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PREFACE

This Note is an extension of work performed in support of the

1980 Air Force Scientific Advisory Board (SAB) study of the Long

Range Combat Aircraft (LRCA). It reproduces and expands upon equations

useful for calculating the range extension obtainable from tanker

support. The issue of tanker support for the LRCA was dealt with by

the SAB only cursorily. The Board argued essentially that dependence

on tankers was inherently bad, but it failed to specify the price (in

terms of LRCA gross weight and, ultimately, life cycle cost) that the

United States should be willing to pay to avoid that dependence. A

companion Rand Note, N-1861-AF (forthcoming), attempts to deal with

aspects of the tanker issue. (The present document contains the

background mathematics for that Note.)

Rand's involvement in the SAB LRCA study was supported by Project

AIR FORCE under the study effort "Assessment of Mixed Strategic Force

Concepts for Flexible Requirements and Scenarios." Air Force planners

interested in simple expressions for estimating range extension for

one or more aircraft, under a variety of assumptions about tanker

employment, may find this work useful.

Dce~isl spot



SUMMARY

The Scientific Advisory Board of the USAF recommended in 1980

that the Air Force develop a new strategic bomber for use in the l990s

and beyond. The President's October 1981 decision specified that the

new bomber would be a derivative of the B-i (known as the B-lB) with

an IOC of 1986. As a hedge against future growth in the threat, he

also recommended developing an advanced technology bomber for deploy-

ment in the 1990s.

One issue not extensively treated by the SAB and only partially

covered by the President's announcement was the proper role of tankers.

Based on operational constraints, the SAB recommended that future

bombers should be capable of performing their missions without tanker

support. Cost and other factors may argue to the contrary.i1 ) This

Note presents a series of equations that can be used to determine

either the range augmentation tankers can provide or the corresponding

increase in payload. For convenience of presentation, most equations

assume equal-sized aircraft; extensions to different bomber/tanker

sizes are straightforward.

Several tanker refueling options are discussed in this Note.

They include: (1) where the tanker lands after completion of re-

fueling, (2) how tankers and LRCA reach their rendezvous point, (3)

the LRCA's status at refueling, and (4) how many LRCA each tanker

services. Two options were included for where the tanker lands; i.e.,

o Tankers land at the base from which they departed; we

label this radius missions, or

" Tankers land at forward bases; we assume throughout

that these bases are at a constant distance from the

refueling point, and label them constant recovery

distance missions.

(1)See Reference 1.
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For both the radius and constant recovery distance missions, we con-

sider two ways for the tanker/LRCA pair to rendezvous:

o The LRCA and tanker depart from the same base and fly

in close proximity until the refueling point is

reached; we call this the buddy-buddy approach, or

o The tanker flies to a predetermined refueling point,

meeting the LRCA there; we call this the filling

station approach.

At the time of refueling, the bomber can be either outward- or inward-

bound. We define these conditions to be the following:

o Outward-bound LRCA are moving further away from the

tanker's home base; thus a delay in refueling would

require the tanker to expend more fuel to reach the

refueling point,

o Inward-bound LRCA are approaching the tanker's home

base; thus delaying refueling increases the available

tanker fuel for offloading.

In addition, the LRCA can either drop its payload somewhere along its

flight path or carry it to the end. The former stretches the LRCA's

total flying range. Finally, several options were considered regarding

the number of tankers and LRCA involved:

o One tanker services one LRCA; most of this Note treats

this case.

o Multiple tankers service one LRCA, using the buddy-

buddy approach, i.e., all the tankers fly in formation

with the LRCA, with refueling occurring sequentially

as the fuel available for offloading from the i th tanker

equals the available fuel capacity of the LRCA.

o One tanker services two LRCA, using the buddy-buddy

• • •a
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approach where several refueling conditions are

examined.

0 One tanker services n LRCA, using the filling station

approach.

Not all combinations of the above options have been examined, but the

basic mathematics to permit such examination are provided.

The results of this Note are two-fold. First, specific equations

have been derived for the options mentioned above. The equation number

for each option is listed in Table S-1. Second, optimum refueling

conditions have been derived. For outward-bound bombers, refueling

should occur at that distance where the fuel available onboard the

tanker for off loading onto the bomber exactly matches the fuel re-

quired to completely refill the bomber. Refueling can occur earlier,

without harm, so long as the last refueling occurs when this condition

arises. For inward-bound bombers, refueling should occur at the

latest possible time, usually when the bomber is at fuel exhaustion.

The optimum refueling conditions either permit maximum payload weights

over a fixed distance or maximum distance given a fixed payload.
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Table S-I

LOCATION OF EQUATIONS DESCRIBING FINAL RESULTS

Tanker

Departs Returns LRCA Equation
LRCA Tankers From To Headed Other Comments Number

1 1 H H 0 4.14
H F 0 4.20
F F 0 4.25

1 n H H 0 5.14
H F 0 5.12

2 1 H H 0 Equal enhancement 6.14
H F 0 Equal enhancement 6.12

n 1 H H 0 Filling station 7.24
H F 0 Filling station 7.26
F F 0 Filling station 7.27

1 1 H H I 9.9
H F I 9.10

1 n H H I 9.24
H F I 9.25

NOTES: H = home base (same as LRCA);
F = forward base, assumed constant distance;
0 = outward bound;
I = inward bound.

Ik~.~3hO$M .~a.
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I. INTRODUCTION

This Note presents a series of simplified equations and numerical

calculations indicating the magnitude of range augmentation (or,

equivalently, payload enhancement for a fixed range) that refueling by

tankers can provide long range combat aircraft (LRCA). The treatment

is theoretical and should apply to LRCAs of various designs.

This Note examines several refueling conditions. Two pre-refuel-

ing tactics are considered for the tanker. One assumes that the tanker

leaves the home base with the LRCA it is to refuel, flying with the

LRCA until the refueling point; we label this the buddy system. The

second tactic assumes that the tanker leaves its home base and flies

to a rendezvous point where it refuels one or more LRCAs; we label

this the filling station approach. The buddy system is usually assumed

to apply to LRCA's flying strategic missions requiring long range

flights. The filling station approach appears to be more applicable

to missions that require shorter flight distances and heavier payloads

consistent with force projection missions.

Two post-refueling tactics are considered for the tanker. one

assumes that, after all refuelings are accomplished, the tanker returns

to the base from which it left; we label thit the radius mission. The

second assumes that the tanker recovers at a forward recovery base;

for simplicity we shall specify that the distance from the last refuel-

ing point to the recovery base is a constant. We label this the con-

stant recovery distance profile.

In addition, we consider both pre- and post-strike refueling for

the LRCA, and indicate the potential advantages in range enhancement

derived from dropping the payload along the LRCA's flight path. Longer

range missions will require pre-strike refueling, but many force pro-

Jection missions can be performed with post-strike refueling, at a

considerable savings in total fuel required.

Finally, for analytic convenience, most of the derivations and

calculations contained in this Note assume that the LRCA and tanker

are equal-size, being derived from the same basic airframe and engine.
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A section at the rear will relax this assu~mption, indicating how the

equations can be modified to accommodate different LRCA/tanker designs.

This Note is organized in the following manner. Section II will

derive the well-known Breguet equations expressing the relationship

between flight range, fuel expended, and aircraft characteristics.

