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A COMPARISON OF EXPLICIT TIME INTEGRATION TECHNIQUES
FOR THE FINITE ELEMENT SHOCK WAVE EQUATIONS

INTRODUCTION

Many physical flow processes are governed by nonlinear hyperbolic equations of the form

%f-+v-<vo)=-rtv, G) (1

where G is one of perhaps several conserved quantities, V is the velocity field and £ is a specified func-
tion of V and G. Many procedures have been developed for obtaining numerical solutions of Eq. (1).
A large number of the procedures which have used finite-difference techniques were reviewed by
Roache (1) in his classic text Computational Fluid Dynamics. Other, more recent, finite-difference tech-
niques for the solution have been reviewed by Sod (2) and by Book, et. al. (3). These references
clearly show that very accurate and very sophisticated finite-difference techniques have been developed
for the solution of Eq. (1). However, in many of these finite-difference methods a serious difficulty is
encountered in applying the methods to problems with complex flow boundaries. This can be particu-

larly true for the more accurate methods which refy on the use of a "staggered” mesh.

A more natural way of treating complex flow boundaries is through finite element discretization of
the spatial derivatives in Eq. (1). In the finite element method — a very good introduction is given in
the text by Baker (4) — the region of interest is divided into subspaces {or elements) over which the
dependent variables are approximated by shape funciions. The constraints on the shape function
coefficients of the boundary elements then naturally provide the proper treatment of complex flow

boundaries.

Recent work by many researchers — see for example The Proceedings of the First International
Conference on Numerical Methods in Laminar and Turbulent Flow (5) — has indicated that the finite ele-
ment method (FEM) has considerable promise for providing numerical solutions for fluid flow prob-
lems. However, the experience base in using the FEM in fluid flow research is limited, especially when
compared with finite-differences and there are as yet few guideposts 10 help a researcher select the most

promising paths. The need for systematic evaluation of some of the many approaches in using the
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FEM was at least partially met by the work of Morrell, et al. (6). In Ref. (6), the solution to the con-
stant velocity advection equation was obtained by the use of four finite element spatial discretizations
and six explicit, two-step time integration procedures. Results were given for the advection of two
different density distributions; the first a cosine hill with smooth edges and the second a square hill with

abrupt edges.

In the present work, we attempt to provide further guidance by a systematic evaluation (much like
that of Ref. 6) of some promising approaches for solution of the shock wave equations. As in Ref. §,
we use four distinct approaches to the finite element spaiial discretization and six procedures for the
time integration. Since the shock tube problem is characterized by sharp fronts and large gradients, the
square hill results of Ref. 6 should be more appropriaie for comparison with the present resuits than
the cosine hill tesults. We find several areas of substantial agreement. For example, the Lax-Wendroff
second order accurate time integration tends to yield oscillatory results. Compared with the Lax-
Wendroff time integration. the Godunov first order accurate approach is quite diffusive. However, here
the effect of the diffusiveness is not detrimental but is beneficial and the best results are obtained with

the Godunov time integration.

NUMERICAL METHOD

The governing equations of gas dynamics are given in many different forms by various writers.

For example, Bird. Stewart and Lightfoot (7) give them as below:
continuity,

Do | _ .y (240
Dr pV - ¥ 1

momentum (neglecting viscous and body forces),

DV 5
——— R — - )
P 5 vp (2b

energy {neglecting viscous forces and heat flow),

pg—E--—V-pV 12¢)




where p is the density, V is the velocity, p is the pressure and E is the energy per unit mass. After
some rearrangement of terms, Egs. (2) may be rewritten in the following form which will be more

appropriate to our solution procedure:

B g . vao (3a)
a7
- _Laatv +V - -pVV=—Yp (3b)
4
and 5
e
g . - (
E v; Y, +V eV v -pV 3c)
-~ where e is the energy per unit volume. Equations (3) are now in the form of Eq. (1).

We next restrict the equations to one dimension and shift the right hand side term to the left

hand side, yielding

3 + ax ou) =90 43)
agu i) ? 3 (
Y, + Bx pu’) + I (p) =0 4b)
8e . & 8 - .
a1 + Y (eu) + Y (pu) = 0 (4¢)

where u is the velocity in the x direction. As given by Sod (2), ¢ may be written as
1 2 "
e=pe— 3 pu (%)

where € is the internal energy per unit mass. For a perfect gas

€= LB ()
y-—1

where y is the ratio of specific heats. Equations (5) and (6) may be combined 1o give the pressure

explicitly as

. N

p=(y- l)Ie- %pu2

The governing equations (4) here are in a common form convenient for solution as

3, 90 _
E 9 + XY 0 (¥




where
P m
g=tm and Q = {mu + p
e eu + pu,
and where m = pu. We now turn to the task of developing an appropriate solution procedure based

on the finite element method.

