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A METHOD Olz SELF-ORGANIZING MESH WITH A COMPUTER

Zeng Jirong, You Yiren, Shao Yuhua and Liu Tang

Computing Center, Academia Sinica

Abstract

In this paper, we present a method of self-organizing mesh

with the computer. It is a method of simple logic in comm us.

In two dimension space, this method produces triangular meshes

on arbitrarily shaped bodies by treating bodies as collections

of quadrilateral regions.

This method has been written in Fortran IV.

The problem of self-organizing mesh with a computer is import-

ant in common finite element software. in recent years, many

methods have appeared both domestically and abroad and each of

these methods has its own advantages and application range. The

method proposed in this paper is a method of simple logic in com-

mon use which can be applied to relatively complex regions with

various mediums and complex connected regions. At the same time,

we also give a method of nodal point numbering. This nodal point

editing mode is used for the coefficient matrix produced in the

finite element method which is the well arranged block diagonal

matrix, for the nonzero element collection as well as for band

width automatic minimizing under certain conditions. After the

actual application of electric and magnetic field computer pro-

grams, we obtained better results than those obtained abroad with

the same type of software and its use was more convenient.

I. Outline of Method

1) We divided the region to be organized according to geo-

metric shape, medium distribution and requirements into certain

large "quadrilaterals" and set up a logical mesh of quadrilaterals



based on the characteristics of the boundary lines of the quadri-

laterals.

2) We selected parameters 4 and r) and transformed the

quadrilaterals into unit squares on the ( F , . ) plane. We

organized the unit squares based on the logical mesh and obtained

nodal point coordinates ( i, 'i) on the unit squares.

3) We transfored nodal point coordinates ( i S i) on the

unit squares into nodal point coordinates (xiy i ).

4) We put these quadrilaterals together to carry out nodal

point numbering and obtained the nodal point coordinates and de-

sired information on the entire region.

II. Parametric Transformation and Peripherical Fragmenting

It is assumed that the parametric equations of the four sides

of the quadrilateral are separately

= . a- ',#),0 Tj, i - 1, 2,3, 4.( )

In Fig. 1, m. represents the partition value required for side i1

and we arrange that m2=m4. Taking any one natural number E,

parameter T. is divided into Mi=Emi parts, and O=to < t 1 < t2 --
< tMi=T i . We calculate the cumulative chord length Si (t), that is

s.(,) - {(z(,) - xj(s,-,))' + (Yi(',) -

+ {(,() - , 6 (t)) + (,,(a) - 4,t(<))3P4 , ss , , (2)

We introduce parameters I and #1 and cause

M Ls) S,(,)IS,(Tj), i - , 3, (3)
,()-S,(,)/S,(T,). i --.Z 4.

We let 85 and ) be the coordinates on the two orthogonal axes and
thus change the quadrilateral ABCD into the unit square A'B'C'D'
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on the ( I ,'S ) plane (see Fig. 2).

D (0.1i C0.1)7 1%
• A B 1,d ~ 11

Fig. 1 Fig. 2

For convenience, we eliminate lower symbol i if we do not find
any misreadings. We carry out partitioning of A-B', B-,C-907 and

D7A' based on the pattern of change of the nodal points on the

given periphery and obtain the coordinates of the peripherical

nodal points on the ( , 11) plane. The pattern of nodal point

change on each side can be equidistant, arithmetically rise (or

lower) and geometrically rise (or lower). The selection of the

pattern can be determined but it is not required that the pattern

of each side be the same. For example, if the first side takes
equidistant partitioning, then the second side can select geo-

metric or arithmetric partitioning and each side can even select

different partitioning modes for different sections.

III. Generating Logic Mesh

On the periphery, we can obtain nodal point coordinates

(xi,Yi) on the original quadrilateral periphery from the

( i, i) coordinates of the peripheral nodal points based on

the parametric transformation formula. We calculate chord length

S situated between the corresponding nodal points on the two
"vertical" sides,

, ((-,(,0) - g4(,))
3 + ( d - y0(,,)),m i - 20 1,2. -.,.

