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ABSTRACT

.--'We determine the conditions under which an error detection scheme

based on strict redundancy can be used to increase confidence in the

results of parallel computations. This study shows that the issues of

speed and reliability of parallel processors are interdependent and must

be considered jointly at the design stage.
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1. INTRODUCTION

Recent technological developments have made parallel processing a

viable option for achieving desired computational speed. Given a prob-

lem of interest and an associated procedure to obtain its solution. a

cluster of 03 computing elements may be used to produce the Solution in

the required time, provided that an appropriate decomposition of the

procedure can be found. For real-time processing problems where the

speed constraints may be quite severe, the number of computing elements

required can be large. Besides the difficulty associated with the

decomposition of the solution procedure, the use of a large number of

computing elements introduces a new set of problems. In particular, the

probability that all computing elements produce correct results becomes

vanishingly small as the number of computing elements increases. Thus.

the computing cluster may produce a result in the required time, but the

probability that the result is also the solution of the problem of

interest decreases with the number of computing elements in the cluster.

It is clear, therefore, that the issues of speed and reliability are

interdependent and cannot be treated separately.

The quantity that characterizes the reliability of a computing

cluster is PC, the probability that the output of the cluster is

correct. In order to analyze this and other quantities introduced later

on, we shall idopt the following hypothesis:

Hypothesis 1:

{i) the i nut to the cluster is correct,
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(ii) each computing element in the cluster has the same probability P of

being non-faulty,

(iii) the computing elements fail independently.

Therefore, if all the computing elements in a cluster are fault-

free, the cluster output will be correct. The converse is not neces-

sarily true. since a computing element may be faulty without affecting

the cluster output. It follows from Hypothesis 1 that a lower bound for

P C is given by

The quantity p depends on the type of computing element used and on

the time interval over which we are interested in the output. This

means that all the probabilistic quantities discussed in this paper are

with reference to the same time interval. For example, if p is the pro-

* bability that a computing element remains non-faulty for twenty-four

hours, then P is a lower bound on the probability that the output of
C'M

a computing cluster is correct over the same twenty-four hour period.

Given p and 0. the value of P CMmay not be large enough for our

purposes, and therefore our confidence in obtaining the correct result

will not be high enough. One way to increase our, confidence in the

correctness of the output is to try to detect output errors, and then to

accept the output only when no error has been detected. In this case.

there are two quantities of interest: the probability that the output of

the original cluster is correct given that we accept it, and the proba-
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bility that we reject the output of the original cluster given that it

is correct (false alarm).

While an off-line fault detection scheme might allow us to ascer-

tain that no hardware fault is present during the application of the

tests, we would have no assurance that the cluster remains non-faulty

during the actual computation of the desired result. Since we are

j interested in the correctness of the results produced by the computing

cluster and not in the possible existence of hardware faults, and since

we cannot ascertain the correctness of the results before they are pro-

duced. we therefore need a concurrent error detection scheme. One way

to implement such a scheme is to use strict redundancy: replicate the

-2Iinitial computing cluster (CC1) a-l times. send the original input to

all the clusters (CC1  CC 2,.... CC ),and then compare their outputs in

order to produce a boolean variable b that equals zero if all cluster

outputs are identical, and that equals one otherwise. If b = 0. we

-i accept the output of CC,; if b = 1, we reject it. This approach is

appealing because, once a computing cluster that meets the computational

speed requirements has been designed, the replication does not involve

any additional design effort.

Although similar error detection schemes have been used in various

contexts for some time (see [AV1781 and the references therein), no comn-

plete analysis of their usefulness under any reasonable set of assump-

tions has been carried out. Such an analysis is presented in Section 2.

and the consequent implications for reliable parallel processing are

detailed in Section 3.
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2. ,NALYSIS OF TUE ERROR DETECTION SCHEM

In this paper, we shall assume that the error detector is always

non-faulty. In other words, we shall adopt the following hypothesis:

Hypothesis 2: The detector produces b = 0 if and only if all cluster

outputs are identical.

Let PCD(a.,) be the probability that the output of CC1 is correct

given b = 0, and let P FA(a.,) be the probability that b = 1 given that

the output of CC1 is correct. Lower and upper bounds for PCD(a.0) and

PFA(a, ). respectively, will now be derived.

Given a clusters, each containing 0 computing elements, let E.(a,.)
J

be the event that exactly j clusters are faulty. A cluster is faulty if

and only if at least one of its elements is faulty, and therefore the

probability that a cluster is faulty is 1-pu. As a result,

P(E a (1-p)J p (a-j) j=,1,.,a. (2)
jl(a-j)! .

