

ς.

U CLEANER R

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

AD- A134762

S-I-S mm-WAVE MIXERS AND DETECTORS

. . .

•

D. W. Jillie, H. Kroger, L. N. Smith and D. M. Shaw Sperry Research Center, Sudbury, MA 01776

> Final Report Contract No. N00014-81-C-2525

> > SRC-CR-83-33 October 1983

Prepared for NAVAL RESEARCH LABORATORY WASHINGTON, DC 20375

This document has been approved for public release and sale; its distribution is unlimited.

DTIC FILE COPY

	N PAGE	READ INSTRUCTIONS
PERORT NUMBER		3 RECIPIENT'S CATALOG NUMBER
	AD - A134762	
. TITLE (. d Subtitle)		5. TYPE OF REPORT & PERIOD COVERED
S-I-S mm-WAVE MIXERS AND DETECTORS		Final Report 19 Sept. 1982 - 18 Sept. 1983
		CDC_CB_92_33
AUTHOR(s)		B. CONTRACT OR GRANT NUMBER(S)
D. W. Jillie, H. Kroger, L. N. Smith and D. M. Shaw		N00014-81-C-2525
PERFORMING ORGANIZATION NAME AND ADDRE Sperry Research Center 100 North Road Sudbury, Mass. 01776	SS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
1. CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE
Naval Research Laboratory		October 1983
Washington, DC 20375		13 NUMBER OF PAGES
	and here Consulting Off	
4. MONITORING AGENCY NAME & ADDRESS(1) diffe	rent from Controlling Office)	Unclassified
		150. DECLASSIFICATION DOWNGRADING SCHEDULE
		<u> </u>
Approved for public release; distribution	unlimited.	
Approved for public release; distribution 7. DISTRIBUTION STATEMENT (of the abstract enter	ed in Block 20, if different fro	m Report)
Approved for public release; distribution 7. DISTRIBUTION STATEMENT (of the abstract enter 8. SUPPLEMENTARY NOTES	ed in Block 20, if different fro	m Report)
Approved for public release; distribution 7. DISTRIBUTION STATEMENT (of the abstract enter 8. SUPPLEMENTARY NOTES 9. KEY WORDS (Continue on reverse side if necessary	and identify by block number	m Report)
Approved for public release; distribution 7. DISTRIBUTION STATEMENT (of the abstract enter 8. SUPPLEMENTARY NOTES 9. KEY WORDS (Continue on reverse side if necessary S-I-S Device Fabrication, mm-Wave Det Niobium Carbonitride, Mixer Chips, Nio	ed in Block 20, if different fro and identify by block number sectors, Superconductiv bium	rity, Josephson Device,

DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

•

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

NbC_xN_y:Ge:Nb devices have been fabricated with chemical vapor deposited (CVD) polycrystalline arsenic-doped germanium barriers. The figures of merit for these junctions are: $J_o \sim 80-200 \text{ A/cm}^2$, $I_o R = 2.2 \text{ mV}$, $V_g = 3.95 \text{ mV}$, $\Delta V_g = 0.1 \text{ mV}$ and $V_m \lesssim 48 \text{ mV}$. NbC_xN_y:aSi:Nb devices using a composite silicon barrier have been developed to yield $J_o \sim 80-500$, $I_o R = 1.9 \text{ mV}$, $V_g = 4.1 \text{ mV}$, $\Delta V_g = 0.4 \text{ mV}$ and $V_m \lesssim 70 \text{ mV}$. These excellent results indicate that both barriers are suitable candidates for devices fabricated with NbC_xN_y counter-electrodes.

All-Nb S-I-S mixer chips were fabricated and sent to Goddard Institute for Space Studies to be evaluated. The noise temperature was ~ 60 K and the conversion loss of 5 dB. These results are comparable to Pb alloy junction results. A second-generation mixer was designed by GISS.

SECURITY CLASSIFICATION OF THIT PAGE(When Data Entered)

TABLE OF CONTENTS

Section		Page
1		1
2	NbC _x N _y DEPOSITION	3
3	DEVICE RESULTS	9
	3.2 NbC _x N _y /Ge/Nb Devices $\dots \dots \dots$	12
Λ	3.3 All-NbC $_XN_y$ Devices	12
4		10
5	CONCLUSIONS	17
6	REFERENCES	18
7	APPENDIX	19

ļ

iii

LIST OF ILLUSTRATIONS

Figure		Page
1	A schematic diagram of the system used at SRC to deposit NbC _x N _y films. The ion pumps are typically valved off and not used	4
2	The transition temperature as a function of methane partial pressure of NbC_XN_V films deposited at NRL "ambient" conditions (actually 425°C), SRC ambient conditions, and SRC heated (200°C) conditions.	7
3	A high quality NbC _x N _y -aSi:H-Nb device using NRL supplied NbC _x N _y	11
4	A companion device to Fig. 3 fabricated using SRC deposited NbC _x N _y	13

h

STATIST STATES

Table

LIST OF TABLES

Page

1	Parameters for deposition of the best NbC _x N _y (\sim 16 K T _c)	
	films in SRC's system.	6

ν

SECTION 1 INTRODUCTION

The work performed under NRL Contract No. N00014-81-C-2525 Mod. No. P00001 is described in this report. This work is an ongoing effort to develop all-refractory, high T_c mm-wave mixers operating at 8-10 K. Although this goal remains for the future, very significant progress has been made. Previous related work has been performed under NRL Contract No. N00173-80-0159, completed in September 1981; and N00014-81-C-2525, completed in September 1982.