Naturally, So= A, S MCD. The partition number of the 1 "horiz-

ontal" mesh line is recorded as ng(nomlr,nmm 3). Then

3



•,- [' - 14) +1) -+ I .(-)-4- 11(t)) +so2 S,., 2 2-

0- O Is 2,'', a (4)

We record the coordinates of the k nodal point on the t "horizon-

tal" mesh line as (k,J) and&tain the logical components of the
nodal points of the quadrilateral regions. For example, the
black dots in Fig. 3 give the logical mesh of a quadrilateral
region. The outermost layer of the square brackets in formula

(4) represents the taken integer.

I II

g I I I

I Z 3 4

Fig. 3

IV. Nodal Point Coordinates

We will now use the logical mesh and nodal' point coordinates

(X i,Yi ) on the (x,y) plane needed to produce the mesh on the
unit squares of the ( , 01) plane to realize the organization of
quadrilateral ABCD. For this reason, we assume that the logical
coordinates of nodal points is (ki) and record

"U (5)

-.

4
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The corresponding I coordinate is

+- ,M) {([ki) + ,) - I,(ik,)(, [kID, i - 1,3, (6)

The terms within the square brackets represent the taken integers.

The corresponding nodal point coordinates ( (k,A), q(k,A)) in

the unit square A'B'C'D' can be given by the following formula:

(rt 0 - f,(4:,) + (j,(4:.) - I ,a~(dt,,vd, 0,

_ I-() + (I)M -,,.(II)f (7)

(x. y)

After obtaining 1 (k,j) and q(k,*), we use interpolation to find
nodal point coordinates (x(k,.), y(k,j)), that is

" 1)(. - jrI..1. 0 l- M,. W) + X,,(,. M),(,. 1)
Y(Q 1) - Y,(k, -) W(0 - A ,, W) + Y,( k, 1)),I(k, 1), ()

In the formula, A=1,2..., m2-1, kl,2,• , n*.

V. Correction of the Nodal Point Coordinates

In order to improve the shape of the element near the boundary

for the "quadrilaterals" composed of certain boundary curves, we

can introduce parameters 4 andA in the calculations to correct

4 and #) and thus improve the shape of the element. Below we

will consider two different correction methods.

1) To correct boundary parameters Ni and D). (i-l,3,j=2,4),

we use 4 and I!. separately to replace X_ and 1j. FormulaJI
(2) can be written as

+I5' (,)- ,(,'_,) + S(-) (2")

In the formula

5
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+ (i - 2)tp(. - 2 I)- i 1,3,
ISA) + T&)t (2")

",( T ) - Si(T,) I 1 Ax i(i (3 - i) sip (xi - 2k - 2,4

ASd(T,) - S,(Ti) - S(Tis), i - 1, 2,3, 4.

The meaning of 4 yi and 4x i is similar to As i . In the form-
ulas, 4 and I are determined by the properties of the boundary

curves. In ,rder to simplify the calculations, 4v can be taken

as a natural number, A as a real number larger than zero, for

example, letting A,=2 and Jl.

2) We used 0 (14 ) and q4 (J() separately in the calculations

of formula (7) to replace 02() and 4( ) and obtain

,0) q-(l) -JAZ:1 .(I, + 3 - i) - v(0)

X Nspg(A,(1)), i - 2, 4, (9)

In the formula

A,.() - x,(1 + 1) - x,(L - 1),
AO- y (O + 1) -,,XI - 1),

ASQ) - (As,(1) + A,,(1) 3 )"'.

In the above formula, * and are determined by the properties of

the boundary curves. In order to make calculations more conven-

ient, we can take 4 to be a natural number and is taken as a

real number larger than zero. Therefore, A S. () can be used

to substitute in the following formula, that is
'AS,()- -- ff,(O + IA,,(L)I.

VI. Generating Triangular Elements

In two adjoining rows of nodal points, each row successively

takes two points to form a quadrilateral. We calculate the length

of the two diagonal lines and join the two vertices of the short

6



line to form a triangular element. See Fig. 4. We first use the

four points of A,B,C and D to form quadrilateral ABCD. If

ON< 37, then we join BDf to form AABD and successively take E to

form quadrilateral BDCE. If WE < Uf,then we join BC to form

ABDC.... This continues until the nodal points of the two rows

are completely joined. Therefore, we obtain the desired triangu-

lar element.

The above organization method is not only applied to "quadri-

lateral" regions but is also applied to "triangles" and even "two
S sided figures" (e.g. Fig. 5). In Fig. 5, A and B coincide, C ants

D coincide and it is only necessary that the nodal point number

of the two "vertical sides" be the same. The dividing points of

the upper and lower "horizontal" sides can be arbitrary which

includes the use of zero.

