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PREFACE

This Note is an extension of work performed in support of the
1980 Air Force Scientific Advisory Board (SAB) study of the Long

Range Combat Aircraft (LRCA). It reproduces and expands upon equations

useful for calculating the range extension obtainable from tanker
; support. The issue of tanker support for the LRCA was dealt with by
£ the SAB only cursorily. The Board argued essentially that dependence
; on tankers was inherently bad, but it failed to specify the price (in
terms of LRCA gross weight and, ultimately, life cycle cost) that the
United States should be willing to pay to avoid that dependence. A
companion Rand Note, N-1861-AF (forthcoming), attempts to deal with
aspects of the tanker issue. (The present document contains the
background mathematics for that Note.)

Rand's involvement in the SAB LRCA study was supported by Project
AIR FORCE under the study effort "Assessment of Mixed Strategic Force
Concepts for Flexible Requirements and Scenarios." Air Force planmners
interested in simple expressions for estimating range extension for
one or more aircraft, under a variety of assumptions about tanker

employment, may find this work useful.
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SUMMARY

The Scientific Advisory Board of the USAY recommended in 1980
that the Air Force develop a new strategic bomber for use in the 1990s
and beyond. The President's October 1981 decision specified that the
new bomber would be a derivative of the B-1 (known as the B-~1B) with
an I0C of 1986. As a hedge against future growth in the threat, he
also recommended developing an advanced technology bomber for deploy-
ment in the 1990s.

One issue not extensively treated by the SAB and only partially

covered by the President's announcement was the proper role of tankers.

Based on operational constraints, the SAB recommended that future
bombers should be capable of performing their missions without tanker
support. Cost and other factors may argue to the contrary.(l) This

Note presents a series of equations that can be used to determine

either the range augmentation tankers can provide or the corresponding

increase in payload. For convenience of presentation, most equations
assume equal-sized aircraft; extensions to different bomber/tanker
sizes are straightforward.

Several tanker refueling options are discussed in this Note.
They include: (1) where the tanker lands after completion of re-
fueling, (2) how tankers and LRCA reach their rendezvous point, (3)
the LRCA's status at refueling, and (4) how many LRCA each tanker

services. Two options were included for where the tanker lands; 1i.e.,

o Tankers land at the base from which they departed; we

label this radius missions, or

o Tankers land at forward bases; we assume throughout
that these bases are at a constant distance from the

refueling point, and label them constant recovery

distance missions.

(1)See Reference 1.
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For both the radius and constant recovery distance missions, we con-

sider two ways for the tanker/LRCA pair to rendezvous:

o The LRCA and tanker depart from the same base and fly
in close proximity until the refueling point is

reached; we call this the buddy-buddy approach, or |

o Tha tanker flies to a predetermined refueling point,
meeting the LRCA there; we call this the filling i

station approach. |

At the time of refueling, the bomber can be either outward- or inward-

bound. We define these conditions to be the following:

o  Outward-bound LRCA are moving further away from the
tanker's home base; thus a delay in refueling would
require the tanker to expend more fuel to reach the
refueling point,

o Inward-bound LRCA are approaching the tanker's home
base; thus delaying refueling increases the available

tanker fuel for offloading.

In addition, the LRCA can either drop its payload somewhere along its i
flight path or carry it to the end. The former stretches the LRCA's
total flying range. Finally, several options were considered regarding

the number of tankers and LRCA involved:

o One tanker services one LRCA; most of this Note treats
this case.

o Multiple tankers service one LRCA, using the buddy-
buddy approach, i.e., all the tankers fly in formation
with the LRCA, with refueling occurring sequentially
as the fuel available for offloading from the ith tanker !
equals the available fuel capacity of the LRCA. {

¥

0o One tanker services two LRCA, using the buddy-buddy
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approach where several refueling conditions are
examined.
o One tanker services n LRCA, using the filling station

approach.

Not all combinations of the above options have been examined, but the
basic mathematics to permit such examination are provided. '
The results of this Note are two-fold. First, specific equations
have been derived for the options mentioned above. The equation number
for each option is listed in Table S-1. Second, optimum refueling
conditions have been derived. For outward~bound bombers, refueling
should occur at that distance where the fuel available onboard the
tanker for offloading onto the bomber exactly matches the fuel re-
quired to completely refill the bomber. Refueling can occur earlier,
without harm, so long as the last refueling occurs when this condition
arises. For inward-bound bombers, refueling should occur at the
latest possible time, usually when the bomber is at fuel exhaustion.
The optimum refueling conditions either permit maximum payload weights

over a fixed distance or maximum distance given a fixed payload.
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Table S5-1

LOCATION OF EQUATIONS DESCRIBING FINAL RESULTS

Tanker
Departs Returns  LRCA Equation
LRCA Tankers From To Headed Other Comments Number
1 1 H H 0 4.14
H F 0 4.20
F F 0 4.25
1 n H H 0 5.14
H F 0 5.12
2 1 H H 0 Equal enhancement 6.14
H F 0 Equal enhancement 6.12
n 1 H H 0 Filling station 7.24
H F (0] Filling station 7.26
F F 0 Filling station 7.27
1 1 H H I 9.9
H F I 9.10
1 n H H I 9.24
H F I 9.25
NOTES: H = home base (same as LRCA);
F = forward base, assumed constant distance;
0 = outward bound;
I = inward bound.




-ix-
CONTENTS
PREFACE ..viieveninenneososssaassasasnsnnns ceereneens Cereenenas .
SUMMARY ......... N N
TABLES ....-0c00avee Sreseseaseenannenn teseceennans Ceeeerearerann-
FIGURES ....... Ceseenan teneenaneaaas Cesrsersescasennnnae cresen xi
Section
I. INTRODUCTION .....eevvevecanocnnanss st esessreererennas e
II. BREGUET RANGE EQUATIONS ..... resseaneseuns eeesiieataeenne
III. THE RANGE AUGMENTATION EQUATION: A SIMPLE EXAMPLE ........
IV. RANGE ENHANCEMENT FROM A SINGLE (OUTBOUND) REFUELING ......
Some Specific LRCA/Tanker Basing Geometries .............
Case One: Tankers Fly Buddy-Buddy, Radius Missions ...
Case Two: Tankers Fly Buddy Mission, Recover at
Forward Base ...... et erasectasatieer et nenanns
Case Three: Tankers Fly Buddy Mission, Recover at an
Unspecified Forward Base s Miles from the Refueling
oo 1 N Ceetearaenanes .
Case Four: Tankers Depart from and Return to a
Forward BASE€ ..uv.ieveeesceoaaonesocosnssonsassnannnss
Multiple Refuelings for a Single LRCA/Tanker Pair .......
Case One: Tanker Radius Missions ........cevvvvvuvvennn
Case Three: Constant Recovery Distance ...............

V. RANGE ENHANCEMENT FROM TWO OR MORE TANKERS PER COMBAT

ATRCRAFT ....vvevvnnnsenannnns Ceseenenanse et iteeeaaaes
VI. RANGE ENHANCEMENTS WHERE ONE TANKER SUPPORTS TWO COMBAT
AIRCRAFT FLYING THE BUDDY TACTIC ......ceveneennennancans
Assumption 1: Range Augmentation Is Equal for Both
Combat Aircraft ......ccceeierinnnncesestssencosnnnnans
Assumption 2: The Second Refueling Exactly Fills the
Second Combat ALreraft ...vevecerseivenecerorsososnsasns
Assumption 3: Both combat aircraft receive equal fuel
offloads ....vevevenenns Cresesaanan Cerrerarerasanesaans

VII. RANGE ENHANCEMENT: ONE TANKER SUPPORTING ONE OR MORE

COMBAT AIRCRAFT (THE FILLING STATION APPROACH) ..........
One Tanker, Two LRCA .....veeuvune tetesaresrasann Cesececes
One Tanker, Three LRCA ........ St s e teeresreateaanaesnsans
One Tanker, n LRCA .....vcenure Cetieeeseserteteaneresaan s

iii

14
14

17

18

19
21
23
24

27

39

44
45
46
48




Section
VIII.

IX. RANGE EXTENSION BY POST-STRIKE REFUELING ..
Two Tankers/One LRCA ... .
One Tanker/n LRCA

-

CONTENTS - Continued

Pre- and Post~Strike Refueling ...

X. RANGE ENHANCEMENT WHERE THE TANKER AND LRCA ARE DIS-

SIMILAR ....

One Tanker/One LRCA
One Tanker/n LRCA ..

