AD-A134 825

UNCLASSIFIED

DRAFT SPECIFICA}ION OF THE COMMON APSE (ADA PROGRAMMING
SUPPORT ENVIRONMENTS) INTERFACE SET (CAIS} VERSION 11

{U) ADA JOINT PROGRAM OFFICE ARLINGTON VA 30
' F

SEP 83

/G 9/2

“"l 10 &k K2

—— 56 3.2

= E
o EE s

e

£ e

5
16

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS - 1963~ A

AD-AIBY §95

NOTE: This draft, dated 30 September 1983, prepared for
the Ada Joint Program Office, has not been approved and

is subject to modification. DO NOT USE PRIOR TO
APPROVAL.

Draft Specification
. of the
Common APSE Interface Set (CAIS)

Version 1.1
30 September, 1983

Prepared by

/[S E L

KIT/KITIA

for the
Ada® Joint Program Office

QUG FiLE COP

(* Ada is & Registersd Trademaerk of the Department of Defense, Ads Joint Program Office)
PHAVLLON '\l‘!\u“NTA

. A;p ;.vnd tor putlic iclease :)
" unon Uzl L.LY «d

83 1l 16

P

» NOV L8 1983
A

N

\.r-’L B
CAIS Working Group

P)T' =~

LR

Y

062

/A

UNCLASSIFIED N
SEQ T Y% 010t hi017 0 0z 0 F Yooy #all % oo loolocog N . »~
- _——
1 i NSTRUC TIONS
REPORT DOCUMENTATION PAGE | BEFORE COMPLETING FORM
' REPOAT NuNBER ” OVY A ?ﬁ NOU LML CIPIL S CoTALOL NUVDER
4139 543

& YITLE fane Subtinee. |s TYPL OF ALPOAY & PLMIOD COVEIALD

Draft Specification of the l Sep. 1982 - Sep. 1983

Common APSE Interface Set (CAIS)

Version 1'1 & PERFORMING ouf.. ALPORT wumplR

7. AUTHON(p 8. CONTRACT OR CARANT NUMBLEAR(s)

(o)
KIT/KITTIA CAIS Working Group for the Ada Joint
Program Office

KAPSE Interface Team/KAPSE Interface Team from
Industry and Academia

$. PERFORUING DRCANIZATION & AUl AND ADDRESS 10. PROGRAM [LEWENS. PROJECT, TASK
ARLA & wORK UNIT NUVBERS

). CONTROLLING OFFICE WAME AND ADDRESS 12. mEPOAT DATE
Deputy Undersecretary of Defense 30 September 1983
Research and Advanced Technology 13 NUMBER OF PAGES

Washington, DC 20301

14 MONITORING AGENCY NAME & ADDRESS/! diifsront frem Coniralling Ollice) 18 SECURITY CLASS. fof thie sepont)

Unclassified

1% DECLASSIFICATION. DOWNLRADING
SCHEDULE

¢ DISTRMIBUYTION STATEMENT (of this Reperi)

Approved for public release; distribution unlimited

7. DISTRIBUTION STATEMENT (of the abletract entesed In Blech 20, 11 dilleront liom Report)

Unclassified

9. SUPPLEMENTARY NOTES

19. KEY WORDS (Conisnve on roverss side §f necossary and idontily by Bloch mumber)

CAIS, APSEs, KIT, KITTIA, Ada Programming Language, interface requirements,
transportability, CAIS Node Model, Ada toolsets, environments, Ada packages,
Structural Nodes, File Nodes, Process Nodes, Device Nodes, utilities, Ada Language

Reference Manual.

20. ABSTRACT fContinue an reverse olde 0f mecessary and idenitily by Blach mumber).
* This version of the CAIS establishes interface requirements for the transportability

of Ada toolsets software to be utilized in Department of Defense”(DoD) Ada Programm-
ing Support EnvironmentE/LABSFs) known as the Ada integrated Environment” (AIE) and
the Ada Language System” (ALS). Strict adherence to this interface set will ensure
that the Ada toolsets will possess the highest degree of portability across APSEs.

The scope of the CAIS includes interfaces to those services traditionally provided
by an operating system that affects tool transportability. Ideally, all APSE tools S)

e

W,.m'n 1473 £01710m ©OF 3 HOV 83 13 ORIOLETE UNCLASSIFIED \

$°N 0102- LF- 014- 8400 SECURITY CLASMFICATION OF YHIS FAGE (When Dois Bniered,

ICLASSIFIED

SECUMTY CLASSIFICATION OF THIS PAGE "hen Dais Prrered

20. ABSTRACT (continued)

"”“5 would be implementable using only the Ada language and the CAIS. This version
of the CAIS is intended to provide most interfaces required by common tools.
This version of the CAIS includes six interface areas: Node Model,

Structural Nodes, File Nodes, Process Nodes, Device Nodes and Utilities.
N

DTIC

ELECTE
NOV 18 1983

B o

Fﬁccession For
NTIS CRAST AR
DT™ TaR 0
Ui o v 00]
Justifooaion.
Draft Report s R
DTIC should process report per Mr, Thomas, Py -
Ada Joint Program Office. Final version will { Distributinn/ |

not be published for six month or a year. | Avalientiity Codes
¢ abiiily Cocdes

& Avall sad/or

x\{ Dist | speclal

s v ,
Il

S/N 0102- LF- 014- 660) UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

———— - r—— A,
[e .

el el ewy e

e s

Draft CAIS it

FORWORD

This document is a draft for public review. It will be revised in accordance with comments received during this public
review cycle.

This document has been prepared in response to the Memorandum of Agreement signed by the Undersecretary of Defense
and the Assistant Secretaries of the Air Force, Army, and Navy. The memorandum established agreement for defining
a set of common interfaces for the Department of Defense (DoD) Ada Programming Support Environments (APSEs)
to promote Ada tool transportability and interoperability. The initial phase of this effort is directed toward the interfaces
ot the Ada Integrated Environment (AIE) and the Ada Language System (ALS). This version derives a set of specific
interfaces from these two APSEs, but the CAIS is intended to be implementable as part of a wide variety of intended
APSEs. It is anticipated that the CAIS will evolve, changing to meet new needs. Ultimately it is the intention of the DoD
to submit CAIS for standardization. Through the acceptance of such a standard it is anticipated that the source level
compalability of Ada software tools will be enhanced for both the DoD and non-DoD users.

The authors of this document include technical representatives of the two DoD APSE contractors, representatives from
the DoD’s Kernel Ada Programming Support Environment (KAPSE) Interface Team (KIT), and volunteer representatives
from the KAPSE Interface Team, Industry and Academia (KITIA).

The initial effort for definition of the CAIS was begun in September 1982 by the following members of the KAPSE Inter-
face Team (KIT); J. Foidl (TRW), J. Kramer (Ada Joint Program Office), T. Oberndorf (Naval Ocean Systems Center),
T. Taft (Intermetrics), R. Thall and W. Wilder (both of SofTech). In February 1983 the design team was expanded by
Ledr. B. Schaar (Ada Joint Program Office) to utilize the professional capabilities and experience of the KIT and KAPSE
Interface Team from Industry and Academia (KITIA). These new members include: H. Fischer (Litton Data Systems),
T. Harrison (Texas Instruments), E. Lamb (Bell Labs), T. Lyons (Software Sciences Ltd., U.K.), D. McGonagle (General
Electric), H. Morse (Frey Federal Systems), E. Ploedereder (1.A.B.G., West Germany), H. Willman (Raytheon), and L.
Yelowitz (Ford Aerospace). The Ada Joint Program Office is particularly grateful to those KITIA members and their com-
panies for providing the time and resources that significantly contributed to this document. Additional constructive criticism
and direction was provided by G. Myers (Naval Ocean Systems Center) and the general memberships of the KIT and KITIA.

v Draft CAIS

This document was typeset by McMahon Engineering Services, San Diego, using a Compugraphics MCS20-8400 typeset-
ting unit, with the Advanced Communication Interface * used to transfer data already keystroked from a word processor
to the Compugraphics typesetter and then inputting typesetting codes to format the document.

Py e L

/
Draft CA!S
CONTENTS
FOREWORD
CONTENT S . L
SECTION TITLE
1. INTRODUCTION e e e
1.1 SCOPE OF THE CAIS e
1.2 EXCLUDED ANDDEFERRED TOPICS i
1.3 CONFORMANCE oot e
1.4 DOCUMENT ORGANIZATION i,
2 REFERENCES e
3 CAIS NODE MODEL e
3.1 RELATIONSHIPS AND RELATIONS c..........
3.1.1 Kinds of Relationships
3.1.2 Predefined Relations
313 Pathnames.
32 ATTRIBUTES . . . e
33 GENERAL NODE MANAGEMENT
34 PACKAGE CAIS_NODE_DEFSttt
3.4.1 Package Specification. PP
342 Package SemantiCs.
35 PACKAGE CAIS_NODE__MANAGEMENT
3.5.1 Package Specification
3.52 Package Semantics................
36 PACKAGE CAIS _ ATTRIBUTES :
3.6.1 Package Specification
3.6.2 Package Semantics.
37 PACKAGE CAIS_NODE_CONTROL
3.7.1 Package Specification 0 o
3.7.2 Package SemantiCS.
38 PRAGMATICS .. .
4, CAIS STRUCTURAL NODES
4.1 PACKAGE CAIS__STRUCTURAL_NODES
411 Package Specification.
412 Package Semantics............. ... L.
5 CAIS FILE NODES
5.1 Ada LRM INPUT/IOUTPUT
5.1.1 Package IO_EXCEPTIONS
51.2 Package SEQUENTIAL_IO
513 Package DIRECT_IO
5§14 Package TEXT _10 i
5.2 CAIS INPUTIOUTPUT ... e e
521 CAISFileManagement.,
5.22 Package CAIS_SEQUENTIAL_IO
623 Package DIRECT__IO. i

524 Package TEXT_IO

525 Package CAIS_INTERACTIVE_IO................................

Draft CAIS
5.2.5.1 Package Specification 5-4
5.25.2 Package SemantiCs 5-5
5.3 PRAGMATICS e 57
6. CAIS PROCESS NODES ittt ittt e et et eiaes 6-1
6.1 PACKAGE CAIS_PROCESS_DEFS i, 6-1
6.1.1 Package Specification. i i 6-1
6.1.2 Package Semantics. 6-2
6.2 PACKAGE CAIS_PROCESS_CONTROLt 6-3
6.2.1 Package Specification. 6-3
6.2.2 Package Semantics. 6-4
6.3 PACKAGE CAIS_PROCESS_COMMUNICATION 6-6
6.3.1 Package Specification. 6-6
6.3.2 Package Semantics. 6-7 :
6.4 PACKAGE CAIS_PROCESS_ANALYSIS 6-7 2
6.4.1 Package Specification. 6-8
6.5 PACKAGE CAIS_PROCESS_INTERRUPTS 6-8 -
6.5.1 Package Specification. 6-8 :
6.5.2 Package SemantiCs. 6-8 ..
6.6 PRAGMATICS 6-9
7. CAIS DEVICE NODES e 7-1
7.1 VIRTUAL TERMINALS . .. e 71 i
7.1.1 Package CAIS_TERMINAL_SUPPORT 7-1
7.1.1.1 Package Specification 71)
7.1.1.2 Package Semantics 7-2
7.1.2 Package CAIS_SCROLL_TERMINAL 7-4
7.1.2.1 Package Specification 7-5
7.1.22 Package Semantics 7-5
7.1.3 Package CAIS_PAGE_TERMINAL 77
7.1.3.1 Package Specification i 77
7.1.3.2 Package Semanlics 7-8
7.1.4 Package CAIS_FORM_TERMINAL 7-11
7.1.4.1 Package Specification 7-11
7.1.4.2 Package SemantiCs 712 i
7.2 PACKAGE CAIS_DEVICE_CONTROL, 7-14
7.21 Package Specification. L o 7-15
8. CAIS UTILITIES e 8-1 .
8.1 PREDEFINED LANGUAGE ENVIRONMENT 8-1
8.1.1 Package STANDARD i 8-1 .
8.1.2 Package SYSTEM 8-1
8.2 PREDEFINED UTILITY PACKAGES i, 8-1 -
821 Package CAIS_TEXT_UTILS 8-1
8.2.1.1 'Package Specification R 8-1
8.2.1.2 Package Semantics o 8-2
8.2.2 Package CAIS_LIST_UTILS 8-4 ”
8.2.2.1 Package Specification 8-4 .
8.2.22 Package Semantics 8-5
8.3.2 Package CAIS_HELP_UTILS 8-7 .
8.3 PRAGMATICS . . 87
APPENDICES
A NOTES AND EXPLANATIONS i i i i i e A-1
B. PROVIDING DIRECTORY STRUCTURES BY A CONFORMING SUBSET OF THE CAIS B-1
DISCUSSION OF CAIS IMPLEMENTATION APPROACHES C- *

1. INTRODUCTION

This document provides specifications for a set of Ada packages which together form a Common APSE Interface Set
(CAIS) for Ada Programming Support Environments (APSES). This interface set is designed to promote the source-leve!
portability of Ada programs, particularly Ada software development tools. The initial phase of this effort is directed toward
the interfaces of the Ada Integrated Environment (AIE) and the Ada Language System (ALS). Version 1.1 of the CAIS,
presented herein, is intended to provide the basis for evolution of the CAIS as APSEs are implemented, as tools are
transported, and as tool interoperability issues are encountered.

Tools written in Ada, using only the packages described herein, should be fransportable 1o other CAIS implimentations. F
However, where tools function as a set, the CAIS facilitates transportability of the set of tools as a whole, but individual
tools may not be individually transportable.

1.1, SCOPE OF THE CAIS

This version of the CAIS establishes intertace requirements for the transportability of Ada
toolisets software to be utitized in Department of Defense (DoD) Ada Programming Support Environments (APSEs) known
as the Ada Integrated Environment (AIE) and the Ada Language System (ALS). Strict adherence to this interface set
will ensure that the Ada toolsets will possess the highest degree of portability across APSEs.

The scope of the CAIS includes interfaces to those services traditionally provided by an operating system that affect
tool transportability. Ideally, all APSE tools would be implementable using only the Ada language and the CAIS, This
version of the CAIS is intended to provide most interfaces required by common tools. This version of the CAIS includes
six interface areas:

a. Node Model. This area presents a node model for the CAIS in which contents, relation-
ships and attributes of nodes are defined. Also included are the foundations for access
control and synchronization.

b. Structural Nodes. This area covers the creation of structural nodes.

| c. File Nodes. This area covers file input/output.

d. Process Nodes. This area covers creation of processes for program invocation, control
of processes, process attribute management, and inter-process communication.

e. Device Nodes. This area covers basic device input/output support, along with special device
control facilities.

f. Utilities. This area covers text and list manipulation.
1.2 EXCLUDED AND DEFERRED TOPICS
During the design of the CAIS many aspects of environments have been considered. It has been determined that several

aspects should be explicitly excluded from this version of the CAIS:

Interfaces for non-software development environments (target systems) are not a part of this version.

Draft CAIS

The acronyms KAPSE and MAPSE are not used in this document because there is disagreement on their
meanings.

h Multi-lingual environments are not addressed by the CAIS.

A number of interface issues remain unresolved in this version of the CAIS, even though they have been considered.
These issues are important for a complete interface specification, but their resolution has been deferred until a later
version. Deferred interface issues (in alphabetical order) include:

Access control — Access rights and privileges to system resources. -

Asynchronous interfaces — Most interfaces in this document are task synchronous 1
interfaces (i.e., the specified operation is completed before the calling task is allow-

ed to proceed.) i

.

] Communications transformation — filtering of data before receipt by processes,

g mappings (lower case to upper case, break, key i0 escape sequence), terminator :

S character for input.
Configuration management — configuration control including keeping versions, }
referencing the latest revision, identifying the state of an object, etc. -
Device control — Controls for printers, tape drives, disk drives, graphics, window- .
ing, etc. 1

.

Distributed environments — Explicit support for environments in which parts of Ada
programs or data bases are distributed across muttiple processors.

Interoperabiiity — Inter-tool interfaces for tool sets; calling sequences and data for-

mats used to invoke/interact with common APSE tools, including the compilation/pro-]
gram library system, the text editing systems, the command processor, and the mail

system.]
Predefined attributes/names — A full set of attributes and names that exist in all -1

APSEs which implement the CAIS.

Predefined exceptions — A full set of exceptions that exist in all APSEs which im-
plement the CAIS; identification of all situations where exceptions are raised by the
CAIS.

Resource access and management — Resource contro! and allocation, such as
for processor time, processor memory, and shared data pools.

Security — Mechanisms for handling discretionary and non-discretionary informa-
tion based on classification of the data and system requirements.

Typed database — Typing of the objects in the database organization.

1.3 CONFORMANCE

Conformance of an implementation to the CAIS is established on a package-by-package basis. Each package must
be available as a library unit, with the name specified in this document. From the package user's point of view, the package
must have indistinguishable syntax and semantics from those stated herein. The following differences in CAIS package
implementation from the specifications in this document are considered indistinguishable from a user's point of view:

=1

=

Draft CAIS

a)
b)
)

d)

a)
b)

c

d)

The package may have additiona! WiTH or USE clauses.
Parameter modes listed here as QUT may be IN OUT or those listed as IN OUT may be OUT.
Types specified as limited private may be simply limited types.

Packages may be instantiations of generic sub-packages of some other (private) library
unit package.

Examples of ditferences which are NOT legal:

Additional or missing declarations, as these affect name visibility.
Parameter mode IN OUT, as this prevents passing of expressions.

Limited private types being changed to sub-types or derived types, when this changes the
semantics of “deriving’ from the type.

Packages which are not available as specified library units, because this changes the means
of reference to package components.

1.4 DOCUMENT ORGANIZATION

Each of the interface areas described in Section 1.1 is the subject of a subsequent section of this document. A discus-
sion introduces the underlying model for that area. Ada package specifications describe the facilities provided. These
are followed by a narrative of the intended semantics of the package. New terms introduced in the narrative sections
of the CAIS have been highlighted with boldface type. Boldface type within the package specifications and package
semantics sections indicate reserved words in accordance with the Ada Language Reference Manual.

2. REFERENCES

[LRM]: Reference Manual for the Ada Programming Language, ANSI/MIL-STD-1815A; United States Department of
Defense; January 1983.

[STONEMAN]: Requirements for Ada Programming Support Environments, “*Stoneman"’; Department of Defense; February
1980.

KERNEL Ada Programming Support Environment (KAPSE) interface Team: Public Report; Volume), Naval Ocean Systems
Center TD509; April 1982.

APSE Interoperability and Transportability Implementation Stiategy; Ada Joint Program Office; June 1983.

{ANS! 79): American National Standards Institute, *American National Standard Additional Controls for Use with American
National Standard Code for Information Interchange (ANSI Standard X3.64-1979)"'; July 1979.

[ANSI 77]: American National Standards Institute, “American National Standard Code for Information Interchange (AN-
Sl Standard X3.4-1977)"; June 1977,

ALS KAPSE — B5 Specification, SofTech; February 1982,

Computer Program Development Specification for Ada Integrated Environment: KAPSE/DATABASE TYPE BS, Intermetrics
Inc.; 12 Nov 1982.

3. CAIS NODE MODEL

The CAIS implementation acts as a manager for a set of entities that may be files, processes, and devices. These en-
tities have properties and may be interreiated in many ways.

The CAIS model uses the notion of a node as a carrier of information about an entity. It uses the notion of a relationship
for representing an interrelation between entities and the notion of an attribute for representing a property of an entity
or of an interrelation.

This version of the CAIS identifies four different kinds of nodes: structural nodes, file nodes, process nodes, and device
nodes.

The structure provided by the CAIS node model is a directed graph of nodes, each of which may have content, relation-
ships and attributes; relationships may also have attributes. The content varies with the kind of node. If a node is a
structural node, there is no content and the node is used strictly as a holder of relationships and attributes. If a node
is a file node, the content is an Ada external file. If a node is a process node, the content is the representation of the
execution of an Ada program. If a node is a device node, its content is a representation of a logical or physical device.

3.1 RELATIONSHIPS AND RELATIONS

The relationships of CAIS nodes form the edges of a directed graph; they are used to build conventional hierarchical
directory and process structures (see Section 4.1 CAIS_STRUCTURAL_NODES, Section 6.2
CAIS_PROCESS__CONTROL and Appendix B} as well as arbitrary directed-graph structures. Relationships are unidirec-
tional and are said to emanate from a source node and 1o terminate at a target node.

Because any node may have many relationships representing many different classes of connections, the concept of
a relation is introduced to categorize the relationships. These relations identify the nature of relationships, and relation-
ships are instances of relations. There are several predefined relations provided by the CAIS. These are: PARENT, USER,
JOB, CURRENT__JOB, CURRENT__USER, CURRENT__NODE, and DOT and are expfained in t::e following sections.

