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SUMMY

Carbohydrate loading, a program of diet and exercise modification, has been shown to

increase muscle glycogen stores and increase endurance capacity at work rates above 60-70%

of jaximal aerobic capacity. Such endurance enhancement might be of value to Navy special

warfare personnel for certain high-risk missions. Therefore, the effectiveness of a

program of carbohydrate loading was tested on a sample of special warfare personnel.

In conjunction with this test, selected biochemicals were measured during the program,

during a control, non-loading program, during performance tests subsequent to each program

to monitor the safety of the carbohydrate loading program, and to get indications of the

metabolic changes accompanying the program.

The following serum biochemistries were measured: the enzymes creatinine phospho-

kinase (CPK), lactate dehydrogenase (LDH), and 2-hydroxybutyrate dehydrogenase (HBD) to

assess potential muscle injury and cardiovascular stress; sodium and potassium to assess

electrolyte shifts; total protein and albumin concentrations to assess alteration in

hydration levels; glucose and cortisol to document shifts in carbohydrate metabolism; and

uric acid and creatinine concentrations as additional indicators of muscle strain.

Changes in glucose and cortisol during the carbohydrate loading program were con-

sistent with expected metabolic shifts during the dietary alterations. The differences in

other biochemical responses to the two test programs tended to reflect the difference in

exercise levels between them. The biochemistries changed in the expected fashion during

the endurance tests. None of the responses suggested muscle or cardiovascular pathology.

Elevation of HaD following the carbohydrate loading program is consistent with a lack of

long distance endurance training in the current special warfare program, and suggests a

need to explore further the interactions among activity duration, work rate, physical

fitness, and response to ergogenic aids such as carbohydrate loading.
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INTRODUCTION

There are special groups of forces within the military whose missions may involve high

physical workloads, often for extended periods of time under conditions of uncertain food

supply and irregular sleep intervals. Such forces within the Department of the Navy are

the Marine Reconnaissance Battalions, the Navy Underwater Demolition Team (UDT), and Sea,

Air, and Land (SEAL) team personnel. For these forces, chances of mission success are

improved by enhancing endurance capacity. One method of such enhancement is by a program

of diet and exercise modification called "carbohydrate loading."
At moderately high workloads (above 60-70% of maximal aerobic capacity) the limitation

to continued physical performance is the exhaustion of the stores of glyLJgen contained

within the muscle cells (1,2). Following a carbohydrate loading program can increase the

muscle glycogen stores to approximately twice their normal levels (3-5). Carbohydrate

loading consists of two phases, a glycogen stores depletion phase and a repletion or

loading phase. During the depletion phase, the individual performs long-duration,

moderately intense exercise while consuming a diet low in carbohydrate content. This

regimen depletes the muscle glycogen supplies and presumably stimulates the mechanisms

responsible for synthesis and storage of glycogen (5). During the subsequent loading

phase, the individual performs minimal exercise while consuming a diet high in

carbohydrate. Because the glycogen synthesis and storage mechanisms are "activated," there

is a rebound hyper-repletion of the glycogen stores.

Although there has been documentation of the effectiveness of carbohydrate loading

both in terms of performance changes (6,7) and muscle glycogen changes (3-5) following such

programs, the metabolic processes which might be occurring consequent to carbohydrate

loading are poorly documented. Therefore as a part of a pilot study to test the

effectiveness of a carbohydrate loading program on a group of special warfare personnel, we

monitored a set of serum biochemicals during both the imposition of a carbohydrate loading

program and the subsequent endurance test.

