
AD-AI34 825 DRAFT SPECIFICATION OF THE COMMON APSE (ADA PROGRAMMING
SUPPORT ENVIRONMENTS) INTERFACE SET (CAIS) VENSION 1
(U) ADA JOINT PROGRAM OFFICE ARLINGTON VA 30 SEP 83

UNOL ASS ED F/G 9/2 NLEmmmmmmmmmEEm
mEEEEEEmmEEEEE
EEEEEmmmEmmmmE
mmEmmEEmmEEmmI
EEEEmmEEEmmmmI
EEEEEEEl

1:- 11. 25

~ L 11112.0

-1111.8

111.25 11111 .4 li .

MICROCOPY RESOLUTION TEST CHART
AT0A SUREAU OF STA'.D..DS-196S-A

NOTE: This draft, dated 30 September 1983, prepared for
the Ada Joint Program Office, has not been approved and
Is subject to modification. DO NOT USE PRIOR TO
APPROVAL.

Draft Specification

V of the

Common APSE Interface Set (CAIS)

Version 1. 1
30 September, 1983

DT:

Prepared by
N OV 18 A

KIT/KITIAB
CAIS Working GroupB

for the
Ada ! Joint Program Office

Cw2 (0 Ada to a Registered Trademwark of the Department of Defense, Ada Joint Program Office)

i. '1:1:~ N srF !',:NT A)

Al:v-d tot put-li .,!Pasel8
- Uho ution'at8 It lo 0 2

'MCLASSIF IEr0____

WEAD INSTHL'CTIOW.
REPORT DOCUMENg.TATIDN PAGE I 9FORE COMPLETING FP

III PR dobo&OIV:XDECIP11..1'S Cal ALOG WL E

11 f- S-6900* b IYP V U Of$EPORT A PL IOD COVERED

Draft Specification of theSe.18-Sp.93
Common APSE Interface Set (CAIS)Se.18-Sp. 93

Version 1.1 46. PLAFORA4180 ORG. REPORT NUMPER

41i CONIRACI ORt CRA^dI NUMBLA4.jKIT/KITTIA CAIS Working Group for the Ada Joint
Program Office

KAPSE Interf ace Teain/KAPSE Interface Team from
Industry and Academia I

11- PERfoaltr. ovcirz £Twt %;^AE &No &oostESS 10o. WROGRAM ELfENI-PRtOjLCT. TASK

II- CON7WOLLINdG orIcE NAaME AND ADDRESS 22.REP OR IJNNUBR
Deputy Undersecretary of Defense J 30 September 1983
Research and Advanced Technology 13 II uaMBEWO PAGES

Washington, DC 20301 1
tNmWalORNGw ACENCV NA64E & ADDRES~aif Eifl..nt 11, C~dsi,.infi OIIsceJ 15 SECURITYV CLASS. (fD thl. .0P001)

Unclassified

66 DISTR3U,om SI ATE*AdE&T for chi* X.puaso ILA~e CAIN D.dR~ar

Approneo fe, public ycelease; distribution unlimited

17. DISIRIjUUIDNuS7ATEMENuT (etch. abef-~co9 .fl.. dI iAet 20. it EifI.,.u,i A- HPONQ

Unclassified

I10. SUPPLEUENTARV NOTES

to. KEY WORD& fCONARMW. an~. r .we f of ftgeoawy MW WORMYUD bv block PkabJr

CAIS, APSEs, KIT, KITTIA, Ada Programming Language, interface requirements,
transportability, CAIS Node Model, Ada toolsets, environments, Ada packages,
Structural Nodes, File Nodes, Process Nodes, Device Nodes, utilities, Ada Language
Reference Manual.

20. ABSTRACT fCmelow e e.wias 040 Of ma...aap a" 8000#81Y 601 We"t 051o-

2 This version of the CAIS establishes interface requirements for the transportability
of Ada toolsets software to be -util.zed in Department of Defense '{DoD) A49aogramm-
ing Support Environment.AsEs) known as the Ada integrated Environment' (AIE5~and
the Ada Language System (AL.S). Strict adherence to this interface set will ensure
that the Ada toolsets will possess the highest degree of portability across APSEs.

The scope of the CAIS includes interfaces to those services traditionally provided
by an operating system that affects tool transportability. Ideally, all APSE tools

DD, vLAm 147 COTON or I NOv 66is oSwLEtEaUCASII
SN)02 IF St. 06,SECURITY CLASSIFICATION Of THIS 1PAG9 (ft;..Data X-014

I.N-CL..- SFIED
SECUnrI

T
CL AISIFICATIOM Or frN P&m C LrE #W)--- F.. Iedn

20. ABSTRACT (continued)

" would be implementable using only the Ada language and the CAIS. This version
of the CAIS is intended to provide most interfaces required by common tools.
This version of the CAIS includes six interface areas: Node Model,
Structural Nodes, File Nodes, Process Nodes, Device Nodes and Utilities.

DTIC
S ELECTE

NOV 1 8 1983 iJ

Accession For

NTIS P£
DT /T,'I A[]

Draft Report

DTIC should process report per Mr. Thomas,
Ada Joint Program Office. Final version will D I St T- l /
not be published for six month or a year. Aw'ii 1 ity Codes

Avail cid/or

Dist Special

S/ 0102-. LF. Od- 6ol UNCLASSIFIED

SECURITY CLASSIFICATION OF TNIS PAGErIrfl" Daml Enre...

-- Ii il |

U

Draft CAIS Ill1

FORWORD

This document is a draft for public review. It will be revised in accordance with comments received during this public
review cycle.

This document has been prepared in response to the Memorandum of Agreement signed by the Undersecretary of Defense
and the Assistant Secretaries of the Air Force, Army, and Navy. The memorandum established agreement for defining
a set of common interfaces for the Department of Defense (DoD) Ada Programming Support Environments (APSEs)
to promote Ada tool transportability and interoperability. The initial phase of this effort is directed toward the interfaces
of the Ada Integrated Environment (AlE) and the Ada Language System (ALS). This version derives a set of specific
interfaces from these two APSEs, but the CAIS is intended to be implementable as part of a wide variety of intended
APSEs. It is anticipated that the CAIS will evolve, changing to meet new needs. Ultimately it is the intention of the DoD
to submit CAIS for standardization. Through the acceptance of such a standard it is anticipated that the source level
compatability of Ada software tools will be enhanced for both the DoD and non-DoD users.

The authors of this document include technical representatives of the two DoD APSE contractors, representatives from
the DoD's Kernel Ada Programming Support Environment (KAPSE) Interface Team (KIT), and volunteer representatives
from the KAPSE Interface Team, Industry and Academia (KITIA).

The initial effort for definition of the CAIS was begun in September 1982 by the following members of the KAPSE Inter-
face Team (KIT); J. Foidl (TRW), J. Kramer (Ada Joint Program Office), T. Oberndorf (Naval Ocean Systems Center),
T. Taft (Intermetrics), R. Thall and W. Wilder (both of SofTech). In February 1983 the design team was expanded by
Lcdr. B. Schaar (Ada Joint Program Office) to utilize the professional capabilities and experience of the KIT and KAPSE
Interface Team from Industry and Academia (KITIA). These new members include: H. Fischer (Litton Data Systems),
T. Harrison (Texas Instruments), E. Lamb (Bell Labs), T. Lyons (Software Sciences Ltd., U.K.), D. McGonagle (General
Electric), H. Morse (Frey Federal Systems), E. Ploedereder (I.A.B.G., West Germany), H. Willman (Raytheon), and L.
Yelowitz (Ford Aerospace). The Ada Joint Program Office is particularly grateful to those KITIA members and their com-
panies for providing the time and resources that significantly contributed to this document. Additional constructive criticism
and direction was provided by G. Myers (Naval Ocean Systems Center) and the general memberships of the KIT and KITIA.

~1

I

--

Iv Draft CAIS

This document was typeset by McMahon Engineering Services, San Diego, using a Compugraphics MCS20-8400 typeset.
tng unit, with the Advanced Communication Interface ' used to transfer data already Keystroked from a word processor
to the Compugraphics typesetter and then inputting typesetting codes to format the document.

--~~~~..

Draft CA'S

CONTENTS

FO R EW O R D

C O N T E N T S v

SECTION TITLE PAGE

1. IN TR O D U CTIO N .. 1-1
1.1 SCO PE O F THE CAIS .. 1-1
1.2 EXCLUDED AND DEFERRED TOPICS 1-1
1.3 CO NFO RM ANC E ... 1-2
1.4 DOCUMENT ORGANIZATION .. 1-3

2 . R E F E R E N C E S 2-1

3. C A IS N O D E M O D EL 3-1
3.1 RELATIONSHIPS AND RELATIONS 3-1

3.1.1 Kinds of Relationships 3-1
3.1.2 Predefined Relations ... 3-2
3.1.3 Pathnames .. 3-2

3.2 A TTR IB U T ES .. 3-3
3.3 GENERAL NODE MANAGEMENT ... 3-4
3.4 PACKAGE CAIS -NODE -DEFS .. 34

3.4.1 Package Specification .. 3-4
3.4.2 Package Semantics .. 3-5

3.5 PACKAGE CAIS-NODE-MANAGEMENT 3-5
3.5.1 Package Specification .. 3-5
3.5.2 Package Sem antics .. 3-7

3.6 PACKAGE CAIS - ATTRIBUTES 3-11
3.6.1 Package Specification .. 3-11
3.6.2 Package Sem antics .. 3-12

3.7 PACKAGE CAIS -NODE -CONTROL 3-14
3.7.1 Package Specification 3-14
3.7.2 Package Semantics ... 3-15

3.8 PRAGMATICS ... 3-15

4. CAIS STRUCTURAL NODES .. 4-1
4.1 PACKAGE CAIS-STRUCTURAL-NODES 4-1

4.1.1 Package Specification . .. 4-1
4.1.2 Package Semantics 4-1

5 C A IS FILE N O D ES 5-1
5.1 Ada LRM INPUT/OUTPUT .. 5-1

5.1.1 Package IO EXCEPTIONS 5-1
5.1.2 Package SEQUENTIAL O 5-1
5.1.3 Package DIRECT -1O .. 5-2
5.1.4 Package TEXT -lO .. 5-2

5.2 CAIS INPUT/O UTPUT ... 5-2
5.2.1 CAIS File Management ... 5-2
5.2.2 Package CAIS-SEOUENTIAL-O 5-3
5.2.3 Package DIRECT -1O .. 5-3
5.2.4 Package TEXT -1O .. 5-3

5.2.5 Package CAIS-INTERACTIVE-1O 5-4

~1

I . ._

v11 Draft CAIS

5.2.5.1 Package Specification................................... 5-4
5.2.5.2 Package Semantics....................................... 5-5

5.3 PRAGMATICS 5.7

6. CAIS PROCESS NODES.. 6-1
6.1 PACKAGE CAIS-PROCESS-DEFS....................................... 6-1

6.1.1 Package Specification... 6-1
6.1.2 Package Semantics .. 6-2

6.2 PACKAGE CAIS-PROCESS-CONTROL................................... 6-3
6.2.1 Package Specification... 6-3
6.2.2 Package Semantics .. 6-4

6.3 PACKAGE CAIS.PROCESS-COMMUNICATION.............. 6-6
6.3.1 Package Specification .. 6-6
6.3.2 Package Semantics .. 6-7

6.4 PACKAGE CAI S-PROCESS-ANALYSIS 6-7
6.4.1 Package Specification... 6-8

6.5 PACKAGE CAIS-PROCESSJNTERRUPTS................................. 6-8
6.5.1 Package Specification... 6-8
6.5.2 Package Semantics .. 6-8

6.6 PRAGMATICS .. 6-9

7. CAIS DEVICE NODES .. 7-1
7.1 VIRTUAL TERMINALS... 7-1

7.1.1 Package CAIS-TERMINAL-SUPPORT 7-1
7.1.1.1 Package Specification..................................... 7-1
7.1.1.2 Package Semantics....................................... 7-2

7.1.2 Package CAIS...SCROLL...TERMINAL............................... 7-4
7.1.2.1 Package Specification..................................... 7-5
7.1.2.2 Package Semantics....................................... 7-5

7.1.3 Package CAIS-.PAGE-TERMINAL 7-7
7.1.3.1 Package Specification..................................... 7-7
7.1.3.2 Package Semantics 7-8

7.1.4 Package CAIS...FORM-TERMINAL 7-11
7.1.4.1 Package Specification..................................... 7-11
7.1.4.2 Package Semantics....................................... 7-12

7.2 PACKAGE CAIS-DEVICE-CONTROL 7-14
7.2.1 Package Specification 7-15

8. CAIS UTILITIES.. 8-1
8.1 PREDEFINED LANGUAGE ENVIRONMENT.................................. 8-1

8.1.1 Package STANDARD... 8-1
8.1.2 Package SYSTEM 8-1

8.2 PREDEFINED UTILIfY PACKAGES 8-1
8.2.1 Package CAIS-TEXL...UTILS 8-1

8.2.1.1 Pacyage Specification 8-1
8.2.1.2 Package Semantics 8-2

8.2.2 Package CAIS....IST-.UTILS 8-4
8.2.2.1 Package Specification 8-4
8.2.2.2 Package Semantics 8-5

8.3.2 Package CAIS-HELP..UTILS 8-7
8.3 PRAGMATICS .. 8-7

APPENDICES

A. NOTES AND EXPLANATIONS A-i

6. PROVIDING DIRECTORY STRUCTURES BY A CONFORMING SUBSET OF THE CAIS ... B-1

C. DISCUSSION OF GAlS IMPLEMENTATION APPROACHES -.................... C-i

1. INTRODUCTION

This document provides specifications for a set of Ada packages which together form a Common APSE Interface Set
(CAIS) for Ada Programming Support Environments (APSEs). This interface set is designed to promote the source-level
portability of Ada programs, particularly Ada software development tools. The initial phase of this effort is directed toward
the interfaces of the Ada Integrated Environment (ALE) and the Ada Language System (ALS). Version 1.1 of the CAIS,
presented herein, is intended to provide the basis for evolution of the CAIS as APSEs are implemented, as tools are
transported, and as tool interoperability issues are encountered.

Tools written in Ada, using only the packages described herein, should be transportable to other CAIS implimenlations.
However, where tools function as a set, the CAIS facilitates transportability of the set of tools as a whole, but individual
tools may not be individually transportable.

1.1 , SCOPE OF THE CAIS

This version of the CAIS establishes interface requirements for the transportability of Ada
toolsets software to be utilized in Department of Defense (DoD) Ada Programming Support Environments (APSEs) known
as the Ada Integrated Environment (ALE) and the Ada Language System (ALS). Strict adherence to this interface set
will ensure that the Ada toolsets will possess the highest degree of portability across APSEs.

The scope of the CAIS includes interfaces to those services traditionally provided by an operating system that affect
tool transportability. Ideally, all APSE tools would be implementable using only the Ada language and the CAIS. This
version of the CAIS is intended to provide most interfaces required by common tools. This version of the CAIS includes
six interface areas:

a. Node Model. This area presents a node model for the CAIS in which contents, relation-
ships and attributes of nodes are defined. Also included are the foundations for access
control and synchronization.

b. Structural Nodes. This area covers the creation of structural nodes.

c. File Nodes. This area covers file input/output.

d. Process Nodes. This area covers creation of processes for program invocation, control
of processes, process attribute management, and inter-process communication.

e. Device Nodes. This area covers basic device input/output support, along with special device
control facilities.

f. Utilities. This area covers text and list manipulation.

1.2 EXCLUDED AND DEFERRED TOPICS

During the design of the CAIS many aspects of environments have been considered. It has been determined that several
aspects should be explicitly excluded from this version of the CAIS:

Interfaces for non-software development environments (target systems) are not a part of this version.

1-2 Draft CAIS

The acronyms KAPSE and MAPSE are not used in this document because there is disagreement on their
meanings.

Multi-lingual environments are not addressed by the CAIS.

A number of interface issues remain unresolved in this version of the CAIS, even though they have been considered.
These issues are important for a complete interface specification, but their resolution has been deferred until a later
version. Deferred interface issues (in alphabetical order) include:

Access control - Access rights and privileges to system resources.

Asynchronous interfaces - Most interfaces in this document are task synchronous
interfaces (i.e., the specified operation is completed before the calling task is allow-
ed to proceed.)

Communications transformation - filtering of data before receipt by processes,
mappings (lower case to upper case, break, key to escape sequence), terminator
character for input.

Configuration management - configuration control including keeping versions,
referencing the latest revision, identifying the state of an object, etc.

Device control - Controls for printers, tape drives, disk drives, graphics, window-
ing, etc.

Distributed environments - Explicit support for environments in which parts of Ada
programs or data bases are distributed across multiple processors.

Interoperability - Inter-tool interfaces for tool sets; calling sequences and data for-
mats used to invoke/interact with common APSE tools, including the compilation/pro-
gram library system, the text editing systems, the command processor, and the mail
system.

Predefined attributes/names - A full set of attributes and names that exist in all
APSEs which implement the CAIS.

Predefined exceptions - A full set of exceptions that exist in all APSEs which im-
plement the CAIS; identification of all situations where exceptions are raised by the
CAIS.

Resource access and management - Resource control and allocation, such as
for processor time, processor memory, and shared data pools.

Security - Mechanisms for handling discretionary and non-discretionary informa-
tion based on classification of the data and system requirements.

Typed database - Typing of the objects in the database organization.

1.3 CONFORMANCE

Conformance of an implementation to the CAIS is established on a package-by-package basis. Each package must
be available as a library unit, with the name specified in this document. From the package user's point of view, the package
must have indistinguishable syntax and semantics from those stated herein. The following differences in CAIS package
implementation from the specifications in this document are considered indistinguishable from a user's point of view:

Draft CAIS 1-3

a) The package may have additional WITH or USE clauses.

b) Parameter modes listed here as OUT may be IN OUT or those listed as IN OUT may be OUT.

c) Types specified as limited private may be simply limited types.

d) Packages may be instantiations of generic sub-packages of some other (private) library
unit package.

Examples of differences which are NOT legal:

a) Additional or missing declarations, as these affect name visibility.

b) Parameter mode IN OUT, as this prevents passing of expressions.

c Limited private types being changed to sub-types or derived types, when this changes the
semantics of "deriving" from the type.

d) Packages which are not available as specified library units, because this changes the means
of reference to package components.

1.4 DOCUMENT ORGANIZATION

Each of the interface areas described in Section 1.1 is the subject of a subsequent section of this document. A discus-
sion introduces the underlying model for that area. Ada package specifications describe the facilities provided. These
are followed by a narrative of the intended semantics of the package. New terms introduced in the narrative sections
of the CAIS have been highlighted with boldface type. Boldface type within the package specifications and package
semantics sections indicate reserved words in accordance with the Ada Language Reference Manual.

2. REFERENCES

[LRM]: Reference Manual for the Ada Programming Language, ANSI/MIL-STD-1815A; United States Department of
Defense; January 1983.

[STONEMAN]: Requirements for Ada Programming Support Environments, "Stoneman"; Department of Defense; February
1980.
KERNEL Ada Programming Support Environment (KAPSE) Interface Team: Public Report; Volume I, Naval Ocean Systems

Center TD509; April 1982.

APSE Interoperability and Transportability Implementation Strategs; Ada Joint Program Office; June 1983.

[ANSI 791: American National Standards Institute, "American National Standard Additional Controls for Use with American
National Standard Code for Information Interchange (ANSI Standard X3.64-1979)"; July 1979.

(ANSI 771: American National Standards Institute, "American National Standard Code for Information Interchange (AN-
SI Standard X3.4-1977)"; June 1977.

ALS KAPSE - B5 Specification, Softech; February 1982.

Computer Program Development Specification for Ada Integrated Environment: KAPSEIDATABASE TYPE B5, Intermetrics
Inc.; 12 Nov 1982.

3. CAIS NODE MODEL

The CAIS implementation acts as a manager for a set of entities that may be files, processes, and devices. These en-
tities have properties and may be interrelated in many ways.

The CAIS model uses the notion of a node as a carrier of information about an entity. It uses the notion of a relationship
for representing an interrelation between entities and the notion of an attribute for representing a property of an entity
or of an interrelation.

This version of the CAIS identifies four different kinds of nodes: structural nodes, file nodes, process nodes, and device
nodes.