Each relationship is designated by a relation name and a relationship key. The relation name identifies the relation
and the relationship key distinguishes between multiple nodes each bearing the same relfation with a given node. It
a relationship is a unique instance of its relation (i.e., only one node bears the relation with a given node), the key may
be omitted (i.e., its value is the null string). In this document, a relation name is often referred to simply as a relation
and a relationship key is often referred to simply as a key. Nodes in the environment are accessible by navigating along
the (named) relationships. Operations are provided to move from one node (along one of its relationships) to a connected
node.

3.1.1 Kinds of Relationships

There are two kinds of relationships: primary and secondary. Primary relationships form a strict tree; secondary relation-
ships may form an arbitrary directed graph. There is no requirement that all primary relationships have the same relation
name.

When a node is created, a primary relationship must be initially established from some other node, called its parent
node. This initial relationship is marked as the primary relationship for this new node. As a side effect of the creation,
the new node will be connected back to this parent via the PARENT relation (which, because it is unique, has a null
relationship key). To delete a node, the primary relationship is broken. RENAME (see Section 3.5) may be used to make
the primary relationship emanate from a different parent. These operations maintain a state in which each non-root node
has exactly one parent and a unique primary pathname (see Section 3.1.2).

i

3-2 DRAFT CAIS

Secondary relationships are arbitrary connections which may be established between two existing nodes. They are created
with the LINK procedure (see Section 3.5) and broken with the UNLINK procedure. It a node is deleted (i.e., its primary
relationship is broken), outstanding secondary relationships for which it is the target may remain, but attempts to access
the node via these relationships will raise an exception.

3.1.2 Predefined Relations

The CAIS node model incorporates the notion of a user. Each user has one top-level node (often called the user direc-
tory). This top-level node is the root of the user’s work-area tree, and from it he can access other structural, file, process
and device nodes. Every node may be accessed by following a sequence of relationships; this sequence is called the
path to the node. A path starting at a top-leve! node is called an absolute path. Every node can be traced back 10 its
top-level node by recursively following PARENT relationships; the path obtained by inverting this chain is the unique
primary path to the node.

A path can also start at a known (not necessarily top-level) node and follow a sequence of relationships 1o a desired
node. This is a relative path and the known starting node is called the base.

Any user's top-leve! node can be accessed from a proces node using the relation USER and a relationship key which
is interpreted as the user's name. User names may in fact be names of projects, services, people, or other organiza-
tional entities; each has a top level node associated with it. It is anticipated that certain special user names will be defin-
ed (as an eventual part of the CAIS) to provide uniform access to common tools, structures, etc.. Each
implementation must identify such user names to be of special significance in the environment.

When a user enters the APSE, a root process node is created which often represents a command interpreter or other
user-communication process; a process tree develops from this root node as other processes are invoked for the user.
A particular user may have entered the APSE several times concurrently. Each corresponding process tree is referred
to as a job. The JOB relation is provided for locating each of these root processes from the user’s top-level node. Thus
a JOB relation emanates from each user's top-level node to the root process node of each of the user's jobs. The JOB
relation must always be used with a relationship-key which identifies the name of the particular job which is to be accessed.

Any process node in a job has associated with it at least three predefined relations. The CURRENT__JOB relationship
always points to the root node for a process node's job. The CURRENT__USER relationship always points to the user's
lop-level node. The CURRENT_ NODE relationship always points to a node which represents the process node’s cur-
rent focus or context for its activiies; the target node is often a structural node. The process node can thus use the
CURRENT__NODE for a base node when specifying relative paths. All three of these relations (CURRENT__JOB,
CURRENT__USER, and CURRENT__NODE) provide a convenient means for accessing other CAIS nodes.

Many CAIS operations allow the user 10 omit the relation name when referring to a relationship, defaulting it to "DOT"".
DOT is therefore referred to as the default relation.

The node model also uses the concept of current process. This is implicit in afl calls to CAIS operations and refers
to the currently executing process making the call. It defines the context in which the parameters are to be interpreted.
In particular, paths are determined in the context of the current process.

3.1.3 Pathnames

Nodes are accessed by navigating along the relationships. These paths are specified using a pathname syntax. Starting
from a given node, a path is followed by traversing a sequence of relationships until the desired node is reached. The
pathname for this path is made up of the concatenation of the names of the traversed relationships in the same order
in which they are encountered.

The syntax of a pathname is a sequence of path elements, each path element representing the traversal of a single
relationship. A path element is an apostrophe (" ' *', pronounced *‘tick'’) followed by a relation name and a parenthesiz-
ed relationship key (which may be omitted if the relationship is a unique instance of the relation for this node). If the
relation is the default relation DOT, then the path element may be represented simply by a dot ("' . ') followed by the
key for the default relation DOT. Thus, “'DOT(CONTROLLER)" is the same as ‘.CONTROLLER".

- -

Draft CAIS 3-3

Pathnames are interpreted relative to a known node. This node may be identified explicitly as an additional argument,
the BASE, to many of the CAIS operations. Otherwise, the current process node is used as the starting point for inter-
pretation of the path.

YRR “w

A pathname may begin simply with a relationship key, not pretixed by either or ' . ", This is taken to mean inter-
pretation following the DOT relation of the CURRENT_NODE. Thus ‘“AIRPORT" is the same as
“ 'CURRENT__NODE.AIRPORT". By convention, the null pathname ** " is interpreted as the CURRENT__NODE of
the current process.

A pathname may also consist of just a single . *'. This is interpreted as referring to the current process node.
Relation names and relationship keys follow the syntax of Ada identifiers. Upper and lower case are treated as equivalent

within such identifiers. For example, all of the following are legal node pathnames, and they would all refer to the same
node if the CURRENT__NODE were ' "USER(JONES).TRACKER " and the CURRENT__USER were “"JONES’"

a. Landing__System’With__unit(Radar)
b. 'User(Jones). TRACKER.Landing__system'with__UNIT(RADAR)

c. 'CURRENT__USER.TRACKER.LANDING__SYSTEM'WITH__unit(radar)

By convention a relationship key of simply ‘#" is taken to represent the LATEST__KEY (lexicographically last). When
creating a node or relationship, use of “‘#" as the final key of a pathname will cause a key to be automatically assigned,
lexicographically following all previous keys for the same relation. This may be used to automatically assign revision
identifiers or process keys (see Section 6.2).

The Backus-Naur Form (BNF) for pathnames is given in Table 3-1.

TABLE 3-1
PATHNAME BNF

PATHNAME : = { PATHELEMENT }|
RELATIONSHIP_KEY { PATHELEMENT } |

g

PATHELEMENT :: = ‘" RELATION_NAME (" RELATIONSHIP_KEY ")" |
“* " RELATION_NAME |
“ . " RELATIONSHIP_KEY

RELATION__NAME :: = IDENTIFIER
RELATIONSHIP__KEY :: = IDENTIFIER] " # "

3.2 ATTRIBUTES

Both nodes and relationships may have attributes which provide information about the node or relationship. Attributes
are identified by an attribute name. Each attribute (see Section 3.6 CAIS_ATTRIBUTES) has a list of the values assign-
ed to it, represented using the CAIS__LIST__UTILS (see Section 8.2.2) type called LIST.

Relation names and attribute names both have the same form (that is, the syntax of an Ada identifier), and they must
be different from each other for a given node.

This version of the CAIS introduces two pre-defined node attributes: ACCESS__CONTROL and SECURITY__LEVEL.

3-4 Draft CAIS

3.3 GENERAL NODE MANAGEMENT

The operations defined in package CAIS__NODE__MANAGEMENT are applicable to all nodes except where explicitly
stated otherwise in the package semantics section.

The creation of nodes for files is performed by the CREATE procedures of the Input/Output packages; the creation of
nodes for processes is performed by INVOKE__PROCESS and SPAWN_PROCESS of CAIS_PROCESS__CONTROL
(see Section 6.2); the creation of structural nodes is performed by CREATE__NODE (see Section 4.1); the creation of
device nodes is performed by the CREATE procedures of CAIS_TERMINAL__SUPPORT (see Section 7.1.1).

To simplify manipulation by Ada programs, an Ada type NODE__TYPE is defined to represent an internal handle for
a node. Most procedures either expect a NODE_TYPE parameter, or a pathname, or a combination of a BASE node
(specified by a NODE__TYPE parameter) and a pathname relative to it.

3.4 PACKAGE CAIS__NODE_ DEFS

This package defines the Ada type NODE__TYPE, which provides an internal (private) reference to CAIS nodes. This
is referred to as a node handle. !t also defines certain enumeration and record types and exceptions useful for node
manipulations.

3.4.1 Package Specification

with I0__EXCEPTIONS;
package CAIS_NODE__DEFS is

type NODE__TYPE is limited private;
type NODE_KIND is (FILE, STRUCTURAL, PROCESS, DEVICE),

subtype NAME__STRING is STRING;

subtype NAME__STRING is STRING;

subtype FORM__STRING is STRING;

subtype RELATIONSHIP__KEY is STRING;

subtype RELATION__NAME is STRING;

TOP__LEVEL . constant STRING := " 'CURRENT__USER'’;

CURRENT__NODE : constant STRING =

CURRENT_PROCESS : constant STRING ="

LATEST_KEY : constant STRING = i

-- Exceptions

STATUS_ERROR . exception renames IO_EXCEPTIONS.STATUS__ERROR;

MODE_ERROR . exception renames |O_EXCEPTIONS.MODE__ERROR;

NAME__ERROR : exception renames IO__EXCEPTIONS.NAME__ERROR;

USE_ERROR . exception renames |IO_EXCEPTIONS.USE__ERROR,;

LAYOUT__ERROR : exception renames I0O_EXCEPTIONS.LAYOUT__ERROR,;
private

-- implementation-dependent
end CAIS__NODE_DEFS;

) =N e —

Draft CAIS

3.4.2 Package Semantics

TOP__LEVEL : constant STRING : = *'CURRENT__USER";
CURRENT_NODE . constant STRING ="
CURRENT_PROCESS : constant STRING = “.™

LATEST__KEY : constant STRING = “#"

Define the standard pathnames for current user’s top-level node, cutrent node, current process, and latest key.

STATUS__ERROR : exception renames I0__EXCEPTIONS.STATUS__ERROR;
MODE__ERROR : exception renames I0__EXCEPTIONS.MODE_ERROR,;
NAME_ERROR : exception renames (O__EXCEPTIONS.NAME _ERROR,;
USE__ERROR : exception renames I0__EXCEPTIONS.USE _ERROR,;
LAYOUT _ERROR : exception renames I0__EXCEPTIONS.LAYOUT__ERROR;

Renames the corresponding exceptions for the LRM.

3.5 PACKAGE CAIS__NODE_MANAGEMENT

This package defines the general primitives for manipulating, copying, renaming, and deleting nodes and their relationships.

3.5.1 Package Specification

with CAIS__NODE__DEFS;
package CAIS__NODE__MANAGEMENT is

subtype NODE_TYPE is CAIS__NODE__DEFS.NODE__TYPE;
subtype NAME__STRING is CAIS__NODE__DEFS.NAME__STRING;
subtype RELATIONSHIP__KEY is CAIS__NODE__DEFS.RELATIONSHIP_KEY;
subtype RELATION__NAME is CAIS_NODE__DEFS.RELATION_NAME;

procedure OPEN (NODE: in out NODE__TYPE;
NAME: in NAME_STRING);
procedure OPEN (NODE: inout NODE__TYPE;
BASE: in NODE__TYPE;
KEY: in RELATIONSHIP_KEY := ";
RELATION: in RELATION__NAME : = "DOT");

procedure CLOSE(NODE: in out NODE__TYPE});

function

function

function

function

function

IS_OPEN (NODE: in NODE__TYPE) return BOOLEAN;

KIND (NODE: in NODE_TYPE)
return CAIS_NODE__DEFS.NODE__KIND;

PRIMARY _NAME(NODE: in NODE__TYPE) return NAME__STRING:;

PRIMARY__KEY (NODE: in NODE__TYPE)
return RELATIONSHIP__KEY:;

PRIMARY__RELATION (NODE: in NODE__TYPE)
return RELATION__ NAME;

3-6

function PATH_KEY(NODE: in NODE__TYPE) return RELATIONSHIP_KEY;
function PATH_RELATION(NODE: in NODE__TYPE) return RELATION__NAME;

procedure GET__PARENT(NODE: in

PARENT: in out
procedure COPY__NODE (FROM: in
TO: in
procedure COPY_NODE (FROM: in
TO_BASE: in
TO__KEY: in
TO_RELATION: in
procedure COPY__TREE (FROM: in
TO: in
procedure COPY__TREE (FROM: in
TO__BASE: in
TO_KEY: in

TO__RELATION: in

procedure RENAME(NODE:

NODE_TYPE;
NODE__TYPE);

NODE__TYPE;
NAME_STRING),
NODE__TYPE;

NODE__TYPE;
RELATIONSHIP_KEY := *“ ',
RELATION_NAME := "DOT");

NODE__TYPE;
NAME__STRING);
NODE__TYPE;

NODE__TYPE;
RELATIONSHIP_KEY := “";
RELATION_NAME := “DOT");

in NODE_TYPE;

NEW__NAME: in NAME__STRING);
procedure RENAME(NODE: in NODE__TYPE;
NEW__BASE: in NODE__TYPE;
NEW__KEY: in RELATIONSHIP_KEY := *™";
NEW__RELATION: in RELATION_NAME : = “DOT");
procedure LINK(TO: in NAME__STRING;
NEW_PATH: in NAME_STRING),
procedure LINK(TO_NODE: in NODE__TYPE;
NEW_BASE: in NODE_TYPE;

KEY: in
RELATION: in

procedure UNLINK(NAME: in
procedure UNLINK(BASE: in
KEY: in
RELATION: in

procedure DELETE__NODE(NAME: in
procedure DELETE__NODE(NODE:

procedure DELETE__TREE(NODE:

type NODE__ITERATOR is private;
subtype RELATIONSHIP_KEY__PATTERN

in out

in out

RELATIONSHIP_KEY := * "
RELATION_NAME : = “DOT");

NAME__STRING);
NODE__TYPE;
RELATIONSHIP_KEY := *
RELATION_NAME : = "“DOT");

NAME__STRING);
NODE__TYPE);

NODE__TYPE),

is RELATIONSHIP _KEY;,

subtype RELATION_NAME__PATTERN is RELATION__NAME;
subtype NODE__KIND is CAIS_NODE__DEFS.NODE__KIND,;

procedure ITERATE(ITERATOR: out NODE__ITERATOR;
NODE: in NODE__TYPE;
KIND: in NODE__KIND;
KEY: in RELATIONSHIP_KEY__PATTERN := “*";
RELATION: in RELATION__NAME__PATTERN : = "DOT";

PRIMARY__ONLY: in

BOOLEAN: = TRUE;

Draft CAIS

AAAAA . B e e . A eIt L TR Riaa AAn et pr— ¢ e m wamm

Draft CAIS 37
function MORE (ITERATOR: in NODE__ITERATOR)
return BOOLEAN;
procedure GET__NEXT(ITERATOR: in out NODE_ITERATOR;
NEXT_NODE: inout NODE_TYPE),
procedure SET_CURRENT__NODE(NAME: in NAME_S'fRING);
procedure SET__CURRENT__NODE(NODE: in NODE_TYPE);

procedure GET__CURRENT__NODE(NODE: out NODE_TYPE),

function IS_SAME(NAME1: in NAME__STRING;
NAME2: in NAME_STRING)
return BOOLEAN;
function 1S__SAME(NODE1: in NODE__TYPE;
NODE2: in NODE__TYPE)

return BOOLEAN;
-- Exceptions

NAME__ERROR :exception renames CAIS__NODE__DEFS.NAME_ERROR,;
USE_ERROR :exception renames CAIS_NODE__DEFS.USE__ERROR;

private
-- implementation-dependent
end CAIS_NODE__MANAGEMENT:

3.5.2 Package Semantics

subtype NODE__TYPE is CAIS_NODE__DEFS.NODE__TYPE;
subtype NAME__STRING is CAIS_NODE__DEFS.NAME_STRING;
subtype RELATIONSHIP__KEY is CAIS_NODE__DEFS.RELATIONSHIP__KEY;
subtype RELATION__NAME is CAIS_NODE__DEFS.RELATION__NAME;

The key of a node is the relationship key of the last element of its pathname. Many operations are allowed to take either
a pathname or a base-node/key/relation-name.

procedure OPEN (NODE: in out NODE__TYPE;
NAME: in NAME_STRING);
procedure OPEN (NODE: in out NODE__TYPE;
BASE: in NODE__TYPE;
KEY: in RELATIONSHIP_KEY := " '";
RELATION: in RELATION__NAME := "DOT");

Returns an open node handle on the designated node. The NAME__ERROR exception will be raised if the node does
not exist.

An open node handle acts as if the handle forms a temporary secondary relationship 1o the node; this means that, if
the opened node pointed 10 is renamed (potentially by another process), the operations on the opened node track the
renaming. Tools which require that node relationships remain unchanged between node-level CAIS operations use have
the features of the CAIS_NODE__CONTROL package (Section 3.7) to synchronize node usage.

3-8 Draft CAIS

procedure CLOSE(NODE: in out NODE__TYPE);

Severs any association between the node handle and the node and releases any associated lock. This must be done
before another OPEN can be done using the same NODE__TYPE variable by the same process.

tunction IS__OPEN (NODE: in NODE__TYPE) return BOOLEAN;
Returns TRUE or FALSE according to open status of the node handie.

function KIND (NODE: in NODE__TYPE)
return CAIS_NODE__DEFS.NODE__KIND;

Returns the kind of a node, either FILE, PROCESS, STRUCTURAL, or DEVICE.
function PRIMARY__NAME(NODE: in NODE__TYPE) return NAME_STRING;

Returns the {ull primary pathname to the node.

function PRIMARY__KEY (NODE: in NODE__TYPE)
return RELATIONSHIP__KEY;
function PRIMARY__RELATION (NODE: in NODE__TYPE)

return RELATION__NAME;

Returns the corresponding part of the last element of the primary path to the node. If the node is a top-level node, the
key is the user name, and the relation name is USER.

function PATH__KEY(NODE: in NODE__TYPE) return RELATIONSHIP__KEY;
function PATH__RELATION(NODE: in NODE__TYPE) return RELATION__NAME;

Returns the corresponding pan of the last element of the path used to access this node. If the path was an absolute
path and this is a top-level node, the refationship key is the user name, and the relation name is USER.

procedure GET__PARENT(NODE: in NODE__TYPE;
PARENT: in out NODE__TYPE),

Returns the parent node. Generate an exception if NODE is a top-level node.

procedure COPY__NODE (FROM: in NODE__TYPE;
TO: in NAME__STRING);
procedure COPY__NODE (FROM: in NODE__TYPE;
TO_BASE: in NODE__TYPE;
TO_KEY: in RELATIONSHIP__KEY := “";
TO_RELATION: in RELATION__NAME : = "“DOT");

Copies a node. Any secondary relationships emanating from the original node are recreated in the copy. Unless the
target of the original node's relationship is the node itself, then the copied relationship still refers to the same target
node. If the target is the node itself, then the copy will have an analogous refationship to itself. it is an error (USE__ERROR)
if the node is a process or device node, or if any primary relationships emanate from the original node.

procedure COPY_TREE (FROM: in NODE_TYPE;
TO: In NAME__STRING);
procedure COPY__TREE (FROM: in NODE_TYPE;
TO__BASE: in NODE_TYPE;
TO__KEY: in RELATIONSHIP_KEY := " *";

TO__RELATION: in RELATION_NAME := “DOT");

Draft CAIS 3-9

Copies a tree of nodes (formed by primary relationships), as well as their secondary relationships. Secondary refation-
ships between two nodes which are both copied are recreated between the two copies. Secondary relationships emanating
from a node which is copied, but which refer to nodes outside the tree being copied, are copied so that they emanate
from the copy, but still refer to the old (uncopied) node. The exception USE_ERROR will be raised if any node in the
tree is a process or device.

procedure RENAME(NODE: in NODE_TYPE;

NEW__NAME: in NAME_STRING);
procedure RENAME(NODE: in NODE__TYPE;
NEW__BASE: in NODE_TYPE;
NEW__KEY: in RELATIONSHIP_KEY := '}

NEW_ RELATION: in RELATION_NAME := “DOT"),
Changes the primary connection to a node and adjusts the PARENT relationship appropriately.

Existing secandary relationships with the renamed node as target will track the renaming. An implementation may raise
USE__ERROR if the renaming cannot be accomplished while still maintaining consistent secondary relationships and
acircularity of primary relationships. RENAME raises the exception USE__ERROR if a node already exists with the new
name.