Finite Element Solution Pror lure . ‘ ;

Much as was done in Ref. 6, we shall limit the scope of the present work to time integration

- schemes which require a knowledge of the dependent variables only at the nodal points of the finite ele-

ment grid. Also, we will consider only explicit time integration schemes, to ensure fast, efficient calcu-

lations. .

In solving Eq. (8) by the finite element method, the domain of interest is divided into sub-
domains or elements of finite dimension. The dependent variable g (here, actually variables) are

approximated over each element by ¢° as follows

X
g°tx, 1) = ¥ RN, (x) (9a)

j=1
where RS(1) are a set of discrete values representing the dependent variable at the nodes (or grid
points) of the element, and N,(x) (which are taken 1o be of the same form for each element) are a set 5
of interpolating polynomials (also called shape or basis functions) of order K — 1 where K is the
number of nodes per element. Likewise the variable Q (which is a function of ¢ and xand 0 is approx-

imated by Q" as

K
0. ) = T TN, (x) (9b)
r=l

where the N, are the same interpolating polynomials as in Eq. (9a) and the 77 are the set of discrete
values of Q° at the nodal points. It is clear that since ¢¢ and Q' are approximations they would not
satisfy equation (8) but would give some error, say £7%x, r). Thus for the approximations on each ele-

ment, Eq. (8) becomes

i [ i L) 1 f -
57 (40 + 52 (@) = Eten). (10

Thus, we seck a solution for R’ and T (for any assumed ¢* and Q") which will minimize E(x, 1).

The minimization of £(x, 1) requires that the error E7(x. 1) be orthogonal with N, (x) for each ele-

ment, therefore,




SV B oNd=0 j=1, . K (1

-

where L* is the element length. Substitution of Egs. (9) into Eq. (10) and then into Eq. (11) gives the
finite element discretization equation for each element, i.e.
MR + [K(T) = {0) (12)
! where
f Le
' (M) = m, = [ NONOd =1 .. K (13a)
? -
(K= k, = [ NONd i j=1. ... K (13b)
{R7) = (RS, RS, ... RE)T (13c)
i
(re) = {15, 1%, ..., T} (13d)

and where the prime denotes spatial differentiation and the dot denotes time differentiation. When Eq.

(12) is written for each element and when the element connectivities are considered, the following sys-

. tem of global equations are obtained

f (IR + [K)T) = (0) (14a)

{R] - (Rlv Rz. ey R'\'lr (14b)

(T} = (T Th ... )T (140)

’ and where [M] and {A] are the global "mass” and "stiffiness” matrices and N is the total number of

nodes in the discretization. We next need to specify the forms of the [M*] and (K] matrices.




|

Linear Elements

One of the simplest elements that can be used in the finite element method is the linear element;

i.e., a first-order interpolating polynomial and for Eqs. (9) K = 2 and ¢¢ and Q¢ will be given by

¢° = RN, + RSN,

and
Q°=TiN, + T3V,
where
Ny=1-(x/L"
Ny= (x/L®) (15)

and where Rf and T¥ are the values of ¢° and Q° at x = 0 and Ry and T¥ are the values at x = L (L*
is the element length). Substituting Eq. (15) into Eq. (13a) and integrating for i, j = 1 to 2 gives the

elemental mass matrix
. L2 1
M) = TI‘ 2]. (16

Likewise. after differentiating Eqs. (15) and substituting into Eg. (13b), the elemenial "stiffness" matrix

is obtained
, 1 I-11 .

Equation (12) can then be written for each element as
Lo 12 I {R: ril_ o
?[1 2““_ [7" = 1ol (g

The assembled mass and “stiffness™ matrices for the linear elements are given in Appendix A.

[_
g

+

1
2

Parabolic Elements

Also commonly used is the parabolic element, i.e., one using a second-order interpolating polyno-
mial. In Egs. (9) K = 3 and ¢" and Q" will be given by

g" = R{N, + R4Ny + RSN,




Q°= TIN, + TiN, + T3N;
where
Ny=1-=3(x/L) + 2x/L*)?