The structure provided by the CAIS node model is a directed graph of nodes, each of which may have content, relation-
ships and attributes; relationships may also have attributes. The content varies with the kind of node. If a node is a
structural node, there is no content and the node is used strictly as a holder of relationships and attributes. If a node
is a file node, the content is an Ada external file. If a node is a process node, the content is the representation of the
execution of an Ada program. If a node is a device node, its content is a representation of a logical or physical device.

3.1 RELATIONSHIPS AND RELATIONS

The relationships of CAIS nodes form the edges of a directed graph; they are used to build conventional hierarchical
directory and process structures (see Section 4.1 CAIS-STRUCTURAL-NODES, Section 6.2
CAIS-PROCESS-CONTROL and Appendix B) as well as arbitrary directed-graph structures. Relationships are unidirec-
tional and are said to emanate from a source node and to terminate at a target node.

Because any node may have many relationships representing many different classes of connections, the concept of
a relation is introduced to categorize the relationships. These relations identify the nature of relationships, and relation-
ships are instances of relations. There are several predefined relations provided by the CAIS. These are: PARENT, USER,
JOB, CURRENT-JOB, CURRENT-USER, CURRENT-NODE, and DOT and are explained in t"e following sections.

Each relationship is designated by a relation name and a relationship key. The relation name identifies the relation
and the relationship key distinguishes between multiple nodes each bearing the same relation with a given node. If
a relationship is a unique instance of its relation (i.e., only one node bears the relation with a given node), the key may
be omitted (i.e., its value is the null string). In this document, a relation name is often referred to simply as a relation
and a relationship key is often referred to simply as a key. Nodes in the environment are accessible by navigating along
the (named) relationships. Operations are provided to move from one node (along one of its relationships) to a connected
node.

3.1.1 Kinds of Relationships

There are two kinds of relationships: primary and secondary. Primary relationships form a strict tree; secondary relation-
ships may form an arbitrary directed graph. There is no requirement that all primary relationships have the same relation
name.

When a node is created, a primary relationship must be initially established from some other node, called its parent
node. This initial relationship is marked as the primary relationship for this new node. As a side effect of the creation,
the new node will be connected back to this parent via the PARENT relation (which, because it is unique, has a null
relationship key). To delete a node, the primary relationship is broken. RENAME (see Section 3.5) may be used to make
the primary relationship emanate from a different parent. These operations maintain a state in which each non-root node
has exactly one parent and a unique primary pathname (see Section 3.1.2).

3-2 DRAFT CAIS

Secondary relationships are arbitrary connections which may be established between two existing nodes. They are created
with the LINK procedure (see Section 3.5) and broken with the UNLINK procedure. If a node is deleted (i.e., its primary
relationship is broken), outstanding secondary relationships for which it is the target may remain, but attempts to access
the node via these relationships will raise an exception.

3.1.2 Predeflned Relations

The CAIS node model incorporates the notion of a user. Each user has one top-level node (often called the user direc-
tory). This top-level node is the root of the user's work-area tree, and from it he can access other structural, file, process
and device nodes. Every node may be accessed by following a sequence of relationships; this sequence is called the
path to the node. A path starting at a top-level node is called an absolute path. Every node can be traced back to its
top-level node by recursively following PARENT relationships; the path obtained by inverting this chain is the unique
primary path to the node.

A path can also start at a known (not necessarily top-level) node and follow a sequence of relationships to a desired
node. This is a relative path and the known starting node is called the base.

Any user's top-level node can be accessed from a proces node using the relation USER and a relationship key which
is interpreted as the user's name. User names may in fact be names of projects, services, people, or other organiza-
tional entities; each has a top level node associated with it. It is anticipated that certain special user names will be defin-
ed (as an eventual part of the CAIS) to provide uniform access to common tools, structures, etc.. Each
implementation must identify such user names to be of special significance in the environment.

When a user enters the APSE, a root process node is created which often represents a command interpreter or other
user-communication process a process tree develops from this root node as other processes are invoked for the user.
A particular user may have entered the APSE several times concurrently. Each corresponding process tree is referred
to as a job. The JOB relation is provided for locating each of these root processes from the user's top-level node. Thus
a JOB relation emanates from each user's top-level node to the root process node of each of the user's jobs. The JOB
relation must always be used with a relationship-key which identifies the name of the particular job which is to be accessed.

Any process node in a lob has associated with it at least three predefined relations. The CURRENT-JOB relationship
always points to the root node for a process node's job. The CURRENT-USER relationship always points to the user's
top-level node. The CURRENT NODE relationship always points to a node which represents the process node's cur-
rent focus or context for its activities; the target node is often a structural node. The process node can thus use the
CURRENT-NODE for a base node when specifying relative paths. All three of these relations (CURRENT-JOB,
CURRENT-USER. and CURRENT NODE) provide a convenient means for accessing other CAIS nodes.

Many CAIS operations allow the user to omit the relation name when referring to a relationship, defaulting it to "DOT".
DOT is therefore referred to as the default relation.

The node model also uses the concept of current process. This is implicit in all calls to CAIS operations and refers
to the currently executing process making the call. It defines the context in which the parameters are to be interpreted.
In particular, paths are determined in the context of the current process.

3.1.3 Pathnames

Nodes are accessed by navigating along the relationships. These paths are specified using a pall name syntax. Starting
from a given node, a path is followed by traversing a sequence of relationships until the desired node is reached. The
pathname for this path is made up of the concatenation of the names of the traversed relationships in the same order
in which they are encountered.

The syntax of a pathname is a sequence of path elements, each path element representing the traversal of a single
relationship. A path element is an apostrophe (" '" , pronounced "tick") followed by a relation name and a parenthesiz-
ed relationship key (which may be omitted if the relationship is a unique instance of the relation for this node). I the
relation is the default relation DOT, then the path element may be represented simply by a dot (" . ") followed by the
key for the default relation DOT. Thus, "'DOT(CONTROLLER)" is the same as ".CONTROLLER".

Draft CAIS 3-3

Pathnames are interpreted relative to a known node. This node may be identified explicitly as an additional argument,
the BASE, to many of the CAIS operations. Otherwise, the current process node is used as the starting point for inter-
pretation of the path.

A pathname may begin simply with a relationship key, not prefixed by either .'" or . This is taken to mean inter-
pretation following the DOT relation of the CURRENT-NODE. Thus "AIRPORT" is the same as
" 'CURRENT.NODEAIRPORT". By convention, the null pathname.. is interpreted as the CURRENT-NODE of
the current process.

A pathname may also consist of just a single " . ". This is interpreted as referring to the current process node.

Relation names and relationship keys follow the syntax of Ada identifiers. Upper and lower case are treated as equivalent
within such identifiers. For example, all of the following are legal node pathnames, and they would all refer to the same
node if the CURRENT-NODE were " 'USER(JONES).TRACKER " and the CURRENT-USER were "JONES":

a. Landing -System'With-unit(Radar)

b. 'User(Jones).TRACKER.Landing-system'withUNIT(RADAR)

c. 'CURRENT-USER.TRACKER.LANDING-SYSTEM'WITH-unit(radar)

By convention a relationship key of simply "#" is taken to represent the LATEST-KEY (lexicographically last). When
creating a node or relationship, use of "#" as the final key of a pathname will cause a key to be automatically assigned,
lexicographically following all previous keys for the same relation. This may be used to automatically assign revision
identifiers or process keys (see Section 6.2).

The Backus-Naur Form (BNF) for pathnames is given in Table 3-1.

TABLE 3-1
PATHNAME BNF

PATHNAME :: = {PATHELEMENT I
RELATIONSHIP-KEY (PATHELEMENT I

PATHELEMENT :: = .." RELATION-NAME "(" RELATIONSHIP-KEY ")" I
r" RELATION-NAME I

RELATIONSHIP-KEY

RELATION-NAME :: = IDENTIFIER
RELATIONSHIP-KEY :: = IDENTIFIER I "#"

3.2 ATTRIBUTES

Both nodes and relationships may have attributes which provide information about the node or relationship. Attributes
are identified by an attribute name. Each attribute (see Section 3.6 CAIS.ATTRIBUTES) has a list of the values assign-
ed to it, represented using the CAIS-LIST-UTILS (see Section 8.2.2) type called LIST.

Relation names and attribute names both have the same form (that is, the syntax of an Ada identifier), and they must
be different from each other for a given node.

This version of the CAIS introduces two pre-defined node attributes: ACCESS-CONTROL and SECURITY-LEVEL.

3-4 Draft CAIS

3.3 GENERAL NODE MANAGEMENT

The operations defined in package CAIS.NODE.MANAGEMENT are applicable to all nodes except where explicitly
stated otherwise in the package semantics section.

The creation of nodes for files is performed by the CREATE procedures of the Input/Output packages; the creation of
nodes for processes is performed by INVOKE-PROCESS and SPAWN-_PROCESS of CAIS-PROCESS-CONTROL
(see Section 6.2); the creation of structural nodes is performed by CREATLNODE (see Section 4.1); the creation of
device nodes is performed by the CREATE procedures of CAIS-TERMINAL-SUPPORT (see Section 7.1.1).

To simplify manipulation by Ada programs, an Ada type NODE-TYPE is defined to represent an internal handle for
a node. Most procedures either expect a NODE-TYPE parameter, or a pathname, or a combination of a BASE node
(specified by a NODETYPE parameter) and a pathname relative to it.

3.4 PACKAGE CAIS-NODE-DEFS

This package defines the Ada type NODE-TYPE, which provides an internal (private) reference to CAIS nodes, This
is referred to as a node handle. It also defines certain enumeration and record types and exceptions useful for node
manipulations.

3.4.1 Package Specification

with IOEXCEPTIONS;
package CAIS-NODE.DEFS is

type NODE-TYPE is limited private;
type NODE-KIND is (FILE, STRUCTURAL, PROCESS, DEVICE).

subtype NAME-STRING is STRING;

subtype NAME-STRING is STRING;
subtype FORM-STRING is STRING;
subtype RELATIONSHIPKEY is STRING;
subtype RELATION-NAME is STRING;

TOP-LEVEL constant STRING 'CURRENT-USER";
CURRENT-NODE constant STRING
CURRENT-PROCESS constant STRING =
LATEST-KEY constant STRING : =

Exceptions

STATUS-ERROR exception renames IO-EXCEPTIONS.STATUS-ERROR
MODEERROR exception renames IOEXCEPTIONS.MODE-ERROR;
NAME-ERROR exception renames IO-EXCEPTIONS.NAMEERROR;
USE-ERROR exception renames IO.EXCEPTIONS.USE-ERROR;
LAYOUT-ERROR exception renames IOEXCEPTIONS.LAYOUT-ERROR;

private
-- implementation-dependent

end CAIS-NODE-DEFS;

Draft CAIS 3-5

3.4.2 Package Semantics

TOP-LEVEL constant STRING ' CURRENT-USER"
CURRENT-NODE constant STRING
CURRENT-PROCESS constant STRING
LATEST-.KEY constant STRING "H"

Define the standard pathnamqs for current user's top-level node, current node, current process, and latest key.

STATUS-ERROR exception renames JO-EXCEPTIONS.STATUS-ERROR;
MODE-ERROR exception renames IO-EXCEPTIONS.MODE-ERROR;
NAME-ERROR exception renames IO-EXCEPTIONS.NAME-ERROR;
USE-ERROR exception renames IO-EXCEPTIONS.USE__ERROR;
LAYOUT-.ERROR~ exception renames IO-EXCEPTIONS.LAYOUT-ERROR;

Renames the corresponding exceptions for the LRM.

3.5 PACKAGE CAIS-NODE-MANAGEMENT

This package defines the general primitives for manipulating, copying, renaming, and deleting nodes and their relationships.

3.5.1 Package Specification

with CAIS-NODE-DEFS;
package CAIS-NODE-MANAGEMENT is

subtype NODE-TYPE is CAIS-NODE-DEFS. NODE-TYPE;
subtype NAME-STRING Is CA IS-NODE-DEFS. NAM ESTRI NG;
subtype RELATION SHI PKEY is CAI SNODE-DEFS. RELATIONSH IP_KEY;
subtype RELATION-NAME is CAIS-NODE-DEFS. RELATlON-NAME;

procedure OPEN (NODE: In out NODE-TYPE;
NAME: In NAME-STRING);

procedure OPEN (NODE: in out NODE-TYPE;
BASE: In NODE-TYPE;
KEY: in RELATIONSHIP-KEY-
RELATION: in RELATION-NAME "DOT");

procedure CLOSE(NODE: in out NODE-TYPE);

function IS-OPEN (NODE: in NODE-TYPE) return BOOLEAN;

function KIND (NODE: In NODE-TrYPE)Ireturn CAIS-NODE-DEFS.NODEKIND;

function PRIMARY-NAME(NODE: in NODE-TYPE) return NAME-STRING:

function PRIMARY-KEY (NODE: In NODE-TYPE)
return RELATIONSHIP-KEY;

3function PRIMARY-RELATION (NODE: In NODE-TYPE)
* return RELATION-NAME;

34 fucinPT-E(OE nND-YE eunRLTOSI-E;Draft CAIS

function PATHKREYA(NODE: In NODE-TYPE) return RELATIONIAMJEY;

procedure GET-PARENT(NODE: in NODETYPE;
PARENT: In out NODE-TYPE);

procedure COPY-NODE (FROM: In NODE-TIYPE;
TO: in NAME-STRING);

procedure COPY-NODE (FROM: In NODE-TYPE;
TO-BASE: In NODE-TYPE;
TO-KEY: In RELATIONSHIP-KEY:
TO-RELATION: in RELATION-NAME := "DOT");

procedure COPY-TREE (FROM: In NODE-TYPE;
TO: in NAME-STRING);

procedure COPY-TREE (FROM: in NODE-TYPE;
TO-BASE: in NODE-TYPE;
TO-KEY: in RELATIONSHIP-KEY=
TO-RELATION: in RELATION-NAME:= "DOT");

procedure RENAME(NODE: In NODE-TYPE;
NEW-NAME: in NAME-STRING),

procedure RENAME(NODE: in NODE__TYPE;
NEW-BASE. in NODETYPE;
NEW-KEY: in RELATIONSHIP-KEY =

NEW-RELATION: in RELATION-NAME :="DOT");

procedure LINK(TO: in NAME-STRING;
NEW-PATH: in NAME-STRING);

procedure LINK(TO-NODE: In NODE-TYPE;
NEW-BASE: in NODE-TYPE;
KEY: in RELATION SH I PKEY =

RELATION: in RELATION-NAME " DOT");

procedure UNLINK(NAME: in NAME-STRING);
procedure UNLINK(BASE: in NODE-TYPE;

KEY: in RELATION SH IPKEY:
RELATION: In RELATION-NAME : ="DOT");

procedure DELETE-NODE(NAME: In NAME-STRING);
procedure DELETE-NODE(NODE: in out NODE-TYPE);

procedure DELETE-TREE(NODE: in out NODE-TYPE);

type NODE-9TERATOR is private;
subtype RELATIONSHIPKEYPATTERN is RELATIONSHIP-KEY;
subtype RELATION-NAME-PATERN is RELATIONNAME;
subtype NODE-KIND is CAIS-NODE-DEFS.NODEKIND;

procedure ITERATE(ITERATOR: out NODE..JTERATOR;
NODE. In NODE-TYPE;
KIND: In NODE-KIND;
KEY: In RELATIONSHIPKEY-PATERN: "

RELATION: In RELATION-NAME-PATTERN :="DOT";
PRIMARY-ONLY: in BOOLEAN: =TRUE;

Draft CAIS 3-7

function MORE (ITERATOR: In NODE-JTERATOR)
return BOOLEAN;

procedure GET-NEXT(ITERATOR: in out NODE-JTERATOR;
NEX1Z.NODE: in out NODE-TYPE);

procedure SET-CURRENT-NODE(NAME: In NAME-STRING);
procedure SET-CURRENT-NODE(NODE: In NODE-TYPE);

procedure GET-CURRENTNODE(NODE: out NODEIITYPE);

function IS-SAME(NAME1: In NAME-STRING;
NAME2: In NAME-STRING)

return BOOLEAN;

function ISSAME(NODE1: in NODE-TYPE;
NODE2. In NODE-TYPE)

return BOOLEAN;

-- Exceptions

NAME-ERROR :exception renames CAIS-NODE-DEFS. NAM EERROR;
USE-ERROR :exception renames CAIS-NODE-DEFS.USE-ERROR;

private
-implementation-dependent

end CAIS-NODE-MANAGEM ENT,

3.5.2 Package Semantics

subtype NODE-TYPE Is CAIS-NODE-DEFS.NODE-TYPE,
subtype NAME-STRING Is CAIS-NODE-DEFS. NAME-STRING;
subtype RELATIONSHIP-KEY is CAIS-NODE-DEFS.RELATIONSHIP-KEY;
subtype RELATION-NAME Is CAIS-NODE-DEFS.RELATION-NAME;

The key of a node is the relationship key of the last element of its pathname. Many operations are allowed to take either
a pathname or a base-node/key/relation-name.

procedure OPEN (NODE: in out NODE-TYPE;
NAME: in NAME-STRING);

procedure OPEN (NODE: in out NODE-TYPE;
BASE: in NODE-TYPE;
KEY: in RELATIONSHIP-KEY
RELATION: in RELATION-NAME :="DOT");

Returns an open node handle on the designated node. The NAME-ERROR exception will be raised if the node does
not exist.

An open node handle acts as if the handle forms a temporary secondary relationship to the node; this means that, if
the opened node pointed to is renamed (potentially by another process), the operations on the opened node track the
renaming. Tools which require that node relationships remain unchanged between node-level CAIS operations use have
the features of the CAIS-NODE-CONTROL package (Section 3.7) to synchronize node usage.

3-4 Draft CAIS

procedure CLOSE(NODE: In out NODE-TYPE);

Severs any association between the node handle and the node and releases any associated lock. This must be done

before another OPEN can be done using the same NODE-TYPE variable by the same process.

function IS-OPEN (NODE: In NODE-TYPE) return BOOLEAN;

Returns TRUE or FALSE according to open status of the node handle.

function KIND (NODE: In NODE-TYPE)
return CAIS-NODE-DEFS.NODEKIND;

Returns the kind of a node, either FILE, PROCESS, STRUCTURAL, or DEVICE.

function PRIMARY-NAME(NODE: in NODE-TYPE) return NAME-STRING;

Returns the full primary pathname to the node.

function PRIMARY-KEY (NODE: in NODE-TYPE)
return RELATIONSHIPKEY;

function PRIMARY-RELATION (NODE: in NODE-TYPE)
return RELATION-NAME;

Returns the corresponding part of the last element of the primary path to the node. It the node is a top-level node, the
key is the user name, and the relation name is USER.

function PATH-KEY(NODE: in NODE-TYPE) return RELATIONSHIPKEY;
function PATH-RELATION(NODE: in NODE-TYPE) return RELATION-NAME;

Returns the corresponding part of the last element of the path used to access this node. If the path was an absolute
path and this is a top-level node, the relationship key is the user name, and the relation name is USER.

procedure GET-PARENT(NODE: in NODE-TYPE;

PARENT: in out NODE-TYPE);

Returns the parent node. Generate an exception if NODE is a top-level node.

procedure COPY-NODE (FROM: in NODE-TYPE;
TO: in NAME-STRING);

procedure COPYNODE (FROM: in NODE-TYPE;
TO-BASE: in NODE-TYPE;

TO-KEY: in RELATIONSHiPKEY : =
TO-RELATION: in RELATION-NAME: "DOT");

Copies a node. Any secondary relationships emanating from the original node are recreated in the copy. Unless the
target of the original node's relationship is the node itself, then the copied relationship still refers to the same target
node. If the target is the node itself, then the copy will have an analogous relationship to itself. It is an error (USE-ERROR)
if the node is a process or device node, or if any primary relationships emanate from the original node.

procedure COPY-TREE (FROM: In NODETYPE;
TO: In NAME-STRING);

procedure COPY-TREE (FROM: In NODE-TYPE;
TO-BASE: In NODE-TYPE;
TO-KEY: In RELATIONSHIP-KEY :
TO-RELATION: In RELATION-NAME : ="DOT");

Draft CAIS 3-9

Copies a tree of nodes (formed by primary relationships), as well as their secondary relationships. Secondary relation-
ships between two nodes which are both copied are recreated between the two copies. Secondary relationships emanating
from a node which is copied, but which refer to nodes outside the tree being copied, are copied so that they emanate
from the copy, but still refer to the old (uncopied) node. The exception USE_-ERROR will be raised if any node in the
tree is a process or device.

procedure RENAME(NODE: In NODE-TYPE;
NEW-NAME: In NAME-STRING);

procedure RENAME(NODE: In NODE-TYPE;
NEW-BASE: In NODE-TYPE;
NEW-KEY: in RELATIONSHIP-KEY :
NEW__RELATION: in RELATION-NAME := "DOT");

Changes the primary connection to a node and adjusts the PARENT relationship appropriately.