Existing processes with open node handles track the renamed node; the node’s handle acts as if the accessing process
had a temporary secondary relationship to the node.

procedure LINK (TO: in NAME__STRING;
NEW__PATH: in NAME__STRING);
procedure LINK (TO__NODE: in NODE__TYPE,;
NEW__BASE: in NODE_TYPE;
KEY: in RELATIONSHIP_KEY := " ";
RELATION: in RELATION_NAME := “DOT"),

Creates a relationship from one existing node to another. This relationship will be identified as a secondary relationship.
The first LINK procedure takes the name of the target node as the TO argument and a NEW__PATH which should lead

to it. The base/key/relation are implied by the NEW__PATH. The second LINK procedure takes a handle on the target
node, a handle on the NEW__BASE, and an explicit key and relation to be established from NEW__BASE to TO_ NODE.

procedure UNLINK (NAME: in NAME__STRING);
procedure UNLINK (BASE: in NODE_TYPE;
KEY: in RELATIONSHIP_KEY := " ";

RELATION: in RELATION_NAME := “DOT");

Deletes a secondary relationship. Raises USE__ERROR if the specified relationship is a primary relationship or does
not exist.

procedure DELETE _NODE(NAME: in NAME __STRING);
procedure DELETE__NODE(NODE: in out NODE_TYPE),

Deletes the primary relationship to a node and the node itself. It is an error if any primary relationships emanate from
this node.

This delete operation closes NODE, removes the appropriate relationship from the node's parent and updates the node’s
parent. If a process node is not TERMINATED (see Section 6.1), this action aborts its process. This delete operation can-
not be used to delete more than one node in a single operation.

procedure DELETE__TREE(NODE: In out NODE__TYPE),

NERVSE S LN SRPIT

3-10 Oraft CAIS

DELETE__TREE deletes a node and recursively deletes all nodes with the designated node as their parent. This opera-
tion closes the NODE handle and removes the appropriate relationship from the node's parent. This operation can be
used to delete more than one node in a single operation. If DELETE__TREE raises the USE__ERROR exception, no
node may be deleted.

type NODE__ITERATOR s private;

subtype RELATIONSHIP__KEY__PATTERN is RELATIONSHIP_KEY;
subtype RELATION__NAME__PATTERN is RELATION__NAME;
subtype NODE__KIND Is CAIS__NODE__DEFS.NODE__KIND;

RELATIONSHIP__KEY__PATTERN and RELATION__NAME__PATTERN follow the syntax of relationship keys/relation
names, except that a “‘?"”" will match any single character and a ***"" will match any string of characters.

procedure ITERATE(ITERATOR: out NODE__ITERATOR;
NODE: in NODE_TYPE;
KIND: in NODE__KIND;
KEY: in RELATIONSHIP_KEY__PATTERN := ''*",
RELATION: in RELATION_NAME _PATTERN := “DOT",
PRIMARY__ONLY: in BOOLEAN : = TRUE);

function MORE (ITERATOR: in NODE__ITERATOR)

return BOOLEAN;

procedure GET__NEXT(ITERATOR: in out NODE__ITERATOR;
NEXT_NODE: in out NODE__TYPE);

These three operations iterate through those nodes referred to from the given NODE, via primary or secondary relation-
ships that have keys/relations satisfying the specified patterns.

The nodes are returned in ASCII lexicographical order by RELATION and then by relationship KEY. The key and relation
are available by the functions PATH__KEY and PATH__RELATION (see above). Nodes that are of a different kind than
the KIND specified are omitted.

It PRIMARY__ONLY is true, then only primary relationships are considered when creating the iterator. In this case, either
PATH_KEY/PATH__RELATION or PRIMARY__KEY/PRIMARY__RELATION may be used to determine the relationship
which caused the node to be included in the iteration.

Similarly, these operations iterate through the primary or secondary relationships from the given NODE which have
keys/relations satisfying the specified patterns.

procedure SET_CURRENT_NODE(NAME: in NAME__STRING);
procedure SET__CURRENT__NODE(NODE: in NODE__TYPE),

Specifies NODE/NAME as the current node.
procedure GET_CURRENT__NODE(NODE: out NODE__TYPE);
Opens a handle on the current nude. This is equivalent to OPEN(NODE, " 'CURRENT__NODE")
function IS_SAME(NAME1: In NAME__STRING;
NAME2: in NAME__STRING)
return BOOLEAN;
function {S_SAME(NODE1: in NODE__TYPE;
NODE2: in NODE__TYPE)
return BOOLEAN;

Returns TRUE if both names/node handles refer to the same CAIS node.

Draft CAIS 3-11

3.6 PACKAGE CAIS_ATTRIBUTES

This package supports the definition and manipulation of named attributes for nodes and relationships. Each attribute
is a list of the format defined by the package CAIS__LIST__UTILS (see Section 8.2.2). The name of an attribute follows
the syntax of an Ada identifier. Upper/lower case distinctions are significant within the value of attributes, but not within
the attribute name.

It is anticipated that certain attribute names and their values will be included as part of the CAIS cefinition. in any case,
each implementation must identify those attribute names and values which are reserved or which have special significance.

The operations in this package are overloaded to permit access to nodes and relationships by either the name strings

or the node handles. Access by the node handle assures that the operation tracks the node (which may be renamed
or locked once open).

3.6.1 Package Specification

with CAIS__LIST_UTILS:
with CAIS_NODE__DEFS;

package CAIS_ATTRIBUTES is

subtype NAME__STRING is
subtype NODE__TYPE is

CAIS_NODE__DEFS.NAME__STRING;
CAIS_NODE__DEFS.NODE_TYPE;

subtype LIST is CAIS_LIST_UTILS.LIST;

subtype ATTRIB__NAME is STRING;

type FLAG_ENUM is (READ_ONLY, INHERIT);

procedure SET__NODE_ATTRIBUTE(NAME: in out NAME__STRING;
ATTRIB: in ATTRIB_NAME;
VALUE: in LISY):

procedure SET__NODE__ATTRIBUTE(NODE: in out NODE__TYPE;
ATTRIB: in ATTRIB_NAME;
VALUE: in LIST),

procedure SET__PATH__ATTRIBUTE(NAME:

in out NAME__STRING;

ATTRIB: in ATTRIB__NAME;
VALUE: in LIST),
procedure SET__PATH_ATTRIBUTE(NODE: in NODE__TYPE;
ATTRIB: in ATTRIB__NAME;
VALUE: in LIST),
procedure GET_NODE__ATTRIBUTE(NAME: in NAME__STRING;
ATTRIB: in ATTRIB__NAME;
VALUE: in LIST),
procedure GET__NODE__ATTRIBUTE(NODE: in out NODE__TYPE;
ATTRIB: in ATTRIB_NAME,
VALUE: in LIST);
procedure GET_PATH_ATTRIBUTE(NAME: in NAME_STRING;
ATTRIB: in ATTRIB__NAME;
VALUE: in LIST):
procedure GET_PATH_ATTRIBUTE(NODE: in NODE_TYPE;
ATTRIB: in ATTRIB__NAME;
VALUE: in LIST);

type ATTRIB_ITERATOR is private;
subtype ATTRIB_PATTERN is STRING;

A AT St NI U -

Draft CAIS

procedure NODE_ATTRIBUTE_ITERATE (ITERATOR: in out ATTRIB_ITERATOR,;

NAME: in NAME__STRING;

PATTERN: in ATTRIB__PATTERN : =" * ");
procedure NODE_ATTRIBUTE__ITERATE (ITERATOR: in out ATTRIB_ITERATOR;

NODE: in NODE__TYPE;

PATTERN: in ATTRIB__PATTERN := ' * "),
procedure PATH__ATTRIBUTE__ITERATE (ITERATOR: in out ATTRIB__ITERATOR;

NAME: in NAME_STRING;

PATTERN: in ATTRIB__PATTERN : = " = ")
procedure PATH__ATTRIBUTE_ITERATE(ITERATOR: in out ATTRIB__ITERATOR;

NODE: in NODE__TYPE;

PATTERN: in ATTRIB_PATTERN := *' * ");
function MORE (ITERATOR: in ATTRIB__ITERATOR)

return BOOLEAN;

procedure GET__NEXT(ITERATOR: in out ATTRIB_ITERATOR;

ATTRIB: out ATTRIB_NAME;
VALUE: in out LIST);
procedure SET__FLAG(NAME: in NAME__STRING;
ATTRIB: in ATTRIB__NAME;
WHICH: in FLAG__ENUM;
TO: in BOOLEAN : = TRUE),
procedure SET_FLAG(NODE: in NODE__TYPE;
ATTRIB: in ATTRIB_NAME; |
WHICH: in FLAG__ENUM;
TO: in BOOLEAN : = TRUE);
function FLAG (NAME: in NAME_STRING;
ATTRIB: in ATTRIB_NAME;
WHICH: in FLAG_ENUM) 4
return BOOLEAN;
function FLAG (NODE: in NODE__TYPE;
ATTRIB: in ATTRIB_NAME;
WHICH: in FLAG_ENUM)

return BOOLEAN;
-- Exceptions
USE__ERROR :exception renames CAIS_NODE__DEFS.USE__ERROR;

private
-- implementation-dependent
end CAIS_ATTRIBUTES;

3.6.2 Package Semantics

subtype NAME__STRING is CAIS_NODE__DEFS.NAME__STRING;
subtype NODE__TYPE is CAIS_NODE__DEFS.NODE__TYPE;
subtype LIST is CAIS__LIST_UTILS.LIST;

subtype ATTRIB_NAME is STRING;

Dratt CAIS 3-13

Each CAIS node or relationship may have list-valued attributes. They are associated with nodes referred 1o by a pathname
or node handle and with relationships referred to by the last step in a pathname or by the last step associated by a pathname.

type FLAG_ENUM is (READ__ONLY, INHERIT);

The type FLAG_ENUM selects one of two flags associated with each attribute. Attributes with the READ__ONLY flag
may not be written. Attributes with no READ__ONLY flag may be read or written. if a node has attributes with the IN-
HERIT flag set, then nodes created with that node as their parent will have the initial values for these attributes copied
from those of the parent node.

procedure SET_NODE__ATTRIBUTE(NAME: in out NAME__STRING;
ATTRIB: in ATTRIB__NAME;
VALUE: in LIST);

procedure SET__NODE__ATTRIBUTE(NODE: in out NODE__TYPE, !
ATTRIB: in ATTRIB_NAME; |
VALUE: in LIST);

procedure SET__PATH__ATTRIBUTE(NAME: in out NAME__STRING;

ATTRIB: in ATTRIB__NAME;
VALUE: In LIST);

procedure SET_PATH_ATTRIBUTE(NODE: in NODE_TYPE;
ATTRIB: in ATTRIB_NAME;
VALUE: in LIST);

Sets the given node/relationship attribute. If an attribute with the given name already exists, then the existing value is
over-written by the given value; if it does not exist, a new attribute is created and set to the given value. Setting the
value of the attribute to an empty list deletes the attribute. This operation will fail with USE__ERROR if the attribute
is READ__ONLY or if the current process does not have update access to the node.

procedure GET__NODE__ATTRIBUTE(NAME: in NAME__STRING;
ATTRIB: in ATTRIB_NAME;
VALUE: in LIST);
procedure GET__NODE__ATTRIBUTE(NODE: in out NODE_TYPE;
ATTRIB: in ATTRIB_NAME;
| VALUE: in LIST);
procedure GET__PATH_ATTRIBUTE(NAME: in NAME_STRING;
ATTRIB: in ATTRIB__NAME;
VALUE: in LIST);
procedure GET_PATH__ATTRIBUTE(NODE: in NODE__TYPE;
ATTRIB: in ATTRIB_NAME;
VALUE: in LIST),

Gets the current value of an atiribute. If the attribute has never been set, then these operations return the empty list.

type ATTRIB__ITERATOR is private;
subtype ATTRIB__PATTERN is STRING;

An attribute iterator is used to sequence through the names of the attributes of a node or a relationship. An
ATTRIB__PATTERN has the same syntax as an ATTRIB__NAME, except that *'?"* stands for any character and *'*""
stands for zero or more arbitrary characters.

By using simply the pattern **** it is possible to iterate through the names of all of the non-null attributes of a node.

Lol e GRS it . 1ol

A g e ——

—NEwl

! R R

3-14 Draft CAIS

in out ATTRIB_ITERATOR;
NAME_STRING;
ATTRIB_PATTERN := "“*");
ATTRIB_ITERATOR,;
NODE_TYPE;
ATTRIB__PATTERN := “*");

procedure NODE__ATTRIBUTE__ITERATE (ITERATOR:
NAME: in
PATTERN: tn

procedure NODE__ATTRIBUTE_ITERATE (ITERATOR: in out
NODE: in
PATTERN: in

inout ATTRIB_ITERATOR,;

procedure PATH__ATTRIBUTE__ITERATE (ITERATOR:
NA*E_STRING;

NAME: in

PATTERN: in ATTRIB_PATTERN: = “*");
procedure PATH__ATTRIBUTE__ITERATE (ITERATOR: inout ATTRIB_ITERATOR;

NODE: in NODE__TYPE;

PATTERN: in ATTRIB_PATTERN: = **");

function MORE (ITERATOR: in ATTRIB_ITERATOR)

return BOOLEAN;

ATTRIB_ITERATOR;
ATTRIBE_NAME
LIST);

procedure GET__NEXT(ITERATOR: in out
ATTRIB: out
VALUE: in out

These operations iterate through the names of the attributes of a node or relationship which match the given pattern.
The names are returned in ASCH lexicographical order.

Y

procedure SET__FLAG(NAME: in NAME__STRING;
ATTRIB: in ATTRIB__NAME;
WHICH: in FLAG_ENUM;
TO: in BOOLEAN := TRUE);
procedure SET__FLAG(NODE: in NODE_TYPE;
ATTRIB: in ATTRIB_NAME;
WHICH: in FLAG__ENUM;
TO: in BOOLEAN := TRUE),
function FLAG (NAME: in NAME_STRING;
ATTRIB: in ATTRIB_NAME;
WHICH: in FLAG_ENUM)
return BOOLEAN;
function FLAG (NODE: in NODE_TYPE;
ATTRIB: in ATTRIB__NAME; -
WHICH: in FLAG_ENUM)

return BOOLEAN;

These two operations provide access to the READ__ONLY and INHERIT flags for each attribute. SET__FLAG sets the
specified flage. The function FLAG returns the current setting of the flag.

3.7 PACKAGE CAIS_NODE__CONTROL

This version of the CAIS defines only primitives for dynamic access synchronization. Each operation on a node is inde-
pendent, and both access control and synchronization status are re-checked for each operation. This package defines
access synchronization operations at the node levels. For file (and device) nodes, an implementation may define the FORM
string to permit an OPEN operation (LRM chapter 14, see also Sections 5 and 7 of this document) which specifies ex-
clusive access; in that case the sequence of file (and device) opening, reading and writing, and closing, is considered
a single node-level “operation”. Use of file (or device) level access synchronization thus provides for longer transactions
at the node level without locking the node’s attributes and relationships (only content may be locked by file level OPEN
actions). Use of node level access synchronization is intended for control at the levei of the node as a whole (content,
relationships, and attributes).

.

Draft CAIS 3-15

3.7.1 Package Specification

with CAIS_ATTRIBUTES;
with CAIS_NODE__DEFS;
with CAIS_NODE__CONTROL is

subtype NODE_TYPE is CAIS__NODE_DEFS.NODE_TYPE;

subtype ATTRIB_NAME is CAIS_AT RIBUTES.ATTRIB__NAME;
ACCESS__CONTROL : constant ATTRIB_NAME : = "ACCESS_CONTROL";
SECURITY_LEVEL : constant ATTRIB_NAME : = "“SECURITY__LEVEL";

procedure LOCK (NODE: in NODE__TYPE;
TIME_LIMIT: in DURATION : = DURATION'LAST);

procedure UNLOCK (NODE: in NODE_TYPE),

privafe
-- implementation-dependent
end CAIS__NODE__CONTROL,;

3.7.2 Package Semantics

subtype NODE__TYPE is CAIS_NODE__DEFS.NODE__TYPE;

subtype ATTRIB__NAME is CAIS__ATTRIBUTES.ATTRIB__NAME;
ACCESS__CONTROL : constant ATTRIB_NAME : = “ACCESS__CONTROL";
SECURITY__LEVEL : constant ATTRIB_NAME : = “SECURITY__LEVEL";

The CAIS provides two predefined attribute names for acces control: ACCESS_CONTROL for discretionary ac-
cess control and SECURITY__LEVEL for non-discretionary access control. These attributes may be set at node
creation (by inclusion in the FORM string — see Section 4.1) or later with SET_NODE__ATTRIBUTE (see Sec-

tion 3.6).
procedure LOCK (NODE: in NODE_TYPE;
TIME__LIMIT: in DURATION : = DURATION'LAST);
procedure UNLOCK (NODE: in NODE__TYPE);

Locks/unlocks the designated node for a series of updates. When a node is locked, any other process that attempts
to modify any attribute, relationship, or content of the node will receive an exception. If the node is already locked, then
LOCK wilt be delayed until the node is unlocked or until the time limit expires. In the later case an exception will be raised.

3.8 PRAGMATICS
Several private types are defined as part of the CAIS Node Model. The actual implementation of these types may vary
from one CAIS implementation to the next. Nevertheless, it is important to establish certain minimums for each type
to enhance portability.

a. NAME__STRING At least 255 characters in a CAIS pathname.

b. RELATIONSHIP__KEY
KEY_STRING At least 20 characters must be significant in (relationship) key.

ATTRIB_NAME
RELATION__NAME

Tree-height

Record size number

Open node count

Draft CA!IS

At least 20 characters must be significant in attribute/rela-
tion names.

At least 10 levels of heirarchy must be supported for the
primary relationships.

At least 32767 bits per record must be supported.

Each process must be able to have at least 15 nodes open
simultaneously.

4. CAIS STRUCTURAL NODES

Structural noces are special nodes in the sense that they do not contain contents as do the other nodes of the CAIS
model. Their purpose is solely to be carriers of common information about other nodes related to the structural node.
Structural nodes are typically used to create conventional directories, configuration objects, etc.

The package CAIS_STRUCTURAL__NODES defines the primitive operations for creating structural nodes. All other
operations for structural nodes are defined in Section 3.

4.1 PACKAGE CAIS_STRUCTURAL__NODES

4.1.1 Package Specification

with CAIS__NODE__DEFS;
package CAIS__STRUCTUIAL_ NODES is

subtype NODE_TYPE is CAIS_NODE__DEFS NODE__TYPE;
subtype NAME__STRING is CAIS_NODE__DEFS.NAME__STRING;
subtype FORM_STRING is CAIS_NODE__DEFS FORMS__STRING;
subtype RELATIONSHIP_KEY is CAIS_NODE__DEFS.RELATIONSHIP_KEY;
subtype RELATION__NAME is CAIS_NODE__DEFS.RELATION__NAME;
procedure CREATE__NODE(NAME: in NAME_STRING;
FORM: in FORM_STRING := " ");
] procedure CREATE__NODE(BASE: in NODE__TYPE;
KEY: in RELATIONSHIP_KEY := "'
RELATION: in RELATION_NAME : = "DOT";
FORM: in FORM_STRING := " ");
procedure CREATE__NODE(NODE: in out NODE__TYPE,
NAME: in NAME__STRING;
. | FORM: in FORM_STRING : = “ ");
: procedure CREATE __NODE(NODE: in out NODE__TYPE;
3 BASE: in NODE__TYPE,
& KEY: in RELATIONSHIP__KEY := * ",
3 RELATION: in RELATION__NAME : = "DOT";
P FORM: in FORM__STRING = "),
g private
k.. -- implementation-dependent
2 end CAIS_STRUCTURAL__NODES;

4.1.2 Package Semantics

subtype NODE__TYPE is CAIS_NODE__DEFS.NODE__TYPE;
subtype NAME__STRING is CAIS_NODE__DEFS.NAME__STRING;
subtype FORM__STRING is CAIS_NODE__DEFS.FORM__STRING;
subtype RELATIONSHIP__KEY is CAIS_NODE__DEFS.RELATIONSHIP__KEY;

subtype RELATION__NAME is CAIS_NODE_DEFS RELATION__NAME;

42 Draft CAIS

procedure CREATE__NODE(NAME: in NAME__STRING;

FORM: in FORM_STRING := " "");
procedure CREATE__NODE(BASE: in NODE__TYPE;

KEY: in RELATIONSHIP_KEY : = " ";

RELATION: In RELATION_NAME := “DOT";

FORM:] FORM_STRING := " ");
procedure CREATE__NODE(NODE: in out NODE__TYPE;

NAME: in NAME__STRING;

FORM: in FORM_STRING := ' ");
procedure CREATE__NODE(NODE: in out NODE_TYPE;

BASE: in NODE__TYPE;

KEY: in RELATIONSHIP_KEY := "™,

RELATION: in RELATION_NAME := “DOT";

FORM: in FORM__STRING := "),

Creates a structural node with its primary relationship and parent node implied by the NAME in the first and third pro-
cedures and given explicitly in the second and fourth procedures.