Biochemistries were selected to monitor muscle damage or fatigue, and to provide
indications of the shifts between primary fuel substrates. The enzymes creatinine

phosphokinase (CPK), and lactate dehydrogenase (LDH), were measured as indicators of

relative muscle damage (8, p. 653, 683; 9). 2-hydroxybutyrate dehydrogenase (HBD) was

measured to estimate stress to the cardiovascular system. HBD activity represents the

activity of the LDH derived from the heart and red blood cells, the so-called LD-1 and LD-2

isoenzymes of LDH (8, p. 599). Most of the remainder of the LOH 'eleased during exercise

is derived from skeletal muscle. Monitoring HBD activity in addition to total LDH allows

us to estimate the proportion of LDH released from the heart and red blood cells separately

from that released from skeletal muscle. Uric acid and creatinine levels were measured as

additional indicators of muscle injury (11). Uric acid also indicates changes in purine

metabolism.

Sodium and potassium levels were monitored to determine whether or not major shifts in
electrolyte balance occurred as a result of carbohydrate loading. Serum total protein and

albumin concentrations were monitored to be sure there were no hydration alterations

resulting from the diet/exercise program.

Levels of serum glucose and cortisol were monitored to document the shifts in
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carbohydrate metabolism accompanying the loading program. In addition, each participant's

urine was checked for the presence of ketones to monitor shifts to fat metabolism.

METHODS

Participants

The participants in this study were 9 male UDT and SEAL team personnel, aged 22-36

* years and attached to Special Warfare Group One, Coronado, CA. The participants

represented a cross-section of the special warfare group in their normal readiness state.

Each participant was briefed on the nature of the study and the risks involved in

participation in the study. Each participant gave his voluntary consent to participate

with the understanding that he could withdraw from the study at any time. Prior to his

acceptance into the study, each participant filled out a medical history and passed a

physical examination.
Twenty-four special warfare personnel originally volunteered to participate in this

study. However, 15 of these original participants were eliminated from the study because

of failure to comply with the diet or exercise restrictions, transfer to other units, or

illness. Characteristics of the 9 participants remaining in this study are presented in

Table 1.

Procedures

Maximal rate of oxygen consumption 00 2 max) was determined for each participant from

. open-circuit spirometry measures taken during an interrupted treadmill test (12).

Participants were rank-ordered on their individual 102 max values and alternately assigned

to one of two experimental groups. Endurance performance was measured for individuals in

,J each group after following a six-day carbohydrate loading program and after following a

six-day non-loading regimen. The order of presentation of the two programs was reversed

for the two groups.

'; Diet/Exercise Programs

Following the suggestions of Astrand (13) and Karlsson and Saltin (7), a six-day

* loading program consisting of three days of glycogen depletion and three days of glycogen

repletion was used. The program is described in Table 2. The 14-mile depletion run

represents 3.5 times the normal training distance of these participants. The control,

non-loading program is described in Table 3.

Food for the participants was provided by the investigators. Three diets were

utilized: a diet high in carbohydrate content (high-CHO); a diet low in carbohydrate

content (low-CHO); and a diet of normal composition (normal) (14). Each diet consisted of
a combination of solid food and liquid formula and provided approximately 3500 kilocalories

-per day. The amount and kind of solid food was the same for all diets. The proportions of

- the constituents of the liquid formula varied with each particular diet. Composition of

the three different diets is given in Table 4.

* Endurance Measurement

Endurance performance was measured as the length of time a participant could run on a

motor-driven treadmill at 0% grade and at a speed requiring him to work at approximately

80% of his VYO max. The endurance run was conducted in an interrupted fashion. The

participant would run for 18 minutes and would then be allowed a 2 min rest. Water was

provided ad libitum during the run. Electrocardiogram, heart rate, and rectal temperature

4
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were monitored throughout the run. Near the mid-point of each 18-mn running period, V02

was determined, and if necessary, the treadmill speed was adjusted to maintain a work load

of approximately 801 b2 max. The test was terminated when the participant indicated he

could no longer continue running at this work load. For the second endurance test, the

speed/time profile of the first test was repeated.

