Lissner, Webster, 1974; Schneider, Naham, 1972; Travis, Stalnaker, Melvin, 1977). This load level is admittedly relatively high, being close to fracture threshold for localized impacts in the temporo-parietal area (Schneider, Naham, 1972; Travis, Stalnaker, Melvin, 1977). However, the size of the earcup allows loads to be spread over a large surface area (7900 mm²) and, because of the limited stroke distance available, a relatively high load limit had to be used.

Acoustical testing of the energy-absorbing earcup has shown it provides sound attenuating capability equivalent to the standard earcup. Initial impact tests were carried out utilizing a flat rigid mass dropped onto a helmet-earcup segment in a standard impact of 90 Nm (66 ft-lb) input energy (Haley and others, 1983). The energy-absorbing earcup transmitted a peak load of 4500 N whereas peak loads for the standard earcup were five times this level. Clearly the new energy-absorbing earcup provides increased load attenuating capability over the current design. Nevertheless, since many assumptions were made in selecting the load limit for the earcup and since only isolated helmet segments had been impact tested, it was felt that helmeted cadaver impact tests would add useful information for validating the crushable earcup concept.

MATERIALS AND METHODS

The experimental design called for a whole-body drop test which would result in the impact of the helmeted head against a rigid surface. The rest of the body was to impact a cushioned surface so that the effect of body deceleration on head impact would be minimized. A drawing of the test apparatus is shown in Figure 1. The rigid impact surface consisted of a compression-type load cell 150 mm in diameter (Robert A. Denton, Inc.), supported by a rigid steel frame. A canvas sling was used to hoist the helmeted subject to the desired drop height and to maintain proper body orientation prior to the drop. The subject was oriented with its sagittal plane parallel to the horizontal and its head and neck projecting from the sling (Figure 1). The head was placed in proper orientation with duct tape attached between the helmet and the suspension sling frame. The load cell frame was positioned to insure contact of the earcup portion of the helmet with the center of the load cell. A 200 mm thick foam mattress supported by a wire mesh frame

was used to cushion the body upon impact. The height of the mattress was adjustable to permit the body to contact the mattress at or just before the time of head impact. The sling was suspended from a pulley system that allowed the drop height to be adjusted up to three meters. The test subject and sling were released by a solenoid-controlled release mechanism.

1

Cadavers used in these tests were obtained through the Wayne State University donor program and were instrumented with a triaxial accelerometer cluster of Endevco Model #2264 accelerometers. The accelerometer mount was firmly attached to the frontal aspect of the maxilla with bone screws. The sensitive axes of the accelerometer were oriented along the posterior-anterior (x) direction, the right-left (y) direction and the inferior-superior (z) direction. The impact was recorded on high speed film (400 fps) using a single camera placed in front of the impact assembly. Load cell and acceleration data were recorded on analog tape and filtered at 1000 Hz prior to digitization at 4000 Hz.

Embalmed cadavers were selected for these experiments based on age, anthropometry, and medical history. All subjects were younger than 69 (mean age of 60.2 with a range of 56-68), had no history of cancer or other prolonged debilitating diseases, and no previous history of skull or cervical fracture or surgery. Excessive obesity and craniometric measurements that did not correspond to available helmet sizes were reasons for rejection of a specimen. All potential test subjects underwent preimpact radiological examination of the head and neck. Evidence of preexisting fractures, marked structural abnormalities, or excessive osteoporosis were grounds for rejection of the cadaver. Anthropometric measurements of each of the 12 cadavers is presented in Appendix A.

Postimpact radiological examination of the head and neck was performed prior to autopsy. The skull was opened by removal of the calvarium, and the brain and dura excised to expose the inner surface of the skull to determine if any fractures had occurred. The skull then was separated from the neck at the atlanto-occipital junction and stripped of all coverings in order to examine the external surfaces for fracture.

The experimental apparatus was tested utilizing a DOT Part 572 50th percentile dummy prior to experimenting with cadavers. For these drops the method was identical to that described for the cadaver drops except that the triaxial accelerometer was mounted in the head of the dummy.

RESULTS

Twelve cadaver impacts were performed. Six cadavers were fitted with SPH-4 helmets equipped with standard earcups, and six were fitted with helmets equipped with energy-absorbing earcups. Additionally, three dummy impacts were performed for purposes of validating the test method. The drop height was varied from 1.17 m to 2.03 m. Table 1 is a summary of anthropometric data for the cadavers and the drop heights used for each of the 15

tests. There were no skull fractures in any cadaver drops. The only significant injury seen was a 45 mm curvilinear laceration in the scalp of the cadaver used in Test 005. The injury corresponded to the superior border of the standard plastic earcup used in that test. There were no lacerations on any of the cadavers fitted with energy-absorbing earcups.

Table 2 summarizes the average peak impact forces and average peak head x, y, and z accelerations measured for the standard and the energy-absorbing earcup tests performed at the 2.03 m drop-height. Table 3 shows the results of a t-test on unpaired samples performed on test data obtained from the seven cadaver tests at a drop-height of 2.03 m. It can be seen that the average load for the energy-absorbing earcup at 2.03 m was over 45% less than that measured for the standard earcup (p < 0.05). Likewise, the average head y-axis peak acceleration was 35% less (p < 0.05) for the energy-absorbing earcup drops. There was no significant difference for peak head accelerations in the x and z directions. Figures 2, 3, and 4 show a comparison

