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SECTION I

INTRODUCTION

This report covers a portion of the efforts in an overall study that examined the

role of uncertainty in the free field ground shock estimation process. The study was initi-

ated by the Defense Nuclear Agency in order to address the following issues:

o There is an increasing inquisitiveness about the presence of uncertainty through-

out the ground shock estimation process and there is not a good understanding of

the consequences of this uncertainty;

o In the proposed implementation of new land-based systems, there is a large variety

in soil conditions and geology. How can this variety be considered and controlled

in the design process?

o In view of the uncertainty in the output of ground shock measurements and simu-

lations and, in view of the variability in the determination of material proper-

ties, what accuracy is warranted in the individual steps of the ground shock

estimation process? Are some elements of the process over-worked while other

elements need more emphasis, or is the uncertainty in some areas such that the

computational error is small compared to the randomness of the problems?

These issues are of concern throughout the ground shock community which includes,

among others, the soil property analyst, the designer of the ground facility, the simulation

'4 modeler, and the oversight agents for research and system expenditure. The community is

somewhat fragmented in addressing the uncertainty issue and in correlating efforts. There-

fore the objective of this study is to illuminate these issues and to analyze them in light

of the offense and defense goals of the treatment of nuclear weapons by the Defense Nuclear

Agency.

'C The interim report [Reference 1] discussed an approach to defining the uncertain-

ties in the free field ground shock estimation process. This approach emphasizes an

examination of the free field ground shock modeling process rather than an examination of

the nuclear (and/or chemical) explosion test data on the basis of the limited size of these

data bases.

The system is described by the sequence of steps shown in Figure 1-1. The modeler

begins with the real system which, in this case, is composed of the weapon, the environment,

" and the propagation of energy. From this real system, mathematical models (representations)

. are created of elements of the system. For example, constitutive equations are developed

for soil behavior under dynamic loading. The second box in the diagram depicts these mathe-
matical representations of the behavior of the real system, or elements of the system.

5
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The synthesis of the model into a computation involves simulation of the behavior

of the real system. This simulition exercises the mathematical representations and should

be structured to adequately reproduce or predict behavior within the narrow frame of a

particular test configuration. Thus, the combined mathematical representations model the

system, and simulation models a particular system response.

Both the mathematical representations and the simulation requires inpJt in order

to represent the real system. The data may be responses of system elements or physical
measurements of parameters for use in the mathematical representations.

The modeling process, as shown in Figure 1-1, is very convenient in separating the

various sources of error, uncertainty, and bias. Figure 1-2 shows how these uncertainties

come from different sources and are due primarily to either the innate heterogeneity of the

real system or due to breakdowns in the ability to maintain perfection in moving through the

steps of the modeling process shown in Figure 1-1.

Reference 1 examined the free field ground shock estimation process from a systems

analysis viewpoint and attempted *o identify, in a qualitative manner, the various sources

of uncertainty within the process. Many sources of uncertainty were identified but two were

singled out as having the potential for being one of the major sources of uncertainty within

the overall process and also being amenable at this time to quantitative analysis.

These two sources of uncertainty were: 1) The effects of innate heterogeneity of

the physical and mechanical properties of earth materials on the measurement process, and 2)

The set of assumptions that prevail throughout the various steps of the process that were

characterized as the "average properties lead to average results" hypothesis.

There is little doubt as to the innate variability of certain physical and me-

chanical properties of earth materials. Table 1-1, which is summarized from Reference 2,

indicates the typical spread in the value of the coefficient of variation of certain proper-

ties of sands, silts, and clays. A small value of the coefficient of variation, which is

defined to be the ratio of the arithmetic standard deviation to the arithmetic mean of the

* property value, indicates a low degree of innate variability in the property value. Con-

trawise, a large coefficient of variation indicates a high degree of innate variability in

the property value.

In addition to the overall innate variability of the properties of earth materi-

als, Reference 3 indicates that spatial correlation of these property values may exist over

the range of the site being investigated. The data presented in Reference 3 indicates

spatial correlation distances for parameters such as listed in Table 1-1 that are of the

order of a few hundred feet in horizontal extent and a few tens of feet in vertical extent.

The potential existence of spatial correlation of material properties will have a definite

impact on the sampling and testing schemes used to obtain the system measurements.
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While the data shown in Table 1-1 indicate potentially large coefficients of vari-

ation for the physical and mechanical properties of earth materials, two problem areas

exist. The first is that little if anything is known about the coefficients of variation of

the physical and mechanical properties that exert the most influence on the free field

ground shock estimation process. The second problem area is that the innate variability of

the properties are of little interest in and of themselves. The real question of interest

is how the innate variability of the properties interact with the model of reality being

* used to estimate the free field environment to produce uncertainty in this predicted en-

vironment.

This then leads into the question of the validity (or adequacy) of the "average

*properties lead to average results" hypothesis that prevails throughout the free field

ground shock estimation process. This hypothesis is characterized by the assumptions thZ

site can be characterized by a set of homogeneous layers with horizontal bedding planes

that the physical and mechanical properties of these homogeneous layers are assigned "re

presentative" (or average) values by the soils analysis based on a combination of laboratucy

and insitu testing.

The validity of the average properties/average results hypothesis can be question-

ed from two standpoints. First, that the hypothesis implicitly assumes either a relative

degree of insensitivity of the value of the response with changes in the property value or

small coefficients of variation for the property values. Second, the hypothesis innately

assumes that extreme values of response are of interest only from the standpoint that they

can occur rather than the frequency of occurrence of these extreme values. Both of these

questions can only be answered from the standpoint of the decision maker as to whether use

of the hypothesis leads to predictions of the free field environment that are adequate for

system design and/or system survivability evaluation purposes.

The remainder of the report is divided into three sections. Section 2 provides

the summary observations for the effort. Section 3 describes the analytical efforts and

- results of the examination of the adequacy of the "average properties lead to average

results" hypothesis. Section 4 examines the question of sampling and testing strategies for

obtaining system measurements in the face of the innate variability of earth materials and

the absence or presence of spatial correlation of the physical properties of earth materi-

als.

9. * .*.



Table 1-1. Coefficient of variation ranges for selected soil parameters.

Coefficient Of
Parameter Type Selected Example Variation Range(h)

Volumetric/Gravimetric Specific Gravity 1 -s 25

Void Ratio 13 --W 30

Compressibility Recompression Ratio 25 -l 80

Compression Index 25 -- 55

Strength Friction Angle 5 -* 15

Unconfined Compression Strength 30 -* 85

*Summarized from Chapter 10 of Reference 2.
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SECTION 2

SUMMARY OBSERVATIONS

The "average properties lead to average results" hypothesis was found to lead to d

biased estimate of the mean free field response for the one-dimensional vertical airslap in

the superseismic airblast region problen examined in this effort. For both the case of peak

vertical velocity and peak vertical displacement, the hypothesis leads to mean response

values that are consistently lower than those derived without the use of the hypothesis.

The degree of bias was found to decrease with increasing depth for both response parameters

ranging from a maximum of about 15 percent near surface to a minimum of about 1 percent at

depths near 150 feet which was near the maximum depth monitored in the analysis.