A
TABLE I

CHARACTERISTICS or PARTICIPANTS

PARTICIPANT AGE HEIGHT WEIGHT % BODY 'O2 MAX

NUMBER (yr) (cm) (kg) FAT (I/min) (mi/kg -min)

Group I
06 32 175.3 76.5 14.9 5.43 71.11
22 36 182.9 83.5 18.2 4.47 53.58
28 30 170.2 60.8 12.6 3.19 52.43
42 25 172.7 79.4 16.0 4.93 62.03
86 30 182.9 71.7 12.1 4.73 66.01

30.6 176.8 74.4 14.8 4.55 61.01
SD (4.0) (5.9) (8.7) (2.5) (0.84) (8.04)

Group II
11 25 182.9 74.9 10.8 4.30 70.73
51 22 188.0 79.9 6.7 4.19 52.46
69 30 182.6 67.6 16.7 4.31 63.66
80 26 170.2 64.0 10.7 4.19 65.45

25.8 175.9 71.6 11.2 4.50 63.08
SD (3.3) (11.6) (7.2) (4.1) (0.54) (7.69)

Sample 28 176.4 73.1 13.2 4.53 61.93
SD (4.3) (8.2) (7.7) (3.6) (0.68) (7.46)

5
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* TABLE 2
CARBOHYDRATE LOADING DIET/EXERCISE PROGRAM

DAY DIET EXERCISE

1elto Low CHO 14-mile run*
Pheto 2 Low CHO 6-mile run

3 Low CHO 4-mile run

4 Hi CHO 1 -mile runLoading 5 Hi CHO 1 -mile run
6 Normal No run

Test 7 Normal Endurance run

*A verape running time 1/ 13 rn/n.

TABLE 3
NON-LOADING DIET/EXERCISE PROGRAM

DAY DIET EXERCISE

I Normal 4-mile run
2 Normal 4-mile run
3 Normal 4-mile run
4 Normal 4-mile run
5 Normal 4-mile run

46 Normal No run

Test 7 Normal Endurance run

TABLE 4
DIET COMPOSITION

Solid Food:* Liquid Formnuls:** Fluids:
1949 water-packed tuna Calcium caseinate Water, diet soda, and
142g canned chicken Corn Oil coffee provided ad libitum
2 hard-oied eggs Fructose
50g mayonnaise PolycoseO
Lettuce (ad libitum) Minerals, flavorings and saccharn

Approximately 1.9 liters water

*Constant for oil diets
"Proportions varied with treatment diet

TREATMENT DIETS

% CALORIES FROM: LOW CHO DIET NIGH CHO DIET NORMAL DIET

U.CHO 3 64 46
Fat so 24 42
Protein 47 12 12

U- Total Calories =3500/day

U. 6
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Biochemical Measurement

Biochemistries were determined from the serum of 10-ml blood samples obtained by
venipuncture of a superficial vein of the anticubital fossa. Fasting blood samples were

collected each morning of the diet/exercise program from a random subset of the participant

sample. Additionally blood samples were collected four times on the day of each endurance

run: imediately prior to beginning the run; after having run for 60 min; immediately upon

completion of the run; and 60 mi after having completed the run. As indicated, serum

samples were analysed for Na+; K+; glucose, creatinine; uric acid; cortisol; the enzymes

CPK, LDH, and HBD; as well as albumin and total protein.

Sodium and potassium were determined by emission flame photometry (15, pp. 873-879);
glucose by the orthotoluidine method (16, pp. 249-251); creatinine by the Jaffe reaction

(Pierce Chemical Co., Rockford, IL); and uric acid by production of tungsten blue from

reaction with phosphotungstic acid (American Monitor Corp., Indianapolis, IN). Cortisol

was determined by radloimmunoassay (Miles Laboratory Inc., Elkhart, IN). The enzymes LDH,

CPK, and HBD were determined spectrophotometrically utilizing commercially available kits

(Worthington Biochemicals Corp., Freehold, NJ). Albumin was measured by bromcresol green

binding (Pierce Chemical Co., Rockford, IL), and total protein by the biuret method (17,

pp. 302-304).

Morning urine samples were tested for the presence or absence of ketone bodies using

Ketosti x.

Analysis

Due to the attrition of participants from the study, only portions of the biochemical

data could be analysed statistically. Fasting samples collected during the diet exercise

programs did not provide sufficient sample numbers at each collection to allow analysis.