These equations are i-ed extensively in the following sections dealing

with range augmentation and inflight refueling. Section III provides

the reader a simple example of a derivation of a particular refueling

equation. The assumptions employed in that section will be treated in

detail in later sections. Sections IV through VII cover various tanker

pre-refueling and post-refueling tactics in substantial detail, proving

where necessary some of the conditions for selecting the best refueling

point. Section VIII discusses the range augmentation obtained by pay-

load delivery at mid-range. Section IX discusses the post-strike re-

fueling equations. And Section X covers the equation derivations where

the LRCA and the tankers are not similar. After reading Sections II

and III, the reader should be able to skip sections that are not of

particular interest; most sections are written to be self-sufficient.
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II. BREGUET RANGE EQUATIONS

Many years ago Breguet developed a set of equations appropriate

for estimating the range-payload tradeoffs for aircraft. While not

quite appropriate for jet aircraft, these equations are still widely

used. They are based on the following assumptions: (1) lift equals

weight, (2) engine thrust equals drag, (3) the aircraft lift-to-drag

ratio is constant, and (4) engine thrust equals a constant times the

fuel mass flow rate. These are sensible assumptions for gas turbine

powered aircraft flying under typical high altitude cruise conditions.

They lead to the following differential equation:

dW
- cT (by 4)

-cD (by 2) (2.1)
cW
(LID) (by l and 3)

where W is the vehicle's weight, T is the thrust of the engine, c is

the engine specific fuel consumption, L is the vehicle's lift and D

is the vehicle drag. For high altitude, maximum range flights, the

(L/D) ratio is essentially constant. Therefore, we can integrate

Eq. (2.1) and obtain:

W(t) = W(t )exp (L/D) (2.2)ct

Noting that r = vt, where v is the vehicle's velocity and r the range

flown during time interval t,

W(r) - W(r )exp {- v(/D) (2.3)

Since v is constant (thrust is assumed equal to drag), we can define

a new constant K - . K is the well-known Breguet range factor,C

• ~.
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and is constant given our assumptions. Substituting K into Eq. (2.3),

we obtain Breguet's fundamental relationship

W(r) = W(ro)exp- } (2.4)

W(r) is the vehicle's gross weight after it has flown a distance r, and
W(r ) is the aircraft's gross takeoff weight. Thus, the aircraft

weight is simply an exponential function of the range flown.

The maximum range-payload equation follows quickly from Eq. (2.4).

By definition

W(ro---def We + Wa + Wp + Fo (2.5)

where We, Wa, and Wp are the aircraft dry weight (less avionics),

avionics weight, and payload weight, respectively, and F is the maxi-
0

mum weight of fuel at aircraft takeoff. If R is the range where the

fuel is completely expended,

W(R) e W + Wa + W (2.6)

Substituting Eqs. (2.5) and (2.6) into (2.4), we obtain

W +W +W = Wexp{ Ke a p 0 -V

or

R K loge 0 +W + W (2.7)

Equation (2.7) is the well-known Breguet range equation. Note that it

We shall frequently use the shorter notation W0 for W(r ), if
no confusion is likely. 0
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applies to the no-refueling case. Also note that W can represent the

aircraft's gross weight at any point along its flight path and R then

becomes the remaining distance that the aircraft can fly until its fuel

tanks are empty.



-6-

III. THE RANGE AUGMENTATION EQUATION: A SIMPLE EXAMPLE

The Breguet equations are well suited for deriving the potential

range augmentation that can be obtained from a single tanker refueling.

As a start, consider the following assumptions: (1) bombers and tankers

have the same characteristics (e.g., the same gross takeoff weight,

the same dry airframe weight, the same Breguet range factor), (2) both

aircraft depart from the same base and fly in formation until the re-

fueling point is reached, (3) there is a single refueling and it fills

the bomber until its inflight weight equals its gross takeoff weight,

(4) the tanker, after refueling, flies a fixed distance, s, to a forward

recovery base, and (5) given the above, the bomber's unrefueled range

exceeds the to-be-determined optimum refueling point. Later sections

will alter some of these assumptions.

We will show later that the above assumptions imply that the

maximum range augmentation is obtained if the refueling point occurs

when the total fuel available to be offloaded from the tanker (i.e.,

still permitting the tanker to fly s miles to its recovery base) exactly

equals the fuel needed to fully refuel the bomber (i.e., raise its

gross weight to equal the takeoff weight)(see SectioD IV). The resul-

tant range augmentation, Ar, is given by the following equation:

Ar = K log(eJ l (3.1)

where the variables have already been defined. The remainder of this

section will be devoted to the derivation of this equation.

Consider Fig. 1. AF is the fuel required for the tanker tor

reach its recovery base, AF is the fuel available at range r to bea

loaded into the bomber, and AFb is the fuel used in flying the distance

r. AFb applies to both the tanker and the bomber, since their

characteristics are identical. Note also that we are assuming that

the tanker reaches its recovery base empty. W is the tanker's gross

weight immediately after refueling, and W is its weight at the startr
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Ws
AFb

Wr - - -- _

AF W W A.2

a r

From regue' s euatio

Wee =4 We- -I (3

OFIS

Distance flown

Fig. 1 -Tanker gross weight versus distance flown

of refueling. Assuming instantaneous refueling,

AF a Wr -w (3s.2)

From Breguet' s equation

W e W W exp~-~ (3.3)

Wr W exp- E (3.4)

Substituting (3.3) and (3.4) into (3.2)

AF - W exp{_ - -()exp (3.5)

oI
a O)ep
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As we shall prove in Section IV but only assert here, optimum re-

fueling occurs when AF equals the fuel weight needed to completely filla
the bomber. AFb is that weight. Therefore, to maximize the range

augmentation,

AF = AF (3.6)

From Fig. 1,

AFb = W - W

= wo [1 - ex+( (3.7)

Substituting Eqs. (3.5) and (3.7) into (3.6)

W 1l - exp(1- -1 I W IexpQ 1- 11 -(W e expij)] (3.8)

Solving for r, we obtain Eq. (3.1), i.e.,

r =K lg /e\2 i (3.9)

Since r is the distance from the bomber's home base, and the bomber

is fully fueled at that distance (and can still fly its entire un-

refueled range, R). r corresponds to the added range a single re-

fueling provides. Thus

Ar - r Q.E.D.

We will use R. to represent the maximum unrefueled range when
the bomber is fully fueled, and R to be the maximum remaining unre-
fueled range.

m m mi
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IV. RANGE ENHANCEMENT FROM A SINGLE (OUTBOUND) REFUELING

Section III treated a simple example of determining the maximum

range enhancement achievable in a single refueling of an outbound LRCA.

This section generalizes on that discussion. We start with some def-

initions:

Base L: The LRCA's home base and the base from which it

departs.

Base T: The tanker's departure base.

Base R: The tanker's recovery base.

P: The point along the LRCA's flight path where re-

fueling occurs.

d : The minimum distance from base T to the LRCA flight

path.

dR: The minimum distance from base R to the LRCA flight

path.

rt : The distance from L along the LRCA flight path where

the distance to T is minimum.

rR: The distance from L along the LRCA flight path where

the distance to R is minimum.

Figure 2 depicts these definitions from arbitrary locations of L, T,

and R.

The problem this section treats is to find P such that the maximum

range augmentation occurs. Several configurations for L, T, and R

will be considered and the appropriate rules for selecting P derived.

We start by recalling that 6F is the fuel onboard the tankera
available to be loading into the LRCA. 6Fa is clearly a function of

the tanker's flight distance up to that point. Similarly, recall that

W(r) is the gross weight of the LRCA after it has flown a distance r.

