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~~Wé determine the conditions under which an error detection scheme

based on strict redundancy can be used to increase confidence in the
results of parallel computations. This study shows that the issues of

speed and reliability of parallel processors are interdependent and must

be considered jointly at the design stage.
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1. INTRODUCTION

Recent technological developments have made parallel processing a
viable option for achieving desired computational speed. Given a prob-
lem of interest and an associated procedure to obtain its solution. a
cluster of § computing elements may be used to produce the solution 1in
the required time, provided that an appropriate decomposition of the
procedure can be found., For real-time processing problems where the
speed constraints may be quite severe, the number of computing elements
required can be larze. DBesides the difficulty associated with the
decomposition of the solution procedure, the use of a large number ot
computing c¢lements introduces a new set of problems., In particular, the
probability that all computing clements produce correct results becomes
vanishingly small as the number of computing elements increases. Thus,
the computing cluster may produce a result in the required time. but the
probability that the result is also the solution of the problem of
interest decreases with the number of computing elements in the cluster.
It is clear, therefore, that the issues of speed and reliability are

interdependent and cannot be treated separately.

The quantity that characterizes the reliability of a computing
cluster is PC' the probability that the output of the cluster is
correct., In order to analyze this and other quaniities introduced later

on, we shall idopt the tfollowing hypothesis:

Hypothesis 1:

(i) the i »ut to the cluster is correct,

At a®alae atata " mla wtla'aaatala‘mla®atalotala . -_.]
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(ii) cach computing element in the cluster has the same probability p of
being non—-faulty,

(iii) the computing elements fail independently.

Therefore, if all the computing elements in a cluster are fault-
free, the cluster output will be correct. The converse is not neces-
sarily true, since a computing element may be faulty without affecting
the cluster output. It follows from Hypothesis 1 that a lower bound for

PC is given by

Pe 2 p” =P, . (1)

The quantity p depends on the type of computing element used and on
the time interval over which we are interested in the output. This
means that all the probabilistic quantities discussed in this paper are
with reference to the same time interval. For example, if p is the pro-
bability that a computing clement remains non-faulty for tweanty-four
hours, then PC,m is a lower bound on the probability that the output of

a computing cluster is correct over the same twenty-four hour period.

Given p and f, the value of PC o May sot be large enough for our
purposes, and therefore our confidence in obtaining the correct result

will not be high enough., One way to increase our confidence in the

correctness of the output is to try to detect output errors, and them to

accept the output unly when no error has been detected. In this case,

there are two guantities of interest: the probability that the output of

the original cluster is correct given that we accept it, and the proba-




bility that we reject the output of the original cluster given that it

is correct {false alarm).

While an off-line fault detection scheme might allow us to ascer-—
tain that no hardware fault is present during the application of the
tests, we would have no assurance that the cluster remains non-taulty
during the actual computation of the desired result. Since we are
interested in the correctness of the results produced by the computing
cluster and not in the possible existence of hardware faults, and since
we cannot ascertain the correctness of the results before they are pro-
duced, we therefore need a concurrent error detection scheme. One wav
to implement such 1 scheme 1s to use strict redundancy: replicate the
initial computing cluster (CCI) a-1 times, send the original input to
all the clusters (CCI, CCZ""' CCu). and then compare their outputs in
order to produce a boolean variable b that equals zero if all cluster
outputs are identical, and that equals one otherwise, If b = 0, we
accept the output of CCI; if b = 1, we reject it. This approach is
appealing because, once a computing cluster that meets the computational
speed requirements has been designed, the replication does not involve

any additional design effort.

Although similar error detection schemes have been used in various
ccatexts for some time (see [AVI78] and the references therein), no com-
plete analysis of their usetulness under any reasonable set of assump-
tions has been carried out. Such an analysis is presented in Sectiom 2,

and the consequent implications for reliable parallel processing are

detailed in Section 3.