The data collected during the endurance runs were analysed using a two-way within-person

analysis of variance (18) with collection time in the run as one treatment and form of the

diet/exercise program (load vs. non-load) as the other treatment. Because this study was

intended as a pilot for further work, the level for significance was set at p=O.0 5.

Furthermore, marginal significance was recorded whenever p-O.1, since at this level and

with this sample size (9 subjects) the power of the analysis was 0.5 for large differences

(25). In that some of the parameters that we were measuring gave indications of the

relative safety of the carbohydrate loading procedure, we wanted to minimize the

*, possibility of missing meaningful effects because of our small sample size.

RESULTS

Results of the endurance runs following each of the programs have been reported

previously (19). In summary, participants had a 9% increase in running time (10.8 min)

following the carbohydrate loading program over that following the non-loading program.

Graphical representations of the mean values at each collection time for each of the

biochemicals measured are provided in Figures 1-6.

As expected, serum glucose (Figure 2) decreased during the depletion phase of the

.4 carbohydrate loading program. (Note, the blood sample for day 4, the first day of

repletion, is taken before the first high-CHO meal was ingested.) The glucose level

increased following the start of the loading phase, although apparently only transiently.

Furthermore, serum cortisol (Figure 4) concentrations appeared elevated by the morning of
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day 4, but had returned to day 1 values by day 7.

The enzymes LDH, CPK (Figure 5), and HBD were all elevated during the depletion phase

of the carbohydrate loading program. Levels of LDH and CPK had returned to day I values by

day 7, but HBD remained elevated.

Results of the urine analysis were that all participants showed ketouria by the third

day of depletion on the carbohydrate loading program but no participants evidenced ketouria

after the first day of change to the high-CHO diet. No ketouria was seen with the

non-loading diet.

Levels of all of the biochemical parameters measured, save K+ changed significantly

during the endurance run, although for Na+ this significance was only marginal (F3,21=2.82,

p=0.064. For all others p<0.004).

Significant effects of the load were detected for uric acid concentrations

(F1,8=9.305, p=0.016) which were generally lower following the loading program than

following the non-loading one (see Figure 3); and for HBD concentrations (F1 ,8=8.07,

p=0.022) which were generally higher following the loading program (see Figure 6).

Significant interactions (differences in the time response patterns between

diet/exercise programs) were found for LDH (F3 ,24=4.314, p=0.01
4 ) and albumin (F3,24=3.933,

p-O.020) and marginally significant interactions were found for uric acid (F3 ,24=2.892,

i=0.056) and CPK (F3 ,24=2.793, p=0.062). However in no case did the post hoc pairwise

comparisons (Newman-Keuls procedure; 18, pp. 91-93) yield significant simple main effects.

8
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DISCUSSION

The results of this study did not reveal any major risks associated with carbohydrate

loading. There appear to be no changes in Na+ or K+ during either diet/exercise program.

The modest increase in Na+ seen during the endurance runs Is consistent with previous

findings of other workers (4,11). Furthermore, comparison of the albumin and total protein

patterns between the two programs suggest no major differences in hydration levels during

either the program or the subsequent endurance test, although the significant interaction

term for albumin may represent a slight protein-sparing effect of the carbohydrate load at

the end of the endurance run.

The serum glucose depression during the depletion phase of the carbohydrate loading

program coupled with the increase in serum cortisol suggest that glycogen stores were truly

depleted, at least in the liver, and gluconeogenisis had been stimulated. Although the

patterns of glucose response during the endurance runs did not differ significantly, it is

noteworthy that the serum glucose is noticeably lower at the end of the endurance run

following the non-loading program than at the end of the run following the loading program.

This finding is in keeping with the results of Hultman and Nilsson (30) who find that liver

glycogen levels are also elevated by carbohydrate loading and those of Ahlborg and his

co-workers (21) who find work capacity limits to be related to muscle glycogen levels

rather than blood glucose levels.