The total fuel that the LRCA could accept at that distance is obviously

W - W(r). We have labeled this AFb.

i:0
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LRCA'S flight path

d R BASE R (tanker recovery base)-F-R
St

r F

BASE T (tanker departure base)
d,

BASE L (LRCA departure base)

Fig. 2 -GeometrY for LRCA/tanker basing
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Assume for the moment that AFa < LFb . Then the entire available

tanker fuel load, AF , could be transferred into the LRCA, increasing

its weight to W(r) + AF . RecalliL. Eq. (2.6), the new range to emptya

fuel tanks is

[ W(r)+AFa

and the total range obtained is simply the sum of the range to the re-

fueling point and RI , i.e., r + R . Recalling that R denotes the

maximum unrefueled range, then the range augmentation, Arl, obtained by

adding AF pounds of fuel at P is simply
a

Ar r + R -R (4.2)

Clearly, we wish to find P such that Ar is a maximum.

Before we turn to maximizing Ar, however, consider the case where

AFa > AF In this circumstance, only AFb pounds of fuel can be loaded

into the LRCA and its new gross weight would become its initial weight,

Wo. Under these conditions, R1 = R, i.e., the LRCA, fully fueled,

is capable of flying its original unrefueled range, and the range

augmentation, Ar = r. It is immediately evident that Ar grows with r.

To maximize Ar, we should make r as large as possible. Therefore, we

have our first refueling rule: If AF > AF delay refueling, subjecta b'

to the condition that the LRCA has sufficient fuel to keep flying.

Now we return to Eq. (4.2). R1 can be rewritten in the following

form:

W° Wo+ a\

R1 = K log Wa W a (4.3)

We will discuss the consequence of this condition later.
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or

R R + K log/W(r)+AFa)

Therefore, Ar becomes simply

IW(r)+AFa)

To determine the optimum refueling point, consider the derivative of

Ar with respect to r. Three possibilities exist:

(1) - r(Ar) < o, for o < r< Ro or

dr
(2) r(Ar) > o, for o < r< R, or

d - - 0

(3) Ar) = o at r = r, o < r < R

If the first condition applies, then delaying refueling is bad and

refueling should occur at the earliest feasible time. If the second

condition applies, refueling should occur at the latest feasible time.

If the third condition applies, refueling should occur at r. To these

three possibilities we add the two obvious constraints

AFb > AFa

AF b < W - (We+Wa+Wp)

The first constraint simply says that the fuel added cannot exceed the

LRCA's capacity; the second that refueling occurs before the LRCA's

fuel tanks run dry.

it is possible that d(Ar) = o for all r. In this case, it does

not matter where refueling occurs.
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Consider Eq. (4.4). Then

d(A) 1+ K d (W(r)+6Fa) (4.5)
r) = i + W(r)+AF dra

Recalling that W(r) = W exp{- K0

O W -J +d- r AFa

d W(r) + AF + K(- T- exp i K d )
T(Ar) =a W(r) + AFa

a

(4.6)

AF +K- AFa dr( a)

W(r) + AF
a

Since W(r) + AF is always positive, the sign of r(Ar) is simply the

sign of AF 
+ Ka d-(AF ).

a dr a
At this point we note that the problem of deriving refueling rules

has been reduced to an evaluation of the behavior of AF as a function
a

of r. To go further, we need to specify AF . Consider Fig. 2. Givena

that P is the refueling point and recalling that AF is simply the-- a

total fuel available at P minus the fuel needed to return to base B,

then

AFa W exl XP{. I - WeexpdFR

S 2 + (-r )2(47
t t tr

S - d2 + (r-r2
R R R

Substituting Eqs. (4.7) into AF + K -(AFa), and simplifying, we
a dr a

obtain

V A
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d rr rarR)

AF + K-(AFa) =Woexp S [ - SJ epj + S' (4.8)

This transcendal equation is best evaluated by computer. Without proof,

dr
we state that all of the previously stated possibilities for r(Ar)

can occur, depending on the locations of the various bases (L, A, and B)

and specifying that the two constraints are met.

Some Specific LRCA/Tanker Basing Geometries

Certain specific basing geometries are more likely to be of con-

cern than others. Therefore, we consider the following special cases:

Case LRCA Tanker

Number Departure Base Departure Base Recovery Base

1 L L L

2 L L R 0 L

3 L L Variable

4 L T T

In all cases, the LRCA departs from base L. In the first three of

these special cases, the tanker is also assumed to depart from base L,

flying with the LRCA in what we will term the buddy system. These

cases differ by where the tankers recover. Case one assumes recovery

at base L; tankers that depart from and return to the LRCA's home base

are said to fly radius missions. Case two assumes that the recovery

base R is not L. R is assumed to be a fixed site. Case three also

assumes that the recovery base is not L. But this case assumes that

the tanker can select from a number of potential bases such that the

distance from the refueling point to the closest base is a constant s.

Case three is clearly a simplification of case two. Case four assumes

that the tanker leaves from and returns to the same base. In this

case, however, that base is not the LRCA home base.

Case One: Tankers Fly Buddy-Buddy, Radius Missions. The equation

1A
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for AF in this case is straightforward.a

AFa = W exp expj! (4.9)

Similarly

AFb = wj 1 exp{ K4 (4.10)

We now need to derive the correct refueling rules.

Recalling Eq. (4.4) and substituting for AF
a

Ar = r + K log 2exp{ - /W e\ expl{E4

Then

We r

d ~ -2exP( e}- ~ exp{4

drAr 1+2exp- n} / (e\

2expl- 0 - (e) exp{ K

Thus, for all r,

d-(Ar) < o
r -

This inequality calls for refueling at the earliest time. However,

at r = o, AF > AF . Therefore, until AF a< AFb , refueling shoulda ba - F~rfeigsol

JI
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be delayed. Joining these two conditions, we obtain the proper rule

for refueling, i.e.,

a AFb (4.11)

Substituting Eqs. (4.9) and (4.10) into (4.11),

.11 - exp'l- = exp{ - Weexp{ 4.12)
WoIK 0x~ f-I 0o e We°4

where r is the distance from base L where this equation holds. To solve

this equation, define the variable z

z = exp{g}

Substituting z into Eq. (4.12)

or (4.13)

(W) z2 + z - 2 = 0

Solving for z

z 2( (4.14)

which gives us r, i.e., F = K log e(z). ? is obviously equal to Ar

(the maximum range enhancement) since the combat aircraft is fully

fuelled at F.
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Case Two: Tankers Fly Buddy Mission, Recover at Forward Base.

For this case

AFa - W exp{- K -e exp{ KR  (4.15)

where SR is given in Eq. (4.7). Substituting Eq. (4.15) into Eq. (4.4)

Ar -r + K loge [2expi-O /W e\ exp{.R4j

Thus

-2exp -We SR SR

d K~ IW x~i drJ
j-(Ar) = 1 +

2ex p{ -K} - ( ) exp SR

Recalling Eq. (4.7) for

dSR (rrR)

dr SR

dS R
Assuming that dR # O, R- i hrfr

-(r) < 0

Rn E .7 f r S R



-1 8-

This inequality, coupled with the fact that for small r LF > AF b leads

to the same refueling rules, i.e., refuel when

6Fa = AFb (4.16)

Recalling AFb and substituting Eq. (4.15) into (4.16), we can solve for

r, the optimum distance at which refueling occurs.

0~ r ex{ } x{.~ expfjSR4 (4.17)

Substituting for SR

2exp j- 1r = ( eexp IAd R r-r,)2 (4.18)

Equation (4.18) cannot be easily simplified. Solutions for r are best

done numerically.

Case Three: Tankers Fly Buddy Mission, Recover at an Unspecified

Forward Base s Miles from the Refueling Point. We assume s = constant.