Ny = 4(x/L®) - 4(x/L%)? (19)

Ny=— (x/L) + 2(x/L)?

and where RS, R¢, R§, T, T3, and T% are the values of g*and Q¢ at x = 0, x = L/2 and ai x .5
respectively. Substitution of Egs. (19) for the shape functions into Eq. (13a) and integrating giv.
following for the elemental mass matrix

L 4
(M) = =1 216 2. (20)
30 2

Likewise, integration of Eq. (13b) after differentiating Egs. (19) and substitution gives the following for

the elemental "stiffness” matrix

-3 4 -1
(K*) -% -4 0 4 (an
| -4 3

Then for the parabolic element, Eq. (12) can be written as
Lo 4 2 -1 R ] -3 4 -l T 0
— 1216 2{RS}+—]-4 0 4 9 = {01¢. 22)
30 . 6 '.
-1 2 4f|Rs 1 -4 3|75 |0

The corresponding assembled mass and "stiffness” matrices are given in Appendix B.

Condensed (M| Matrix Formulation

In seeking a solution of Egs. (14a), it is convenient to rewrite it as
{R) = - IMI'KYT) (23)

where [M)~! denotes the inverse of [M]. Generally, [M] is a large. sparse matrix and the calculation

of [M]-! (which is a full matrix) can be very time consuming. The process of condensing the mass

7




ro

matrix, i.e., collecting the off diagonal terms to the diagonal, is a popular procedure Ref. (4) for avoid-

ing this time consuming martrix inversion.

Thus, we define the condensed mass matrix [M ] as follows

N
My =S m,,
AR I Z‘; Y=l N

me,; =0, i i j=1 ... N (24)

where the m, are the entries of [M] and N is the rank of [M]. The matrix [M.] now replaces (M} in Eq.
(14) and Eq. (23) becomes

(R} = — IMJUKNT). (

[2¥]
hn

We note that this condensation is mass preserving.

With either Eq. (23) or (25) we have a means of calculating the time derivative of the dependent
variables from known quantities. What remains to be developed are the procedures for advancing the

dependent variables in time.

Time Integration Schemes

In this present work we restrict our choice of methods for advancing Ec (23) or (25) in time to
standard two siep methods. In particular, we choose two methods which we will refer to as the Lax-
Wendroff and Godunov methods (see Ref. 2).

We assume that the nodal variable values at time step n are known, i.e.. {R"} (and thus also
{T"}). The solution at time step n + 1 is sought and the time increment is Ar. The standard two step

method can be written as

Iststep  [R"*)} = {R"} + ads{R") (26a)
and

Indstep  {R™*'} = {R"} + Ar{R") (26b)

where a is between 0 and 1. The time derivative {R"} is determined from Eq. (23} or (25) using {R"}
and thus {T7}) and subsequently {R"*?} is determined from Eq. (23) or (25) using {R"*"] (and thus
{77*2]) caiculated from Eq. (26a). In the solution procedure that is used, we also considered several
types of weighting or smoothing and so we modify Eq. (26a) by premultiplving [R"} by a weighting
matrix [ W], and Eq. (26) became




Iststep {R"™°) = [W](R") + aAt{R") (27a)
and
ndstep  {R") = [R"'}) + Ar{R"*") (27b)

and we see that if [H] is taken to be the identity or unit matrix [I], then Egs. (26) and (27) are exactly

equivalent.

The two well known methods which are embodied in Eqs. (27) are the Lax-Wendroff method

when a = 1/2 and the Gudonov method when a = 1. The Lax-Wendroff method first estimates the

- time derivative at the mid-point of the time siep and then uses the mid-point value to siep ahead 10 n
+ 1. The Goduov method first estimates the time derivative at a full time step ahead and then uses

this estimate to advance the variabie values to n + 1.

In addition to the standard two-step methods represented by Eqgs. (26), we consider the (wo vpes
of smoothing in the time integration considered in Ref. (6). For the standard weighting. we choose
{1 = {11, the identity matrix. and we will refer to the standard Lax-Wendroff and standard Godunov

methods.

For the modified two-step methods (to use the terminology of Ref. (6)). the weighting matrix

(W, ] is derived fram the global mass matrix [M) and
m'/
[W”,]—*wm,,=—a- ij=1, ... N (284!

where

C=3m, (28b)

and where the m, are the terms of (] and N is the rank of [M]. Here C, is the sum of all terms in
row i of [M] and thus the sum across row i of [W,] is unity. For the modified iwo-step method. {#,.]
replaces [W] in Eq. (273). For a = 1/2 we have the modified Lax-Wendroff methed and for a = 1.
the modified Godunov method.