The superconductor chosen as the basis of this work is NbC_vN_v . This material is reactive sputter deposited, which results in the Bl (rock salt) NbN structure in which carbon plays a significant rule in stabilizing the deposited film in this desired structure. The best films have $T_c \sim 16 \text{ K}$, which is sufficient for device operation at 8-10 K. The majority of the NbC_xN_y used in this work was deposited at NRL by Dr. E. Cukauskas [1,2], and the vast majority of development work on these films was completed by Dr. Cukauskas. However, in order to expedite device development it was necessary to have an in-house source of NbC_xN_y , rather than continuing the shipping of wafers back and forth between SRC and NRL. Thus, during the previous contract an existing UHV system was adapted for NbC,N, depositions, and initial characterization runs were completed [3]. The best result obtained at that time was T_{c} ~ 13.5 K. The optical reflectivity was rather low, < 70 percent at λ = 850 nm, indicating poor quality in terms of potential device applications. This was corroborated by fabricating two of the best wafers into junctions using the aSi barrier and Nb counterelectrodes. The best devices were of S-I-S character, but with extremely large leakage currents.

During the previous contract a number of improvements were made in developing NbC_xN_y/aSi/Nb devices. These devices are a useful stepping stone towards developing all-NbC_xN_y devices. As a result of our ongoing Nb work the aSi/Nb upper interface/barrier combination is already very well controlled and of high quality. Thus attention can be focused on improving

-1-

the quality of the NbC_xN_y/aSi lower interface/barrier combination. It was found that using a low power sputter etch of the NbC_xN_y lower electrode resulted in increased I_oR and V_g due to reduced damage of the surface during sputter etching. In addition, the composite barrier that was found to be successful in reducing subgap leakage in all-Nb junctions was equally successful in reducing subgap leakage in NbC_xN_y/Nb junctions. Also during the previous contract some fabrications of all-NbC_xN_y junctions using the aSi barrier and the thermal oxidation variant of SNAP were done. The best result was junctions with a definite S-I-S character, but with a reduced gap and very high subgap leakage.

During this period, S-I-S mm-wave mixers were designed with the help of personnel at the Goddard Institute for Space Studies (GISS). Fabrication had begun, but no mixer chips had been completed and evaluated.

Significant progress has been made over the past year in all the areas reported above. In the next section, deposition of high T_c , device quality, NbC_xN_y films is described. Section 3 covers all Josephson device results. Of particular significance is the development of a chemical vapor deposited germanium barrier. This barrier was initially developed on NbC_xN_y/Nb junctions. Since the barrier is grown at 380°C it should be more stable than the Si barrier under high temperatures. This is important because the potential best NbC_xN_y counterelectrodes will probably have to be deposited onto a heated surface.

Section 4 covers S-I-S mm-wave mixer results. First generation chips were fabricated and evaluated at GISS, giving good performance. A second generation chip has been designed, but masks have not yet been procured for it. The last section concludes this report with some thoughts on remaining problems in the satisfaction of the overall goal of producing useful mm-wave detectors operating at 8-10 K.

-2-

SECTION 2 NbC_xN_y DEPOSITION

The evaluation of superconducting thin films <u>per se</u> is usually made by T_c , X-ray diffraction, resistivity, composition (typically using Auger electron spectroscopy), and residual resistance ratio. For our purposes, the most important aspect of film quality is the electrical characteristics of tunnel junctions fabricated using the film. Low leakage S-I-S tunnel junctions with a very sharp rise at the superconducting energy gap are essential for successful S-I-S mm-wave mixers that can operate in the quantum limit.

All the NbC_xN_y used in this effort prior to this report was deposited by Dr. E. Cukauskas at NRL. By all the measures of film quality mentioned above, including device quality, this material is excellent. Also, as the relevant conditions affecting the film quality have come to be understood, the reproducibility of the NRL films has improved. The major problem with this arrangement has been the time required to ship wafers between NRL and SRC. In addition, wafers are subject to increased contamination and breakage or loss during shipping. In order to shorten the total time required to fabricate NbC_xN_y devices, and to expedite progress in fabricating all-NbC_xN_y devices SRC decided, during the previous contract, to develop an independent NbC_xN_y deposition capability.