A

ol N

A I A

Ve, Ve aVaTs

2. ANALYSIS OF THE ERROR DETECTION SCHEME

In this paper, we shail assume that the error detector is always

non—-faulty. In other words, we shall adopt the following hypothesis:

Hypothesis 2: The detector produces b = 0 if and only if all cluster

outputs are identical.

Let PCD(a.B) be the probability that the output of CC1 18 correct
given b = 0, and let PFA(a.B) be the probability that b = 1 given that

the output of CC1 is correct. Lower and upper bounds for P,.{(a,3) and

CD

Peala.B), respectively, will now be derived.

Given a clusters, each containing P computing clements, let Ej(a,u)
be the event that exactly j clusters are faulty. A cluster is faulty if
and only if at least one of its elements is faulty, and therefore the

probability that a cluster is faulty is l-pﬁ. As a result,

P(E, = —al g By Ble=i) 5 o1, LG, 2
( J(u.B)) j!(u—j)!(l p)'p j 0,1 a (2)

Let Bj(a.B) be the event that exactly j cluster outputs are
incorrect. It is clear that if no more than k clusters are faulty, then
at most k cluster outputs can be incorrect, and if at least k cluster

outputs are incorrect, then at least k clusters are faulty. Thus

k k
ZrB.(a.3)) > B P(E.(a.d)), (3)
j=0 3 j=0

and
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L P(B.(a,8)) < B P(E.(a.3)).
j:'.k J j=k J

Lemma 1: Under Hypotheses 1 and 2,

Bfa

p B) =P B).
cple-B) 2 pa (l-pﬂ)u CD,m(a B)

Proof: By definition

i

PCD(a.ﬁ) P(CC1 output correct | b=0)

P(CC1 output correct and b=0)
2(b=9)

Using Hypothesis 2, it is clear that

P(CC1 output correct and b=0Q) = P(Bo(a.B)).
P(b=0) = P(BO(G.B) and b=0) + P(Ba(a.B) and b=0),

P(Bo(a.ﬁ) and b=0) = P(Bo(a.ﬂ)).
and thus

P(B, (a.B))
P =
cpla-h) P(By(a.3)) + P(B_(a.3) and b5=0)"

Now
P(Ba(a.u) and b=0) ¢ P(Ba(a.ﬁ)).

and (3) and (4) 1imply

AR Db e St At St e B i s o
M - . - . . - . - .

(4)

(5)

(6)
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39 P(By(a,p)) 2 P(E (a,B)),
(a P(Ba(ﬂ-ﬁ)) $ ML, (a,8)).

2

AN

e Therefore

P(E (a.p)) Ba

ta.d) 2 prE, e P(E_(a.4)) ~ —

n; CD (a,d a.8 ppu . (l-p’)u
;3~ The behavior of ths lower bound pCD m(a,p) as a function of a is
N characterized in the following lemma.

:j

fi Lemma 2: Suppose that Hypotheses 1 and 2 are satisfied. If pﬁ > 0.5,
?.v then PCD n(@:8) converges to ome strictly monotonically as a goes to
& infinity., If p? = 0.5, then P._ (a,p) = 0.5 for all a > 1. If p» <
'.\ CD,m

o 0.5, then PCD a{@.B) converges to zero strictly monotonically as a goes
] to infinity.

)

:? Proof: Let q = pp. Then (5) can be written as

“

a
1
g Popy o(a.B) = 4 - .
~ CD,
{ < o e (1-0% 1+ (Q1-q)/q°
'~
f:. If pB > 0.5, then (1-q)/q < 1 and pCD m(a.B) is clearly a strictly
increasing function of a with a limiting value of ome. If pB = 0.5,

?: then (1-q)/q = 1 and obviously PCD m(a.B) 2 0.5 for all a > 1. If pg .
E: 0.5, then (1-9)/q > 1 and pCD m(a.u) is a strictly decreasing function
& of a with a limiting value of zero. Q)