The second type of weighting that we consider leads to the "smoothed" two-step methods. For

. these methods, [#] = {W,] and
wwr-o- i-l....,N' 29.1)
(W) — m,  i®jii=1 ... . N (29
w\ll - _6'
9
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where

N
C=3 m, (29b)
=1

=

and where as above m,, are the terms of [M] and N is the rank of [M]. Here C, is the sum of the terms
of the ith row of [M] excepting the diagonal term. As for the modified and standard methods, the sum
across row ith of [W,] is unity. In the smoothed two-step methods, we have the smoothed Lax-

Wendroff method .nd the smoothed Godunov method.

Of course, for each of the two-step methods, we consider both regular and condensed finite-

element formulations with both linear and parabolic elements.

TEST PROBLEM

As a test probiem for the numerical method, we have selected the same shock tube problem and
conditions as used by Sod (2). Initially all velocities (i.e., momenta) are zero, the pressure and density
on the high pressure side of the diaphragm (region 1) are given by p, = p, = 1.0 and on the low pres-
sure side (region 5) ps = 0.1 and ps = 0.125. The diaphragm is located a1 x = 0.5 and the x domain
extends from 0.0 10 1.0. Except for some special test cases noted below, the step sizes were chosen to
be Ax = 0.01 and Ar = 0.001, yielding a Courant number of 0.22. At the diaphragm we chose 1o
specify the initial pressure and density as an average of the region 1 and 5 values. i.e., p;o = 0.53 and
pso ™ 0.5625. This does have the effect of initially spreading the shock over two zones of the grid but
such an average for the initial conditions seems to be necessary in the present numerical method.
Numerous tests were made of alternate starting conditions including variations in both Ax and A+ The

results of these tests will be discussed later.

At each end of the shock tube we chose open or outflow boundaries. Since our concern was with
the propagation of the shock front and not the reflection of the shock from a closed end of the tube.
these boundaries were acceptable for this work and slightly simplify the problem. A small difficulty was
encountered in some of the calculations in the form of small numerical oscillations which propagated at
about two times the shock speed and could reflect off the open end of the tube with quite adverse
effects. In order 10 ensure that a smooth solution was obtained until the shock passed x = 0.75 4
extra points were added at each end of the tube with progressively increasing spacing. These extra
points tended to damp the reflection of the numerical oscillations from the open ends of the shock

tube

10




NUMERICAL RESULTS

For each of the cases considered, we show the present numerical results plotted against the ana-
lytic results for density, velocity, pressure and internal energy. The analytic solution values were com-
puted for the grid points used in the finite element formulation. Thus, even for the analylic solution
the shock front (and also the contact surface) is not exactly perpendicular to the x-axis but is plotted as
covering one zone. We categorize the present results according to the type of weighting used. i.e.,
unweighted, modified weighting. or smoothed weighting. Within each category we discuss the results
for the regular finite elements method (FEM) and the condensed finite element method (CFM). For

each of these we consider the two types of elements and the two types of time integration.

Unweighted Method Results

For the results in this section, the weighting matrix used in Eq. (27a) is the identity or unity
matrix. For each case considered, we show the present numerical results plotied as circles and the
exact analytic solution plotted as a solid line. As was done by Sod in Ref. (2) we show the density,

velocity, pressure and internal energy at time t=0.14 (i.e., at the time when the shock front reaches x

= 0.75).

The first results that we consider are for standard FEM for the Lax-Wendroff (L — W) type of
time integration. The resuits for time t=0.14 {(i.e., when the shock has moved to x = 0.75) are
shown in Fig. 1 for the linear element formulation and in Fig. 2 for the parabolic elements. Several
features of the numerical resuits stand out in these figures. The most obvious are the large oscilla-
tions in the solution between the shock front and the foot of the rarefaction zone. One should note
that (1) this method (L — W) is non-diffusive, (2) there is no weighting or smoothing in the solution.
and (3) there is no artificial diffusion in the solution procedure. Here the shock is defined over only

two zones. and the contact surface is spread only over two zones. Thus, without some diffusivity. these

oscillations are not surprising.

