
AD-R134 703

PILOT FIELD TEST OF MULTIVISCOSITY/SYNTHETIC ENGINE OIL 1/1
IN ARMY COMBAT/TA. (U) SOUTHMEST RESEARCH INST SAN
ANTONIO TX ARMY FUELS AND LUBRICA. WE BUTLER ET AL.

JUL 82 AFLRL-160 DARK70-82-C-0001

F/G 19/3 NL

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

CONTRACTOR OF THE PARTY OF THE

PILOT FIELD TEST OF m MULTIVISCOSITY/SYNTHETIC **ENGINE OIL IN ARMY COMBAT/TACTICAL VEHICLES** AT FT. BLISS, TX

INTERIM REPORT AFLRL No. 160

By

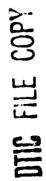
W. E. Butler, Jr.

E. C. Owens

E. A. Frame

U.S. Army Fuels and Lubricants Research Laboratory Southwest Research Institute San Antonio, Texas

and


T. C. Bowen

U.S. Army Belvoir Research and Development Center Materials, Fuels and Lubricants Laboratory Fort Belvoir, Virginia

Contract No. DAAK70-82-C-0001

Approved for public release; distribution unlimited

July 1982

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

Trade names cited in this report do not constitute an official endorsement or approval of the use of such commercial hardware or software.

DTIC Availability Notice

Qualified requestors may obtain copies of this report from the Defense Technical Information Center, Cameron Station, Alexandria, Virginia 22314.

Disposition Instructions

Destroy this report when no longer needed. Do not return it to the originator.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTAT	READ INSTRUCTIONS BEFORE COMPLETING FORM		
1. REPORT NUMBER	2. GOVT ACCESSION NO.		
AFLRL NO. 160	41 - A134 70	₽3	
4. TITLE (and Subtitle)		5. TYPE OF REPORT & PERIOD COVERED	
PILOT FIELD TEST OF MULTIVISC		Interim Report	
SYNTHETIC ENGINE OIL IN ARMY	COMBAT/TACTICAL	August 1980-October 1981 6. PERFORMING ORG. REPORT NUMBER	
VEHICLES AT FT. BLISS, TX	· · · · · · · · · · · · · · · · · · ·	SwRI 6800-163/1	
7. AUTHOR(s)	!	8. CONTRACT OR GRANT NUMBER(5)	
W.E. Butler, Jr., E.C. Owens	!	DAAK70-82-C-0001	
E.A. Frame, T.C. Bowen (Belvo	ir R&D Center)		
9. PERFORMING ORGANIZATION NAME AND A		10. PROGRAM ELEMENT, PROJECT, TASK	
U.S. Army Fuels and Lubricant		AREA & WORK UNIT NUMBERS	
Southwest Research Institute		1L762733AH20EL; WUB06	
P.O. Drawer 28510, San Antoni	o, TX 78284	-	
11. CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE	
U.S. Army Belvoir Research an	d Development	July 1982	
Center, Materials, Fuels and		13. NUMBER OF PAGES	
Laboratory, Ft. Belvoir, VA		43	
14. MONITORING AGENCY NAME & ADDRESS (ii different from Controlling Office)	1	15. SECURITY CLASS. (of this report)	
(i) different from continuing diffice/	ļ	Unclassified	
	J	15a. DECLASSIFICATION/DOWNGRADING	
	,	SCHEDULE	
16. DISTRIBUTION STATEMENT (of this Report)			
Approved for public release;	distribution unli	mited	
17. DISTRIBUTION STATEMENT (of the abstract er	stered in Block 20, if different	t from Report)	
18. SUPPLEMENTARY NOTES			
19. KEY WORDS (Continue on reverse side if necessar Synthetic Engine Oil	ry and identify by block numb Combat/Tactical E	ber) Cauinment	
	Polyalphaolefin-b	• •	
	Multiseasonal	aseu	
Field Test	IIII L L L L L L L L L L L L L L L L L		
20. ABSTRACT (Continue on reverse side if necessary	, and identify by block numbe	er)	
Military lubricant orders for combat and tactical equipment specify use of a single-viscosity grade lubricant. The use of this type oil results in frequent oil changes caused by seasonal climatic temperature changes. Since the development of a multiseasonal MIL-L-2104 tactical/combat engine oil has been one of the major thrust areas for U.S. Army Mobility Equipment Research and Development Command (MERADCOM) (currently U.S. Army Belvoir Research and			