An existing ion-pumped UHV system was adapted for NbC_xN_y deposition. This system is shown schematically in Fig. 1. It is equipped with an 8" diameter niobium target and a 500 W rf power supply. The anode table can be heated. However, maximum heater power is not available for more than 15 minutes due to heating of the elastomer seals in the J-arm. A CTI CT-8 cryopump has been installed directly adjacent to the chamber. The ion pumps are normally valved off during operation.

The first NbC $_{\rm X}$ N $_{\rm y}$ films were made using no anode heating. This was an attempt to emulate NRL results for ambient temperature depositions.

FIG. 1 A schematic diagram of the system used at SRC to deposit NbC_xN_y films. The ion pumps are typically valved off and not used.

It was subsequently found that the NRL "ambient" temperature was 425°C due to high rf power (1.5 kW) applied to a smaller 6" diameter cathode. Their best films deposited at this temperature had $T_c = 15.6$ K. Our best results were $T_c \sim 13.5$ K. Also, the quality of junctions fabricated using our films was very poor, whereas NRL's ambient films yielded very good devices.

Since a larger rf power supply was not available, it was not possible to duplicate NRL conditions directly. Instead, the anode was heated to 200°C during deposition. This amount of heat could be sustained indefinitely by the system. The system parameters that produce the best films are indicated in Table I. These films typically have $T_c \sim 16$ K and can be used to produce Josephson devices having low leakage and good overall quality. The NRL films are still slightly superior in terms of device quality, but the SRC films are more than adequate for device development. It is expected that the use of increased anode heat will yield better films. This improvement requires the installation of water cooling on the J-arm feedthrough.

The dependence of transition temperature on methane partial pressure is shown in Fig. 2 for SRC films deposited at ambient and at 200°C anode temperature. Also shown is the NRL "ambient" result, actually 425°C as mentioned above. The transition temperature at zero CH_4 partial pressure can fluctuate drastically, depending on the partial pressure of hydrocarbons in the system during deposition. This depends on system history. Typically, T_c will go down on successive depositions made with no methane as the system gradually "cleans" itself. Since the SRC and NRL systems are quite different, and different deposition parameters are used, the two results are not directly comparable. Nonetheless, it appears that there is a broad maximum in T_c at appropriate CH_4 pressures. Also, at higher substrate temperatures less CH_4 pressure is required to achieve high T_c films.

A few of the SRC films have been examined by Auger electron spectroscopy. The Auger system was not accurately calibrated. However, the best films show relatively large amounts of carbon. Our estimates would indicate a composition of Nb₂CN. This is consistent with NRL's result of NbC_{0.4}N_{0.6} for their best "ambient" films. The role the carbon plays in

-5-

TABLE I

.....

Parameters for Deposition of the Best NbC $_{x y}^{N}$ (~ 16 K $_{c}^{T}$) Films in SRC's System

Ar	CH4	^N 2	Time	Power	Heating
Pressure	Pressure	Pressure			
9.24 µ	.05 µ	.71 µ	30 Min	500 W	200° C Minimum

-6-

FIG. 2 The transition temperature as a function of methane partial pressure of NbC_xN_y films deposited at NRL "ambient" conditions (actually 425°C), SRC ambient conditions, and SRC heated (200°C) conditions.

these files is not completely clear at this time. X-ray diffraction results indicate a mixed (111) and (200) orientation, with lattice parameter consistent with the fcc Bl structure. Given that the ratio of (C + N)/Nb is about 1 for all the better films it is reasonable to assume that carbon simply replaces the nitrogen in the Bl structure.

Optical reflectivity data from 200 nm to 900 nm wavelength are routinely taken on all our films. The rationale for this procedure is that optical reflectivity only probes the surface to a depth of several atomic layers in a metal. This is quite close to the depth probed by tunneling, which is a coherence length, ξ_0 . ξ_0 is presumably some tens of angstroms in our films. The reasoning behind this reflectivity rationale is reflected in the excellent correlation we have observed between reflectivity at 850 nm and the quality of the tunneling characteristic of junctions fabricated from those films [4]. The optical reflectivity at 850 nm also correlates very well with the transition temperature. The very best junctions are fabricated on NbC_vN_v samples having reflectivity > 85 percent at 850 nm.

IJ

SECTION 3 DEVICE RESULTS

There are three distinct Josephson device types that have been fabricated under this contract. Two consist of NbC_xN_y lower electrodes and Nb counterelectrodes and use either the composite sputtered aSi barrier, or an n type CVD Ge barrier. The other category of devices are those using NbC_xN_y for both electrodes, which is our ultimate goal. The NbC_xN_y/Nb devices are viewed as a useful subgoal in fabricating all-NbC_xN_y devices. Since SRC has extensive experience with all-Nb devices, it is possible to concentrate on the improvement of the lower electrode and barrier. This objective has been realized, and excellent quality Josephson junctions with the NbC_xN_y/Nb structure have been fabricated using both the aSi and the Ge barrier. Recent activity has thus centered on the problem of fabricating devices. This section of the report will discuss these three major device types separately.