CDC

A a \I

* AA

Fig. 4 Fig. 5

The sides which can be defined as "vertical sides" or "hor-

izontal sides" are relative. Actually, for a "quadrilateral,"

it is only necessary to have the number of dividing points of a

pair of sides be equal. As regards the whole calculating region,

it is necessary that the side of this "quadrilateral " be a
"vertical side" and that of the adjoining "quadrilateral" be a

"vertical side." Whichever side is selected as the "vertical

side" should be determined by the properties of the region's

shape and solution. The terms "quadrilateral", "vertical side"

or "horizontal side" etc. used in this paper are only for conven-

ience of narration.

7
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Use of the mesh organized by this method has the following

advantages: (1) The boundary nodal points accurately fall on the

boundary line. (2) We can control the-density of the nodal points

according to demands. (3) The mesh lines have certain similarities

(shape and dimension) to the boundary lines and changes are rela-

tively smooth. (4) It can combine artifical organization and

self-organization. (5) It can be applied in various regions and

it is convenient for handling various types of mediums and comt-

plex connected regions. (6) It is easy to extend to throe-
dimensional space regions. (7) The amount of operations is
relatively small.

VII. Nodal Point Numbering

The nodal points obtained from the above method can use two

methods for nodal point numbering.

1) Stratified Editing

Each "quadrilateral" region is joined together and is sequen-

tially numbered from left to right and from bottom to top. This

numbering method has the following advantages: 1. Permutatior. is

even, logic is simple and editing is convenient. 2. The coef-

ficient matrix is a block diagonal matrix and within it the block

on the principal diagonal line is also a diagonal matrix. The

block on the secondary line has a nonzero element concentration,

there are no zero elements between the nonzero elements and the

positions of the nonzero elements can be conveniently calculated.

Therefore, the coefficient matrix is suitable for a condensed

storage, the storage amount is small and it is convenient for

access as well as finding solutions. 3. Under certain conditione,

the proper determination of the "vertical direction" can cause the

bandwidth of the coefficient matrix to be very small and not to

require optimization processing. The limiting factor of this

-J method is that it is required that the dividing point number of

the "vertical side" be equal on the entire region.

NOW.-_



Fig. 6 Computer organized mesh calculated by a permanent

magnetic moment machine's magnetic field.

2) Block Numbering

After each small "quadrilateral" is organized, we immediately

carry out numbering. After this is completed, we then combine

the nodal points of the small "quadrilaterals" and delete the
vertically repeated numbering of the repeated side points in order

to cause the bandwidth of the coefficient matrix to reduce and to

carry out optimization processing. This numbering system does not

require opposite sides with equal dividing points and it is con-

venient for a mesh in the vicinity of dense single points. How-

ever, the majority of advantages of stratified editing are

possibly lost.

The above method has used corresponding FORTRAN IV edited

software which can be used on a computer equipped for FORTRAN IV

language. Actual application shows that very good results were

attained for the organization of various regions. In electro-

magnetic field computations, the organization results were better

9



than those attained abroad on the same type of software and its

use was more convenient. Figures 6 and 7 are two examples. The

figures were drawn by computer and the thick lines in the figures

are the contour lines of the regions.

0

Fjg. 7 Computer organized mesh calculated by a C type magnet's
magnetic field.
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A HYBRID SCHEME FOR THE COMPUTATION OF FLUID DYNAMIC EQUATIONS

Chen Guangnan

Abstract

On the basis of Godunov's formulas for the resolution of a

discontinuity with weak wave approximation, this paper presents

a self-adjusting hybrid scheme for computation of fluid dynimic

equations. This scheme deals effectively with both shock and
S. rarefaction waves and obtains relatively clear oscillation-free

monotonic transition of discontinuity while maintaining high order

of truncation error in the smooth part of the solution. In com-

puting contact discontinuity, the results are not as good as

those of the linear discontinuity resolution scheme. This paper

gives simple explanations of the stability and solution of main-

taining monotonicity for the obtained hybrid schemes. Two models

are used to numerically calculate the compressible ideal fluid

and comparisons are made with other finite difference schemes.

I.