DD FORM 1473

EDITION OF 1 NOV 65 IS OBSOLETE

20. ABSTRACT (Continued)

Development Center), a pilot fleet test using multiviscosity diesel engine oils was initiated at Ft. Carson, CO in January 1977 and later expanded to Ft. Lewis, WA in 1978-1979. Based on the successes achieved with these two tests, MERADCOM then decided to determine the effects of multiviscosity diesel engine oil on equipment readiness and proper engine lubrication/protection during very warm weather operations. To this end, a pilot field test was initiated in August 1980 at Ft. Bliss, TX involving E and H Troops of the 3rd Armored Cavalry Regiment. The test utilized M60Al tanks and M113Al Armored Personnel Carriers (APC). Although the consensus among the commanding officers, maintenance, and operating personnel was that a OW-20 multigrade oil or a 10W-30 multigrade oil would not adequately lubricate/ protect the tactical/combat engine at the warm ambient temperatures involved, the test oils appeared to function in a satisfactory manner. Extended operations (through October 1981) of the test and control vehicles in ambient temperatures up to 37.8°C (100°F) did not result in any observed adverse effects on the equipment. Also, there was no apparent change in the engine failure/removal rate. The scope of this test was very limited and precluded a recommendation that the test oils and others of like properties and qualities be used in this type of service.

FOREWORD

This report was prepared by the U.S. Army Fuels and Lubricants Research Laboratory (USAFLRL) located at Southwest Research Institute, San Antonio, Texas, under Contract No. DAAK70-82-C-0001. The work was sponsored by U.S. Army Belvoir Research and Development Center, Fuel and Lubricants Division, Materials, Fuels and Lubricants Laboratory, Fort Belvoir, Virginia and covered the period from August 1980 to October 1981. The Project Monitor and Contracting Officer's Representative was Mr. F.W. Schaekel, Belvoir R&D Center, STRBE-VF, Fort Belvoir, Virginia.

Acknowledgment is given to Messrs. M.E. LePera, Belvoir R&D Center, STRBE-VF, Fort Belvoir, Virginia, and S.J. Lestz and R.A. Alvarez of USAFLRL for their participation, encouragement, and suggestions. Special acknowledgment is given to Mr. Frank Balderson, Corpus Christi Army Depot of Corpus Christi, Texas for assistance provided throughout the program.

Accession For	
NTIS GRA&I	
DTIC TAB	Ţ
Unannounced]
Justification	
Ву	
Distribution/	
Availability Code	s
Avail and/or	
Dist Special	03.00
	T COLLEGE
	, rib 2
4-1	1

TABLE OF CONTENTS

SECT	ION	PAGE
ı.	INTRODUCTION	5
II.	EQUIPMENT AND TEST PROCEDURES	6
III.	DISCUSSION	8
	A. Pilot Field Test at Ft. Bliss, TX, Phase I (1 August 1980 - 24 March 1981)	8
IV.	CONCLUSIONS	17
v.	RECOMMENDATIONS	17
VI.	REFERENCES	18
APPE	NDICES	
A. B. C.	BACKGROUND TO PILOT FIELD TEST OF MULTIVISCOSITY/SYNTHETIC ENGINE OIL IN ARMY COMBAT/TACTICAL VEHICLES	27
LIST	OF ACRONYMS	43