REFERENCE ...

oo 0

LI A

tees ettt sess 51
cetteaanaan e 55
et e aie et . . 57
.o seesarenaas e 58
..... et vee 60
cheeienesaen .o 61
crireeresenaas v 61
Ceetersreranesaaeanan 62
cesecarnenns . ceess 65

4

3

i

m—— - ]

RANGE EXTENSION ARISING FROM PAYLOAD DELIVERY AT MID-
RANGE ........



e

-xi-

TABLES

Range Augmentation: Two LRCAs and One Tanker (Both Air-
craft Achieve Same Total Range) ...... Crececsecsrtessaaonns 38

Range Augmentation: Two LRCAs and One Tanker (Second
LRCA Fully Refueled) ......ccevueeeen Ceceesciaearaessanes 40

Range Augmentation: Two LRCAs and One Tanker (Equal
Fuel Weight O0ffloads) ....eveeeiiinnienannansne cesesesessase 43




€ Ay RS TR Py s T A . [

-xiii-

FIGURES
Tanker gross weight versus distance flown ........... reveseas 7
Geometry for LRCA/tanker basing .........c.ceecunnunn, eereane 10
Range augmentation from a single refueling .................. 22

Range augmentation from n refuelings, using the buddy-

buddy tactic ...covevveann Cheesraceseaseteasett et sncenns 32
Aircraft gross weight versus range with refueling ........... 34
Range augmentation provided n LRCA by one tanker ............ 50

Unrefueled range extension arising from mid-range payload
delivery ...civevienrcneenns creeirteetreccnns Cessecassanennss 52

Graphical solution for single LRCA/tanker refueling point ... 63




I. INTRODUCTION

This Note presents a series of simplified equations and numerical

calculations indicating the magnitude of range augmentation (or,

equivalently, payload enhancement for a fixed range) that refueling by

tankers can provide long range combat aircraft (LRCA). The treatment
is theoretical and should apply to LRCAs of various designs.

This Note examines several refueling conditions. Two pre-refuel-
ing tactics are considered for the tanker. One assumes that the tanker
leaves the home base with the LRCA it is to refuel, flying with the
LRCA until the refueling point; we label this the buddy system. The
second tactic assumes that the tanker leaves its home base and flies
to a rendezvous point where it refuels one or more LRCAs; we label
this the filling station approach. The buddy system is usually assumed
to apply to LRCA's flying strategic missions requiring long range
flights. The filling station approach appears to be more applicable
to missions that require shorter flight distances and heavier payloads
consistent with force projection missions.

Two post-refueling tactics are considered for the tanker. One
assumes that, after all refuelings are accomplished, the tanker returns
to the base from which it left; we label this the radius mission. The
second assumes that the tanker recovers at a forward recovery base;
for simplicity we shall specify that the distance from the last refuel-
ing point to the recovery base is a constant. We label this the con-
stant recovery distance profile.

In addition, we consider both pre- and post-strike refueling for
the LRCA, and indicate the potential advantages in range enhancement
derived from dropping the payload along the LRCA's flight path. Longer
range missions will require pre-strike refueling, but many force pro-
jection missions can be performed with post-strike refueling, at a
considerable savings in total fuel required.

Finally, for analytic convenience, most of the derivations and

calculations contained in this Note assume that the LRCA and tanker

.
¥

5
*
G

%
.

are equal-size, being derived from the same basic airframe and engine.
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A section at the rear will relax this assumption, indicating how the
equations can be modified to accommodate different LRCA/tanker designs.

This Note is organized in the following manner. Section II will
derive the well-known Breguet equations expressing the relationship
between flight range, fuel expended, and aircraft characteristics.
These equations are vsed extensively in the following sections dealing
with range augmentation and inflight refueling. Section III provides
the reader a simple example of a derivation of a particular refueling
equation. The assumptions employed in that section will be treated in
detail in later sections. Sections IV through VII cover various tanker
pre-refueling and post-refueling tactics in substantial detail, proving
where necessary some of the conditions for selecting the best refueling
point. Section VIII discusses the range augmentation obtained by pay-
load delivery at mid-range. Section IX discusses the post-strike re-
fueling equations. And Section X covers the equation derivations where
the LRCA and the tankers are not similar. After reading Sections II
and III, the reader should be able to skip sections that are not of

particular interest; most sections are written to be self-sufficient.
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II. BREGUET RANGE EQUATIONS

Many years ago Breguet developed a set of equations appropriate
for estimating the range-payload tradeoffs for aircraft. While not
quite appropriate for jet aircraft, these equations are still widely
used. They are based on the following assumptions: (1) lift equals
weight, (2) engine thrust equals drag, (3) the aircraft lift-to-drag
ratio is constant, and (4) engine thrust equals a constant times the
fuel mass flow rate. These are sensible assumptions for gas turbine
powered aircraft flying under typical high altitude cruise conditions.

They lead to the following differential equation:

aw

ac - -cT (by 4)

= —¢cD (by 2) (2.1)

= - ?%%3) (by 1 and 3)

where W is the vehicle's weight, T is the thrust of the engine, c¢ is
the engine specific fuel consumption, L is the vehicle's 1lift and D
is the vehicle drag. For high altitude, maximum range flights, the
(L/D) ratio is essentially constant. Therefore, we can integrate
Eq. (2.1) and obtain:

_ ct
W(e) = W(to)exp{— ——(L/D)} (2.2)

Noting that r = vt, where v is the vehicle's velocity and r the range

flown during time interval t,

cr
W(r) = W(ro)exp{- ;?ijfb} (2.3)

Since v is constant (thrust is assumed equal to drag), we can define

a new constant K = 21%121 . K 18 the well-known Breguet range factor,

TR A e NS



and is constant given our assumptions. Substituting K into Eq. (2.3),

we obtain Breguet's fundamental relationship
- -t
W(r) = W(ro)exp{ K} 2.4)

W(r) is the vehicle's gross weight after it has flown a distance r, and
W(ro) is the aircraft's gross takeoff weight. Thus, the aircraft
weight is simply an exponential function of the range flown.

The maximum range-payload equation follows quickly from Eq. (2.4).
By definition

def
W(ro) —_— we + wa + wp + Fo (2.5)

where We, Wa, and Wp are the aircraft dry weight (less avionics),
avionics weight, and payload weight, respectively, and Fo is the maxi-
mum weight of fuel at aircraft takeoff. If R is the range where the

fuel is completely expended,
W(R) ——iiif_w+w +W (2.6)
e a P
Substituting Eqs. (2.5) and (2.6) into (2.4), we obtain

W + W 4+ W =W { R} *
e a P 0P\ X

or

W
[}
R=Klog, |g3w +w] (2.7)
e a P

Equation (2.7) is the well-known Breguet range equation. Note that it

*
We shall frequently use the shorter notation Wo for W(ro), if j
no confusion is likely.
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applies to the no-refueling case. Also note that WO can represent the

aircraft's gross weight at any point along its flight path and R then

becomes the remaining distance that the aircraft can fly until its fuel
tanks are empty.




III. THE RANGE AUGMENTATION EQUATION: A SIMPLE EXAMPLE

The Breguet equations are well suited for deriving the potential
range augmentation that can be obtained from a single tanker refueling.
As a start, consider the following assumptions: (1) bombers and tankers
have the same characteristics (e.g., the same gross takeoff weight,
the same dry airframe weight, the same Breguet range factor), (2) both
aircraft depart from the same base and fly in formation until the re-
fueling point is reached, (3) there is a single refueling and it fills
the bomber until its inflight weight equals its gross takeoff weight,
(4) the tanker, after refueling, flies a fixed distance, s, to a forward
recovery base, and (5) given the above, the bomber's unrefueled range
exceeds the to-be-determined optimum refueling point. Later sections
will alter some of these assumptions.

We will show later that the above assumptions imply that the
maximum range augmentation is obtained if the refueling point occurs
when the total fuel available to be offloaded from the tanker (i.e.,
still permitting the tanker to fly s miles to its recovery base) exactly
equals the fuel needed to fully refuel the bomber (i.e., raise its
gross welght to equal the takeoff weight) (see Sectiop IV). The resul-~

tant range augmentation, Ar, is given by the following equation:

Ar = X log, —~———§~————:l (3.1
e s
1+ — exp{—}J
where the variables have already been defiuned. The remainder of this
section will be devoted to the derivation of this equatiom.