Small scale oscillations are noted at about x = 0.1 and 0.9. These are the numerical oscillations
mentioned above which propagate at about twice the shock velocity and have no physical significance.
In other results where there is weighting or some diffusivity these numerical oscillations are either
smaller in amplitude or absent altogether. We also note that the numerical results agree almost exacth
with the analytic results in the rarefaction zone. The solution with the parabolic elements shows large
oscillations. a larger overshoot in front of the shock and perhaps also a stecper shock and contact
discontinuity than the sofution with the linear elements. This is in kecping with the observation of

some rescarchers (c.g. Baker, Ref. 8) that the parabolic element formulation seems to be antidiffusinve.

il
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For these two cases, the excellent numerical results for the rarefaction region and steepness of both the

shock and contact surface are more than offset by the large osciliations in the solutions.

The Godunov time integration method is recognized as being highly diffusive (see, for example,
the results of Morrell in Ref. 6). The numerical results for the standard FEM with Godunov time i
integration are shown in Figs. 3 and 4. Compared with Figs. 1 and 2, the oscillations are nearly, but '
not quite, eliminated. We see severat additional effects of the diffusivity of the method. At the front
of the rarefaction zone, at x = 0.35, the Godunov results do not as accurately follow the -aalytic solu-

tion as do the L — W results. Also, the contact discontinuity is spread over four zones instead of over

two zones. The results for the linear element are slightly better than for the parabolic element. pri-

marily because there is a large undershoot in the internal energy at x = 0.76 for the parabolic element.
and almost no undershoot for the linear element case. There are also slightly more oscillations in the
rumerical solution for the parabolic element. Both of these effects appear to be attributable to an
antidiffusive character of the parabolic element. These results are quite good and we will compare
these results with some of the results in Sod's paper (Ref. 2) after we discuss other results of the

present method.
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The numerical results for the condensed finite element method (CFM) are shown in Figs. §-8. In
comparison with Figs. 1-4 we see some diffusivity with the CFM but some strong adverse effects as
well. Numerical results are not shown in Fig. 6 because of the unbounded growth of the spike in the
solution at x = 0.5. Here, the antidiffusive nature of the parabolic elements combined with the pecu-
liarities of the CFM caused the solution to blow up. For the linear elements (Figs. 5 and 7) there is a
small spike at x = 0.5 which is primarily visible in the plot of the pressure. For the parabolic elements
(see Fig. 8) the spike at x = 0.5 is quite large and a similar, even larger spike existed in the numeric
solution for the CFM parabolic element, L — W time integration at 1 = 0.13 (ten time steps earlier).
The Godunov time integration did slightly damp the growth of the spike but not sufficiently, as that
solution blew up by ¢ = 0.16 (twenty steps later). For the linear element. the shock is spread over
three or four zones and the contact discontinuity is spread over six or seven zones. Considering the
apparent diffusive nature of the CFM, it is somewhat surprising that the linear Godunov case has

larger overshoots in three places than does the FEM linear Godunov case. (1) behind the shock, (2) at
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the contact discontinuity, and (3) at the root of the rarefaction zone. The principal benefit that might

accrue to the use of the CFM instead of the standard FEM would appear to be if an adjustable grid

were being employed and the {M] and [M]~! matrices needed to be recomputed frequently.

Modified Weighted Method Results

The two principal effects of the use of the modified weighting matrix in Eq. (27a) is to introduce
some damping or diffusivity into the system and to more strongly connect the variable values at each
node with those at neighboring nodes. By the nature of the mass matrix, this later effect should be
more pronounced for parabolic elements than for linear elements. Figures 9-12 show the numerical

results for the standard FEM when the modified weighting matrix is used.

For the Lax-Wendroff time integration, the oscillations have been greatly reduced but are stil! not
acceptable. The shock is spread over three or four zones and the contact discontinuity is spread over
five or six zones. A mild overshoot exists for both elements at x = 0.5. These results seem 10 suggest

that some artificial viscosity for the L — W integration might be very useful.

For the Godunov time integration, the coupling between neighboring points leads to some
overshoots (at x = 0.5 and 0.7) although for the parabolic element, these are not at all severe. The
shock is spread over two or three zones and the contact discontinuitv is spread over four or six zones.
In all four cases, the damping due to the modified weighting prevents the numerical results from fol-
lowing the corner at the rarefaction front at x = 0.3 as well as was done for the unweighted. standurd
FEM. As was true in the results discussed above, the shock front and contact discontinuity were spread
over fewer elements when the parabolic element was used than where the linear element was used. In
particular. the plateau in the internal energy between x = 0.62 and 0.74 is significantly better defined

with the parabolic element.