LIST OF TABLES

TABL	<u> </u>	PAGE
1	Description of Test Vehicles-Phase I	6
2	Description of Test Lubricants	7
3	Breakdown Analysis of Engine Replacements-Phase I	9
4	Description of Test Vehicles-Phase II	10
5	Summary of Vehicle OperationPhase II	11
6	Breakdown Analysis of Engine Replacement-Phase II	12
7	Hours of Operation	12
8	Used 011 Analyses Wear Metal Averages Versus Wear Metal Standards	14
9	Used Oil Analyses Additive Averages Versus New Oil Additive Quantities	16

I. INTRODUCTION

Since the late 1960's, the Army has used synthetic multiviscosity engine oils for lubrication of equipment in arctic regions. (1-6)* Based on the successful arctic experience, continued efforts investigating the use of conventional and synthetic multiviscosity engine oils were incorporated into the Army's lubricant research and development programs. (7-10) It is believed that the use of a single "year round" lubricant could eliminate seasonal changes (11,12), possibly extend the oil drain interval, and provide a greater degree of combat readiness.

Presently, military lube orders for combat and tactical equipment specify use of single-viscosity grade oils. Use of single-viscosity grade oils results in frequent oil changes caused by seasonal and climatic temperature changes without regard to the condition of the oil being changed. To minimize the number of oil changes and the disposal of significant quantities of otherwise useful oil, attempts have been made to use single-viscosity grade oils at temperatures lower than those recommended by applicable lube orders. This practice, however, resulted in operational problems and equipment malfunctions. Therefore, the U.S. Army Mobility Equipment Research and Development Command (MERADCOM) (currently U.S. Army Belvoir Research and Development Center) initiated a pilot field test at Fort Carson, CO where M60 battle tanks typified the problems mentioned above. The purpose of the field test was to evaluate the capability of MIL-L-46167 arctic oil (OEA) to provide an interim solution to the lubrication problems and to develop data to be used as a basis for developing multigrade engine oils for Army tactical and combat equipment. Also, it was desired to generate supplemental information covering the use of OEA lubricant over expanded temperature ranges. This test was later expanded to include Fort Lewis, WA. (13,14)

Because the tests conducted at Ft. Carson and Ft. Lewis produced results

^{*} Underscored numbers in parentheses refer to the list of references at the end of this report.

which clearly indicated that the synthetic lubricants had elevated test-vehicle readiness, especially in the colder months, and had no adverse effects on the equipment, MERADCOM initiated a limited pilot field test at Ft. Bliss, TX, utilizing tactical/combat vehicles of the 3rd Armored Cavalry Regiment. The purpose of this limited pilot field test was to determine the effect of multiviscosity engine oils on equipment readiness and proper engine lubrication/protection during very warm weather operations. Ft. Bliss and the 3rd ACR were chosen because they were located in the required severe warm weather environment. (15) Background information about the test is provided in Appendix A.

II. EQUIPMENT AND TEST PROCEDURES

The initial equipment provided by E and H Troops, 2d squadron, 3rd ACR with identification numbers and the oil with which each was lubricated are shown in Table 1.

TARLE 1.	DESCRIPTION	ΛF	ጥምሮጥ	VEUTCI FC_	DUACE	T

Vehicle Type	Bumper No.	Vehicle ID No.	Engine ID No.	Engine Type	Type 0il
M60A1	H-24	9382	32739	AVDS-1790-2C	Blue
M60A1	H-31	17031	A1842	AVDS-1790-2C	Red
M60A1	H-32	6395	A1669	AVDS-1790-2D	Red
M60A1	H-33	6348	31905	AVDS-1790-2C	Yellow
M60A1	H-34	3645	A0171	AVDS-1790-2D	Yellow
M60A1	H-35	6376	35022	AVDS-1790-2D	Blue
M113A1	E-11	20842	6D167898	DDAD-6V-53	Yellow
M113A1	E-12	4119	6D6937	DDAD-6V-53	Yellow
M113A1	E-21	20857	6D68305	DDAD-6V-53	Red
M113A1	E-24	4093	6D44892	DDAD-6V-53	Red
M113A1	E-31	20884	6D168056	DDAD-6V-53	Blue
M113A1	E-32	4122	6D56918	DDAD-6V-53	Blue

