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ABSTRACT

’Lln a previously reported investigation,
scattered sound pressures and velocity distri-
butions on the surfaces of submerged infinite
cylinders ensonified by steady-state plane waves
were calculated. The numerical method used for
these calculations was based on a finite element
formulation of the coupled fluid-structure in-
teraction problem and implemented using the
NASTRAN computer program. In the present in-
vestigation, these pressure and velocity data
are used as the basis for numerical calculations
of the scattered sound pressures generated in the
exterior fields of the cylinders. The method
consists of replacing an infinite cylinder by a
finite cylinder whose gxternal sound field, in
three dimensions_Ls—Bfg'converges to the required
two-dimensional (2-D) field as the cylinder
length increases. The field pressures are
obtained by numerical quadrature of the HELMHOLTZ
integral formulation which relates external field
pressures to pressures and normal velocities at
the structural surface. Calculated 2-D pressure
fields, obtained for rigid and elastic cylinders,
are in excellent agreement with analytical
results, —

ADMINISTRATIVE INFORMATION
The work presented here was conducted with funding from the Naval Sea
Systems Command (03K 11) under Task Area SR0O140301, Task 15321, Work Unit
1808-010.

INTRODUCTION
A previously reported investigation demonstrated the use of a structural

. -
12,3 to numerically1 3

analog method compute the steady-state scattered sound
from submerged infinite cylinders ensonified by plane waves. With this

apprqgch. which involves the coupling ot a finite-element model of the cylin-
drical shell with a finite-element representation of the exterior and interior
fluid (if present within the elastic shell), one obtains acoustic pressure and

velocity at the shell-fluid interface, pressure in the interior fluid, and

*A complete listing of references is given on page 29.
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exterior field pressures out to the limit of a fictitious wave-absorbing boun-
dary placed a finite distance from the shell surface.

This report supplements previous work of the author by developing and
applying a procedure in which the shell-fluid interface pressures and veloci-
ties obtained for an infinite cylinder are modified for use as input to a

numerical quadrature which extends the computation of exterior pressures to

arbitrary distances from the shell surface.

INTEGRAL FORMULATION FOR EXTERIOR PRESSURE-
CONTINUOUS AND DISCRETE FORMS
Although the primary purpose of this investigation is to compute 2-D sound
pressure fields, the method developed is rooted in the general 3-D problenm

which is illustrated in Figure 1. A mathematical basis for analyzing this
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Figure 1 - Geometry of the General Three-Dimensional
Exterior Acoustic Field Problem
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problem is provided by the Helmholtz integral formulation for the pressure at
any arbitrary field point in terms of pressures and normal velocities on an

arbitrary closed surface S.

iklz— iklz—yl
P(z) --1kffv(y) ds +ﬂ (y ey £ _ -~ | ds (1)

4m|z-y| 4r|z-y|
where p = nondimensional pressure p/ocvo.
P = fluid mass density,
¢ = speed of sound in the fluid,
vo = arbitrary velocity,
v = nondimensional velocity v/vo normal to the structural surface,
z = vector from coordinate origin to field point,
Yy = vector from coordinate origin to structural surface point,
S = closed surface of the structure,
K = wave number w/c, where w is the angular frequency of the sound

waves reflected and/or radiated by the structural surface.

This formulation states that, when a normal velocity distribution V(!) and
corresponding pressure distribution B(!) are known for a particular surface,
the pressure at a point z off the surface can be obtained by a guadrature.

To perform the quadrature, use was made of an algorithm previously coded
as part of the XHAVE“'5 computer program for generalized steady-state radia-
tion and scattering from arbitrarily shaped surfaces. This algorithm follows
from a numerical computing method of G. Chertock6 and is based upon a dis-
cretization of the structural surface into a network of patches which need not
have uniform density nor any particular uniform shape. One might have, for
example, the continuous problem shown in Figure 1, discretized as given in
Figure 2. Dots on the surface S denote points that are located at some
interior position within eacn patch. The points within patches are not
necessarily at any special positions and need not be uniformly located from one
patch to another. These points, with position vectors lj reference discrete
stations on the surface where acoustic pressures and uormal velocities are
assumed known, usualiy from a previous calculation, The pressure and normal
velocity at a station y, are assumed constant over the corresponding patch.