Let B (a,.) be the event that exactly j cluster outputs are

incorrect. It is clear that if no more than k clusters are faulty, then

at most k cluster outputs can be incorrect, and if at least k cluster

outputs are incorrect, then at least k clusters are faulty. Thus

k It
j: I (a. )) P(E.(c. ) (3)

and

.... . - -'. . . ....7.e_..... . . -. , -- . - . . . -
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a a

'. (B.a,)) P(E.(a.0)). (4)

j=k J j=k "

,.* Lemma t: Under Hypotheses I and 2,

P3 PpUCD + (l-pi)a - PCD,m "

Proof: By definition

PCD(a. ) P(CC1 output correct I b=O)

P(CC output correct and b=O)

.*I.-P(b=4))

Using Hypothesis 2, it is clear that

P(CC1 output correct and b=O) P(B 0 (a.3)),

P(b=) =PB 0 (a,0) and b=O) + P(B (a, ) and b=O),

P(B0 (a.,0) and b=O) = P(B0(a.0))

and thus

;P(B (a,0))

PCD(a) PB0(a0)) + P(B (ao) and b-o)"

Now

P(Ba(a.0) and b=O) P(B (aO)).

and (3) and (4) imply

"4



0. (a)) . PME (a.0)),

NO P(E (aa)).

Therefore

P(E 0 Q.5) ) Onl~

PCD(a.13) P(E0 (a.j)) + NE (Q.0J)) a + '- 1
q.. pa (1-p') "

The behavior of the lower bound P CD,m(a,O) as a function of a is

characterized in the following lemma.

Lemma 2: Suppose that lypotheses 1 and 2 are satisfied. If p ; > 0.5.

then PCDm(a,.) converges to one strictly monotonically as a goes to

infinity. If p - 0.5. then P CD,m(a.) - 0.5 for all a 1 1. If p3 K

0.5, then PCDm(a0) converges to zero strictly monotonically as a goes

to infinity.

Proof: Let q - pO. Then (5) can be written as

P Q
- " P C D ( a . ) = a = "

CD." a (1-q) a 1 ((1-q)/q)a

If p' > 0.5, then (1-q)/q < 1 and PCD,m (aO) is clearly a strictly

increasing function of a with a limiting value of one. If p= 0.5.

then (1-q)/q 1 1 and obviously PCD, (a.0) - 0.5 for all a > 1. If po

0.3. then (l-q)/q ) 1 and P (a.0) is a strictly decreasing function
"n CD.

of a with a limiting value of zero. 03

..' Lemmas I and 2 together with Equation (1) imply that (i) if po >

..

5e,

* r- -..- * -- - . . '
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then PCD,m(a.p) ) PC'm for all a 2; (ii) if p 0.5, then

PCD.m (a . ) = P C for all a 2 2; and (iii) if pp < 0.5, then P CDm(aI)

< PC'm for all 1 2 2. It follows then that the error detection scheme

can be used to increase our confidence in the output if and only if p >

0.5. We note that in work done in the Fifties on constructing reliable

logic devices from unreliable components, von Neumann recognized that

redundancy can degrade overall performance unless the components have

some minimum reliability (see [NEU63, pp. 305-306, 322-324. 329-3781).

The false alarm probability will be considered next.

Lemma 3: Under Hypotheses I and 2.

PFA(a.,) 1- p FA,M(a.0)" (7)

Proof: By definition

P FA (a,A) = P(b=1 CC 1 output correct)

= 1 P(b=O I CC1 output correct)

1 - P(b=O and CC1 output correct)

P(CC output correct)

Now

P(b=O and CC, output correct) = P(all cluster outputs correct)

a
- f (CC. output correct)

j=l *

. . .
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and therefore

a

FA(a) 1 - l P(CC. output correct).
j.2 J

If CC. is non-faulty, its output will be correct, and thusJ

CL

PFA(a) , I - [ P(CC. non-faulty 1 - p (a1), a
jr2 J

Note that PFAM(a.0) goes to one as u s to infinity. Thus, if

p > 0.5. we can insure that PD(a, 3) is as _ e to one as we wish by

choosing a sufficiently large value for a, concomitant drawback is

that PFA(a,.) may also be close to one. In other words, if we accepted

the output it would almost certainly be correct, but we would almost

never accept a correct output.

.21

.:

4.ii
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3. EFFICIENT COMPUTING NETWORK DfSI[N

Suppose that that it is possible to solve a given problem in a

given time using a cluster of 0 computing elements of a given type T,

and assume that the basic reliability p of a type T computing element is

known. Furthermore, suppose that we want to design a computing network

consisting of one or more such clusters so that an accepted output is

correct with probability at least 0 (0 1 0 <1). To satisfy this
11

requirement, it is sufficient, in view of Lemma 1. to ensure that

for some integer a > 1.