3.1 NbC_xN_v/aSi/Nb Devices

Under previous NRL contract support this device type had already been developed to a fairly high level [3]. It had been found that a lower power sputter etch resulted in improved I_0R and V_g . Previously sputter etches were done at 500 W for 5 minutes, the new technique used a 20 W sputter etch for a full hour. In the interest of saving time this has been changed to 100 W for 5 minutes without any deterioration in device quality. It is fairly certain that the Ar bombardment during high power sputter etching amorphotizes the NbC_xN_y surface to deeper levels. The Japanese group at Ibaraki found that this amorphous layer [5] led to a poor less dense oxide in the tunneling barrier. In our case, the tunneling barrier is deposited aSi (or CVD Ge) ;o that the deterioration may be due to degradation of the NbC_xN_y material next to the barrier.

The other improvement previously made was the use of the composite barrier that was originally developed on all-Nb junctions. This barrier

-9-

consists of a thin aSi layer, followed by a thicker hydrogenated aSi layer (aSi:H) and then another thin unhydrogenated aSi layer. The purpose of the two unhydrogenated asi layers is to prevent the hydrogenated layer from "poisoning" the niobium electrodes. It is not clear that hydrogen would "poison" $\rm NbC_xN_v$ (especially since $\rm NbC_xN_v$ is deposited in a $\rm CH_4$ partial pressure); nonetheless, for purposes of comparison and expediency, this composite barrier (aSi/aSi:H/aSi) was carried over to the NbC_xN_v/Nb structure. The thickness of the aSi:H was reduced to 3/4 that used for all-Nb junctions in order to compensate for the increased barrier height of the NbC, N, /aSi interface [3]. Otherwise the same procedure was used. Typically the aSi/aSi:H/aSi depositions are done for 15 seconds, 45 seconds and 15 seconds respectively at a V_{csh} of 640 volts, which results in a power of ~ 100 watts. The depositions are done at a pressure of 8 mT Ar, to which a partial pressure of 0.5 mT H_2 is added for the hydrogenated layer. All barriers receive a 150°C 1/2 hour 0_2 thermal treatment before being reinserted into the vacuum system for the Nb counterelectrode deposition. Niobium counterelectrode deposition and device completion using the SNAP process are identical to previously published techniques used for all-Nb devices.

The composite barrier yielded the same results on both NbC_xN_y and Nb base electrodes: The I_oR product increased and subgap leakage decreased dramatically. What was <u>not</u> done under the previous contract was to combine the lower power sputter etch with the composite barrier. This has now been done, and the result combines the improvements noted for both of those process modifications. An I-V curve is shown in Fig. 3. The relevant device parameters are: $I_oR = 1.9 \text{ mV}$, $V_m = 70 \text{ mV}$, $V_g = 3.8 \text{ mV}$ and $\Delta V_g = 0.4 \text{ mV}$ in a current density range of 50-700 A. The base electrode was NN294, deposited at NRL. This film had very high reflectivity, R = 88 percent at 850 nm. It is interesting that this film was unusual in having two NbN phases present, as evidenced by the X-ray diffraction results. This did not affect I_oR or V_m , both of which are excellent, but it is possible that ΔV_g , which is relatively large, was affected. Further systematic study will be needed to resolve this point. The available quality in these junctions is suitable for any application requiring a tunnel junction.

-10-

FIG. 3 A high quality NbC_xN_y -aSi:H-Nb device using NRL supplied NbC_xN_y .

Figure 4 is a device fabricated from SRC deposited NbC_xN_y . The barrier and counterelectrode were deposited in the same run as the device of Fig. 3, illustrating how the characteristics can vary with base electrode material.

3.2 NbC_xN_y/Ge/Nb Devices

The results on this device type have been written up for submission to Applied Physics Letters. This preprint has been included as the Appendix of this report.

3.3 All-NbC $_{x}N_{y}$ Devices

The fabrication of high quality Josephson tunnel junctions having both electrodes of ${\rm NbC}_{\rm X}{\rm N}_{\rm V}$ is the ultimate goal of this work, and also the major challenge. The problem is that the counterelectrode material within a coherence length of the barrier is most important in determining the quality of the junction, and for high T_c compound superconductors the first few monolayers deposited typically are of poorer quality (lower T_c , higher resistivity, etc.) than the upper layers of the film. NbN is perhaps the most forgiving of the compound superconductors in this regard; and the Japanese have succeeded in producing all-NbN junction of fair, but not good, quality using a native oxide barrier (they claim that their films contain little or no carbon, and can thus be truly labeled NbN) [5,6]. They found that the best junctions resulted when the substrate was at ambient temperature for the counterelectrode deposition. Raising the substrate temperature, which is generally necessary to produce higher quality NbN, resulted in reduced gap and I_R. They blamed this on interdiffusion between the oxide barrier and the electrodes. This example points out the quandry in fabricating junctions with compound superconductor counterelectrodes: The high temperatures necessary to produce quality superconducting material are likely to speed processes that result in deterioration of the relatively thin and fragile barrier and the desired sharp/clean interfaces between the barrier and the electrodes.