We consider the one-dimensional nonstationary fluid dynamic

equations

W W+ !F(W)~o (I0,

In the formula W- (r. . E)1, F(W) (-,p, p) T  . Equation (1)
can also be written in the equivalent form

aW+ .4 -L-W- 0, (2)

In the formula, matrix A has the following form

0 1 0

a- isl - we lea, la, (,

Here, v, u and E separately represent the total energy of the

specific volume, momentum and unit mass. Total energy E is the

11
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sum of the internal energy and %inetic energy

E - e +
2

and between internal energy e and pressure p and specific volume

v is satisfied state equation

p=p (v, e)

We know from the thermodynamic relational formula that the

Lagrangian velocity of sound is

It is easy to find that the characteristic value of matrix A

corresponds to 0, 4-c.

As regards equation (1), if we use Godunov's formulas for the

resolution of a discontinuity with weak wave approximation [1],

then we have

Az

'4 ax~~(~+-~ (6)

E Ej~j- Pm'.,-... - ri jo)

In the formulas

+ -(7j-PT)LI'

j'Pi~..p?(m'uJ + T.7.$s. - u.. (7)

Here, C is found bas Ied on equations (4) and (5).

we can deduce the equations which draw near to difference

schemes (6) and (7) as

+ -( + q) -o0

I(L +A p + pa+ u*q) -0

12



In the equations Z 89 2 Ox. We can see by

comparing equations (8) and (1) that each of the equations pos-
sesses the smoothing effects of terms m and q which is generally
called scheme viscosity. Because of the existence of linear

scheme viscosity, the difference schemes only have first order

accuracy. In order to overcome the excessive dissipation caused

by the scheme viscosity and raise the accuracy of the schemes, we

must try to eliminate the linear scheme viscosity and cause the
difference scheme to possess second order truncation errors.

For this reason, the calculation of the velocity and pressure

of the "lattice points" in equation (7) separately add on cor-
nrection terms ( 4U) and ( P) Here, AU and AP are

undertermined parameters and we use them to cause the difference

schemes to satisfy second order accuracy. We substitute equation

(7) with correction terms AU and AP into equation (6), carry

out Taylor series expansion on the [(j+I/2) 4x,n 4t] point, use
second order accuracy and then have

& +.I a + O x -u) + 0(,? +&e) - 0.

Wx 1 0's s 2 (,

+ _..LA) + -(. ,AU + o(,A, ) + . ) - 0.2O O

Using equation (1) and relational formula

8'. 8p -to- C(,AL 8E (M'8" - O" 89 8:'')

after arrangement and discretization, we can find the expression

of the correction terms to be

(AU)7 ~ 4,:a.,~ pT-])

CN 2(eP)O" €' (,., : ,., -2+-" (

13
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When these correction terms are added to equation (7), we then

have I u" - CTL,) - At' I ( -
2 A

- - P' -L~~

In the equations

+ -em'P -j, - -4 + e- pT.i

+ +

In this way, we then obtain conservation type difference

schemes (6) and (9) with second order accuracy. Matrix A and its
derivative to not clearly appear in the scheme and therefore cal-

culations are relatively simple.

II.

Because the second order accuracy scheme is not a monotonic

scheme, it easily produces oscillation behind the wave when cal-

culating the problem of discontinuity. Therefore, we must try

to add an artificial viscosity term in the difference scheme so

as to cause the equation to become an equation with viscous dis-

sipation. When we add artificial viscosity term Q into equation
(9), we then have

- ur'' - V7 - -¥- ( + 97) Of. -
12 At

- P L - A + PT) ej c..oj(.ej - .i-j),

In the equations, Q1-2[€e - c-i) . Here, b is a dim-

ensionless factor and it is called th4" viscous coefficient.

Difference schemes (6) and (11) with viscous terms still possesses

second order accuracy. It possesses dissipation effects in the
discontinuity area and therefore the oscillation amplitude of the

solution is controlled. The amplitude shrinks with the enlarge-

ment of viscous coefficient b yet we cannot completely eliminate

the oscillation behind the wave.

14
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Another method for obtaining dissipation is the use of the

self-adjusting hybrid scheme [2]. It can guarantee the mainten-

ance of high order accuracy in the smooth area of the solution,

cause the scheme to obtain a sufficient amount of dissipation in

the discontinuity area, cause the scheme to maintain monotonicity

and eliminate oscillation on the discontinuity.