Given p, 3 and 4) it may or may not be possible to satisfy (8)

with some integer a 2 1. If (8) can be satisfied, the most efficient

design is obtained when a is chosen to be the smallest integer a* that

satisfies (8). In order to analyze the feasibility and efficiency

issues, we partition the set of all pairs (01,P in1')into disjoint subsets

Ro R1 and R2 as follows:

R (01 ,ph)I A < 0 i  0.5 U ((O,p ) p< 0.5 < 01,

m0

.1*~ = (e1,p) P'
-4

R, (0 lp .) [ p0. 9I

. .
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Lemma 4: If (0 1 0ph is in R then (8) cannot be satisfied for any

integer a 1 1. If (01.p is in R , then (8) can be satisfied and as =

1. If (01 ,pP) is in R2, then (8) can be satisfied and

,- [log ((1- 1 2)/9)

= log ((1-p)/ph)

where rxiis defined as the smallest integer greater than or equal to x.
,o

Proof: If Ol, is in R., Lemma 2 immediately implies that there is no

integer ,i4 1 for which (8) an be satisfied. If (01,p0) is in R,, then

it is clear that (8) can be satisfied with a = 1. If (0 p1) is in R,

then (8) may be rewritten as

-. log M( - I) Me )1
log ((1 -Ph )

and the result follows immediately since p <

Some examples will now be given.

Example I: Suppose that p = 0.9. j = 10 and 0 = 0.8. In this case, pp

= 0.348, the pair (9 lPI) is in Roo and Lemma 4 implies that it is not

possible to satisfy the desired reliability constraint.

Example 2: Suppose that p 0.95, = 10 and 0 = 0.95. In this case.

0.598, the pair (0,,P) is in R.. and a= 8.

Example 1 clearly demonstrates the interdependence of the speed and

reliability constraints. Our only recourse here would be to choose a

different type of computing element: one with a larger p and/or a higher

. .. .. ...... i , 
' .

° . - o , - o o . . . . . .o . - ..
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intrinsic speed allowing for a smaller 0. Example 2 shows that satis-

faction of the reliability constraint may require a great deal of repli-

cation: in this case, 80 computing elements instead of the original 10.

The design approach discussed above may lead to an unacceptably

large upper bound on the false alarm probability: in the case of Example

2. PFAI(a.,) = 0.972. With this consideration in mind, suppose now

that we want to design a computing network so that not only will an

accepted output be correct with probability at least 0 (0 < 01 1)1 "

but also a correct output will be rejected with probability at most 0,

(0 ' 0, < 1). To satisfy these two requirements, we need to ensure the

existence of at least one integer a 1 so that both (8) and the follow-

ing inequality are satisfied (see Lemma 3):

1 - p 5(a-) , . (10)

Given p, 0, 0I and 0, it may or may not be possible to satisfy both (8)

and (10) with some integer a 1 1. In order to analyze the feasibility

issue, we partition the set of all triples (O1 ,02 ,ph) into disjoint sub-

sets SO, S1 and S, as follows:

so ((= (O, P ) 1 p ( 01 5 max 20.5,1-O21

II

sz  (009 O(i~ , l po l

-o

S. ((ol,,,p i max [0.5,1---),,pp }
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Lemma 5: If (000",p ) is in So. then (8) and (10) cannot be satisfied

simultaneously for any integer a 1 1. If (01 ,0,,p) is in S1 . then (8)

and (10) can be satisfied with a = 1.

Proof: If p < 01. (8) cannot be satisfied with a = 1. If in addition.

01 - 0.5, then Lemma 2 implies that (8) cannot be satisfied for any

1integer a 1 2. If -< 01 , then (10) cannot be satisfied for any

a 2 since

1 - P(a-l) > 1 - 01 '22

If (01.02,p is in S1. then clearly (8) can be satisfied with a = 1.

and (10) is always satisfied with a 1 . 0

Now define

g1 (a) = 1 .=2.3,
. 1 + ((1-0l)fO 1I

1 1

°'I,

g,(a) = (1-02)/(- , a = 2, 3 ...

log (1-0.)
aO= L log 01

and

.4

q min ( max [g,(a),gS,(a)] I a 2, 3..... 0

where Lx' is defined as the largest integer less than or equal to z.