The last two procedures return a node handle allowing immediate access to attributes and relationships.

if non-null, the FORM parameter provides initial values for attributes of the node, using Ada aggregate syntax, with each
attribute name followed by a right-arrow (' = > ") and the attribute value (see Section 8.2.2 CAIS__LIST__UTILS for the
syntax of attribute value).

5. CAIS FILE NODES

CAIS file nodes are nodes that represent information about and contain external files. The underlying model for the
content of such a node is that of a file of data items, accessible randomly by some index or indices or sequentially.
The basic operations on such files are provided by the Ada packages for input/Output specified in Chapter 14 of the
Ada LRM. While the semantics of the packages as specified in the LRM are fully adhered to, the CAIS imposes addi-
tional requirements on those semantics that the LRM designates as being implementation-defined. These requirements
ensure consistent cooperation between the file-related, node-related, and device-related operations.

The CAIS defines additional Input/Output packages CAIS_SEQUENTIAL__IO, CAIS_DIRECT__IO, CAIS_TEXT_ 10,
and CAIS_INTERACTIVE__IO. The first three packages are identical to the Input/Cutput packages specified in the Ada
LRM, except that additional subprograms are added supporting more convenient and efficient file management opera-
tions by exploiting the CAIS Node Model. The package CAIS__INTERACTIVE__IO defines additional Input/Output faciities
appropriate for files which are assigned to terminals.

To insure the consistency of fite- and node-related operations the CAIS imposes the following two constraints on all I/O
packages:

A file must first be made accessible to an Ada program by an OPEN or CREATE, specitying the
external file by a NAME and a FORM, both character strings. The formats of these strings are
not specified in the Ada LRM. The CAIS requires the formats and semantics for NAME and FORM
to adhere to the specifications given in Sections 3 and 4, respectively. Thus file names have the
syntax of node pathnames.

The CREATE operations both establish a new external file (as described in Chapter 14 of the
Ada LRM) and have the side effect of creating the node for the file. The file node’s primary rela-
tionship and parent node are implied by the NAME parameter. The DELETE operations have
the side effect of deleting the node itself. DELETE operations are not legal if a file's node has
primary relationships emanting from it. /O DELETE operations require that the file be open;
CAIS_NODE_MANAGEMENT DELETE operations require only that the node be open (but they
also delete the contents with the deletion of the node itself).

While an implementation may provide a mechanism for file creation and opening to specify access synchronization,
via the FORM parameter, that access synchronization refers to the file contents level only. To utilize node leve! access
synchronization, the user must open the node explicitly and specify node synchronization operations (see Section 3 7).
Files may be opened with or without node handles being opened, and nodes may be open betore or while associated
tile handles are open.

5.1 Ada LRM INPUT/OUTPUT

5.1.1 Package I0__EXCEPTIONS

This package is specified by Chapter 14 of the Ada LRM. The LRM-defined package provides the definition for all excep-

tions generated by the input/output packages.

5.1.2 Package SEQUENTIAL__IO

This package provides sequential access to files/devices. This package is specified by Chapter 14 of the Ada LRM; however,
because of additional pragmatic requirements it may require a specialized implementation in order to be utilized in a
CAIS implementation.

5-2 Draft CAIS

5.1.3 Package DIRECT__IO

This package provides for direct-access input/output to files/devices. This package is specified by Chapter 14 of the
Ada LRM; however, because of pragmatic and additional implied semantic requirements, it may require a specialized
implementation in order 10 be utilized in a CAIS implementation.

5.1.4 Package TEXT_IO

This package provides sequential formatted input/output to ASCII text files. This package is specified in Chapter 14
of the Ada LRM, however, because of pragmatics and additional implied semantics, it may require a specialized im-
piementation in order to be utilized in a CAIS implementation.

5.2 CAIS INPUT/OUTPUT
5.2.1 CAIS File Management

Section 14.2.1 of the Ada LRM defines the file management operations CREATE and OPEN that are included in each
o! the Ada LRM Input/Output packages. These operations use a pathname as identification of the external file.
in the CAIS model, this pathname implies a navigation along relationships to reach the node whose content represents
the desired external file.

in the CAIS, the navigation operations of CAIS__NODE__MANAGEMENT allow the identification of the node associated
with a file by means of a pathname and also by means of an opened node handle, or a base node and a relationship
identification (i.e., relation name and relationship key) leading to the desired node.

The procedures and functions described in this section provide for the control of external files; their declarations are
repeated in each of the three packages for CAIS sequential, direct, and text input/output. In order to provide for a smooth
transition from a file node to the file itself, and to prevent unnecessary repetitions of navigations, the file management
operations CREATE and OPEN included in the packages CAIS__SEQUENTIAL_IO, CAIS_DIRECT_.IO, and
CAIS_TEXT_IO are provided in overloaded versions:

subtype NODE__TYPE is CAIS_NODE__DEFS.NODE__TYPE;

procedure CREATE (FILE: in out FILE_TYPE;
MODE: in FILE_MODE;
BASE: in NODE_TYPE;
KEY: n RELATIONSHIP_KEY: =" ",
RELATION: in RELATION_NAME: = "DOT";
FORM: in FORM_STRING:=""");
procedure OPEN (FILE: in out FILE_TYPE;
MODE: in FILE__MODE;
BASE: in NODE__TYPE;
KEY: in RELATIONSHIP_KEY: =" "
RELATION: in RELATION__NAME: ="DOT";
FORM: in FORM__STRING: =" ");
procedure OPEN (FILE: in out FILE_TYPE;
MODE: in FILE__MODE;
NODE: in NODE__TYPE;
FORM: in FORM_STRING: =" "),

The semantics of the operations are the same as specified in the Ada LRM Section 14.2.1 and CAIS Section
5.0, except that the external file is identified by means of the associated node handle or BASE, KEY, RELATION.

In addition, the following operation is provided to obtain an opened node handle for the node associated with a file:

A .

Draft CAIS 5-3

procedure OPEN__NODE(NODE: in out NODE__TYPE;
FILE: in FILE__TYPE);

The exception STATUS__ERROR is raised if either the actual parameter for FILE is a closed file handle or the actual
parameter for NODE is an already open node handle.

5.2.2 Package CAIS__SEQUENTIAL IO

This package provides sequential access to files/devices. This package is specified by Chapter 14 of the Ada RML; however,
because of additional pragmatic requirements it may require a specialized implementation in order to be utilized in a
CAIS implementation. Furthermore, the declarations given in Section 5.2.1 are added to the package.

5.23 Package CAIS__DIRECT__IO

This package provides for direct-access inputioutput to files/devices. This package is specified by Chapter 14 of the Ada
LRM; however, because of pragmatic and additional implied semantic requirements, it may require a specialized implemen-
tation in order to be utilized in a CAIS impiementation. Furthermore, the declarations in Section 5.2.1 are added to the
package.

A conforming implementation should support access with package CAIS__SEQUENTIAL__IO to an external file created
and/or maintained with CAIS_DIRECT__IOQ. (This requires that the generic instantiations of both packages utilize the
identical ELEMENT_TYPE))

52.4 Package CAIS_TEXT_IO

This package provides sequential formatted inputioutput to ASCII text files. This package is specified in Chapter 14 of
the Ada LRM; however, because of pragmatics and additional implied semantics, it may require a specialized implementa-
tion in order to be utilized in a CAIS implementation. Furthermore, the declarations given in Section 5.2.1 are added to
the package.

A conforming implementation that supports CAIS__INTERACTIVE__IO provides additional semantics in the
CAIS__TEXT__1O package for the CAIS__TEXT_IO procedures and functions which are used in reference 1o printer-
type terminals and Video Display Terminal (VDT) type terminals associated with an object of type CAIS__INTER-
FACE__I10.INTERACTIVE_TERMINAL.

The line terminator, page terminator, and file terminator characters are implementation-dependent.

A VDT functions identically to a hardcopy terminal unless bounds are set for the line length and/or page length. For
a cursor-addressable VDT, the current column number and current line nhumber of the associated input file and output
file indicate the column number and line number, respectively, on the VDT display. The character position in the upper
left corner of the VDT display is the first column of the first line of the first page.

The following procedures have additional semantics when used in reference to a terminal.

procedure SET__LINE__LENGTH(FILE - in FILE_TYPE; TO : in COUNT);
procedure SET__LINE__LENGTH(TO : in COUNT);

The exception USE__ERROR is raised if the value of TO is greater than the number of character positions on a line
of the display.

procedure SET_PAGE__LENGTH(FILE : in FILE__TYPE; TO : in COUNT),
procedure SET__PAGE__LENGTH(TO : in COUNT),

In reference to a VDT the exception USE__ERROR is raised if the value of TO is greater than the number ot lines on
the display.

s LAY an A s e .

5-4 Draft CAIS

procedure NEW__LINE(FILE : in FILE__TYPE;
SPACING : in POSITIVE_COUNT : = 1);
procedure NEW__LINE(SPACING : in POSITIVE_COUNT : = 1);

In reference to a VDT the active position is moved to the first column of the line below the current line. If the active
position was on the last line of the page, NEW__LINE causes all lines of the display to ba moved upward such that
the top line(s) is lost and the last line of the page is blank.

SPACING acts as defined in the LRM.

procedure NEW__PAGE(FILE : in FILE__TYPE);
procedure NEW__PAGE;

In reference to a VDT the screen is cleared and the active position is moved to the first column of the first line of the display.
procedure GET(. . .);

In reference to a cursor-addressable VDT with a bounded line length the GET procedures clear a portion of the display

starting at the active position and equal in length to the maximum possible length of the item to be read. The active

position is not changed. The data to be read is butfered as the user enters it. Implementation defined editing operations

are permitted. No characters other than the printable characters and horizontal tab (HT) may be returned.

procedure SET__ERROR (FILE : in FILE__TYPE);

Provides an open file handle to be used for current error output. The exception MODE__ERROR is raised if the mode
of FILE is IN__FILE.

function STANDARD__ERROR return FILE_TYPE;
Returns error output set at start of program execution.
tunction CURRENT__ERROR return FILE__TYPE;

Returns current error output, set by SET__ERROR.

5.2.5 Package CAIS__INTERACTIVE_IO
This package defines input and output facilities appropriate to files which are assigned to terminals.

The package provides for association of input and output text files with an output logging file. It also provides for turning
on and off local echoing of input, association of a prompt string with terminal input, and simplistic random access within
a terminal display.

Finally, this package defines a standard error-output text file which is used for error messages which are generated
during program execution, but which would be missed if they were output to a re-directed standard output.

5.2.5.1 Package Specification
with CAIS__TEXT_IO;
with CAIS__NODE__DEFS;
package CAIS__INTERACTIVE_IO is
subtype FILE__TYPE is CAIS__TEXT_IO.FILE_TYPE;

type INTERACTIVE__TERMINAL is limited private;

l_.. .

1=

[

Draft CAIS 5-5

procedure ASSOCIATE (TERMINAL : inout INTERACTIVE_TERMINAL;

INFILE : in FILE__TYPE;
OUTFILE : in FILE_TYPE);

procedure SET__LOG (TERMINAL : inout INTERACTIVE_TERMINAL;
LOG__FILE : in FILE__TYPE);

function LOG (TERMINAL : in INTERACTIVE_TERMINAL)
return FILE__TYPE;

type CURSOR__POSITION is
record
LINE : POSITIVE;
COLUMN : POSITIVE;
end record;

procedure SET__CURSOR (TERMINAL : in out INTERACTIVE__TERMINAL,
POSITION : In CURSOR__POSITION);

function CURSOR (TERMINAL : in out INTERACTIVE__TERMINAL)
return CURSOR__POSITION;

function SIZE (TERMINAL : in out INTERACTIVE_TERMINAL)
return CURSOR__FOSITION;

procedure UPDATE (TERMINAL : in out INTERACTIVE__TERMINAL);

procedure SET__ECHO (TERMINAL : in out [INTERACTIVE_TERMINAL;
TO : in BOOLEAN : = TRUE).

tunction ECHO (TERMINAL : in INTERACTIVE__TERMINAL) return BOOLEAN;

procedure SET__PROMPT (TERMINAL : in INTERACTIVE__TERMINAL;
TO : in STRING);

function PROMPT (TERMINAL : in INTERACTIVE _TERMINAL) return STRING;

-- Exceptions

LAYOUT_ERROR : exception renames CAIS_NODE_DEFS.LAYOUT_ERROR;

MODE __ERROR : exceptiun rerames CAIS__NODE__DEFS.MODE__ERROR,;

STATUS __ERROR ; excer:tion renames CAIS__NODE__DEFS.STATUS__ERROR;

USE ERROR exceplion rerames CAIS__NODE__DEFS.USE__ERROR-
private

-- nhyg lementation-dependent
end CAiS INTERACTIVE 1O,

5.2.5.2 Package Semantics

procedure ASSOCIATE (TERMINAL : in out INTERACTIVE__TERMINAL;
INFILE : in FILE_TYPE;
OUTFILE : in FILE__TYPE),

Associates the INFILE (a hle of mode 'N__FILE) and the file OUTFILE (a file of mode OUT_FILE) with the TERMINAL.
The exception MODE ERROR s raised if the mode of INFILE is OUT__FILE or the mode of OUTFILE is IN__FILE.
The exception STATUS . _ERROR s raised if either INFILE or OUTFILE is not open.

5.6 Dratt CAIS

procedure SET_LOG (TERMINAL : in out INTERACTIVE__TERMINAL;
LOG__FILE : in FILE__TYPE);

Sets LOG__FILE as the file on which the output log is written. When logging is active, all output is simultaneously provid-
ed to both the output file and the log file. Logging associations on the standard input and standard output text files are
required to be preserved across program invocations. The exception MODE__ERROR is raised if the mode of | = __FILE
is IN_FILE. The exception STATUS__ERROR is raised if CAIS_TEXT__{0.IS_OPEN(LOG__FILE) returns FALSE.

function LOG (TERMINAL : in INTERACTIVE__TERMINAL)
return FILE_TYPE;

Returns the current logging file associated with TERMINAL. The file handle returned is not open if not logging.

type CURSOR_POSITION is
record
LINE : POSITIVE;
COLUMN : POSITIVE;
end record;
CURSOR__POSITION identifies the line and column numbers of a terminal.

procedure SET__CURSOR (TERMINAL : in out INTERACTIVE__TERMINAL;
POSITION : in CURSOR__POSITION):

Moves the active position on the display to that specified by POSITION. The exception LAYOUT__ERROR is raised
if the LINE or COLUMN number exceeds PAGE__LENGTH or LINE__LENGTH, respectively, when bounded. For a hard-
copy terminal the exception USE_ERROR is raised if the LINE or COLUMN number is less than the current line or
column number, respectively.

function CURSOR (TERMINAL : in out INTERACTIVE_TERMINAL)
return CURSOR__POSITION;

Returns the current CURSOR__POSITION.

function SIZE (TERMINAL : in out INTERACTIVE_TERMINAL)
return CURSOR__POSITION;

Returns the number of lines and number of columns on the terminal.
procedure UPDATE (TERMINAL : in out INTERACTIVE_TERMINAL);
Forces all data that has not already been output to the physical terminal to be output immediately.

procedure SET__ ECHO (TERMINAL : in out INTERACTIVE_TERMINAL;
TO : in BOOLEAN : = TRUE);

Turns on (TRUE) or oft (FALSE) echoing for input file.
function ECHO (TERMINAL : in INTERACTIVE_TERMINAL) return BOOLEAN;
Indicates current state of echoing.

procedure SET_PROMPT (TERMINAL in INTERACTIVE_TERMINAL;
TO : in STRING);

Sets prompting string for TERMINAL. All future requests for a line of input from TERMINAL will output prompt string
first. The prompting string and any echoed input are also copied to the log fite, if any.

o -y Suwnry [emmtmn]

Draft CAIS 5-7

function PROMPT (TERMINAL : in INTERACTIVE_TERMINAL) return STRING;

Returns current prompt string for input file.

5.3 PRAGMATICS

a. DIRECT_IO Each element of a direct-access file is selected by an integer in-

CAIS_DIRECT_IO dex of type COUNT. A conforming implementation must at least
support a range of indices from one to 32767 (2° * 15-1).

b. SEQUENTIAL_IO A conforming implementation must support generic instantiation
CAIS_SEQUENTIAL__IO of these packages with any (non-limited) constrained Ada type
DIRECT__10 whose maximum size in bits (as defined by the attribute
CAIS_DIRECT_IO ELEMENT__TYPE'SIZE) is at least 32767. A conforming implemen-

tation must also support instantiation with unconstrained record
types which have default constraints and a maximum size in bits
of at least 32767, and may (but need not) use variable length
elements to conserve space in the external file.

c. TEXT_IO A conforming implementation must support files with at least 32767
CAIS_TEXT_!O records/lines in total and at least 32767 lines per page. A conform-
ing implementation must support at least 255 columns per line.

6. CAIS__PROCESS__NODES

et o

Each time an Ada program is invoked, a process node is created to represent the execution of the program. Even where
the Ada program uses tasking, the execution of the program and its tasks is treated as a single CAIS process. This
use of the term process does not preclude the CAIS implementation from devoting more than one host process or one
physical processor to the execution of the single process.

The mechanism by which a user enters the APSE (e.g., logs on) is not defined as part of the CAIS. The facility to verify
access rights;to a system via user ID and password, for example, and to establish privileges and resource rights and
quotas may Be supported either by the APSE or its underlying implementation.

Each time a user enters the APSE a root process node is created dynamically at the top-level node of the user. This root
process node initiates a tree of dependent processes. The primary relationship for the node of the root process emanates
from the top-level node of the user. it has relation name “JOB'' and a relationship key assigned by the APSE or underly-
ing implementation of the APSE. This key is unique for each process node created by the user. In other words, the
format "'USER (XXX)' JOB (YYY) is the absolute pathname of a job.

The root process node exists for the duration of the job's existence in the APSE. When the user's job terminates, the
root process is terminated and the root process node is deleted.

A process may create other processes by invocation. This act of invocation creates both the node representing the pro-
cess and the process itself. The new process is a child of the invoking process. The primary relationship of the nodes
of these processes emanates from the invoking process with relation name “DOT" and a relationship key that is unique
among nodes bearing the DOT relation with the invoker. The relationship key is an identifier assigned by the invoking
process. By default, the 'CURRENT_NODE relationship of the new process is established 10 be the 'CURRENT_NODE
of the invoking process.

A process is identified by providing a pathname to its process node (see CAIS Node Model, Section 3). List-valued at-
tributes and secondary relationships for a process are established using the general node manipulation routines (see
CAIS Node Model, Section 3).

Processes may communicate with each other using the techniques and procedures described in CAIS__PROCESS
COMMUNICATION (see Section 6.3). The basic capability provides for sending and receiving messages over channels
between processes, using a queueing model.

Processes may interrupt each other using the techniques and procedures described in CAIS__PROCESS__INTERRUPTS
(see Section 6.5). This basic capability aliows for signalling and responding to ‘‘pseudo-interrupts,”” using an asynchronous
model for the delivery of the signal. The response to any pseudo-interrupt is definable by the Ada program before the
delivery of the signal.

6.1 PACKAGE CA|IS__PROCESS__DEFS

This package defines types and exceptions associated with process nodes.

6.1.1 Package Specification

with CAIS_NODE__DEFS;
package CAIS__PROCESS_DEFS is

type PROCESS__STATUS is
(READY, SUSPENDED, ABORTING, TERMINATING);

mpowtm—

6-2 Draft CAIS

type COMPLETION__STATUS is (ABORTED, TERMINATED);

ROOT__PROCESS: constant STRING := “ 'CURRENT__JOB";

CURRENT__PROCESS: constant STRING : N

- Exceptions
NAME__ERROR: exception renames CAIS__NODE__DEF.NAME__ERROR;
USE__ERROR: exception renames CAIS_NODE__DEFS.USE__ERROR;

private
-- implementation-dependent
end CAIS_PROCESS__DEFS;

6.1.2 Package Semantics

type PROCESS_STATUS is
(READY, SUSPENDED, ABORTING, TERMINATING);

The PROCESS__STATUS is the state a process is in when viewed from another process. Table 6-1 indicates the states
and the events which will cause transition from one state to another. in the READY state a process is actually running
or is waiting for resources.

TABLE 6-1
PROCESS STATE TABLE
STATE
READY SUSPENDED ABORTING TERMINATING
) OPERATION
‘ TERMINATE TERMINATING TERMINATING —_— _
ABORT ABORTING ABORTING —_ ABORTING
: SUSPEND SUSPENDED —_ N/A N/A |
: %
: RESUME _ READY N/A N/A :

. N/A: marks events that are not applicable to the state specified. ,
’ ——: marks events that have no effect on the state.