Another source of heating comes about from our desire to use SNAP $^{\rm -12-}$

Ľ.

FIG. 4 A companion device to Fig. 3 fabricated using SRC deposited NbC_xN_y .

type processing for junction isolation. The advantages of doing this are two: First, the barrier is formed on a clean, unpatterned, uncontaminated surface and in principle should be more uniform, reproducible and of higher quality; and second, the same integrated circuit process developed at SRC for all-Nb junctions can be applied to NbC_xN_y junctions. An integrated circuit process is required by the goal of S-I-S mm-wave mixer fabrication. Ideally, one could simply use anodization to isolate junctions, exactly as in Nb SNAP. The problem is that NbC_vN_v does not form a smooth insulating anodic oxide for voltages over ~ 5 \bar{V} . We have done numerous experiments varying the anodization rate, solution and temperature with the same negative result. Hence, as an alternative procedure for junction isolation we have used thermal oxidation (which requires an SiO₂ mask). Annealing the NbC_xN_v trilayers at 400°C for 30 minutes is sufficient to convert the entire NbC_xN_v counterelectrode (typically 600 A thick) to thermal oxide. This procedure works quite well, and offers good resolution; but even if the NbC_vN_v counterelectrode can be deposited at low temperature, the sample still has to be subjected to a relatively high temperature for junction isolation.

One clue to the resistance of a given barrier to heating can be gained by annealing junctions at elevated temperatures and looking for changes in the electrical characteristics. For our all-Nb junctions with the plain aSi barrier the critical current becomes larger when annealed for ~ 1/2 hour at 200°C. At lower temperatures they are stable. For the composite barrier the comparable temperature is 150°C. Similar behavior is exhibited by NbC_xN_y/Nb junctions with the same barriers. It can be postulated that the presence of a NbC_xN_y counterelectrode would yield a more stable junction than the Nb counterelectrode due to the greater chemical stability of NbC_xN_y (inferred from annealing NbC_xN_y films coated with SiO₂, Si and Ge at high temperatures and looking for changes). It is equally reasonable to infer a breakdown of the barrier itself and/or the superconductor/barrier interfaces.

During the previous year of this contract a NbC $_XN_y/aSi/NbC_XN_y$ junction with a Nb wiring layer, and with S-I-S tunneling characteristics was

fabricated. The gap voltage was very low, ~ 3 mV, and the subgap leakage was very large; but the fact that it was definitely S-I-S was taken as encouraging evidence that the aSi (noncomposite barrier) can at least partially survive the 400°C thermal oxidation (the counterelectrode was done at "ambient" temperature at NRL, ~ 425°C). This result has not yet been reproduced, although a few attempts have been made.

One possible confound in the above device is that an inadvertent junction could be formed between the top surface of the NbC_xN_y counterelectrode and the subsequent niobium wiring layer. To check on this a NbC_xN_y sample was processed with no tunneling barrier. The desired result, superconducting shorts, was ob .rved.

Due to the fact that the CVD Ge barrier is deposited at 380° C, it can be postulated that it might be more temperature resistant than a barrier formed at lower temperatures. Attempts were made to complete devices of this structure, but insufficient time was available. It is our opinion that this structure represents the best possibility for fabricating all-NbC_xN_y junctions with very high quality tunneling characteristics.

SECTION 4 MIXER RESULTS

All-niobium S-I-S mixer chips designed at GISS have been successfully fabricated and tested. The fabrication is identical to our logic fabrication process [7] with the exception that no resistors are used. Testing was done at GISS. The chips supplied were lower resistance than desired, and also had higher leakage than our "best" junctions. Nonetheless, GISS observed a noise temperature of 60 K and a conversion loss of 5 dB. They consider these results fully comparable to their results with Pb-alloy junctions.

GISS also found that a major source of conversion loss (~ 2 dB) was due to the Cr-Au choke structures they have been using. We have recently delivered to GISS choke structures fabricated from niobium, with small gold pads in the bonding areas.

GISS has developed a second generation mixer design which uses a series capacitance and inductance to shunt the junction detector array. They expect much broader bandwidth coupling of the rf to the mixer with this design, and consequently improved performance. This design has been digitized at SRC but masks have not been fabricated.

SECTION 5 CONCLUSIONS

Excellent progress has been made on all aspects of this project except one: The fabrication of $all-NbC_xN_y$ junctions of good electrical quality using integrated circuit compatible fabrication techniques. As discussed in the section on $all-NbC_xN_y$ devices there are fundamental reasons why this is a difficult problem. The problem is not intractable, as demonstrated by our poor quality S-I-S result, NRL results [8] and the Japanese results [5,6]. Not all the above results are IC compatible, but they demonstrate that the basic problem of junction fabrication can be overcome.