The station points also serve as positions for referencing certain geometric
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Figure 2 - Discretized Structural Surface for Three-Dimensional
Exterior Field Problem

properties of the patch such as area and orientation of unit vectors normal to
wne surface. With discretization of the structural surface, Ekquation (1) is

replaced by an approximating matrix formulation

{piz)} = -ik[Gij}[AJJ]{v(zJ)} + [(‘aziJJIAJJ){p(!J)} (2)
]
for i = 1, 2, ..., M
and J = 1, 2, «..y N

where ¥ = number of field points at which pressure is to be computed

number of stations over the structural surface

=
"

location of field point
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Y. = location of a surface station

=J
[Gij] = a matrix of order (M x N) whose coefficients are
elkRij/unRiJ' for i =1, 2, .oy Mand j=1, 2, ..., N
[GZiJ] = a matrix of order (M x N) whose coefficients are
ikR ikR .
3/on, [e™"ij/umR, )~ e "ij/umR,  (-ik + V/R, ) X
J[ B 1J] J ij ij
(n, * R )
=J 1)
n, = unit outward normal to the structural surface at station |
Eij = unit vector at station j colinear with Eij' i.e., Bij =
R. ./R. .
-1y 1)
R.. = IR..|
ij =ij
[Ajj] = diagonal area matrix whose elements are the patch areas associated
with stations j
5(51) = nondimensional acoustic pressure at field point Z
B(xj) = nondimensional acoustic pressure at surface station y.
;(xj) = nondimensional normal velocity outward from surface station yJ

MODIFICATIUN OF PRESSURES AND VELOCITIES FROM THE
STRUCTURAL ANALOG COMPUTATION
lhe previous section indicates clearly that once a particular surface
geometry along with known pressure and normal velocity distributions over this
surface have been specified, the numerical quadrature for exterior field
pressures is straightforwardly obtained given sufficient computer memory and
running time which may be required in applications involving very large numbers
of surface patches. No matrices need be inverted nor integrand singularities
considered. Care need only be taken to ensure that the pressure and velocity
data, which are input to the quadrature algorithm, are (1) consistent with the
formulation on which the guadrature is based and (2) consistent with respect to

the field pressure being computed,

o




Attention to condition (1) is especially warranted in instances where
computing methods of somewhat diverse origin are being interfaced to achieve
the field calculation. For example, in this investigation a finite-element
approach is to be interfaced with a method (the quadrature algorithm) whose
formulation is derived from the area of acoustic analysis. It so happens that
sign conventions used in the exponential factor for time dependence are dif-
ferent in the particular programs being coupled: in NASTRAN (the structural
analysis program) the convention is eiwt. whereas in XWAVE (the acoustics pro-
gram) it is e—iwt. As a result, the first and most basic modification required
for pressures and velocities in complex form (a+bi), generated by the analoyg
computation, is conjugation to the form (a-bi).

Whether or not the conjugated data require further modification to satisfy
condition (2) depends partially upon the type of scattering being computed and
partially on the philosophy adopted for managing data input to the finite
element and quadrature computations. Some specific examples from rigid and
elastic scattering will illustrate. 1In these examples it will be assumed that
the field quantity to be directly computed is the scattered (as opposed to

total) pressure.