Existing secondary relationships with the renamed node as target will track the renaming. An implementation may raise
USE-ERROR if the renaming cannot be accomplished while still maintaining consistent secondary relationships and
acircularity of primary relationships. RENAME raises the exception USE-ERROR if a node already exists with the new
name.

Existing processes with open node handles track the renamed node; the node's handle acts as if the accessing process
had a temporary secondary relationship to the node.

procedure LINK (TO: in NAME-STRING;
NEW-PATH: in NAME-STRING);

procedure LINK (TO-NODE: in NODE-TYPE;
NEWBASE: In NODE-TYPE;
KEY: In RELATIONSHIP-KEY : =
RELATION: In RELATION-NAME : = "DOT");

Creates a relationship from one existing node to another. This relationship will be identified as a secondary relationship.

The first LINK procedure takes the name of the target node as the TO argument and a NEW-PATH which should lead
to it. The base/key/relation are implied by the NEW-PATH. The second LINK procedure takes a handle on the target
node, a handle on the NEW-BASE, and an explicit key and relation to be established from NEW-BASE to TO-NODE.

procedure UNLINK (NAME: In NAME-STRING);
procedure UNLINK (BASE: In NODE-TYPE;

KEY: In RELATIONSHIP-KEY : =
RELATION: In RELATION-NAME : = "DOT");

Deletes a secondary relationship. Raises USE-ERROR if the specified relationship is a primary relationship or does
not exist.

procedure DELETENODE(NAME: in NAME-STRING);
procedure DELETE-NODE(NODE: in out NODE-TYPE);

Deletes the primary relationship to a node and the node itself. It is an error if any primary relationships emanate from
this node.

This delete operation closes NODE, removes the appropriate relationship from the node's parent and updates the node's
parent. If a process node is not TERMINATED (see Section 6.1), this action aborts its process. This delete operation can-
not be used to delete more than one node in a single operation.

procedure DELETE-TREE(NODE: In out NODE-TYPE);

F ,.il,

3-10 Draft CAIS

DELETE TREE deletes a node and recursively deletes all nodes with the designated node as their parent. This opera-
tion closes the NODE handle and removes the appropriate relationship from the node's parent. This operation can be
used to delete more than one node in a single operation. If DELETE-TREE raises the USE-ERROR exception, no
node may be deleted.

type NODE-ITERATOR Is private;
subtype RELATIONSHIP-KEY.PATTERN Is RELATIONSHIP-KEY;
subtype RELATION-NAME-PATTERN is RELATION-NAME;
subtype NODE-KIND Is CAIS-NODE-DEFS.NODEKIND;

RELATIONSHIPKEY-PATTERN and RELATION-NAME-PATTERN follow the syntax of relationship keys/relation
names, except that a "?" will match any single character and a "" will match any string of characters.

procedure ITERATE(ITERATOR: out NODE.ITERATOR;
NODE: in NODE-TYPE;
KIND: In NODE-KIND;
KEY: in RELATIONSHIP-KEY-PATTERN : = ...;
RELATION: in RELATIONNAME-PATTERN := "DOT";
PRIMARY-ONLY: In BOOLEAN:= TRUE);

function MORE (ITERATOR: In NODE.ITERATOR)
return BOOLEAN;

procedure GET-NEXT(ITERATOR: in out NODE.ITERATOR;
NEXT-NODE: in out NODE-TYPE);

These three operations iterate through those nodes referred to from the given NODE, via primary or secondary relation-
ships that have keys/relations satisfying the specified patterns.

The nodes are returned in ASCII lexicographical order by RELATION and then by relationship KEY. The key and relation
are available by the functions PATH-KEY and PATH-RELATION (see above). Nodes that are of a different kind than
the KIND specified are omitted.

If PRIMARY-ONLY is true, then only primary relationships are considered when creating the iterator. In this case, either
PATH-KEY/PATH-RELATION or PRIMARY_.KEY/PRIMARY-RELATION may be used to determine the relationship
which caused the node to be included in the iteration.

Similarly, these operations iterate through the primary or secondary relationships from the given NODE which have
keysirelations satisfying the specified patterns.

procedure SETCURRENT-NODE(NAME: In NAME-STRING);
procedure SETCURRENT-NODE(NODE: In NODE-TYPE);

Specifies NODE/NAME as the current node.

procedure GETCURRENT-_NODE(NODE: out NODE-TYPE);

Opens a handle on the current node. This is equivalent to OPEN(NODE, " 'CURRENT-NODE")

function ISSAME(NAME1: In NAMESTRING;
NAME2: In NAME-STRING)

return BOOLEAN;

function ISSAME(NODE1: In NODE-TYPE;
NODE2: In NODE-TYPE)

return BOOLEAN;

Returns TRUE if both names/node handles refer to the same CAIS node.

Draft CAIS 3-11

3.6 PACKAGE CAIS.ATTRIBUTES

This package supports the definition and manipulation of named attributes for nodes and relationships. Each attribute
is a list of the format defined by the package CAIS.LIST.UTILS (see Section 8.2.2). The name of an attribute follows
the syntax of an Ada identifier. Upperlower case distinctions are significant within the value of attributes, but not within
the attribute name.

It is anticipated that certain attribute names and their values will be included as part of the CAIS ciefinition. In any case,
each implementation must identify those attribute names and values which are reserved or which have special significance.

The operations in this package are overloaded to permit access to nodes and relationships by either the name strings
or the node handles. Access by the node handle assures that the operation tracks the node (which may be renamed
or locked once open).

3.6.1 Package Specification

with CAIS-LIST-UTILS;
with CAIS-NODEDEFS;
package CAIS-ATTRIBUTES Is

subtype NAME-STRING is CAIS-NODE-DEFS.NAME-STRING;
subtype NODE-TYPE is CAIS-NODE-DEFS.NODETYPE;
subtype LIST is CAIS-LIST-UTILS.LIST;
subtype ATTRIB-NAME is STRING;
type FLAG-ENUM is (READ-ONLY, INHERIT),

procedure SET-NODEATTRIBUTE(NAME: in out NAME-STRING;
ATTRIB: in ATTRIBNAME;
VALUE: in LIST):

procedure SET-NODE.ATTRIBUTE(NODE: in out NODETYPE;
ATTRIB: in ATTRIBNAME;
VALUE: in LIST);

procedure SET__PATHATTRIBUTE(NAME: in out NAME-STRING;
ATTRIB: in ATTRIB-NAME;
VALUE: in LIST);

procedure SET-PATH__ATTRIBUTE(NODE: in NODE-TYPE;
ATTRIB: in ATTRIBNAME;
VALUE: in LIST);

procedure GET-NODE-ATTRIBUTE(NAME: in NAME-STRING;
ATTRIB: in ATTRIB-NAME;
VALUE: in LIST);

procedure GETNODE-ATTRIBUTE(NODE: in out NODETYPE;
ATTRIB: in ATTRIB NAME;
VALUE: in LIST);

procedure GET-PATHATTRIBUTE(NAME: in NAME-STRING;
ATTRIB: in ATTRIBNAME;
VALUE: in LIST);

procedure GET-PATHATTRIBUTE(NODE: in NODE-TYPE;
ATTRIB: In ATTRIB-NAME;
VALUE: In LIST);

type ATTRIB.ITERATOR Is private;
subtype ATTRIB-PATTERN Is STRING;

1

3-12 Draft CAIS

procedure NODE-ATTRIBUTE-TERATE (ITERATOR: In out ATTRIB-ITERATOR;
NAME: In NAME-STRING;
PATTERN: in ATTAIBPATTERN :=

procedure NODE-ATTRIBUTE-JTERATE (ITERATOR: In out AT-TRIB-JTERATOR;
NODE: In NODE-TYPE;
PATTERN: In ATTRIB-P.ATTERN :

procedure PATH-ATTRIBUTE...TERATE (ITERATOR: In out ATTRIB-ITERATOR;
NAME: In NAME-STRING;
PATTERN: In ATTRIB-PATTERN:

procedure PATH-ATTRIBUTE-TERATE(ITERATOR: in out ATTRIB-ITERATOR;
NODE: in NODE-TYPE;
PATTERN: in ATTRIB-PATTERN =

function MORE (ITERATOR: In ATTRIB-ITERATOR)
return BOOLEAN;

procedure GET-NEXT(ITERATOR: in out ATTRIB-ITERATOR;
ATTRIB: out ATTRIB-NAME;
VALUE: in out LIST);

procedure SET-LAG(NAME: In NAME-STRING;
ATTRIB: In ATTRIB-NAME;
WHICH: in FLAG-ENUM,
TO: in BOOLEAN:= TRUE);

procedure SET-FLAG(NODE: in NODE__TYPE;
ATTRIB: in ATTRIB-NAME,
WHICH: in FLAG-ENUM;
TO: in BOOLEAN: =TRUE);

function FLAG (NAME: in NAME-STRING;
ATTRIB: In ATTRIBNAME;
WHICH: in FLAG-ENUM)

return BOOLEAN;
function FLAG (NODE: in NODE-TYPE;

ATTRIB: in ATTRIB-NAME;
WHICH: in FLAG-ENUM)

return BOOLEAN;

-Exceptions

USE-ERROR :exception renames CAIS-NODE-DEFS. USE-ERROR;

private
-implementation-dependent

end CAIS-ATTRIBUTES

3.6.2 Package Semantics

subtype NAME-STRING is CAIS-NODE-DEFS. NAME-STRING;
subtype NODE-TYPE is CAIS-NODE-DEFS.NODE-TYPE;
subtype LIST is CAISLISTUTILS. LIST;
subtype ATTRIB-NAME Is STRING;

Draft CAIS 3-13

Each CAIS node or relationship may have list-valued attributes. They are associated with nodes referred to by a pathname
or node handle and with relationships referred to by the last step in a pathname or by the last step associated by a pathname.

type FLAG-ENUM Is (READ-ONLY, INHERIT);

The type FLAG-ENUM selects one of two flags associated with each attribute. Attributes with the READONLY flag
may not be written. Attributes with no READ-ONLY flag may be read or written. If a node has attributes with the IN-
HERIT flag set, then nodes created with that node as their parent will have the initial values for these attributes copied
from those of the parent node.

procedure SET-NODEATTRIBUTE(NAME: In out NAME-STRING;
ATTRIB: In ATTRIB-NAME;
VALUE: In LIST);

procedure SET-NODEATTRIBUTE(NODE: in out NODE-TYPE;
ATTRIB: in ATTRIB-NAME;
VALUE: In LIST);

procedure SET-PATH. ATTRIBUTE(NAME: In out NAME_STRING;
ATTRIB: in ATTRIB8NAME;
VALUE: In LIST);

procedure SET-PATH-ATTRIBUTE(NODE: In NODE-TYPE;
ATTRIB: in ATTRIB.NAME;
VALUE: In LIST);

Sets the given nodefrelationship attribute. If an attribute with the given name already exists, then the existing value is
over-written by the given value; if it does not exist, a new attribute is created and set to the given value. Setting the
value of the attribute to an empty list deletes the attribute. This operation will fail with USE-ERROR if the attribute
is READ-ONLY or if the current process does not have update access to the node.

procedure GET-NODE__ATTRIBUTE(NAME: in NAME-STRING;
ATTRIB: In ATTRIB-NAME;
VALUE: In LIST);

procedure GET-NODEATTRIBUTE(NODE: In out NODE-TYPE;
ATTRIB: in ATRIB-NAME;
VALUE: in LIST);

procedure GET-PATHATTRIBUTE(NAME: in NAMESTRING;
ATTRIB: In ATTRIB-NAME;
VALUE: in LIST);

procedure GETPATHATTRIBUTE(NODE: in NODE-TYPE;
ATTRIB: in ATTRIB-NAME;
VALUE: in LIST);

Gets the current value of an attribute. If the attribute has never been set, then these operations return the empty list.

type ATTRIB-ITERATOR is private;
subtype ATRIB-PATTERN is STRING;

An attribute iterator is used to sequence through the names of the attributes of a node or a relationship. An
ATTRIB-PATTERN has the same syntax as an ATTRIB-NAME, except that "?" stands for any character and.
stands for zero or more arbitrary characters.

I By using simply the pattern it is possible to iterate through the names of all of the non-null attributes of a node.

i
I

. .. I i , -- '- .. . --

3-14 Draft CAIS

procedure NODEATrRIBUTE-ITERATE (ITERATOR: In out ATTRIBJITERATOR;
NAME: In NAME-STRING;
PATTERN: In ATTRIB-PATTERN : =

procedure NODEATTRIBUTE-ITERATE (ITERATOR: In out ATTRIB-ITERATOR;
NODE: In NODE-TYPE;
PATTERN: In ATTRIB-PATTERN: =

procedure PATHATRIBUTELITERATE (ITERATOR: in out ATTRIB-ITERATOR;
NAME: In NAI.'E-STRING;
PATTERN: In ATTRIB-PATTERN: =

procedure PATHATTRIBUTE-ITERATE (ITERATOR: In out ATTRIB-ITERATOR;
NODE: In NODE-TYPE;
PATTERN: in ATTRIB-PATTERN: =

function MORE (ITERATOR: in ATTRIB.ITERATOR)
return BOOLEAN;

procedure GET-NEXT(ITERATOR: in out ATTRIB-ITERATOR;
ATTRIB: out ATTRIBENAME
VALUE: in out LIST);

These operations iterate through the names of the attributes of a node or relationship which match the given pattern.
The names are returned in ASCII lexicographical order.

procedure SET-FLAG(NAME: in NAME-STRING;
ATTRIB: in ATTRIB-NAME;
WHICH: in FLAG-ENUM;
TO: in BOOLEAN : = TRUE);

procedure SET-FLAG(NODE: In NODE-TYPE;
ATTRIB: In ATTRIB-NAME;
WHICH: in FLAG-ENUM;
TO: in BOOLEAN := TRUE);

function FLAG (NAME: in NAME-STRING;
ATTRIB: in ATTRIB-NAME;
WHICH: in FLAG-ENUM)

return BOOLEAN;

function FLAG (NODE: in NODE-TYPE;
ATTRIB: in ATTRIB-NAME;
WHICH: in FLAG-ENUM)

return BOOLEAN,

These two operations provide access to the READ-ONLY and INHERIT flags for each attribute. SET-FLAG sets the
specified flage The function FLAG returns the current setting of the flag.

3.7 PACKAGE CAIS-NODE-CONTROL

This version of the CAIS defines only primitives for dynamic access synchronization. Each operation on a node is inde-
pendent, and both access control and synchronization status are re-checked for each operation. This package defines
access synchronization operations at the node levels. For file (and device) nodes, an implementation may define the FORM
string to permit an OPEN operation (LRM chapter 14; see also Sections 5 and 7 of liis document) which specifies ex-
clusive access; in that case the sequence of file (and device) opening, reading and writing, and closing, is considered
a single node-level "operation" Use of file (or device) level access synchronization thus provides for longer transactions
at the node level without locking the node's attributes and relationships (only content may be locked by file level OPEN
actions). Use of node level access synchronization is intended for control at the level of the node as a whole (content,
relationships, and attributes).

Draft CAIS 3-15

3.7.1 Package Specification

with CAISATTRIBUTES;
with CAIS-NODE-DEFS;
with CAIS-NODE-CONTROL is

subtype NODE-TYPE is CAIS-NODE-DEFS.NODE-TYPE;
subtype ATTRIB-NAME is CAISATi RIBUTES.ATFRIB-NAME;
ACCESS-CONTROL : constant ATTRIB-NAME = "ACCESS-CONTROL";
SECURITY-LEVEL constant ATTRIB-NAME = SECURITY-LEVEL";

procedure LOCK (NODE: In NODETYPE;
TIME-LIMIT: in DURATION: = DURATION'LAST);

procedure UNLOCK (NODE: in NODE-TYPE);

private
-- implementation-dependent

end CAIS-NODE-CONTROL;

3.7.2 Package Semantics

subtype NODE-TYPE is CAIS-NODE-DEFS.NODE.TYPE;
subtype ATTRIB-NAME is CAISATTRIBUTES.ATTRIBNAME;
ACCESS-CONTROL : constant ATTRIB-NAME : = "ACCESS-CONTROL";
SECURITY-LEVEL : constant ATTRIB.NAME : = "SECURITY-LEVEL";

The CAIS provides two predefined attribute names for acces control: ACCESS-CONTROL for discretionary ac-
cess control and SECURITYLEVEL for non-discretionary access control. These attributes may be set at node
creation (by inclusion in the FORM string - see Section 4.1) or later with SET.NODE-ATTRIBUTE (see Sec-
tion 3.6).

procedure LOCK (NODE: In NODETYPE;
TIME LIMIT: In DURATION: = DURATION'LAST);

procedure UNLOCK (NODE: in NODE-TYPE);

Locks/unlocks the designated node for a series of updates. When a node is locked, any other process that attempts
to modify any attribute, relationship, or content of the node will receive an exception. If the node is already locked, then
LOCK will be delayed until the node is unlocked or until the time limit expires. In the later case an exception will be raised.

3.8 PRAGMATICS

Several private types are defined as part of the CAIS Node Model. The actual implementation of these types may vary
from one CAIS implementation to the next. Nevertheless, it is important to establish certain minimums for each type
to enhance portability.

a. NAME-STRING At least 255 characters in a CAIS pathname.

b. RELATIONSHIP-KEY
KEY-STRING At least 20 characters must be significant in (relationship) key.

!

Ig

3-16 Draft CAIS

c. ATTRIB-NAME
RELATION-NAME At least 20 characters must be significant in attribute/rela-

tion names.

d. Tree-height At least 10 levels of heirarchy must be supported for the
primary relationships.

e. Record size number At least 32767 bits per record must be supported.

f. Open node count Each process must be able to have at least 15 nodes open
simultaneously.

4. CAIS STRUCTURAL NODES

Structural nodes are special nodes in the sense that they do not contain contents as do the other nodes of the CAIS
model. Their purpose is solely to be carriers of common information about other nodes related to the structural node.
Structural nodes are typically used to create conventional directories, configuration objects, etc.

The package CAI SSTRULCTUIRAL-NODES defines the primitive operations for creating structural nodes. All other
operations for structural nodes are defined in Section 3.

4.1 PACKAGE CAIS-STRUCTURAL-NODES

4.1.1 Package Specification

with CAIS-NODE-DEFS;
package CAI SSTRUCTU IAL-NODES is

subtype NODE-TYPE is CAIS-NODE-DEFS.NODE-TYPE;
subtype NAME-STRING is CAIS-NODE-DEFS. NAM ESTRI NG;
subtype FORM-STRING is CAIS-NODE-DEFS.FORMS-STRING;
subtype RELATIONSHIP-KEY is CAIS-NODE-DEFS.RELATIONSHlP-KEY;
subtype RELATION-NAME is CAIS-NODE-DEFS.RELATION-NAME;

procedure CREATE-NODE(NAME: In NAME-STRING;
FORM-. In FORM-STRiNG

procedure CREATE-NODE(BASE: in NODE-TYPE;
KEY: in RELATIONSHIP-KEY:-
RELATION: in RELATION-NAME :="DOT";
FORM: in FORM-STRING:

procedure CREATE-NODE(NODE: in out NODE-TYPE;
NAME: in NAME-STRING;
FORM: in FORM-STRING:=

procedure CREATE-NODE(NODE: in out NODE-TYPE;
BASE: In NODE-TYPE;
KEY: In RELATIONSHIP-KEY=
RELATION: In RELATION-NAME " =DOT";

FORM: in FORM-STRING ='

private
-implementation-dependent

end GAlS-STRUCTURAL-NODES;

4.1.2 Package Semantics

subtype NODE-TYPE is CAIS-NODE-DEFS.NODE-TYPE;
subtype NAME-STRI NG Is CAIS-NODE-DEFS. NAM ESTRING,
subtype FORM-STRING Is CAIS-NODE-DEFS.FORM-STRING;
subtype RELATIONSHIP-KEY Is CAIS-NODE-DEFS.RELATIONSHIP-KEY;
subtype RELATION-NAME Is CAIS-NODE-DEFS.RELATION-NAME:

4-2 Draft CAIS

procedure CREATENOE(NAME: In NAME-STRING;
FORM: In FORM-STRING : =

procedure CREATENODE(BASE: In NODE-TYPE;
KEY: In RELATIONSHIP-KEY :
RELATION: In RELATION.NAME : = "DOT";
FORM: In FORM-STRING : =

procedure CREATENODE(NODE: In out NODE-TYPE;
NAME: In NAMESTRING;
FORM: In FORM-STRING : =

procedure CREATENODE(NODE: In out NODE-TYPE;
BASE: In NODE-TYPE;
KEY: in RELATIONSHIP-KEY : =
RELATION: in RELATION-NAME := "DOT";
FORM: in FORM-STRING : = ");

Creates a structural node with its primary relationship and parent node implied by the NAME in the first and third pro-

cedures and given explicitly in the second and fourth procedures.