During the Monte Carlo simulation phase of the effort, it was found that the peak

response values were related to the value of a single material parameter value according to
a mathematical relationship of the for;n: peak response proportional to (property value)a,

where the value of the exponent a and the constant of proportionality depended on the re-

sponse being considered and the depth below the ground surface. The investigation of the

adequacy of the hypothesis was generalized to include all relationships of this form. The

average properties/average results hypothesis was found to be a biased estimator of the mean
response for all relationships of this type. The degree of bias was found to depend upon

the value of the exponent (a) and the coeff~cient of variation of the property value.

The hypothesis was found to lead to a modest overestimate of the mean response for

all values of the exponent between 0 and 1.0 ane all coefficients of variation of the

property value in the range of 0 to 1.0. Thus, for example, the hypothesis will lead to a

modest overestimate of the wave propagation velocity which varies as the positive square

root of the constrained modulus. For all other values of the exponent, the hypothesis was

found to lead to a consistent underestimate of the mean response. As previously mentioned,

the degree of bias depends on the value of the exponent and the coefficient of variation of

the property value. For example, with a coefficient of variation of 0.7 (which is approxi-

mnately the maximum likelihood estimate for the loading modulus of the dry sand considered in

the Monte Carlo simulations) and exponents in the ranges of 1.0 to 1.5 and 0 to -0.5 (Note

the symmetry around +0.5), the hypothesis will produce an estimate of the mean response that

is a maximum of about 15'0 low. On the other hand, for the same ranges of exponents and a

coefficient of variation of the property of unity (an admissible value from the dry sand

data), the hypothesis will lead to estimates of the mean response that are up to a factor of

2 too low.

Overall, this test of the validity of the "average properties lead to average

results" hypothesis when applied to the free field ground shock estimation process led to



mixed results. In the case of the one-dimensional vertical airslap problem, the hypothesis

" led to predictions of mean response that can be argued as "certainly being within the accu-

racy of the input data." On the other hand, generalization of the form of the relationships

found in the vertical airslap problem showed that the hypothesis always leads to a biased

estimate with a degree of bias that is determined by the particular relationship between

response and property value and the coefficient of variation of the property value.

Extrapolation of these results to problems where the response values depend on

s nore than one property value suggests that the validity of the average properties/average

results hypothesis should be investigated on a case by case basis. In general, it would be

* expected that if the response was relatively insensitive to parameter value or the parameter

value was known to have a small coefficient of variation, the hypothesis would produce mean

response values that were within an acceptable degree of bias. If these conditions are not

niet, then the hypothesis is probably inadequate and the mean response will have to be esti-

mated using other analytical techniques or, as a last resort, Monte Carlo simulations.

Discussion to this point has assumed that the material property values have no

* uncertainties. This, in general, will certainly not be the case. Sample size limitations

and uncertainties introduced by the sampling and testing process will produce uncertainties

in both the estimate of the mean of the property value and the estimates of the variance of

the property value. For example, the available data for the uniaxial stress/strain char-

acteristics of the dry sand material used in the hypothesis test consisted of 15 stress/

strain relationships. These data lead to uncertainties (at the 0.9 confidence level) of

about a factor of approximately 1.5 in the estimate of the mean loading modulus and about a

factor of 2 in the estimate of the variance of the loading modulus.

With the caveat of "beware of systematic (or bias) uncertainties introduced within

the sampling and testing process", the uncertainty in the estimate of the mean property

value can be reduced to any desired level of precision simply by increasing the number of

samples that are tested. The existence of random sampling ann testing uncertainty coin-

ponents merely modifies the sample size requirements. Similarly, the uncertainty in the

estimate of the variance can be reduced by increasing the sample size, but the esti:.ate of

the variance will include components from both the innate variability of the property value

and the random sampling and testing errors.

4- The degree of uncertainty in the parameters of the property value distribution

are, however, of little interest in themselves. The parameters of real interest are the

uncertainties in the free field ground shock response parameters. The estimation of which

requires consideration of both the uncertainties in the property value distribution

parameters and how these uncertainties interact with the model of reality being used to

. estimate the responses.

12
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For the vertical airslap problen examined in this effort, the variance-reducing

characteristics of the model of reality used in the analysis leads to uncertainties in the

,nean modulus value in the neighborhood of 20-30% producing uncertainties in the near-surface

*-. peak velocities and peak displacements that are of the same order as the innate bias of the

average property/average results hypothesis. Sample sizes of the order of a small multiple

of ten are expected to be adequate to produce uncertainties in the mean property value that

are of this level if there are no spatial correlations of material property values. The

existence of spatial correlation should roughly double the number of samples required to

produce this level of uncertainty in the mean property value.

The estimates of the mean and variance of the loading modulus of the dry sand

material also produced extreme values of the near surface responses that differed froia the

mean values of the responses by nearly a factor of 2 at the 0.9 conditional confidence

level. (Note that these confidence bounds are conditional on the estimate of the means, the

variance and the assumed form of the distribution function for the property values being

correct.) These limits are in themselves quite uncertain since the estimate of the variance

of the property value distribution is uncertain by nearly a factor of 2 at the 0.9 con-

fi dence level.

Reducing the uncertainty in the estimate of the variance of a property value is a

much more formidable task than reducing the uncertainty of the estimate of the mean of the

property value. Sample sizes of the order of 100 are required when no spatial correlation

of property values exist to produce uncertainties in the extreme values of response that are

of the same order as the inherent bias of the average property/average results hypothesis

when applied to the vertical airslap problem. The existence of spatial correlation of the

property values may increase the number of samples required by the order of a factor of 5.

Again, this estimate of the variance will include random sampling and testing error com-

ponents.

Extension of these results to other portions of the free field ground shock esti-

mation process should be done with extreme care. If the uncertainties in the estimates of

the parameter values interact with the model of reality in the variance-reducing manner,

then the previously-mentioned ranges of sample size requirements are applicable. On the

other hand, if the uncertainties interact in a variance-magnifying manner, the sample sizes

required to maintain a fixed level of uncertainty in the response values will have to be

significantly increased.

The existence of spatial correlation of material property values forces some

special consideration when planning the exploration of an area such as, perhaps, a "MX

Valley". An optimal allocation of resources between obtaining samples from different areas

and making property value measurements occurs that minimizes the uncertainty in the estimate

of the mean property value that is independent of total exploration costs.

13



The fraction of an exploration budget allocated to property value measurements

depends only on two parameters: the ratio of the cost of obtaining samples within a sub-

area (in the limit boreholes) to the cost of making a property value measurement, and the

ratio of the components of the total variance which are referred to as the local variance

and the variance of the means. When the cost ratio is low, as is probably the case of the

CIST tests, the optimal allocation of resources involves making one measurement in each sub-

area. As the value of the cost ratio becomes larger, the optimal allocation of resources

involves making an increasingly large number of measurements on samples taken from an in-

creasingly smaller number of subareas. Similarly, for a fixed cost ratio the optimal al-

location of resources involves a small number of samples from a large number of subareas

when the local variance (which includes random sampling and testing error components) is

small when compared to the variance of the means. As the ratio of the variance increases,

the optimal allocation involves increasing the number of measurements per subarea at the

expense of decreasing the number of subareas investigated.