KRIGID SCATTERING

Figure 3 shows a perspective view of a portion of the inner boundary of
the finite element model for fluid exterior to a rigid cylinder.1 The fluid
is modeled with quadrilateral membrane elements of an arbitrarily chosen thick-
ness of 1 meter, (since the cylinder is infinite). Since the finite-element
formulation of steady-state rigid scattering is based upon a velocity potential
form of the wave equation, the prescribed boundary condition at the structural

surface 1is

W (3)

where Va is the normal component of the scattered particle velocity directed
into the exterior field of the cylinder. For rigid scattering, Vi is a known
quantity, depending only upon the magnitude, frequency, and direction of the

incident wave and the geometry of the structural surface.

v




INTERFACE

Figure 3 - Finite-~Element Model of Fluid-Structure Interface
for Rigid-Scattering

The structural analog of Vo for the finite-element model is a set of
forces acting at grid points on the inner boundary of the fluid model as given
in Figure 3. The relationship between these forces and the normal velocity is
(see kquation (6) of KReference 1),

F = B, Av (4)
where ue is the shear modulus assigned to the fluid finite elements, the e
denoting a generally nonstandard value for i, and A is the area associated

Wwith a grid point. With a set of input, —Fx. one then obtains frow the finite-
element computation the corresponding rigid scattered pressures, psw’ on the
cylinder. The computed pressures with the corresponding normal velocity dis-
tribution, vn. is a consistent set of boundary data for input to the field
calculation when both pressure and velocity are conjugated.

Although the vn can be computed analytically, it is perhaps more conven-
ient to extract them from the NASTRAN data input to the finite-element computa-
tion. As a basis for this, expand Equation (4) as follows,

-F = u Av = u AV(x) cos Oe"iw.r (5)
X e n e
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where V(x) magnitude of particle velocity in an incident plane wave

1]

with frequency w.

6 = projection angle, Figure 4, for obtaining a component of
V(x) normal to the cylinder surface and pointing into the
fluid.

T = time delay for incident wave passage from P_ to P2. see .

1

Figure 4, ‘

Figure 4 - Geometry Relating to the Computation of the Structural Surface
Normal Component of Incident Velocity

Since the incident wave particle velocity is assumed to have unit magnitude,

Equation (5) becomes
~F_ =z u_ A cosb e~ 10T (6) :
X e

Since NASTRAN's facility for specifying frequency-dependent loads was used to
input the loads Fx for the computations, DAREA data cards were used to enter
the quantity ue A cos 6 for each fluid grid point on the cylindrical surface.
Also available in the input data are the x~coordinates of these grid points.

Using these coordinates and the cylinder radius, r, one obtains

cos B = x/r (7

b A SR 0




for each of the grid points. From Equation (5), the surface normal velocity

is then obtained as

X cos § = — (8)

which becomes
v = -F_/A (9)
n X

with substitution of ue = 1 in accordance with the analog formulation for
rigid scattering.

If just the absolute value of the exterior field pressure is of interest,
one can as a second option, specify equally well the negative of Fx in
tquation (6), by assigning to LR the value -1, which is also required for
reasons of symmetry in the elastic scattering case. Since, in vector form, Fx
is the complete right-hand side of a matrix equation for displacement, i.e.,
the ana1051 of the velocity potential, the change in sign of Fx results in a

corresponding change in sign for computed pressures. Some care is needed, how

ever, in extracting the corresponding surface normal velocities for use with
these pressures in the field calculation. This is so because a routine appli-

cation of LEquation (8) will yield, in this case,

F -F

X
——— 0 = —— = (10)
~-Acos® x cos A Vn .

whereas the normal velocity corresponding to negative scattered pressure,

“Pgo is —Vn. This clearly indicates that to obtain normal velocities consis-
tent with the computed pressures, —psm' in this case, one must negate the
normal velocities extracted in the above manner from the input data. This
modification is in addition to the requirement for conjugation of both quanti-
ties as previously discussed. The use of negative normal velocity distribu-

tions in computing structural surface pressures will be shown later to offer

Y-S U T IR




advantages in the handling of data input to the finite-element computations
when both rigid and elastic scattering are being computed for the same struc-

ture.

ELASTIC SCATTERING

For the case of elastic scattering, the cylindrical shell actively inter-
acts with the fluid and is explicitly modeled along with the fluid; the
symmetric velocity potential method is used to symmetrize the structure-fluid
interaction equations in matrix form.1'2'3 Because the fundamental fluid
unknown is the integral of pressure,1'2'3 fluid pressure can be recovered from
the finite-element program by listing the first derivatives (velocity of the
unknown) .