Therefore, the refueling conditions of Case Two apply. Equation (4.18)

simplifies to

2exp{-j 1 () exp~j (4.19)
KWe s

The solution for r is straightforward

= K logje  + 2 (4.20)
1+ exp,

ip!
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Case Four: Tankers Depart from and Return 
to a Forward Base. This

case is a slight simplification of the general 
case. If we set SR s B t

in Eq. (4.7), then

AFa = Woexpi_ V4 - xeexpq} 
(4.21)

and

Ar =r + K log4XP St +ex{ j w-4 ( ePt1 (4.22)

Thus

(Ar) -1- W S S

1-exp{ + (W2. tf :

d ~ ex-p I - exp fK] dr

exp S + ex{ S t( exp

Since the denominator is positive for 
all admissible r (o < r < Ro ),

the sign of r(Ar) depends only on the numerator. If we substitute

forS,

exP(- ~ ~ ~ W t}QT7 () -df +(.3

st )

drexp - + exp{. Y~ W \~ X~

I4

Since... th eoina i s poitv fo al adisil r (o < r < I l II I
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Unfortunately no obvious simplifications of Eq. (4.23) are possible.

If we set Eq. (4.23) equal to zero, we obtain the expression

IS - (r-r) 2S 1W\
S t t -- I =S.I (4.24)

where r is the solution. In general, there is no reason to believe

that a solution exists. If it does, we have the following refueling

rules

(1) If AF a(r) > AFb(r), refuel when AFa = AFb

(2) If AFb(r) > W - (W +W +Wp), refuel at R

(3) Otherwise, refuel when r =r

dr
Ifno solution exists, then either j r(Ar) is always positive or always

negative, and the following refueling conditions apply

(4) If -(Ar) < o for all r, refuel when AF = AFdr a b

(5) If !-(Ar) > o for all r, refuel at R
dr 0

The last of these conditions is self evident; refuel at the last possible

refueling point, That obviously occurs when the LRCA's fuel tanks are

empty, i.e., when the LRCA reaches its maximum unrefueled range, R 0
0

Rule (4) is simply a condition that arose in our earlier cases.

One simplification of this case can be made by assuming that St

is independent of r, i.e., equals a constant. In this case, -(AFa) = o

and -(Ar) is always positive. Thus refuel at R .

dr OTo obtain Ar, recall Eq. (4.22) and substitute 8 (= constant) for

S . Thus

Ar - R + K log exp R + exp - - ( expf4

!K W
01,
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Recall also that

Wo
°=K log . 0 I.r

e1 W +WW

Thus

Ar =K log[ + W++W ( KP{. W}-(~ expl.4) (4.25)

Figure 3 shows the relative range enhancement as a function

of Jy-) for cases 1 and 3. Realistic values for We probably exceed

0.4 for most normal aircraft designs. Therefore the range enhancement

gains relative to the Breguet range factor are about 0.3.

Multiple Refuelings for a Single LRCA/Tanker Pair

Although the constraint that refueling must occur before the LRCA

runs out of fuel was stated, so far it has not entered into our deriva-

tions. In general, if -(Ar) > o for all r and AF (Ro) < AFb(Ro), the
dr a o ~Ab() the

a single refueling at R is optimum. However, what should be done if0

the AF > AFb at R . From above we know that refueling should occura b

at R . But in contrast to the above, the tanker will have excess fuelO

available after that refueling. Therefore a second refueling is possible.

To be determined are (1) how much fuel should be passed on the first

refueling, (2) when should the second refueling occur, and (3) how much

range augmentation is possible.

We shall restrict our attention to those cases where the tanker

and the LRCA fly buddy missions, i.e., both depart from base L. For

the time being, we also assume that at R the LRCA is fully refueledo

(we will test later whether this assumption leads to optimum range

enhancements).

W +W +W

For the LRCA: WL(R0) = e Wa  p (before refueling)

WL(Ro) = W° (after refueling)
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R

For the tanker: WT(R) = W0exp{- Ka (before refueling)

WT(R ) = W exp{ - - Fb (4.26)

= W42 ex+{ R2 I di (after refueling)

We have used the subscripts L and T to differentiate the LRCA and tanker

equa.-ions.

By assumption, the LRCA, fully fueled, continues along its out-

bound path. We assume that the tanker does likewise, still flying in

formation with the LRCA. At some point a second refueling should occur.

To determine that point, we need to be specific about which case we are

considering.

Case One: Tanker Radius Missions. The equation for tanker fuel

availability is as before

= WT(r) - Weexpt} r > R (4.27)Fa  T(4.270

where WT(r) is the tanker gross weight at total range r. From Breguet's

formula

WT(r) = WT(R0)ep{- r-RK (4.28)

where the first fuel transfer has occurred at R 0 Therefore,0

AF = W 2 exp - - Iexp -K _ Weexp{ r (4.29)

Similarly

--
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AFb W(o4 1 - exp_ -R 0 (4.30)

Because the refueling conditions are identical with 
the earlier

Case One, the optimum second refueling point corresponds to AFb AFa

Thus

12eP-~ -leP-1~ ~e~~}=i-exp{- 12} (.1

Setting z = exp

2exp R expj R - =i 1 (4.31)

or

- 1 + ex{4i

or

( ) 2 + z -2=0 
(4.32)

which leads to Eq. (4.14). Therefore, for this case, the intermediate

refueling at R did not alter the total 
range obtained by optimally

using a single dedicated tanker.

Case 3: Constant Recovery Distance. As before

AF = WT(r) - Weexp{j4 r > R (4.33)
Fa To
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The remaining equations shown in Case 1 are unaltered. Thus AF = AFb

yields

R2 exr~~4~lx~ -RS 0 (Wex{4=1- exp- rR 0, (434)

or

2 exp -  - ( ) e xp -1= 0 (4.35)

This is identical to Eq. (4.19). As above, the intermediate refueling

at R did not alter the total range obtained by optimally using a

dedicated tanker.

By implication, multiple mid-course refuelings would also not

change these results. Furthermore, since we have not used the con-

ditions describing the combat aircraft being empty of fuel (we just

stated it as occurring at some range R ), this observation applies to

any mid-course refueling, so long as that refueling fills the combat

aircraft.

Fina v, we wish to test the assumption that fully fueling the

LRCA at R was the correct rule. Therefore, consider a lesser refueling

Af, i.e.,

Af < AFb

Then after refueling

R

WL(Ro) = Woexp -KR2- + Af

R -(4.36)W T R 0 W 0expl K Z }
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Assuming that Af was sufficiently large to permit AF = AF before the
a b

LRCA runs out of fuel for the second time,

AF W (CR )exp~ Or-R exp r > R
a= 0 - e x ~ 0(4.37)

AFb W - W(R )1+ WL(RO) 11 epl r R 0(.7

Equating LF and AF and substituting Eq. (4.36)a b'

w exp- 4- Af exp~~rR~ W exp{

S+r-R 
(4.38)

= 0- x f expl K-

This equation simplifies to

- r-R , W

exp- K1- Af expj- -- - -\(os)expiK =

0 (4.39)

1- exp{- } - Af exp{- r0-R O

These terms involving Af cancel and we are left with

W)2 + z - 2 = 0

This equation is identical with Eq. (4.15). Therefore we conclude that

it doesn't matter how much fuel is transferred prior to r. Therefore

all previous equations and rules pertain.
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V. RANGE ENHANCEMENT FROM TWO OR MORE TANKERS PER COMBAT AIRCRAFT

The derivation for two or more tankers per combat aircraft follows

the previous derivation for a single aircraft. We assume the buddy

refueling approach, i.e., both the LRCA and the tankers depart from

the same base. For simplicity we will derive equations only for the

constant recovery range case, but will state the equations for the

radius missions as well. We assert without proof that optimal refueling

points still correspond to AF = AF , where AF relates to a specificb a a

tanker. Therefore each successive refueling fills the combat aircraft

and empties the tanker except for the fuel needed to recover to base.