TABLE 1

SUMMARY OF ANTHROPOMETRIC DATA AND DROP HEIGHTS

		AGE/	HEIGHT	WEIGHT	HEAD	CIRCUM.	DROP
TEST #	SUBJECT	SEX	(m)	(kg)	mm	%	HT. (m)
001	DUMMY	_		76.0	584	87	1.17
002	DUMMY			76.0	584	87	
002	ויויטע	-		70.0		07	1.17
003	CADAVER	58 F	1.630	84.0	6Ø3	>99	1.17
004	CADAVER	60 F	1.645	70.0	570	65	1.17
2 25	CADAVER	59 M	1.790	86.0	580	86	1.17
006	CADAVER	64 F	1.500	70.0	580	86	1.70
007	CADAVER	58 F	1.535	78.0	580	86	1.70
008	DUMMY	-	-	76.Ø	584	87	2.03
009	CADAVER	66 M	1.770	77.5	610	>99	2.Ø3
010	CADAVER	66 F	1.555	75 .3	610	>99	2.03
011	CRDRVER	68 M	1.585	51.3	533	2	2.03
012	CADAVER	61 F	1.820	68.5	572	70	2.03
Ø13	CADAVER	57 F	1.710	95.0	640	>99	2.03
014	CADAVER	56 F	¥	56.0	585	92	2.03
015	CALAVER	59 F	1.585	79.Ø	610	>99	2.03

* Lower Extremities Double Amputee

of plots of load, head y-axis acceleration, and calculated resultant head acceleration for Tests Oll and Ol2. These data typify the differences seen between tests utilizing the two different earcup designs. A statistical analysis was not performed on the 1.17 m and 1.70 m drops. These drops were performed to test the experimental apparatus and to find a drop height that would provide approximately 50% crush of the energy-absorbing earcup. Load and acceleration tracings for these tests may be found in Appendix B.

TABLE 2

ER VS STANDARD EARCUP 2.03-m DROP TEST AVERAGE PEAK VALUES ± 1 S.D.

PARAMETER	IMPRCT FORCE (N) HER	D ACCELERATION	(g
	y-AXIS	x-AXIS	y-AXIS	-HXIS
EA EARCUP	5995 <u>+</u> 1256	37.8 ± 8.2	121.0 ± 22.7	5 _ 17.2
STD. EARCU	P 11039 <u>+</u> 2971	73.Ø ± 32.6	187.3 <u>+</u> 43.9	52.3 ± 7.6

TABLE 3

EA VS STANDARD EARCUP 2.03-m DROP TEST RESULTS OF 'UNPAIRED t-TESTS

PARAMETER	DF	t	p (%)
IMPACT FORCE	5	3.12	5>p>2.5
HEAD X-ACCELERATION	5	2.14	10>p>5.0
HEAD y-ACCELERATION	5	2.64	5>p>2.5
HEAD z-ACCELERATION	5	Ø.19	p>50

Figure 5 is a photograph of the helmet impacted in Test 009. It is representative of the damage sustained by most of the helmets used in these tests. Note the scuffing and the horizontal fracture through the right earcup region of the helmet shell. Figure 6 shows the two energy-absorbing earcups used in this test. As expected, the left earcup was undamaged. The right earcup reveals the unsymmetrical nature of the loading it received during impact as most of the crushing is confined to the superior half of the earcup. The average compression was 6.9 mm or 27.6% of the available 25 mm. For purposes of comparison Figure 7 is a photograph of the standard earcup removed from the impacted side of the helmet used in Test 013. There is minimal damage to this earcup consisting only of a hairline fracture of the flange along the superior border of the earcup (see arrow). This was the maximum damage sustained by any of the standard earcups used in the cadaver impacts.

تعديدا المحديد يتكلك

FIGURE 2. Comparison of Force for EA and Standard Earcups

FIGURE 4. Comparison of Resultant Head Acceleration for EA and Standard Earcups

Table 4 is a summary of the measured compression for each of the energyabsorbing earcups used in this study. Since most of the earcups were not symmetrically loaded, a means of measuring average compression was developed. The point with the greatest compression and the point with the least compression were identified and a line drawn through them on the back of the earcup. A line perpendicular to this line passing through the center of the earcup then was drawn. Four measurements of height then were taken where the lines crossed the edges of the earcup. These heights were averaged and compared to the height of an undamaged earcup. This was the average loss in height or average permanent crush. This was compared to the total compression available (25 mm) and reported in Table 4 as a percentage of crush available. Note that the greatest permanent compression seen was 53%. However, based on the elasticity of aluminum, it is probable that the maximum dynamic compression depth was 8-12 percent greater, or 61-66%.

FIGURE 5. Impacted Helmet in Test 009

FIGURE 6. EA Earcups Used in Test 009

FIGURE 7. Standard Earcup from the Impacted Helmet Used in Test 013

DISCUSSION

In this series of blunt impacts to the earcup region of the helmet shell, peak loads and peak y-axis accelerations were considerably less for those subjects wearing SPH-4 helmets equipped with the energy-absorbing earcup than for those wearing helmets equipped with the standard plastic earcup. Although the difference in loads between the two earcups was significant, it was considerably less than expected based on the results of previous impact tests performed with metal headforms. In the helmeted cadaver impacts, there was only an average 45% reduction in peak loads for the energy-absorbing earcup for the 2.03 m drops as compared to loads measured for the standard earcup while the flat metal mass tests showed a 5-fold reduction at roughly equivalent input energies (Haley and others, 1983). There are several reasons for these discrepant results. In the flat metal mass tests, a metal mass was dropped vertically onto the earcup section of helmet shell with the earcup resting directly on the load cell. The entire load was transmitted directly through the shell to the earcup and the system was not free to rotate or translate.