Generalizing these results to the case where more than one property value is of

interest suggests a conflict may arise between the optimal allocation of resources for the

estimation of a property value such as near surface loading modulus and the estimation of

'- parameters such as the depth profile for the valley under investigation. While no firm data

i . exist that support the conclusion, the nature of the optimal allocation scheme suggests that

" " compromise allocations can be arrived at that either maintain the precision of the estimates

* of the property values at modest increases in the total exploration costs or maintain the

total exploration costs at modest decreases in the precision of the estimates of the proper-

ty value.

14



SECTION 3

TESTING THE AVERAGE PROPERTIES LEAD TO AVERAGE RESULTS HYPOTHESIS

Throughout the free field ground shock estimation process, it is common to make a

series of assumptions that can be characterized as the "average properties lead to average

results" hypothesis. This hypothesis, which manifests itself in the assumption that the

site under consideration can be represented by a series of homogeneous layers with horizon-

tal bedding planes, implicitly assumes that any effects of the innate heterogeneity of the

physical and mechanical properties of earth materials will average out. Thus, using average

values of these properties in the prediction process are hypothesized to produce predictions

of the average response.

Devising a method of testing the validity of a hypothesis such as "average proper-

ties lead to average results" is difficult from the formal logic standpoint since feasible

tests must be based on simulations of reality. The results of such test must, therefore, be

viewed as necessary but not sufficient, conditions for accepting or rejecting the hypothesis

being tested.

The mechanism initially chosen for testing the validity of the average properties/

average results hypothesis was to utilize a one-dimensional simulation of vertical motion in

the superseismic airblast region and to compare the mean peak velocities produced by a Monte

Carlo simulation of the problem with the peak velocities calculated using the "average

properties lead to average results" hypothesis for a particular site representation. Based

on intermediate results obtained in this Monte Carlo simulation analysis, this was general-

ized to cover the question of the adequacy of the hypothesis when peak responses vary with

material parameters according to certain forms of mathematical relationships.

3-1 MONTE CARLO SIMULATIONS

Two criteria were used in arriving at the site geology to be simulated. The first

criteria was that the geology must be relatively simple so that a simple wave propagation

code could be used along with a Monte Carlo driver program. The second criteria was that

there should exist a number of measurements of the physical and/or mechanical properties of

the site materials sufficient to estimate both the average values of the properties and the

innate variability of the properties.

After a considerable literature search, the site configuration shown in Figure 3-1

was chosen. This configuration represents the upper portion of one of the representative

potential MAP sites given in Reference 4. Figure 3-2, which is taken from Reference 4,

illustrates several of the uniaxial strdin relationships of vertical stress versus vertical

strain for dry sand samples from the upper layer of the site profile. Overall, a total of

15 of these relationships were available for the estimate of the statistical properties of

dry sand.

15



1000 PSI AIRBLAST
LOADING FROM 3 MT
SURFACE BURST

SURFACE 
0__________

LEVEL .

DRY SAND
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Figure 3-1. Site profile considered.
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Figure 3-3a shows the representative properties of the dry sand as derived by the

Waterways Experiment Station (WES) and reported in Reference 4. The representative proper-

ties are characterized by a loading modulus of about 2.60 Kbars at higher strains and on

unloading modulus of 85 Kbars. Figure 3-3b illustrates the statistical representation of

the properties. This representation assumes that the initial loading and the unloading

modulus are the same as those of the WES representative properties. The loading modulus at

the higher strains were generated by fitting the modulus values at 1% strain derived from

the 15 available stress-strain relationships to a log normal distribution. The maximum

* likelihood estimate of the median of the modulus distribution is 2.03 Kbars while that of

the standard deviation is 0.64. This leads to a mean moduli, value of 2.53 Kbars which is

- within a few percent of the WES representative property value.

The wide spread in modulus values and the limited number of data points leads to

. quite large confidence regions for the estimates of the true mean modulus and the true coef-

ficient of variation. The 0.9 confidence limits for the median modulus are 1.55 Kbars and

. 2.76 Kbars while the same confidence limits for the standard deviation are 0.49 and 0.93.

This leads to 0.9 confidence bounds for the true coefficient of variation of roughly 0.5 and

1.2 compared to a nominal value of about 0.7.

Since the question at hand was testing the "average properties lead to average

results" hypothesis rather than propagation of uncertainty through the model, the best esti-

mate values of the mean modulus and the standard deviation were assumed to be a reality.

This leads to the 0.9 conditional confidence bound stress-strain relationships shown in

Figure 3-3b which has upper loading modulii that differ from the mean value by nearly a

factor ^ three.

The ONED code [Reference 5] was chosen as the wave propagation code for the Monte

Carlo simulations. This choice was made solely on the basis of minimizing the computer time

" requirements by avoiding intermediate input/output operations during the Monte Carlo simu-

lation cycles. The ONED code was modified to act as a subroutine to the driver program

whose additional functions were to generate the modulus value to be used for each simulation

cycle from a log-normal distribution, to calculate the overpressure vs time waveforms using

the methodology of Reference 7, and to perform the calculation of the mean and the variance

*- of the peak velocity values generated during the Monte Carlo simulation cycles.

The overpressure wave form used was that of the 1000 psi contour from a 3 MT sur-

face burst. The rise time for the wave form was set to satisfy the numerical stability

requirements posed by the smallest modulus value likely to be encountered during the set of

Monte Carlo cycles. Maximum simulation time for each cycle was determined by the time re-

quired for the velocity at 150 foot depth to reach its maximum value.

Figure 3-4 shows the results of a 41-sample Monte Carlo simulation in terms of the

cumulative distribution of peak velocity layers at 1.67 foot depth in the dry sand layer.
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Figure 3-4. Cumulative distribution of peak velocity values for 1.67 ft. depth.
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Also shown are the best fit to the data using a cumulative log normal distribution and the

peak velocity calculated using the average properties stress-strain relationship. The Monte

Carlo results for this depth have a median peak velocity of 32.5 ft/sec, a mean peak velo-

city of 33.7 ft/sec and a coefficient of variation of about 0.28. The peak velocity calcu-

lated using the average properties is 30.0 ft/sec, i.e., about 10% lower than the mean peak

velocity from the Monte Carlo results. A "goodness to fit" test was used to test the hypo-

thesis that the Monte Carlo results were samples from a log normal distribution. For these
data, the hypothesis of log normality is acceptable at greater than the 0.95 confidence

level.

Figure 3-5 shows similar information for the depth of 21.67 feet. For this depth,

the Monte Carlo results have a median peak velocity of 26.9 ft/sec, a mean peak velocity of

27.5 ft/sec and a coefficient of variation of about 0.21. The log normality of the peak

velocity values was again strongly supported by the goodness of fit test. The peak velocity

calculated using the average properties is 25.4 ft/sec which is about 8 percent lower than

the mean peak velocity from the Monte Carlo simulations.