The last two procedures return a node handle allowing immediate access to attributes and relationships.

It non-null, the FORM parameter provides initial values for attributes of the node, using Ada aggregate syntax, with each
attribute name followed by a right-arrow > = ")and the attribute value (see Section 8.2.2 CAIS-LIST-UTILS for the
syntax of attribute value).

- !

5. CAIS FILE NODES

CAIS file nodes are nodes that represent information about and contain external files. The underlying model for the
content of such a node is that of a file of data items, accessible randomly by some index or indices or sequentially.
The basic operations on such files are provided by the Ada packages for Input/Output specified in Chapter 14 of the
Ada LRM. While the semantics of the packages as specified in the LRM are fully adhered to, the CAIS imposes addi-
tional requirements on those semantics that the LRM designates as being implementation-defined. These requirements
ensure consistent cooperation between the file-related, node-related, and device-related operations.

The CAIS defines additional Input/Output packages CAIS-SEQUENTIALIO, CAIS.DIRECT.JO. CAIS-TEXT 1O
and CAiS-INTERACTIVE.IO. The first three packages are identical to the Input/Output packages specified in the Ada
LRM, except that additional subprograms are added supporting more convenient and efficient file management opera
tions by exploiting the CAIS Node Model. The package CAIS-INTERACTIVE-1O defines additional Input/Output facilities
appropriate for files which are assigned to terminals.

To insure the consistency of file- and node-related operations the CAIS imposes the following two constraints on all I/O
packages:

A file must first be made accessible to an Ada program by an OPEN or CREATE, specifying the

external file by a NAME and a FORM, both character strings. The formats of these strings are
not specified in the Ada LRM. The CAIS requires the formats and semantics for NAME and FORM
to adhere to the specifications given in Sections 3 and 4, respectively. Thus file names have the
syntax of node pathnames.

The CREATE operations both establish a new external file (as described in Chapter 14 of the
Ada LRM) and have the side effect of creating the node for the file. The file node's primary rela-
tionship and parent node are implied by the NAME parameter. The DELETE operations have
the side effect of deleting the node itself. DELETE operations are not legal if a file's node has
primary relationships emanting from it. IO DELETE operations require that the file be open;
CAIS-NODE MANAGEMENT DELETE operations require only that the node be open (but they
also delete the contents with the deletion of the node itself).

While an implementation may provide a mechanism for file creation and opening to specify access synchronization,
via the FORM parameter, that access synchronization refers to the file contents level only. To utilize node level access
synchronization, the user must open the node explicitly and specify node synchronization operations (see Section 3 7).
Files may be opened with or without node handles being opened, and nodes may be open before or while associated
file handles are open.

5.1 Ada LRM INPUT/OUTPUT

5.1.1 Package 1OEXCEPTIONS

This package is specified by Chapter 14 of the Ada LRM. The LRM-defined package provides the definition for all excep-
tions generated by the input/output packages.

5.1.2 Package SEQUENTIAL -O

This package provides sequential access to files/devices. This package is specified by Chapter 14 of the Ada LRM; however,
because of additional pragmatic requirements it may require a specialized implementation in order to be utilized in a
CAIS implementation.I

I

5-2 Draft CAIS

5.1.3 Package DIRECT-1O

This package provides for direct-access input/output to files/devices. This package is specified by Chapter 14 of the
Ada LRM; however, because of pragmatic and additional implied semantic requirements, it may require a specialized
implementation in order to be utilized in a CAIS implementation.

5.1.4 Package TEXT-1O

This package provides sequential formatted input/output to ASCII text files. This package is specified in Chapter 14
of the Ada LRM, however, because of pragmatics and additional implied semantics, it may require a specialized im-
plementation in order to be utilized in a CAIS implementation.

5.2 CAIS INPUTIOUTPUT

5.2.1 CAIS File Management

Section 14.2.1 of the Ada LRM defines the file management operations CREATE and OPEN that are included in each
of the Ada LRM Input/Output packages. These operations use a pathname as identification of the external file.
In the CAIS model, this pathname implies a navigation along relationships to reach the node whose content represents
the desired external file.

In the CA!S, the navigation operations of CAIS-NODE-MANAGEMENT allow the identification of the node associated
with a file by means of a pathname and also by means of an opened node handle, or a base node and a relationship
identification (i.e., relation name and relationship key) leading to the desired node.

The procedures and functions described in this section provide for the control of external files; their declarations are
repeated in each of the three packages for CAIS sequential, direct, and text input/output. In order to provide for a smooth
transition from a file node to the file itself, and to prevent unnecessary repetitions of navigations, the file management
operations CREATE and OPEN included in the packages CAIS-SEQUENTIAL-IO, CAIS.DIRECT-IO, and
CAIS-TEXT-1O are provided in overloaded versions:

subtype NODE-TYPE is CAIS-NODE-DEFS.NODE-TYPE;
procedure CREATE (FILE: in out FILE-TYPE;

MODE: In FILE-MODE;
BASE: in NODE-TYPE;
KEY: In RELATIONSHIP._KEY:
RELATION: In RELATIONNAME: = "DOT";
FORM: In FORM-STRING: =.

procedure OPEN (FILE: in out FILE-TYPE;
MODE: in FILE-MODE;
BASE: in NODETYPE;
KEY: in RELATIONSHIPKEY:
RELATION: in RELATION-NAME: ="DOT":

FORM: in FORM-STRING: =.
procedure OPEN (FILE: In out FILE-TYPE;

MODE: in FILE-MODE;
NODE: in NODE-TYPE;
FORM: in FORM-STRING: =.

The semantics of the operations are the same as specified in the Ada LRM Section 14.2.1 and CAIS Section
5.0, except that the external file is identified by means of the associated node handle or BASE, KEY, RELATION.

In addition, the following operation is provided to obtain an opened node handle for the node associated with a file:

_ . . -_ - ' i - I -

Draft CAIS 5-3

procedure OPEN-NODE(NODE: in out NODE-TYPE;
FILE: In FILE-TYPE);

The exception STATUS-ERROR is raised if either the actual parameter for FILE is a closed file handle or the actual
parameter for NODE is an already open node handle.

5.2.2 Package CAIS-SEQUENTIAL 10

This package provides sequential access to files/devices. This package is specified by Chapter 14 of the Ada RML; however,
because of additional pragmatic requirements it may require a specialized implementation in order to be utilized in a
CAIS implementation. Furthermore, the declarations given in Section 5.2.1 are added to the package.

5.2.3 Package CAIS-DIRECT-1O

This package provides for direct-access input/output to files/devices. This package is specified by Chapter 14 of the Ada
LRM; however, because of pragmatic and additional implied semantic requirements, it may require a specialized implemen-
tation in order to be utilized in a CAIS implementation. Furthermore, the declarations in Section 5.2.1 are added to the
package.

A conforming implementation should support access with package CAIS-SEQUENTIAL-O to an external file created
and/or maintained with CAIS-DIRECT-1O. (This requires that the generic instantiations of both packages utilize the
identical ELEMENT-TYPE.)

5.2.4 Package CAIS-TEXT-1O

This package provides sequential formatted input/output to ASCII text files. This package is specified in Chapter 14 of
the Ada LRM; however, because of pragmatics and additional implied semantics, it may require a specialized implementa-
tion in order to be utilized in a CAIS implementation. Furthermore, the declarations given in Section 5.2.1 are added to
the package.

A conforming implementation that supports CAIS-INTERACTIVE-1O provides additional semantics in the
CAIS-TEXT-1O package for the CAIS-TEXT-10 procedures and functions which are used in reference to printer-
type terminals and Video Display Terminal (VDT) type terminals associated with an object of type CAIS__INTER-
FACE- 10.INTERACTIVE-TERMINAL.

The line terminator, page terminator, and file terminator characters are implementation-dependent.

A VDT functions identically to a hardcopy terminal unless bounds are set for the line length and/or page length. For
a cursor-addressable VDT, the current column number and current line number of the associated input file and output
file indicate the column number and line number, respectively, on the VDT display. The character position in the upper
left corner of the VDT display is the first column of the first line of the first page.

The following procedures have additional semantics when used in reference to a terminal.

procedure SET-LINE-LENGTH(FILE in FILE-TYPE, TO :in COUNT):

procedure SET__LINE-LENGTH(TO : in COUNT);

The exception USE-ERROR is raised if the value of TO is greater than the number of character positions on a line
of the display.

procedure SET-PAGELENGTH(FILE : in FILE-TYPE; TO: In COUNT);
procedure SET-PAGE-LENGTH(TO: In COUNT).

In reference to a VDT the exception USE-ERROR is raised if the value of TO is greater than the number of lines on
the display.

II

5-4 Draft CAIS

procedure NEW-LINE(FILE : In FILE-TYPE;
SPACING: In POSITIVE-COUNT :=);

procedure NEW.LINE(SPACING: In POSITIVECOUNT := 1);

In reference to a VDT the active position is moved to the first column of the line below the current line. If the active
position was on the last line of the page, NEW-LINE causes all lines of the display to be moved upward such that
the top line(s) is lost and the last line of the page is blank.

SPACING acts as defined in the LRM.

procedure NEW.PAGE(FILE : In FILE-TYPE);
procedure NEW-PAGE;

In reference to a VDT the screen is cleared and the active position is moved to the first column of the first line of the display.

procedure GET(...

In reference to a cursor-addressable VDT with a bounded line length the GET procedures clear a portion of the display
starting at the active position and equal in length to the maximum possible length of the item to be read. The active
position is not changed. The data to be read is buffered as the user enters it. Implementation defined editing operations
are permitted. No characters other than the printable characters and horizontal tab (HT) may be returned.

procedure SET-ERROR (FILE : in FILE-TYPE);

Provides an open file handle to be used for current error output. The exception MODE-ERROR is raised if the mode
of FILE is IN-FILE.

function STANDARD-ERROR return FILE-TYPE;

Returns error output set at start of program execution.

function CURRENTERROR return FILE-TYPE;

Returns current error output, set by SET-ERROR.

5.2.5 Package CAIS-INTERACTIVE-1O

This package defines input and output facilities appropriate to files which are assigned to terminals.

The package provides for association of input and output text files with an output logging file. It also provides for turning
on and off local echoing of input, association of a prompt string with terminal input, and simplistic random access within
a terminal display.

Finally, this package defines a standard error-output text file which is used for error messages which are generated
during program execution, but which would be missed if they were output to a re-directed standard output.

5.2.5.1 Package Specification

with CAIS-TEXT-IO;
with CAIS-NODEDEFS;
package CAIS-INTERACTIVE-O Is

subtype FILE-TYPE Is CAIS-TEXT-IO.FILE-TYPE;

type INTERACTIVE-TERMINAL Is limited private;

Draft CAIS 5.5

procedure ASSOCIATE (TERMINAL: In out INTERACTIVE-TERMINAL;
INFILE : In FILE-TYPE;
OUTFILE: in FILE.JIYPE);

procedure SET-LOG (TERMINAL : In out INTERACTIVE-.TERMINAL;
LOG-FILE: In FILE-TYPE);

function LOG (TERMINAL : In INTERACTIVE-TERMINAL)
return FILE__TYPE;

type CURSOR-POSITION is
record

LINE :POSITIVE;
COLUMN : POSITIVE;

end record;

procedure SET-CURSOR (TERMINAL In out INTERACTIVE-TERMINAL;
POSITION: in CURSOR-POSITION);

function CURSOR (TERMINAL : in out INTERACTIVE-TERMINAL)
return CURSOR-POSITION;

function SIZE (TERMINAL in out INTERACTIVE-ERMINAL)

return CURSORi-POSITION;

procedure UPDATE (TERMINAL : in out INTERACTIVE-TERMINAL);

procedure SET-ECHO (TERMINAL: In out INTERACTIVE-TERMINAL;
TO: in BOOLEAN : = TRUE);

function ECHO (TERMINAL -. in INTERACTIVE-TERMiNAL) return BOOLEAN;

procedure SET-PROMPT (TERMINAL: In INTERACTIVE- ERMINAL;
TO : in STRING);

function PROMPT (TERMINAL : in INTERACTIVE-TERMINAL) return STRING;

-Exceptions

LAV3UT-ERROR exception (enames CAIS-NODE-DEFS.LAYOUT-ERROR;
;0MODE--ERROR excepti~n rerames CAIS-NODE-DEFS.MODE_ERROR;

STATUS --ERROR exception reriames CAIS-,NODE-DEFS.STATUS-ERROR;
USE ERROR exception rerames CAISNODE DEFS.USEERROR

private
._ 1'1 emprntation-dependent

end CAiS INTERACTIVE to0.

5.2.5.2 Package Semantics

procedure ASSOCIATE (TERMINAL In out INTERACTIVE-TERMINAL;
INFILE : In FILE-TYPE;
OUTFILE In FILE-TYPE);

Assocites the INFILE ja file of mode'N-FILE) and the tile OUTFILE (a tile ofmode OUT-FILE) with the TERMINAL.
The exception MODE ERROR is raised if the mode of INFILE is OUT-ILE or the mode of OUTFILE is IN-FILE.
The exception STATUS -ERROR is raised if either INFILE or OUTFILE is not open.

5-6 Draft CAIS

procedure SET-LOG (TERMINAL: In out INTERACTIVE-TERMINAL;
LOG-FILE: In FILETYPE);

Sets LOG-FILE as the file on which the output log is written. When logging is active, all output is simultaneously provid-
ed to both the output file and the log file. Logging associations on the standard input and standard output text files are
required to be preserved across program invocations. The exception MODLERROR is raised if the mode of I r.-!-FILE
is IN-FILE. The exception STATUS-ERROR is raised if CAIS-TEXT IO.1ISOPEN(LOG-FILE) returns FALSE.

function LOG (TERMINAL: In INTERACTIVE-TERMINAL)
return FILE-TYPE;

Returns the current logging file associated with TERMINAL. The file handle returned is not open if not logging

type CURSOR-POSITION is
recordiLINE : POSITIVE;

COLUMN : POSITIVE;
end record;

CURSOR-POSITION identifies the line and column numbers of a terminal.

procedure SET-CURSOR (TERMINAL : In out INTERACTIVE-TERMINAL;
POSITION in CURSOR-POSITION);

Moves the active position on the display to that specified by POSITION. The exception LAYOUTERROR is raised
if the LINE or COLUMN number exceeds PAGE-LENGTH or LINE-LENGTH, respectively, when bounded. For a hard-
copy terminal the exception USE-ERROR is raised if the LINE or COLUMN number is less than the current line or
column number, respectively.

function CURSOR (TERMINAL : in out INTERACTIVE-TERMINAL)
return CURSOR-POSITION;

Returns the current CURSOR-POSITION.

function SIZE (TERMINAL: in out INTERACTIVE-TERMINAL)
return CURSOR-POSITION;

Returns the number of lines and number of columns on the terminal.

procedure UPDATE (TERMINAL : in out INTERACTIVE-TERMINAL);

Forces all data that has not already been output to the physical terminal to be output immediately.

procedure SET-ECHO (TERMINAL : in out INTERACTIVE-TERMINAL;
TO: in BOOLEAN = TRUE);

Turns on (TRUE) or off (FALSE) echoing for input file.

function ECHO (TERMINAL : In INTERACTIVE-TERMINAL) return BOOLEAN;

Indicates current state of echoing.

procedure SET-PROMPT (TERMINAL In INTERACTIVE-TERMINAL;
TO : In STRING);

Sets prompting string for TERMINAL. All future requests for a line of input from TERMINAL will output prompt string
first. The prompting string and any echoed input are also copied to the log file, if any.

Draft CAIS 5-7

function PROMPT (TERMINAL : In INTERACTIVE-TERMINAL) return STRING;

Returns current prompt string for input tile.

5.3 PRAGMATICS

a. DIRECT-1O Each element of a direct-access file is selected by an integer in-
CAIS-DIRECT-1O dex of type COUNT. A conforming implementation must at least

support a range of indices from one to 32767 (2"* 15-1).

b. SEOUENTIAL-O A conforming implementation must support generic instantiation
CAIS-SEOUENTIAL__IO of these packages with any (non-limited) constrained Ada type
DIRECT-1O whose maximum size in bits (as defined by the attribute
CAIS-DIRECT-10 ELEMENT-TYPE'SIZE) is at least 32767. A conforming implemen-

tation must also support instantiation with unconstrained record
types which have default constraints and a maximum size in bits
of at least 32767, and may (but need not) use variable length
elements to conserve space in the external file.

c. TEXT-10 A conforming implementation must support files with at least 32767
CAIS-TEXT-!O records/lines in total and at least 32767 lines per page. A conform-

ing implementation must support at least 255 columns per line.

I

6. CAISPROCESSNODES

Each time an Ada program is invoked, a process node is created to represent the execution of the program. Even where
the Ada program uses tasking, the execution of the program and its tasks is treated as a single CAIS process. This
use of the term process does not preclude the CAIS implementation from devoting more than one host process or one
physical processor to the execution of the single process.

The mechanism by which a user enters the APSE (e.g., logs on) is not defined as part of the CAIS. The facility to verify
access rights to a system via user ID and password, for example, and to establish privileges and resource rights and
quotas may e supported either by the APSE or its underlying implementation.

Each time a user enters the APSE a root process node is created dynamically at the top-level node of the user. This root
process node initiates a tree of dependent processes. The primary relationship for the node of the root process emanates
from the top-level node of the user. It has relation name "JOB" and a relationship key assigned by the APSE or underly-
ing implementation of the APSE. This key is unique for each process node created by the user. In other words, the
format 'USER (XXX)' JOB (YYY) is the absolute pathname of a job.

The root process node exists for the duration of the job's existence in the APSE. When the user's job terminates, the
root process is terminated and the root process node is deleted.

A process may create other processes by invocation. This act of invocation creates both the node representing the pro-
cess and the process itself. The new process is a child of the invoking process. The primary relationship of the nodes
of these processes emanates from the invoking process with relation name "DOT" and a relationship key that is unique
among nodes bearing the DOT relation with the invoker. The relationship key is an identifier assigned by the invoking
process. By default, the 'CURRENT-NODE relationship of the new process is established to be the 'CURRENT_ NODE
of the invoking process.

A process is identified by providing a pathname to its process node (see CAIS Node Model, Section 3). List-valued at-
tributes and secondary relationships for a process are established using the general node manipulation routines (see
CAIS Node Model, Section 3).

Processes may communicate with each other using the techniques and procedures described in CAIS-PROCESS
COMMUNICATION (see Section 6.3). The basic capability provides for sending and receiving messages over channels
between processes, using a queueing model.

Processes may interrupt each other using the techniques and procedures described in CAIS-PROCESS-INTERRUPTS
(see Section 6.5). This basic capability allows for signalling and responding to "pseudo-interrupts," using an asynchronous
model for the delivery of the signal. The response to any pseudo-interrupt is definable by the Ada program before the
delivery of the signal.

6.1 PACKAGE CAIS-PROCESS-DEFS

This package defines types and exceptions associated with process nodes.

6.1.1 Package Specification

with CAISNODE-DEFS;
package CAISPROCESSDEFS is

type PROCESS-STATUS Is
(READY, SUSPENDED, ABORTING, TERMINATING);

- -

6-2 Draft CAIS

type COMPLETION-STATUS Is (ABORTED, TERMINATED);

ROOT-PROCESS: constant STRING = "'CURRENT-JOB";
CURRENT-PROCESS: constant STRING:

- Exceptions

NAME-ERROR: exception renames CAIS-NODE-DEF.NAME-ERROR;
USE-ERROR: exception renames CAIS-NODLDEFS.USE-ERROR;

private
-- implementation-dependent

end CAIS-PROCESS-DEFS;

6.1.2 Package Semantics

type PROCESS-STATUS is
(READY, SUSPENDED, ABORTING, TERMINATING);

The PROCESS-STATUS is the state a process is in when viewed from another process. Table 6-1 indicates the states
and the events which will cause transition from one state to another. In the READY state a process is actually running
or is waiting for resources.