Transition to a state as the result of an event is instantaneous with the occurrence of the event. As the state-transition
diagram indicates, there is no transition from an ABORTING or TERMINATING state into any running state.

type COMPLETION__STATUS is (ABORTED, TERMINATED), ,
COMPLETION__STATUS is made available to an invoking process upon completion of a descendant process. These r

are representative states of a process, since at the time of their receipt the process may have already ceased to exist,
depending upon the mechanism provided in the implementation underlying the CAIS for handling completed processes.

H
i
!
\
|

ROOT_PROCESS:

constant STRING: = 'CURRENT__JOB";
CURRENT__PROCESS: =

constant STRING:

ROOT__F..OCESS and CURRENT__PROCESS are two strings defined to represent respectively the root process of the
current job and the current process.

Dratt CAIS 6-3

6.2 PACKAGE CAIS__PROCESS__CONTROL

This package provides support for the invocation of a program. A program can be invoked using the synchronous model,
in which the calling task is suspended during the life of the dependent process and is resumed when the dependent
process terminates, either normally or abnormally. A program can also be spawned using an asynchronous model, in
which the calling task continues execution after the call which creates a dependent process.

6.2.1 Package Specification

with CAIS_NODE__DEFS;

with CAIS__PROCESS__DEFS;

with CAIS_TEXT_IO;

with CAIS_TEXT__UTILS;

package CAIS__PROCESS__CONTROL is

subtype PROGRAM__STRING is STRING;

subtype RESULTS_ STRING is CAIS_TEXT_UTILS.TEXT,

subtype PARAMS_STRING is CAIS__TEXT_UTILS.TEXT,;

subtype NAME__STRING is CAIS_NODE__DEFS.NAME__STRING;

subtype RELATIONSHIP__KEY is CAIS_NODE__DEFS.RELATIONSHIP__KEY;
subtype COMPLETION_STATUS is CAIS_PROCESS_DEFS.COMPLETION__STATUS;
subtype FILE_TYPE is CAIS_TEXT _IO.FILE_TYPE;

subtype NODE__TYPE is CAIS_NODE__DEFS.NODE__TYPE;

subtype PROCESS__STATUS is CAIS_PROCESS__DEFS PROCESS__STATUS;

UNIQUE__CHILD__KEY: STRING renames CAIS_NODE__DEFS.LATEST__KEY;

procedure INVOKE__PROCESS (PROGRAM: in PROGRAM__STRING;
PARAMS: in PARAMS__STRING;
RESULTS: in out RESULTS_STRING;
STATUS: out COMPLETION__STATUS;
KEY: in RELATIONSHIP__KEY: = UNIQUE__CHILD__KEY;
STD__IN: in FILE_TYPE : =
CAIS_TEXT__IO.CURRENT__INPUT;
STD__OUT: in FILE_TYPE : =
CAIS_TEXT__10.CURRENT__OUTPUT,
STD__ERR: in FILE__TYPE : =
CAIS_TEXT_IO.CURRENT__ERROR;
CURR__NODE: in NAME _STRING : =
" "CURRENT_NODE");
procedure SPAWN_PROCE. (PROGRAM: in PROGRAM__STRING;
PARAMS: in PARAMS__STRING;
NODE: in out NODE_TYPE;
KEY: in RELATIONSHIP__KEY: =
UNIQUE__CHILD__KEY;
STD__IN: in FILE_TYPE : =
CAIS__TEXT_IO.CURRENT _INPUT;
STD__OUT: in FILE_TYPE =
CAIS_ TEXT__IO.CURRENY _OUTPUT,
STD__ERR: in FILE_TYPE : =
CAIS_TEXT_I0.CURRE. " ._ERPROR,;
CURR_NODE: in NAME_STRING : -

“ "CURRENT_NODE");

procedure AWAIT__PROCESS (PROCESS:
RESULTS:
STATUS:
LIMIT:

procedure GET_PARAMS (PARAMS:

procedure RETURN__TERMINATED(RESULTS:

procedure RETURN__ABORTED(RESULTS:

procedure ABORT__PROCESS (PROCESS:
procedure ABORT_PROCESS (NODE:

procedure SUSPEND__PRDOCESS(PROCESS:
procedure SUSPEND__PROCESS(NODE:

procedure RESUME__PROCESS (PROCESS:
procedure RESUME__PROCESS (NODE:

function STATE_OF__PROCESS (PROCESS:
function STATE_OF__PROCESS (NODE:

function JOB__INPUT return FILE_ _TYPE;
function JOB__QUTPUT return FILE_TYPE;

-- Exceptions

in out
in out

out
in

in out

Draft CAIS

NODE__TYPE;
RESULTS__STRING;
COMPLETION__STATUS;
DURATION : = DURATION' LAST);
PARAMS_STRING);
RESULTS__STRING;
RESULTS__STRING);

NAME__STRING);
NODE__TYPE);

NAME__STRING);
NODE__TYPE);

NAME__STRING);
NODE__TYPE);

NAME__STRING) return PROCESS_STATUS;
NODE__TYPE) return PROCESS__STATUS;

USE__ERROR: exception renames CAIS_NODE__DEFS.USE__ERROR;

private

-- implementation-dependent

end CAIS_PROCESS_CONTROL;

6.2.2

Package Semantics

subtype PROGRAM__STRING
subtype RESULTS_STRING
subtype PARAMS__STRING
subtype NAME__STRING
subtype RELATIONSHIP__KEY
subtype COMPLETION_STATUS i
subtype FILE_TYPE
subtype NODE__TYPE
subtype PROCESS__STATUS

STRING;
CAIS_TEXT_UTILS.TEXT;
CAIS_TEXT__UTILS.TEXT;
CAIS_NODE__DEFS.NAME__STRING;
CAIS_NODE__DEFS.RELATIONSHIP_KEY;
CAIS_PROCESS__DEFS.COMPLETION__STATUS;
CAIS_TEXT_IO.FILE_TYPE;
CAIS__NODE_DEFS.NODE__TYPE;
CAIS__PROCESS__DEFS PROCESS__STATUS;

UNIQUE__CHILD__KEY: STRING renames CAIS_NODE__DEFS LATEST__KEY;

procedure INVOKE__PROCESS (PROGRAM:
PARAMS:
RESULTS:
STATUS:
KEY:

STD__IN:

STD_OUT:

in

in

in out
out

PROGRAM__STRING;
PARAMS_STRING;
RESULTS__STRING;
COMPLETION__STATUS;
RELATIONSHIP_KEY: =
UNIQUE__CHILD__KEY;

FILE_TYPE : =
CAIS__TEXT_IO.CURRENT__INPUT;
FILE_TYPE : =
CAIS__TEXT__IO.CURRENT_OUTPUT;

© e

W -
Draft CAIS 6-5
STD_ERR: in FILE_TYPE : =
CAIS_TEXT_I0.CURRENT__ERROR,;
CURR_NODE: in NAME_STRING := " 'CURRENT__NODE"");

Creates a new node and a new process and passes a list of parameters to the new process. The calling task can either
supply the KEY or the CAIS implementation will assign a unique key via UNIQUE__CHILD__KEY. The calling task is
suspended until the new process terminates or aborts. The results are returned as a list, along with an enumeration
specitying the process’s completion status. The node of the terminated process is automatically deleted upon termination.

procedure SPAWN__PROCESS (PROGRAM: in PROGRAM__STRING;

PARAMS: in PARAMS__STRING;

NODE: in out NODE_TYPE;

KEY: in RELATIONSHIP_KEY: =
UNIQUE__CHILD__KEY;

STO__IN: in FILE_TYPE .=
CAIS_TEXT_IO.CURRENT __INPUT,

STD_OUT: in FILE_TYPE : =
CAIS_TEXT__IO.CURRENT_OUTPUT,

STD__ERR: in FILE_TYPE : =
CAIS_TEXT__IO.CURRENT__ERROR,;

CURR_NODE: in NAME__STRING : =

“ 'CURRENT_NODE"Y);

Results in a new node and a new process being created to represent the execution of the specified program. Contro!
returns to the invoking process. This invocation provides no technigue for coordination of the new process with its parent,
except that termination of the parent will not be conipieted until all children are terminated or aborted. Similarly, no technique
is provided for returning a result string to the invoking process. Communication between parent and child can be provid-
ed using the techniques provided in CAIS_PROCESS__COMMUNICATION.

procedure AWAIT_PRQOCESS (PROCESS: in out NODE__TYPE,
RESULTS: in out RESULTS__STRING;

STATUS: out COMPLETION__STATUS;
LIMIT: in DURATION : = DURATION'LAST):

Suspend the calling task and wailt for the process created by SPAWN__PROCESS to complete. The USE__ERROR ex-

ception is generated if this is not the first attempt to wait for this descendant process. The result parameter and

COMPLETION__STATUS are provided by spawned process’s return, even if the process completes execution before

the call is made. A time limit is provided in which the parameters must be received or a TIME__OUT exception 1s raised.
procedure GET_PARAMS(PARAMS: in out PARAMS__STRING);

Retrieve the parameters passed 10 a process by its caller.

procedure RETURN__TERMINATED (RESULTS: in RESULTS__STRING),

Await termination of all descer..'ant processess, and then return the specitied result parameter 1o the caling process.
The COMPLETION__STATUS will be TERMINATED.

procedure RETURN__ABORTED (RESULTS: in RESULTS_STRING);

Abort the current process (and all of its aescendant processes) and then return the specified result parameter to the
calling process. The COMPLETION__STATUS will be ABORTED.

. e R

.

B TN |

-

Mt aiag g 3o

Iy

6-6 Draft CAIS

procedure ABQRT__PROCESS (PROCESS: in NAME_STRING),
procedure ABORT__PROCESS (NODE: in NODE__TYPE),

Aborts the specified process and recursively forces any descendants of the named process to be aborted. The sequenc-
ing of the process abortions is not specified. ABORT__PROCESS returns control 1o the issuing process immediately.
At that time, if the state of the aborted process is examined, it will be either ABORTING or the process will be non-
existent. This node associated with the aborted process remains until explicitly deleted by the invoking process.

The COMPLETION__STATUS of the process will be ABORTED. ABORT__PROCESS can be used by a process to abort
itself.

procedure SUSPEND__PROCESS (PROCESS: in NAME__STRING),
procedure SUSPEND__PROCESS (NODE: in NODE__TYPE);
procedure RESUME__PROCESS (PROCESS: in NAME_STRING);
procedure RESUME__PROCESS (NODE: in NODE__TYPE);

Suspends or resumes the designated process. SUSPEND__PROCESS can include suspension of the requesting pro-
cess. While a process is suspended, the PROCESS__STATUS is SUSPENDED. RESUME causes an immediate change
to the READY state. Similarly, the transition to SUSPENDED state takes place immediately.

function STATE__OF_PROCESS (PROCESS: in NAME__STRING) return PROCESS __STATUS,
function STATE_OF_PROCESS (NODE: in NODE__TYPE) return PROCESS__STATUS;

Returns the current state of the specified process. The PROCESS__STATUS of a process issuing that function will always
be READY.

function JOB__INPUT return FILE_TYPE;

function JOB_OUTPUT return FILE__TYPE;
Returns the standard input or output defined at the initiation of the root process of the job. In general, these files will
refer to the interactive terminal or batch input or output files, even if the current input or output file for this process has
been re-directed to a different file.
6.3 PACKAGE CAIS__PROCESS__CCMMUNICATION

CAIS_PROCESS__COMMUNICATION provides techniques for a process to communicate with another process or itself.

A process may send and receive inter-process messages on a number of named channels. The channels are identified
by a character string with the syntax of an Ada identifier.

It is anticipated that certain channel names will eventually have standard meanings with CAIS. Each implementation
must identify those channel names which have special significance.

6.3.1 Package Specification

with CAIS__NODE_DEFS;

with CAIS__PROCESS__DEFS;

with CAIS__TEXT__UTILS;

package CAIS_PROCESS__COMMUNICATION is

subtype NODE__TYPE is CAIS_NODE__DEFS.NODE__TYPE;
subtype NAME__STRING is CAIS_NODE__DEFS.NAME__STRING;
subtype CHANNEL__STRING s STRING;

subtype MESSAGE_TEXT is CAIS__TEXT__UTILS.TEXT;

ioerd |

Draft CAIS

procedure SEND (PROCESS :
CHANNEL :
MESSAGE :
LIMIT :

procedure SEND(NODE :
CHANNEL :
MESSAGE :
LIMIT :

in ou
in
in ou
in

procedure RECEIVE(SENDER :
CHANNEL :
MESSAGE :
LIMIT :

-- Exceptions
TIME_OUT: exception;
private

-- implementation-dependent
end CAIS__PROCESS__COMMUNICATION,;

6.3.2 Package Semantics

subtype NODE__TYPE
subtype NAME__STRING

is CAIS_
is CAIS__

NAME__STRING;
CHANNEL_STRING;
MESSAGE__TEXT,;
DURATION : = DURATION'LAST);
NODE__TYPE;
CHANNEL__STRING;
MESSAGE__TEXT;
DURATION : = DURATION'LAST);

t NODE_TYPE;

STRING;

MESSAGE _TEXT,

DURATION : = DURATION'LAST);

t

NODE_DEFS.NODE__TYPE;
NODE__DEFS.NAME__STRING;

subtype CHANNEL__STRING is STRING;

Provides logica! name of a communication channel between communicating processes

mutual agreement.

. The name is determined by

subtype MESSAGE__TEXT is CAIS__TEXT_UTILS.TEXT;

The message being sent.

procedure SEND(PROCESS : i
CHANNEL :
MESSAGE :
LIMIT :

procedure SEND{NODE :
CHANNEL:
MESSAGE:
LIMIT:

NAME__STRING;
CHANNEL__STRING;
MESSAGE__TEXT;

DURATION : = DURATION'LAST);
NODE__TYPE;
CHANNEL__STRING;
MESSAGE__TEXT,

DURATION : = DURATION'LAST):

Attempts to queue up the specified MESSAGE (text) for the designated process with the specified logical CHANNEL
name. If the queuve is full, the calling task will be suspended up to the time LIMIT specified, after which a TIME_OUT
exception is raised in the calling process. As soon as there is room tor the MESSAGE, it is queued and SEND returns.
It 1s the responsibility of the two processes to insure that whatever additional coordination required is done.

procedure RECEIVE(SENDER : in out NODE__TYPE;
CHANNEL : in CHANNEL__STRING;
MESSAGE : in out MESSAGE__TEXT;
LIMIT : In DURATION : = DURATION'LAST);

6-8 Draft CAIS

Suspends the calling task until a message is avaitable on the specified CHANNEL or the time LIMIT is reached. Multiple
queued messages are received in a first-in first-out order. The capacity of the queue for a particular channel name is
implementation dependent. However, before the first RECEIVE is done by a process on a particular channel name, the
capacity of the queue is defined to be zero, and any SENDers will be delayed because the queue is by definition already
“full.,”’ The sending process is identified by an open node handle on the process node.

6.4 PACKAGE CAIS__PROCESS__ANALYSIS

This package provides standardized debugging capabilities for processes within the CAIS implementation.

6.4.1 Package Specification

with CAIS_PROCESS__DEFS;

package CAIS_PROCESS__ANALYSIS is

{TBD}

end CAIS_PROCESS _ANALYSIS;

6.5 PACKAGE CAIS__PROCESS__INTERRUPTS

This package provides support for pseudo-interrupts, asynchronous signal sent between processes. Each interrupt
is identified by a string with the syntax of an Ada identifier. When an interrupt is generated, the receiving process may
respond by ignoring it, aborting execution, waking up a suspended task, or simply putting it on HOLD.

It is anticipated that the CAIS will define standard interrupt names, as well as standard default interrupt responses
associated with each standard interrupt, in effect prior to an explicit SET_RESPONSE. The most likely default responses
are ABORT for certain serious interrupts and IGNORE for all others.

Note that the predefined Ada language mechanism for associating interrupts with tasks is not being used here, so as
to remain independent of any compiler implementation of this feature.

6.5.1 Package Specification

with CAIS__PROCESS__DEFS;
package CAIS_PROCESS_ INTERRUPTS is

subtype NODE__TYPE is CAIS _PROCESS_ DEFS.NODE _TYPE;
subtype NAME__STRING is CAIS _PROCESS__ DEFS.NAME _STRING:

subtype INTERRUPT__ NAME is STRING;

type INTERRUPT__RESPONSE is (IGNORE, ABORT, AWAKE, HOLDY),

procedure SIGNAL (PROCESS: in NAME_STRING;
INTERRUPT: in INTERRUPT_NAME);
procedure SIGNAL (PROCESS: in NODE_TYPE;
INTERRUPT: in INTERRUPT _NAME);
procedure SET_RESPONSE(INTERRUPT: in INTERRUPT_NAME;
RESPONSE: in INTERRUPT_RESPONSE;
TIME_LIMIT: iIn ODURATION : = DURATION'LAST);
function RESPONSE (INTERRUPT: in INTERRUPT_NAME)

return INTERRUPT_RESPONSE,;

Draft CAIS 6-9

- Exceptions
USE__ERROR: exception renames CAIS__NODE__DEFSUSE__ERROR;

private
-- implementation-dependent
end CAIS__PROCESS__INTERRUPTS;

6.5.2 Package Semantics

subtype NODE__TYPE is CAIS_PROCESS__DEFS.NODE__TYPE;
subtype NAME_STRING . is CAIS_PROCESS__DEFS.NAME__STRING;
subtype INTERRUPT_NAME is STRING;

Typical interrupt names would be “"BREAK", “"HANG__UP"', etc.
type INTERRUPT__RESPONSE is (IGNORE, ABORT, AWAKE, HOLD);
This enumeration specifies the possible responses associated with an interrupt. Each interrupt has exactly one of these

responses associated with it at any one time. if the response is AWAKE, then sorne task has executed a SET__RESPONSE
(NTERRUPT_NAME, AWAKE, TIME__LIMIT) and is still suspended awaiting the interrupt signal.

procedure SIGNAL (PROCESS: in NAME__STRING;
INTERRUPT: in INTERRUPT_NAME);

procedure SIGNAL (PROCESS: in NODE__TYPE,
INTERRRUPT in INTERRUPT_NAME);

Generates the designated pseudo-interrupt in the named process. This call always returns immediately, even if the associated
response in the receiving process is HOLD.

procedure SET__RESPONSE (INTERRUPT: in INTERRUPT__NAME;
RESPONSE: in INTERRUPT __RESPONSE;
TIME_LIMIT: in DURATION : = DURATION'LAST);

Handles a designated pseudo-interrupt according to the designated response. If the previously set response were HOLD,
and the interrupt had already occurred at least once, then the newly specified response is immediately enacted. The
USE__ERROR is raised if an attempt 1s made to SET_RESPONSE when some other task is still suspended with the
response AWAKE. In all other cases, the new response supercedes any previous default or explicitly set response.

if the response is AWAKE, then the calling task i1s suspended until the interrupt is received or until the time limit expires
(in which case the TIME_OUT exception is raised). When setting the response to AWAKE, the previously set response
is remembered, and again becomes the current response after the task 1s awoken due either to an interrupt or to a time-out.

tunction RESPONSE (INTERRUPT in INTERRUPT NAME)
return INTERRUPT. RESPONSE.

Indicates the current response associated with the designated interrupt tor the current process. If the response is AWAKE,
then some other task of the current process 1S suspended awaiting the nterrupt
X 6.6 PRAGMATICS
a. Channels A conforming implementation mus! support channel names of up to 20 characters. A

conforming implementatitn must suppon up to 20 simultaneous accepting channels
from the same process

L

71 VIRTUAL TERMINALS

three classes of terminals supported.

7.1.1.1 Package Specification

with CAIS_NODE__DEFS;

subtype FORM__STRING
subtype NAME__STRING
subtype RELATIONSHIP_KEY
subtype RELATION__NAME

CLASS:
NAME:
FORM:

CLASS:
BASE:
KEY:

FORM:

procedure OPEN (TERMINAL :
CLASS :
NAME :
FORM :

G am e —

procedure CREATE (TERMINAL:

procedure CREATE (TERMINAL:

RELATION:

7. CAIS Device Nodes

7.1.1 Package CAIS__TERMINAL _SUPPORT

package CAIS__TERMINAL_SUPPORT is

type TERMINAL __TYPE is limited private;

This area provides basic device input/output support, along with special device control facilities. A device must tirst be
made accessible to an Ada program by an OPEN, specifying the external device by a NAME and a FORM, both character
strings. When opening device node handles, the NAME and FORM string formats are required to be the same and refer
to the same external devices in both file node usage and in the device node packages. The collection of packages in
this section are detined with caretul consideration of standards established for information interchange by the American
National Standards Institute [ANSI77] and |[ANSI79). The interfaces are also defined with consideration for existing in-
teractive terminals that do not conform to the ANSI| standards.