In the helmeted cadaver impacts, the impact force was transmitted to the head not only through the earcup, but also through several points in the helmet shell and through the foam liner over the superior portion of the impacted side. These factors tended to reduce the loads delivered to the earcups

TABLE 4

MEASURED COMPRESSION OF ENERGY ABSORBING EARCUPS

TEST	SUBJECT	DROP	AVERAGE	PERCENT OF
NO.		HEIGHT	DEFORMATION	AVAILABLE
		(m)	(mm)	CRUSH
ØØ1	PUMMY	1.17	3.6	14
003	CADAVER	1.17	3.3	13
ØØ4	CADAVER	1.17	6.6	26
008	DUMMY	2,03	11.4	46
009	CADAVER	2,03	6.9	28
010	CADAVER	2.03	9.4	38
Ø11	CADAVER	2.03	12.7	51
Ø15	CADAVER	2.03	13.2	53

during the cadaver impacts. This situation reduced the difference in measured performance between the two earcup designs when compared to the metal headform drops since the condition aids the performance of the standard earcup and prevents the energy-absorbing earcup from realizing its full crush capacity for the input energy used in these tests.

At higher input energies, the difference in loads would be expected to become greater as the crushable earcup continued to limit the loads to the same approximate level seen in these experiments until it reached full crush. On the other hand, the rigid earcup would transmit increasingly higher loads as the input energy increased. This difference in measured loads between the two earcup designs in helmeted cadaver impacts would probably never attain the magnitude seen in the rather idealized metal mass tests for the reasons enumerated.

One major problem encountered in this study relates to the use of embalmed cadavers. Embalmed specimens were used since they were available much more readily than fresh cadavers. However, after embalming, the subcutaneous tissue in the scalp becomes engorged with embalming fluid and swells considerably. Whereas the thickness of the skin in the posterior auricular area in the live subject is normally only 2-3 mm, many of the cadavers used in this study had thicknesses approaching 15 mm. This situation is reflected by the preponderance of extremely large head circumferences seen in the cadavers used in this study (Table 1). Clearly, this artifactually-increased subcutaneous tissue depth provides the embalmed cadaver with a very high degree of impact attenuation capability not present in a live subject. This explains in large part why the relatively high input energies used in these experiments (approximately 136 Nm or 100 ft-1b for the 2.03-m drops) failed to produce skull fracture in the standard earcup tests or to produce high levels of crush in the energy-absorbing earcup tests (Table 4). In all probability, if fresh cadavers had been used, the same drop heights would have produced markedly creater loads and accelerations for the standard earcup tests and higher levels of crushing in the energy-absorbing earcups.

CONCLUSIONS

This study failed to provide any definitive data on the adequacy of the stroke level or distance selected for the energy-absorbing earcup. The engorged subcutaneous tissue in the scalp of the cadavers used appears to be the primary reason. There is no question that the energy-absorbing earcup offers significantly increased impact protection over the standard (rigid) earcup design, and this fact alone is believed sufficient to recommend its incorporation into all U.S. Army flight helmets. In the meantime, it is hoped that these experiments can be repeated, using fresh cadavers and perhaps a modified procedure to try to obtain more definitive data on the performance of the crushable earcup.

BIBLIOGRAPHY

Churchill, E., McConville, J. T., Laubach, L. L., White, R. M. 1970. Anthropometry of U.S. Army aviators - 1970. Natick, MA: United States Army Natick Laboratories. TR-72-52-CE.

Department of the Army. 1975. Helmet, flyer's protection, SPH-4, Natick, MA: United States Army Natick Research and Development Command. Mil-H-43925.

Gurdjian, E. S., Lissner, H. R. and Webster, J. E. 1974. The mechanism of production of linear skull fracture. Surgery, gynecology, and obstetrics. 85:195-210.

Haley, J. L., Shanahan, D. F., Reading, T. E. and Knapp, S. C. 1983. Head impact hazards in helicopter operations and their mitigation through improved helmet design. In: Ewing, C. L. (and others) (Eds.) Impact injury of the head and spine. C. C. Thomas, Springfield, IL.

Schneider, D. C. and Naham, A. M. 1972. Impact studies of facial bones and skull. In: Proceedings of the Sixteenth Stapp Car Crash Conference. Society of Automotive Engineers, Inc. New York, NY.

Shanahan, D. F. In press. Basilar skull fracture in U.S. Army aircraft accidents. Aviation, space, and environmental medicine.

Travis, L. W., Stalnaker, R. L. and Melvin, J. W. 1977. Impact trauma of the human temporal bone. *The journal of trauma*. 17(10):761-766.

APPENDIX A

1

ANTHROPOMETRY OF TEST SUBJECTS

Subject Cadaver 5146, Female, Test 003

ومكالاتها

و بدل مناله

1 1 1

to have a start

Date 7-13-81

Measurement		Description	Millimeters
Standing Height		Heels, Shoulders, Buttocks & Head Erect	1630
Sitting Height		Head to Seat with Body Erect	895
Neck Breadth	(y)	Lateral	105
Neck Depth	(x)	A to P	125
Upper Torso Breadth	(y)	Chest Breadth at Xiphoid	315
Shoulder Width	(y)	Biachromial Breadth	350
Lower Torso Breadth	(y)	Right to Left Iliocristale	390
Upper Leg Length	(z)	Trochants to Femoral Condyle	310
Lower Leg Length	(z)	Tibiale to Heels	365
Head Height	(z)	Gnathion to Vertex	230
Head Breadth	(y)	Right to Left Tragion	150
Head Depth	(x)	Ophistocranon to Glabella	185
Head Circumference		Above Brow Ridge	603
Upper Torso Depth	(x)	Chest Depth at Xiphoid	225
Lower Torso Depth	(x)	At Anterior-Superior Iliac Spine	225
Chest Circumference		At Xiphoid	940
Waist Circumference		At Most Superior Point of Pelvis	1070
Top of Head to C7			225
Neck Height	(z)	C1 to C7	60
Upper Torso Height	(z)	C7 to T12	335
T1 to T3	(z)	At Posterior Processes	40
T7 to T9	(z)	At Posterior Processes	40
L1 to L3	(z)	At Posterior Processes	40
Lower Torso Height	(z)	T12 to Coccyx	275
Weight		Of Whole Body	84.0 k