TABLE 6-1
PROCESS STATE TABLE

READY SUSPENDED ABORTING TERMINATING
IOPERATION _______ _______

TERMINATE TERMINATING TERMINATING ---

ABORT ABORTING ABORTING -- ABORTING

SUSPEND SUSPENDED N/A N/A

RESUME -- READY NIA N/A

N/A: marks events that are not applicable to the state specified.
-- marks events that have no effect on the state.

Transition to a state as the result of an event is instantaneous with the occurrence of the event. As the state-transition
diagram indicates, there is no transition from an ABORTING or TERMINATING state into any running state.

type COMPLETION-STATUS Is (ABORTED, TERMINATED);

COMPLETION-STATUS is made available to an invoking process upon completion of a descendant process. These
are representative states of a process, since at the time of their receipt the process may have already ceased to exist,
depending upon the mechanism provided in the implementation underlying the CAIS for handling completed processes.

ROOT-PROCESS: constant STRING: =' 'CURRENT-JOB";
CURRENT-PROCESS: constant STRING: = . ";

ROOT-F .OCESS and CURRENT-PROCESS are two strings defined to represent respectively the root process of the
current job and the current process.

Draft CAIS 6-3

6.2 PACKAGE CAIS-PROCESS-CONTROL

This package provides support for the invocation of a program. A program can be invoked using the synchronous model,
in which the calling task is suspended during the life of the dependent process and is resumed when the dependent
process terminates, either normally or abnormally. A program can also be spawned using an asynchronous model, in
which the calling task continues execution after the call which creates a dependent process.

6.2.1 Package Specification

with CAIS-NODE-DEFS:
with CAIS-PROCESS-DEFS;
with CAIS-TEXT-1O:
with CAIS-TEXT-UTILS;
package CAIS-PROCIESS-CONTROL is

subtype PROGRAM-STRING is STRING;
subtype RESULTS_-STRING is CAIS-EXT-UTI LS. TEXT;
subtype PARAMS-STRING is CAIS-TEXT-UTILS.TEXT;
subtype NAME-STRING is CAIS-NODE-DEFS. NAM ESTRI NG;
subtype RELATIONSHIP-KEY is CAIS-NOOE-EFS.RELATIONSHIP-KEY;
subtype COMPLETION-STATUS is CAIS-PROCESS-DEFS.COMPLETION-STATUS;
subtype FILE-TYPE is CAIS-TEXT-IO.FILE-TYPE;
subtype NODE-.TYPE is CAIS-NODE-DEFS.NODE-TYPE;
subtype PROCESS-STATUS is CAIS-PROCESS-DEFS.PROCESS-STATUS;

UNIOUE-CHILD-KEY: STRING renames CA S-NODE-DEFS. LATEST-KEY:

procedure INVOKE-PROCESS (PROGRAM: in PROGRAM-STRING;
PARAMS: in PARAMS-STRING;
RESULTS: In out RESULTS-STRING;
STATUS: out COMPLETION-STATUS;
KEY: in RELATIONSHIP-K(EY: = UNIOUE-CHILD-KEY;
STD..JN: in FILE-TYPE : =

CAIS-TEXT-JO.CURRENT-JNPUT:
STD-OUT: in FILE-TYPE :=

CAIS..JEXT-AO.CURRENT-OUTPUT;
STD-ER;R: in FILE-TYPE :=

CAIS-TEXT-IO.CURRENT-ERROR;
CURR-NODE: in NAME-STRING=

"'CURRENT-NOOE"),

procedure SPAWNPROCE_ (PROGRAM: in PROGRAM-STRING;
PARAMS: in PARAMS-STRING;
NODE: in out NODE-TYPE;
KEY: in RELATIONSH-IP-KEY:=

U NIOU ECHILD-KEY;
STD-IN: in FILE-TYPE : =

CAISTEXTO.CUR'NT__JNPUT:
STD.OUT: In FILE-TYPE-

CAIS.. TEXT-JO.CURiENI OUTPUT;
STD.ERR: In FILE-TYPE :-

CAIS-TEXT-JO.CURRE. _,EqPOR;
CURR-NODE: In NAME-.STRING-

'CURRENT-NODE');

6-4 Draft CAIS

procedure AWAIT-PROCESS (PROCESS: In out NODE__TYPE;
RESULTS: in out RESULTS-STRING;
STATUS: out COMPLETION-STATUS;
LIMIT: in DURATION : = DURATION' LAST);

procedure GET-PARAMS (PARAMS: In out PARAMS-STRING);

procedure RETURN-TERMINATED(RE3ULTS: in RESULTS-STRING;

procedure RETURN-ABORTED(RESULTS: in RESULTS-STRING);

procedure ABORT-PROCESS (PROCESS: in NAME-STRING);
procedure ABORT-PROCESS (NODE: in NODE-TYPE);

procedure SUSPENDPPJCESS(PROCESS: in NAME-STRING),
procedure SUSPEND-PROCESS(NODE; in NODE-TYPE);

procedure RESUME-PROCESS (PROCESS: in NAME-STRING);
procedure RESUME-PROCESS (NODE: in NODE-TYPE);

function STATE-OFPROCESS (PROCESS: in NAME-STRING) return PROCESS-STATUS;
function STATEOCFPROCESS (NODE: in NODE-TYPE) return PROCESS-STATUS;

function JOB-INPUT return FILE--TYPE;
function JOB-OUTPUT return FILE-TYPE;

-Exceptions

USE-ERROR: exception renames CAIS-NODE-DEFS.USE-ERROR;

private
-implementation-dependent

end CAIS-PROCESS-CONTROL;

6.2.2 Package Semantics

subtype PROGRAM-STRING is STRING;
subtype RESULTS-STRING is CAIS-TEXT-UTILSTEXT;
subtype PARAMS-STRING is CAIS-TEXT-TILS.TEXT;
subtype NAME-STRING is CAIS-NODE-DEFS. NAM ESTRI NG;
subtype RELATIONSHIP-KEY is CAI SNODE-DEFS. RELATIONSH I PKEY;
subtype COMPLETION-STATUS is CAI SPROCESS-DEFS.COM PLETION-STATUS;
subtype FILE-TYPE is CAI STEXT-. FILE-TYPE;
subtype NODE-TYPE is CAIS-NODE-DEFS.NODE-TYPE;
subtype PROCESS-STATUS is CAI S-PROCESS-DEFS. PROCE SS-STATU S;

UNIOUE-CHILD-KEY: STRING renames CAIS-NODE-DEFS.LATEST-KEY;

procedure INVOKE-PROCESS (PROGRAM: in PROGRAM-STRING;
PARAMS: in PARAMS-STRING;
RESULTS: in out RESULTS-STRING;
STATUS: out COMPLETION-STATUS;
KEY: in RELATIONSHIP-KEY:

UNIQUE-CHILD-KEY;
STD-IN: In FILE-TYPE : =

CAIS-TEXT-JO.CURRENT..JNPUT;
STD-OUT: In FILE-TYPE : =

CAIS-TEXT-O.CURRENT-OUTPUT;

I
Draft CAIS 6-5

STDERR: In FILE-TYPE : =
CAIS-TEXT-IO.CURRENT-ERROR;

CURR-NODE: In NAME-STRING := "'CURRENT-NODE");

Creates a new node and a new process and passes a list of parameters to the new process. The calling task can either
supply the KEY or the CAIS implementation will assign a unique key via UNIQUE-CHILD-KEY. The calling task is
suspended until the new process terminates or aborts. The results are returned as a list, along with an enumeration
specifying the process's completion status. The node of the terminated process is automatically deleted upon termination.

procedure SPAWN-PROCESS (PROGRAM: In PROGRAM-STRING;
PARAMS: In PARAMS-STRING;
NODE: in out NODETYPE;
KEY: in RELATIONSHIP-KEY: =

UNIQUE-CHILD-KEY;
STD.IN: in FILE-TYPE : =

CAIS-TEXT-IO.CURRENT-INPUT;
STD.OUT: in FILE-TYPE :=

CAISTEXTIO.CURRENTOUTPUT;
STD-ERR: in FILE-TYPE : =

CAIS-TEXT-IO.CURRENT-ERROR;
CURR-NODE: in NAME-STRING : =

"'CURRENT-NODE");

Results in a new node and a new process being created to represent the execution of the specified program. Control
returns to the invoking process. This invocation provides no technique for coordination of the new process with its parent,
except that termination of the parent will not be completed until all children are terminated or aborted. Similarly, no technique
is provided for returiiing a result string to the invoking process. Communication between parent and child can be provid-
ed using the techniques provided in CAIS-PROCESS-COMMUNICATION.

procedure AWATPROCESS (PROCESS: in out NODETYPE;
RESULTS: in out RESULTS-STRING;
STATUS: out COMPLETION-STATUS;
LIMIT: in DURATION: = DURATION'LAST);

Suspend the calling task and wait for the process created by SPAWNPROCESS to complete. The USEERROR ex-
ception is generated if this is not the first attempt to wait for this descendant process. The result parameter and
COMPLETIONSTATUS are provided by spawned process's return, even if the process completes execution before
the call is made. A time limit is provided in which the parameters must be received or a TIME-OUT exception is raised.

procedure GET-PARAMS(PARAMS: in out PARAMS-STRING);

Retrieve the parameters passed to a process by its caller.

procedure RETURNTERMINATED (RESULTS: in RESULTS-STRING);

Await termination of all descer,.'ant processess, and then return the specified result parameter to the calling process.
The COMPLETION-STATUS will be TERMINATED.

procedure RETURN__ABORTED (RESULTS: in RESULTS-STRING);

Abort the current process (and all of its aoscendant processes) and then return the specified result parameter to the
calling process. The COMPLETION-STATUS will be ABORTED.

/!
6-6 Draft CAIS

procedure ABORTPROCESS (PROCESS: In NAME-STRING);
procedure ABORT-PROCESS (NODE: In NODE-TYPE);

Aborts the specified process and recursively forces any descendants of the named process to be aborted. The soquenc-
ing of the process abortions is not specified. ABORT-PROCESS returns control to the issuing process immediately.
At that time, if the state of the aborted process is examined, it will be either ABORTING or the process will be non-
existent. This node associated with the aborted process remains until explicitly deleted by the invoking process.

The COMPLETION-STATUS of the process will be ABORTED. ABORT-PROCESS can be used by a process to abort
itself.

procedure SUSPEND-PROCESS (PROCESS: in NAME-STRING);
procedure SUSPEND-PROCESS (NODE: in NODETYPE);
procedure RESUME-PROCESS (PROCESS: in NAME-STRING);
procedure RESUME-PROCESS (NODE: in NODE-TYPE);

Suspends or resumes the designated process. SUSPEND-PROCESS can include suspension of the requesting pro-
cess. While a process is suspended, the PROCESSSTATUS is SUSPENDED. RESUME causes an immediate change
to the READY state. Similarly, the transition to SUSPENDED state takes place immediately.

function STATE-OF-PROCESS (PROCESS: in NAME-STRING) return PROCESS-STATUS,
function STATE-OF-PROCESS (NODE: in NODE-TYPE) return PROCESSSTATUS:

Returns the current state of the specified process. The PROCESS-STATUS of a process issuing that function will always
be READY.

function JOB-INPUT return FILE-TYPE;

function JOB-OUTPUT return FILE-TYPE;

Returns the standard input or output defined at the initiation of the root process of the job. In general, these files will
refer to the interactive terminal or batch input or output files, even if the current input or output file for this process has
been re-directed to a different file.

6.3 PACKAGE CAIS-PROCESS-CCMMUNICATION

CAIS-PROCESS-COMMUNICATION provides techniques for a process to communicate with another process or itself.

A process may send and receive inter-process messages on a number of named channels. The channels are identified
by a character string with the syntax of an Ada identifier.

It is anticipated that certain channel names will eventually have standard meanings with CAIS. Each implementation
must identify those channel names which have special significance.

6.3.1 Package Specification

with CAIS-NODE-DEFS;
with CAIS-PROCESS-DEFS;
with CAIS__TEXT-UTILS;
package CAIS-PROCESS-COMMUNICATION is

subtype NODE-TYPE Is CAIS-NODE-DEFS.NODE_TYPE;
subtype NAME-STRING Is CAIS-NODE-DEFS.NAMESTRING;
subtype CHANNEL-STRING Is STRING;
subtype MESSAGE-TEXT Is CAIS-TEXT-UTILS.TEXT;

Al

Draft CAIS 6-7

procedure SEND (PROCESS : In NAME-STRING;
CHANNEL: In CHANNEL-STRING;
MESSAGE: In MESSAGE-TEXT;
LIMIT: In DURATION := DURATION'LAST);

procedure SEND(NODE: In out NODETYPE;
CHANNEL: In CHANNEL-STRING;
MESSAGE : In MESSAGE-TEXT;
LIMIT: in DURATION := DURATION'LAST);

procedure RECEIVE(SENDER : in out NODE-TYPE;
CHANNEL: in STRING;
MESSAGE : in out MESSAGE-TEXT
LIMIT in DURATION := DURATION'LAST);

-- Exceptions

TIME-OUT exception;

private
-- implementation-dependent

end CAIS-PROCESS-COMM U NICATION;

6.3.2 Package Semantics

subtype NODE-TYPE is CAIS-NODE-DEFS.NODE-TYPE;
subtype NAME-STRING is CAIS-NODE-DEFS.NAME-STRING;
subtype CHANNEL-STRING Is STRING;

Provides logical name of a communication channel between communicating processes. The name is determined by
mutual agreement.

subtype MESSAGE-TEXT is CAIS-TEXT-UTILS.TEXT:

The message being sent.

procedure SEND(PROCESS : in NAME-STRING;
CHANNEL: in CHANNEL-STRING;
MESSAGE : in MESSAGE-TEXT;
LIMIT: in DURATION := DURATION'LAST);

procedure SEND(NODE : in out NODE-TYPE;
CHANNEL: in CHANNEL-STRING;
MESSAGE: in MESSAGE-TEXT,
LIMIT: in DURATION : = DURATION'LAST);

Attempts to queue up the specified MESSAGE (text) for the designated process with the specified logical CHANNEL
name. If the queue is full, the calling task will be suspended up to the time LIMIT specified, after which a TIME-OUT
exception is raised in the calling process. As soon as there is room for the MESSAGE, it is queued and SEND returns.
It is the responsibility of the two processes to insure that whatever additional coordination required is done.

procedure RECEIVE(SENDER : In out NODETYPE;
CHANNEL: in CHANNEL-STRING;
MESSAGE : In out MESSAGE-TEXT;
LIMIT: In DURATION := DURATION'LAST);

6-8 Draft CAIS

Suspends the calling task until a message is available on the specified CHANNEL or the time LIMIT is reached. Multiple
queued messages are received in a first-in first-out order. The capacity of the queue for a particular channel name is
implementation dependent. However, before the first RECEIVE is done by a process on a particular channel name, the
capacity of the queue is defined to be zero, and any SENDers will be delayed because the queue is by definition already
"full," The sending process is identified by an open node handle on the process node.

6.4 PACKAGE CAIS-PROCESSANALYSIS

This package provides standardized debugging capabilities for processes within the CAIS implementation.

6.4.1 Package Specification

with CAIS-PROCESS.DEFS:
package CAIS-PROCESS-ANALYSIS is
ITBD)
end CAISPROCESS__ANALY SIS

6.5 PACKAGE CAIS-PROCESS-INTERRUPTS

This package provides support for pseudo-interrupts, asynchronous signal sent between processes. Each interrupt
is identified by a string with the syntax of an Ada identifier. When an interrupt is generated, the receiving process may
respond by ignoring it, aborling execution, waking up a suspended task, or simply putting it on HOLD.

It is anticipated that the CAIS will define standard interrupt names, as well as standard default interrupt responses
associated with each standard interrupt, in effect prior to an explicit SET-RESPONSE. The most likely default responses
are ABORT for certain serious interrupts and IGNORE for all others.

Note that the predefined Ada language mechanism for associating interrupts with tasks is not being used here, so as
to remain independent of any compiler implementation of this feature.

6.5.1 Package Specification

with CAIS PROCESS-DEFS,
package CAIS-PROCESS INTERRUPTS is

subtype NODE-TYPE is CAIS-PROCESS-DEFS.NODE TYPE,
subtype NAME-STRING is CAIS _PROCESS-DEFS.NAME-STRING,

subtype INTERRUPT. NAME is STRING.

type INTERRUPTRESPONSE is (IGNORE, ABORT, AWAKE, HOLD),

procedure SIGNAL (PROCESS in NAME-STRING,
INTERRUPT: in INTERRUPTNAME),

procedure SIGNAL (PROCESS: in NODETYPE;
INTERRUPT: in INTERRUPTNAME);

procedure SET-RESPONSE(INTERRUPT: in INTERRUPT-NAME;
RESPONSE: In INTERRUPT-RESPONSE;
TIME-LIMIT: In OURATION = DURATION'LAST);

function RESPONSE (INTERRUPT: in INTERRUPT-NAME)
return INTERRUPT-RESPONSE;

jo

Draft CAIS 6-9

- Exceptions

USE-ERROR: exception renames CAISNODE-DEFS.USE-ERROR;

private
- implementation-dependent

end CAIS-PROCESS-INTERRUPTS;

6.5.2 Package Semantics

subtype NODE-TYPE Is CAISPROCESSDEFS.NODETYPE;
subtype NAME-STRING is CAIS-PROCESSDEFS.NAME-STRING;
subtype INTERRUPT-NAME Is STRING;

Typical interrupt names would be "BREAK", "HANG-UP". etc.

type INTERRUPT-RESPONSE is (IGNORE, ABORT, AWAKE, HOLD);

This enumeration specifies the possible responses associated with an interrupt. Each interrupt has exactly one of these
responses associated with it at any one time. If the response is AWAKE, then some task has executed a SET-RESPONSE
(INTERRUPT-NAME, AWAKE, TIME-LIMIT) and is still suspended awaiting the interrupt signal.

procedure SIGNAL (PROCESS: in NAME-STRING;
INTERRUPT: in INTERRUPT-NAME);

procedure SIGNAL (PROCESS: in NODETYPE;
INTERRRUPT in INTERRUPTNAME);

Generates the designated pseudo-interrupt in the named process. This call always returns immediately, even if the associated
response in the receiving process is HOLD.

procedure SET-RESPONSE (INTERRUPT: in INTERRUPT-NAME;
RESPONSE: in INTERRUPTRESPONSE;
TIMELIMIT: in DURATION:= DURATION'LAST);

Handles a designated pseudo-interrupt according to the designated response. If the previously set response were HOLD,

and the interrupt had already occurred at least once, then the newly specified response is immediately enacted, The
USE-ERROR is raised it an attempt is made to SETRESPONSE when some other task is still suspended with the
response AWAKE. In all other cases, the new response supercedes any previous default or explicitly set response.

If the response is AWAKE, then the calling task is suspended until the interrupt is received or until the time limit expires
(in which case the TIME-OUT exception is raised) When setting the response to AWAKE, the previously set response
is remembered, and again becomes the current response after the task is awoken due either to an interrupt or to a time-out.

function RESPONSE (INTERRUPT in INTERRUPT NAME)
return INTERRUPT RESPONSE.

Indicates the current response associated with the designated interrupt for the current process. If the response is AWAKE.
then some other task of the current process is suspended awaiting the Interrupt

6.6 PRAGMATICS

a. Channels A conforming implementation musl support channel names of up to 20 characters. A
conforming impiementat ". must support up to 20 simultaneous accepting channels

. from the same processI
tI

7. CAIS Device Nodes

This area provides basic device input/output support, along with special device control facilities. A device must first be
made accessible to an Ada program by an OPEN, specifying the external device by a NAME and a FORM, both character
strings. When opening device node handles, the NAME and FORM string formats are required to be the same and refer
to the same external devices in both file node usage and in the device node packages. The collection of packages in
this section are defined with careful consideration of standards established for information interchange by the American
National Standards Institute 1ANS1771 and IANSI79]. The interfaces are also defined with consideration for existing in-
teractive terminals that do not conform to the ANSI standards.

7.1 VIRTUAL TERMINALS

There are three primary classes of character-imaging terminals in use today: scroll, page, and form. Four packages
are provided in this section, one package for the common terminal support functions and one package for each of the
three classes of terminals supported.