There are three primary classes of character-imaging terminals in use today: scroli, page, and torm. Four packages
are provided in this section, one package for the common terminal support functions and one package for each of the

This package provides the routines that are common to scroll, page, and form terminals.

is CAIS_NOY £__DEFS.FORM__STRING;

is CAIS_NODE__DEFS.NAME__STRING;

is CAIS_NODE__DEFS.RELATIONSHIP__KEY;
is CAIS_NODE__DEFS.RELATION__NAME;

in out

in out
in
In
in

type TERMINAL __CLASS is (SCROLL, PAGE, FORM);

TERMINAL_TYPE;
TERMINAL__CLASS : = SCROLL;
NAME__STRING;
FORM__STRING : =" "),
TERMINAL__TYPE;
TERMINAL__CLASS : =SCROLL;
NODE__TYPE;
RELATIONSHIP__KEY : =" "';
RELATION_NAME: ="DOT";
FORM__STRING := *“");

TERMINAL__TYPE;
TERMINAL_CLASS := SCROLL;
NAME__STRING;
FORM__STRING :=“");

Draft CAIS

procedure OPEN (TERMINAL: in out TERMINAL__TYPE;

CLASS: in TERMINAL__CLASS := SCROLL:

BASE: in NODE__TYPE;

KEY: in RELATIONSHIP_KEY := ",

RELATION: in RELATION_NAME: ="“DOT";

FORM: in FORM__STRING := "),
procedure OPEN (TERMINAL.: in out TERMINAL__TYPE;

CLASS: in TERMINAL__CLASS : = SCROLL;

NODE: in NODE__TYPE;

FORM: in FORM_STRING := “");

procedure CLOSE (TERMINAL : in out TERMINAL__TYPE);
procedure DELETE (TERMINAL : in out TERMINAL__TYPE);
procedure RESET (TERMINAL : in out TERMINAL__TYPE;

CLASS : in TERMINAL._CLASS);
procedure RESET (TERMINAL : in out TERMINAL__TYPE);

function CLASS(TERMINAL : in TERMINAL__TYPE) return TERMINAL__CLASS;
function NAME (TERMINAL : in TERMINAL__TYPE) return NAME__STRING;
tunction FORM (TERMINAL : in TERMINAL__TYPE) return FORM__STRING;

function IS_OPEN (TERMINAL : in TERMINAL__TYPE) return BOOLEAN;

type ACTIVE__POSITION is
record
LINE : POSITIVE;
COLUMN : POSITIVE,
end record;

procedure SET __POSITION (TERMINAL : in out TERMINAL__TYPE;
POSITION : in ACTIVE__POSITION);

function POSITION (TERMINAL : in TERMINAL__TYPE)
return ACTIVE__POSITION;

function SIZE (TERMINAL : in TERMINAL__TYPE)
return ACTIVE _POSITION;

-- Exceptions

CLASS_ERROR : exception;

NAME_ERROR : exception renames CAIS _NODE__DEFS.NAME_ERROR,;

USE__ERROR exception renames CAIS__NODE__DEFS.USE__ERROR;

STATUS_ERROR : ev.eption renames CAIS_NODE _DEFS.STATUS__ERROR;
private

-- implementation-dependent
end CAIS_TERMINAL__SUPPORT;

7.1.1.2 Package Semantics

type TERMINAL__CLASS is (SCROLL, PAGE, FORM);

Draft CAIS 7-3

Indicates the different classes of terminals that are supported.

procedure CREATE (TERMINAL: in out TERMINAL_TYPE;

CLASS: in TERMINAL_CLASS : = SCROLL;
NAME: in NAME_STRING;
FORM: in FORM__STRING := “ ")

Creates an extenal termnal (and its device node) that is associated with the given terminal. The given terminal is left
open. A null string for the FORM specifies default options of the implementation.

The exception STATUS__ERROR is raised if the given terminal is already open. The exception NAME_ERROR is rais-
ed if the NAME does not identify an external logical terminal.

procedure CREATE (TERMINAL: in out TERMINAL__TYPE;

CLASS: in TERMINAL__CLASS := SCROLL;
BASE: in NODE__TYPE;

KEY: in RELATIONSHIP_KEY := * ',
RELATION: in RELATION__NAME: ="DOT";
FORM: in FORM__STRING := “ "),

The semantics are the same as above except that the terminal is identified by means of BASE/KEY/RELATION.

procedure OPEN (TERMINAL : in out TERMINAL_TYPE;

CLASS : in TERMINAL__CLASS := SCROLL;
NAME : in NAME__STRING;
FORM : in FORM_STRING := " "),

Associates the given terminal handle with a terminal having the given name and form and sets the current class of the
terminal handle to the given class.

The exception NAME__ERROR is raised if the string given as NAME does not identily a terminal. The exception
USE_ERROR is raised if the terminal identified by NAME cannot be opened in the given class or form.

procedure OPEN (TERMINAL: in out TERMINAL __TYPE;
CLASS: in TERMINAL __CLASS := SCROLL;
BASE: in NODE__TYPE;
KEY: in RELATIONSHIP_KEY := “™;
RELATION: in RELATION__NAME: ="DOT";
FORM: in FORM__STRING := " ");
procedure OPEN (TERMINAL: in out TERMINAL__TYPE;
CLASS: in TERMINAL__CLASS := SCROLL;
NODE: in NODE_TYPE;
FORM: in FORM_STRING := " ");

The semantics are the same as above excep! that the terminal is identitied by means of the associated node or
BASE/KEY/RELATION.

procedure CLOSE (TERMINAL : in out TERMINAL__TYPE);
Severs the association between the terminal handie and its associated terminal.
procedure DELETE (TERMINAL: in out TERMINAL __TYPE);

Deletes the external terminal (and its device node) associated with the given terminal. The given terminal is closed,
and the external logical terminal ceases to exist.

7-4 Draft CAIS

The exception STATUS__ERROR is raised if the given terminal is not open. The exception USE_ERROR is raised if
deletion of the external logical terminal is not allowed by the calier.

procedure RESET (TERMINAL : in out TERMINAL__TYPE,
CLASS : - in TERMINAL__CLASS);
procedure RESET (TERMINAL : in out TERMINAL__TYPE);
Changes the terminal handle to the given class and/or resets the terminal handle to its initial state.
function CLASS(TERMINAL : in TERMINAL_TYPE) return TERMINAL__CLASS;
Returns the class of the node associated with the given terminal handle.
function NAME (TERMINAL : in TERMINAL__TYPE) return NAME__STRING;
Returns the name of the node associated with the given terminal handle.
function FORM (TERMINAL : in TERMINAL__TYPE) return FORM__STRING;
Returns the form associated with the given terminal handle.
function IS_OPEN (TERMINAL : in TERMINAL__TYPE) return BOOLEAN;
Returns TRUE if the given terminal handle is associated with a logical terminal, otherwise returns FALSE.
type ACTIVE_POSITION is
record
LINE : POSITIVE;
COLUMN : POSITIVE;

end record;

The ACTIVE__POSITION indicates the row and column position on the display of a terminal at which the next operation
may occur.

procedure SET__POSITION (TERMINAL : in out TERMINAL_TYPE;
POSITION : in ACTIVE_POSITION);

Moves the active position to the specified POSITION on the display of the given terminal.

function POSITION (TERMINAL : in TERMINAL__TYPE)
return ACTIVE__POSITION;

Returns the POSITION of the active position on the given terminal.

function SIZE (TERMINAL : in TERMINAL_TYPE)
return ACTIVE__POSITION;

Returns the maximum line and maximum column of the given terminal.

7.1.2 Package CAIS__SCROLL_TERMINAL

This package provides the functionality of a common "teleprinter” type terminal. It is capable of a minimal set of opera-
tions. Characters are transmitted between a program and the terminal a character or a line at a time. This type of ter-
minal is typically configured to echo each character as it is entered at the keyboard (before transmission to the computer
or intervening communications equipment).

Draft CAIS

7.1.2.1 Package Specification

with CAIS__NODE__DEFS;
with CAIS__TERMINAL__SUPPORT,
package CAIS__SCROLL__TERMINAL is

subtype TERMINAL__TYPE is CAIS_TERMINAL_SUPPORT.TERMINAL__TYPE;

procedure SET__TAB (TERMINAL :
procedure CLEAR_TAB (TERMINAL :

procedure TAB (TERMINAL :
COUNT :

procedure NEW__LINE (TERMINAL :
procedure NEW__PAGE (TERMINAL :

procedure PUT (TERMINAL :
ITEM :

procedure PUT (TERMINAL :
ITEM :

procedure UPDATE (TERMINAL :

procedure GET (TERMINAL :
ITEM :

procedure GET (TERMINAL :
ITEM :

procedure GET (TERMINAL :
ITEM :
LAST :

procedure SET_ECHO (TERMINAL :
TO0 -

ﬂm—v

in out TERMINAL__TYPE);

in out TERMINAL__TYPE);

in out TERMINAL__TYPE;

in POSITIVE);

in out TERMINAL _TYPE);

in out TERMINAL_TYPE);

in out TERMINAL__TYPE;

in CHARACTER);

in out TERMINAL__TYPE;

in STRING);

in out TERMINAL__TYPE);

in out TERMINAL _TYPE;
out CHARACTER);

in out TERMINAL__TYPE;
out STRING),

in out TERMINAL_TYPE;

out STRING;
out NATURAL);

in TERMINAL_TYPE;
in BOOLEAN : = TRUE);

function ECHO (TERMINAL : in TERMINAL__TYPE) return BOOLEAN;

procedure BELL (TERMINAL :

- Exceptions

CLASS__ERROR : exception renames CAIS_TERMINAL__SUPPORT.CLASS__ERROR;
exception renames CAIS__NODE__DEFS.USE__ERROR;

USE_ERROR :
private

-- implementation-dependent
end CAIS__SCROLL__TERMINAL;

7.1.2.2 Package Semantics

procedure SET_TAB (TERMINAL :

in out TERMINAL__TYPE):

in out TERMINAL__TYPE)

Creates a horizontal tab stop at the active position (used by TAB).

procedure CLEAR_TAB (TERMINAL :

in out TERMINAL__TYPE);

7-5

F""'—"___—-“.

7-6 Draft CAIS

D o aien o LA

Deletes a horizontal tab stop at the active position. The exception USE__ERROR is raised if a horizontal tab stop does
not exist at the active position. .

TR RS TR wTe——

procedure TAB (TERMINAL : in out TERMINAL_TVPE;
COUNT : in POSITIVE);

Moves the active position the specified number of horizontal tab stops. The exception USE_ERROR is raised if there
are fewer than COUNT tab stops on the active line.

procedure NEW__LINE (TERMINAL : in out TERMINAL__TYPE),
Moves the active position to the first column of the next line. The display scrolls upward if entered on the last line of
the display.

procedure NEW_ PAGE (TERMINAL : in out TERMINAL_TYPE);

Moves the active position to the first column of the first line of a new page.

procedure PUT (TERMINAL : in out TERMINAL__TYPE;
ITEM : in CHARACTER);

Writes a single character to the display and advances the active position. if the active position is at the last column
on a line, a NEW__LINE operation is performed after writing the character.

procedure PUT (TERMINAL : in out TERMINAL_TYPE;
ITEM : in STRING);

Writes a character at a time in the same manner as PUT of a character, writing each character in the given string
successively.

procedure UPDATE (TERMINAL : in out TERMINAL _TYPE),

Forces all data that has not aiteady been transmitted to the terminal to be transferred.

procedure GET (TERMINAL : in out TERMINAL__TYPE;
ITEM : out CHARACTER);

Reads a single (unedited) character from the terminal keyboard. I

pracedure GET (TERMINAL : in out TERMINAL__TYPE;
ITEM : out STRING);

Reads ITEM'LENGTH (unedited) characters from the terminal keyboard into ITEM.

procedure GET (TERMINAL : in out TERMINAL__TYPE;
ITEM : out STRING;
LAST : out NATURAL);

Successively reads (unedited) characters from the terminal keyboard into ITEM, until either all positions of ITEM are
filled or there are no more characters buffered for the terminal. Upon completion LAST contains the index of the last
position in ITEM to contain a character that has been read. i

procedure SET_ECHO (TERMINAL : in TERMINAL__TYPE;
TJO : in BOOLEAN : = TRUE);

When TO is given as TRUE, each character entered at the keyboard is echoed to the display.

function ECHO (TERMINAL : in TERMINAL__TYPE) return BOOLEAN;

Draft CAIS 7-7

Returns whether echo is enabled (TRUE) or disabled (FALSE).
procedure BELL (TERMINAL : in out TERMINAL_TYPE);
Activates the bell (beeper) on the terminal.
- Exceptions

CLASS_ERROR : exception renames CAIS_TERMINAL_ _SUPPORT.CLASS__ERROR;
USE_ERROR : exception renames CAIS_NODE__DEFS.USE__ERROR;

The exception CLASS_ERROR is raised if any of the operations in the package CAIS_SCROLL_TERMINAL are in-
voked with a TERMINAL which is not OPENed or RESET with class SCROLL.

7.1.3 Package CAIS_PAGE__TERMINAL

This package provides the functionality of a page terminal. A page terminal is commonly referred to as a character-
oriented or interactive terminal. This terminal may have many types of format etfectors, cursor controls, and local (built-
in) editing functions. Typical controls for page terminals are to position the cursor, to erase within a line or display area,
to insert into or delete from a line, to insert or delete entire lines, to scroll up, and to select graphic rendition for subse-
quent output characters (intensity, reverse-image, blink, underscore, etc.). The terminal may be configured to echo before
transmission to the computer (or intervening equipment) or not to echo at all. Each character is transmitted to the com-
puter as it is entered at the keyboard. Except when locally echoed, the control action implied by the character keyed
is deferred until (and if) the computer (or communications equipment) echoes the character. (This allows some programs,
operating with non-echoing terminals, to reinterpret the meanings of control characters keyed by not directly echoing
these characters. A number of popular text editors operate this way.)

7.1.3.1 Package Specification

with CAIS__NODE__DEFS;

with CAIS__ TERMINAL__SUPPORT;
package CAIS__PAGE_TERMINAL is

subtype TERMINAL__TYPE is CAIS_TERMINAL__SUPPORT.TERMINAL_TYPE;

procedure SET__TAB (TERMINAL : in out TERMINAL_TYPE),
procedure CLEAR__TAB (TERMINAL : in out TERMINAL__TYPE);
procedure TAB (TERMINAL : in out TERMINAL__TYPE;
COUNT : in POSITIVE);
procedure BELL (TERMINAL : in out TERMINAL__TYPE);
procedure DELETE__CHARACTER (TERMINAL : in out TERMINAL__TYPE;
COUNT : in POSITIVE),
procedure DELETE_LINE (TERMINAL : in out TERMINAL__TYPE; -
COUNT : in POSITIVE), ‘

tunction ECHO (TERMINAL : in TERMINAL__TYPE) return BOOLEAN;

procedure ERASE__CHARACTER (TERMINAL : in out TERMINAL__TYPE;
COUNT : in POSITIVE),

type SELECT_ENUM is
(FROM_ACTIVE__POSITION__TO__END,

Y . T T e N T TR 1+e -]

7-8 Draft CAIS

FROM_START_TO__ACTIVE__POSITION,

ALL__POSITIONS);
procedure ERASE__IN__DISPLAY (TERMINAL : in out TERMINAL__TYPE;
SELECTION : in SELECT__ENUM);
procedure ERASE__IN_LINE (TERMINAL : in out TERMINAL__TYPE;
SELECTION : in SELECT_ENUM);
procedure GET (TERMINAL : in out TERMINAL__TYPE;
ITEM : out CHARACTER);
procedure GET (TERMINAL : in out TERMINAL__TYPE;
ITEM : out STRING;
procedure GET (TERMINAL : in out TERMINAL__TYPE;
ITEM : out STRING;
LAST : out NATURAL);
procedure INSERT_CHARACTER (TERMINAL : in out TERMINAL_TYPE;
COUNT : in POSITIVE);
: procedure INSERT__LINE (TERMINAL : in out TERMINAL__TYPE;
COUNT : in POSITIVE),
procedure PUT (TERMINAL : in out TERMINAL__TYPE;
ITEM : in CHARACTER);
procedure PUT (TERMINAL : in out TERMINAL_TYPE;
ITEM : in STRING);

type GRAPHIC__RENDITION_ENUM is
(PRIMARY__RENDITION,
- BOLD,
5 FAINT, .
3 UNDERSCORE,
SLOW__BLINK,
RAPID__BLINK,
REVERSE__IMAGE)

procedure SELECT_GRAPHIC__RENDITION (TERMINAL : in out TERMINAL__TYPE;

SELECTION : in GRAPHIC_RENDITION_ENUM);
procedure SET_ECHO (TERMINAL : in out TERMINAL_TYPE;
TO: in BOOLEAN : = TRUE);
& procedure UPDATE (TERMINAL : in out TERMINAL _TYPE);

-- Exceptions

CLASS__ERROR : exception renames CAIS_TERMINAL__SUPPORT.CLASS__ERROR;
4 USE_ERROR : exception renames CAIS__NODE__DEFSUSE__ERROR;

private

-- implementation-dependent
end CAIS__PAGE__TERMINAL;

7.1.3.2 Package Semantics

procedure SET__TAB (TERMINAL : in out TERMINAL_TYPE);

Draft CAIS 7.9

Creates a horizontal tab stop at the active position.
procedure CLEAR_TAB (TERMINAL : in out TERMINAL__TYPE);

Deletes a horizontal tab stop at the active position. The exception USE__ERROR is raised if a horizontal tab stop does
not exist at the active position.

procedure TAB (TERMINAL : in out TERMINAL__TYPE;
COUNT : in POSITIVE);

Moves the active position the specified number of horizontal tab stops. The exception USE__ERROR is raised if there
are fewer than COUNT tab stops on the active line.

procedure BELL (TERMINAL : in out TERMINAL__TYPE);
Activates the bell (beeper) on the terminal.

procedure DELETE__CHARACTER (TERMINAL : in out TERMINAL_TYPE;
COUNT : in POSITIVE);

Deletes the given number of characters on the active line starting at the active position. Adjacent characters to the right
of the active position are shifted left. Open space on the right is filled with SPACE characters. The active position is
not changed.

procedure DELETE__LINE (TERMINAL : in out TERMINAL_TYPE;
COUNT : in POSITIVE);

Deletes the given number of lines starting at the active line. Adjacent lines are shifted from the bottom toward the active
line. COUNT lines from the bottom of the display are cleared. The active position is not changed.

function ECHO (TERMINAL : in TERMINAL__TYPE) return BOOLEAN;
Returns whether echo is enabled (TRUE) or disabled (FALSE).

procedure ERASE__CHARACTER (TERMINAL : in out TERMINAL__TYPE;
COUNT : in POSITIVE);

) Replaces the given numboer of characters on the active line with SPACE characters starting at the aclive position. The
active position is not changed. The exceptien USE__ERROR is raised if COUNT is greater than SIZE(TER-
MINAL).COLUMN__POSITION(TERMINAL). COLUMN.

type SELECT_ENUM is
(FROM_ACTIVE__POSITION_TO__END,
FROM_START_TO_ACTIVE_POSITION,
ALL__POSITIONS);

procedure ERASE__IN_DISPLAY (TERMINAL : in out TERMINAL_TYPE,
SELECTION :in SELECT_ENUM);

Erases the characters in the entire display as determined by the active position and the given SELECTION (include
the active position). The active position is not changed.

procedure ERASE__IN__LINE (TERMINAL : in out TERMINAL__TYPE;
l SELECTION : in SELECT__ENUM);

Erases the characters in the active line as determined by the active position and the given SELECTION (include the
active position). The active position is not changed.

7-10 Draft CAIS

procedure GET (TERMINAL : in out TERMINAL__TYPE;
ITEM : out CHARACTER);

Reads a single (unedited) character from the terminal keyboard.

procedure GET (TERMINAL : in out TERMINAL__TYPE;
ITEM : out STRING);

Reads ITEM'LENGTH (unedited) characters from the terminal keyboard into ITEM.

procedure GET (TERMINAL : in out TERMINAL__TYPE;
ITEM : out STRING;
LAST : out NATURAL);

Successively reads (unedited) characters from the terminal keyboard into ITEM, until either all positions of ITEM are
filled or there are no more characters buffered for the terminal. Upon completion LAST contains the index of the last
position in ITEM to contain a character that has been read.

procedure INSERT_CHARACTER (TERMINAL : in out TERMINAL__TYPE;
COUNT : in POSITIVE);

Inserts COUNT SPACE characters into the active line at the active position. Adjacent characters are shifted to the right.
The rightmost characters on the line may be lost. The active position is advanced to the right one character position.

procedure INSERT__LINE (TERMINAL : in out TERMINAL__TYPE;
COUNT: in POSITIVE);

inserts COUNT blank lines into the display at the active line. The lines at and below the top of the display are lost. The
active position remains unchanged.