Subject (Cadaver	5145,	Female,	Test	004
-----------	---------	-------	---------	------	-----

Date 7-13-81

Age -	Age - 60 yrs.					
Measurement		Description	Millimeters			
Standing Height		Heels, Shoulders, Buttocks & Head Erect	1645			
Sitting Height		Head to Seat with Body Erect	830			
Neck Breadth	(y)	Lateral	110			
Neck Depth	(x)	A to P	110			
Upper Torso Breadth	(y)	Chest Breadth at Xiphoid	310			
Shoulder Width	(y)	Biachromial Breadth	350			
Lower Torso Breadth	(y)	Right to Left Iliocristale	380			
Upper Leg Length	(z)	Trochanter to Femoral Condyle	335			
Lower Leg Length	(z)	Tibiale to Heels	390			
Head Height	(z)	Gnathion to Vertex	225			
Head Breadth	(y)	Right to Left Tragion	160			
Head Depth	(x)	Ophistocranon to Glabella	175			
Head Circumference		Above Brow Ridge	570			
Upper Torso Depth	(x)	Chest Depth at Xiphoid	210			
Lower Torso Depth	(x)	At Anterior-Superior Iliac Spine	210			
Chest Circumference		At Xiphoid	900			
Waist Circumference		At Most Superior Point of Pelvis	1015			
Top of Head to C7			215			
Neck Height	(z)	C1 to C7	80			
Upper Torso Height	(z)	C7 to T12	290			
T1 to T3	(z)	At Posterior Processes	50			
T7 to T9	(z)	At Posterior Processes	40			
L1 to L3	(z)	At Posterior Processes	55			
Lower Torso Height	(z)	T12 to Coccyx	240			
Weight		Of Whole Body	70.0 kg			

.

Subject Cadaver 5066, Male, Test 005

A DESCRIPTION OF THE OWNER OWNER OF THE OWNER OWNER OF THE OWNER O

;

Date 7-13-82

Age - 59 yrs.				
Measurement		Description	Millimeters	
Standing Height		Heels, Shoulders, Buttocks & Head Erect	1790	
Sitting Height		Head to Seat with Body Erect	950	
Neck Breadth	(y)	Lateral	120	
Neck Depth	(x)	A to P	120	
Upper Torso Breadth	(y)	Chest Breadth at Xiphoid	350	
Shoulder Width	(y)	Biachromial Breadth	375	
Lower Torso Breadth	(y)	Right to Left Iliocristale	360	
Upper Leg Length	(z)	Trochanter to Femoral Condyle	340	
Lower Leg Length	(z)	Tibiale to Heels	440	
Head Height	(z)	Gnathion to Vertex	230	
Head Breadth	(y)	Right to Left Tragion	155	
Head Depth	(x)	Ophistocranon to Glabella	200	
Head Circumference		Above Brow Ridge	580	
Upper Torso Depth	(x)	Chest Depth at Xiphoid	240	
Lower Torso Depth	(x)	At Anterior-Superior Iliac Spine	225	
Chest Circumference		At Xiphoid	990	
Waist Circumference	`	At Most Superior Point of Pelvis	990	
Top of Head to C7			230	
Neck Height	(z)	Cl to C7	70	
Upper Torso Height	(z)	C7 to T12	335	
T1 to T3	(z)	At Posterior Processes	65	
T7 to T9	(z)	At Posterior Processes	70	
L1 to L3	(z)	At Posterior Processes	55	
Lower Torso Height	(z)	T12 to Coccyx	425	
Weight		Of Whole Body	86.0 kg	

.

Subject	Cadaver 5161,	Female, Test 006
	A	

!

Date 7-27-81

Age - 64 yrs.				
Measurement		Description	Millimeters	
Standing Height		Heels, Shoulders, Buttocks & Head Erect	1500	
Sitting Height		Head to Seat with Body Erect	805	
Neck Breadth	(y)	Lateral	110	
Neck Depth	(x)	A to P	125	
Upper Torso Breadth	(y)	Chest Breadth at Xiphoid	305	
Shoulder Width	(y)	Biachromial Breadth	320	
Lower Torso Breadth	(y)	Right to Left Iliocristale	315	
Upper Leg Length	(z)	Trochanter to Femoral Condyle	310	
Lower Leg Length	(z)	Tibiale to Heels	320	
Head Height	(z)	Gnathion to Vertex	220	
Head Breadth	(y)	Right to Left Tragion	155	
Head Depth	(x)	Ophistocranon to Glabella	175	
Head Circumference		Above Brow Ridge	580	
Upper Torso Depth	(x)	Chest Depth at Xiphoid	245	
Lower Torso Depth	(x)	At Anterior-Superior Iliac Spine	235	
Chest Circumference		At Xiphoid	910	
Waist Circumference		At Most Superior Point of Pelvis	910	
Top of Head to C7			200	
Neck Height	(z)	C1 to C7	45	
Upper Torso Height	(z)	C7 to T12	325	
Tl to T3	(z)	At Posterior Processes	60	
T7 to T9	(z)	At Posterior Processes	65	
L1 to L3	(z)	At Posterior Processes	70	
Lower Torso Height	(z)	T12 to Coccyx	210	
Weight		Of Whole Body	70.0 kg	