Consider Fig. 1. AFr is the fuel required for the tanker to
reach its recovery base, AFa is the fuel available at range r to be
loaded into the bomber, and AF, is the fuel used in flying the distance

b
r. AFb applies to both the tanker and the bomber, since their
characteristics are identical. Note also that we are assuming that
the tanker reaches its recovery base empty. Ws is the tanker's gross

weight immediately after refueling, and Wr is its weight at the start

;—;——;———_-_
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W, T
AFb
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&
2
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1

ﬂ—-—r-———bﬁ— § ~——

Distance flown

Fig. 1 — Tanker gross weight versus distance flown

of refueling. Assuming instantaneous refueling,

AFa = Wr - Ws (3.2)
From Breguet's equation
W =W exp{— E—} (3.3)
e s K
W =W eXp{_ E} (3.4)
r 0 K

Substituting (3.3) and (3.4) into (3.2)

ir, = oo 7 (5 ol
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As we shall prove in Section IV but only assert here, optimum re-
fueling occurs when AFa equals the fuel weight needed to completely fill

the bomber. AF, is that weight. Therefore, to maximize the range

b
augmentation,
AF_ = AF, (3.6)
From Fig. 1,
AFb = wo - Wr
=W [l - exp{— EH (3.7)
[} K

Substituting Eqs. (3.5) and (3.7) into (3.6)

Wo[l - exp{- %} = Wo exp{- -l%} - (;_e_) exp{%}‘ (3.8)
o

Solving for r, we obtain Eq. (3.1), i.e.,

r =K loge W 2
£ 5
l+(yo>exp{K}

Since r is the distance from the bomber's home base, and the bomber

(3.9

is fully fueled at that distance (and can still fly its entire um-
*
refueled range, R). r corresponds to the added range a single re~

fueling provides. Thus

Ar = r Q.E.D.

*

We will use R, to represent the maximum unrefueled range when
the bomber is fully fueled, and R to be the maximum remaining unre-
fueled range.

Rt oo

e e o ———— s




IV. RANGE ENHANCEMENT FROM A SINGLE (OUTBOUND) REFUELING

Section III treated a simple example of determining the maximum
range enhancement achievable in a single refueling of an outbound LRCA.
This section generalizes on that discussion. We start with some def-

initions:

Base L: The LRCA's home base and the base from which it

departs.,
Base T: The tanker's departure base,
Base R: The tanker's recovery base,
P: The point along the LRCA's flight path where re-

fueling occurs,

d_: The minimum distance from base T to the LRCA flight

-t
path,

dR: The minimum distance from base R to the LRCA flight
path.

r.: The distance from L along the LRCA flight path where

the distance to T is minimum,

r,: The distance from L along the LRCA flight path where

=

the distance to R is minimum,

Figure 2 depicts these definitions from arbitrary locations of L, T,
and R,
The problem this section treats is to find P such that the maximum
range augmentation occurs. Several configurations for L, T, and R
will be considered and the appropriate rules for selecting P derived. i
We start by recalling that AFa is the fuel onboard the tanker
available to be loading into the LRCA. AFa is clearly a function of
the tanker's flight distance up to that point. Similarly, recall that f
W(r) is the gross weight of the LRCA after it has flown a distance r. :
The total fuel that the LRCA could accept at that distance is obviously

wo - W(r). We have labeled this AFb.

Y
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t/ LRCA's flight path

dr —o BASE R (tanker recovery base)

SR

had|

BASE T (tanker departure base)

dt

Mt

I LL

BASE L (LRCA departure base)

Fig. 2 — Geometry for LRCA /tanker basing
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Assume for the moment that AFa < AF, . Then the entire available
tanker fuel load, AFa, could be transferred into the LRCA, increasing
its weight to W(r) + AFa. Recallira Eq. (2.6), the new range to empty
fuel tanks is

w(r)+AFa
Rl =K loge[ m] (4.1)
e a p

and the total range obtained is simply the sum of the range to the re-

fueling point and R,, i.e., r + R.. Recalling that Ro denotes the

1’ 1
maximum unrefueled range, then the range augmentation, Arl, obtained by

adding AF pounds of fuel at P is simply
a =
Ar = v + R, - Ro (4.2)

Clearly, we wish to find P such that Ar is a maximum.
Before we turn to maximizing Ar, however, consider the case where

AFa > AF In this circumstance, only AFb pounds of fuel can be loaded

into thebLRCA and its new gross weight would become its initial weight,
wo. Under these conditions, Rl = Rb’ i.e., the LRCA, fully fueled,

is capable of flying its original unrefueled range, and the range
augmentation, Ar = r. It is immediately evident that Ar grows with r.
To maximize Ar, we should make r as large as possible. Therefore, we
have our first refueling rule: 1If AFa > AFb, delay refueling, 5ubiect
to the condition that the LRCA has sufficient fuel to keep flying.

Now we return to Eq. (4.2). R1 can be rewritten in the following

W W(r)+AF_
Ry =I(1°ge[(w+w+w )( W (4.3)
e a p o

form:

*
We will discuss the consequence of this condition later.
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ar

W(r)+AF )

a
Rl = R0 + K loge< wo

Therefore, Ar becomes simply

(x)+AF
-—-——"3) (4.4)

W
Ar = r + K 1oge T
o

To determine the optimum refueling point, consider the derivative of

Ar with respect to r., Three possibilities exist:

@8] %;(Ar) <o, foro <r i-Rb' or
d
(2) E;(Ar) >o, foro<r <R, or

d - - *
(3) E;(Ar) =opatr=r,0<Tr i_Ro

If the first condition applies, then delaying refueling is bad and
refueling should occur at the earliest feasible time. If the second
condition applies, refueling should occur at the latest feasible time.
If the third condition applies, refueling should occur at r. To these

three possibilities we add the two obvious constraints

AFb 3_AFa

AFy < W - (we+wa+wp)
The first constraint gimply says that the fuel added cannot exceed the

LRCA's capacity; the second that refueling occurs before the LRCA's

fuel tanks run dry.

*It is possible that %;(Ar) = o0 for all r. In this case, it does

not matter where refueling occurs.

- e —srimrem gy
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Consider Eq. (4.4). Then
d _ K d
D) =1+ WO FAF, dr(w(r)+AFa) (4.5)

Recalling that W(r)

r
Yool &

wo T d
-d—-(Ar) W(r) + AF_ + K(- e exp{— E} + E;(AFa))
dr W(r) + AFa

(4.6)
d
AF_ + K a—re(AFa)
W(r) + aF

Since W(r) + AFa is always positive, the sign of %;(Ar) is simply the
sign of AFa + K %;(AFa).

At this point we note that the problem of deriving refueling rules
has been reduced to an evaluation of the behavior of AFa as a function
of r. To go further, we need to specify AFa. Consider Fig. 2. Given
that P is the refueling point and recalling that AFa is simply the

total fuel available at P minus the fuel needed to return to base B,

S
- _ti_ R
AFa = Woexpg— K } weexp{K }
<) /2 .12
St = dt + (r rt) (4.7)
= 42 2
SR = dR + (r-rR)

Substituting Eqs. (4.7) into AFa + K %?(AFa)’ and simplifying, we
obtain

then

wn




dry = voen]
AFa + K dr(AFa) = woexp

S
o

14—

t

(r-r.) S (r-r))
t t r R
}[l - ——g———] - Weexp{if}[l + 3 ] (4.8)

R

This transcendal equation is best evaluated by computer. Without proof,

we state that all of the previously stated possibilities for %;(Ar)

can occur, depending on the locations of the various bases (L, A, and B)

and specifying that the two constraints are met.

Some Specific LRCA/Tanker Basing Geometries

Certain specific basing geometries are more likely to be of con-

cern than others.

Therefore, we consider the following special cases:

Case LRCA Tanker
Number Departure Base Departure Base| Recovery Base
1 L L L
2 L L R#L
3 L L Variable
4 L T T

In all cases, the LRCA departs from base L. In the

first three of

these special cases, the tanker is also assumed to depart from base L,

tlying with the LRCA in what we will term the buddy system. These

cases differ by where the tankers recover. Case one

assumes recovery

at base L; tankers that depart from and return to the LRCA's home base

are said to fly

base R is not L.

radius missions.

Case two assumes t

R is assumed to be a fixed site.

assumes that the recovery base is not L. But this ¢

hat the recovery
Case three also

ase assumes that

the tanker can select from a number of potential bases such that the

distance from the refueling point to the closest base is a constant s.

Case three is clearly a simplification of case two.

Case four assumes

that the tanker leaves from and returns to the same base. 1In this

case, however, that base is not the LRCA home base.

Case One:

Tankers Fly Buddy-Buddy, Radius Missions. The equation

i wu‘&i F N



-15-

for AFa in this case is straightforward.

AF
a

folka]

r
woexp{- } - weexp{i} (4.9)
Similarly

AF

b woll - exp{- %}l (4.10)

We now need to derive the correct refueling rules.