Three type lubricants, coded "Yellow, Red, and Blue," were used for the test. The "Yellow" oil was a synthetic polyalphaolefin-based lubricant of a single manufacturer and batch. This oil was a qualified MIL-L-46167 product

meeting commercial SAE viscosity grade OW-20 and performance classifications SF/CD. The "Red" oil was a mineral-based lubricant meeting SAE viscosity grade 10W-30. The oil was from a single batch formulated using additive technology known to provide SF/CD performance in Grades 30 and 15W-40 products and was under evaluation in a program addressing the use of multiviscosity products in Army engine applications. The remaining lubricant, "Blue" oil, consisted of a variety of qualified Grade 30 and 50 MIL-L-2104C products obtained from Fort Bliss supplies. These oils were mineral-based lubricants of various manufacturers which would meet at least SC/CD* performance requirements. Table 2 provides a description and analytical data covering the "Yellow" and "Red" lubricants. Blue lubricant has not been included because of the variety of individual manufacturer and batch products employed during the test.

TABLE 2. DESCRIPTION OF YELLOW AND RED TEST LUBRICANTS

	ASTM		
Description	Method	Yellow	Red
Specification	*********	MIL-L-46167	MIL-L-2104D
-			(Experimental)
Lubricant Type		Synthetic	Mineral
Grade		0W-20	10W-30
Properties			
Viscosity, cSt	D 445		
at 40°C		30.10	66.40
at 100°C		5.85	10.50
Viscosity Index	D 2270	142	145
TAN	D 664	2.57	2.10
TBN	D 2896	6.00	10.30
Flash Point, °C	D 92	238	202
Sulfated Ash, wt%	D 874	1.07	1.10
Elements, wt%			
Ba XRF	0.23	0.005	
Ca XRF	0.00	0.10	
Mg AA	0.09	0.09	
Zn XRF	0.12	0.13	
P XRF	0.11	0.10	
S XRF	0.55	0.58	

^{*} Although Specification MIL-L-2104C defines oils of SC/CD performance, the majority of qualified products are either SE/CD or SF/CD quality level.

Only the engines of the test vehicles were charged with the test lubricants, although these oils are also believed satisfactory for use in the transmission and final drives.

The six M60Al tanks were provided and operated by H Troop, 2d Squadron, 3rd ACR, and the six M113Al APCs were provided and operated by E Troop of the same organization. Organizational maintenance consisting of minor service and repair work was performed by the maintenance sections of E and H Troops and the 2nd Squadron. If major service or repairs were required, the engine involved was removed and turned in to the 513th DSU for a replacement engine. It would then be shipped within 24 hours after its receipt to Anniston Army Depot for repair or rebuild. It was agreed in the final coordination meeting of 3 July, 1980 that any engine from a test vehicle that was evacuated to Anniston Army Depot would be tagged and cause of malfunction determined. The results would be made available to AFLRL representatives.

The pilot field test was conducted according to the test plan given in Appendix B. This test plan included procedures for initial oil installation and periodic sampling. On 25 March 1981, during a field visit by an AFLRL representative, problem areas for the participating units and AFLRL were discussed. Several changes were agreed upon to resolve these problem areas and were incorporated during Phase II of the test (25 March 81-31 October 1981). A copy of the trip report is attached as Appendix C.

III. DISCUSSION

A. Pilot Field Test at Fort Bliss, TX-Phase I(1 August 1980-24 March 1981)

On 1 August 1980, the pilot field test was begun at Ft. Bliss, Texas, utilizing the vehicles and lubricants shown in Table 1 to determine the feasibility of using multiviscosity/multiseasonal engine oils for crankcase lubrication of tactical/combat vehicles operating in very warm weather conditions.