Let r. be the total LRCA range enhancement obtained from i tankers.1

At r

WL(ri9 = W(o) (LRCA) (5.1)

WT(i_) = W(o)exp --- (next tanker weight) (5.2)

Thus, for the next tanker,

AFa W(o) exp- }-Wexpj- } (5.3)

and for the LRCA,

AFb = W(o)i - exp i ] r (5.4)

where we impose the assumption that refueling times are negligible.

Equating AFa and AFb

If refueling times are not negligible (and in reality they would
not be), there exists a minimum distance that the LRCA flies from the
start of one refueling to the next. Thus ri - r i I must be greater

than or equal to that minimum distance.

I
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exp K 1 -ex{KWe !.r1,exp r (5.5)

Solving for Fi.

1 + exp

ri = K log e  (5.6)

+ el( exp~} (5.6

Eq. (5.6) is obviously a more general version of Eq. (4.20).

It is possible to solve for Fi_ and state Ti solely as a function

of the aircraft design characteristics. We do this by induction. De-

fine the dominator in Eq. (5.6) by D, i.e.,

D = 1 + exp K (5.7)

Then, substituting into Eq. (5.6),

expK D g (rO = o)

IT + D D 2

r2 D

e 1 + exp 1 2 + 2

Observing the pattern, assume that

exrnl Dn-i + Dn-2 + .. + D + 2(58

expK P(5.8)

- -,,4-- --..
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To prove that this is the correct expression, we only need to show

that if it holds for r , then it is also true for rn+I. Thus

exprn+ 1 +e DP + Dni + -.. + D + 2 Q.E.D. (5.9)K D n~l

and the proof is complete.

Substituting for D, we therefore obtain

n-i i i

exp +1

K
r = Kloge  =l _ (5.10)n~~ ii +i exp -Kl

If we note that the right hand side of Eq. (5.8) satisfies the relation-

ship

Dn-i + Dn-2 +2 n- 1DP) (D) 2 Dlni i nD
O 

+D + +D+2 + +""+,-, + 2
Dn

and recall that

2 n-l 1-i- n

x + ."' + x = l-x x <

then

2 + ... + (i) n-] il n

+n1_ + )
(D)_ (D D

= (i) ~ (D) (DI)n _ 1)~

_i (3)1 ( ) = 1- (I)

_ L
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Thus

jrn ~ ID IL)n 2 n+1

exp D6(-) (5.11)

or, substituting D,

r = K -- + + () (5.12)

n-I
In the limit as n-> 0, (i) -> 0, and

exp D-1 = ()exp{ -4 (5.13)

r., represents the absolute maximum LRCA range augmentation obtainable

for tankers on radius missions. Not surprisingly, this also corresponds

to the range for the tanker where AF equals zero.a

The expression for case 1 (tanker radius missions) can be derived

in a similar fashion. If we define

z i = exp --

then

=-1 +V 1+4 ( I+ ziiI(514zi \ of_ (5.14)

Vo
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No simple expression has been found that permits the reduction of this

recursive relationship to an expression that is solely a function of

the aircraft's design characteristics.

Figure 4 shows the total range enhancements achieved with multiple

tankers for the two cases above. By seven refuelings the added range

enhancement becomes quite small. These figures also indicate the maxi-

mum range extension obtainable with an unlimited number of tankers,

assuming that they fly either a radius mission (out and back to the

same base) or fly a constant distance (1000 n mi) after refueling. The

advantages of being able to recover at a forward base (the constant

distance case) over returning to home base are obv~ious.
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VI. RANGE ENHANCEMENTS WHERE ONE TANKER SUPPORTS TWO COMBAT AIRCRAFT

FLYING THE BUDDY TACTIC

One tanker may have enough fuel to provide two or more combat air-

craft with sufficient range extension to carry out the prescribed

mission. This section will discuss range enhancements for two LRCA

per tanker and will assume a variant of the buddy tactic. The follow-

ing section will discuss multiple LRCAs per tanker using a different

refueling tactic (the filling station approach).

We assume that the tanker and the two combat aircraft leave their

common base simultaneously and fly in formation until both combat air-

craft are refueled. The recovery conditions are Cases One and Three

discussed in Section IV. As was true in the prior section, we will

derive the equations for the constant recovery distance case, and

simply state the equations for the other case. The question to be

answered is when should each combat aircraft be refueled? We shall

treat three cases: (1) the range augmentation is equal for both combat

aircraft, (2) both LRCA have their tanks completely filled, and (3)

the tanker off loads equal fuel loads into both aircraft. These cases

will produce different range enhancements for each aircraft, different

average range enhancements for both, and different refueling locations.

We start with some necessary notation. Let r 1 and r 2 be the two

refueling distances from the base. In all cases the first refueling

will fully refuel the first combat airplane; therefore the range aug-

mentation provided that airplane, Ar1, is simply equal to r I' It is

not true that the second airplane will in all cases be fully refueled.

Therefore, Ar 2, its range augmentation, is not necessarily equal to r 2 *

Consider Fig. 5.
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Fig. 5 - Aircraft gross weight versus range
with refueling

The range augmentation, Ar2, satisfies the relation

Ar2 = r2 - A (6.1)

where A is the range lost because the LRCA was not fully fueled and

satisfies the equation

W(r2 ) = W(o)expl- K} (Breguet's Equation) (6.2)

Therefore

Ar r K ogI W Io
tr2 = r2 - K logeW(r--2 ) j (6.3)

Assume that the distance between the first and second refuelings is

x. Thus r2 = r + x. Substituting into Eq. (6.3)

We will show later that x should be as small as possible for
maximum performance. Clearly the minimum distance between completion
of refuelings is fixed by the mechanics of disengaging from one air-
craft, coupling with the second and transferring the fuel load.
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Ar2  - r1  + x- K log el W(-O)

The average range enhancement, Ar, is

Ar = l/2(Ar1 + Ar = xAr1  l W(o) (6.4)
1 2 1+ -21 ~ 2I

and, as noted, the refueling distances are r1 and r2 (= r1 + x).

Assumption 1: Range augmentation is equal for both combat aircraft.

In this case, ArI = Ar . Therefore

A = x (6.5)

or

W(r)= Wo)e.- K (6.6)

Recall that

W(r)= W(o)exp- J_ r + AFa(r) (6.7)

To determine r2 we must first determine AFa(r2).

The tanker gross weight immediately after the first refueling is

WT(rl) = W(o)exp- - - AFa(rl)

As noted AFa(r) AFb(rl). Also, as before, AFb W(o)J1 - exp{- ~j
There fore

Because not all SlOP mission lengths are the same, the average range
enhancement may be a reasonable measure of performance gain.
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WT(rl) W(o) 2 exp{- d (6.8)

The tanker fuel available at r2 is simply

AFa(r2) = WT(rl)exp- r2  ? - WeexP{K}

=W(o)r2 rP 11 -iexP{-E - Weexp{ (6. 9)

Combining Eqs. (6.6), (6.7), and (6.9), we obtain

exp{- A exp{- r$,ep{- A} J2~ exp{- r - ljex+{ 2E (6.10)

Solving for r1 ,

3 exp{- rl = 2+( )exP--'- (6.11)

which leads to

= Ar r = K lo ge  + (6.12)
+ exp --

Equation (6.12) gives the average range enhancement which, in this case,

also represents the range enhancement for both aircraft.