Recalling Eq. (4.4) and substituting for AFa

Ar = r + K loge[Zexp{‘ %} - (Wj‘) exp{-;—}]

Then

fl
-
+

3;(Ar)

Thus, for all r,

g;(Ar) <o

This inequality calls for refueling at the earliest time. However,

at r = o, AF_ > AF . Therefore, until AF < OF,, refueling should

b
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be delayed. Joining these two conditions, we obtain the proper rule

for refueling, i.e.,

AF_ = AF (4.11)

Substituting Eqs. (4.9) and (4.10) into (4.11),

woll - exp{- %}] = Woexp{—-é} - Weexp{%} 4.12)

where r is the distance from base L where this equation holds. To solve

this equation, define the variable z

Substituting z into Eq. (4.12)

or (4.13)

Solving for z

- e
Z = (4.14)

which gives us r, i.e., T = K loge(z). T is obviously equal to Ar
(the maximum range enhancement) since the combat aircraft is fully

fuelled at T.
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Case Two: Tankers Fly Buddy Mission, Recover at Forward Base.

For this case

S
r R}
Al-"a woexp{- K} Weexp{-——K (4.15)

where SR is given in Eq. (4.7). Substituting Eq. (4.15) into Eq. (4.4)

T we SR
Ar = r + K loge [Zexp{- E} “\w exp{-l-(—>]

[+]

Thus

IR Sgy[d5R
~2exPyT kf T \vr eXP\K f\dr |
d - o
E-I-_-(Ar) 1+ W SR
ron{- 1 - (1) eefet)
K Wo K

W ) ds
e R R
- (-.-w ) exp{——K }[l + I
o
W S
r e R
el £} - ("o) {e)

Recalling Eq. (4.7) for SR

dSR _ (r—rR)
dr SR
dSR
Assuming that dR # 0, I > 1. Therefore
d—-(Ar) <0
dr
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This inequality, coupled with the fact that for small r AFa > AFb leads

to the same refueling rules, i.e., refuel when

AFa = AFb (4.16)

Recalling AFb and substituting Eq. (4.15) into (4.16), we can solve for

T, the optimum distance at which refueling occurs.

wo[l - exp{- %}} = woexp{- %} - weexp{;B} (4.17)

Substituting for SR

- W, \/dfa + (;-rR)2
2€xp<-'i} -1-= 7] exe e . (4.18)
o]

Equation (4.18) cannot be easily simplified. Solutions for T are best

done numerically.

Case Three: Tankers Fly Buddy Mission, Recover at an Unspecified

Forward Base s Miles from the Refueling Point. We assume s = constant.

Therefore, the refueling conditions of Case Two apply. Equation (4.18)

simplifies to

Zexp{- %} 1= (;E)exp{%} (4.19)

The solution for r is straightforward

2

r =K loge we .
1+ W) exp {T('}
o

(4.20)
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Tankers Depart from and Return to & Forward Base. This

Case Four:
light simplification of the general case.

case is a s 1f we set SR = St

in Eq. (4.7), then

S, S,
AF = Woexp{— Ef} - weexp{if} (4.21)

and
T St we St
Ar =1 + K loge[exp{—-i} + exp{— E-} - ﬁ; exp{ﬁ~}] (4.22)
Thus
we St t
exp {- -} + \exp - -l-(—'} AW exp{—l(-}\ T
.d——(Ar) = - [o]
dx T W Sté
exp {-— -} + exu{— ra W exp{k‘"
(o]
S ds 1% S das
exp{— ——— l - —-——-t- - .'e— exp ._.tl 1 rm—
K dr wo dr
= 5, v S
exp {— —ﬁ} + exp{- E—} - -ﬁ; exp{-ﬁ-}
since the denmominator is positive for all admissible r (o <r ¢ RO),

the sign of %;(Ar) depends only on the numerator. If we substitute

for S _,
t

S (r-r,) W S (r-r,)

t t’} _[_& Tt t

4 _(ar) = exp{_ > }‘1 S¢ ] (Wo) exp{“ }[1 TS, ] (4.23)
dr s W S '
exp{— %} + exp {- %} - (ﬁe_) exp{-K-t—}
o
¥
e e s , Ee B i a2t 2

vy s BmiEe

x. -
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|
|
|
i

Unfortunately no obvious simplifications of Eq. (4.23) are possible.

If we set Eq. (4.23) equal to zero, we obtain the expression

s - (r-r.)) 28 W
t t tl_{ e
[_ﬁ'———st T (r_rt)] exp{- X }- (—w ) (4.24)

where r is the solution. In general, there is no reason to believe
that a solution exists. If it does, we have the following refueling

rules

(1) 1f AFa(r) > AFb(r), refuel when AFa = AFb

(2) 1If AFb(r) > WO - (we+Wa+Wp), refuel at Ro

T

(3) Otherwise, refuel when r

If no solution exists, then either %;(Ar) is always positive or always

negative, and the following refueling conditions apply

d -
(4) 1If E;(Ar) < o for all r, refuel when AFa = AFb

(5) 1f %;(Ar\ > o for all r, refuel at R0

The last of these conditions is self evident; refuel at the last possible
refueling point. That obviously occurs when the LRCA's fuel tanks are
empty, i.e., when the LRCA reaches its maximum unrefueled range, Ro.
Rule (4) is simply a condition that arose in our earlier cases.

One simplification of this case can be made by assuming that St
is independent of r, i.e., equals a constant. In this case, %;(AFa) =0
and g;(Ar) is always positive. Thus refuel at Ro'

To obtain Ar, recall Eq. (4.22) and substitute s (= comnstant) for
S_. Thus

t
[o] S we s
Ar = Ro + K loge [exp{- K—> + exp{— —K-} - E exp{E}J
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Recall also that

Thus
(we+wa+wg) s we s
Ar = K loge 1+ 7 exp{— E} -\ exp{i}) (4.25)
o} o
Figure 3 shows the relative range enhancement (Ai) as a function
W

W
e) for cases 1 and 3. Realistic values for (ﬁg probably exceed

of {—
Wo o
0.4 for most normal aircraft designs. Therefore the range enhancement

gains relative to the Breguet range factor are about 0.3.

Multiple Refuelings for a Single LRCA/Tanker Pair

Although the constraint that refueling must occur before the LRCA
runs out of fuel was stated, so far it has not entered into our deriva-
d
tions. In general, if dr(Ar) > o for all r and AFa(Ro) ﬁ_AFb(Ro), ther
a single refueling at R° is optimum. However, what should be done if
the AFa > AFb at Ro' From above we know that refueling should occur

at Ro. But in contrast to the above, the tanker will have excess fuel

available after that refueling. Therefore a second refueling is possible,

To be determined are (1) how much fuel should be passed on the first
refueling, (2) when should the second refueling occur, and (3) how much
range augmentation is possible.

We shall restrict our attention to those cases where the tanker
and the LRCA fly buddy missions, i.e., both depart from base L. For
the time being, we also assume that at Ro the LRCA is fully refueled
(we will test later whether this assumption leads to optimum range

enhancements).

W W W

For the LRCA: WL(RO) =2 wa (before refueling)
I —— > v

WL(RO) = WO (after refueling)
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Ro
For the tanker: wT(Ro) = Woexp{-~z—} (before refueling)
Ro
wT(Ro) = woexp{— E—} - Fb (4.26)
Ro
= WO[Z exp{- E_} - l (after refueling)

We have used the subscripts L and T to differentiate the LRCA and tanker
equaiions.

By assumption, the LRCA, fully fueled, continues along its out-
bound path. We assume that the tanker does likewise, still flying in
formation with the LRCA. At some point a second refueling should occur.
To determine that point, we need to be specific about which case we are

considering.

Case One: Tanker Radius Missions. The equation for tanker fuel

availability is as before

= - r
AFa WT(r) weexp{K} r >R (4.27)

where WT(r) is the tanker gross weight at total range r. From Breguet's

formula

r-R0
WT(r) = WT(RO)exp{— m } (4.28)

where the first fuel transfer has occurred at Ro' Therefore,

R

o r-R
AFa = Wo [ 2 exp{- X

- 1]exp{- K o} - Weexp{i} (4.29)

'

Similarly

RRPES RPUP SR TR PP . . - LT N e A s
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r-R
[¢]

AFb = W(o)[l - exp{— < }} (4.30)

Because the refueling conditions are jdentical with the earlier
Case One, the optimum second refueling point corresponds to AFb = AFa.

Thus

{2 exp{- ;9} - llexp{- E%EQ} - (;é)exp{é} =1 - exp{— ;;RO} (4.31)
o

Setting z = exp{%}

Ry Ry -1 W, R -1
{2 exp‘-— i——} - 1]exp{-ﬁ—}z -\7)z = 1 - exp{k—}z

o

or

[o]

Ro -1 We Ro ~1
[2 = exp{i-} z - ir)z -1+ exp{K—}z =0
or

(4.32)

=5
S —"

N

o

+

N

t

~N

1]

o

which leads to Eq. (4.14). Therefore, for this case, the intermediate
refueling at R did not alter the total range obtained by optimally
using a single dedicated tanker.