3 procedure PUT (TERMINAL © in out TERMINAL__TYPE;
ITEM : in CHARACTER);

Writes a single character at the active position. Advances the active position to the next column. if the character is writ-
ten to the last character position on a line, advances the active position to the first column of the next line. Iif the character
is written to the last character position of the last line, inserts a line at the bottom of the display and moves the active
position to the first column of the last line.

' procedure PUT (TERMINAL : in out TERMINAL__TYPE;
ITEM : in STRING);

Writes each character of the given stning according to the semantics for PUT with ITEM as a single character.

type GRAPHIC__RENDITION_ ENUM 15
b (PRIMARY __RENDITION,
BOLD.,
FAINT,
3 UNDERSCORE,
¢ SLOW_ BLINK,
‘ RAPID__BLINK,
REVERSE__IMAGE};

procedure SELECT_GRAPHIC__RENDITION (TERMINAL: in out TERMINAL_TYPE;
SELECTION: in GRAPHIC_RENDITION__ENUM);

Sets the graphic rendition for subsequent characters to be PUT. If the graphic rendition specified is not supported by
the terminal, the primary rendition is used. The exception USE__ERROR is raised if the specified graphic rendition is
not supported.]

-

Draft CAIS 7-11

procedure SET__ECHO(TERMINAL : in out TERMINAL__TYPE;
TO : in BOOLEAN : = TRUE);

Turns on (TRUE) or off (FALSE) echoing for input file.
procedure UPDATE (TERMINAL : in out TERMINAL__TYPE),

Forces all data that has not already been transmitted to the terminal to be transmitted.
-- Exceptions

CLASS__ERROR : exception renames CAIS__TERMINAL__SUPPOR1.CLASS__ERROR,;
USE__ERROR : exception renames CAIS_NODE__DEFS.USE__ERROR,;

The exception CLASS__ERROR is raised if any of the routines in the package CAIS__PAGE__TERMINAL are invoked
with a terminal handle which is not OPENed or RESET with class PAGE.

7.1.4 Package CAIS__FORM__TERMINAL

This package provides functionality for manipulating a form terminal. A form terminal controls much of the display modifica-
tion itself (or within local *‘cluster’ controllers). Typically a form is built by writing control and prompting characters to
desired positions on the display, setting specific character positions to be guarded (protected, as for prompts) or unguarded
{unprotected, as for ill-in qualfied area), and designating the attributes of the characters (legal entries, color, and intensity.
The dispiay is divided into areas of contiguous character positions (qualified area space) that have the same attributes (eq..
unprotected, high intensity). Once the form is built, the form is transmitted to the terminal. At this point, the terminal
1s in “'local’’ control of the display. The user may move the cursor about on the display, insert, delete, and replace characters
in any unprotected area of the display (all under local control, without use of the computer or communications circuitry).
When the user has finished all the modifications/entries that are desired, the user presses a special key (function key
or enter key) which causes the modified portions of the display to be accessible to the program.

7.1.4.1 Package Specification

with CAIS__NODE__DEFS;
with CAIS__TERMINAL__SUPPORT,
package CAIS_FORM__TERMINAL is

subtype TERMINAL__TYPE is CAIS_TERMINAL__SUPPORT.TERMINAL__TYPE;

type TERMINATION__KEY_ RANGE is INTEGER
range 0 . . implementation_defined;

type AREA__INTENSITY is
(NONE.
NORMAL,
HIGH);

type AREA_PROTECTION is
(UNPROTECTED.
PROTECTED);

type AREA_INPUT is
(GRAPHIC_CHARACTERS,
NUMERICS
ALPHABETICS);

7-12

type AREA__VALUE is
(NO__FILL,
FILL__WITH__ZEROES,
FILL__WITH_SPACES);

procedure DEFINE__QUALIFIED__AREA (TERMINAL :
INTENSITY :

in out
in

PROTECTION : in

INPUT :
VALUE :

procedure CLEAR__QUALIFIED__AREA (TERMINAL

in

in

in out

procedure TAB (TERMINAL : in out TERMINAL__TYPE;

COUNT: in POSITIVE);

procedure PUT (TERMINAL: inout TERMINAL_TYPE,
ITEM: in CHARACTER;;
procedure PUT (TERMINAL : inout TERMINAL_TYPE;

ITEM : in STRING);
procedure ERASE__AREA (TERMINAL : in out
procedure ERASE_DISPLAY (TERMINAL : in out

procedure ACTIVATE__FORM (TERMINAL : in out

Draft CAIS

TERMINAL_TYPE;
AREA_INTENSITY : = NORMAL;
AREA_PROTECTION : =
PROTECTED;

AREA__INPUT : =
GRAPHIC_CHARACTER_INPUT;
AREA_VALUE : = NO__FILL);

TERMINAL__TYPE);

TERMINAL__TYPE);

TERMINAL__TYPE);

TERMINAL__TYPE);

procedure GET (TERMINAL : in out TERMINAL__TYPE;
ITEM : out CHARACTER);
procedure GET (TERMINAL : inout TERMINAL__TYPE;

ITEM : out STRING),

function IS_FORM__UPDATED (TERMINAL : in

TERMINAL__TYPE return BOOLEAN;,

function TERMINATION_KEY (TERMINAL : in TERMINAL__TYPE) return TERMINATION__KEY__RANGE;

function AREA__QUALIFIER_REQUIRES__SPACE (TERMINAL : in TERMINAL__TYPE} return BOOLEAN;

-- Exceptions

CLASS__ERROR : exception renames CAIS__TERMINAL_SUPPORT.CLASS__ERROR;
USE__ERROR : exception renames CAIS_NODE__DEFS.USE__ERROR,;

private
-- implementation-dependent
end CAIS_FORM__TERMINAL;

7.1.4.2 Package Semantics

subtype TERMINAL__TYPE is CAIS_TERMINAL__SUPPORT.TERMINAL__TYPE;

type TERMINATION__KEY__RANGE is INTEGER range 0 . . implementation__defined;

Draft CAIS 7-13

type AREA__INTENSITY is
(NONE,
NORMAL,
HIGH);

type AREA__PROTECTION is
(UNPROTECTED,
PROTECTED),

type AREA_INPUT is
(GRAPHIC_CHARACTERS,
NUMERICS,
ALPHABETICS);

type AREA__VALUE is
(NO_FILL,
FILL_WITH_ZEROES,
FILL__WITH_SPACES);

These types define the attributes for a qualified area of a form. AREA__INTENSITY indicates the intensity at which the
characters in the area should be displayed (NONE indicates that characters are not displayed). AREA_PROTECTION
specifies whether the user can modify the contents of the area when the form has been activated. AREA__INPUT specifies
the vald characters that may be entered by the user (GRAPHIC_CHARACTERS indicates that any printable character
may be entered). AREA_VALUE indicates the initial value that the area should have when activated (NO__FILL indicates
that the value has been specified by a previous PUT statement).

procedure DEFINE__QUALIFIED__AREA (TERMINAL: in out TERMINAL_TYPE;

INTENSITY: in AREA__INTENSITY: = NORMAL;
PROTECTION: in AREA__PROTECTION: = PROTECTED;
INPUT: in AREA__INPUT : =

i GRAPHIC_CHARACTER__INPUT:
VALUE: in AREA__VALUE := NO__FILL);

Indicates that the active position is the first character position of a qualified area. The end of the qualified area is in-
dicated by the beginning of the following quaitied area.

procedure CLEAR_QUALIFIED__AREA (TERMINAL : in out TERMINAL__TYPE);
Removes an area qualifier from the active position.

procedure TAB (TERMINAL : in out TERMINAL__TYPE,
COURT : in POSITIVE);
Moves the active position the specified number of qualified areas toward the end of the display. The active position
is the first character position of the designated qualified area. The exception USE__ERROR is raised if there are fewer
than COUNT qualified areas after the active position.

procedure PUT (TERMINAL : in out TERMINAL_TYPE;
ITEM : in CHARACTER);

Writes a character to the display in the active position. The column of the active position is incremented by one. If the
character is written in the last column of a line, the active position is advanced to the first column of the following line
If the character is written to the last column of the last line, the active position is moved to the first column of the first
line. If the area qualifier takes space on the display, writing to the position containing an area qualifier removes the
area qualifier. Only characters in the range SPACE through STANDARD.ASCII.TILDE may be written. An attempt to
write any other character raises the USE__ERROR exception.

7-14 Draft CAIS

procedure PUT (TERMINAL : in out TERMINAL_TYPE;
ITEM : in STRING);

Writes each character of the ITEM according to the semantics for writing an individual character.
procedure ERASE__AREA (TERMINAL : in out TERMINAL_TYPE);

Clears the area in which the active position is located.
procedure ERASE__DISPLAY (TERMINAL : in out TERMINAL__TYPE),

Clears the display and removes ali area qualifiers.
procedure ACTIVATE__FORM (TERMINAL :in out TERMINAL_TYPE);

Activates the form that has been created enabling the user to edit the form. Returns control to the calling task when
user enters a termination key.

procedure GET (TERMINAL : in out TERMINAL__TYPE;
ITEM : out CHARACTER);

Reads a character from the display at the active position. Advances the active position forward one position. An area
qualitier (on a display on which the area qualifier requires space) is read as the SPACE character.

procedure GET (TERMINAL : in out TERMINAL__TYPE;
ITEM : out STRING),

Reads ITEM'LENGTH characters from the display one at a time filling the [TEM from ITEM'FIRST through ITEM'LAST.
function IS_FORM__UPDATED (TERMINAL : in TERMINAL_TYPE) return BOOLEAN;

Returns whether the form was modified by the user during the previous ACTIVATE_FORM operation.
function TERMINATION_KEY (TERMINAL : in TERMINAL__TYPE) return TERMINATION__KEY__RANGE;

Returns a number that indicates which (implementation dependent) key terminated the ACTIVATE_FORM procedure.
A value of zero indicates the normal termination key (i.e., the ENTER key).

function AREA_QUALIFIER__REQUIRES__SPACE (TERMINAL : in TERMINAL_TYPE)
return BOOLEAN,

Returns TRUE if the area qualifier requires space on the display.
- Exceptions

CLASS__ERROR : exception renames CAIS_TERMINAL__SUPPORT.CLASS__ERROR,;
USE_ERROR : exception renames CAIS_NODE__DEFS.USE_ERROR;

The exception CLASS__ERROR is raised if any of the routines in the package CAIS__FORM__TERMINAL are invoked
with a terminal handle which is not OPENed or RESET with class FORM.
7.2 PACKAGE CAIS__DEVICE_CONTROL

This package provides physical device control interfaces. For each device type, there is a set of operations defined to
manipulate the device.

Certain generic device-oriented status information is available outside of the specific packages.

Draft CAIS

721 Package Specification

package CAIS__DEVICE__CONTROL is

{TeD}
end CAIS_DEVICE__CONTROL;

7-15

8. CAIS UTILITIES

This area provides packages for manipulating strings and parameter lists. It also defines additional pragmatic requirements
for a conforming implementation of the predefined Ada LRM packages.

8.1 PREDEFINED LANGUAGE ENVIRONMENT

The facilities described in the Ada LRM that are used directly by the CAIS include the packages STANDARD and SYSTEM,
as discussed in the following subsections. See the Pragmatics Section 8.3.

8.1.1 Package STANDARD

Package STANDARD forms the outermost scope of all Ada compilation units.

Package STANDARD is not replaceable by implementors of the CAIS, and hence the “‘CAIS__"" prefix is not used.

8.1.2 Package SYSTEM

The package SYSTEM is provided as a language-defined package which defines certain parameters of the language
implementation.

Package SYSTEM is not replaceable by impiementors of the CAIS, and hence the "'CAIS_"" prefix is not used.

8.2 PREDEFINED UTILITY PACKAGES

The utilities necessary for the support of other CAIS interfaces include the packages CAIS__TEXT__UTWLS and
CAIS__LIST__UTILS, as discussed in the following sections.

8.2.1 Package CAIS_TEXT__UTILS

This package implements basic operations on a string type which is of dynamic length. it defines the type used to imple- ’
ment lists and is used for MESSAGE__TEXT, PROCESS__STRING, and RESULTS__STRING.

8.2.1.1 Package Specification

package CAIS_TEXT_UTILS is
MAXIMUM : constant : = implementation__defined;
subtype INDEX is INTEGER range 0.. MAXIMUM;

type TEXT is limited private;
function LENGTH (T: TEXT) return INDEX;

function VALUE (T: TEXT) return STRING;
function EMPTY (T: TEXT) return BOOLEAN;

8-2 Draft CAIS

procedure INIT_TEXT(T: in out TEXT);
procedure FREE__TEXT(T: in out TEXT);

function TO__TEXT (S: STRING) return TEXT;

function TO_TEXT (C: CHARACTER) return TEXT,

function &' (LEFT: TEXT; RIGHT: TEXT) return TEXT;

function ‘& (LEFT: TEXT; RIGHT: STRING) return TEXT;

function ""&" (LEFT: STRING; RIGHT: TEXT) return TEXT;

function & (LEFT: TEXT; RIGHT: CHARACTER,) return TEXT;

function &' (LEFT: CHARACTER; RIGHT: TEXT) return TEXT;

function*' =" (LEFT: TEXT, RIGHT: TEXT) return BOOLEAN;
function "< =" (LEFT: TEXT; RIGHT: TEXT) return BOOLEAN;
function <" (LEFT: TEXT; RIGHT: TEXT) return BOOLEAN;
function “>=" (LEFT: TEXT, RIGHT: TEXT) return BOOLEAN;
function “>" (LEFT: TEXT, RIGHT: TEXT) return BOOLEAN;

procedure SET
procedure SET
procedure SET

(OBJECT: in out TEXT; VALUE: in TEXT);
(OBJECT: in out TEXT; VALUE: in STRING);
(OBJECT: in out TEXT; VALUE: in CHARACTER);

procedure APPEND (TAIL: in TEXT; TO: in out TEXT);
procedure APPEND (TAIL: in STRING; TO: in out TEXT);
procedure APPEND (TAIL: in CHARACTER; TO: in out TEXT);

procedure AMEND (OBJECT: in out TEXT;
BY: in TEXT;
POSITION: in INDEX);
procedure AMEND (OBJECT: in out TEXT,
BY: in STRING;
POSITION: in INDEX);
procedure AMEND (OBJECT: in out TEXT;
BY: in CHARACTER,;
POSITION: in INDEX);

function LOCATE (FRAGMENT: TEXT; WITHIN: TEXT) return INDEX;
function LOCATE (FRAGMENT: STRING; WITHIN: TEXT) return INDEX;
function LOCATE (FRAGMENT: CHARACTER; WITHIN: TEXT) return INDEX;
private
-- implementation-dependent
end CAIS _TEXT__UTILS;
8.2.1.2 Package Semantics
type TEXT is limited private;
The type is made limited private because it may be reference counted and automatically freed at last use.
function LENGTH (T: TEXT) return INDEX;
tunction VALUE (T: TEXT) return STRING;
function EMPTY (T: TEXT) return BOOLEAN;

Provides text string functions.

procedure INIT_TEXT(T: in out TEXT);

[o] S g

- e -y e —

»

[R——,

Draft CAIS 8-3

Creates a null string.
procedure FREE__TEXT(T: in out TEXT);
Frees a string.

function TO_TEXT (S: STRING) return TEXT;
function TO_TEXT (C: CHARACTER) return TEXT;

Converts the given string or characters to text.

function ‘& (LEFT: TEXT; RIGHT: TEXT) return TEXT;
function ‘&' (LEFT: TEXT,; RIGHT: STRING) return TEXT;
function “&" (LEFT: STRING; RIGHT: TEXT) return TEXT;
function “‘&” (LEFT: TEXT; RIGHT: CHARACTER) return TEXT;
function & (LEFT: CHARACTER,; RIGHT: TEXT) return TEXT;

Concatenates to text.

function "' =" (LEFT: TEXT; RIGHT: TEXT) return BOOLEAN;
function ‘<<=" (LEFT: TEXT; RIGHT: TEXT) return BOOLEAN;
function "'<{"” (LEFT: TEXT; RIGHT: TEXT) return BOOLEAN;
function “>="(LEFT: TEXT; RIGHT: TEXT) return BOOLEAN;
function ''>" (LEFT: TEXT; RIGHT: TEXT) return BOOLEAN;

Provides indicated comparison functions.
procedure SET (OBJECT: in out TEXT; VALUE: in TEXT);
procedure SET (OBRJECT: in out TEXT; VALUE: in STRING);
procedure SET (OBJECT: in out TEXT; VALUE: in CHARACTER);
Sets the object to the given value.
procedure APPEND (TAIL: in TEXT; TO: in out TEXT);
procedure APPEND (TAIL: in STRING; TO: in out TEXT);
procedure APPEND (TAIL: in CHARACTER; TO: in out TEXT);

) Appends the given TAIL to the TO TEXT.

b procedure AMEND (OBJECT: in out TEXT;
- BY: in TEXT;
POSITION: in INDEX); 1
procedure AMEND (OBJECT: in out TEXT; ‘
BY: in STRING;
POSITION: in INDEX);
procedure AMEND (OBJECT: in out TEXT;
BY: in CHARACTER;
POSITION: in INDEX);

Replaces part of the OBJECT by the given TEXT, STRING, or CHARACTER starting at the given position in the OBJECT.

function LOCATE (FRAGMENT: TEXT; WITHIN: TEXT) return INDEX;
function LOCATE (FRAGMENT: STRING; WITHIN: TEXT) return INDEX;
i function LOCATE (FRAGMENT: CHARACTER; WITHIN: TEXT) return INDEX;

:41 P T T TR e Mah AL 9 T ALY 20 5 Bt A« 5 DA, et s MY
27 N

Returns the INDEX of the FRAGMENT within the given TEXT.

o alae . b e - an

8-4 Draft CAIS

8.2.2 Package CAIS__LIST_UTILS

This package is generally useful for the manipulation of all lists built following the CAIS parameter list conventions: a
parenthesized, comma-separated list of items, each item in the form of a list, a string without embedded spaces or
separators, or a quoted string following the Ada syntax rules, optionally preceded by a keyword identifier and a ‘‘right
arrow." This syntax roughly corresponds to the Ada syntax for aggregates or for subptogram calling sequences. An
approximate BNF for the CAIS list is as follows:

LIST = | KEYWORD'= ']ITEM{',’[KEYWORD'= ']ITEM}Y
ITEM = IDENTIFIER | NUMBER | LIST | QUOTED__STRING
KEYWORD = |IDENTIFIER

QUOTED__STRING ree { NON_QUOTE__CHARACTER (IR } TN

The package CAIS__LIST__UTILS uses the TEXT type defined within CAIS_TEXT__UTILS and defines additional opera-
tions. It defines the type list which is used to represent CAIS_ATTRIBUTE values.

8.2.2.1 Package Specification

with CAIS_TEXT__UTILS;
package CAIS__LIST__UTILS is

type COUNT is range O . . impiementation__defined;

subtype POSITIVE__COUNT is COUNT range 1.. COUNT’LAST;
subtype LIST is CAIS__TEXT__UTILS.TEXT,;

subtype KEY_STRING is STRING;

type ITEM_KIND is (LIST, IDENTIFIER, NUMBER, QUOTED__STRING);

procedure INIT_LIST(L: in out LIST);

procedure FREE__LIST(L: in out LIST);
function IS__EMPTY (L: in LIST) return BOOLEAN;
function KIND (L: in LIST) return ITEM__KIND;

function QUOTED__STRING (L: in LIST) return STRING;
function IDENTIFIER (L: in LIST) return STRING:;
function NUMBER (L: in LIST) return INTEGER;

procedure TO__LIST_QUOTED (L: in out LIST; FROM: STRING);

procedure TO__LIST (L: in out LIST; FROM: STRING);
procedure TO__LIST (L: in out LIST; FROM: INTEGER);

procedure SET (L: in out LIST; VALUE in LIST);
function NUM__POSITIONAL (L: LIST) return COUNT,;

procedure ADD__POSITIONAL (L: in out LIST;
ITEM: in LIST);

procedure ADD__POSITIONAL (L: in out LIST;
ITEM: in STRING);

procedure GET__POSITIONAL (L: in LIST;
ITEM: in out LIST;
AT: in POSITIVE_ _COUNT);

procedure SET_POSITIONAL (L: in out LIST,
' ITEM: in LIST;
AT: in POSITIVE__COUNT);
function NUM_NAMED (L: LIST) return COUNT;

R e~ S APy,

Draft CAIS 8-5
procedure ADD_NAMED (L in out LIST;
KEYWORD: in KEY__STRING;
ITEM: in LIST);
procedure ADD__NAMED (L: in out LIST;
KEYWORD: in KEY_STRING;
ITEM: in STRING);
procedure GET__NAMED (L: in LIST;
ITEM: in out LIST;
AT: in KEY_STRING);
procedure GET__NAMED (L. in LIST;
ITEM: in out LIST;
AT: in POSITIVE__COUNT);
procedure SET_NAMED (L: in out LIST;
ITEM: in LIST;
AT: in KEY__STRING);
procedure SET_NAMED (L: in out LIST;
ITEM: in LIST;
AT: out POSITIVE__COUNT);
function KEYWORD (L: in LIST;
AT: in POSITIVE_COUNT)

return KEY__STRING;
private
-- implementation-dependent
end CAIS__LIST__UTILS;
b ‘ 8.2.2.2 Package Semantics
; type ITEM__KIND is (LIST, IDENTIFIER, NUMBER, QUOTED__STRING);
Each item is recognizable as a list, identifier, number, or quoted-string.
procedure INIT_LIST (L: in out LIST),
. Creates a null LIST.
procedure FREE_LIST (L: in out LIST),

Frees a LIST.
function IS_EMPTY (L:in LIST) return BOOLEAN;

Returns TRUE if the list is an empty LIST.
function KIND (L: in LIST) return {(TEM__KIND;

Returns ITEM__KIND of LIST.ITEM__KIND is LIST for empty LIST.
function QUOTED_STRING (L: in LIST) return STRING;
function IDENTIFIER (L: in LIST) return STRING;
function NUMBER (L: in LIST) return INTEGER;

Converts from a LIST according 10 the ITEM__KIND.