The equations for tankers that must recover to their home base

(i.e., radius missions, or Case 1) are obtained by substituting r2 for

s in Eq. (6.10). Thus

exp -2 + 1~eP~l,(6.13)exl-rl 2+ W-jepjxjxAr
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Solving for rI ,

r Ar = K loge [WA exp{2 (6.14)

Careful examination of Eqs. (6.12) and (6.14) would show that the

average range augmentation decreases as x increases. Table 1 shows

the sensitivity of Ar for several values of k and .

Assumption 2: The second refueling exactly fills the second combat

aircraft.

Thus A = 0 and Ar = Ar + x. Also
2 1

AFa(r2  = AFb(r)= W(o)[1 - exp- J_ r2f (6.15)

since the refueling exactly fills the second bomber. From Eq. (6.9)

AF ar 2) 0) W 12 exp[ 11 -lexp~ I - We K{~

Therefore

1 - exp { j-Iexp{ + [2 exp{ j -lexpl- 2 W ()e xp{ (6.16)
,-e I- 1- 0'

Solving for rl,

3 expl- diexpl = 1 + expl- A + ( &)exp {, (6.17)

K K II i- KI I I I I
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Table 1

RANGE AUGMENTATION: TWO LRCAs AND ONE TANKER
(Both Aircraft Achieve Same Total Range)

Spacing Aircraft Dry Weight Fraction Tanker
Between

Refuelings Recovery

(x/k) 0.2 0.3 0.4 0.5 Condition

0 .301 .252 .206 .162

.05 .296 .245 .197 .150 Constant

.10 .290 .237 .187 .139 Distance

.15 .285 .229 .177 .127 = 0.1 x k

.20 .279 .221 .166 .115

0 .281 .232 .189 .150

.05 .276 .225 .181 .141 Radius

.10 .270 .218 .172 .132 Mission

.15 .265 .211 .164 .122

.20 .259 .203 .155 .112
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or

r1 = r = K loge [+ (6.18)

1+exp- ex+

Also

Ar 2 = r I + x (6.19)

Ar =r +x
1 2

The equations for tankers flying radius missions are obtained by

substituting r2 (= rI + x) for s in Eq. (6.17). Careful algebra yields

=K log+ expi } + exp{ ~ + 12( exp+ ](.0

2(W)ex
p l+ z(60

Table 2 shows Ar1 and Ar2 for several values of 2 and aircraft gross1 2 K
takeoff weight. Unlike the prior case, here Ar1 # Ar2 unless x = 0.

Assumption 3: Both combat aircraft receive equal fuel offloads.

Thus, since the first refueling fills the first combat aircraft,

AF(r 2 ) = AFb(rl) (6.21)

From Eq. (6.9)

AF (r2 = WF2 exp - llexp4 - W expj (6.22)
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Table 2

RANGE AUGMENTATION: TWO LRCAs AND ONE TANKERa

(Second LRCA Fully Refueled)

Spacing Aircraft Dry Weight Fraction

Between
Refuelings 0.2 0.3 0.4 5

(x/k) I. O. 3 0.40.

CONSTANT RECOVERY DISTANCE s = 0.1 x k

0 .301 .252 .206 .162

.05 .273/.323 .223/.273 .176/.226 .131/.181

.10 .244/.344 .194/.294 .146/.246 .099/.199

.15 .215/.365 .164/.314 .114/.264 .068/.218

.20 .186/.386 .133/.333 .083/.283 .035/.235

RADIUS MISSION

0 .281 .232 .189 .150

.05 .251/.301 .200/.250 .156/.206 .116/.166

.10 .219/.319 .167/.267 .121/.221 .081/.181

.15 .187/.337 .134/.284 .087/.237 .045/.195

.20 .155/.355 .100/.300 .051/.251 .009/.209

ArI  Ar2
aFirst number is - 1 the second is T 2

K K

-!.
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AFb(rl) =W(o4 1 1 ex4 - r (.23

Substituting into Eq. (6.21) and solving for r 1

[2ep~ r}l ex - Ce s = 1 -expl- rl (6.24)

or

ex+[ - j- 
1 + 2 expl- KJ 1= I + exp- K + exPK

Thus

r= Ar I = K log e K (6.25)

To determine Ar, recall Ar 2 = Ar + x - A. Also

A = K logefW(fl ) j

and

W(r2 ) = W(o)exPl } + AFa(r

There fore

W(r 2) =W(O) exp.- K 1 (expl- K 1) + 11
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Solving for A

A = K log rl

exp exp (6.26)
i~~I -Kxl-

This equation and Ar in Eq. (6.25) can be solved to yield Ar, i.e.,

Ar = Ar + x- (6.27)
1 2

The equations for the tanker radius missions can be obtained by

substituting r2 = r1 + x for s in Eq. (6.24). Thus

exp-4 r. 2 ex+I - + l1= 1+ exp - + IUoe e

Solving for rl,

+ Kp ) 4 )(2 + exp~~ K xPjK

r = K log[(++ (1 (W) ] \ (6.28)

The value of A is obtained from Eq. (6.26), i.e.,

A=-K log 1 + exp{.. rl (expj- 2S - i)I (6.29)

Table 3 shows Ar1 and Ar 2 for several values of x and i)"

I
(We)

1 2 W
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Table 3

RANGE AUGMENTATION: TWO0 LRCAs AND ONE TANKER
(Equal Fuel Weight Of floads)

Spacing Aircraft Dry Weight Fraction
Between ________________________________

Refueling 0.2 0.3 0.4 0.5

________ CONSTANT RECOVERY DISTANCE s = 0.1 x k

0 .301/.301 .252/.252 .206/.206 .162/.162

.05 .290/.303 .240/.251 .193/.202 .148/.155

.10 .279/.304 .228/.249 .180/.197 .134/.147

.15 .268/.305 .216/.247 .167/.192 .120/.138

.20 .257/.306 .204/.244 .154/.185 .106/.128

____________RADIUS MISSION

0 .281/.281 .232/.232 .189/.189 .150/.150

.05 .266/.277 .215/.224 .170/.178 .130/.136

.10 .250/.273 .197/.215 .150/.164 .109/.119

.15 .234/.267 .178/.204 .130/.149 .087/.100

.20 .217/.260 .160/.192 .110/.132 .065/.079
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VII. RANGE ENHANCEMENT: ONE TANKER SUPPORTING ONE OR MORE COMBAT

AIRCRAFT (THE FILLING STATION APPROACH)

Under some circumstances it is possible to phase the departure of

combat aircraft from their base so that they arrive at a given range

spaced in time, thereby permitting a tanker to refuel the aircraft

sequentially without flying even further from its home base. We call

this approach the filling station concept. For simplicity we will

assume that all refuelings occur at a fixed range from the LRCA's home

base, and that the range penalty imposed on the tanker for the time

needed for refueling one LRCA and loitering while awaiting for the

next is also fixed, i.e., equals x. As a consequence, every refueling

is the same, offloading the same amount of fuel and augmenting the

range of every LRCA by the same distance. In addition, we assume that

the tanker flies to the refueling location with. the first aircraft

and returns to its original base after the last refueling, i.e., the

tanker radius mission. The equations for tanker basing (departure and

recovery), assuming constant range to and from the refueling point will

be included for completeness.