Although the production of good quality NbC_xN_y appears to be in hand, the quality is evaluated in terms of the suitability of the material for base electrodes. It is quite possible that as future work on all-NbC_xN_y devices continues, the deposition parameters for NbC_xN_y will have to be adjusted in different ways to produce high quality for the counterelectrode.

SECTION 6 REFERENCES

- S. Wolf, I. Singer, E. Cukauskas, T. Francavilla, and E. Skelton, J. Vac. Sci. Technol., <u>17</u> (1980) 411.
- 2. E.J. Cukauskas, J. Appl. Phys., 54 (1983) 1013.

- D. Jillie, H. Kroger, and L. Smith, Final Report on NRL Contract No. N00014-81-C-2525, Sept. 1982.
- 4. D. Jillie, H. Kroger, L. Smith, E. Cukauskas and M. Nisenoff, Appl. Phys. Lett., <u>40</u> (1982) 747.
- 5. M. Igarashi, M. Hikita and K. Takei, Proceedings of the International Conference on Cryogenic Materials, Colorado Springs, CO, USA, August 1983.
- 6. A. Shoji, F. Shinoki, S. Kosaka, M. Aoyagi and H. Hayakawa, Appl. Phys. Lett., <u>41</u> (1982) 1097.
- 7. D. Jillie, L.N. Smith, H. Kroger, L. Currier, R. Payer, N. Potter, and D. Shaw, IEEE J. Solid State Circuits, (1983).
- 8. E.J. Cukauskas, M. Nisenoff, H. Kroger, D. Jillie, and L. Smith, Proceedings of the International Conference on Cryogenic Materials, Colorado Springs, CO, USA, August 1983.

.

.

- 19-

JOSEPHSON TUNNEL JUNCTIONS WITH CHEMICALLY VAPOR DEPOSITED POLYCRY STALLINE GERMANIUM BARRIERS

H. Kroger, D.W. Jillie, L.N. Smith,

L.E. Phaneuf, C.N. Potter and D.M. Shaw Sperry Research Center

> E.J. Cukauskas and M. Nisenoff Naval Research Laboratory

> > -20-

Abstract

High quality Josephson tunnel junctions have been fabricated whose tunneling barrier is polycrystalline germanium chemically vapor deposited on a NbN base electrode and covered by a Nb counterelectrode. These junctions have excellent characteristics for device applications: values of V_m (measured at 2 mV and 4.2 K) ranging between 35-48 mV; ideal threshold curves; a steep current rise at the gap voltage; and current densities in the vicinity of 1000 A/cm². This letter reports the fabrication of high-quality Josephson tunnel junctions whose tunnel barrier is a chemically vapor deposited (CVD) polycrystalline layer. The lower electrode is niobium nitride deposited by reactive sputter deposition, which has recently been described in detail.¹ The barrier is germanium deposited by pyrolysis of germane² at 380°C in a room pressure reactor. The upper electrode is niobium deposited by dc-magnetron sputtering. The mutual isolation of devices is obtained by the selective niobium anodization process (SNAP).³

The NbN films used in these experiments are deposited at the Naval Research Laboratory and are given a low power sputter cleaning in argon at Sperry Research Center just before the wafer is introduced into the CVD reactor.⁴

The germanium layers are deposited in a conventional, cold wall, horizontal flow CVD reactor whose operation (heating, introduction of gases, etc.) is automatically sequenced. The substrate is placed on a graphite susceptor which is inductively heated and the wafer is brought up to the deposition temperature in a pure argon atmosphere. The premixed gases which are introduced for film growth are argon, germane and arsine for the devices described here. Total flow is 55 cm³/min, with 3.6 percent of the flow being GeH_A and 0.027 percent being AsH₃.

The deposition time of these barrier layers was about two minutes. We estimate the thickness to be 30-60 A based upon the growth rates and -22thickness measurements of thicker films. The large uncertainty in the barrier thickness arises from a suspicion that the initial growth rate is smaller than the limiting growth rate (~ 25-30 A/min) obtained for thick (> 0.1 μ m) layers.

Following the deposition of the polygermanium layer, the layers are exposed to an 0_2 atmosphere at 400°C for 20 minutes. This is a precautionary step taken to oxidize the base electrode through pinholes in the barrier, and the (unconfirmed) possibility that such pinholes exist. No visual change in the barrier takes place during the oxidation treatment. Immediately before the Nb counterelectrode is deposited, the barrier is cleaned by sputter etching at a low applied power using the same techniques as previously described.^{5,6}

We infer from examination of thicker layers $(0.5 - 2.0 \ \mu\text{m})$ that the germanium films are crystalline. X-ray diffraction shows that the films have a mixed (110) and (111) orientation. The magnitude of the room temperature resistivity is less than 1 Ω -cm, which is considerably lower than one would expect for amorphous germanium. Also the resistivity of these layers initially decreases as the temperature is lowered below room temperature, which would not be expected for amorphous materials. These n-type layers are not degenerately doped and become bulk insulators at 4.2 K.