For the modified weighting matrix used with the condensed finite element formulation. damping
is again evident in the results, which are shown in Figs. 13-16. The numerical results seem to be con-
sistently poorer than for the standard FEM. For 1he linear elements (Figs. 13 and 15) the contact
discontinuity is nearly obscured (see the plots of density) and except for the parabolic eiement,

Godunov time integration case, the plateau in the internal energy behind the shock is hardly resolved at

all.
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Smoothed Weighting Method Results

The numerical results for the use of the smoothed weighting matrix in Eq. (27a) are shown in
Figs. 17-20. Morrell (6) had noted that at times this method seemed to be unstable. In the present
results a large undershoot occurs in the density and pressure at x = 0.5 and is sufficiently severe to
blow up the four runs with parabolic elements considerably before the time when the shock reached x
= ().75. Thus, only results for linear elements are shown here. Even though this technigue seems to
be the most diffusive of all of the methods considered (note the rarefaction front at x = 0.3}, the
results have some of the larger overshoots (or undershoots). The undershoot at x = 0.5 is particularly
bad and was noted above. The overshoots behind the shock are also quite bad {note the velocily plots).
In each of the velocity plots one or two points (at x = 0.51 and 0.52) are off the graph. These points
coincide with the undershoots in the density, pressure and internal energy. Considering the present
results along with the results in Ref. 6, this weighting technique seems to have few advantages to

recommend it.

Evaluation of Results

The evaluation of results relies primarily on a visual comparison of the numerical and analytic
results. Primarily because of the strong oscillations, none of the Lax-Wendroff time integration cases

are included in our group of better results. Thus all those discussed below are with Godunov time

integration. The best two cases are for siandard FEM and standard no weighting or averaging as H
shown in figures 3 and 4. By a small margin the linear element (Fig. 3) gives the better results. The

next two best cases are for standard FEM with the modified weighting matrix as in Figs. 11 and 12.

Here. the parabolic element gives slightly better results than the linear element. The next best results

are for the CFM, modified weighting matrix with parabolic element. Three other cases are sufficiently

good 10 merit a fair rating. These are the ones using the CFM formulation and linear elements and (1}

no averaging (Fig. 7), (2) modified weighting (Fig. 13) and (3) the smoothed averaging (Fig. 20).

For this class of problem. contrasted with the simpie advection problem considered by Morrell

(Ref. 6), the Godunov time integration is clearly superior (0 the Lax-Wendroff time integration. The

use of artificial viscosity might well improve the resuits for the L — W approach but wouid most likely

be detrimenial at the rarefaction front. The challenge would be to obtain results as good as those in

Figs. 3. 4 or 12. Overall, the linear and parabolic elements seem to perform almost equally well, since

often the antidiffusive nature of the parabolic element needs to be offset with some artificial diffusion

or damping. The results of the condensed mass matrix formulation suggest that this approach might be

useful under some circumstances, such as when an adaptive grid is used and a new matrix inverse

would need to be computed each time the finite element grid is altercd. However, for calculation with

a fixed grid the CFM approach is not recommended.
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Comparison with Finite-Difference Results

While we do not show a direct comparison with results of finite-difference methods, a quantitative
comparison is still possible and reasonable. For this comparison we shall consider the resuits of the
best four cases of the present methods and the results of the best four of the cases presented in Ref. 2
by Sod. Sod notes that the best two without corrective procedures are the ones for Godunov's and
Hyman's methods. Hyman's method spreads the shock over four zones and the contact discontinuity
over seven or eight. Godunov's method requires five or six zones and the contact discontinuity seven
or eight. Consequently, for both finite-difference methods, the flat crest in the internal energy behind
the shock is poorly defined and quite rounded. We would compare these FD results with our results in
Figs. 11 and 12. Our results show the shock over three zones and the contact discontinuity over four
zones for the parabolic element (two elements) and over six or seven elements for the linear case.
While our results do have some small oscillations and some slight overshoots. it would seem that these

are a fair trade for the crispness in the definition of the shock and contact discontinuity.