Case 3: Constant Recovery pistance, As before

= - 8
AFa = WT(r) weexp{K} r >R (4.33)

L et A NSBRBTR Ny e i
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The remaining equations shown in Case 1 are unaltered. Thus AFa = AF

yields

2 exp{— ;2}]— 1 exp{— E%ES} - (;é)exp{%} =1 - exp{- m o} (4.34)
o

or

2 exp{- %} - (;S)exp{%} -1=0 (4.35)

This is identical to Eq. (4.19). As above, the intermediate refueling
at RO did not alter the total range obtained by optimally using a
dedicated tanker.

By implication, multiple mid-course refuelings would also not
change these results. Furthermore, since we have not used the con-
ditions describing the combat aircraft being empty of fuel (we just
stated it as occurring at some range Ro)’ this observation applies to
any mid-course refueling, so long as that refueling fills the combat
aircraft.

Fina v, we wish to test the assumption that fully fueling the
LRCA at Ro was the correct rule. Therefore, consider a lesser refueling
Af, i.e.,

Af < AF

Then after refueling

|o ot

- ue

wL(Ro) = waexp{—
(4.36)

w|ow Nlow

wT(Ro) = woexp{-
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Assuming that Af was sufficiently large to permit AFa = AFb before the

LRCA runs out of fuel for the second time,

r-R
= _ ol _ T
AFa = WT(RO)exp{ } Weexp{K} r > Ro
r_RO (4.37)
AFb = WO - WL(RO) + wL(Ro) 1 -~ exp{— R } r ~ Ro
Equating AFa and AFb, and substituting Eq. (4.36)
RO ;-RO ;
woexp{-<§—} - Af exp{— X } - weexp{i}
Ro ;_Ro (4.38)
= - - —— 4 -
Wo Woexp{ ¥ } Af exp{ }
This equation simplifies to
- r-R . W -
exp{—-g} - Af exp{— o} -2 exp{E} =
K K Wo K
(4.39)

T ™R
1 - exp{--i} - Af exp{- X }

These terms involving Af cancel and we are left with

%)
(ﬁg)zz +z-2=0

(o]

This equation is identical with Eq. (4.15). Therefore we conclude that
it doesn't matter how much fuel is transferred prior to r. Therefore

all previous equations and rules pertain.




-27-

V. RANGE ENHANCEMENT FROM TWO OR MORE TANKERS PER COMBAT AIRCRAFT

The derivation for two or more tankers per combat aircraft follows
the previous derivation for a single aircraft. We assume the buddy
refueling approach, i.e., both the LRCA and the tankers depart from
the same base, For simplicity we will derive equations only for the
constant recovery range case, but will state the equations for the
radius missions as well. We assert without proof that optimal refueling
points still correspond to AFb = AFa, where AFa relates to a specific
tanker. Therefore each successive refueling fills the combat aircraft
and empties the tanker except for the fuel needed to recover to base.

Let ;i be the total LRCA range enhancement obtained from i tankers.

i-1
W (r; ;) = W(o) (LRCA) (5.1)
T,
WT(?i_l) = w(o)exp%- ;—1} (next tanker weight) (5.2)
Thus, for the next tanker,
AFa = W(o)exp{- %} - Weexp{%} (5.3)

and for the LRCA,
r;?i—l
AFb = W(o) |1 - exp{- X } r > ri_l (5.4)

*
where we impose the assumption that refueling times are negligible.

Equating AFa and AFb

*If refueling times are not negligible (and in reality they would
not be), there exists a minimum distance that the LRCA flies from the
start of one refueling to the next. Thus L must be greater
than or equal to that minimum distance.

%.“.w_. .
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T W T r
A BB el B o

Solving for T,

T
1+ exp{ i—ls (5.6)
- 5.

Eq. (5.6) is obviously a more general version of Eq. (4.20).
It is possible to solve for ?i—l and state ?i solely as a function
of the aircraft design characteristics. We do this by induction. De-

fine the dominator in Eq. (5.6) by D, i.e.,

D=1+ (;é)exp{g} (5.7)

(o]

Then, substituting into Eq. (5.6),

%
o~
—
N‘ ~
ot
S
#
oir
~
=
n
Q
~

(5.8)

&io}\'—w; .

e
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To prove that this is the correct expression, we only need to show

that 1f it holds for rn, then it is also true for r Thus

n+l’

T
n
r 1+ exp{——} n n-1
n+l K D +D + -+~ +D+2
exp{ K } ) D o T n+1 Q-E.D. (5.9)

and the proof is complete.

Substituting for D, we therefore obtain
n-1
e s
Yl +(:)exp{K} +1
i=0 [o)
we S
1 +(F; exp{g}

- J

T =K log, (5.10)

If we note that the right hand side of Eq. (5.8) satisfies the relation-
ship

R +D+z_(;+;2+ +(;)“'1+2;“
n D D ‘D D
D
and recall that
2 n-1 _ 1-x"
l+x+x"+ - +x = 1-x x <1
then
2 n-1J n
1 1 1 1
e + (= + =
SANC IR IR
n+1

]
————
[
S maame
-
]
‘UIH
=}
+
p———
(=
S m—
=}
]
=1l
+
o=
=}
]
[X]
(=1
~——

q
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Thus
ARNERE - - N
n D D D D +D -2
exp{i—} = - 1 = (5.11)
1- (—) D" (D-1)
D
or, substituting D,
we ! we s
1+ (ﬁ; exp{ﬁ} + ﬁ: exp{i} -1
r = K log (5.12)
: we s ’ we s
1+ W exp{k-} o exp{i}
o o

Foo 1 we s
em{r% = i)-——l- = (ﬁ— exp{— R‘} (5-13)

r  represents the absolute maximum LRCA range augmentation obtainable
for tankers on radius missions. Not surprisingly, this also corresponds
to the range for the tanker where AFa equals zero.

The expression for case 1 (tanker radius missions) can be derived

in a similar fashion. If we define

then

=

1+ 2

e
-1 +\[+4 w)
Zi==
2(
(]

®

2]

(5.14)

o=

=
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No simple expression has been found that permits the reduction of this
recursive relationship to an expression that is solely a function of
the aircraft’s design characteristics.

Figure 4 shows the total range enhancements achieved with multiple
tankers for the two cases above. By seven refuelings the added range
enhancement becomes quite small. These figures also indicate the maxi-
mum range extension obtainable with an unlimited number of tankers,
assuming that they fly either a radius mission (out and back to the
same base) or fly a constant distance (1000 n mi) after refueling. The
advantages of being able to recover at a forward base (the constant

distance case) over returning to home base are obvious.
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Fig. 4 — Range augmentation from n refuelings,
using the buddy-buddy tactic
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VI. RANGE ENHANCEMENTS WHERE ONE TANKER SUPPORTS TWO COMBAT AIRCRAFT

FLYING THE BUDDY TACTIC

One tanker may have enough fuel to provide two or more combat air-
craft with sufficient range extension to carry out the prescribed
mission., This section will discuss range enhancements for two LRCA
per tanker and will assume a variant of the buddy tactic. The follow-
ing section will discuss multiple LRCAs per tanker using a different
refueling tactic (the filling station approach).

We assume that the tanker and the two combat aircraft leave their
common base simultaneously and fly in formation until both combat air-~
craft are refueled. The recovery conditions are Cases One and Three
discussed in Section IV, As was true in the prior section, we will
derive the equations for the constant recovery distance case, and
simply state the equations for the other case. The question to be
answered is when should each combat aircraft be refueled? We shall
treat three cases: (1) the range augmentation is equal for both combat
aircraft, (2) both LRCA have their tanks completely filled, and (3)
the tanker offloads equal fuel loads into both aircraft. These cases
will produce different range enhancements for each aircraft, different
average range enhancements for both, and different refueling locationms.

We start with some necessary notation. Let r and r, be the two
refueling distances from the base. In all cases the first refueling
will fully refuel the first combat airplane; therefore the range aug-

mentation provided that airplane, Arl, is simply equal to r It is

1°
not true that the second airplane will in all cases be fully refueled,
Therefore, Ar2, its range augmentation, is not necessarily equal to r

Consider Fig. 5.