The temporal changes in CPK and LDH durg the loading program appear to be due to the

prolonged exercise associated with the depletion phase. The concentrations measured and

the time course for their elevation match values reported by others for this exercise

intensity (22). The increases in CPK and LDH concentrations measured during the endurance

runs were also similar to those reported by other investigators (10). At no time were

serum concentrations of CPK or LOH seen which might be indicative of severe muscle damage.

Such levels are often 6-10 times greater than those seen following vigorous exercise (23).
The HBD response to carbohydrate loading may also reflect the effects of the increased

exercise associated with carbohydrate loading. However interaction with dietary effects

cannot be ruled out. Rose and his co-workers (26,27) and Stromme and his co-workers (22)

have looked at LDH isoenzymes in trained endurance runners prior to and following races

ranging from 10-70 km. In each study LD-I and LD-2 fractions were unchanged following the

exercise, the majority of the change in total LDH apparently due to changes in LD-5, the
,j

skeletal muscle and liver fraction. However as Rose points out (26), the lack of LD-1 and

LD-2 response may reflect the level of endurance conditioning of their participants. Work

with rats (28,29) indicates that LD-1 and LD-2 are elevated in untrained rats following

exercise. However, following a period of endurance training, the exercise induced charges

in these isoenzymes decreases with training. These decreases seem to be a function of the

duration of the training sessions (29). Therefore, one interpretation of our findings is

that these UOT and SEAL team personnel are not highly trained for long-distance running.

The continued elevation of HBD during the repletion phase of the program is consistent with

clinical reports that HBD activity has a long half life compared to other enzymes such as

CPK or other LDH isoenzymes (31).

Just as was the case with CPK and total LDH, serum concentrations of HBD were elevated

above normal values (31) following the depletion run. But again these values were not as

great as those seen following a major pathology such as a myocardial infarct (31).

13



Our HBD data do not allow us to determine the source of the HBD activity with

certainty. It may likely derive from increased myocardial activity or the destruction of

red blood cells (8, p. 599). To our knowledge, this LDH isoenzyme pattern has not been

previously documented for exercising humans. These findings point to a need for further

exploration not only of the effects of training on LDH exercise response but also of the

effects of exercise on the cardiovascular system and the mechanisms that underlie the

release of enzymes from various tissues.

Interpretation of the endurance run interaction results for LDH and CPK is difficult.

The CPK interaction is of marginal significance and may not be meaningful. In the absence

of a significant interaction for HBD (F3,24=1.53, p-0.23), the observed interaction for LDH

suggests the release of muscle LDH at the end of the endurance run. Taken with the

S. marginal CPK results, the possibility of increased muscle strain while running with

,4 loaded" muscles cannot be ruled out. However, work by Pate and his co-workers (10)

suggests changes which take place with increasing exercise duration at a fixed exercise

intensity are not linear. Therefore from this sample it cannot be determined whether the

, differential increases in enzyme concentrations following the different programs are a

normal concomitant of the increased running time following the loading program or represent

*. increased muscle strain.

The decrease in serum uric acid concentration following carbohydrate loading is

consistent with previous reports that a high carbohydrate diet tends to increase uric acid

secretion (20). The mechanism for this effect is unclear. The decrease may also be a

result of the decreased exercise level during the loading phase of the program (11).

One must bear in mind that with this sample size, the loading effects and loading time

interactions must be viewed cautiously. There is a clear need for replication of these

findings. There were no major changes in electrolytes, and no unexpected changes in serum

protein or albumin values. The CPK and LDH results do not suggest muscle cell damage.

However, the HBD results do suggest a need to investigate the relationship between

endurance conditioning and the physiological/biochemical responses to this program.

* Additionally, possible effects of increasing the rate of carbohydrate metabolism on fatigue

processes at different energy expenditure rates warrant further consideration. Such

effects will determine whether or not carbohydrate loading is advisable for situations
involving work rates which only infrequently exceed 60-70% of maximal capacity.
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