Subject	Cadaver	5155,	Female,	Test	007
	Age - 5	8 vrs.	······		

1

Date 7-28-81

Measurement Standing Height		Description	Millimeters
		Heels, Shoulders, Buttocks & Head Erect	1535
Sitting Height		Head to Seat with Body Erect	800
Neck Breadth	(y)	Lateral	95
Neck Depth	(x)	A to P	120
Upper Torso Breadth	(y)	Chest Breadth at Xiphoid	310
Shoulder Width	(y)	Biachromial Breadth	320
Lower Torso Breadth	(y)	Right to Left Iliocristale	360
Upper Leg Length	(z)	Trochanter to Femoral Condyle	325
Lower Leg Length	(z)	Tibiale to Heels	410
Head Height	(z)	Gnathion to Vertex	245
Head Breadth	(y)	Right to Left Tragion	145
Head Depth	(x)	Ophistocranon to Glabella	170
Head Circumference		Above Brow Ridge	580
Upper Torso Depth	(x)	Chest Depth at Xiphoid	210
Lower Torso Depth	(x)	At Anterior-Superior Iliac Spine	250
Chest Circumference	<u> </u>	At Xiphoid	980
Waist Circumference		At Most Superior Point of Pelvis	980
Top of Head to C7			200
Neck Height	(z)	C1 to C7	35
Upper Torso Height	(z)	C7 to T12	310
T1 to T3	(z)	At Posterior Processes	40
T7 to T9	(z)	At Posterior Processes	40
Ll to L3	(z)	At Posterior Processes	50
Lower Torso Height	(z)	T12 to Coccyx	195
Weight		Of Whole Body	78.0 kg

.

Subject	Cadaver	5236.	Male.	Test 009)

والمراجعة المحافظ والمحافظ والمحافظ

Date 12-14-81

. . ..

Measurement		Description	Millimeters
Standing Height		Heels, Shoulders, Buttocks & Head Erect	1770
Sitting Height		Head to Seat with Body Erect	840
Neck Breadth	(y)	Lateral	125
Neck Depth	(x)	A to P	125
Upper Torso Breadth	(y)	Chest Breadth at Xiphoid	340
Shoulder Width	(y)	Biachromial Breadth	380
Lower Torso Breadth	(y)	Right to Left Iliocristale	350
Upper Leg Length	(z)	Trochanter to Femoral Condyle	425
Lower Leg Length	(z)	Tibiale to Heels	485
Head Height	(z)	Gnathion to Vertex	235
Head Breadth	(y)	Right to Left Tragion	170
Head Depth	(x)	Ophistocranon to Glabella	205
Head Circumference	<u></u>	Above Brow Ridge	620
Upper Torso Depth	(x)	Chest Depth at Xiphoid	250
Lower Torso Depth	(x)	At Anterior-Superior Iliac Spine	220
Chest Circumference		At Xiphoid	1028
Waist Circumference		At Most Superior Point of Pelvis	953
Top of Head to C7			205
Neck Height	(z)	Cl to C7	195
Upper Torso Height	(z)	C7 to T12	355
Tl to T3	(z)	At Posterior Processes	55
T7 to T9	(z)	At Posterior Processes	75
L1 to L3	(z)	At Posterior Processes	55
Lower Torso Height	(z)	T12 to Coccyx	235
Weight		Of Whole Body	77.5 k

,

Subject Cadaver 5211, Female, Test 010 Age - 66 yrs.

Date 12-15-81

Measurement		Description	Millimeters
Standing Height		Heels, Shoulders, Buttocks & Head Erect	1555
Sitting Height		Head to Seat with Body Erect	880
Neck Breadth	(y)	Lateral	130
Neck Depth	(x)	A to P	130
Upper Torso Breadth	(y)	Chest Breadth at Xiphoid	315
Shoulder Width	(y)	Biachromial Breadth	360
Lower Torso Breadth	(y)	Right to Left Iliocristale	325
Upper Leg Length	(z)	Trochanter to Femoral Condyle	350
Lower Leg Length	(z)	Tibiale to Heels	425
Head Height	(z)	Gnathion to Vertex	230
Head Breadth	(y)	Right to Left Tragion	155
Head Depth	(x)	Ophistocranon to Glabella	180
Head Circumference		Above Brow Ridge	610
Upper Torso Depth	(x)	Chest Depth at Xiphoid	235
Lower Torso Depth	(x)	At Anterior-Superior Iliac Spine	285
Chest Circumference		At Xiphoid	940
Waist Circumference		At Most Superior Point of Pelvis	965
Top of Head to C7			220
Neck Height	(z)	C1 to C7	40
Upper Torso Height	(z)	C7 to T12	330
Tl to T3	(z)	At Posterior Processes	60
T7 to T9	(z)	At Posterior Processes	75
L1 to L3	(z)	At Posterior Processes	75
Lower Torso Height	(z)	T12 to Coccyx	220
Weight		Of Whole Body	75.0 kg

Subject Cadaver 5246, Male, Test 011

Date 12-15-81

Age - 68 yrs.					
Measurement		Description	Millimeters		
Standing Height		Heels, Shoulders, Buttocks & Head Erect	1585		
Sitting Height		Head to Seat with Body Erect	850		
Neck Breadth	(y)	Lateral	105		
Neck Depth	(x)	A to P	95		
Upper Torso Breadth	(y)	Chest Breadth at Xiphoid	270		
Shoulder Width	(y)	Biachromial Breadth	305		
Lower Torso Breadth	(y)	Right to Left Iliocristale	280		
Upper Leg Length	(z)	Trochanter to Femoral Condyle	380		
Lower Leg Length	(z)	Tibiale to Heels	405		
Head Height	(z)	Gnathion to Vertex	205		
Head Breadth	(y)	Right to Left Tragion	140		
Head Depth	(x)	Ophistocranon to Glabella	150		
Head Circumference		Above Brow Ridge	533		
Upper Torso Depth	(x)	Chest Depth at Xiphoid	185		
Lower Torso Depth	(x)	At Anterior-Superior Iliac Spine	150		
Chest Circumference		At Xiphoid	813		
Waist Circumference		At Most Superior Point of Pelvis	737		
Top of Head to C7			200		
Neck Height	(z)	CI to C7	70		
Upper Torso Height	(z)	C7 to T12	305		
T1 to T3	(z)	At Posterior Processes	50		
T7 to T9	(z)	At Posterior Processes	60		
L1 to L3	(z)	At Posterior Processes	50		
Lower Torso Height	(z)	T12 to Coccyx	225		
Weight		Of Whole Body	51.2 k		

Subject Cadaver 5213, Female, Test 012

بالمربعة والملاد

ţ,

i.