2
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Fig. 5 — Aircraft gross weight versus range
with refueling

The range augmentation, Arz, satisfies the relation

Ar, = r, - A (6.1)

where A is the range lost because the LRCA was not fully fueled and

satisfies the equation

w(rz) = W(o)exp{— %} (Breguet's Equation) (6.2)
Therefore
- W(o)
Ar, = 1, - K log, w(rz)\ (6.3)

Assume that the distance between the first and second refuelings is

*
%x.  Thus r, =1 + x. Substituting into Eq. (6.3)

*We will show later that x should be as small as possible for
maximum performance. Clearly the minimum distance between completion :
of refuelings is fixed by the mechanics of disengaging from one air- .
craft, coupling with the second and transferring the fuel load.

e
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_ _ W(o)
bry = 1 + X - K log, w(rZ)J
The average range enhancement, K;; is
- - x _K W(o)
Ar = 1/2(Ar1 + Arz) = Arl +3 > 1oge w(rz) (6.4)

*
and, as noted, the refueling distances are r, and r, (= Ty + x).

Assumption 1l: Range augmentation is equal for both combat aircraft.

In this case, Arl = Arz. Therefore
A= x (6.5)
or
= ol X
W(r,) W(o)e.<p{ K} (6.6)

Recall that

r
W(rz) = W(o)exp;- Eg} + AFa(rz) (6.7)

To determine r, we must first determine AFa(rz).
The tanker gross weight immediately after the first refueling is

r
Wo(r)) = W(o)exp{- K—l% - BF_(r))

As noted AFa(rl) = AFb(rl). Also, as before, AFb = W(o)

T
1 - exp{- E}'
Therefore

*
Because not all SIOP mission lengths are the same, the average range
enhancement may be a reasonable measure of performance gain,
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r

WT(rl) = w(o)[Z exp{— El} - l] (6.8)

The tanker fuel available at r, is simply

_ r2_1-1) s
AFa(rz) = WT(rl)exp - TX ’ - Weexp{i}
r
W(o)[Z exp{- El§ - l]exp{— %} - weexp{%} (6.9)
Combining Eqs. (6.6), (6.7), and (6.9), we obtain

exp{— %} - exp{— %}exp{— %} +[2 exp{— %} - l]exp{- %} (6.10)

(5ot

[+]

Solving for r

l’
r W
1({ _ _e xts
3 exp{_ k"} -2+ (wo)exp{———K | (6.11)
which leads to
r, = Ar, = Ar = K log 3 (6.12)
1 1 e W :
2+ |2 exp{ztg}
wo K

Equation (6.12) gives the average range enhancement which, in this case,
also represents the range enhancement for both aircraft.

The equations for tankers that must recover to their home base
(i.e., radius missions, or Case 1) are obtained by substituting r, for
8 in Eq. (6.10). Thus

r W T
3 exp{‘ _l} -2+ (wé)exp{%z}expgkl} (6.13)
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Solving for rl,

r, = Ar

1 1 (6.14)

-1 +\£ +3 (:;—‘:) exp{%’s}
et

Careful examination of Eqs. (6.12) and (6.14) would show that the

= K loge

average range augmentation decreases as x increases, Table 1 shows

— W
the sensitivity of Ar for several values of %-and (ﬁg).

Assumption 2: The second refueling exactly fills the second combat
aircraft.

Thus A = 0 and Ar2 = Arl + x. Also

r
AFa(rz) = AFb(rZ) = w(o)[l - exp{— Eg}] (6.15)

since the refueling exactly fills the second bomber. From Eq. (6.9)

BF, (r) = W(o)[z exp{- ;l} - 1]3"?{' %} - weem{%}

Therefore

1 - exp{— %}exp{- —I’(ﬁ} - [2 exp{-— %} - 1} exp{— %} -(%)exp{%} (6.16)

Solving for s

W

3 exp{- %}exp{- Harreml 2+ (w—%)exp&} (6.17)

O,
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Table 1

RANGE AUGMENTATION: TWO LRCAs AND ONE TANKER
(Both Aircraft Achieve Same Total Range)

gpaclng Aircraft Dry Weight Fraction Tanker
etween
Refuelings Recovery
0.2 0.3 0.4 0.5 Condition
(x/k)
0 .301 .252 .206 .162
.05 .296 .245 .197 .150 Constant
.10 .290 .237 .187 .139 Distance
.15 .285 .229 .177 .127 =0.1 xk
.20 .279 .221 .166 .115
0] .281 .232 .189 .150
.05 .276 $225 .181 141 Radius
.10 .270 .218 .172 .132 Mission
.15 «265 .211 .164 .122
.20 «259 .203 .155 112
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or

(6.18)

Also

Ar, = r; +x (6.19)

The equations for tankers flying radius missions are obtained by

+ x) for s in Eq. (6.17). Careful algebra yields

et 2 - et 2

substituting r, (= r,

_ (1 + expfr g}) ﬂ/@

oot £

+

(6.20)

ar, =K loge

1

Table 2 shows Arl and Ar2 for several values of %-and aircraft gross

takeoff weight. Unlike the prior case, here Arl # Ar2 unless x = 0.

Assumption 3: Both combat aircraft receive equal fuel offloads.
Thus, since the first refueling fills the first combat aircraft,

AFa(rZ) = AFb(rl) (6.21)
From Eq. (6.9)
F =w |2 B xt_w {3} (6.22)
a a(rZ) o exp K exp{— K} *PK )
Ve e NN L RSB
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Table 2

TWO LRCAs AND ONE TANKER?

(Second LRCA Fully Refueled)

Spacing .
Between Aircraft Dry Weight Fraction
Refuelings
. 0. . .
(x/K) 0.2 3 0.4 0.5
CONSTANT RECOVERY DISTANCE s = 0.1 xk
0 .301 .252 .206 .162
.05 .273/.323 .223/.273 .176/.226 .131/.181
10 2441 .344 .194/.294 .146/.246 .099/.199
.15 .215/.365 .164/.314 .114/.264 .068/.218
.20 .186/.386 .133/.333 .083/.283 .035/.235
RADIUS MISSION
0 .281 .232 .189 .150
.05 .251/.301 .200/.250 .156/.206 .116/.166
.10 .219/.319 .167/.267 .121/,221 .081/.181
.15 .187/.337 .134/.284 .087/.237 .045/.195
20 .155/.355 .100/.300 .051/.251 .009/.209
a Ar Ar2
First number is X the second is-—i— .




Substituting into Eq. (6.21) and solving for r

E

or
rl X we
expe- ¥ 1+2 exp{— E} =1+ exp{— E} + ﬁ; exp{
Thus
1+2 exp{— %}
r, = Arl =K loge B, we ]
1+ exp{- E} v exp{i}
4 o
To determine K;; recall Arz = Arl + x - A. Also
- _W(o)
A=K log, W(rz)
and
)
W(rz) = W(o)exps- e + AFa(rZ)
Therefore

41—

AFb(rl) = w(o){l - exp{—

-+

(o

|

1

Jok 12

W(rz) = W(o)[exp{— ;l}(exp{_

L]

-3+

(6.23)

(6.24)




~42-

Solving for A

}1 - exp{— %}l

This equation and Arl

(6.26)

in Eq. (6.25) can be solved to yield Ar, i.e.,

(6.27)

The equations for the tanker radius missions can be obtained by

substituting r,=r + x for s in Eq. (6.24). Thus

-+

Solving for r

1

2 exp{- %} + 1

l’

et (e

Yool

[ ot Vool )+ omte) ol

[¢]

rl = K 1oge W
2\=2 exo{gi}
W K
o
The value of A is obtained from Eq. (6.26), i.e.,

o ool Aol -

Table 3 shows Ar1 and Ar2

A = =K loge

for several values of x and (

W
W

o}

_g),

(6.29)

(6.28)
.;‘}
—
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Table 3

TWO LRCAs AND ONE TANKER

(Equal Fuel Weight Offloads)

:2?3225 Aircraft Dry Weight Fraction
Rei:ji;“g 0.2 0.3 0.4 0.5
CONSTANT RECOVERY DISTANCE s =0.1xk
0 .301/.301 .252/,252 .206/.206 .162/.162
.05 .290/.303 .240/.251 .193/.202 .148/.155
.10 .279/.304 .228/.249 .180/.197 .134/.147
.15 .268/.305 .216/.247 .167/.192 .120/.138
.20 .257/.306 .204/.244 .154/.185 .106/.128
RADIUS MISSION
0 .281/.281 .232/.232 .189/.189 .150/.150
.05 .266/.277 .215/.224 .170/.178 .130/.136
.10 .250/.273 .197/.215 .150/.164 .109/.119
.15 .234/.267 .178/.204 .130/.149 .087/.100
.20 .217/.260 .160/.192 .110/.132 .065/.079

-»y‘a;‘w«ﬁhﬁaﬁ‘ﬂﬁqai’-‘-w'w"" '
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VII. RANGE ENHANCEMENT: ONE TANKER SUPPORTING ONE OR MORE COMBAT
AIRCRAFT (THE FILLING STATION APPROACH)

Under some circumstances it is possible to phase the departure of
combat aircraft from their base so that they arrive at a given range
spaced in time, thereby permitting a tanker to refuel the aircraft
sequentially without flying even further from its home base. We call
this approach the filling station concept. For simplicity we will
assume that all refuelings occur at a fixed range from the LRCA's home
base, and that the range penalty imposed on the tanker for the time
needed for refueling one LRCA and loitering while awaiting for the
next is also fixed, i.e., equals x. As a consequence, every refueling
is the same, offloading the same amount of fuel and augmenting the
range of every LRCA by the same distance. In addition, we assume that
the tanker flies to the refueling location with the first aircraft
and returns to its original base after the last refueling, i.e., the
tanker radius mission. The equations for tanker basing (departure and
recovery), assuming constant range to and from the refueling point will
be included for completeness.