As in the previous case, the conjugate of the computed pressure at the
cylinder surface gives one set of boundary data required for the field calcu-
lation. This pressure is symbolized by Pge which denotes pressure scattered
by an elastic boundary. The corresponding surface normal velocity will be

designated Vn . To see how Vn can be obtained, it is convenient to begin
se 7 se 7
with an expression’ for Pge in terms of its components,

p = p + p (11)
where Pgo is the pressure scattered by a rigid structural surface and P is

the pressure radiated by elastic motion of the structural surface. At the

surface of the structure one can write

ap p_, p
€ - =2 4y £ (12)
an an an
10
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where n denotes the direction normal to the surface and into the exterior
fluid. Substituting in Equation (12) the boundary condition satisfied by each

term,
3
pse e - ;
an P se
P -
n -Dwsm (13)
Bpr ) ;
on e r

where W is the surface normal displacement of fluid particles adjacent to the
boundary surface and the dots denote the time differentiation, and dividing by

-p, gives

Woe = Wge + W, (14)

Integrating Equation (14) once and letting v = w, gives
v = v + v (15)

The first term on the right-hand side of Equation (15) is simply the normal
surface velocity which appeared in the boundary condition, Equation (3), for
rigid scattering. The second term is the radial velocity of the shell obtained
directly from the structural analog computation. As an interesting sidelight,
it may be noted that this velocity, which is the in-fluid velocity of the
shell, can be obtained analytically (Equations (12.31) and (12.32) in Reference
7) for infinite, thin cylindrical shells. As part of this investigation, the
analytic expressions were coded for numerical evaluation. The analytic values

for v were in good agreement with the finite element results.
r
Equation (15) then indicates that the shell boundary velocity required for

the field pressure calculation is obtained by adding the rigidly scattered
normal surface veloci:y, an input quantity for the finite-element éalculabion.
to the in-fluid radial shell velocity, an output quantity from that calcula-
tion, As in the case for the rigid scattering analog calculations, Vi is

g
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input via frequency-dependent loads Fx’ for Equation (6). In the elastic case,
however, the sign of ue must be negative. This condition results from the fact
that the symmetric potential formulation involves multiplication of the equa-
tions in one partition of the matrix formulation for the elastic structural
analog by -1/p. This multiplication is achieved for matrix coefficients from
the left-hand side of the analog equations by specifying a negative shear
modulus on the NASTRAN material properties (MAT1) data card. The negative

sign of ue in Fx takes care of the corresponding multiplication for terms on
the right-hand side of the equations. Since ue. as pertaining to Fx' is incor-
porated in data on the DAREA cards, the DAREA quantities will be -Acos8, and

hence, v, can be readily extracted from the Fx loads as in Ekquation (10).
S
Adding this velocity to vn and conjugating the result yields the velocity
r

distribution consistent with pse for the field calculation.

The requirement for a negative ue in specifying Fx emphasizes the conven-
ience of the second option discussed, ¢n page 9 , for specifying Fx in the
rigid scattering case (Equation (6)), namely, that it allows DAREA data for

rigid calculations to be carried over to elastic calculations or vice versa.

ADAPTATION OF THREE-DIMENSIONAL QUADRATURE ALGORITHM
TO CALCULATION OF TWO-DIMENSIONAL SOUND FIELDS

Having seen (in the previous section) how to obtain, from the 2-D struc-
tural analog calculations, sets of shell surface pressures and velocities
which are consistent with the field pressure algorithm as well as each other,
consideration is now given to a method of using these data to calculate 2-D
sound fields.

The overall strategy of the method is to calculate, as an approximation -
to 2-D sound fields, the fields of finite cylinders of sufficient lengths that
scattering from the ends does not contribute significantly to the field ‘
results.