Overall, the Monte Carlo results at all depths in the dry sand between the near

surface and 160 foot depth showed the mean and median peak velocities decreasing with in-

creasing depth, strong support of the hypothesis of log normality of the peak velocity

values, and coefficients of variation that decreased with increasing depth. In all cases,

the peak velocities calculated using the average properties were lower than the means of the

Monte Carlo results. The percentage difference between the two values, however, decreased

with increasing depth.

The log normality of the peak velocity values suggests that there is, perhaps, a

simple, functional relationship between peak velocity and the upper loading modulus which

was assumed to have a log normal distribution. Figure 3-6 shows the relationship between

the peak velocity values at 1.67 foot depth calculated in the Monte Carlo simulations and

the upper loading modulus value used in the particular simulation cycle. Also shown is the

least squares regression line relating the peak velocity to the upper loading modulus. This

relationship is of the form.

V.a aM' (1)
"ma

where V is the peak velocity, M the upper loading modulus, and a and a are constants.
max

For the case shown, a has a value of approximately -0.48 and the regression line accounts

for almost all the variability in the peak velocity values. Similar relationships were

observed at other depths. The value of the exponent a was found to decrease from roughly

-1/2 to roughly -1/16 over the depth interval of surface to approximately 16U feet.
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The existence of these relationships greatly sinplified the test of the average

properties/average results hypothesis since it negates, in certain cases, the necessity of

large Monte Carlo sample sizes by permitting closed-form analytical solutions. Even in

those cases where Monte Carlo techniques are required, they can be performed using the

simple analytical relationship rather than the full-up simulation.

*Before proceeding, it is useful to enumerate certain properties of log normal

distributions. Since the upper loading modulus was assumed to be log normally distributed,

we have

Median Modulus M 50 (2)

Standard Deviation = (3)

and the relationships

Mean Modulus M50 exp[ 2] (4)

Coefficient of Variation = exp -1 (5)

Because of the indicated relationship between the peak velocity and the upper

modulus, the peak velocity values will also be log normally distributed with

Median Velocity = V50  aM 0  (6)

Standard Deviation y = (7)

Median Velocity = 0 exp 1/2y 2j (8)

Coefficient of Variation = exp 2] -1 (9)

and the 0.9 conditional confidence bounds on the peak velocity values will be given by

V bounds= V50 exp [*1.645)] (10)

where tne plus sign gives the upper bound and the minus sign gives the lower bound. For

comparison, the average properties' peak velocity will be given by

0, 24
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V a M exp 1/2 1

V -~=
5 0 exp [1/2ao32]

*which is smnaller than the mean peak velocity for all negative and some positive values of 2.

The relationships between the parameters of the upper loading modulus distribution

*are graphically illustrated in Figure 3-7 for the case of 1.67 foot depth. In both Figure

3-7a, which deals with the means and medians, and Figure 3-7b, which deals with the con-

fidence limits, the relationship between peak velocity and upper loading modulus shown in

Figure 3-6 is represented by the long dashed line.

Addressing first the cases shown in Figure 3-7a, the mean upper modulus value of

2.53 Kbars (36.7 Ksi) corresponds to an average properties' peak velocity value of 30.1 fps

whereas the median modulus value of 2.07 Kbars (30.0 Ksi) leads to a median peak velocity of

33.1 pfs. The standard deviation of the log normal upper modulus distribution is about 0.63

while the exponent of the peak velocity upper modulus relationship is -0.48 for this depth.

This leads to a standard deviation of the peak velocity distribution of about 0.30 and a

mean peak velocity is 34.6 fps at this depth. (Note again that the mean peak velocity does

not correspond to any single descriptor of the upper loading modulus distribution.)

In Figure 3-7b, the upper bound upper modulus value of 5.89 Kbars (85.4 Ksi) pro-

duces a lower bound for the peak velocity distribution of 2.0.1 fps. Similarly, the lower

bound modulus value of 0.73 Kbars (10.6 Ksi) produces an upper bound peak velocity value of

54.5 fps. Thus, although the 0.9 confidence bounds for the ipper modulus distribution

differ by a factor of 3.1, the 0.9 confidence bounds for the peak velocity distribution

differ by a factor of 2.7 at this depth.

Figure 3-8 '-ows the effect of depth on the calculated peak velocity values. The

average properties pedk velocity value is lu4er thdn the tiean velocity value at all depths.

The percentdge difference between the two values, however, decreases with increasing dpnth.

Near surface, che two peak velocity value- diffar by some 13 percent. Near 15U foot depth,

the t/o values differ by so;ne 1.5 percent. Notice also that the magnitude of the diff-renc-

b etween the lower and upper confidence bouads on the peak velocity also decrease with ".-

creasiny depth. Near surface they differ by a factor of 8.1 while near 150 foot le. it'

two bounds differ by 4 fictor uf 1.15. Both of these behaviors are due to the previ. ,

mentioned decrease wit'i ;ic,.-asing depth of the e~panent in the relationships between ..ak

velocity and upper loading modulus.

Figure 3-9 shows the relationship between peak displce,.ient at . 67 foot deph rind

upper loading modulus that was derived from a series of non-Monte Carlo runs of the ONED
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model. The least squares regression fit to these data points leads to a relationship of the

form

aimax = (12)

with an exponent of about 0.59 for this depth. The peak displacement data for other depths

produced relationships between peak displacement and upper loading modulus that were similar

in form. As was the case of the peak velocity relationships, the exponent decreases with

increasing depth, but at a slower rate. The value of the exponent varies from about 0.59

for the 1.67 foot depth to 0.31 for depths near 150 feet.

Figure 3-10 shows the effect of depth on the various peak displacement values. As

was the case with peak velocity, the average properties result is lower than the mean peak

displacement at all depths. Near surface, the two displacement values differ by some 17

percent while near 150 foot depth the difference is some 8 percent. The magnitude of the

difference between the upper and lower confidence bounds are somewhat larger than was the

. case with peak velocity. At 1.67 foot depth, the bounds differ by a factor of about 3.5

while near 15U foot depth, the difference is a factor of about 1.9.

To test the sensitivity of these results to the assumption of a log normal distri-

bution for the upper loading modulus values, two other forms of distribution functions were
derived from the WES uniaxial stress-strain data. The first of these was the log uniform

,* distribution which results in all modulus values between an upper and a lower bound value

being equally probable (in log space). The second distribution function is the Gamma

function which involves non-transformed parameter values and is characterized by a scale

factor and a shape factor.

Figure 3-11 compares the three assumed distribution functions in terms of the

* cumulative fraction of modulus values that are equal to or less than a given value. For

example, at 1 Kbar modulus value, the log normal distribution assumption has about 130 of

the modulus values equal to or less than this value, whereas the cumulative fractions for

the Gamma and Log Uniform distributions are about 19 and 23 percent, respectively. Two

points should be noted relative to the new distribution function assumptions: First, that

the Gamma and Log Uniform distributions have a somewhat higher fraction of low modulus

4values than the log normal distribution. Second, that the log uniform distribution as-

sumption restricts the upper modulus values to the range of 0.55 to 7.74 Kbars.