7.1.1 Package CAIS-TERMINAL-SUPPORT

This package provides the routines that are common to scroll, page, and form terminals.

7.1.1.1 Package Specification

with CAIS-NODE-DEFS;
package CAIS-TERMINAL-SUPPORT is

type TERMINAL-TYPE is limited private;

subtype FORM-STRING is CAISNOt.EDEFS.FORMSTRING;
subtype NAME-STRING is CAIS-NODE-DEFS.NAME-STRING;
subtype RELATIONSHIPKEY is CAIS-NODE-DEFS.RELATIONSHIP-KEY;
subtype RELATIONNAME is CAIS-NODE-DEFS. RELATION-NAME;

type TERMINAL-CLASS is (SCROLL, PAGE, FORM);

procedure CREATE (TERMINAL: in out TERMINAL-TYPE;
CLASS: in TERMINAL-CLASS : = SCROLL;
NAME: in NAME-STRING;
FORM: in FORM-STRING : =.

procedure CREATE (TERMINAL: in out TERMINAL-TYPE;
CLASS: in TERMINAL-CLASS : = SCROLL;
BASE: In NODETYPE;
KEY: in RELATIONSHIP-KEY :
RELATION: In RELATION-NAME: "DOT";
FORM: in FORM-STRING:

procedure OPEN (TERMINAL: In out TERMINAL-TYPE;
CLASS: In TERMINAL-CLASS := SCROLL;
NAME: In NAME-STRING;

FORM: In FORM-STRING :=.

I
1I

7-2 Draft CAIS

procedure OPEN (TERMINAL: In out TERMINAL-TYPE;
CLASS: In TERMINALCLASS := SCROLL:
BASE: In NODE-TYPE;
KEY: In RELATIONSHIP-KEY:
RELATION: In RELATION-NAME: ="DOT";
FORM: In FORMSTRING : = 'T

procedure OPEN (TERMINAL: In out TERMINAL-TYPE;
CLASS: In TERMINAL__CLASS : = SCROLL;
NODE: In NODETYPE;
FORM: in FORM-STRING : =

procedure CLOSE (TERMINAL: in out TERMINAL-TYPE);

procedure DELETE (TERMINAL: in out TERMINALTYPE);

procedure RESET (TERMINAL in out TERMINALTYPE;
CLASS : in TERMINAL CLASS);

procedure RESET (TERMINAL: in out TERMINAL-TYPE);

function CLASS(TERMINAL in TERMINALTYPE) return TERMINAL-CLASS;
function NAME (TERMINAL in TERMINALTYPE) return NAMESTRING;
function FORM (TERMINAL in TERMINALTYPE) return FORMSTRING;

function IS-OPEN (TERMINAL : in TERMINAL-TYPE) return BOOLEAN;

type ACTIVE-POSITION is
record

LINE : POSITIVE;
COLUMN: POSITIVE;

end record;

procedure SET-POSITION (TERMINAL : in out TERMINALTYPE;
POSITION: in ACTIVEPOSTION);

function POSITION (TERMINAL : in TERMINAL-TYPE)
return ACTIVE-POSITION;

function SIZE (TERMINAL : in TERMINAL-TYPE)

return ACTIVE POSITION;

-- Exceptions

CLASS-ERROR : exception;
NAME-ERROR: exception renames CAIS _NODE-DEFS.NAME-ERROR;
USE-ERROR exception renames CAISNODEDEFS.USE_ERROR;
STATUS-ERROR: e-.:eption renames CAISNODE-DEFS.STATUS-ERROR;

private
-- implementalion-dependent

end CAISTERMINALSUPPORT;

7.1.1.2 Package Semantics

type TERMINAL-CLASS Is (SCROLL, PAGE, FORM);

Iso

Draft CAIS 7-3

Indicates the different classes of terminals that are supported.

procedure CREATE (TERMINAL: In out TERMINAL-TYPE;
CLASS: in TERMINAL-CLASS = SCROLL;
NAME: in NAME-STRING;
FORM: In FORM-STRING : =

Creates an extenal termnal (and its device node) that is associated with the given terminal. The given terminal is left
open. A null string for the FORM specifies default options of the implementation.

The exception STATUS-ERROR is raised if the given terminal is already open. The exception NAME-ERROR is rais-
ed if the NAME does not identify an external logical terminal.

procedure CREATE (TERMINAL: In out TERMINAL-TYPE;
CLASS: in TERMINAL-CLASS : SCROLL;
BASE: in NODE-TYPE;
KEY: In RELATIONSHIP-KEY : =
RELATION: in RELATION-NAME: = "DOT";
FORM: in FORM-STRING : = " ");

The semantics are the same as above except that the terminal is identified by means of BASE/KEY/RELATION.

procedure OPEN (TERMINAL : in out TERMINAL-TYPE;
CLASS: in TERMINAL-CLASS := SCROLL;
NAME: in NAME-STRING;
FORM: in FORM-STRING: .);

Associates the given terminal handle with a terminal having the given name and form and sets the current class of the
terminal handle to the given class.

The exception NAME-ERROR is raised if the string given as NAME does not identity a terminal. The exception
USE-ERROR is raised if the terminal identified by NAME cannot be opened in the given class or form.

procedure OPEN (TERMINAL: in out TERMINAL-TYPE;
CLASS: in TERMINAL-CLASS : = SCROLL;
BASE: in NODE-TYPE;
KEY: in RELATIONSHIP-KEY
RELATION: in RELATION-NAME: = "DOT";
FORM: in FORM-STRING : = ");

procedure OPEN (TERMINAL: in out TERMINAL-TYPE;
CLASS: in TERMINAL-CLASS : = SCROLL;
NODE: in NODE-TYPE;
FORM: in FORM-STRING = .

The semantics are the same as above except that the terminal is identified by means of the associated node or
BASE/KEY/RELATION.

procedure CLOSE (TERMINAL : in out TERMINAL-TYPE);

Severs the association between the terminal handle and its associated terminal.

procedure DELETE (TERMINAL: In out TERMINAL-TYPE);

Deletes the external terminal (and its device node) associated with the given terminal. The given terminal is closed,
and the external logical terminal ceases to exist.

7-4 Draft CAIS

The exception STATUS-ERROR is raised if the given terminal is not open. The exception USE-ERROR is raised if
deletion of the external logical terminal is not allowed by the caller.

procedure RESET (TERMINAL: In out TERMINAL-TYPE;
CLASS : - In TERMINALCLASS);

procedure RESET (TERMINAL: In out TERMINALTYPE);

Changes the terminal handle to the given class and/or resets the terminal handle to its initial state.

function CLASS(TERMINAL : In TERMINAL-TYPE) return TERMINAL-CLASS;

Returns the class of the node associated with the given terminal handle.

function NAME (TERMINAL : in TERMINAL-TYPE) return NAME-STRING;

Returns the name of the node associated with the given terminal handle.

function FORM (TERMINAL : in TERMINAL-TYPE) return FORM-STRING;

Returns the form associated with the given terminal handle.

function IS-OPEN (TERMINAL : in TERMINALTYPE) return BOOLEAN;

Returns TRUE if the given terminal handle is associated with a logical terminal, otherwise returns FALSE.

type ACTIVE-POSITION is
record

LINE : POSITIVE;
COLUMN : POSITIVE;

end record;

The ACTIVE-POSITION indicates the row and column position on the display of a terminal at which the next operation
may occur.

procedure SET-POSITION (TERMINAL: in out TERMINAL-TYPE;
POSITION : in ACTIVEPOSITION);

Moves the active position to the specified POSITION on the display of the given terminal.

function POSITION (TERMINAL : in TERMINAL-TYPE)
return ACTIVE-POSITION;

Returns the POSITION of the active position on the given terminal.

function SIZE (TERMINAL : in TERMINAL-TYPE)
return ACTIVE-POSITION;

Returns the maximum line and maximum column of the given terminal.

7.1.2 Package CAIS-SCROLL-TERMINAL

This package provides the functionality of a common "teleprinter" type terminal. It is capable of a minimal set of opera-
tions. Characters are transmitted between a program and the terminal a character or a line at a time. This type of ter-
minal is typically configured to echo each character as it is entered at the keyboard (before transmission to the computer
or intervening communications equipment).

Draft CAIS 7-5

7.1.2.1 Package Specification

with CAIS-NODEDEFS;
with CAIS-TERMINAL-SUPPORT;
package CAIS-SCROLL-TERMINAL Is

subtype TERMINAL-TYPE Is CAIS-TERMINAL._SUPPORT.TERMINAL-TYPE;

procedure SET-TAB (TERMINAL : in out TERMINALTYPE);

procedure CLEAR-TAB (TERMINAL: in out TERMINALTYPE);

procedure TAB (TERMINAL: in out TERMINAL-TYPE;
COUNT : in POSITIVE);

procedure NEW-LINE (TERMINAL: in out TERMINALTYPE);

procedure NEWPAGE (TERMINAL: in out TERMINALTYPE);

procedure PUT (TERMINAL: in out TERMINAL-TYPE;
ITEM: in CHARACTER);

procedure PUT (TERMINAL: in out TERMINAL-TYPE;
ITEM : in STRING);

procedure UPDATE (TERMINAL: in out TERMINAL-TYPE);

procedure GET (TERMINAL: in out TERMINAL-TYPE;
ITEM : out CHARACTER);

procedure GET (TERMINAL: in out TERMINAL-TYPE;
ITEM : out STRING);

procedure GET (TERMINAL : in out TERMINALTYPE;
ITEM : out STRING;
LAST: out NATURAL);

procedure SET-ECHO (TERMINAL in TERMINAL-TYPE;
TO in BOOLEAN := TRUE);

function ECHO (TERMINAL in TERMINAL-TYPE) return BOOLEAN;

procedure BELL (TERMINAL: in out TERMINALTYPE);

-- Exceptions

CLASS-ERROR : exception renames CAIS-TERMINAL-SUPPORT.CLASS-ERROR;
USE-ERROR: exception renames CAIS-NODE-DEFS.USE-ERROR;

private
-- implementation-dependent

end CAIS-SCROLL-TERMINAL;

7.1.2.2 Package Semantics

procedure SET-TAB (TERMINAL : in out TERMINAL-TYPE);

Creates a horizontal tab stop at the active position (used by TAB).

procedure CLEAR-TAB (TERMINAL: In out TERMINAL-TYPE);

IA

7-6 Draft CAIS

Deletes a horizontal tab stop at the active position. The exception USEERROR is raised if a horizontal tab stop does
not exist at the active position.

procedure TAB (TERMINAL: In out TERMINALTVPE;
COUNT: In POSITIVE);

Moves the active position the specified number of horizontal tab stops. The exception USE-ERROR is raised if there

are fewer than COUNT tab stops on the active line.

procedure NEW-LINE (TERMINAL: In out TERMINALTYPE);

Moves the active position to the first column of the next line. The display scrolls upward if entered on the last line of
the display.

procedure NEW-PAGE (TERMINAL: in out TERMINAL-TYPE);

Moves the active position to the first column of the first line of a new page.

procedure PUT (TERMINAL in out TERMINAL-TYPE;
ITEM : in CHARACTER);

Writes a single character to the display and advances the active position. If the active position is at the last column
on a line, a NEW-LINE operation is performed after writing the character.

procedure PUT (TERMINAL: in out TERMINALTYPE;
ITEM : in STRING);

Writes a character at a time in the same manner as PUT of a character, writing each character in the given string
successively.

procedure UPDATE (TERMINAL : in out TERMINAL-TYPE);

Forces all data that has not already been transmitted to the terminal to be transferred.

procedure GET (TERMINAL : in out TERMINAL-TYPE;
ITEM: out CHARACTER);

Reads a single (unedited) character from the terminal keyboard.

procedure GET (TERMINAL: in out TERMINAL-TYPE;
ITEM : out STRING);

Reads ITEM'LENGTH (unedited) characters from the terminal keyboard into ITEM.

procedure GET (TERMINAL : in out TERMINAL-TYPE;
ITEM : out STRING;
LAST: out NATURAL);

Successively reads (unedited) characters from the terminal keyboard into ITEM, until either all positions of ITEM are
filled or there are no more characters buffered for the terminal. Upon completion LAST contains the index of the last
position in ITEM to contain a character that has been read.

procedure SET-ECHO (TERMINAL: in TERMINAL.TYPE;
TO: In BOOLEAN : = TRUE);

When TO is given as TRUE, each character entered at the keyboard is echoed to the display.

function ECHO (TERMINAL: In TERMINAL-TYPE) return BOOLEAN;

Draft CAIS 7-7

Returns whether echo is enabled (TRUE) or disabled (FALSE).

procedure BELL (TERMINAL : In out TERMINAL-TYPE);

Activates the bell (beeper) on the terminal.

- Exceptions

CLASS-ERROR: exception renames CAIS-TERMINAL-SUPPORT.CLASS-ERROR;
USE-ERROR: exception renames CAIS-NODE-DEFS.USE-ERROR;

The exception CLASS-ERROR is raised if any of the operations in the package CAIS-SCROLLTERMINAL are in-
voked with a TERMINAL which is not OPENed or RESET with class SCROLL.

7.1.3 Package CAIS-PAGE-TERMINAL

This package provides the functionality of a page terminal. A page terminal is commonly referred to as a character-
oriented or interactive terminal. This terminal may have many types of format effectors, cursor controls, and local (built-
in) editing functions. Typical controls for page terminals are to position the cursor, to erase within a line or display area,
to insert into or delete from a line, to insert or delete entire lines, to scroll up, and to select graphic rendition for subse-
quent output characters (intensity, reverse-image, blink, underscore. etc.). The terminal may be configured to echo before
transmission to the computer (or intervening equipment) or not to echo at all. Each character is transmitted to the com-

puter as it is entered at the keyboard. Except when locally echoed, the control action implied by the character keyed
is deferred until (and if) the computer (or communications equipment) echoes the character. (This allows some programs,
operating with non-echoing terminals, to reinterpret the meanings of control characters keyed by not directly echoing
these characters. A number of popular text editors operate this way.)

7.1.3.1 Package Specification

with CAIS-NODE-DEFS;
with CAIS-TERMINAL-SUPPORT;
package CAIS-PAGE-TERMINAL is

subtype TERMINAL-TYPE is CAIS-TERMINAL-SUPPORT.TERMINAL-TYPE;

procedure SET-TAB (TERMINAL : in out TERMINAL._TYPE);

procedure CLEAR-TAB (TERMINAL: in out TERMINALTYPE);

procedure TAB (TERMINAL in out TERMINAL-TYPE;
COUNT: in POSITIVE);

procedure BELL (TERMINAL* in out TERMINAL-TYPE);

procedure DELETE-CHARACTER (TERMINAL: in out TERMINAL-TYPE;

COUNT: in POSITIVE);

procedure DELETE-LINE (TERMINAL: in out TERMINAL.-TYPE;
COUNT: In POSITIVE);

function ECHO (TERMINAL : In TERMINALTYPE) return BOOLEAN;

procedure ERASECHARACTER (TERMINAL: In out TERMINAL-TYPE;
COUNT: In POSITIVE);

type SELECT-ENUM is
(FROM-ACTIVE-POSITION-TO-END,

,

7-8 Draft CAIS

FROM-START-TOACTIVEPOSITION,
ALLPOSITIONS);

procedure ERASE.IN-DISPLAY (TERMINAL: In out TERMINAL-TYPE;
SELECTION: in SELECT-ENUM);

procedure ERASE.IN-LINE (TERMINAL : in out TERMINAL-TYPE;
SELECTION: In SELECT-ENUM);

procedure GET (TERMINAL: In out TERMINAL-TYPE;
ITEM : out CHARACTER);

procedure GET (TERMINAL: In out TERMINAL-TYPE;
ITEM : out STRING;

procedure GET (TERMINAL: In out TERMINAL-TYPE;
ITEM : out STRING;
LAST: out NATURAL);

procedure INSERTCHARACTER (TERMINAL : In out TERMINALTYPE;
COUNT: in POSITIVE);

procedure INSERT LINE (TERMINAL : in out TERMINALTYPE;
COUNT: in POSITIVE);

procedure PUT (TERMINAL : in out TERMINALTYPE;
ITEM : in CHARACTER);

procedure PUT (TERMINAL : in out TERMINALTYPE;
ITEM : in STRING);

type GRAPHIC-RENDITION-ENUM is
(PRIMARY-RENDITION,
BOLD,
FAINT,
UNDERSCORE,
SLOWBLINK,
RAPID-BLINK,
REVERSE-IMAGE)

procedure SELECTGRAPHICRENDITION (TERMINAL in out TERMINALTYPE;
SELECTION in GRAPHIC-RENDITION-ENUM):

procedure SET-ECHO (TERMINAL : in out TERMINAL-TYPE;
TO: in BOOLEAN := TRUE);

procedure UPDATE (TERMINAL: in out TERMINALTYPE);

Exceptions

CLASS-ERROR : exception renames CAIS-TERMINAL__SUPPORT.CLASS-ERROR;
USE-ERROR : exception renames CAIS-NODE-DEFSUSE-ERROR;

private
-- implementation-dependent

end CAIS-PAGE-TERMINAL;

7.1.3.2 Package Semantics

procedure SET-TAB (TERMINAL: In out TERMINALYPE);

Draft CAS 7-9

Creates a horizontal tab stop at the active position.

procedure CLEAR-TAB (TERMINAL : in out TERMINAL._TYPE);

Deletes a horizontal tab stop at the active position. The exception USE-ERROR is raised if a horizontal tab stop does
not exist at the active position.

procedure TAB (TERMINAL : In out TERMINALTYPE;
COUNT: In POSITIVE);

Moves the active position the specified number of horizontal tab stops. The exception USE-ERROR is raised if there
are fewer than COUNT tab stops on the active line.

procedure BELL (TERMINAL : in out TERMINALTYPE);

Activates the bell (beeper) on the terminal.

procedure DELETE-CHARACTER (TERMINAL : In out TERMINAL-TYPE;
COUNT: In POSITIVE);

Deletes the given number of characters on the active line starting at the active position. Adjacent characters to the right
of the active position are shifted left. Open space on the right is filled with SPACE characters. The active position is
not changed.

procedure DELETE-LINE (TERMINAL : In out TERMINAL-TYPE;
COUNT : in POSITIVE);

Deletes the given number of lines starting at the active line. Adjacent lines are shifted from the bottom toward the active
line. COUNT lines from the bottom of the display are cleared. The active position is not changed.

function ECHO (TERMINAL : in TERMINAL__TYPE) return BOOLEAN;

Returns whether echo is enabled (TRUE) or disabled (FALSE).

procedure ERASE-CHARACTER (TERMINAL : In out TERMINAL-TYPE;
COUNT: In POSITIVE);

Replaces the given numoer of characters on the active line with SPACE characters starting at the active position. The
active position is not changed. The exception USE-ERROR is raised if COUNT is greater than SIZE(TER-
MINAL).COLUMN-POSITION(TERMINAL).COLUMN.

type SELECT-ENUM is
(FROMACTIVE-POSITION-TO-END,
FROM-START-TOACTIVE-POSITION,
ALL-POSITIONS);

procedure ERASE.INDISPLAY (TERMINAL : in out TERMINAL-TYPE;
SELECTION : in SELECT-ENUM);

Erases the characters in the entire display as determined by the active position and the given SELECTION (include
the active position). The active position is not changed.

procedure ERASE.IN-LINE (TERMINAL : In out TERMINAL-TYPE;
SELECTION : In SELECT-ENUM);

Erases the characters in the active line as determined by the active position and the given SELECTION (include the
active position). The active position is not changed.I

U

I *
k,, mlm m / nl ,, . .. ' " -

7-10 Draft CAIS

procedure GET (TERMINAL: In out TERMINAL-.TYPE;

ITEM: out CHARACTER);

Reads a single (unedited) character from the terminal keyboard.

procedure GET (TERMINAL : in out TERMINAL-TYPE;
ITEM: out STRING);

Reads ITEMLENGTH (unedited) characters from the terminal keyboard into ITEM.

procedure GET (TERMINAL : in out TERMINAL__TYPE;
ITEM : out STRING;
LAST: out NATURAL);

Successively reads (unedited) characters from the terminal keyboard into ITEM, until either all positions of ITEM are
filled or there are no more characters buffered for the terminal. Upon completion LAST contains the index of the last
position in ITEM to contain a character that has been read.

procedure INSERT-CHARACTER (TERMINAL : in out TERMINAL-TYPE;
COUNT: in POSITIVE);

Inserts COUNT SPACE characters into the active line at the active position. Adjacent characters are shifted to the right.
The rightmost characters on the line may be lost. The active position is advanced to the right one character position.

procedure INSERT-LINE (TERMINAL : in out TERMINALTYPE;
COUNT: in POSITIVE);

Inserts COUNT blank lines into the display at the active line. The lines at and below the top of the display are lost. The
active position remains unchanged.

procedure PUT (TERMINAL : in out TERMINAL_..TYPE;
ITEM : in CHARACTER);

Writes a single character at the active position. Advances the active poition to the next column. If the character is writ-

ten to the last character position on a line, advances the active position to the first column of the next line. If the character
is written to !he last character position of the last line, inserts a line at the bottom of the display and moves the active
position to the first column of the last line.

procedure PUT (TERMINAL : in out TERMINAL-TYPE;
ITEM " in STRING);

Writes each character of the given string according to the semantics for PUT with ITEM as a single character.

type GRAPHIC-RENDIT:ON-ENUM is
(PRIMARY-RENDITION,
BOLD,

4 FAINT,
UNDERSCORE,

SLOW-BLINK,
RAPID-BLINK,
REVERSE-IMAGE);

procedure SELECT-GRAPHIC.RENDITION (TERMINAL: In out TERMINAL-TYPE;
SELECTION: in GRAPHIC-RENDITION-ENUM);

Sets the graphic rendition for subsequent characters to be PUT. If the graphic rendition specified is not supported by
the terminal, the primary rendition is used. The exception USE-ERROR is raised if the specified graphic rendition is
not supported.