ł

Date 12-15-81

Age - 61 yrs.				
Measurement		Description	Millimeters	
Standing Height		Heels, Shoulders, Buttocks & Head Erect	1820	
Sitting Height		Head to Seat with Body Erect	895	
Neck Breadth	(y)	Lateral	110	
Neck Depth	(x)	A to P	90	
Upper Torso Breadth	(y)	Chest Breadth at Xiphoid	345	
Shoulder Width	(y)	Biachromial Breadth	305	
Lower Torso Breadth	(y)	Right to Left Iliocristale	380	
Upper Leg Length	(z)	Trochanter to Femoral Condyle	380	
Lower Leg Length	(z)	Tibiale to Heels	425	
Head Height	(z)	Gnathion to Vertex	225	
Head Breadth	(y)	Right to Left Tragion	140	
Head Depth	(x)	Ophistocranon to Glabella	170	
Head Circumference		Above Brow Ridge	572	
Upper Torso Depth	(x)	Chest Depth at Xiphoid	215	
Lower Torso Depth	(x)	At Anterior-Superior Iliac Spine	210	
Chest Circumference		At Xiphoid	1029	
Waist Circumference		At Most Superior Point of Pelvis	1029	
Top of Head to C7			240	
Neck Height	(z)	Cl to C7	50	
Upper Torso Height	(z)	C7 to T12	330	
Tl to T3	(z)	At Posterior Processes	65	
T7 to T9	(z)	At Posterior Processes	65	
L1 to L3	(z)	At Posterior Processes	65	
Lower Torso Height	(z)	T12 to Coccyx	100	
Weight		Of Whole Body	68.5 kg	

Subject Cadaver 5350, Male, Test 013

State Street in

ľ

ŀ

in the second second

Date 5-25-82

Age - 57 yrs.					
Measurement		Description	Millimeters		
Standing Height		Heels, Shoulders, Buttocks & Head Erect	1710		
Sitting Height		Head to Seat with Body Erect	920		
Neck Breadth	(y)	Lateral	130		
Neck Depth	(x)	A to P	170		
Upper Torso Breadth	(y)	Chest Breadth at Xiphoid	350		
Shoulder Width	(y)	Biachromial Breadth	380		
Lower Torso Breadth	(y)	Right to Left Iliocristale	345		
Upper Leg Length	(z)	Trochanter to Femoral Condyle	460		
Lower Leg Length	(z)	Tibiale to Heels	420		
Head Height	(z)	Gnathion to Vertex	265		
Head Breadth	(y)	Right to Left Tragion	170		
Head Depth	(x)	Ophistocranon to Glabella	205		
Head Circumference		Above Brow Ridge	640		
Upper Torso Depth	(x)	Chest Depth at Xiphoid	250		
Lower Torso Depth	(x)	At Anterior-Superior Iliac Spine	270		
Chest Circumference		At Xiphoid	990		
Waist Circumference		At Most Superior Point of Pelvis	1040		
Top of Head to C7			280		
Neck Height	(z)	Cl to C7	115		
Upper Torso Height	(z)	C7 to T12	320		
Tl to T3	(z)	At Posterior Processes	60		
T7 to T9	(z)	At Posterior Processes	55		
L1 to L3	(z)	At Posterior Processes	75		
Lower Torso Height	(z)	T12 to Coccyx	250		
Wright		Of Whole Body	95.0 kg		
· · · · · · · · · · · · · · · · · · ·					

Subject Cadaver 5288, Female, Test 014

Date 5-25-82

Measurement		Description	Millimeter
Standing Height		Heels, Shoulders, Buttocks & Head Erect	*
Sitting Height		Head to Seat with Body Erect	870
Neck Breadth	(y)	Lateral	1 30
Neck Depth	(x)	A to P	120
Upper Torso Breadth	(y)	Chest Breadth at Xiphoid	350
Shoulder Width	(y)	Biachromial Breadth	390
Lower Torso Breadth	(y)	Right to Left Iliocristale	355
Upper Leg Length	(z)	Trochanter to Femoral Condyle	360
Lower Leg Length	(z)	Tibiale to Heels	*
Head Height	(z)	Gnathion to Vertex	270
Head Breadth	(y)	Right to Left Tragion	160
Head Depth	(x)	Ophistocranon to Glabella	195
Head Circumference		Above Brow Ridge	585
Upper Torso Depth	(x)	Chest Depth at Xiphoid	240
Lower Torso Depth	(x)	At Anterior-Superior Iliac Spine	255
Chest Circumference		At Xiphoid	1015
Maist Circumference		At Most Superior Point of Pelvis	1070
Top of Head to C7			245
Neck Height	(z)	C1 to C7	80
Jpper Torso Height	(z)	C7 to T12	320
Tl to T3	(z)	At Posterior Processes	60
7 to T9	(z)	At Posterior Processes	50
1 to L3	(z)	At Posterior Processes	35
ower Torso Height	(z)	T12 to Coccyx	215
eight		Of Whole Body	75.0 k

* Specimen had bilateral below-knee amputations.