Consider first the acoustic modeling (see Figure 2) of a general finite
cylindrical surface which is scattering a plane wave train with the direction
of incidence normal to the cylinder's longitudinal axis. Clearly, from the
symmetry inherent in this problem, only one quarter of the surface need be
modeled; see Figure 5. Ordinarily, for the case of finite cylinders, the end

12
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Figure 5 - Surface Acoustic Model for a Finite Cylinder
Scattering an Incident Plane Wave Normal
to the Longitudinal Axis

cap in Figure 5 would also be modeled, but since the length will ultimately
negate the end effect, this modeling is omitted from the start. The station
points xj (see Figure 2) are located at the midpoints of the acoustic elements
or patches of surface area. In interfacing the finite element and acoustics
program, the station points can be made to coincide with grid points of the
finite element model.

Although the integral formulation for field pressure offers considerable
generality of application as previously discussed (pages 2-5 ), it can be shown
to be greatly simplified in the present case if the field pressure is calcu-

lated at points along the x_ axis of the cylinder's coordinate system; see

3
Figure 6. It is seen that, as a result of structural surface symmetry, each

acoustic element on the quarter surface modeled has three reflected image

13




SURFACE
STATIONS

Figure 6 - Geometry for Field Pressure Calculatious

elements in the coordinate planes. If an element is identified with its

station point, this reflection can be expressed,

* —— " am— " 16
Zj_;g—;’ijlx:; Iy XZXBZj;;;;XJ (&)

where the symbol xnxm denotes reflection in the plane defined by coordinates

Xn and xm. The pressure at a general field point z; due to an acoustic element

14
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J and its image elements is, from Equation (2)

= ciK(G, AV, + G, AV 4G, AT 4 T Ay )
Pi Gyj85v5 *+ i iV TN ij 33
(G2, A.p. + G2, .'A.'p." + G2, "A"p." + G2, "TA MDY
MR Rt L TR B R ij 0y Pyt Uey ByPy an

It can be readily shown that if a field point i on x3 is paired with surface
element j or any of its images in the coordinate planes, the formula for the
corresponding coefficients G (page 5) yields quantities of the same magnitude
and sign, and similarly for the quantities G2. Since the velocity ; is the

same for surface element j and its images, the pressure will likewise be the

- —i .+ 2 < 1

The pressure at i due to the entire cylinder, less end caps, is then given by
N

p. = 4 -ikG. . A.v. + G2, A.p,.

Pi jz_l(lGlJJJ+ 1373P;

for j =1, 2, ... , N where N equals a number of surface elements in the

) (19)

quarter-cylinder; see Figure 6.

As a basis for adapting the integral formulation to 2-D sound calcula-
tions, let the surface in Figure 6 be the quarter-portion of the truncation of
an infinite cylinder extending from -« to + « on the x2 axis. Assume the sur-
face is modeled by consecutive circumferential bands of m elements; see Figure
7. From Equation (19), the pressure at field point Z; due to the truncated

infinite cylinder is

m
p. = ug -'ka. AV, az. A.p.
Py ;;(1133.1* 15457y
2m

-i v p . . . (20)
+ ( lkGijAJvJ + GZiJAJpJ) +
I
+ (-1KG, AV, + G2, .A p.)
37 170
J=(k-1)m+}
15
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Figure 7 - Numbering of Structural Surface Acoustic Elements

where k is the number of bands, This expression abbreviates to

p; = 4(51 + 5.+ ... + Sk) (21)

2
The strategy for applying the 3-D algorithm to the 2-D sound calculation is to
compute and cumulatively add the partial sums Sl until an Sk is reached whose
contribution to the total sum, thus far obtained, can be assumed negligible
according to some predetermined criterion for stopping the integration. It
should be noted that the selection of a robust criterion is not, in general, a
trivial matter.8 Equation (21), in this case, states that the scattered sound

field at Zi due to a finite cylinder of total length ZkAx,, reasonably

approximates that of an infinite cylinder. :
The last item to be considered in this section concerns the interfacing of
the structural surface acoustic model with the surface pressure and velocity
data from the finite-element computations., These computations,1 which are
based on a truly 2-D theory, give the pressure and velocity data at grid points
which lie on a circular arc in the x X, plane; see Figure 8. The pressure and