Monte Carlo programs were developed for a programmable calculator that developed

the upper loading modulus values by drawing random numbers from the appropriate distribution

functions and calculated the peak velocity using the relationships between peak velocity and

upper loading modulus that were discussed with Figure 3-11. A nominal sample size of 500

*was used in these calculations. Figure 3-12a compares the mean peak velocity values for the

29
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case of the assumed log uniform distribution with the peak velocity values calculated using

the average properties. Also shown are the 0.9 conditional confidence bounds produced by

the log uniform distribution of the upper loading modulii. As can be seen, the overall

results are quite similar to those shown in Figure 3-8 for the case of the log normal

distribution assumption. The average properties peak velocity values are always less than

the mean velocity but the difference is a maxinum of about 10%.

Figure 3-12b shows similar data for the case where the upper loading modulii are

assumed to have a Gamma distribution. The results are again quite similar to those obtained

with the log normal distribution assumption except the upper confidence bound velocity at

any depth is somewhat greater with the Gamma distribution assumption.

Overall, these results suggest that for the case examined, the average properties

lead to average results hypothesis appears to be reasonably valid. The average properties

response always under-predicts the mean of the distribution of responses, but the percentage

difference is relatively small, 17 percent being the maximum difference observed. This is

due to the combination of coefficient of variation of the upper loading modulus distribution

(-0.70) combining with the exponent of the empirical relationship found between peak re-

sponse and upper loading modulus (maximum of 0.6) to give response distributions with a

maximum coefficient of variation of about 0.4.

3-2 GENERALIZATION OF THE HYPOTHESIS TEST

Whether or not the parameters that produced the results of Section 3-1 are truly

representative, or not, is open to question. Figure 3-13, which is redrawn from Reference

4, illustrates the relationship between airslap-induced peak vertical velocity and peak

overpressure for a series of HE events at Suffield Experimental Station including Distant

Plain 1A, 2A, 3, 5, 6, Prairie Flat and Dial Pack. Also shown on that figure are the re-

gression lines for the relationship between median peak velocity and peak overpressure and

the 0.9 confidence prediction bounds. These data support a coefficient of variation of the

response distribution at a fixed pressure level that is about 1.4 times that found for the

dry sand. The median peak velocity at 1000 psi overpressure is also about 1/3 higher than

" the value derived from the model used in Section 3-1.

According to Reference 4, the area in which these tests took place is character-

ized by a fairly complex site profile with a shallow water table whose depth below the

surface averages about 24 feet with extremes in the neighborhood of 18 feet and 28 feet.

The materials above the water table were complexly layered and very compressible. The re-

presentative properties uniaxial stress-strain relations for the near surface materials show

loading modulii near a vertical strain level of 1000 psi that range from about 0.4 to 2.75

Kbars. There is sufficient data to further characterize, in a statistical sense, the innate

variability of loading modulus values for this site. The data that is available suggests

that there may be additional variability of, perhaps, a factor of 1.5 around the represent-
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ative property values. Overall, the spread in the loading modulii for the near surface

unity.

Figure 3-14a illustrates the effect of the coefficient of variation of a material

property on the ratio of the average properties response to the mean value of the response

for cases where response varied as (property value)' such as was the case for the peak velo-

city and peak displacement data calculated in this effort where a ranged froia nearly zero to

about -0.6. The best estimate coefficient of variation of the upper loading modulus for the

dry sand was 0.7 which gives the ratio of the average properties' response to the mean value

response to a minimum value of about 0.85. If the coefficient of variation of the upper

loading modulus were unity, then the minimum value of the ratio of the responses would de-

crease to about 0.75.

As shown in Figure 3-14b, the behavior of the ratio of the average properties

response to the mean response is somewhat different than that for negative exponents. For

positive fractional values of the exponent, the average properties' response is always

greater than the mean response. Thus, for a parameter such as compression wave velocity,

which varies as the square root of the constrained modulus, the average properties result
will overestimate the mean value by a few percent.

It is possible to define, for arbitrarily chosen adequacy criteria, regions where

the average properties/average results hypothesis produces acceptable results. Figure 3-15

illustrates the regions in value of exponent versus property space where the average proper-

ties/average results hypothesis produces a maximum bias in the estimate of the mean response

of either 10% (Figure 3-15a) or 30% (Figure 3-15b). For the case of a maximum of 10% bias
- in the estimate of the mean, exponents between roughly +5 and -4 are admissible when the

coefficient of variation of the property value is near 0.1, while for the case of a coef-

ficient of variation near unity, the permissible values of the exponent are restricted to

the range of about +5/4 to -1/4. (Note that these bounds are symmetrical around an exponent

value of 1/2.) Comparison with the case where 30% bias in the estimate is assumed to be

acceptable shows that $or a fixed value of the coefficient of variation of the property
"-  value, relaxation of the accuracy requirements increases the range of exponents where the

hypothesis produces acceptable estimates of the mean response.

Overall, these results suggest that the average properties lead to average results

hypothesis may be an adequate estimator for the free field ground shock estimation process

for cases where a single parameter dominates the results. The average properties response

is a biased estimation of the mean response for all cases examined herein. The degree to

which the average properties response is biased depends on the coefficient of variation of

the property value and the sensitivity of the response to the property value.
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Generalizing these results to cases where the response is controlled by two or

more parameters may be dangerous. When there is no correlation between the material proper-

ties parameters, the average properties' response will remain a biased estimator of the mean

response with a degree of bias that depends on the coefficients of variation of the per-

tinent materials properties parameters and the degree of sensitivity of the response to the

parameter values.

Assuming for example, that a response such as peak velocity depends on two para-

meters, P1 and P2 ' according to the relationship

r a P P 2  (13)
1 2

and that P1 and P2 are uncorrelated and log normally distributed, then the response will

have a log normal distribution with the characteristics

Median r = a(P10 )  (P 20) (14)

Std Deviation 2 /( 3i~i + (C 2B2 )2 (15)

Mean = r50 exp 1/2 y1 2] (16)

r exp 1/2 ( + a 8

The average properties response will be given by

~~2 I2 n=
112] a'2 . 2/2]a

rAp = a [PIOe •P21 e  (17)

S: a PO 1P 20C exp 1/2 (0 +2  2 )]

= r5  exp [1/2 ( 2lr C 2 )

* Thus, as was the case for a single parameter, the average property's response will be less

than the mean response for all negative values of the exponents a 1 and R2 and for certain

combinations of positive and negative values of these exponents.
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This implies that it might be necessary to accept a larger bias in the estimate of
the mean when the response depends on two parameters. Alternatively, it might be necessary
to reduce the regions where the average properties/average results hypothesis produces ac-

ceptable results from those illustrated in Figure 3-15.