As before,

AF b = W(o) 1j1 - exp4l- idJ

By assumption, this holds for all LRCAs and the fuel offloaded to each

LRCA by the tanker equals this amount. For a single refueling the

fuel available in the tanker is simply

AFl() = W(o)e 1 - 0 - W exp KP (7.1)

a ~ KJ e~K

Setting AFb = a we obtain

z 2e + z -2 =0 (7.2)

0!0
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where for convenience we have adopted the notation z = expj}. Solving

for r,

r = K log e - W(\ () (7.3)

which is the same as Eq. (4.14). For a single refueling the filling

station approach is the same as the buddy tactic.

One Tanker, Two LRCA. At the end of the first refueling, the

weight of the tanker is WT(1), where

W(l) = W(o)expj- -E - AF, = W(o) 12 expl- 04 d1 (7.4)

The tanker weight at the start of the second refueling is WT(l)exp{ K}
Therefore the available fuel for the second refueling is

AF(2) = W()exp- - exPK (7.5)

where the second term is the minimum tanker weight needed to be able

to fly r miles back to the home base. Setting AFb = AF and using

Eqs. (7.4) and (7.5)

1 - expl- 0 = 2 expl- o - 1 expl- - \F-)exp -K (7.6)

Substituting z, and simplifying, we obtain

2(IWe) A I1 + 2 exp(-- 0 (7.7)

Z JU7-1 + Z. I-. +-- ,---



-46-

To further shorten the notation, let y = exp. K Then

z 2We\ + z(l + y) - (I + 2y) = 0 (7.8)

Solving for z,

-(l + y) i+ y)2 + 4(W( + 2y)
Z --. 0 (7.9)

Note that this equation is similar to, but not identical with Eq. (7.3).

One Tanker, Three LRCA. Our intent is to derive a general formula

applicable for any number of LRCAs to be refueled. Toward that end we

now consider three LRCAs and will compare the derived equations with

those for two and one LRCAs. This comparison will suggest a general

formula.

At the end of the second refueling the tanker weight, WT(2) is

WT(2) = WT(1)expl- - AFb

= W(o) 2 exp{- 0 - 1 exp{- 0 - W(O)f - exp{ 1 (7.10)

The tanker weight at the start of the third refueling is WT(2)expl- 0.

Therefore the available fuel for the third refueling is

aF(3 W(2)expl - W expj-E} (7.11)

Setting AFa = AFb at the third refueling, and substituting y and z for

convenience,
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1 z 2zl 11 y - ( z 1')y - (7.12)

or 2w (W 211
z(We) + z 1 + y + - i + y + 2y2 (7.13)

The solution for z is

+ /(. y22 )

-(1 + y + y2) + (1 + y + y2  + 4 1( + y + 2y2 )
z =  (7.14)

One Tanker, n LRCA. A comparison of Eqs. (7.2), (7.8), and (7.13)

strongly suggest a pattern. To derive this pattern consider the follow-

ing. For n refuelings, AFa(n)  AFb . Also

AF a(n) = W T(n-l)y - W z (7.15)a T e

where W T(n-1) is the weight of the tanker after n-l refuelings. Now

WT(n-l) = WT(n- 2 )y - We z (7.16)

i.e., the weight of the tanker after n-i refuelings is just the weight

of the tanker after n-2 refuelings times the percent weight reduction

caused by the flying time between the refueling minus the fuel off-

loaded during the n-ith refueling. Thus, by successive application

of Eq. (7.16)

zi.
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W T(n-1) = WT (n-2)y - W (1-- 1 )-

=IWT (n3)y - W0(1-z 1)1- W (1-z ')

= W T(n-3)y 2 - W 0(1-z- 1 +y)

= IWT(n-4)y - W (l-z1l)ly2 _ W(i-Z1 )(iY) (7.17)

= W T(n-4)y 3- W (1.-z 1)(+Y+Y 2)

= W TMiY n2-W01z 1)(i+y+y 
2+,*,4-y n-

Now

W T(1) = W 0 Z- W 0(i-z ) (7.18)

Thus

W T(n-1) = Wo 1 - - W (1- -1 )(i+Y+Y
2+.. +n-2) (7.19)

Substituting WT(n1) into Eq. (7.15),

Aa(n= z-1 yn-I -W0(- -1 ) Y'-'yn-1i e (7.20)

Setting AF a(n) = AF bg we obtain

(-) 1 in.- i)(Y+...+yn ) i-) z (7.21)

or

z2(1s)e + (z-1)(l+y+Y 
2+ .+yn-) -1 0 (7.22)

n-1i

if we define Sn F y,then
n IrnY

-O
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z2 (Wo + s S n l) 0 (7.23)

Solving for z

- S n n2 + 4 V'Sn+ n-

z 10 W,) (7.24)

24 )

This equation matches Eqs. (7.9) and (7.14) for n f 2 and 3

respectively.

If we assume that the tanker still flies the buddy system to the

first refueling point, but flies a constant distance, s, to a forward

recovery base, Eq. (7.21) becomes

= z yn - (l-z-l)(y+y2+... - ex

Soving for z

n-iy +
n (7.26)

S + exp [

If we further assume that the tanker leaves and returns a constant

distance, s, to a forward base, Eq. (7.21) becomes

S
n (1W (7.27)

yf ex( -1 - Sn -o

Figure 6 is a plot of Eq. (7.24).

'II
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Filling station approach
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Number of LRCA per tanker

Fig. 6 - Range augmentation provided n LRCA by one tanker
(filling station approach)

'.
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VIII. RANGE EXTENSION ARISING FROM PAYLOAD DELIVERY AT MID-RANGE

The delivery of payload during the LRCA's flight helps extend its

range. In this section we will derive the equations pertinent to esti-

mating this range extension, both with and without refueling.

Let R be the LRCA's maximum range without refueling as derived
O

from Breguet's formula and let r (rp < R ) be the range where the pay-p p

load is dropped. The true maximum range can be estimated by the

techniques of refueling already derived. For example,

WL(r) = WoexP - Wp (8.1)

(W + We) WL (rp)exp (8.2)

where WL is the weight of the LRCA and re is the range beyond r that

the LRCA can fly before running out of fuel. Thus

Wa + We = Woexp K - Wpexp{- j (8.3)

The maximum range is obviously rp + r Solving for r

r e  K K + We --+ - (8.4)

r and the range extension is AR = r + r - R . Figure 7 is a graphe p e o

of - for several different parameter values.

Equation (8.4) applies if there has been no refueling. If we

assume that refueling always occurs before payload delivery, then the

above derivation applies if we adjust r to reflect the fact that thep
LRCA is fully fueled at the refueling range rI (we will only discuss

the single refueling case). Therefore, it follows that
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Payload dellwey distance OrpIK)

Fig. 7 - Unrefueled rangs extension arising from
mid-range payload delivery
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re = K logeo W 0 p W p (8.5)

and the additional range extension is AR rp + re (R

As a specific application of the above equations, consider the case

where the total range is fixed at 5000 n ml and we wish to measure the

increase in payload capacity if we assume that the payload is dropped

at 2500 n ml. Define P1 as the maximum payload that can be carried

if we do not account for dropping the payload mid-way, and P2 as the

payload that can be carried if we did. From the Breguet equation

PI= WoexP 50O - (We + Wa ) (8.6)

To determine P2

WL(rp) = Woexp - -2

WL(50 00) - WL (rp)exp K P

(8.7)

-" 500 -P r

= [W expj- kR- - P]exp{. K~----

= W exp{- 500 - P ,exp{-

Since W (5000) = We + Wa by assumption, and r = 2500 n mi,
L e a p

P ex 2500 jW exp K 'e (8.8)P2" - - ILM 0 - 17 (W+W

or

_ _ - --
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_ i12500t (8.9)

For the range of K's of interest, 
this yields P2is which are 25 percent

greater than P 's.