Of the corrective procedures which he considered, it seems that Sod prefers the artificial compres-
sion method (ACM) to the antidiffusion method. It appears, however, that in the results he presents,
that the antidiffusion method (used with the two step Lax-Wendroff) gives better results than either the
hybrid method with ACM or Godunov's method with ACM. The antidiffusion method defines the
shock over two zones and the contact discontinuity over six or seven zones. Also there exists a slight
overshoot at the right corner of the rarefaction zone. We would compare these results with our resuits
for Godunov time integration using standard, unweighted finite elements — particularly with the linear
element. There are slight oscillations in the FEM results (there being no artificial diffusion in the
present numerical results as there was in the Ref. 2 numerical results) and a very small overshoot in
front of the shock. However, the shock is resolved over two zones and the contact discontinuity is
spread only over four zones. Thus even with the oscillations in the internal energy behind the shock.

the flat peak is somewhat better defined than it was in the Ref. 2 results for the antidiffusion method.

We certainly recognize that there have been many improvements in finite-difference methods
since Sod's 1978 review article, and, with these improved finite-difference methods, better results can
be obiained for this shock tube problem. The present results obtained using the finite element method

seems 10 be very good, especially considering that no corrective procedures were emploved.

Tests of Alternate Initial Conditions

In the earlier discussion of the initial conditions, we noted that the initial pressure and density

values were averaged at the diaphragm location. For example, at x = 0.49, 0.50 and 0.51, the values of
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pressure were p = 1.0, 0.55 and 0.1. The density was similarly averaged. We have seen, that for
these initial conditions, the computer program runs quite well. We also tried initial conditions without
averaging at the diaphragm location, i.e., at x = 0.49 and 0.50, p = 1.0 and 0.1 and p =~ 1.0 and 0.125.
These cases did not run well at all. This is somewhat puzzling, since the latter seem to be the initial
conditions most other researchers employ. In order to understand this situation better we ran a senes

of additional cases.

First we ran four cases for the standard finite element formulation with linear elements and
Godunov time integrations and with pressure and density averaging at x = 0.50. With Ax = 0.02
(instead of Ax = 0.01), the program ran quite well, but the oscillations in the solution were slightly
larger and the shock and contact discontinuity were spread over a slightly greater x distance. With Ax
= (.005 (uniformly), the program again ran quite well and the solution was slightly improved over the
standard case of Ax = 0.01. The oscillations were smaller and the shock and contact discontinuity were

portrayed more steeply.

We also ran two cases with the standard Ax = 0.01 but with one or four extra points added at or
near the diaphragm: at x = 0.505 (and 0.485, 0.495 and 0.515). In each of these two cases the
diaphragm was moved from x = 0.50 to x = 0.505 and the density and pressure values were averaged
at x = 0.505. This gave a steeper initial gradient than standard but with the midpoint still defined. The
two cases ran quite well matching the results in Fig. 3 except for having smaller oscillations a x = 0.51.
For these four cases, the initial gradient in p and p differed by a factor of four with little difference in

the numerical results other than the solution being smoother with a closer grid spacing.

In the tests without averaging of p and p at the diaphragm location, we used the standard finite
element formulalion, the condensed mass matrix formulation. no smoothing. modified smoothing.
Lax-Wendroff and Godunov time integration, linear and parabolic elements, and different values of Ax
and Ar. None of these test cases would provide a solution bevond 1 = 0.05. In each case, a severe
undershoot occured in the density and pressure at the diaphragm location (x = 0.5) as the solution
developed. On each side of x = 0.5 the values of pand p would begin to change 10 meet those from
the other side but at x = 0.5 the values would piunge to zero. One of the longer running cases was
with Ax = 0.02 (giving an initial gradient matching the standard, averaged case with Ax = 0.0). This
case was for standard FEM, linear element, Godunov time integration and no smoothing and ran
beyond 7 = 0.04 but not to s = 0.05. Other cases that ran as well were in a group with Ax = 0.0l (the
standard Ax values), standard FEM and with the modified weighting matrix. This latter group was run
with both Godunov and Lax-Wendroff time integration techniques and with Ar = 0.001, 0.005, and

0.0001. The smaller values of Asseemed 1o help but only by a small amount. The use of the damping
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in the modified weighting matrix clearly helped, but it did not help enough for the computer program
to run to completion.
ADDITIONAL NUMERICAL RESULTS

The results presented in the previous sections were all for low pressure and density ratios across
the diaphragm (10:1 or less). On the high pressure side, p and p were given by ps and ps = 1.0, while
on the low pressure side of the diaphragm the initial conditions were p; = 0.1 and p; = 0.125. These
conditions were chosen to match the initial conditions used by Sod (2) in his paper, and were appropri-
ate conditions for evaluating the various integration methods. However, these conditions did not
severely test the numerical method. In order to evaluate the method more fully, additional calculations
were made with higher density and pressure ratios. These additional calculations were made with linear

elements. Godunov time step iniegration and no weighting.