When correlation exists between the pertinent material properties parameters, the
situation is more complicated. Depending on the degrees of correlation, the coefficients of
variation, and the sensitivity of the response to the various parameters, the average

properties response may become an increasingly more biased estimator of the mean response

* such as was illustrated in Figure 3-14 for the case of a large coefficient of variation of
the property value and high sensitivity of the response to the parameter value.
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SECTION 4

SAMPLING AND TESTING STRATEGIES AND REQUIREMENTS

Measurement of the key physical and mechanical properties of earth materials is

potentially one of the largest sources of uncertainty in the overall free field ground shock

estimation process. A degree of uncertainty in the parameter values should be considered

natural, simply due to the innate heterogeneity of the earth materials themselves. This is

further compounded by the potential uncertainties and bias errors that may arise in the

sampling and testing procedures used to obtain the parameter values.

The degree of uncertainty in the measured value of a physical or mechanical

property is, in reality, of interest only to the extent that it contributes to the overall

uncertainty of the free field response descriptions. It may be the case that a large degree

of uncertainty in a measured value of a parameter may be acceptable if the model of reality

being used to estimate the free field environment is relatively insensitive to large changes

in the parameter value. On the other hand, it is conceivable that the situation may occur

where a very small degree of uncertainty in parameter value will contribute a large degree

* of uncertainty to the free field response descriptors due to the high degree of sensitivity

of the model to changes in the parameter value.

This section of the report is an attempt to illuminate some of the issues involved

in devising sampling and testing strategies (or plans) that recognize the innate presence of

uncertainties in the properties of earth materials and seek to minimize these uncertainties.

The areas to be examined are divided on the basis of the absence or presence of spatial

correlation of material property values. The discussion treats the case where only a single

parameter value is of interest but can easily be generalized to the case of multiple para-

*? meters.

4-1 ESTIMATING MEAN RESPONSE - LINEARITY IN RESPONSE FUNCTIONS

Figure 4-1 illustrates the role of sampling and testing for the case where the

response to be estimated is assumed to depend only on the value (or some function of the

value) of one physical or mechanical property and the mean response is to be estimated using

the average properties lead to average results hypothesis. For this case, the key para-

meters to be produced by the parameter estimation process are estimates of the mean of the

property value and the variance of the estimate of the mean of the property value.

Assuming that spatial independence effects are negligible, the measured property

value for any one sample would consist of the following components:

1) The true mean property value which will be denoted as .
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2) A random component, e(i), due to the innate variability of the properties which

has a mean of zero and a variance of ai.

3) A random component e(t) due to random errors in sampling and testing which has a

mean of zero and a variance of t"

4) A systematic, or bias, component e(b) due to sampling disturbances and/or system-

atic testing errors which will be assumed to have a mean of Eb and a variance of

zero.

which can be written as

Xj + e(i)j + e(t)j + e(b) (18)

where the subscript, j, denotes a particular sample. Given N property value measurements,

the estimators:

X (19)
i

s2 1 j- 2  (0
I 2 f z xi -X (2U)

i=l

S2  - - (21)
N

are not maximum likelihood unbiased estimators of the true mean value of the property (c),
. variance (a ), and the variance of the estimated mean because of the bias error and random

,. testing error components. An unbiased estimate of the mean and the variance of estimated

mean would be obtained by substituting the quantity xi Eb for the Xi in the estimation

equations but this is, in practice, difficult to impossible since the existence of bias

errors is generally only suspected and not quantifiable to the extent of truly estimating

. the mean bids error in a statistical sense. Therefore, we must assume, with the caveat of

. "beware of bias errors", that:

a) X Xi ) estimates the mean property value F

b) s2 = . -x )2) estimates the sum of the variance of the property
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population and the variance of the random sampling and testing error

component (at )

C) 2 ( )estimates the variance of the estimate of the mean,

and further note that there is, in general, no statistic that provides a maximum likelihood

estimate of the coefficient of variation of the parameter.

Confidence limits on the estimate of the mean are established using the relation-

ship

p s < X - 2 < t s = P 2  - P 1  
( 2 2 )

where P1 and P2 define the confidence interval and t is the appropriate value of the

"Students - t" distribution with N-1 degrees of freedom which has the property of approach-

ing the normal distribution as the number of degrees of freedom become infinite. This

relationship implies that even with random sampling and testing errors, the mean value (E)

. can be estimated to any degree of precision desired by increasing the number of samples that

are tested. In order to get an a priori estimate of the sample size required to obtain a

given precision of estimate, a distribution function and a value of the variance must be

assumed. An expected number of samples required for a given precision of estimate of the

mean can then be calculated which will be a rough measure of the actual number of samples

required for a given precision of estimate of the mean.

Table 4-1 shows the expected number of samples required to have 0.9 confidence

that the estimated mean is within fixed percentages of the actual mean vs the coefficient of

variation of the parameter for the case where the random sampling errors are negligible. As

should be expected, precise estimates of the mean of parameters with large coefficients of

variation require large sample sizes.

4
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Table 4-1. Sample size requirements for estimate of parameter mean.
Samples drawn from a normal distribution.
No random testing error component.

Expected Number Of
Samples Required

Coefficient
Of Variation
Of Parameter Precision Of Estimate Of Mean

*10% *30% ±50%

0.2 10.8 1.2 0.4

0.4 43.3 4.8 1.7

0.6 97.4 10.8 3.9

0.8 173.2 19.2 6.9

1.0 270.6 30.1 10.8

The shear numbers problem may be mitigated in certain cases by the results shown
in Figure 3-14 of Section 3-2. The average properties/average results hypothesis is ade-

quate at large coefficients of variation over a limited range of exponents centered around

positive 1/2. Since precision of the estimate of the mean response is roughly equal to the

. exponent times the precision of the estimates of the mean property values, ±30% precision of

the estimate of the mean property value would produce uncertainties in the estimated mean

response that are comparable to the inherent bias of the average property/average results

hypothesis if the exponent were between, say, plus 1/2 and minus 1/2. Thus, sample sizes in

the order of a small multiple of ten are probably adequate for exponents in this regime.

Table 4-2 illustrates the effect of random testing errors on this conclusion. As

.. can be seen, for a fixed coefficient of variation of the property, the sample size require-

nents increase linearly with the ratio of the testing variance to the sample variance.

Thus, twice as many samples are going to be required for a fixed precision if the random

• testing errors are of the same order as the innate variability of the parameter being test-

ed.
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Table 4-2. Effect of random testing errors on sample size requirements.
Samples drawn from a normal distribution.
± 30% precision of estimate of mean.

Expected Number of Samples Required
CoefficientOf Variation
Of Varaten Testing Variance
Of Parameter-

0 0.5 1.0

0.2 1.2 1.8 2.4

0.4 4.8 7.2 9.6

0.6 10.8 16.8 21.7

0.8 19.2 28.9 38.6

1.0 30.1 45.1 60.3

Overall, these results indicate that sample sizes of the order of a small multiple

of ten may provide an adequate estimate of the mean value of a parameter when the average

- properties lead to average hypothesis results is used to estimate the mean response. Sam-

pling and testing errors may, perhaps, add a factor of 2 to the sample size requirements.

The uncertainty in the predicted mean response will then be of the same order as the in-

herent bias in the estimated mean response.