.:;%

e Lemmas 1 and 2 together with Equation (1) imply that (i) if pn >
..‘
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0.5, then Py (a.B) > P . for all a ) 2; (i) if p” = 0.5, then
Pep,n(a:8) = Po , for all a 2 2; and (iii) if oP < 0.5, then Pep. al@:B)
< Pc.m for all a ) 2, It follows then that the error detection scheme
can be used to increase our confidence in the output if and only if pB >
0.5. We note that in work done in the Fifties on constructing reliable
logic devices from unreliable components, von Neumann recognized that

redundancy can degrade overall performance unless the components have

some minimum reliability (see (NEU63, pp. 305-306, 322-324, 329-3781]).
The false.alarm probability will be considered next,
Lemma 3: Under Hypotheses 1 and 2,

(a-1)
PB ¢

PFA(G'B) S 1 - = PFA,M(a.a). (7)

Proof: By definition

PFA(a.d) = P(b=1 | CC1 output correct)

=1 - P(b=0 | CC1 output correct)

P(b=0 and CCl
=1- P(CC1 output correct)

output correct)

Now

P(b=0 and CC1 output correct) P(all cluster outpuats correct)

)

a
n (ch output correct)

j=1
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and therefore

PFA(G.B) = 1-j£LP(ch output correct).

If CCj is non-faulty, its output will be correct, and thus

S B(a-1)
P..(a,3) £ 1 - [IP(CC. non-faulty) =1 - p . 0
FA j=2 j

Note that PFA “(a.B) goes to one as « - s to infimity. Thus, if
B

p” > 0.5, we can insure that PCD(a.B) is as -te to one as we wish by
choosing a2 sufficiently large value for a, concomitant drawback is
that PFA(a.B) may also be close to one. In other words, if we accepted
the output it would almost certainly be correct, but we would almost

never accept a correct output,
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3. EFFICIENT COMPUTING NETWORK DESIGN

Suppose that that it is possible to solve a ygiven problem 1a a
given time using a cluster of § computing elements of a given type T,
and assume that the basic reliability p of a type T computing element is
known. Furthermore, suppose that we want to design a computing network
consisting of one or more such clusters so that an accepted output 1is
correct with probability at least 8 (0 ¢ 8, < 1), To satisfy this

1 1

requirement, it 1s sutfficient, 1n view of Lemma !, to ensure that

(3)
for some integer a ) 1.

Given p, 3 and 91, it may or may not be possible to satisty (8)
with some integer a 2 1, If (8) can be satisfied, the most efficient
design is obtained when a is chosen to be the smallest integer a, that
satisfies (8). In order to analyze the feasibility and efficiency
issues, we partition the set of all pairs (Ol,pﬁ) into disjoint subsets

RO' R1 and R2 as follows:

R, = ((6,.p")] ¥ <8 o051 U {(91,pﬁ)| p® (0.5 <8, },

1

Ry = ((0,,0M 1 b 20, 1,

R, = ((91,p3)| 0.5 < pP <8 1.

1
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Lemma 4: If (el.pﬁ) is in RO' then (8) cannot be satisfied for any

integer a > 1, If (el,pB) is in Rl' then (8) can be satisfied and ae =

1. 1f (8,,pP) is in R,, then (8) can be satisfied and

log ((1-61)/91)

Ty = 22 (9)

1og ((1-p%)/p%)

wherefi}is defined as the smallest integer greater than or equal to x.

Proof: If (el.pa) is in R,, Lemma 2 immediately implies that there is no

integer a2 . 1 for which (8) can be satisfied. If (Ol.pB) is ina R, then

it is clear that (8) can be satisfied with u = 1. If (Ol,pg) is in R,

then (8) may be rewritten as

log ((1-91)/91)

log((1-pPy/pP)

e 2

and the result follows immediately since p# ¢ 91. o

Some examples will aow be given.

Example 1: Suppose that p = 0.9, 8§ = 10 and 61 = 0.8. In this case, pB

= (0.348, the pair (Gl,p:) is in R and Lemma 4 implies that it is not

0'

possible to satisfy the desired reliability constraint.