For these additiona! numerical results, calculations were made with pressure ratios as high as 107:1
and with density ratios as high as 500:1. Results from some of these calculations are shown in Figs.
21-30. There were no significant problems encountered in making the calculations for the higher pres-
sure ratios. but problems were encountered in trying to make calculations with higher density ratios. It
appeared that some damping. in addition to that provided by the Godunov integration method. would

be needed in order to obtain successful calculations for higher density ratios.
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In the following figures. the density and pressure on the low pressure side of the diaphragm were
set to 1.0. On the high pressure side. the densities were either 10 or 100 and the pressures were varied
from 100 to 10°. Figures 21-26 show the results for ps = 10° 10 107 with p; = 100. There are several
principal features in these figures. First, there is an increased oscillation in front of the shock front as
the pressure 1s increased. There is also a decreased distance between the shock front and the footl of
the rarefaction zone. Consequently, the features in this region are not as well defined as for the low

pressure case.

Somewhat similar results are given in Figs. 27-29 for ps = 10 and pc =~ 10°, 10° and 10°. In al} of
these cases. the shock is defined quite well by the results of the numerical method, but with some [ead-
ing oscillation. and the numerical and analytical results agree quite well in the rarefuction zone. The
contact discontinuity is spread over four of the lineur elements which is comparable to the low pressure

resulls

Figurc 30 shows the numcricaf resufts for & case near the limits of what the numerical method
seems 10 be capable without the addition ncar the shock of artificial viscosity or other additional damp-

ing In this case, po and pc = 300 Calculations were successfully made for some higher density ratios
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but only with a corresponding reduction in the pressure ratio. The oscillations near the shock are
stronger than for the lower density cases as are the oscillations at the foot of the rarefaction zone. At

higher densities, the oscillations at the shock rapidly grow and overwhelm the entire solution. For

these present conditions, however, the solution is still reasonably well behaved, and the numerical and

analytical results agree rather well.

The purpose of these additional cases was not to define the full range of initial conditions to
! which the numerical method is applicable but rather to determine if the method could be applied to a
d broader range of conditions than those considered by Sod (2). The results shown in Figs. 21-30 do

show that the numerical method is capable of application to a wide range of initial conditions and that it

does give results which are in good agreement with analytical results.

CONCLUSIONS

' While the present work certainly does not indicate a best approach in applying the finite element
method. valuable insights have been achieved. First, the FEM is capable of providing very good results

for fluid flow problems such as the shock tube. While parabolic elements have a potentially useful

antidiffusive characteristic. they must be used with care since often the antidiffusive nature needs to be
balanced by some damping. The linear element is to be recommended for its simplicity and its lack of
either diffusivity or antidiffusiveness. The modified weighting or averaging approach has led to some
very good results here, but one might well prefer the addition of specific artificial diffusion, even if the
; amount of artificial diffusion is problem dependent. The condensed mass matrix formulation of the
‘ finite element method seems to have both a diffusive as well as a compressive nature. It might be
recommended if many inversions of the "mass” matrix should be needed. but otherwise the CFM

approach should be used with considerable caution.
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A Appendix A
LINEAR ELEMENT MATRICES

Let the x domain be subdivided into N linear finite elements each of length L®. The nodes are

numbered consecutively from 1 to N + 1 as x increases from 0 to L. The element mass [M°] and

advection [K¢] matrices are given by Equations (16) and (17).

- The assembled mass {M] and advection [K} matrices of the N degree of freedom sysiem are

found as




and.
2 3 ) . . N-2 N-1 N

(K]= +
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Appendix B
PARABOLIC ELEMENT MATRICES

Let the x domain be subdivided into V parabolic finite elements each of length L*. The nodes are

numbered consecutively from I to 2N + 1 as x increases from 0 to L. The even numbered nodes

correspond to element mid-point nodes. The element mass [M*] and advection {K} matrices are given
by Equations (20) and (21).

The assembed mass [M] and advection {K] matrices of the 2N degree of freedom system are

found as

] 2 3 4 . 2N=-3 2N-22N-1 2A
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and,
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