1
velocity at a grid point are constant along a longitudinal line through the

16




6 = 180°

Figure 8 - Grid Point Configuration from Structural Analog Calculations

grid point extending from - to +». This configuration immediately suggests
two possibilities for interfacing the acoustic model; see Figure 9. In these
sketches, dots signify grid points to which pressures and velocities are refer-
enced in the analog calculations. Circles signify, in general, surface points
along longitudinal lines of constant pressure and velocity to which the calcu-
lated quantities are projected.

It is seen in Figures 9a and 9b, by comparing the two surface models, that
the primary difference between them is the way in which computed pressure and
velocity at Xy = 0, and 8 = 0 are utilized, since this determines whether or not
elements in the first circumferential band and elements along the longitudinal
line x3 = + radius overlap the respective symmetry planes xi-x3. and x2-x3.

In the first model, Figure 9a, a single acoustic element is centered on the
grid point 8 = 0, and x2 = 0. The computed pressure and velocity at the grid
point are assumed to be constant over the element. In the angular direction,

the element extends from 6 = O degrees to + % the arc distance from 6 = 0
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X3

Figure 9a - Acoustic Model Overlapping Two of the Principal Symmetry
Planes, X] = Xy and X, = X3, of the Infinite Cylinder

+
X3
Figure 9b - Acoustic Model Entirely Within the Two Principal Symmetry

Planes, X - x3 and Xy = x3, of the Infinite Cylinder

Figure 9 - Interfacing of the Surface Acoustic Model and Structural Analog
Data for an Infinite Cylinder
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degrees to the next circumferential grid point. 1In the longitudinal direction,
the element extends from X, = 0 to + % the bandwidth (arbitrary within limits,
in the case of 2-D) selected for the particular modeling. To obtain the

second model, Figure 9b, the pressure and velocity are assumed constant over

an element again centered at 6 = 0, and x., = 0 and having the same extent in

2
angular direction, but extending from x_, = 0 to + twice the bandwidth

2
selected for the acoustic model. A quarter portion (quadrant) of this element
is taken as the first element in the first band of the model with the computed

pressure at 6 = 0, and x, = 0, assumed at its midpoint as indicated by arrows

€—3>in the sketch, Altiough orientation of the unit normal vector at the mid-
point of this element differs from that of its parent, the difference becomes
negligible as the structural finite-element grid (as shown in Figure 8) and
hence the acoustic surface model is refined for calculations at higher
frequencies.

Whereas the first acoustic model, Figure Ya, interfaces more naturally
with the structural grid points, the second model, Figure 9b, allows a more
uniform handling of symmetries for the field calculation. 1In particular, it
can be seen from Figure 9a that, with respect to surface stations having the
same scattered pressure and velocity, the two stations 6 = 0 degrees and 180

degrees and x., = 0 have no reflected images in the principal symmetry planes;

2

the stations § = 0 degrees and 180 degrees, with x, < 0 each have one image and

all other stations explicitly modeled have three iiages. This is contrasted
with the model in Figure Yb in which every element has three images. Early
test calculations using both models gave essentially the same results for field
pressures. For this reason and due to less of a need for bookkeeping to keep
track of symmetries, Figure 9b became the model of choice for later calcula-
tions.

All geometric data (pages 3-4) required for the surface acoustic models
were obtained through the use of that portion of XWAVE's2 automatic data
generator which handles cylindrical surfaces., The strategy for core storage of
these data differs, however, from that used with finite surfaces having prede-
fined dimensions, in that at any time during the field calculation only the
data pertaining to a single band of elements (see Figure 7) resides in storage.
After completing the calculation of the band's contribution, SE to the
summation in Equation (21), the current geometric data are updated to that of
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the next band & + 1 in the -X, direction (see Figure 7). Then the contribu-

tion, S is computed and the process is continued until the total field

2+1°
calculation is terminated.