The hybrid scheme is a scheme formed from two different

schemes based on certain convex combinations

Ww'm{ - {L, +( - )L,}W., (12)

In the formula, L is the first order accuracy scheme, L is the

high order accuracy scheme and dimensionless quantity G is called

the self-adjusting switch 0 4C % 1. It controls the calcula-

tion of the changes of the area and plays the role of promptly

transforming and calculating the scheme.

When we take difference schemes (6) and (7) as L1 and differ-

ence schemes (6) and (9) as L2, we can then establish the follow-

ing hybrid schemes.

- + -4L (U -

AX

_ ! e? As- (pgrpl - p ,)/(c• )'
2

+ _ '(p - p+/(7 • -i) (13)
2

+Ie7.. ,K7 ,(.7 ! -ut i) -±9'oK.(uy -m..-j) (14)
22

E z

2

' - e74 ,K ,K ':(7+j - ..' ) (pT' | - p7t)/(' t " c7'l)

4 At

+ I-A! 9K7K "(m?, - u'-j)(PT' - -0)/(€' .i • cT-t). (!1)

4 As

15
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In the formulas. the expression of U('L,),)i (  is (9) and the

expression of .l, p is (10).

Ke~~ _ ~ A, 22'i-c ~ j-
A1 Cj*c4  + c70-1 (16)

Ax eT.. + c-+-k *1 2 -

Self-adjusting switch 9. is. taken as)

-KO -7. - -'7- (171

'.-., + ,7.j - I 'T-I N -I -"- + 0'4 - "". > '

0 ,, (1s)

Key: (1) When; (2) Otherwise.

Here, "-O.OI-azi, .---.. If we use the following discretiza-

tion approximate expressions:
Pi- p,-. - - c7.j7-j(,7+ - ",-0' ),

(19)
1E7.j -V7. -Pj (vjeq -_a7- j) + U'(uiei - aj).

and substitute them into hybrid schemes (13)-(15), we can then

obtain the following hybrid scheme:

1 {OT Kj ,(wj*! - "7.) - 87*K(' - u'-)), (Z 0)

• -(LjEN) j+ { - ui .) - 87K7(E.+ - .q), (21)

2
'4!

= +~~~~~1 -{ {97 ,K7 ,( E+ - E7,j) - Oe K7( E7 -E.)--.

m2

+ -- {e+,K1+1Kt."',(s*.+ - ux j) ('v+j - *+ )
4 As

-- KK(, - ~"i) ('7 j- "-0), (22)

16
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Here, the L2 operator indicates difference schemes (6) and (9).

Based on research by Yanenko, Shokin as well as Hirt on the

stability theory for hyperbolic type equations and difference

schemes [3], we can deduce that the first differential approxima-
tion of Godunov's schemes (6) and (7) with first order accuracy

is

W+ F( W-)m-A A, 0 AL) k wj(3
&& 2 A

moll

and the second differential approximation of second order accur-

acy schemes (6) and (9) is

SW+ 0 F(W) -- At-)! (€,,l I t F(W)

- A(AZY)I [(AL 0W (24)

Equations (23) and (24) are the second order and fourth order

parabolic equations respectively. When conditions

CAL <1(25)

are established, equations (23)-and (24) are both satisfied. To
obtain the relationship of the compatability of the differential
equations 'and the stability of the difference equations, we must
cause difference schemes (6) and (7) and difference schemes (6)
and (9) to be stable and must satisfy the conditions in (25).

Furthermore, from equation (12) we obtain

DILII <. GllLSU + (1 - 9)UL,DI.

This explains that when the L1 and L2 schemes are both stable,

hybrid schemes (13)-(15) are also stable. Moreover, in the same
way we must satisfy the conditions in (25).

It is generally considered that if a certain operator L acts

17
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on any monotonic mesh, operation LW of function W is also mono-

tonic and it is then said that finite difference factor L main-

tains monotonicity. When there is a constant coefficient scalar

equation, hybrid schemes (20)-(22) can be expressed as

+ L(26)

In the formula,

iK

AOW - WiN - W.N, O(xY) - S z -7
X + y

It can be proved (2] that if the conditions in (25) are estab-

lished, then scheme (26) maintains monotonicity.