We observed a slower growth rate of both germanium and silicon with the addition of either phosphine or arsine to produce n-type layers; a similar reduction in growth rate of CVD amorphous n-type silicon has been observed by -23Taniguchi et al.⁷ The slower growth rate, rather than the n-type doping, may be more important for practical considerations since the thickness of a more slowly grown layer should be more easily controlled.

Figure 1 displays the current-voltage characteristics of a 10 μ m x 10 μ m square device at 4.2 K. The critical current density J_c is ~ 560 A/cm². The superconducting energy gaps are 2.65 mV for the NbN electrode and 1.35 mV for the Nb electrode. The differential resistance at zero bias of the quasiparticle characteristic is ~ 100 times that of the normal resistance of these devices. The V_m parameter (product of I_c and the subgap resistance measured at 2 mV) is 41 mV for this particular device. The range of observed V_m on this wafer was from 35-48 mV. The product of I_c and the normal resistance is 1.8 mV. The jump in the quasiparticle current is relatively abrupt, with the change from 30 percent to 80 percent of the full gap current spanning approximately 50 μ V.

Figure 2 displays the threshold curve obtained from another device whose $J_c \sim 1100 \text{ A/cm}^2$. Note that under even a four-fold expansion of the current scale the minima are close to zero. Moreover, the ratios of the heights of the secondary maxima to the zeroth order maximum are as expected for a $|\sin x/x|$ curve to within experimental accuracy. (We estimate that the Josephson penetration length is comparable to the device dimensions.) This indicates that the Josephson current density is extremely uniform over the entire area of the device. This is a comforting observation since the

-24-

FIG. 1 I-V characteristics of a NbN-polygermanium-Nb at 4.2 K. Also shown at 10 times expansions of the current and voltage scales to show more clearly the subgap current and jump in current at the gap, respectively. (The origin of the 10 times expanded voltage trace is not on the figure.)

FIG. 2 Threshold curve (I_c vs. applied magnetic field) of a companion device. Also shown is a four times expansion of the current. Threshold curve is almost exactly a |sin x/x| function.

discrete grains of a polycrystalline film could result in poorer thickness uniformity than an amorphous layer. We assume that the uniformity implies a very small grain size.

We have fabricated similar structures with a CVD polycrystalline Si barrier. These devices had fairly good threshold curves but large subgap leakage currents. We are not certain whether the superior results obtained with the germanium barriers are intrinsic to this material or if this merely reflects evolution in technique or quality of the NbN base electrode material. We have previously observed that the device quality of NbN-a5i-Nb junctions is extremely sensitive to the quality of the NbN, especially its transition temperature T_c and its optical reflectivity at 850 nm.^{4,8}

We have also fabricated devices with degenerately doped p-type Ge layers which resulted in both Josephson and super-Schottky barrier devices,⁹ qualitatively similar to those fabricated by Huang and Van Duzer on degenerately boron-doped single crystal silicon membranes.¹⁰ The behavior of our p^+ Ge barrier devices will be more fully described in subsequent publications.

(1)ないとう (1) (1) (1)

The use of niobium nitride as a base electrode, rather than niobium, is crucial to the successful fabrication of this type of device structure, because Nb reacts with the barrier at the elevated temperatures required for the CVD of both Ge and Si.¹¹ We observed that reactions between Si and Nb occur not only for CV deposited Si, but also when attempting to crystallize -27-

amorphous silicon layers previously deposited on niobium. At about 300°C, a blue layer forms whose color does not appear to be related to interference and a disruption of the Si-Nb interface is observed. On the other hand, CVD layers of Si and Ge deposited on NbN substrates do not show any obvious signs of reaction even at temperatures as high as 800°C and 600°C, respectively.¹²

In summary we have described the fabrication and the electrical characteristics of NbN-cGe-Nb Josephson tunnel junctions whose barrier is deposited by chemical vapor deposition. While these characteristics are easily good enough for many digital and S-I-S mixer applications it may not be the quality of the devices which is most significant. (Indeed, these structures are not the "best" we have ever fabricated.) Rather, it may be that the method of barrier deposition is more important. The many person-years invested in developing chemical vapor depositions for the semiconductor industry could be further exploited to improve the manufacturability of these devices. Finally, because of the high deposition temperature, it may be possible to use thermal oxidation to isolate an upper niobium nitride electrode in a variation of SNAP previously suggested, ³ without risking disruption of the barrier.

One of the authors (H.K.) acknowledges a valuable discussion on the chemistry of niobium and niobium compounds with M. Kestigian. The work at Sperry Research Center was supported in part under Naval Research Laboratory Contract No. N00014-C-2525.