As before,

AFb = W(o)

- o)

By assumption, this holds for all LRCAs and the fuel offloaded to each

LRCA by the tanker equals this amount. For a single refueling the
fuel available in the tanker is simply

1 _ _L}_ b
AFa = W(o)exp{ X Weexp{x} (7.1
- Ap(D)
Setting AFb AFa » We obtain

zz(;—%) +z-2=0 (7.2)
[o]
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where for convenience we have adopted the notation z = exp{i}. Solving

for r,

(7.3)

which is the same as Eq. (4.14). For a single refueling the filling
station approach is the same as the buddy tactic.

One Tanker, Two LRCA. At the end of the first refueling, the

weight of the tanker is WT(l), where

} - 1] (7.4)

bl

Wo(1) = W(o)exp{— -;—} - 4F, = W(o) |2 exp{-

The tanker weight at the start of the second refueling is WT(l)exp{— E}.

K
Therefore the available fuel for the second refueling is

Ang) - WT(l)exp{— %} - weexp&} (7.5)

where the second term is the minimum tanker weight needed to be able
to fly r miles back to the home base. Setting AFb = AFa and using
Eqs. (7.4) and (7.5)

1- exp{- -E} = [2 exp{- {—} - 1]exp{- —;—} - (—:—e—)exp{{-} (7.6)

Substituting z, and simplifying, we obtain

W
0

1+2 exp{- %}] = 0 7.7

1+ exp{— %}

+
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To further shorten the notation, let y = exp{— %}. Then

2w
z (W-e-) +z(L+y)-(1Q1+2y)=0 (7.8)
[o]

Solving for z,

1%
(1 +y +\%1 + )2+ 4(w—e)(1 + 2y)

o
z = We (7.9)
o

Note that this equation is similar to, but not identical with Eq. (7.3).

One Tanker, Three LRCA. Our intent is to derive a general formula

applicable for any number of LRCAs to be refueled. Toward that end we
now consider three LRCAs and will compare the derived equations with

those for two and one LRCAs. This comparison will suggest a general

formula.

At the end of the second refueling the tanker weight, WT(Z) is

W (2) = wT(l)exp{— ZK‘-} - AF,

2 exp{- %} -1

W(o)

exp{_ %} ) w(o)[l ) exp{_ %}] (7.10)

The tanker weight at the start of the third refueling is WT(Z)exp{— %}.
Therefore the available fuel for the third refueling is

AF;3) = WT(Z)exp{- %} - Weexp{ﬁ} (7.11)

Setting AFa = AFb at the third refueling, and substituting y and z for

convenience,
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W
2271 - 1|y - [b- z‘l)} y - (ﬁ)z (7.12)

or

l1+y+y l+y+2y2| (7.13)

ZZ(We) +z
W
o

The solution for z is

2 2.2 Yo 2
—SL+y+y) +\ /(L +y +y7) +4w—(1+y+2y)

z = w 2 (7.14)
e
(o]

One Tanker, n LRCA. A comparison of Eqs. (7.2}, (7.8}, and (7.13)

strongly suggest a pattern. To derive this pattern consider the follow-

ing. For n refuelings, AFa(n) = AFb. Also
= -1 -
AFa(n) WT(n Ly Wez (7.15)

where WT(n-l) is the weight of the tanker after n~1 refuelings. Now

WT(n—l) = WT(n—Z)y - Wez (7.16)

i.e., the weight of the tanker after n-~l refuelings is just the weight
of the tanker after n-2 refuelings times the percent weight reduction
caused by the flying time between the refueling minus the fuel off-
loaded during the n-lth refueling. Thus, by successive application

of Eq. (7.16)

gy S 1 R, NN Y

‘Eg(,@ IC& "ﬂ.ﬁ" LA MBS Lo s or et e
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wT(n-l) = WT(n-Z)y - Wo(l—z—l)
= ‘WT(n-3)y - wo(l-z‘l)\y - wo(l—z'l)
- W (@-3)y? - W (12 H )
- |-y - W -z bl y? - u,a-2H )
- wT(n-t.)y3 - Wo(l-z-l)(l+y+y2)
_ n-2 -1 2 n-3
= W, (L)y - Wo(l-z YAty He ety )
Now
g -1 -1
W (1) =Wz - W_(1-z )
Thus
W (n-1) = woz‘ly“'2 -W o(1—z'1)(1+y+y2+~-+y“'2)

Substituting WT(n—l) into Eq. (7.15),
- -1n-1 _ -1 SR L P
AFa(n) =Wz"y - Wo(l z )@ty ) - W2

Setting AFa(n) = AF, , we obtain

W

a-z"h = 27 - (-2 b ety D - (ﬁz
(o]

or

W
zz(-‘f) + (2-1) Qpyby2ae i -yt =0
o

n-1 {
1f we define S“ = i:y , then
1=0

(7.17)

(7.18)

(7.19)

(7.20)

(7.21)

(7.22)
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2 we n-1
A ol R (Sn +y ) =0 (7.23)

Solving for z

(7.24)

2 _e n-1
= +‘\/sn + 4 w)[sn +y
z = o
2\
o

This equation matches Eqs. (7.9) and (7.14) for n = 2 and 3
respectively.

If we assume that the tanker still flies the buddy svstem to the
first refueling point, but flies a constant distance, s, to a forward

recovery base, Eq. (7.21) becomes
N -1y, .2 n-1,  ("e\ (s
(A-z ) =z 7y - (1-z D) (y+ryHeety ) - o eXP{E} (7.25)
o

Soving for =z

n-1
y + Sn

°T we s
Sn + W exp{i}

[o]

(7.26)

If we further assume that the tanker leaves and returns a constant

distance, s, to a forward base, Eq. (7.21) becomes

z = n (7.27)

Figure 6 is a plot of Eq. (7.24).

S
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Fig. 6 — Range augmentation provided n LRCA by one tanker
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VIII. RANGE EXTENSION ARISING FROM PAYLOAD DELIVERY AT MID-RANGE

The delivery of payload during the LRCA's flight helps extend its
range. In this section we will derive the equations pertinent to esti-
mating this range extension, both with and without refueling.

Let R0 be the LRCA's maximum range without refueling as derived
from Breguet's formula and let rp (rp E_RO) be the range where the pay-
load is dropped. The true maximum range can be estimated by the

techniques of refueling already derived. For example,
p
WL(rp) = Woexp "X (" Wp (8.1)
e
(Wa + We) = WL(rp)exp - E—} (8.2)

where WL is the weight of the LRCA and r, is the range beyond rP that
the LRCA can fly before running out of fuel. Thus

r +re re
W+ W, =W oexpi- —RE—— - Wpexp -z (8.3)

The maximum range is obviously rp + r,- Solving for L

_ K
r, = K log, T (8.4)

r, and the range extension is AR = tp + r, - Ro' Figure 7 is a graph
of ég—fot several different parameter values,

Equation (8.4) applies if there has been no refueling. If we
assume that refueling always occurs before payload delivery, then the
above derivation applies if we adjust rp to reflect the fact that the
LRCA is fully fueled at the refueling range r, (we will only discuss

the single refueling case). Therefore, it follows that

e T I O i
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Range extension (AR/K)
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Payload delivery distance (rp /K)

Fig. 7 — Unrefueled range extension arising from
mid-range payload delivery
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r,-Try
Woexp{— LK }— W

W +W
a e

r, = K log, (8.5)

and the additional range extension is AR = rp + r, - (R+r1).
As a specific application of the above equations, consider the case
where the total range is fixed at 5000 n mi and we wish to measure the

increase in payload capacity if we assume that the payload is dropped

at 2500 n mi. Define Pl as the maximum payload that can be carried
if we do not account for dropping the payload mid-way, and P2 as the

payload that can be carried if we did. From the Breguet equation

. ~ 5000{ _
P, = Woexp{ 2000 } W+ W) (8.6)

To determine P

2
Ip ;
WL(rp) = Woexp e P2
5000 - r
WL(SOOO) = WL(rp)exp - —-—-——-—RK
(8.7
fR ' 5000 - r
=Woexp--K -Pzexp-——-—P-K
5000 - r
- _ 2000y _ -—— P
= Woexp{ X } Pzexp{ X }
i Since WL(SOOO) = We + wa by assumption, and tp = 2500 n mi,
2500 5000} _
I,2 exp{ K },Woexp{ K } (wewa)l (8.8)
or f
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2500
P, Plexp{ X } 8.9
For the range of K's of interest, this yields Pz's which are 25 percent
greater than Pl's.
T e ]

B Tt
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IX. RANGE EXTENSION BY POST-STRIKE REFUELING

The previous derivations have always assumed that refueling occurs

when the combat aircraft is heading away from its home base. For the

two tanker refueling tactics examined, refueling always occurred (if
possible) when the amount of fuel available equaled the fuel needed.