Therefore, in the smooth calculation area of oG=O(x4 x),
self-adjusting hybrid schemes (20)-(22) possess second order

accuracy but when 1=0(1) and it is also in the discontinuity
area, the schemes possess the

1(s) 8(K -W)
2 As &x

term of dissipation. Because of this, when calculating discontin-
uity, the solution is relatively smooth and monotonic and at the

same time can be applied evenly and pulled wide. In order to

obtain a clear and steep discontinuity section, it is of signifi-
cance to use the artificial compression method (2]. It can

cause the width to be processed into a certain width shock wave

using the ' t quantity level elongated contact discontinuity

transition area and cause the originally discrete shock wave to

become even steeper. Furthermore, the artificial compression

method can be separated from the main calculation process and be

processed independently.

~III.

We use the above difference scheme to carry out numerical

18



calculations. For convenience of discussion, we consider the
ideal fluid and at this time, the specific formulas of equations

2
(4) and (5) are p=(Y'-l)e/v, c = "Y.p/v. In these formulas, Y is
the specific heat ratio and we take Y =1.4. In order to test and

compare difference schemes (6) and (7), difference schemes (6) and

(9) and difference schemes (13)-(18) as well as the processing of

the artificial compression method, we selected two typical models.

model I. The problem of the propagation of the shock waves.

We separated one shock wave into two constant states, v 1=l,.ulul,

e1 3.929, pI1.5716; v2=2, u2=0, e2=2.858, p2=0.5716. Appended

symbols 1 and 2 separately indicate the states behind and in front

of the wave. The shock wave used in this test starts from x=50 at
the initial moment and its propagation velocity is equal to 1.

The numerically calculated mesh ratio t = 0.2. Figures 1-4Ax
give the distributions of vju,p and E when in tw706t. The

straight line is the accurate solution and the curve is the numer-

ical solution. At this time, the shock wave appears in the

x=64 area.
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Fig. 3 Fig. 4
Model (I) Discontinuity occurs in the x=50 area

when A 0.2, t=70 4 t, t-0.A x

Linear discontinuity resolution scheme

- - -Second order accuracy scheme

Self-adjusting hybrid scheme
...... Artificial compression method

Model II. We consider the problem of the diaphragm. We

assume that the states of the left and right sides of the dia-

phragm in the x=50 area are v 1=2 .245, u 1=0.698, e 1=19 .796,

pi -3.5272 and v2 -2, u2 -0, e2=-2.858, P2 _0 .5714. When t-0, the

diaphragm breaks and produces a shock wave towards the right and

a rarefaction wave towards the left. Contact discontinuity

appears in the xin50 area. Numerically calculated mesh ratio

14- - 0.2. Figures 5-6 give the distributions of v and u when

t-70,4 t.

Calculation results show that: 1. The solution of linear dis-

continuity resolution schemes (6) and (7) with first order accur-

acy are monotonic and smooth. However, when calculating the

shock waves and rarefaction waves, the transition area is pulled
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relatively wide and generally spans 6-8 mesh. 2. We can maintain

good gradient when calculating the discontinuity for second order

accuracy schemes (6) and (9) yet intense oscillation can occur
behind the wave. It is advantageous for second order accuracy

schemes (6) and (11) with viscosity to have reduced oscillation

amplitude behind the wave and the suitable selection of viscous

coefficient b causes the amplitude to decrease. However, we are

still unable to completely eliminate the oscillation. The calcul-

ation results of schemes (6) and (11) are not drawn in the figure.

3. The self-adjusting hybrid schemes (13)-(18) are very complete

in eliminating oscillation behind the wave. It guarantees that

the discontinuity section possesses a certain gradient and also

maintains, in principle, understood monotonicity. The physical

picture is relatively clear and smooth. In comparison with resol-

ution schemes of discontinuity with weak wave approximation, the

results are better when calculating shock waves and rarefaction

waves; when calculating contact discontinuity, the transition

area is wider and the results are poorer. %The artificial com-

pression method can cause the hybrid scheme to be better processed

when calculating'discontinuity. It causes even more abrupt

changes in the shock wave transition area, the pictures in the

contact discontinuity area to be even clearer but does not affect

the rarefaction waves.
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Fig. 5 Fig. 6
4t 0.2, t=704 t.

Model (II) Ax t "

Resolution scheme for linear discon-
tinuity

Second order accuracy scheme

Self-adjusting hybrid scheme

........ Artificial compression method

Finally, we would like to thank comrade Li Deyuan for his

valuable views on this paper.
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