4-2 ESTIMATING MEAN RESPONSE - AVERAGE PROPERTIES/AVERAGE RESULTS HYPOTHESIS
INADEQUATE

Situations where the average properties/average results hypothesis would produce

sufficiently biased estimates of the mean response as to be unusable are not difficult to

visualize but it is not known at this time whether any of these occur in the overall free

* field ground shock estimation process. It is useful, however, to consider the implications

of these on sampling and testing strategies should they be found to occur.

Consider, for example, a case similar to those discussed in Section 3, where the

model of behavior was response varying as property value to an exponent and the variability

of the property value was described by a log normal distribution with median PS0 and vari-

ance 82. These assumptions lead to the response values being log normally distributed with

a median of RSO and the variance y2 where

RP(23)
R50  constant• P50

and

y2 (24)

. . .46

, .. - .. . . . - . -



Because of the properties of log normal distributions, the mean response is given by

R R50 exp [1/2y
2] (25)

50I

which involves both the median and the variance of the assumed log nor~nal distribution of

the response values.

Establishing confidence limits on this estimate is much nore difficult than for

the case where the average properties/average results hypothasis was adequate. An approxi-

mate estimate can be made, at no specificable confidence level, with the relationship

A R 2 /2\1 t1/2
R= + (/2y 2  ) (26)

where AR50 is the uncertainty in the median of the distribution and A( ) is the uncertainty

in the variance of the distribution, which must be estimated through their functional re-

lationships with the property value distribution descriptors, and the plus sign defines the

upper bound limit while minus sign defines the lower bound limit.

The median of the response distribution and the uncertaioty in this estimate is

obtained by first applying equations (19) through (22) to the algorithins transform of

property value data, then transforming into property value space through the relationship

P50 = exp [15V ]  (?7)

and then applying equation (23). The variance of the transformed property data has already

been estimated above by equation (20) but this estimate includes a random testing error

component. If the random testing error component is of negligible magnitude, confidence

limits on the estimate of the variance can be made with the relationship

P s (N-1) < 02 <s (-1) " (8r < 7 = 2 - PI (28)

2~ 2
where s2 is the estimate of the variance,. 2 is the true variance, P1 and P2 define the

confidence interval, and x is the so-called "Chi-Squared" statistic with N-i degrees of

freedom. The transformed response variance (y2 ) can now be obtained from the transformed
2

property value variance (32) through equation (25) and the mean response then estimated from.

equation (26).

47

• " .. ." " " : ' . .. " " ..i .- , - 1-



Inherent in this procedure is an implication of requirement for large sample sizes

in the sampling and testing process. Inadequacy of the average properties/average results

hypothesis implies fairly large absolute values of the exponent a and/or large coefficients

of variation for the property values. From Table 4-1 we saw that precise estimates of the

mean of a distribution with a large coefficient of variaton implied sample sizes in the

order of hundreds. Table 4-3 illustrates the effect of sample size on the precision of the

estimate of the variance. Here a sanple size of more than 100 is required for a precision

*: of estimate of the variance of ±20 percent.

Table 4-3. Effect of sample size on the precision of estimate of sample variance.

0.9 Confidence Limits on Ratio
Sample Size of Estimate of Variance To ActualVariance

5 0.18 - 2.37

10 0.37 - 1.88

20 0.53 - 1.58

50 0.64 - 1.35

100 0.79 - 1.24

The situation relative to sample size may not be quite this bleak, however.

Assume a simple case where response is inversely proportional to the property value

(i.e., a = -1) and the property has a coefficient of variation of 0.8. A sample size of

twenty, produces approximate 0.9 confidence bounds on the estimate of the mean response of

t40 percent. Increasing the sample size to 50 reduces the confidence bounds to about ±25

percent, while a sample size of 100 reduces the approximate confidence bounds to about ±15

percent. Thus, sample sizes of 100 or less may be adequate for this case.

Overall, estimating mean response without the average properties/average response

hypothesis creates more stringent requirements on sampling and testing strategies. Sample

sizes on the order of one hundred are probably required to adequately estimate the mean

response. Contrawise to the case where the hypothesis was adequate, the magnitude of any

random sampling and testing error is important and must be minimized in magnitude if sensi-

ble results are to be obtained.

4-3 SAMPLING AND TESTING BUDGET WITH SPATIAL CORRELATION

The presence of spatial correlation of materials properties of earth materials

discussed in Reference 3 suggests that if a group of small subareas, with linear dimensions

that are small compared to the spatial correlation distances, were defined, at distances

that are large compared to the spatial correlation distance, and the mean and variance of
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some physical property such as a near surface loading modulus were measured for each of the

subareas that each of these values would be diffekent. Reference 6 defines a model of ;tat-

istical behavior that perhaps adequately models this type of behavior.

It is assumed that the property value of the jth sample taken from the ith subirea

consists of the components

xij= + Yi + Z ij'.9)

where F, is the true mean property value for the total area being tested, Yi is a random

variable from a normal distribution with mean zero and variance w-, and Z is a rndo

variable drawn from a normal distribution with a mean zero and variance of . The quantity

2 will be referred to as the variance of the mean while 2 will be referred to is the local

variance. The local variance includes any random sampling and testing rror components.

Given n samples from each of k subareas the statistic

".-."" i x ij

j=1

estimates the mean of the property value for the 4h subara whil-

h

i=1

estimates the mean of the property value over the total are. being considered. The

statisticL " k

-2
2 i=1 Xij -i 32P)Ds"-i s ... kTf-T"

" .2 ,

provides an estimate of the variance component a, while

k

•2 i=1 (33)

is an estimate of the quantity a2 + ,2 and

o'," 49
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VEX] W ( 34 )

is the variance of the estimate of the mean for the total area.

Suppose that instead of subareas, that we are dealing with bore holes and that the

cost to drill a bore hole is C1. Also assume the cost to prepare and test each sample from

a bore hole is C2. The total cost of the measurement program involving k bore holes and n

samples from each bore hole will be

C =kc + knc2  (35)

The expected value of the variance of the estimated mean is given by

2 2
V[X] - +-- (36)

so that solving equation (35) for k and substituting into (36)

n(.12  + nc 2)

.- Manipulation of this function reveals that the mininun variance estimate of the mean occurs

when

n* 2  1 (38)

with n* restricted to values equal to or greater than unity. Figure 4-3 illustrates the

behavior of this optimum number of samples per hole with changes in the ratio of the costs

and changes in the ratio of variance components. As should be suspected from the form of

equation (38), when measurements cost a significant fraction of the cost of a borehole, the

* optimum number of measurements per borehole is small, irrespective of the ratio of the vari-

ances. Conversely, as the cost per measurement approaches a small fraction of the cost per

borehole, the optimum number of measurements depends more strongly on the ratio of

- . variances.