- B e T T it Satridis - N

8-6 Draft CAIS

procedure TO__LIST_QUOTED (L: in out LIST; FROM: STRING);

procedure TO__LIST (L: in out LIST; FROM: STRING);
procedure TO__LIST (L: in out LIST; FROM: INTEGER);

Converts to a LIST according to the ITEM__KIND.

procedure SET (L: in out LIST; VALUE: in LIST);

Sets the LIST L to the given VALUE.
function NUM_POSITIONAL(L: LIST) return COUNT;
Returns COUNT of positional components (i.e., those without the “"KEYWORD = > * pan).
procedure ADD__POSITIONAL (L: in qut LIST;
ITEM: in LIST);
procedure ADD_POSITIONAL (L: in out LIST,
ITEM: in STRING);
Adds another ITEM to the end of the LIST of positional components.
procedure GET__POSITIONAL (L: in LIST;
ITEM: in out LIST;
AT in POSITIVE__COUNT);
Retrieves ITEM at specified position of LIST. Returns empty LIST if AT > NUM_POSITONAL(L).
procedure SET_POSITIONAL (L: in out LIST;
ITEM in LIST
AT: in POSITIVE__COUNT);
Sets VALUE at specified position of LIST to the given ITEM.
tunction NUM_NAMED (L: LIST) return COUNT;

Returns count of named components (i.e., those with the "KEYWORD =>" pari).

procedure ADD__NAMED (L: in out LIST;
KEYWORD: in KEY_STRING;
ITEM: in LIST);

procedure ADD__NAMED (L: in out LIST,
KEYWORD: in KEY_STRING;
ITEM: in STRING);

Adds another named ITEM {o LIST. An exception is generated if an ITEM with the given KEYWORD already exists within LIST.

procedure GET_NAMED (L: in LIST;

ITEM: in out LIST;

AT: in KEY__STRING);
procedure GET__NAMED (L: in LIST;

ITEM: in out LIST;

AT: in POSITIVE__COUNT);

Gets the named ITEM at the given KEYWORD or POSITIVE_COUNT: returns empty LIST if the ITEM is not found.

-

Draft CAIS 8-7
procedure SET__NAMED (L: in out LIST;
ITEM: in LIST;
AT: in KEY__STRING),
procedure SET__NAMED (L: in out LIST;
ITEM: in LIST;
AT: in POSITIVE_COUNT

Sets the named component at the given KEY_STRING or POSITIVE_COUNT to the given ITEM.
function KEYWORD (L. in LIST,;
AT: in POSITIVE__COUNT)
return KEY__STRING;

Returns the KEYWORD of the specified named item.

8.2.3 Package CAIS__HELP__UTILS
This package provides standard support for help facilities.

178D}

8.3 PRAGMATICS

' - a. STANDARD The CAIS places certain requirements on the pre-defined
types available. In particular, a conforming implementation
must support some integer type with at least the range -32767

to 32767.
‘ b. SYSTEM The CAIS places certain requirements on the machine ;
parameters. In particular, a conforming implementation must
have MIN__INT = -32767 and MAX_INT = 32767.
c. CAIS_TEXT__UTILS A conforming implementation must support strings of at least

32767 characters in length.

R T . E . el T2 2R A e GRS S PSP & Ky Ty e e e ST e AP e e el 8 A B

Yy

APPENDIX A
NOTES AND EXPLANATIONS

A.1 INTRODUCTION

This appendix is provided to give the reader a perspective of the context in-which the CAIS is expected to function and
some of the design considerations included during the CAIS generation process. White Version 1.1 of the CAIS is directed
toward the DoD AIE and ALS developments, the goal of future versions of the CAIS is to provide a standard for DoD APSEs.

A.1.1 BACKGROUND
Version 1.1 of the CAIS is predicated on four premises:

1) the CAIS will be implementable on the AIE

2) the CAIS will be implementable on the ALS

3) the CAIS will be implementable on a bare machine

4) the CAIS will be compatible with modern operating systems

The CAIS as described in Version 1.1 has strived to retain these perspectives while establishing a sufficiently flexible
structure that can be evolved into a Version 2.0 document. This structure is believed 1o be fiexible enough to provide
CAIS implementors considerable amplitude in selecting specific approaches for actual implementations. interference
with implementation strategies has been avoided.

A.2 CONTEXT

The CAIS applies to Ada Programming Support Environments [STONEMAN] which are to become the basic software
development environments for DoD development programs. Those Ada programs that are used in support of software
development are defined as tools. This includes the spectrum of support software from project management through
code development, configuration management and life-cycle support. Tools are not resiricted to only those software
items normally associated with program generation such as editors, compilers, debuggers, and linker-loaders. Those
tools that are composed of a number of independent but inter-related programs (such as a debugger which is related
to a specific compiler) are classed as toolsets. In this document the terms tool and toolset are used interchangeability.

Since the goal of the CAIS is to promote interoperability and transportability of Ada software across DoD APSEs, the
following definitions of these terms are provided. Interoperability is defined as “the ability of APSEs to exchange data
base objects and their relationships in forms usable by tools and user programs without conversion.” Transportability
of an APSE tool is defined as “the ability of the tool 1o be installed on a different KAFSE; the tool must perform with
the same tunctionality in both APSEs. Transportability is measured in the degree to which this installation can be ac-
complished without reprogramming. Portability and transferability are commonly used synonymously.” [Reference: KAPSE
Interface Team: Public Report, Volume |, 1 April 1982; p. C1].

R e e S AR R

APPENDIX B
PROVIDING DIRECTORY STRUCTURES USING A TRANSITIONAL SUBSET OF THE CAIS

B.1 INTRODUCTION

While conformance with the CAIS will be measured on a package-by-package basis, it is sometimes not possible to
implement one package without the provision of another. This is especially true for packages depending on the package
CAIS_NODE_MANAGEMENT. In the interest of the availability of CAIS implementations within a very short time frame,
a transitional subset of the node-related packages are defined in this appendix. They include the most important inter-
faces that are vital for the majority of simple tools. This subset restricts the mode! of the file organization to the equivalent
of a hierarchical tree-oriented file-system. Leaves in the tree are file nodes; all other nodes are structural nodes representing
directories or they are process nodes.

In order to prevent incompatibilities with more sophisticated CAIS implementations, the syntactic appearance and semantic
meaning of calls on CAIS interfaces have been kept upward compatibie, rather than providing more appropriate mnemonic
names for the subprograms. (The latter is left to a trivial renaming package outside the CAIS subset.) Hence, any pro-
gram executing properly on an implementation of the CAIS subset will also execute properly on any implementation
of the CAIS (but obviously not vice-versa).

An implementator of these transitional subset packages may choose to use different implementation strategies than
required for the provision cf the full functionality of these packages as defined in the CAIS.

The subset is obtained by imposing restrictions and adjusting package specifications as follows:

1. Pathnames are allowed to contain only path elements referring to the *‘DOT -relation using the ab-
breviated form ** . ' or 1o " 'USER" and “ '‘CURRENT_USER" as predetined optional prefixes 1o
pathnames.

2. In all subprograms of the node-related packages CAIS__NODE_MANAGEMENT and
CAIS__STRUCTURAL__NODES any occurrence of a formal parameter of type RELATION__NAME
is aeleted. The implementation of these subprograms must default the RELATION_NAME to 'DOT".

3 The formal parameters RELATION and PRIMARY_ONLY of the subprograms
CAIS_NODE__MANAGEMENT.ITERATE are deleted. The implementation of the subprograms must
default the RELATION to "'DOT".

4 The following subprograms of the package CAIS _NODE__MANAGEMENT are defined !0 raise the
USE__ERROR exception:

PRIMARY _RELATION
PATH__KEY
PATH__RELATION
LINK

UNLINK

5. The following subprograms of the package CAIS__STRUCTURAL__NODE are defined to raise the
USE__ERROR exception:

CREATE_NODE with formal parameter '‘RELATION" (two instances)

Bearing these restrictions in mind, the specified semantics for all subprograms of the packages involved describe those
operations useful in particular for handling directories (structural nodes) of a conventional tree-structured file system
and files contained in such directories. Pathnames have the conventional form of identifiers separated by dots, except
for the optional pretix path elements " ‘USER " and * '"CURRENT_USER".

Draft CAIS

B.1.1 Package Semantics

NOTE: These semantics do not include the procedures and functions which are defined to raise USE_ERROR in the
above list.

a) CAIS__STRUCTURAL__NODES

procedure CREATE__NODE(NAME: in NAME__STRING;

FORM: in FORM__STRING := “ ");
procedure CREATE_NODE(NODE: in out NODE__TYPE;

NAME: in NAME_STRING;

FORM: in FORM_STRING := *“");

Creates a directory (structural node) with its "DOT" relationship and parent node implied by the NAME argument.
b) CAIS_NODE__MANAGEMENT
The key of a file or directory is the relationship key of the last element of its pathname. Many operations are allowed

to take either a pathname, or a parent node (i.e., a directory) and a key. The keys of process nodes, file nodes or sub-
directories in a directory rmust be mutually distinct.

procedure OPEN (NODE: in out NODE__TYPE;
NAME: in NAME_STRING;
procedure OPEN (NODE: in out NODE_TYPE;
BASE: in NODE_TYPE;
KEY: in RELATIONSHIP_KEY := “");

Opens the designated file node, process node or directory and returns an open handle on the designated file
node, process node or directory node. The NAME_ERROR exception will be raised if the file, process or direc-
tory does not exist.

procedure CLOSE(NODE: in out NODE__TYPE),

Severs any association between the internal node handle and an external node and releases any associated lock. This
must be done before another OPEN can be done using the same NODE__TYPE variable.

tunction IS_OPEN (NODE: in NODE__TYPE) return BOOLEAN;
Returns TRUE if the NODE is open.
function KIND (NODE: in NODE_TYPE) return CAIS_NODE__DEFS.FILE__KIND;
Returns the “'kind"" of a node, either FILE, PROCESS, STRUCTURAL or DEVICE. Structural nodes are directories.
function PRIMARY_NAME(NODE: in NODE_TYPE) return NAME _STRING;
Returns the full path name to the file node, process node, or directory.
function PRIMARY__KEY (NODE: in NODE__TYPE) return RELATIONSHIP_KEY;

Return the last relationship key of the pathname to the file node, process node or directory. If the NODE is a top-level
directory, the key is the user name.

procedure GET__PARENT(NODE: in NODE__TYPE;
PARENT: in out NODE_TYPE);

Returns the parent process or directory. Generates an exception if NODE is a top-level directory.

Draft CAIS

procedure COPY__NODE (FROM: in NODE__TYPE;
TO: in NAME__STRING);
procedure COPY__NODE (FROM: in NODE__TYPE;
TO_BASE: in NODE__TYPE;
TO_KEY: in RELATIONSHIP_KEY := ** "),

Copies a file. It is an error (KIND__ERROR) if the node referenced is a process node or a device node or directory
node(structural node).

procedure COPY__TREE (FROM: in NODE__TYPE;
TO: in NAME_STRING});
procedure COPY__TREE (FROM: in NODE__TYPE;
TO__BASE: in NODE__TYPE;
TO_KEY: in RELATIONSHIP_KEY := ")
Copies a directory including its files. It is an error (KIND__ERROR} if any node referenced is a process node or a device
node.
4 procedure RENAME(NODE: in NODE__TYPE;
§ NEW__NAME: in NAME__STRING);
procedure RENAME(NODE: in NODE__TYPE;
NEW__BASE: in NODE__TYPE;
NEW_KEY: in RELATIONSHIP_KEY := "

NEW_RELATION: in RELATION_NAME : = . ",

Allows the renaming of file nodes process nodes, or directories using a node handle for the renamed node and, in the
second case, a node handle on the parent directory or process node. RENAME raises the exception USE_ERROR
if a node alrcady exists with the new__name.

procedure DELETE_NODE (NODE: in out NODE__TYPE);
procedure DELETE__NODE (NAME: in NAME__STRING);

Deletes the relationships between a file or process node and its parent and deletes the node itself. This is only legal
if the node has no children. Deletes a file, empty directory or a process with no descendants as well as the associated node.

b procedure DELETE__TREE (NODE: in cut NODE__TYPE),

; | DELETE_TREE deletes a node and recursively deletes all its descendants.
type NODE__ITERATOR is private;
subtype RELATIONSHIP_KEY__PATTERN is RELATIONSHIP_KEY;
b HELATIONSHIP_KEY__PATTERNS follow the syntax of relationship keys, except that a **?"" will match any single
character and a """ will match any string of characters.
procedure ITERATE(ITERATOR: out NODE_ITERATOR,;
NODE: in NODE__TYPE;
KIND: in NODE__KIND;
KEY: in RELATIONSHIP_KEY__PATTERN := “*");

function MORE (ITERATOR: in NODE__ITERATOR) return BOOLEAN;

procedure GET__NEXT(ITERATOR: in out
NEXT_NODE: in out

NODE__ITERATOR,;
NODE__TYPE);

These three routines iterate through those nodes referred to from the given NODE, via ''DOT"-relationships, that have
keys satisfying the specified patterns and are of the KIND specified.

Wit Bt b . - D R T T TR O E RPN

NPT TN kL . LR e SR &

B-4 Draft CAIS
The nodes are returned in ASCII lexicographical order by relationship KEY. The key is available from the function
PRIMARY_KEY (see above).

procedure SET_CURRENT__NODE(NAME: in NAME__STRING);
procedure SET_CURRENT__NODE(NODE: in NODE__TYPE);

Specifies NODE/NAME as the current directory.
procedure GET_CURRENT__NODE(NODE: in out NODE__TYPE);

Associates NODE with the current directory.

function IS_SAME(NAME1: in NAME__STRING;
NAME2: in NAME_STRING)
return BOOLEAN;
function IS_SAME(NODET1: in NODE_TYPE
NODE2: in NOTE_TYPE)

return BOOLEAN;

-+
o

APPENDIX C
CAIS IMPLEMENTABILITY

C.t INTRODUCTION

The specification of the CAIS has been separated into multiple packages to simplify initial or partial implementations.
The rules for Ada limited private types can interfere with this kind of separation. This appendix outlines several implemen-
tation approaches which are consistent with both the rules of the Ada language and the rules for CAIS conformance.
This appendix will ultimately be superceded by a CAIS implemator’s guide.

(a) NESTED GENERIC SUBPACKAGES IMPLEMENTATION

This implementation strategy seeks to minimize visibility of the limited private types of CAIS_NODE__DEFS by using
these private types strictly as intended by Ada. All operations on the private types are encapsulated within the package
defining CAIS__NODE__DEFS. A sketch of this is as follows:

package CAIS is
-- type definitions of CAIS__NODE_DEFS
generic
package NODE__DEFS is
-- subtype Declarations
end NODE__DEFS;

generic

package NODE_MANAGEMENT is
--specifications of Section 3.5

end NODE__MANAGEMENT;

generic
package STRUCTURAL__NODES is
--specifications of Section 4.1
end STRUCTURAL__NODES;
} -- and so forth for all of the CAIS packages

end CAIS;

with CAIS;

package CAIS__NODE__DEFS is new CAIS.NODE__DEFS;

with CAIS;
package CAIS_NODE_MANAGEMENT is new CAIS.NODE_MANAGEMENT;

... for each of the CAIS packages

This organization, while unwieldy, allows the CAIS packages specified in this document to be utilized in the organization
provided in earlier document sections.

(b) LIMITED RECORD TYPE IMPLEMENTATION
This sketch shows how an implementor might separate the limited private definitions and operations on the limited private

types into a separate isolated package. The user-visible package structure remains the same, except that NODE__TYPE
is defined as a limited record type, rather than limited private.

oo G 0BG o

c-2 - Draft CAIS

package CAIS__PRIVATE is
type NODE__TYPE is limited private;
. . . and other types with limited private visibility needs

-- The remainder of this package specification is

-- implementation specific, and not specified as part
-- of the CAIS. No tool or APSE application should
-- make use of this package; it is solely for the

-- use for implementation of other CAIS packages.

end CAIS__PRIVATE;

with CAIS_PRIVATE;
package CAIS__NODE_DEFS is
type NODE__TYPE is
record
INTERNALS: CAIS__PRIVATE.NODE_TYPE;

end record;
... and the rest of CAIS_NODE__DEFS from 3.1

The implementation of the other CA!S packages (i.e., the package bodies) may now use the underlying subprograms
of CAIS__PRIVATE to manipulate the INTERNALS of NODE__TYPE. This provides an implementation which is safe,

so long as no tool or applications program ‘‘withs'' CAIS__PRIVATE.

A typical CAIS implementation package body may have the following appearance:

with CAIS__PRIVATE;
package body CAIS__NODE__MANAGEMENT is

procedure OPEN(NODE: in out NODE__TYPE;
NAME: in NAME__STRING) is
begin
CAIS__PRIVATE.OPEN(NODE.INTERNALS, NAME),
end OPEN;

end CAIS__NODE _MANAGEMENT;

(c) NON-ADA IMPLEMENTATION

If the package bodies are implemented in a language other than Ada, then the problems of limited private types may
be absent. The implementation may have a structure dictated by the tacilities of an underlying operating system, by

the facilities of a microcoded system and by the processor architecture itself.

o

e h

BLe s T RS L gromagett, S

Postscript : Submission of Comments

For submission of comments on this CAIS Version 1.1, we would appreciate them being sent by Arpanet to the address
CAIS-COMMENT at ECLB
If you do not have Arpanet access, please send the comments by mail
Mr. Jack Foidl
TRW SYSTEMS
3420 Kenyon St.
Suite 202
San Diego, CA 92110

For mail comments, it will assist us if you are abie to send them on 8-inch single-sided single-density DEC format diskette—
but even if you can manage this, please also send us a paper copy, in case of problems with reading the diskette.

All comments are sorted and processed mechanically in order to simplify their analysis and to facilitate giving them pro-
per consideration. To aid this process you are kindly requested to precede each comment with a three line header

Isection . . .

tversion 1983

topic . . .

trationale
The section line includes the section number, your name or affiliation {or both), and the date in ISO standard form (year-
month-day). As an example, here is the section line of comment 1194 on a previous version:

Isection 03.02.01(12)D.Taf{s 82-04-26

The version line, for comments on the current document, should only contain *'lversion 1983"". ts purpose is to distinguish
comments that refer to different versions.

The topic line should ccntain a one line summary of the comment. This line is essential, and you are kindly asked to
avoid topics such as *“Typo'’ or “‘Editorial comment’ which will not convey any information when printed in a table of
contents. As an example of an informative topic line, consider:
Itopic FILE NODE MANAGEMENT
Note also that nothing prevents the topic line from including all the information of a comment, as in the following topic line:
topic Insert: **...are {implicitly} defined by a subtype declaration’
The rationale line should contain some reasoning for your comment.
As a final example here is a ccmplete comment:
Isection 03.02.01(12)D.Taffs 82-04-26
lversion 1983
topic FILE NODE MANAGEMENT

Change component to subcomponent in the last sentence.

Irationale

Otherwise the statement is inconsistent with the defined use of subcomponent in 3.3, which
says that subcomponents are excluded when the term component is used instead of
subcomponent.