CALCULATIONS

Field calculations were made for all distributions of the structural
surface normal velocities and pressures obtained from the structural analog
results, computed previously, except for the cases at 150 Hz rigid condition
and 225 Hz for elastic scattering. Figure 10 is a summary of the physical
problem upon which the calculations are based.

The accumulation of partial sums, Equation (21), was carried out until the
approximation for the field pressure had converged to the number of significant
figures that could be plotted effectively. This condition occurred when the
cylinder had grown to approximately the length 2L (~ 655 m). The results thus
obtained (see Figure 11-14) are seen to be in very good agreement wWwith those

7

obtained from analytic formulations' for rigid and elastic 2-D scattering.
These formulations have been implemented by the author for automatic calcula-
tion in two special-purpose programs, SCAT1 (rigid) and SCAT2 (elastic).
Calculations were made for field points ranging from 1.12 m to 100 m (= 100
diameters) from the cylinder surface.

The field calculation for 225 Hz rigid scattering was found to be essen-
tially insensitive to the accuracy of input surface pressures; recall that the
sur face normal velocity 1s analytically obtained in this case., Figure 11
shows, in fact, that the difference between computed and analytic field
pressures cannot be plotted anywhere within the range of the distance con-
sidered, whereas the error in the surface pressure from the analog calculation
is nearly all confined to the illuminated portion of the cylinder (see Figure
12 of Reference 1),

The field calculations for elastic scattering were found to correlate well
with the accuracy of input pressures on the illumined surface of the cylinder,
It is seen, in comparing Figures 12, 13, and 14, that the largest errors in
field pressure occurred for the 2100 Hz case. This would appear to correspond
to the fact that, among the finite-element calculations for the frequencies
2100 Hz, 4100 Hz, and 6600 Hz, the one for 2100 Hz yielded the least accurate

surface pressures in the neighborhood of 8 = 0 degrees (see Figures 19, 22,
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Figure 10 - Sketch of the Physical Problem
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Figure 11 - Field Pressures Calculated for 225 Hertz Rigid Scattering
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Figure 12 - Field Pressures Calculated for 2100 Hertz Elastic Scattering
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Figure 13 - Field Pressures Calculated for 4100 Hertz Elastic Scattering
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Figuré 14 - Field Pressures Calculated for 6600 Hertz Elastic Scattering
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and 25 of Reference 1). Similarly, the excellent agreement of the computed
field presssure with the analytic results for the 6600 Hz case, see Figure 14,
seems to relate to the fact that, despite rather large discrepancies in the
input pressures on the shadowed surface of the cylinder, the pressures in the

neighborhood of 6 = 0 degrees are very good (see Figure 25 of Reference 1).

SUMMARY

A method has been described for calculating the scattered sound pressure
field exterior to infinitely long structures of arbitrary cross section when
pressure and velocity normal to the cross section boundary are known.

The method is derived by combining the capabilities of two existing compu-
ting methods: one, a finite-element approach to fluid-structure interaction
problems, and the other, an algorithm for numerical quadrature of the Helmholt:z
equation which relates exterior field pressures to pressure and normal velocity
over a 3-D structural boundary.

Application of the method to the calculation of the field pressures
exterior to infinite cylinders for rigid and elastic scattering gave pressures
in excellent agreement with analytic results.

The considerable versatility of the finite-element formulation, combined
with the equal versatility of the quadrature algorithm, gives a method which
is applicable to a wide range of structural configurations and geometries. 1In
view of this, the method offers a useful tool for obtaining comparison data
which may serve as a basis for the testing and refining of analytic approaches,
as well as a means for obtaining solutions for cases not presently within the
range of analytic approaches.

Extension of the method to 3-D, apart from requiring more computation, is
trivial, since both the finite-element and quadrature formulations are

inherently 3-D.
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