In parallel with an optimal number of measurements per borehole, there is also an

optimal allocation of cost resources between drilling costs and measurement costs. Factor-

Ing equation (35) and substituting for n from (38), we have

C = kc 1 (1 + n* c2)  (39)
1
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as the total exploration cost. The term within the bracket does not involve k, the number

of boreholes. Therefore, irrespective of the total cost, the fraction of the cost resources

that should be devoted to measurements is

i..i c2
n*c

1fM ------ - (40)

1 + n*2

Figure 4-4 shows the effect of the cost ratio and the varidnce ratios on this

allocation fraction. As might be expected when the cost per measurement of the same magni-c
1

tude as the cost per borehole (i.e., 12~ 1) as is probably the case for the ii itu CIST
2

test, the optimal allocation involves about half the resources being allocated to aedsare-

ments. As the cost per measurement decreases relative to the cost per bnrrhole, the

fraction of the resources allocated to measurements decreases and becomes, in a percent-

wise basis, increasingly more sensitive to the variance ratio reflecting the sensitivity

,. of the optimum number of measurements per borehole to this ratio. At the other

extreme, at cost ratios in the realm of 30 to 100, as might be the case for laboratory

testing, the optimal allocation of resources involves a maximum of 301 of the resources

being allocated to measurements.

Turning next to the question of sample size requirements, the precision of the
estimate of the mean is calculated with equation (22) in exactly the same manner as was the

case with no spatial correlation effects. The expected number of boreholes required to

yield a given precision of estimate of the mean, however, depends on factors in addition to

the coefficient of variaton oc the property being measured.

Table 4-4 illustrates the effect of the precision of the estimate of the mean (at

-. the 0.9 confidence level) and the coefficient of variaton of the parameter being estimated

on the expected number of boreholes required for the case where the local variance is equal

to the variance of the mean and the cost ratio is either 4 or 100. As was the case when

* there was no spatial correlation of parameter values, precise estimates of the mean of a

"- parameter with a large coefficient of variation requires a large sample size.

The total number of measurements to be made is, in this case, however, not solely

determined by the precision required and the coefficient of variation of the parameter. For

• . example, with a coefficient of variation of 0.6 and a ±10 percent precision level, the

* number of boreholes required at a cost ratio of 4 is about 73 compared to the 54 requirad

; when the cost ratio is 100. The optimal number of samples per borehole for the two cost

• " ratios from Figure 4-4 are 2 and 10, respectively, leading to 146 parameter measurements
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when the cost ratio is 4 and 540 measurements when the cost ratio is 100. For comparative

purposes, when there is no spatial correlation of properties, Table 4-4 shows a requirement

of just under 100 measurements for the same level of precision in the estimate of the mean.

• "The effect of the variance ratio on the expected number of boreholes required for

*m a ±10 percent precision of estimate of the mean is illustrated in Table 4-5 using the same

cost ratios as discussed above. When the variance ratio is zero, no spatial correlation

exists and the results are identical to those shown in Table 4-1. With non-zero variance

ratios (i.e., with spatial correlation of the parameter being measured), the expected number

of boreholes required is sensitive to both the variance ratio and the cost ratio. This

behavior should be expected since increasing either the variance ratio or the cost ratio

• . leads to a larger number of measurements per borehole under the optimization that minimizes

the variance of the estimate of the mean.

The actual number of measurements to be made, however, does not change radically

when the variance ratio changes from 1 to 4. Again, considering the case where the para-

meter has a coefficient of variation of 0.6, the number of measurements made with a variance

ratio of 4 is about 160 for the lower cost ratio and about 470 for the higher cost ratio

compared to the previously discussed values of about 150 and 540 when the variance ratio is

unity. These results can be extended to other precision of estimate of the mean values

through a square relationship increasing the precision of the estimate to, say 5 percent

(i.e., a factor of 2), increases the number of boreholes and total measurements required by

a factor of four while decreasing the precision of the estimate to, say, 30% decreases the

number of boreholes, and total measurements, required by a factor of nine.

Considering the case where the mean response is to be estimated using the average

properties/average results hypothesis, these results suggest that a sampling and testing

program involving a small multiple of ten boreholes may be adequate if the coefficient of

variation of the property value is relatively small or, by the argument of Section 4-1, if

the exponent of the response parameter value relationship is small. The number of measure-

ments made will, of course, depend on the variance and cost ratios in the manner previously

discussed, but should be somewhere in the range of a small multiple of 25.

Turning next to the case where the average properties/average results hypothesis

is inadequate to estimate the mean response, the situation is somewhat more bleak than was

discussed in Section 4-2 for the case of no spatial correlation of materials properties.

The procedure used to estimate the mean response and the uncertainty in the mean response,

however, is identical to that discussed in Section 4-2.

The estimators of the various parameters required to determine the uncertainty in

the mean response are different in this case. The mean property value is estimated by

equation (31) and the variance of this estimate is determined from equation (34). These two
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Table 4-4. Expected number of boreholes required.

Local Variance = Variance of Mean

Borehole Cost 4 (or 100)
Measurement Cost

Expected Number of Boreholes Required-.- -. Coefficient

Of Variation Precision of Estimate of Mean
Of Parameter t10% ±30% ±50%

0.2 8.1 (6.0)* 0.9 (0.7) 0.3 (0.2)
0.4 31.5 (23.8) 3.6 (2.6) 1.3 (1.0)

0.6 73.1 (53.6) 8.1 (6.0) 2.9 (2.1)
0.8 129.9 (95.3) 14.4 (10.6) 5.2 (3.8)

* 1.0 203.0 (148.8) 22.6 (16.5) 8.1 (6.0)

*Numbers in parenthesis are for cost ratio of 100.

Table 4-5. Expected number of boreholes required.

±10 Percent Precision of Estimate of Mean

Borehole Cost = 4 (or 100)
- Measurement Cost

Expected Number of Boreholes Required
Coefficient
Of Variation Variance Ratio
Of Parameter

0 1 4

0.2 10.8 (10.8)* 8.1 (6.0) 4.3 (2.6)

0.4 43.3 (43.3) 31.5 (23.8) 17.3 (10.4)

0.6 97.4 (97.4) 73.1 (53.6) 39.0 (23.4)

0.8 173.1 (173.1) 129.9 (95.3) 69.3 (41.6)

1.0 270.6 (270.6) 203.0 (148.8) 108.2 (64.9)

*Numbers in parenthesis are for cost of 100.
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quantities suffice to determine the quantity 50 of equation (26). The local variance can

50
be estimated using equation (32) and the uncertainty in this estimate is given by equation

(22). The variance of the mean is found from the relationship

2 _2
S S (41)

n

where the quantity ~ is found from equation (33). The uncertainty in this estimate of the

variance of the mean cannot be estimated in any straight-forward manner. One technique is

to assume that the estimate 2 is normally distributed and use the method that was used to

S- estimate the uncertainty in the local variance. This approximation is poor from values of k

less than about 50. Other techniques are discussed in Reference 6, but these also only give

approximate uncertainty bounds for the estimate of the variance of the mean. Thus, the

variance and the uncertainty in the variance to be used in equation (26) will only be appro-

ximations and, hence, the estimate of the uncertainty in the mean response calculated using

equation (26) can only be considered a, perhaps, crude approximation.

5
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