References

- 1. E.J. Cukauskas, J. Appl. Phys., <u>54</u>, 1013, (1983).
- 2. L.H. Hall, J. Electrochem. Soc., <u>119</u>, 1593-1596, (1972).
- 3. H. Kroger, L.N. Smith, and D.W. Jillie, Appl. Phys. Lett., 34, 280, (1981).
- D.W. Jillie, H. Kroger, L.N. Smith, E.J. Cukauskas and M. Nisenoff, Appl. Phys. Lett., <u>40</u>, 747, (1982).
- 5. L.N. Smith, J.B. Thaxter, D.W. Jillie and H. Kroger, IEEE Trans. Magn., MAG-18, 1571, (1982).
- H. Kroger, L.N. Smith, D.W. Jillie and J.B. Thaxter, IEEE Trans. Magn., MAG-19, 783, (1983).
- 7. M. Taniguchi, Y. Osaka and M. Hirose, J. Electronic Mater., 8, 689, (1979).
- E.J. Cukauskas, M. Nisencff, D.W. Jillie, H. Kroger and L.N. Smith, IEEE Trans. Magn., MAG-19, 831, (1983).
- D.W. Jillie, H. Kroger, L.N. Smith, E.J. Cukauskas and M. Nisenoff, Bull. Am. Phys. Soc., <u>27</u>, 639 (1982).
- 10. C.L. Huang and 1. Van Duzer, IEEE Trans. Electron Device, ED-23, 579, (1976).

11. H. Kroger, C.N. Potter and D.W. Jillie, IEEE Trans. Magn., <u>MAG-15</u>, 488, (1979).

12. H. Kroger, U.S. Patent 4,220,959, 1980.

REPORT DISTRIBUTION LIST

E

Ľ

Naval Electronics System Command Washington, D.C. 20361	
Attn: Mr. R. Wade (Code 614) Attn: M. J. P. Letelier (Code 614)	1 1
Office of Naval Research 800 No. Quincy Street Arlington, Va. 22217	
Attn: Mr. E. A. Edelsack (Code 414) Attn: Mr. M. Yoder (Code 414)	1 1
Army Research Office Box CM, Duke Station Durham, N.C. 27706	
Attn: Dr. C. Bogosian	1
Air Force Office of Scientific Research Bolling Air Force Base Bldg. 410 Washington, D.C. 20332	
Attn: Dr. M. Swerdlow	1
Defense Documentation Center	
Cameron Station Alexandria, Va. 22314	12
Naval Research Laboratory 4555 Overlook Road, S.W. Washington, D.C. 20375	
Attn: Code 1231 Attn: Code 6854	1
Attn: Code 2627	6
Advisory Group on Electronics 201 Varck Street	
New York, N.Y. 10014	
Attn: Working Group B	1
Defense Advanced Research Agency 1400 Wilson Avenue	
Arlington, Va. 22209	
Attn. Dr. A. I. Bruckheim	1

-31-

1.1

•

Attr	n: Dr. L. Ishol	
11 C Army F1	lectornic Technology and Device Laboratory	
DRSEL-TL-ES	recounte reclaiology and people amonatory	
Fort Monmouth	h, N.Y. 07703	
Attr	n: Dr. F. Rothwarf	
Laboratory fo	or Physical Sciences	
4928 College	Ave	
College Park,	, Ma. 20740	
Attr	n: Dr. N. Welker	
National Bure	eau of Standards	
Cryoelectroni	ics Section	
Electromagnet Boulder, Co.	tic Technology Division 80302	
Attr	n: Dr. R. Harris	
Attr	n: Dr. C. Hamilton	
National Bure Gaithersburg,	eau of Standards , Md. 20234	
Attr	n: Dr. L. Holderman	
Prof. R. Buhr	rman	
Department of	f Physics	
Clark Hall		
Cornell Unive	ersity	
Ithaca, N.Y.	14853	
Prof. M. R. I	Beasley	
Department of	f Physics	
Stanford, CA	94305	
Prof. B. S. I	Deaver, Jr.	
Department of	f Physics	
University of	f Virginia	
Charlottesvil	11e, va. 22901	
	hards	
Prof. P. Ricl		
Prof. P. Ricl Department of	f Physics	

٠.

.

٠. .* Prof. D. E. Prober Recton Center Yale University New Haven, CT 06520 1 Prof. M. Tinkham Department of Physics Harvard University Cambridge, MA 02138 1 Prof. R. Mattauch Department of Electrical Engineering University of Virginia Charlottesville, Va. 22901 1 Sperry Research Center 100 North Road Sudbury, MA 01776 Attn: Dr. D. W. Jillie 1 Attn: Dr. H. Kroger 1 SHE Corporation 4174 Sorrento Valley Road 1 San Diego, CA 92121 Attn: Dr. W. Black Texas Instruments 13500 N. Central Expressway Post Office Box 6015, M/S266 Dallas, TX 75222 1 Attn: Dr. F. D. Colegrove TRW, Defense and Space Group One Space Park 90278 Redondo Beach, CA 1 Attn: Dr. A. H. Silver (R1/1086) 1 Attn: Dr. R. Davidheiser (R1/1086) Westinghouse Research Center 1310 Beulah Road 15235 Pittsburgh, Pa. 1 Attn: R. Blaugher

-33-