Lemma 6: Suppose that the triple (01,0, is in S'. If p< q., then

.--
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(8) and (10) cannot be satisfied for any integer a 2 1. If p 2 q,.

then there is at least one integer a 1 2 for which (8) and (10) are

satisfied. Furthermore, q. > 0.5.

Proof: First note that since (1.0 2#P ) is in $2,

log (1-0,)
log 01

and thus 2 w a ( - and q, is well defined. Furthermore, 1 ) 0.5

implies that 01 > g1 (2), and 01 ) 1--2 implies that 01 > g2 (2). Thus 41

) q*.

Since p < O1, it is clear that (8) cannot be satisfied with a = 1. For

every a > a0, we have

log (1-0,)
a > 1 +

log 0

which can be rewritten as

.." _01-1) > 02

Therefore

1 - pJ3(a-1) > 1 - -) >

and (10) cannot be satisfied. Now let p < q*. For each a in the

interval [2,aO], either p 91gl(a), in which case (8) cannot be satis-

fied. or else p 5 < g2(a). in which case (10) cannot be satisfied. Thus,

if pO s q*, (8) and (10) cannot be satisfied for any integer a - 1.

It is clear from the definition of q* that there is at least one integer

~. . . . ....... . . . . . . ...'.-..' •" :- " .-- .. " " " "- '" • - - -..-
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a in the interval 12.a O ] for which

q= max [g1(a),g,(a)J

Thus, if po 2 qO, then p gl(a) and p0 2 g2 (a), which implies that (8)

and (10) are satisfied with a = a

If q, -t 0.5. then (8) cannot be satisfied for p = q*. This contradicts

what has just been proved, and therefore we can conclude that q. > 0.5.

Lemmas 5 and 6 show that the conditions under which replication and

error detection are useful for meeting constraints (8) and (10) aref0

quite restrictive: we need to have 01 > 0.5, 1 > 1-01 and pp in the

interval [q,,O).

If (8) and (10) can be satisfied, the most efficient design is

obtained when a is chosen to be the smallest integer a,, that satisfies

(8) and (10). The next lemma characterizes a**.

Lemma : If (ee2,P0) is in S1, then a** = 1. If (01,8,.p is in S2

*' and p 2 q., then

-log (-8 1)/e12 i ~ ~~a** a l g (l~ /

log -h h

Proof: The first part of the lemma follows immediately from Lemma 5.

Now let (e eO, be in S, with pO N q.. Rewrite (8) and (10), respec-

tively, as

log ((1-0 )/0 )
a 2 , )log ((1-p 0 )/p0 1

:,4

. ..
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Log (1--0,)
a 1 +

log pO

Lemma 6 implies that there is at least one integer a satisfying both

inequalities, and the result follows. a

We will now present some examples that illustrate the preceding

lemmas.

Example 3: Suppose that p = 0.95, 10, 0 = 0.8 and 0, = 0.1. In
1d.

this case, p = 0.598. the triple (0l,0,.p ) is in Sol and Lemma 5

implies that it is impossible to satisfy the reliability constraints.

Example 4: Suppose that p = 0.98. 3 = 10, 0 = 0.9 and 02 = 0.2. In

this case, pA = 0.817, the triple (O02,p is in S q. = 0.8 and
2 hi

Lemma 7 implies that a*, = 2.

. . ... • -.. 7.... . ... ..... .'.-:- . .



-18

- 4. CONCLUSION

The approach used in this paper has been based on three principles:

Mi one should distinguish between hardware faults in a computing net-

work and incorrect results produced by the network; (ii) one should

assume as little as possible about the fault mechanism since in general

one knows very little about it; (iii) one should use only those quanti-

ties that have some chance of being experimentally measured. These con-

siderations rule out. in particular, the use of a failure probability

distribution [BAR65I. They also lead us to a worst case analysis.

Clearly, if one does not adhere to these principles and is willing

to make stronger, more optimistic, assumptions, then error detection

based on strict redundancy will look more powerful. For example, in

view of Equation (6), it is clear that if, in addition to Hypotheses 1

and 2. we assume that when all cluster outputs are incorrect they are

not all identical, then P(B a(a,.A) and b0O) = 0. and thus P CD (a.0) 1

In this case PFA (a.0) is minimized when we use the smallest possible

number of clusters, namely a = 2.

Alternatively, if in addition to Hypotheses 1 and 2, we assume that

the number of faulty computing elements is at most 4,, then the choice of

any aL 1 4+1 ensures that at least one computing cluster always produces

the correct output. In this case, P(Ba (a.03)) = 0. which implies

P(BG (a.0) and b-0) -0, and we again obtain P CD (ad3 ) = 1. The upper

bound on the false alarm probability is then minimized by choosing a=
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