The crankcases of the test vehicles were charged with the test lubricants as shown in Table 1. During the test, the vehicles were subjected to normal mission/training operations. No maintenance problem was reported through 1 February 1981. There was one AOAP-directed oil change for an M60Al tank, Bumper No. H-24 in January 1981. However, prior to a 3-week field exercise to be conducted in March 1981, four engines were replaced because of "excessive dirt in the oil" as shown in Table 3.

TABLE 3. BREAKDOWN ANALYSIS OF ENGINE REPLACEMENTS-PHASE I

Bumper No.	Type Engine	Oil Used	Date	Reason for Replacement
H-24 H-35 H-32 H-34	AVDS-1790-2C AVDS-1790-2C AVDS-1790-2D AVDS-1790-2D	Blue Blue Red Yellow	1-28 Feb 81 1-28 Feb 81	Excessive Dirt in Oil Excessive Dirt in Oil Excessive Dirt in Oil Excessive Dirt in Oil

As noted in the Ft. Carson/Ft. Lewis fleet tests, the air induction system for the AVDS/1790 engine is a problem area and was particularly troublesome in the desert environment of Ft. Bliss, TX. Because no consistent vehicle utilization data were available, no summary of operational data is presented here. Except for the AOAP-directed oil change reportedly done in January 1981, only 2 quarts of make-up oil were used. These were added to test vehicle E-12, and Mll3Al vehicle with a 6V-53 engine, which used the lubricant coded yellow. Analysis of used oil samples during Phase I were considered questionable in some instances because it appeared that the oils in some of the test engines had been inadvertently mixed or replaced with other than the assigned test oils. The difficulties cited in Phase I and the questions raised by the analysis of the used oil samples prompted the Field Trip of 25 March 1981 which began Phase II.

B. Pilot Field Test at Ft. Bliss-TX, Phase II(25 March 1981-31 October 1981)

The agreements reached between the AFLRL representative and the 2nd Squadron, 3rd ACR during the liaison trip of 25 March 1981 are listed in Appendix C.

Table 4 shows the vehicles involved with identifying numbers and test oils assigned. The lubricants in Table 4 are the same oils identified in Phase I.

TABLE 4. DESCRIPTION OF TEST VEHICLES-PHASE II

Vehicle Type	Bumper No.	Vehicle Id No.**	Engine ID No.**	Type 011
M113A1*	E-11	MSJ20842	5185028	Yellow
M113A1*	E-12	4119	6D188349	Yellow
M60A1*	E-16	7260	A2599	Yellow
M60A1*	E-17	7305	A1588	Yellow
M113A1*	E-21	MSJ20857	513904	Red
M113A1*	E-24	4116	56602	Red
M60A1*	E-26	2385	A0428	Red
M60A1*	5-27	6769	2500-1	Red
M113A1	E-31	MSJ20884	5439094	Blue
M113A1	E-32	4122	139094	Blue
M60A1	E-36	6877	91-8	Blue
M60A1	E-37	6737	23467	Blue

^{*} Test Vehicles

A hiatus in the test occurred between 25 March 1981 and 29 May 1981 due to the need to recharge the test engines with their respective test oils and an unavoidable delay in acquiring the yellow synthetic test oil in sufficient quantities to complete the test. On 29 May 1981, with two exceptions, the test engines were charged with their respective test oils.(16)

Phase II of the test was extremely important because of the six-week field exercise activities that occurred during this phase of the program. Of these weeks, four involved a continuous exercise from 20 August through 20 September 1981. Ambient temperatures reached 37.8°C (100°F), which was typical for that time of year. Sufficient oil samples were received from the test and control units to enable AFLRL to adequately analyze,

^{**} Discrepancies in Vehicle ID No. and Engine ID No. between Tables 1 and 4 were resolved by maintenance personnel in E Troop.