Subject Cadaver 5358, Female, Test 015

;

Date 5-25-82

- 4-

Measurement Standing Height Sitting Height		Description	Millimeters
		Heels, Shoulders, Buttocks & Head Erect	1585
		Head to Seat with Body Erect	910
Neck Breadth	(y)	Lateral	110
Neck Depth	(x)	A to P	130
Upper Torso Breadth	(y)	Chest Breadth at Xiphoid	215
Shoulder Width	(y)	Biachromial Breadth	340
Lower Torso Breadth	(y)	Right to Left Iliocristale	360
Upper Leg Length	(z)	Trochanter to Femoral Condyle	345
Lower Leg Length	(z)	Tibiale to Heels	390
Head Height	(z)	Gnathion to Vertex	240
Head Breadth	(y)	Right to Left Tragion	110
Head Depth	(x)	Ophistocranon to Glabella	190
Head Circumference		Above Brow Ridge	610
Upper Torso Depth	(x)	Chest Depth at Xiphoid	330
Lower Torso Depth	(x)	At Anterior-Superior Iliac Spine	360
Chest Circumference		At Xiphoid	990
Waist Circumference		At Most Superior Point of Pelvis	860
Top of Head to C7			225
Neck Height	(z)	C1 to C7	80
Upper Torso Height	(z)	C7 to T12	255
T1 to T3	(z)	At Posterior Processes	40
T7 to T9	(z)	At Posterior Processes	35
L1 to L3	(z)	At Posterior Processes	50
Lower Torso Height	(z)	T12 to Coccyx	280
Weight		Of Whole Body	79.0 k

APPENDIX B

FORCE AND ACCELERATION TRACINGS FROM TEST 001-015

والمرابعة فالمتحافظ والمتعالي ومعالكا فالمنافعة والمتعارين والمراجع والمنافع والمعالم والمعالم والمعالم والمعال

1.1

Į

32

,

)

فرحين الاستنا

34

.

.

1

30.

.

30

30.

30.

-

and the second secon

RUN # 012 TIME (MS) 30. 30. TIME (MS) 30. 15. TIME (MS) 30. IS. TIME (MS) RESULTIN 30 IS. TIME (MS)

37

38

,

المتحمية والمركز والمركز والمركز والمركز

39

,

APPENDIX C

LIST OF MANUFACTURERS

Robert A. Denton, Inc. 1693 Hamlin Road Avon Township, MI 48063

Endevco Rancho Viejo Road San Juan Capistrano, CA 92675

INITIAL DISTRIBUTION

Defense Technical Information Center Cameron Station	Aeromechanics Laboratory US Army Research & Technology Lab
Alexandria, VA 22314 (12)	Ames Research Center, M/S 215-1 Moffett Field, CA 94035 (1)
Under Secretary of Defense for Research and Engineering ATTN: Military Assistant for Medical and Life Sciences Washington, D. C. 20301 (1)	Sixth United States Army ATTN: SMA Presidio of San Francisco
Uniformed Services University of the Health Sciences 4301 Jones Bridge Road Bethesda, MD 20014 (1)	Director Army Audiology & Speech Center Walter Reed Army Medical Center Forest Glen Section, Bldg 156 Washington, D.C. 20012 (1)
Commander US Army Medical Research and Development Command ATTN: SGRD-RMS/Ms. Madigan Fort Detrick Frederick, MD 21701 (5)	Harry Diamond Laboratories Scientific & Technical Information Offices 2800 Powder Mill Road Adelphi, MD 20783 (1)
Redstone Scientific Information Center ATTN: DRDMI-TBD US Army Missile R&D Command Redstone Arsenal, AL 35809 (1)	US Army Ordnance Center & School Library, Bldg 3071 ATTN: ATSL-DOSL Aberdeen Proving Ground, MD 21005 (1)
US Army Yuma Proving Ground Technical Library Yuma, AZ 85634 (1)	US Army Environmental Hygiene Agency Library, Bldg E2100 Aberdeen Proving Ground, MD 21010 (1)
US Army Aviation Engineering Flight Activity ATTN: DAVTE-M (Technical Library) Edwards AFB, CA 93523 (1)	Technical Library Chemical Systems Laboratory
US Army Combat Developments Experimentation Command Technical Library HQ, USACDEC Box 22 Fort Ord, CA 93941 (1)	US Army Materiel Systems Analysis Agency ATTN: Reports Distribution Aberdeen Proving Ground, MD 21005 (1)

41

US Army Field Artillery School Commander Library US Army Medical Research Institute Snow Hall, Room 16 of Chemical Defense Fort Sill, OK 73503 Aberdeen Proving Ground, MD (1)21010 US Army Dugway Proving Ground Technical Library Commander Naval Air Development Center B1dq 5330 ATTN: Code 6022 (Mr. Brindle) Dugway, UT 84022 Warminster, PA 18974 US Army Material Development & Readiness Command Director ATTN: DRCSG Ballistic Research Laboratory 5001 Eisenhower Avenue ATTN: DRDAR-TSB-S (STINFO) Alexandria, VA 22333 Aberdeen Proving Ground, MD (2) 21005 US Army Foreign Science & Technology Center ATTN: DRXST-IS1 US Army Research & Development Technical Support Activity (1)220 7th Street, NE Fort Monmouth, NJ 07703 Charlottesville, VA 22901 Commander/Director US Army Combat Surveillance & Commander US Army Training & Doctrine Command Target Acquisition Laboratory ATTN: ATCD ATTN: DELCS-D Fort Monroe, VA 23651 (1)Fort Monmouth, NJ 07703 US Army Avionics R&D Activity Commander ATTN: DAVAA-0 US Army Training & Doctrine Command ATTN: Surgeon Fort Monmouth, NJ 07703 Fort Monroe, VA 23651 US Army White Sands Missile Range Technical Library Division US Army Research & Technology Labs White Sands Missile Range Structures Laboratory Library (1)NASA Langley Research Center New Mexico 88002 Mail Stop 266 Hampton, VA 23665 Chief Benet Weapons Laboratory LCWSL, USA ARRADCOM Commander ATTN: DRDAR-LCB-TL 10th Medical Laboratory ATTN: DEHE (Audiologist) Watervliet Arsenal APO New York 09180 (1)Watervliet, NY 12189 US Army Research & Technology Labs Commander Propulsion Laboratory MS 77-5 US Army Natick R&D Laboratories NASA Lewis Research Center ATTN: Technical Librarian Cleveland, OH 44135 (1)Natick, MA 01750