. | - 1

Draft CAtS 7-11

procedure SET-ECHO(TERMINAL In out TERMINAL-TYPE;
TO : In BOOLEAN:= TRUE);

Turns on (TRUE) or off (FALSE) echoing for input file.

procedure UPDATE (TERMINAL : In out TERMINAL__TYPE);

Forces all data that has not already been transmitted to the terminal to be transmitted.

-- Exceptions

CLASS-ERROR : exception renames CAIS-TERMINALSUPPORI.,LASS-ERROR;
USE-ERROR: exception renames CAIS-NODE-DEFS.USE-ERROR;

The exception CLASS-ERROR is raised if any of the routines in the package CAIS-PAGE-TERMINAL are invoked
with a terminal handle which is not OPENed or RESET with class PAGE.

7.1.4 Package CAIS FORM-TERMINAL

This package provides functionality for manipulating a form terminal. A form terminal controls much of the display modilica-
tion itself (or within local "cluster" controllers). Typically a form is built by writing control and prompting characters to
desired positions on the display, setting specific character positions to be guarded (protected, as for prompts) or unguarded
(unprotected, as for ill-in qualified area), and designating the attributes of the characters (legal entries, color, and intensity.
The display is divided into areas of contiguous character positions (qualified area space) that have the same attributes (e.g,
unprotected, high intensity). Once the form is built, the form is transmitted to the terminal. At this point, the terminal
is in "local" control of the display. The user may move the cursor about on the display, insert, delete, and replace characters
in any unprotected area of the display (all under local control, without use of the computer or communications circuitry).
When the user has finished all the modifications/entries that are desired, the user presses a special key (function key
or enter key) which causes the modified portions of the display to be accessible to the program.

7.1.4.1 Package Specification

with CAIS-NODE-DEFS;
with CAIS TERMINAL-SUPPORT;
package CAIS-FORM-TERM!NAL is

subtype TERMINALTYPE is CAIS-TERMINAL-SUPPORT.TERMINAL-TYPE;

type TERMINATION-KEY RANGE Is INTEGER
range 0 . . implementation-defined;

type AREA-INTENSITY is
(NONE,
NORMAL,
HIGH):

type AREA-PROTECTION is
(UNPROTECTED,
PROTECTED);

type AREA-INPUT is
(GRAPHIC-CHARACTERS,
NUMERICS
ALPHABETICS);

7.12 Draft CAIS

type AREA-VALUE Is
(NO-FILL,
Fl LL..WITWJZEROES,
FILL-WITH-SPACES):

procedure DEFINE.OUALIFIED-AREA (TERMINAL: in out TERMINAL-TYPE;
INTENSITY: in AREA-INTENSITY:= NORMAL;
PROTECTION: in AREA-PROTECTION

PROTECTED;
INPUT: In AREA-INPUT: =

GRAPHIC-CHARACTER-INPUT;
VALUE: In AREA-VALUE =NO-FILL);

procedure CLEAROQUALIFIED.AREA (TERMINAL: in out TERMINAL-TYPE);

procedure TAB (TERMINAL: in out TERMINAL-TYPE;
COUNT: in POSITIVE);

procedure PUT (TERMINAL: in out TERMINAL-TYPE;
ITEM: in CHARACTER):

procedure PUT (TERMINAL :in out TERMINAL-TYPE;
ITEM: in STRING);

procedure ERASE-AREA (TERMINAL in out TERMINAL-TYPE);

procedure ERASE-DISPLAY (TERMINAL : in out TERMINALTYPE);

procedure ACTIVATE-FORM (TERMINAL: in out TERMINA-TYPE);

procedure GET (TERMINAL: in out TERMINAL-TYPE;
ITEM :out CHARACTER);

procedure GET (TERMINAL :in out TERMINAL-TYPE;
ITEM : out STRING):

function IS-FORM-UPDATED (TERMINAL: in TERMINA-TYPE return BOOLEAN;

function TERMINATION-KEY (TERMINAL : in TERMINAL-TYPE) return TERM INATIONKEY-RANG E;

function AREA-QUALIFIER-PEOUIRESSPACE (TERMINAL : in TERMINAL-TYPE) return BOOLEAN;

-Exceptions

CLASS-ERROR : exception renames CAI STERMINAL-SUPPORT.CLASS-ERROR;
USE-ERROR: exception renames CAIS-NODE-DEFS.USE-ERROR:

private
-implementation-dependent

end CAIS-FORM-TERMINAL;

7.1.4.2 Package Semantics

subtype TERMINAL-TYPE is CAIS-TERMINAL-SUPPORT.TERMINAL-TYPE;

type TERMINATION-KEY-RANGE Is INTEGER range 0. . implementation-.defined;

Draft CAIS 7-13

type AREA-INTENSITY is
(NONE.
NORMAL,
HIGH);

type AREA-PROTECTION Is
(UNPROTECTED,
PROTECTED);

type AREA INPUT is
(GRAPHIC-CHARACTERS,
NUMERICS,
ALPHABETICS);

type AREAVALUE is
(NO-FILL,
FILL-WITHZEROES,
FILL.WITH.SPACES);

These types define the attributes for a qualified area of a form. AREA-INTENSITY indicates the intensity at which the
characters in the area should be displayed (NONE indicates that characters are not displayed). AREA_-PROTECTION
specifies whether the user can modify the contents of the area when the form has been activated. AREA_-INPUT specifies
the valid characters that may be entered by the user (GRAPHIC-CHARACTERS indicates that any printable character
may be entered). AREA-VALUE indicates the initial value that the area should have when activated (NO-FILL indicates
that the value has been specified by a previous PUT statement).

procedure DEFINE-QUALIFIEDAREA (TERMINAL: In out TERMINAL-TYPE;
INTENSITY: In AREA-INTENSITY: = NORMAL;
PROTECTION: in AREA-PROTECTION: = PROTECTED;
INPUT: In AREAINPUT : =

GRAPHIC-CHARACTER- NPUT;
VALUE: in AREAVALUE : = NO-FILL);

Indicates that the active position is the first character position of a qualified area. The end of the qualified area is in-
dicated by the beginning of the following qualified area.

procedure CLEAR-OUALIFIEDAREA (TERMINAL: In out TERMINALTYPE);

Removes an area qualifier from the active position.

procedure TAB (TERMINAL : in out TERMINAL-TYPE;
COURT : in POSITIVE);

Moves the active position the specified number of qualified areas toward the end of the display. The active position
is the first character position of the designated qualified area. The exception USE-ERROR is raised if there are fewer
than COUNT qualified areas after the active position.

procedure PUT (TERMINAL : In out TERMINAL-TYPE;
ITEM: In CHARACTER);

Writes a character to the display in the active position. The column of the active position is incremented by one. If 1he
character is written in the last column of a line, the active position is advanced to the first column of the following line
If the character is written to the last column of the last line, the active position is moved to the first column of the first
line. If the area qualifier takes space on the display, writing to the position containing an area qualifier removes the
area qualifier. Only characters in the range SPACE through STANDARD.ASCII.TILDE may be written. An attempt to
write any other character raises the USE-ERROR exception.

I
I

7-14 Draft CAIS

procedure PUT (TERMINAL: In out TERMINAL-TYPE;

ITEM: In STRING);

Writes each character of the ITEM according to the semantics for writing an individual character.

procedure ERASE-AREA (TERMINAL : In out TERMINALTYPE);

Clears the area in which the active position is located.

procedure ERASE-DISPLAY (TERMINAL : In out TERMINALTYPE);

Clears the display and removes all area qualifiers.

procedure ACTIVATE-FORM (TERMINAL :in out TERMINAL-TYPE);

Activates the form that has been created enabling the user to edit the form. Returns control to the calling task when
user enters a termination key.

procedure GET (TERMINAL : in out TERMINAL-TYPE;
ITEM: out CHARACTER);

Reads a character from the display at the active position. Advances the active position forward one position. An area
qualifier (on a display on which the area qualifier requires space) is read as the SPACE character.

procedure GET (TERMINAL : in out TERMINAL-.TYPE;

ITEM : out STRING);

Reads ITEMLENGTH characters from the display one at a time filling the ITEM from ITEM'FIRST through ITEM'LAST.

function IS-FORM-UPDATED (TERMINAL : In TERMINAL-TYPE) return BOOLEAN;

Returns whether the form was modified by the user during the previous ACTIVATE-FORM operation.

function TERMINATION-KEY (TERMINAL : in TERMINAL-TYPE) return TERMINATIONKEY-RANGE;

Returns a number that indicates which (implementation dependent) key terminated the ACTIVATEFORM procedure.
A value of zero indicates the normal termination key (i.e., the ENTER key).

function AREA-QUALIFIERREQUIRES-SPACE (TERMINAL: in TERMINAL-TYPE)
return BOOLEAN;

Returns TRUE if the area qualifier requires space on the display.

- Exceptions

CLASS-ERROR : exception renames CAIS-TERMINAL-SUPPORT.CLASS-ERROR;
USE-ERROR: exception renames CAIS-NODE-DEFS.USE-ERROR;

The exception CLASS-ERROR is raised if any of the routines in the package CAIS-FORMTERMINAL are invoked
with a terminal handle which is not OPENed or RESET with class FORM.

7.2 PACKAGE CAIS-DEVICE-CONTROL

This package provides physical device control interfaces. For each device type, there is a set of operations defined to
manipulate the device.

Certain generic device-oriented status information is available outside of the specific packages.

Draft CAIS
71

7.2-1 Package Specification

package CAIS-DEVICE-CONTROL Is
(TBD)

end CAIS-DEVICE-CONTROL;

8. CAIS UTILITIES

This area provides packages for manipulating strings and parameter lists. It also defines additional pragmatic requirements
for a conforming implementation of the predefined Ada LRM packages.

8.1 PREDEFINED LANGUAGE ENVIRONMENT

The facilities described in the Ada LRM that are used directly by the CAIS include the packages STANDARD and SYSTEM,
as discussed in the following subsections. See the Pragmatics Section 8.3.

8.1.1 Package STANDARD

Package STANDARD forms the outermost scope of all Ada compilation units.

Package STANDARD is not replaceable by implementors of the CAIS, and hence the "CAIS-" prefix is not used.

8.1.2 Package SYSTEM

The package SYSTEM is provided as a language-defined package which defines certain parameters of the language
implementation.

Package SYSTEM is not replaceable by implementors of the CAIS, and hence the "CAIS-" prefix is not used.

8.2 PREDEFINED UTILITY PACKAGES

The utilities necessary for the support of other CAIS interfaces include the packages CAIS-TEXT-UTILS and
CAIS-LIST-UTILS, as discussed in the following sections.

8.2.1 Package CAIS-TEXT-UTILS

This package implements basic operations on a string type which is of dynamic length. It defines the type used to imple-
ment lists and is used for MESSAGE-TEXT, PROCESS-STRING, and RESULTS-STRING.

8.2.1.1 Package Specification

package CAIS-TEXT-UTILS Is
MAXIMUM : constant : = implementation-defined;
subtype INDEX Is INTEGER range 0...MAXIMUM;

type TEXT is limited private;

function LENGTH (T: TEXT) return INDEX;
function VALUE (T: TEXT) return STRING;
function EMPTY (T: TEXT) return BOOLEAN;

. . . I

8-2 Draft CAIS

procedure INIT-TEXT(T: in out TEXT);

procedure FREE-TEXT(T: In out TEXT);

function TOTEXT (S: STRING) return TEXT;
function TO-TEXT (C: CHARACTER) return TEXT;

function "&' (LEFT: TEXT; RIGHT: TEXT) return TEXT;
function "&" (LEFT: TEXT; RIGHT: STRING) return TEXT;
function "&" (LEFT: STRING; RIGHT: TEXT) return TEXT;
function "& (LEFT: TEXT; RIGHT: CHARACTER) return TEXT;
function &" (LEFT: CHARACTER; RIGHT: TEXT) return TEXT;

function"' (LEFT: TEXT; RIGHT: TEXT) return BOOLEAN;
function < =" (LEFT: TEXT; RIGHT: TEXT) return BOOLEAN;
function "" (LEFT: TEXT; RIGHT: TEXT) return BOOLEAN;
function > =" (LEFT: TEXT; RIGHT: TEXT) return BOOLEAN;
function ">" (LEFT: TEXT; RIGHT: TEXT) return BOOLEAN;

procedure SET (OBJECT: in out TEXT; VALUE: in TEXT);
procedure SET (OBJECT: in out TEXT; VALUE: in STRING);
procedure SET (OBJECT: in out TEXT; VALUE: in CHARACTER);

procedure APPEND (TAIL: In TEXT; TO: in out TEXT);
procedure APPEND (TAIL: in STRING; TO: in out TEXT);
procedure APPEND (TAIL: in CHARACTER; TO: in out TEXT);

procedure AMEND (OBJECT: in out TEXT;
BY: in TEXT;
POSITION: in INDEX);

procedure AMEND (OBJECT: in out TEXT;
BY: in STRING;
POSITION: in INDEX);

procedure AMEND (OBJECT: in out TEXT;
BY: in CHARACTER;
POSITION: in INDEX);

function LOCATE (FRAGMENT: TEXT; WITHIN: TEXT) return INDEX;
function LOCATE (FRAGMENT: STRING; WITHIN: TEXT) return INDEX;
function LOCATE (FRAGMENT: CHARACTER; WITHIN: TEXT) return INDEX;

private
-- implementation-dependent

end CAISTEXT-UTILS;

8.2.1.2 Package Semantics

type TEXT is limited private;

The type is made limited private because it may be reference counted and automatically freed at last use,

function LENGTH T: TEXT) return INDEX;
function VALUE (T: TEXT) return STRING;
function EMPTY (T: TEXT) return BOOLEAN;

Provides text string functions.

procedure INITTEXT(T: In out TEXT);

Draft CAIS 8-3

Creates a null string.

procedure FREE-TEXT(T: In out TEXT);

Frees a string.

function TO-TEXT (S: STRING) return TEXT;
function TO-TEXT (C: CHARACTER) return TEXT;

Converts the given string or characters to text.

function "&" (LEFT: TEXT; RIGHT: TEXT) return TEXT;
function "&" (LEFT: TEXT; RIGHT: STRING) return TEXT;
function "&" (LEFT: STRING; RIGHT: TEXT) return TEXT;
function "&" (LEFT: TEXT; RIGHT: CHARACTER) return TEXT;
function "&" (LEFT: CHARACTER; RIGHT: TEXT) return TEXT;

Concatenates to text.

function =--" (LEFT: TEXT; RIGHT: TEXT) return BOOLEAN;
function "K= (LEFT: TEXT; RIGHT: TEXT) return BOOLEAN;
function "K" (LEFT: TEXT; RIGHT: TEXT) return BOOLEAN;
function ">=" (LEFT: TEXT; RIGHT: TEXT) return BOOLEAN;
function " (LEFT: TEXT; RIGHT: TEXT) return BOOLEAN;

Provides indicated comparison functions.

procedure SET (OBJECT: in out TEXT; VALUE: in TEXT);
procedure SET (OBJECT: in out TEXT; VALUE: in STRING);
procedure SET (OBJECT: in out TEXT; VALUE: in CHARACTER);

Sets the object to the given value.

procedure APPEND (TAIL: in TEXT; TO: in out TEXT);
procedure APPEND (TAIL: In STRING; TO: in out TEXT);
procedure APPEND (TAIL: In CHARACTER; TO: in out TEXT);

Appends the given TAIL to the TO TEXT.

procedure AMEND (OBJECT: in out TEXT;
BY: in TEXT;
POSITION: in INDEX);

procedure AMEND (OBJECT: in out TEXT;
BY: in STRING;
POSITION: in INDEX);

procedure AMEND (OBJECT: in out TEXT;
BY: in CHARACTER;
POSITION: In INDEX);

Replaces part of the OBJECT by the given TEXT, STRING, or CHARACTER starting at the given position in the OBJECT.

function LOCATE (FRAGMENT: TEXT; WITHIN: TEXT) return INDEX;
function LOCATE (FRAGMENT: STRING; WITHIN: TEXT) return INDEX;
function LOCATE (FRAGMENT: CHARACTER; WITHIN: TEXT) return INDEX;

Returns the INDEX of the FRAGMENT within the given TEXT.

!
I

!I

8-4 Draft CAIS

8.2.2 Package CAIS-LIST-UTILS

This package is generally useful for the manipulation of all lists built following the CAIS parameter list conventions: a
parenthesized, comma-separated list of items, each item in the form of a list, a string without embedded spaces or
separators, or a quoted string following the Ada syntax rules, optionally preceded by a keyword identifier and a "right
arrow." This syntax roughly corresponds to the Ada syntax for aggregates or for subprogram calling sequences. An
approximate BNF for the CAIS list is as follows:

LIST '('[KEYWORD'= 'jITEM{ ','[KEYWORD'-]ITEM}')'
ITEM :: IDENTIFIER I NUMBER I LIST I QUOTED-STRING
KEYWORD :: = IDENTIFIER
QUOTED-STRING :: = ... {NONQUOTE-CHARACTER I

The package CAIS-LIST-UTILS uses the TEXT type defined within CAIS-TEXT.UTILS and defines additional opera-
tions. It defines the type list which is used to represent CAIS.ATTRIBUTE values.

8.2.2.1 Package Specification

with CAISTlEXTUTILS;
package CAIS-LIST-UTILS is

type COUNT is range 0.. implementation-defined;
subtype POSIT)VE-COUNT Is COUNT range 1.. COUNT'LAST;
subtype LIST is CAISTEXT-UTILS.TEXT;
subtype KEY-STRING is STRING;
type ITEM-KIND is (LIST, IDENTIFIER, NUMBER, QUOTED-STRING);

procedure INIT-LIST(L: In out LIST);

procedure FREE-LIST(L: in out LIST);
function IS-EMPTY (L: in LIST) return BOOLEAN;
function KIND (L: in LIST) return ITEM-KIND;

function QUOTED-STRING (L: in LIST) return STRING;
function IDENTIFIER (L: in LIST) return STRING;
function NUMBER (L: in LIST) return INTEGER;

procedure TO-LIST-QUOTED (L: in out LIST; FROM: STRING);

procedure TOLST (L: in out LIST; FROM: STRING);
procedure TO-LIST (L: in out LIST; FROM: INTEGER);

procedure SET (L: in out LIST; VALUE in LIST);
function NUM-POSITIONAL (L: LIST) return COUNT;

procedure ADOPOSITIONAL (L: in out LIST;
ITEM: in LIST);

procedure ADD-POSITIONAL (L: in out LIST;
ITEM: in STRING);

procedure GET-POSITIONAL (L: In LIST;
ITEM: in out LIST;
AT: in POSITIVE-COUNT);

procedure SETPOSITIONAL (L: In out LIST;

ITEM: In LIST;
AT In POSITIVE-COUNT);

function NUM-NAMED (L: LIST) return COUNT;

Draft CAIS 8-5

procedure ADD-NAMED (L: In out LIST;
KEYWORD: In KEY-STRING;
ITEM: In LIST);

procedure ADD-NAMED (L: In out LIST;
KEYWORD: In KEY-STRING;
ITEM: In STRING);

procedure GET-NAMED (L: In LIST;
ITEM: In out LIST;

AT: In KEY.STRING);
procedure GET-NAMED (L: In LIST;

ITEM: In out LIST;
AT: in POSITIVE-COUNT);

procedure SET-NAMED (L: in out LIST;
ITEM: in LIST;
AT: in KEYSTRING);

procedure SET-NAMED (L: in out LIST;
ITEM: In LIST;
AT: out POSITIVE-COUNT);

function KEYWORD (L: in LIST;
AT: in POSITIVE-COUNT)
return KEYSTRING;

private
-- implementation-dependent

end CAIS-LIST-UTILS;

8.2.2.2 Package Semantics

type ITEMKIND is (LIST, IDENTIFIER, NUMBER, OUOTED-STRING);

Each item is recognizable as a list, identifier, number, or quoted-string.

procedure INIT-LIST (L: in out LIST);

Creates a null LIST.

procedure FREE-LIST (L: in out LIST);

Frees a LIST.

function IS-EMPTY (L: in LIST) return BOOLEAN;

Returns TRUE if the list is an empty LIST.

function KIND (L: in LIST) return ITEM-KIND;

Returns ITEM-KIND of LIST.ITEM-KIND is LIST for empty LIST.

function OUOTED-STRING (L: in LIST) return STRING;
function IDENTIFIER (L: in LIST) return STRING;
function NUMBER (L: in LIST) return INTEGER;

Converts from a LIST according to the ITEM-KIND.