record and observe useful data concerning the chemical and physical properties of the samples. Computer printouts were received from the AOAP laboratory at the Corpus Christi Army Depot (COAD), Corpus Christi, TX, giving backup data in wear metals and contaminants. The one major area in which comparisons could not be made under current procedures was in the presentation of viscosity data as produced by the AOAP laboratory and by the AFLRL laboratory. This is because viscosity as determined by the AOAP lab is expressed as a viscosity density product at ambient temperatures (centipoises times g/cm³), while viscosities determined at AFLRL are arrived at through ASTM Method D 445 and are reported in centistokes. However, the trend in viscosities could be determined using either method of reporting.

Table 5 provides a summary of vehicle usage in miles traveled and oil additions in quarts for the period 29 May 1981 through 30 September 1981.

	TABLE	5. SUMMARY	OF VEHICLE	OPERATION-PHAS	E II	
Vehicle B	No.	Engine Type	Miles Traveled	Oil Addition in Quarts	Miles per Qt.	Туре <u>011</u>
M113A1 E	:-11	DDAD-6V-53	318	3	106.0	Yellow
M113A1 E	E-12	DDAD-6V-53	293	5	58.6	Yellow
M113A1 E	2-21	DDAD-6V-53	330	11	30.0	Red
M113A1 E	C-24	DDAD-6V-53	309	2	154.5	Red
M113A1 E	E-31	DDAD-6V-53	340	2	170.0	Blue
M113A1 E	E-32	DDAD-6V-53	130	3	43.3	Blue
M60A1 E	E-16	AVDS-1790-2D	292	8	36.5	Yellow
M60A1 E	E-17	AVDS-1790-2D	317	7	45.3	Yellow
M60A1 E	E-26	AVDS-1790-2D	230	4	57.5	Red
M60A1 E	E-27	AVDS-1790-2D	320	8	40.0	Red
M60Al E	E – 36	AVDS-1790-2A	297	8	37.1	Blue
M60A1 E	E-37	AVDS-1790-2A	314	8	39.3	Blue

The number of miles traveled by each vehicle as shown in Table 5 are not indicative of the total hours each engine was operated. Many times the vehicles sat at idle for protracted periods of time. A comparison of the data in Table 5 with the hours operation shown in Table 7 will emphasize this point. Prolonged idling of engines creates a hostile environment for

any lubricant due to incomplete combustion of fuels, with a subsequent dilution of the engine oils. It appears that, despite these operating conditions, the test lubricants performed adequately.

Table 6 shows the engine replacements and the reason for those replacements.

TABLE	6. BREAKDOWN	N ANALYSIS	OF ENGINE REPL	ACEMENTS-PHASE II
Bumper No.	Type Engine	Oil Used	Date	Reason for Replacement
E-32	DDAD 6V-53	Blue	1-31 Aug 81	Faulty Water Pump
E-26	AVDS-1790-2D	Red	1-30 Sep 81	Excessive silicon and dirt
E-27	AVDS-1790-2D	Red	1-30 Sep 81	Excessive silicon and dirt

Table 7 gives the hours of operation since the last overhaul and the hours of operation since the last oil change as of 30 October 1981. There was no

TABLE 7. HOURS OF OPERATION					
Vehicle Bumper No.	Since Last Overhaul	Since Last Oil Change			
E-11	129	53			
E-12	205	44			
E-16	567	35			
E-17	81	81			
E-21	127	6			
E-24	124	33			
E-26	55	49			
E-27	31	31			
E-31	418	52			
E-32	579	21			
E-36	592	41			
E-37	227	41			
•					

feasible way to determine the number of quarts of oil that would have brought the level in each crankcase to the full mark. The unit had just returned from a week in the field, and 30 October 1981 was the last day of

the test. Since the remaining test oil would be returned to AFLRL and the test engines recharged with the normal MIL-L-2104C, OE/HDO 30 or OE/HDO 50, test oils were not added to the test engines.