Example 2: Suppose that p = 0.95, 8 = 10 and 61 = 0.95. In this case,

pB = (0.598, the pair (Gl,pﬁ) is in R:. and a, = 8.

Example 1 clearly Jdemonstrates the interdependence of the speed aand
reliability coanstraints, Our only recourse here would be to choose a

different type of computing element: one with a larger p and/or a higher

<, . et . - I T - . v At
LI P P e T T S A T I R S SN e
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intrinsic speed allowing for a smaller g§. Example 2 shows that satis-
faction of the reliability constraint may require a great deal of repli-

cation: in this case, 80 computing elements instead of the original 10.

The design approach discussed above may lead to an unacceptably

large upper bound on the false alarm probability: in the case of Example

2, PFA.M(Q"B) = 0.972. With this consideration in mind, suppose now
that we want to design a computing network so that not only will an

accepted output be correct with probability at least 61 (0 < 91 1),
but also a correct output will be rejected with probability at most 9,

(0 7 8, ¢ 1). To satisfy these two requirements, we need to ensure the

existence of at least one integer a > 1 so that both (8) and the follow-

ing inequality are satisfied (see Lemma 3):

1 - phlot) o (10)

Given p, B, 91 and 62, it may or may not be possible to satisfy both (8)
and (10) with some integer a > 1, In order to analyze the feasibility
issue, we partition the set of all triples (91,9,,pp) into disjoint sub-

sets S, S, and S, as follows:
o~

Sy = {(Ol.Oz.pB)l p? (9. ¢ max (0.5,1-0,1 } ,

1

S, = ((8,,0,,p")1 2P 20, ),

S, = ((8,,0,p™) | 8, > max [0.5,1-0,,0°1 ) .
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Lemma 5: If (91.9:.p3) is in S5, then (8) and (10) cannot be satisfied

simultaneously for any integer a > 1, If (Ol,ﬁw,pp) is in S then (8)

1‘
and (10) can be satisfied with a = 1,
Proof: If pB < 91. (8) cannot be satisfied with a = 1. If in addition,

91 £ 0.5, then Lemma 2 implies that (8) cannot be satisfied for any

integer a ) 2, If pﬁ < 91 X 1-8., then (10) cannot be satisfied for any

a 2 2 since

1-pilet) g o 8, 28,

If (91.9,.pﬁ) is im Sl‘ then clearly (8) can be satisfied with a = 1,

and (10) is always satisfied with a = 1. [}

Now define

1 "
» a"'an 31 P Il
1+ ((1-01)/91)1/“

Sl(a) =

1/(a-1)

32(0) = (1-02) » a = 2' 3. .00 »

log (1-8.)

log 61

a. =11 +

and

qe = min { max [gl(a).g,(a)] la=2,3,..., a

o ! v

wheretg!is defined as the largest integer less than or equal to x.

Lemma 6: Suppose that the triple (el,ez,pp) is in Sz. If pB { qg, then

=-e . . R BN
Ta Te e T- T, e . e - - v
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. (8) and (10) cannot be satisfied for any integer a > 1. If pB 2 e,

-~

then there is at least one integer a ) 2 for which (8) and (10) are

[ satisfied. Furthermore, q, > 0.5.
‘Z Proof: First note that since (Ol,ez,pB) is in SZ'
3
' log (1-8,)
- —— @
2 ¢1 log © {

X 1

and thus 2 ¢ a, { » and g4 is well defined. Furthermore, 91 > 0.5

implies thart 91 > 31(2), and 9, > 1-9, implies that 9, >

1 3 (2). Thus 8

17 82 1
> Qq.

) |~l~l‘_l

Since pB < 91, it is clear that (8) cannot be satisfied with a = 1. For

T
: every a > a,, we have
2
y log (1-9,)
g a >l + —/—=—
& log 91
! which can be rewritten as
¥ (a-1)
’ 1-8, > 8, .
- Therefore
: _ Bla-1) (a-1)
: 1-p > 1-8, > 8,
i and (10) cannot be satisfied. Now let pB < q¢. For each a in the
. interval [2,a0], either pB < gl(a). in which case (8) cannot be satis-

(4

fied, or else P"i ¢ g4{(a), in which case (10) cannot be satisfied. Thus.
. {
if P'3 < qe, (8) and (10) cannot be satisfied for any integer a 2 1.