1

8-6 Draft CAIS

procedure TOLIST-QUOTED (L: In out LIST; FROM: STRING);

procedure TO-LIST (L: In out LIST; FROM: STRING);
procedure TO-LIST (L: In out LIST; FROM: INTEGER);

Converts to a LIST according to the ITEMKIND.

procedure SET (L: in out LIST; VALUE: in LIST);

Sets the LIST L to the given VALUE.

function NUM-POSITIONAL(L: LIST) return COUNT;

Returns COUNT of positional components (i.e., those without the "KEYWORD = >" part).

procedure ADDPOSITIONAL (L: In out LIST;
ITEM: In LIST);

procedure ADD-POSITIONAL (L: in out LIST;
ITEM: in STRING);

Adds another ITEM to the end of the LIST of positional components.

procedure GET-POSITIONAL (L: in LIST;
ITEM: in out LIST;
AT: in POSITIVE-COUNT);

Retrieves ITEM at specified position of LIST. Returns empty LIST if AT > NUM-POSITONAL(L).

procedure SET-POSITIONAL (L: in out LIST;
ITEM in LIST
AT: In POSITIVE-COUNT);

Sets VALUE at specified position of LIST to the given ITEM.

function NUM-NAMED (L: LIST) return COUNT;

Returns count of named components (i.e.. those with the "KEYWORD =>" part).

procedure ADD-NAMED (L: In out LIST;
KEYWORD: In KEY-STRING;
ITEM: in LIST);

procedure ADD-NAMED (L: in out LIST;
KEYWORD: in KEY-STRING;
ITEM: in STRING);

Adds another named ITEM to LIST. An exception is generated it an ITEM with the given KEYWORD already exists within LIST.

procedure GET-NAMED (L: in LIST;
ITEM: In out LIST;
AT: in KEY-STRING);

procedure GET-NAMED (L: In LIST;
ITEM: In out LIST;
AT: In POSITIVE-COUNT);

Gets the named ITEM at the given KEYWORD or POSITIVE-COUNT returns empty LIST if the ITEM is not found.

I

p! * -

Draft CAIS 8-7

procedure SET-NAMED (L: In out LIST;
ITEM: In LIST;
AT: In KEY.STRING);

procedure SET-NAMED (L: In out LIST;
ITEM: In LIST;
AT: In POSITIVE-COUNT

Sets the named component at the given KEY-STRING or POSITIVE-COUNT to the given ITEM.

function KEYWORD (L: In LIST;
AT: In POSITIVE-COUNT)
return KEY-STRING;

Returns the KEYWORD of the specified named item.

8.2.3 Package CAIS-HELP-UTILS

This package provides standard support for help facilities.

ITBD}

8.3 PRAGMATICS

* a. STANDARD The CAIS places certain requirements on the pre-defined
types available. In particular, a conforming implementation
must support some integer type with at least the range -32767
to 32767.

b. SYSTEM The CAtS places certain requirements on the machine
parameters. In particular, a conforming implementation must
have MIN-INT = -32767 and MAX__INT = 32767.

c. CAIS-TEXT-UTILS A conforming implementation must support strings of at least
32767 characters in length.

!I

... . - - =f -.. .j q * D±Sl...-. .

I

APPENDIX A
NOTES AND EXPLANATIONS

A.1 INTRODUCTION

This appendix is provided to give the reader a perspective of the context in which the CAIS is expected to function and
some of the design considerations included during the CAIS generation process. Whitle Version 1.1 of the CAIS is directed
toward the DoD AlE and ALS developments, the goal of future versions of the CAIS ', to provide a standard for DoD APSEs.

A.1.1 BACKGROUND

Version 1.1 of the CAIS is predicated on four premises:

1) the CAIS will be implementable on the AlE
2) the CAIS will be implementable on the ALS
3) the CAIS will be implementable on a bare machine
4) the CAIS will be compatible with modern operating systems

The CAIS as described in Version 1.1 has strived to retain these perspectives while establishing a sufficiently flexible
structure that can be evolved into a Version 2.0 document. This structure is believed to be flexible enough to provide
CAIS implementors considerable amplitude in selecting specific approaches for actual implementations. Interference
with implementation strategies has been avoided,

A.2 CONTEXT

The CAIS applies to Ada Programming Support Environments [STONEMAN] which are to become the basic software
development environments for DoD development programs. Those Ada programs that are used in support of software
development are defined as tools. This includes the spectrum of support software from project management through
code development, configuration management and life-cycle support. Tools are not resinicted to only those software
items normally associated with program generation such as editors, compilers, debuggers, and linker-loaders. Those
tools that are composed of a number of independent but inter-related programs (such as a debugger which is related
to a specific compiler) are classed as toolsets. In this document the terms tool and toolset are used interchangeability.

Since the goal of the CAIS is to promote interoperability and transportability of Ada software across DoD APSEs, the
following definitions of these terms are provided. Interoperability is defined as "the ability of APSEs to exchange data
base objects and their relationships in forms usable by tools and user programs without conversion." Transportability
of an APSE tool is defined as "the ability of the tool to be installed on a different KAPSE; the tool must perform with
the same functionality in both APSEs. Transportability is measured in the degree to which this installation can be ac-
complished without reprogramming. Portability and transferability are commonly used synonymously." [Reference: KAPSE
Interface Team: Public Report, Volume I, 1 April 1982; p. C11.

~i

APPENDIX B
PROVIDING DIRECTORY STRUCTURES USING A TRANSITIONAL SUBSET OF THE CAIS

B.1 INTRODUCTION

While conformance with the CAIS will be measured on a package-by-package basis, it is sometimes not possible to
implement one package without the provision of another. This is especially true for packages depending on the package
CAIS-NODE-MANAGEMENT. In the interest of the availability ot CAIS implementations within a very short time frame,
a transitional subset of the node-related packages are defined in this appendix. They include the most important inter-
faces that are vital for the majority of simple tools. This subset restricts the model of the file organization to the equivalent
of a hierarchical tree-oriented file-system. Leaves in the tree are file nodes; all other nodes are structural nodes representing
directories or they are process nodes.

In order to prevent incompatibilities with more sophisticated CAIS implementations, the syntactic appearance and semantic
meaning of calls on CAIS interlaces have been kept upward compatible, rather than providing more appropriate mnemonic
names for the subprograms. (The latter is left to a trivial renaming package outside the CAIS subset.) Hence, any pro-
gram executing properly on an implementation of the CAIS subset will also execute properly on any implementation
of the CAIS (but obviously not vice-versa).

An implementator of these transitional subset packages may choose to use different implementation strategies than
required for the provision cf the full functionality of these packages as defined in the CAIS.

The subset is obtained by imposing restrictions and adjusting package specifications as follows:

1. Pathnames are allowed to contain only path elements referring to the "DOT"-relation using the ab-
breviated form .. or to " 'USER" and - 'CURRENT-USER" as predefined optional prefixes to
pathnames.

2. In all subprograms of the node-related packages CAIS-NODE-MANAGEMENT and
CAIS-STRUCTURAL-NODES any occurrence of a formal parameter of type RELATION-NAME
is deleted. The implementation of these subprograms must default the RELATIONNAME to "DOT".

3 The formal parameters RELATION and PRIMARY-ONLY of the subprograms
CAIS-NODEMANAGEMENT. ITERATE are deleted. The implementation of the subprograms must
default the RELATION to "DOT".

4. The following subprograms of the package CAIS -NODE-MANAGEMENT are defined to raise the
USE ERROR exception:

PRIMARY-RELATIONPATH-KEY

PATH-RELATION
LINK
UNLINK

5. The following subprograms of the package CAIS-STRUCTURAL-NODE are defined to raise the
USE-ERROR exception:

CREATE-NODE with formal parameter "RELATION" (two instances)

Bearing these restrictions in mind, the specified semantics for all subprograms of the packages involved describe those
operations useful in particular for handling directories (structural nodes) of a conventional tree-structured file system
and files contained in such directories. Pathnames have the conventional form of identifiers separated by dot., except
for the optional prefix path elements "'USER" and " 'CURRENT-USER".

1

.-.. .-- -

B-2 Draft CAIS

B.1.1 Package Semantics

NOTE: These semantics do not include the procedures and functions which are defined to raise USE-ERROR in the
above list.

a) CAIS-STRUCTURAL-NODES

procedure CREATE-NODE(NAME: in NAME-STRING;
FORM: In FORM-STRING : = .. ;

procedure CREATE-NODE(NODE: In out NODE-TYPE;
NAME: in NAME-STRING;
FORM: in FORM-STRING : =

Creates a directory (structural node) with its "DOT" relationship and parent node implied by the NAME argument.

b) CAIS-NODE-MANAGEMENT

The key of a file or directory is the relationship key of the last element of its pathname. Many operations are allowed
to take either a pathname, or a parent node (i.e., a directory) and a key. The keys of process nodes, file nodes or sub-
directories in a directory must be mutually distinct.

procedure OPEN (NODE: in out NODE-TYPE;
NAME: in NAME-STRING;

procedure OPEN (NODE: in out NODE-TYPE;
BASE: in NODE-TYPE;
KEY: in RELATIONSHIP-KEY : =

Opens the designated file node, process node or directory and returns an open handle on the designated file
node, process node or directory node. The NAME-ERROR exception will be raised if the file, process or direc-
tory does not exist.

procedure CLOSE(NODE: in out NODETYPE);

Severs any association between the internal node handle and an external node and releases any associated lock. This
must be done before another OPEN can be done using the same NODE-TYPE variable.

function IS-OPEN (NODE: In NODETYPE) return BOOLEAN;

Returns TRUE if the NODE is open.

function KIND (NODE: in NODE-TYPE) return CAIS-NODE-DEFS.FILE-KIND;

Returns the "kind" of a node, either FILE, PROCESS, STRUCTURAL or DEVICE. Structural nodes are directories.

function PRIMARY-NAME(NODE: in NODE-TYPE) return NAME-STRING;

Returns the full path name to the file node, process node, or directory.

function PRIMARY-KEY (NODE: in NODE-TYPE) return RELATIONSHIP-KEY;

Return the last relationship key of the pathname to the file node, process node or directory. If the NODE is a top-level
directory, the key is the user name.

procedure GET-PARENT(NODE: In NODE-TYPE;
PARENT: In out NODE-TYPE);

Returns the parent process or directory. Generates an exception if NODE is a top-level directory.

Draft CAIS B-3

procedure COPY-NODE (FROM: In NODETYPE;
TO: In NAME-STRING);

procedure COPY-NODE (FROM: In NODE-TYPE;
TO-BASE: In NODE.-TYPE;
TO-KEY: In RELATIONSHIP-KEY =

Copies a file. It is an error (KIND-ERROR) if the node referenced is a process node or a device node or directory
node(structural node).

procedure COPY-TREE (FROM: in NODE-TYPE;
TO: In NAME-STRING);

procedure COPY-TREE (FROM: In NODE.-TYPE;
TO-BASE: in NODE-TYPE;
TO-KEY: in RELATIONSHIP-KEY:

Copies a directory including its files. It is an error (KIND-ERROR) if any node referenced is a process node or a device
node.

procedure RENAME(NODE: in NODE-TYPE;
NEW-NAME: in NAME-STRING);

procedure RENAME(NODE: in NODE-TYPE;
NEW BASE: in NODE-TYPE;
NEW-KEY: in RELATIONSHIP-KEY : =
NEW-RELATION: in RELATION-NAME: =

Allows the renaming of file nodes process nodes, or directories using a node handle for the renamed node and, in the
second case, a node handle on the parent directory or process node. RENAME raises the exception USE-ERROR
if a node alr,;ady exists with the new-name.

procedure DELETE-NODE (NODE: in out NODE-TYPE);
procedure DELETE-NODE (NAME: in NAME-STRING);

Deletes the relationships between a file or process node and its parent and deletes the node itself. This is only legal
if the node has no children. Deletes a file, empty directory or a process with no descendants as well as the associated node.

procedure DELETETREE (NODE: in out NODETYPE);

DELETETREE deletes a node and recursively deletes all its descendants.

type NODE-ITERATOR is private;
subtype RELATIONSHIPKEY-PATTERN is RELATIONSHIPKEY;

FELATIONSHIP-KEY-PATTERNs follow the syntax of relationship keys, except that a "?" will match any single
character and a . will match any string of characters.

procedure ITERATE(ITERATOR: out NODE.ITERATOR;
NODE: in NODETYPE;
KIND: in NODE-KIND;
KEY: in RELATIONSHIPKEY-PATTERN =

function MORE (ITERATOR: In NODE-ITERATOR) return BOOLEAN:

procedure GETNEXT(ITERATOR: in ot NODEITERATOR;
NEXT-NODE: In out NODE-TYPE);

These three routines iterate through those nodes referred to from the given NODE, via "DOT".relationships, that have
keys satisfying the specified patterns and are of the KIND specified.

lI

I

B-4 Draft CAIS

The nodes are returned in ASCII lexicographical order by relationship KEY. The key Is available from the function
PRIMARY-KEY (see above).

procedure SEL..CURRENT-NODE(NAME: In NAME-STRING);
procedure SET-CURRENL..NODE(NODE: In NODETYPE);

Specifies NODEINAME as the current directory.

procedure GET-CURRENT-NODE(NODE: in out NODE-TYPE);

Associates NODE with the current directory.

function IS-SAME(NAME1: in NAME-STRING;
NAME2: In NAME-STRING)

return BOOLEAN;
function IS-SAME(NODE1: in NODE-TYPE

NODE2: in NOTE-.TYPE)
return BOOLEAN;

*1

r~.___- __________________- .

APPENDIX C
CAIS IMPLEMENTABILITY

C.1 INTRODUCTION

The specification of the CAIS has been separated into multiple packages to simplify initial or partial implementations.
The rules for Ada limited private types can interfere with this kind of separation. This appendix outlines several implemen-
tation approaches which are consistent with both the rules of the Ada language and the rules for CAIS conformance.
This appendix will ultimately be superceded by a CAIS implemator's guide.

(a) NESTED GENERIC SUBPACKAGES IMPLEMENTATION

This implementation strategy seeks to minimize visibility of the limited private types of CAIS-NODE-DEFS by using
these private types strictly as intended by Ada. All operations on the private types are encapsulated within the package
defining CAIS.NODE-DEFS. A sketch of this is as follows:

package CAIS is
-- type definitions of CAIS-NODE-DEFS

generic
package NODE-DEFS is

subtype Declarations
end NODE-DEFS;

generic
package NODE-MANAGEMENT Is
-specifications of Section 3.5
end NODE-MANAGEMENT;

generic
package STRUCTURAL-NODES is
--specifications of Section 4.1
end STRUCTURAL-NODES;
-- and so forth for all of the CAIS packages

end CAIS;

with CAIS;

package CAIS-NODE-DEFS Is new CAIS.NODE-DEFS:

with CAIS;
package CAIS-NODE-MANAGEMENT Is new CAIS.NODE-MANAGEMENT;

... for each of the CAIS packages

This organization, while unwieldy, allows the CAIS packages specified in this document to be utilized in the organization
provided in earlier document sections.

(b) LIMITED RECORD TYPE IMPLEMENTATION

This sketch shows how an implementor might separate the limited private definitions and operations on the limited private
types into a separate isolated package. The user-visible package structure remains the same, except that NODE-TYPEI' is defined as a limited record type, rather than limited private.

I

i- : i_ 2- .,r2:t , ,jd •4* -
o -,,. -,,, , _

C-2 Draft CAIS

package CAIS-PRIVATE is
type NODE-TYPE is limited private;
.. and other types with limited private visibility needs

-- The remainder of this package specification is
implementation specific, and not specified as part
of the CAIS. No tool or APSE application should

- make use of this package; it is solely for the
-- use for implementation of other CAIS packages.

end CAIS-PRIVATE;

with CAIS-PRIVATE;
package CAIS-NODE-DEFS is

type NODE-TYPE is
record

INTERNALS: CAIS-PRIVATE.NODE-TYPE;
end record;
.. and the rest of CAIS-NODE-DEFS from 3.1

The implementation of the other CAIS packages (i.e., the package bodies) may now use the underlying subprograms
of CAIS-PRIVATE to manipulate the INTERNALS of NODE-TYPE. This provides an implementation which is safe,
so long as no tool or applications program "withs" CAIS-PRIVATE.

A typical CAIS implementation package body may have the following appearance:

with CAIS-PRIVATE;
package body CAIS-NODE-MANAGEMENT is

procedure OPEN(NODE: in out NODE-TYPE;
NAME: in NAME-STRING) is

begin
CAIS-PRIVATE.OPEN(NODE.INTERNALS, NAME);

end OPEN;

end CAIS-NODE-MANAGEMENT;

(C) NON-ADA IMPLEMENTATION

If the package bodies are implemented in a language other than Ada, then the problems of limited private types may
be absent. The implementation may have a structure dictated by the facilities of an underlying operating system, by
the facilities of a microcoded system and by the processor architecture itself.

, -

I

1

Postscript : Submission of Comments

For submission of comments on this CAIS Version 1.1, we would appreciate them being sent by Arpanet to the address

CAIS-COMMENT at ECLB

If you do not have Arpanet access, please send the comments by mail

Mr. Jack Foidl
TRW SYSTEMS
3420 Kenyon St.
Suite 202
San Diego, CA 92110

For mail comments, it will assist us if you are able to send them on 8-inch single-sided single-density DEC format diskette-
but even it you can manage this, please also send us a paper copy, in case of problems with reading the diskette.

All comments are sorted and processed mechanically in order to simplify their analysis and to facilitate giving them pro-
per consideration. To aid this process you are kindly requested to precede each comment with a three line header

!section ...
!version 1983
!topic ..
!rationale

The section line includes the section number, your name or affiliation (or both), and the date in ISO standard form (year-
month-day). As an example, here is the section line of comment 1194 on a previous version:

!section 03.02.01(121D .Taffs 82-04-26

The version line, for comments on the current document, should only contain "Iversion 1983". Its purpose is to distinguish
comments that refer to different versions.

The topic line should ccntain a one line summary of the comment. This line is essential, and you are kindly asked to
avoid topics such as "Typo" or "Editorial comment" which will not convey any information when printed in a table of
contents. As an example of an informative topic line, consider:

Itopic FILE NODE MANAGEMENT

Note also that nothing prevents the topic line from including all the information of a comment, as in the following topic line:

!topic Insert: "...are {implicitly) defined by a subtype declaration"

The rationale line should contain some reasoning for your comment.

As a final example here is a cc,nplete comment:

!section 03.02.01(12)D.Taffs 82-04-26
!version 1983
!topic FILE NODE MANAGEMENT

Change component to subcomponent in the last sentence.

'rationale

Otherwise the statement is inconsistent with the defined use of subcomponent in 3.3, which
says that subcomponents are excluded when the term component is used instead of
subcomponent.

• 'I Ill I I ' , - /I =
mon