(1)

(1)

(1)

(1)

(2)

(1)

(1)

(1)

(1)

Commander US Army Troop Support & Aviation Materiel Readiness Command ATTN: DRSTS-W St Louis, MO 63102

Commander US Army Aviation R&D Command ATTN: DRDAV-E 4300 Goodfellow Blvd St. Louis, M0 63166

Director US Army Human Engineering Laboratory ATTN: Technical Library Aberdeen Proving Ground, MD 21005 (1)

Commander US Army Aviation R&D Command ATTN: Library 4300 Goodfellow Blvd St. Louis, MO 63166

Commander US Army Health Services Command ATTN: Library Fort Sam Houston, TX 78234

Commandant US Army Academy of Health Sciences ATTN: Library Fort Sam Houston, TX 78234 (1

Commander US Army Airmobility Laboratory ATTN: Library Fort Eustis, VA 23604

Air University Library (AUL/LSE) Maxwell AFB, AL 36112

US Air Force Flight Test Center Technical Library, Stop 238 Edwards AFB, CA 93523

Colonel Stanley C. Knapp US Central Command CCSG MacDill AFB, FL 33608

US Air Force Armament Development & Test Center Technical Library Eglin AFB, FL 32542 (1)(1)US Air Force Institute of Technology (AFIT/LDE) Bldg 640, Area B Wright-Patterson AFB, OH 45433 (1)(1) US Air Force Aerospace Medical Division School of Aerospace Medicine Aeromedical Library/TSK-4 (1)Brooks AFB, TX 78235 (1)Director of Professional Services Office of the Surgeon General Department of the Air Force (1)Washington, DC 20314 Human Engineering Division (1) Air Force Aerospace Medical Research Laboratory ATTN: Technical Librarian Wright Patterson AFB, OH 45433 (1)(1) US Navy Naval Weapons Center Technical Library Division Code 2333 China Lake, CA 93555 (1)US Navy Naval Aerospace Medical Institute Library Bldg 1953, Code 012 (1) Pensacola, FL 32508 (1)US Navv Naval Submarine Medical Research Lab Medical Library, Naval Submarine Base Box 900 Groton, CT 06340 (1)(1) Staff Officer, Aerospace Medicine RAF Staff British Embassy 3100 Massachusetts Avenue, NW (1) Washington, DC 20008 (1)

Director Naval Biosciences Laboratory Naval Supply Center, Bldg 844 Oakland, CA 94625	(1)	Commanding Officer Naval Biodynamics Laboratory P.O. Box 29407 New Orleans, LA 70189	(1)
Naval Air Systems Command Technical Library AIR 9500 RM 278 Jefferson Plaza II Department of the Navy Washington, DC 20361	(1)	FAA Civil Aeromedical Institute ATTN: Library Box 25082 Oklahoma City, OK 73125	(1)
US Navy Naval Research Laboratory Library Code 1433 Washington, DC 20375	(1)	Department of Defence R.A.N. Research Laboratory P.O. Box 706 Darlinghurst, N.S.W. 2010 Australia	(1)
US Navy Naval Air Development Center Technical Information Division Technical Support Department Warminster, PA 18974	(1)	Canadian Society of Avn Med c/o Academy of Medicine, Toronto ATTN: Ms. Carmen King 288 Bloor Street West Toronto, Ontario M5S 1V8 Canada	(1)
Human Factors Engineering Division Aircraft & Crew Systems Technology Directorate Naval Air Development Center Warminster, PA 18974		COL F. Cadigan DAO-AMLOUS B Box 36, US Embassy FPO New York 09510	(1)
US Navy Naval Research Laboratory Library Shock & Vibration Information Cen Code 8404 Washington, DC 20375 Director of Biological & Medical Sciences Division	ter (1)	Officer Commanding School of Opnl & Aerospace Medicin DCIEM PO Box 2000 1133 Sheppard Avenue West Downsview, Ontario M3M 3B9 Canada	ne (1)
Office of Naval Research 800 N. Quincy Street Arlington, VA 22217	(1)	Dr. E. Hendler Code 6003 Naval Air Development Center Warminster, PA 18974	(1)
Commanding Officer Naval Medical R&D Command National Naval Medical Center Bethesda, MD 20014	(1)	Commander US Army Transporation School ATTN: ATSP-TD-ST Fort Eustis, VA 23604	(1)
Commander Naval Air Development Center Biophysics Laboratory ATTN: George Kydd Code 60Bl Warminster, PA 18974	(1)	National Defence Headquarters 101 Colonel By Drive Ottowa, Ontario KIA OK2 Canada ATTN: DPM	(1)
·			

Commanding Officer 404 Maritime Training Squadron Canadian Forces Base, Greenwood Greenwood, NS BOP 1NO Canada ATTN: Aeromed Training Unit WO P. Handy or Capt S. Olsen

(1)

(1)

(1)

.

Canadian Forces Medical Liaison Officer Canadian Defence Liaison Staff 2450 Massachusetts Ave, NW Washington, DC 20008

Canadian Airline Pilot's Assn Maj. J. Soutendam (Ret) 1300 Steeles Avenue East Brampton, Ontario L6T 1A2 Canada