It is clear from the definition of q4 that there is at least one integer

Y MR P B A

]
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a in the interval [2.00] for which

I Q¢ = max [31(“"52(“” .

r_.;

if Thus, if pp 2 e, then pB 2 gl(a) and pB 2 gz(a), which implies that (8)
f and (10) are satisfied with a = a.

i. . If d¢ £ 0.5, then (8) cannot be satisfied for pB = qq4. This contradicts
Sj what has just heen proved, and therefore we can conclude that q4 ) 0.5.
- o

Lemmas 5 and 6 show that the conditions under which replication and
error detection are useful for meeting comstraints (8) and (10) are

quite restrictive: we need to have 8, > 0.5, 8, > 1-8, sand pg in the

1 1

interval [q.,el),

If (8) and (10) can be satisfied, the most efficient design is
obtained when a is chosen to be the smallest integer a,, that satisfies

(8) and (10). The next lemma characterizes Qq4.

Lemma 7: If (el,e,,pﬁ) is in S, then aee = 1. If (91,9,,pﬁ) is in S,

and PB 2 qe, then

log ((1-9,)/8,)

Cee =
1og ((1-pP)/p®)
Proof: The first part of the lemma follows immediately from Lemma 5.

Now let (91.0,,p5\ be in S, with p13 2 qe. Rewrite (8) and (10), respec-

-

tively, as

log ((1-8,)/6,)

a2

’

log ((1-pPy/pH)

- - - g . - . L MR R i *a Al - - - . - . - - a - .
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- 17 -

log (1-9,)
B

a (1 +
log p

Lemma 6 implies that there is at least one integer a satisfying both

inequalities, and the result follows. O

We will now present some examples that illustrate the preceding

lemmas.

Example 3: Suppose that p = 0.95, 8 = 10, 91 = 0.8 and 8, = 0.1. In
P

this case, p:3 = 0.598, the triple (91,9,,1)3) is in S,, and Lemma 5

impiies that it is impossible to satisfy the reliability constraints,

Example 4: Suppose that p = 0.98, 8 = 10, 61 = 0.9 and 92 = 0,2, Ian
this case, pB = 0.817, the triple (91.92.pB) is in SZ‘ qe = 0.8 and

Lemma 7 implies that age = 2.
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4. CONCLUSION

The approach used in this paper has been based on three principles:
(i) one should distinguish between hardware faults in a computing net-
work and incorrect results produced by the network; (ii) one should
assume as little as possible about the fault mechanism since in general
one knows very little about it; (iii) one should use only those quanti-
ties that have some chance of being experimentally measured. These con-—
siderations rule out, in particular, the use of a failure probability

distribution [BAR65]. They also lead us to a worst case analysis.

Clearly, if one does not adhere to these principles and is willing
to make stronger, more optimistic, assumptions, then error detection
based on strict redundancy will look more powerful. For example, in
view of Equation (6), it is clear that if, in addition to fypotheses 1
and 2, we assume that when all cluster outputs are incorrect they are
not all identical, then P(Bn(a.B) and b=0) = 0, and thus PCD(a.B) =1.
In this case PFA,M(G'B) is minimized when we use the smallest possible

number of clusters, namely a = 2.

Alternatively, if in addition to Hypotheses 1 and 2, we assume that
the number of faulty computing elements is at most {, then the choice of
any a 2 ¢+1 ensures that at least one computing cluster always produces
the correct output. In this case, P(Ba(u'B)) = 0, which implies
P(Ba(a.B) and b=0) = 0, and we again obtain PCD(G.B) = 1, The upper

bound on the false alarm probability is then minimized by choosing a =

E+1.
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