A final trip was made to obtain subjective information and to formally end the pilot field test. (17) Comments about the test lubricants by operating and maintenance personnel ranged from "a superior performance" to "as good as any other oil in use." Of particular importance is the decreased skepticism on the part of crew members and organizational maintenance personnel that the test oils could offer sufficient lubrication/protection for the engines during the higher ambient temperatures which prevail in the Ft. Bliss area from April through September. During the entire period of the test, there was no comment or observation about the engines overheating. This point was specifically addressed by the AFLRL representative since it had been a factor in the Ft. Carson/Ft. Lewis field tests. According to the operating personnel, there was no noticeable increase in the number of times the red warning light came on in the vehicle because of decreased oil pressure. It was believed that this might be a matter of concern when using the arctic oil. The crew members indicated that the engines with the yellow synthetic oil and the red mineral multigrade oil started easier in cool temperatures than those using the blue lubricant. Ft. Bliss, like Ft. Carson, experiences extremes in daily temperatures which can vary as much as 16.7°C (30°F).

The data generated as a result of oil analyses during Phase II were evaluated against standards for wear metal limits as established in the "Army Oil Analysis Program Laboratory Guide for Nonaeronautical Equipment". (18) The results of this evaluation are shown in Table 8. The lubricants coded "blue" show more abnormal accumulations of iron than the other two test oils. It is believed that the excess of iron content in the oils coded blue exists because of the greater number of operating hours (Table 7) by the engines using the blue oils. Maintenance practices and procedures as well as operator performance could account for other minor differences.

TABLE 8. USED OIL ANALYSES WEAR METAL AVERAGES VERSUS WEAR METAL LIMITS STANDARDS*

TOTAL PROPERTY.