We shall now extend those results to include post-strike refueling
where we shall assume that (1) the combat aircraft is headed toward

its base, and (2) the tanker is based at the same airfield. Under

these conditions it is easy to show that refueling should occur when

the combat aircraft is just about to rumn out of fuel and that the amount
of fuel it should receive is only enough to get it back to its base, if

that is possible.

One Tanker/One LRCA. Based on the above,

W = G+ AF)exp{— i—} (9.1)

where WE = we + Wa + Wp, AF is the fuel added to the empty LRCA and r

*
is the resultant range extension. Solving for AF

AF = WElexp{E} - 1} (9.2)

To maximize the range extension, AF should be as large as possible.
How large AF is depends on the tanker refueling tactic assumed. For
simplicity we will treat tanker radius missions in detail and will
only state the equations for a constant recovery distance. Assuming
therefore that the tanker returns to the same rerovery base as the
LRCA,

*

We will assume throughout (unless explicitly stated otherwise)
that the range extensions are based on the assumption that the pay-
load is not delivered and is to be recovered.

e = e et o e e e e - -y A oot oA ey o ATV
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r r
AFa = Woexp{- K} - weexp{K}
Setting AFa equal to AF, and substituting z,
WE(z—l) = Woz - Wz
or
WAW)22 —Wz-W =0
E e o
To shorten the notation, define o and 8 accordingly
i
W
o
we
B+ \w
o

>
n

Q
n

Thus

a22 -Bz-~1=20

and

Equation (9.9) applies for tanker radius missions.

tanker recovery distance equal to s, then

L a s g e s o o

(9.3)

(9.4)

(9.5)

(9.6}

9.7)

(9.8)

(9.9)

1f we specified a
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r =K loge - 28 (9.10)

In general the post-strike refueling range augmentation values
exceed those of the pre-strike refuelings. This is true because lighter
aircraft having the same empty weight (but less fuel) use less fuel per
mile.

Two Tankers/One LRCA. We maintain the assumptions above; there-

fore, the tankers fly radius missions, with the LRCA assumed to be
empty of fuel at both refuelings. Thus Eq. (9.1) applies for the second

refuyeling, i.e.,
T2
WE = (WE + AFz)exp o (9.11)

where the subscripts on AF and r indicate that this equation is for the

second refueling. Similarly,

)
WE = (wE + AFl)exp - X (9.12)

where r1 is the distance from the base for the first post-strike re-

fueling. The fuel available equation for both tankers is as before
AF (r) = W expd- =} - W exp{f- (9.13)
a o K e K
At both refuelings, AF = AFa. Thus we have two equations
Wlz.-1) =Wzl -Wz (9.14)
E 72 o2 e"2

-1 - -
WE(zlz2 -1) Hozl Wezl (9.15)
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The solution for r, is the same as for a single tanker and is given in

2
Eq. (9.9). Rewriting Eq. (9.15)

W W
zf [(ﬁﬁ)zgl + (;ﬁ)] - (W—E)zl -1=0 (9.16)
(o] o] (o]

Substituting B

_1 w
[Bz2 + (‘f) - Bz -1=0 (9.17)

where

-1 20

z, = = (9.18)
2 B + VBZ + 40

and

—
8 +\/32 + stz;l + (W(i)J
= - [o]

(9.19)

If both tankers fly a fixed recovery range, then r, =71 in Eq. (9.9)

” 7
+W- (w_e) exp{i—} + 4gz)t
2 (9.20)

-1
2622

and

One Tanker/n LRCA. Assuming the filling station approach, the
tanker fuel availability equation is still Eq. (7.20), i.e.,

L e Al e oo et

e
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W
o

w
AF,(n) = wo{y“‘lz‘1<1-z‘1)<y+y2+---+y“‘1) - (—e)z} (9.21)

and the LRCA fuel needed equation is Eq. (9.2), i.e.,

AF = WOB(z—l) (9.22)

Equating AFa(n) and AF (i.e., assuming n refuelings and calculating the
range augmentation possible)

1%
B(z-1) = yn—]'z.-1 - (l—z—l)(y+y2+"'+yn-1) - (—s)z
or

az? + z|y+y2+-~-+yn-l—6l - ‘y+y2+---+2yn_ll =0 (9.23)

n
Defining T = yi, Eq. (A.97) becomes
=1

i
2 n-1
az” + IT _l-Blz ITn_1+y I =0
which leads to
~(r_-8) Wr_, 87 + sa(r__+"h
n“l n-l n-l 2
r =K log (9.24)
n e 2a

If we define T = 0, Eq. (9.24) applies for all n > 1.

The similar equations for the constant recovery distance assump-

W W
e

(o]

2 e s
tion are obtained by replacing (ﬁ‘)z in Eq. (9.23) by (ﬁi)z exp{E}.
Thus




r
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2
1 W
e s e s n-1
—[Tn—1+ (W—)exp{-ﬁ} - 8] +\/[Tn-l+ (W—)exp{'k*}- B] + 4B(Tn_l+‘y )
=K loge 7 0 | 0

4 :
28 (9.25

n

Pre~ and Post-Strike Refueling. The above post~strike range en-~

hancements can obviously be used regardless of prior refuelings in the
pre-strike portion of the LRCA's flight. The post-strike r will always
be greater than the pre-strike T if a single refueling is sufficient

to get the LRCA back to base. However, post~strike refuelings imply
operational uncertainties that are clearly greater than those of pre-
strike refueling. Therefore it is not self evident that post-strike
refuelings should be preferred. In general, the advantages of pre-strike
refueling would appear to offset the modest range enhancement gains
associated with post-strike refueling. Of course, post strike refueling
may be of interest when used in combination with pre-strike (double re-
fueling).
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X. RANGE ENHANCEMENT WHERE THE TANKER AND LRCA ARE DISSIMILAR

The above derivations assumed that the tanker and combat aircraft
were similar, i.e., their gross weight, structural fraction, and Breguet
range factor, are the same. As combat aircraft gross weight was scaled,
S0 too was the tanker's. In this section we will display some of the
equations pertinent to different tanker designs that do not scale with
those of the LRCA.

One Tanker/One LRCA. Assume that the tankers fly radius missions.

Then the weight of the tanker after refueling at r is

Wo(r) = WT(O)exp{- %;} - 4F, (10.1)

and

Wre = WT(r)exp{— ﬁ;} (10.2)

Therefore

1
AF = W_(o)|exp{- _r_} - (_Te_) exp L (10.3)
a T % KT WTO KT

For the combat aircraft,

oF, = A(o)[l—exp{- %;}] (10.4)

*
Equating AFb = AFa’

o

*
This is still the condition for optimum refueling.

. . s e s i ————AN R
W&-.—-.».w; e e i < et - R - -
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W, (o) |1~ ~E 5 = w_(o) - Lt 313 L (10.5)
alol|irex K, T O P K Vo exp K, ’

This equation is best solved numerically., Figure 8 is an example of a
graphical solution for Eq. (10.5).

One Tanker/n LRCA. From Eq. (7.20)

W

AFa(n) - wT(o) {z;lyn-l _ (1_2;1) (y+y2+"'+yn—1) _ (-ﬁﬁ—)zl‘} (10.6)

where

Also

AFb = WA(o)[l-zgl} z, = exp{%—}

Thus, for AFa(n) = AFb,

W
W, (0) (1-z; ) = wT(o){z;ly“ Lo @b oyt h - (w—:—:-) ZT} (20.7)

As above, this equation must be solved numerically (or graphically).

N YN T .
T - M, Ly o,
\\

__L____M
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5
2
l— Best refueling
distance
A
Distance
Fig. 8 — Graphical solution for single LRCA /tanker
refueling point
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