;1
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IX. RANGE EXTENSION BY POST-STRIKE REFUELING

The previous derivations have always assumed that refueling occurs

when the combat aircraft is heading away from its home base. For the

two tanker refueling tactics examined, refueling always occurred (if

possible) when the amount of fuel available equaled the fuel needed.

We shall now extend those results to include post-strike refueling

where we shall assume that (1) the combat aircraft is headed toward

its base, and (2) the tanker is based at the same airfield. Under

these conditions it is easy to show that refueling should occur when

the combat aircraft is just about to run out of fuel and that the amount

of fuel it should receive is only enough to get it back to its base, if

that is possible.

One Tanker/One LRCA. Based on the above,

WE = (WE + AF)ex+{ g} (9.1)

where W = W + W + W , AF is the fuel added to the empty LRCA and rE e a p*
is the resultant range extension. Solving for AF

AF-WEexp{K} - lj (9.2)

To maximize the range extension, AF should be as large as possible.

How large AF is depends on the tanker refueling tactic assumed. For

simplicity we will treat tanker radius missions in detail and will

only state the equations for a constant recovery distance. Assuming

therefore that the tanker returns to the same rer"nvery base as the

LRCA,

We will assume throughout (unless explicitly stated otherwise)
that the range extensions are based on the assumption that the pay-
load is not delivered and is to be recovered.
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AF W exp{- r4 W Wexp{4 (9.3)

Setting AFa equal to AF, and substituting z,

WE(Z-l) =W z-1 - W z (9.4)O e

or

(WE+W e )z 2 
- WEz - Wo = 0 (9.5)

To shorten the notation, define a and B accordingly

B = E (9. 0

a= B + (W) (9.7)

Thus

2
az - Bz - 1 f 0 (9.8)

and

r = K log e  2a- (9,9)

Equation (9.9) applies for tanker radius missions. If we specified a

tanker recovery distance equal to s, then
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W\We sl + 4

r =K loge  K28o_0 (9.10)
eU

In general the post-strike refueling range augmentation values

exceed those of the pre-strike refuelings. This is true because lighter

aircraft having the same empty weight (but less fuel) use less fuel per

mile.

Two Tankers/One LRCA. We maintain the assumptions above; there-

fore, the tankers fly radius missions, with the LRCA assumed to be

empty of fuel at both refuelings. Thus Eq. (9.1) applies for the second

refueling, i.e.,

WE = (WE + AF )exp{ r2} (9.11)

where the subscripts on AF and r indicate that this equation is for the

second refueling. Similarly,

WE = (WE + AFl) exp { l r1 r2  (9.12)

where r 1 is the distance from the base for the first post-strike re-

fueling. The fuel available equation for both tankers is as before

AFa (r) - W exp{ 7- Wexpj} (9.13)

At both refuelings, AF - AF . Thus we have two equations

WE( WZ2 21 W e2 (9.14)

WE(z1z2 -1) Wz 1 1 (9.15)
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The solution for r2 is the same as for a single tanker and is given in

Eq. (9.9). Rewriting Eq. (9.15)

Zl[(We)z2 + - zI - 1= 0 (9.16)

Substituting a

[.-1 + - zI - 1 = 0 (9.17)

where

-i 2ct
z2 2a (9.18)a +VS + 4a

and

We +V + 42z

z + 2_z 2  ( (9.19)

2[8z2l1 + (e)]
If both tankers fly a fixed recovery range, then r2 0r in Eq. (9.9)

and

B- e ~exp{ N + .y~expjit) + 4Bz2

-1 (9.20)

2az 2

One Tanker/n LRCA. Assuming the filling station approach, the

tanker fuel availability equation is still Eq. (7.20), i.e.,
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AFa(n) = Woyn-lz-i (l )(y+y 2+. .+ynl) - 'e z (9.21)

and the LRCA fuel needed equation is Eq. (9.2), i.e.,

AF = W B(z-l) (9.22)

Equating AF a(n) and AF (i.e., assuming n refuelings and calculating the

range augmentation possible)

Z-l) z - (lz-1)(y+y2+.+yn-l) _ z

or

xz 2 + z Iy+Y 2I.Y- - _ 1y+y2+...-+2 yn-1 1 .0 (9.23)

n i
Defining Tn = EY , Eq. (A.97) becomes

az 2 + I T -8 z -IT n_,+yn-11 =

which leads to

r -K log -(T n -1 -80 +*T 1 -8) 2 + 4 a(T nl+yn - i)
n e 2a (9.24)

If we define T = 0, Eq. (9.24) applies for all n > 1.
0

The similar equations for the constant recovery distance assump-

tion are obtained by replacing -_z in Eq. (9.23) by z exp .

Thus
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Ln-l( 0 K I- In -

r =K lg dnl+(~)x~{~ - + ]~i~.e.p 8] 2 + 46(Tn~l~ny )
rn K loge 28 (9.25

Pre- and Post-Strike Refueling. The above post-strike range en-

hancements can obviously be used regardless of prior refuelings in the
pre-strike portion of the LRCA's flight. The post-strike r will alwaysn
be greater than the pre-strike r if a single refueling is sufficient

n
to get the LRCA back to base. However, post-strike refuelings imply
operational uncertainties that are clearly greater than those of pre-
strike refueling. Therefore it is not self evident that post-strike

refuelings should be preferred. In general, the advantages of pre-strike

refueling would appear to offset the modest range enhancement gains
associated with post-strike refueling. Of course, post strike refueling

may be of interest when used in combination with pre-strike (double re-

fueling).

't
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X. RANGE ENHANCEMENT WHERE THE TANKER AND LRCA ARE DISSIMILAR

The above derivations assumed that the tanker and combat aircraft

were similar, i.e., their gross weight, structural fraction, and Breguet

range factor, are the same. As combat aircraft gross weight was scaled,

so too was the tanker's. In this section we will display some of the

equations pertinent to different tanker designs that do not scale with

those of the LRCA.

One Tanker/One LRCA. Assume that the tankers fly radius missions.

Then the weight of the tanker after refueling at r is

WT(r) = WT(O)exp l- d - AFa (10.1)

and

We W T(r)exp{-~- (10.2)

Therefore

AF = W (o) exp~j~ (10.3)r
a To TI

For the combat aircraft,

AF b =WA(O)Fl1exp{ -}A] (10.4)

Equating AFb - AFa ,

This is still the condition for optimum refueling.
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[ i r} /W Toe (10.5)WA(o) 1-exp- = W(O) e - IWTo) ex P\0
AA TO ITT

This equation is best solved numerically. Figure 8 is an example of a

graphical solution for Eq. (10.5).

One Tanker/n LRCA. From Eq. (7.20)

AF a(n) T W T Y (l_-ZT1)(Y+ .+ . -l) _,To)- T (10.6)

where

zT expli-}

Also

AF b -W(o)fl-ZA A = exp IT}

Thus, for AF a(n) = A Fb,

I )jz-lYnl _(lz-)(y+ 2 .. n-1i IWTe)
(A)(l_,1), WT(O l..+y-) T TTo/ ZT (10.7)

As above, this equation must be solved numerically (or graphically).

tA
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Fig. 8 - Graphical solution for single LRCA/tanker
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