	_	121							 					
		¥.												
	Ψ	H												
	Σ	Z												
	L	Z	×	×	<u>×</u>	_ <u>×</u> _	<u>×</u>	×	 ×	×	×	_×	×	
		[≼												•
	٦	EI												
	Pb	Σl						•					+	
		zl	×	×	×	×	×		×	×	×	×		
		V												
	*	ΞI												
	** TN	Σ												
		z							×	×	×	×	×	
	┝	VI							 					
		田												
	Sn	ΣΙ												
	"	Z	×	u	×	×	×	u	×	×	×	×	×	×
	Н			<u>×</u>			 -	<u>×</u>	 					
œ		A.												
al	\mathbf{s}_{1}	田						_						
et	S	Σl						+						
Σ		Z	×	<u>×</u>	<u>×</u>	×	_×		 _ <u>×</u>	<u>×</u>	×	×	<u>×</u>	<u>×</u>
Wear Metals		¥		•										•
ē	-	뙤						+						
_	ಪ	Σļ	+										+	
		zl			×	×	×		 ×	×	×	×		
		A						•						
		Ħ١												
													+	
	Ç												+	+
	Cr	ΣĮ	×	×	×	×	×		×	×	×	×	+	+
	Cr	XI N	×	×	×	<u>×</u>	×	•	 ×	×	×	×	+	+
	Cr	A M	×	<u>×</u>	×	×	×	•	 ×	<u>×</u>	<u>×</u>	<u>×</u>	+	+
		HANM		×	×		×	•	×	×	×	×		+
	A1 Cr	MHANM	+			* +		•	 					
		NHHNN		×	×		×	•	 ×	×	×	×	*	+
		A M H A M M						•	 					
	A1	HAMMMM						•	 					
		MHAMMHAMM	+	×	×	+	×	•	 ×	×	×	×	×	
	A1	NHHANMHANM						•						
	A1	ANMHANMHANM	+	×	×	+	×	*	 ×	×	×	×	×	
	Ag A1	HANMHANMHANM	+	×	×	+	×	×	×	×	×	×	×	
	A1	HANMHANMHANM	+	×	×	+	×	×	 ×	×	×	×	×	
	e Ag A1	HANMHANMHANM	+	×	×	+	×	•	 ×	×	×	×	×	
	Fe Ag A1	NWHWWWHWWWWW	+ ×	×	×	+	×	*	× +	× ×	×	×	×	
S	Fe Ag A1	NWHWWWHWWWWW	+ ×	×	× +	+ ×	*	•	× +	× ×	×	*	× •	*
sgui	Fe Ag A1	NWHWWWHWWWWW	+ ×	×	× +	+ ×	*	•	× +	× ×	*	*	× •	*
tings	Fe Ag A1	HANMHANMHANM	+	×	×	+	×	Blue • x •	 Yellow + x x	×	×	×	×	*
Ratings	Fe Ag A1	Code NMHANMHANMHANM	Yellow • x +	×	× +	+ ×	*	•	Yellow + x x	Yellow x x x	Red x x	Red ×	Blue • x x	Blue
e Ratings	Fe Ag A1	Code NMHANMHANMHANM	Yellow • x +	Yellow x x x	Red + x x	Red x + +	Blue • x	Blue	Yellow + x x	Yellow x x x	Red x x	Red ×	Blue • x x	Blue
ive Ratings	Fe Ag A1	Code NMHANMHANMHANM	Yellow • x +	Yellow x x x	Red + x x	Red x + +	Blue • x	Blue	Yellow + x x	Yellow x x x	Red x x	Red ×	Blue • x x	Blue
ative Ratings	Fe Ag A1	Code NMHANMHANMHANM	Yellow • x +	Yellow x x x	Red + x x	Red x ++	Blue • x	Blue	× +	Yellow x x x	Red x x	Red ×	Blue • x x	*
itative Ratings	Fe Ag A1	Engine Code NMHANMHANMHANM	+ ×	×	× +	+ ×	*	•	Yellow + x x	× ×	*	*	× •	Blue
alitative Ratings	Type 011 Fe Ag A1	Engine Code NMHANMHANMHANM	6V-53 Yellow • x +	6V-53 Yellow x x x	Red + x x	6V-53 Red x x +	Blue • x	6V-53 Blue	1790-2 Yellow + x x	Yellow x x x	1790-2 Red x x x	1790-2 Red • x x	1790-2 Blue • x x	Blue
Qualitative Ratings	Type 011 Fe Ag A1	Engine Code NMHANMHANMHANM	6V-53 Yellow • x +	6V-53 Yellow x x x	6V-53 Red + x x	6V-53 Red x x +	6V-53 Blue • x x	6V-53 Blue	1790-2 Yellow + x x	1790-2 Yellow x x x	1790-2 Red x x x	1790-2 Red • x x	1790-2 Blue • x x	1790-2 Blue
Qualitative Ratings	Fe Ag A1	Engine Code NMHANMHANMHANM	Yellow • x +	Yellow x x x	Red + x x	Red x ++	Blue • x	Blue	Yellow + x x	Yellow x x x	Red x x	Red ×	Blue • x x	Blue

NOTE: Mg does not apply to the AVDS 1790-2 engine; standards listed in the AOAP Guide do not apply to the 6V-53 engine when the metal is used as an additive.

N = Normal

- Marginal

f = High

A = Abnormal

*Wear metal limits standards were determined by AFLRL for the U.S. Army Tank-Automotive Materiel Readiness Command and published in the "Army Oil Analysis Program Laboratory Guide for Nonaeronautical Equipment." **Does not apply to the 6V-53 engine.

Table 9 compares used oil additive data with the levels found in the new oil samples. Since no initial data were provided for the blue oil, the used oil analyses additive data are shown for information only. No significant differences appear between additive amounts for a given oil, except that for the engines using yellow and red oils, in which there was a rather large increase for Calcium. Causes for the increases in Ca were not investigated.

Three elements were revealed by the used oil analyses as contaminants. and Cl appeared in the oils in very small amounts, with the exception of E-12, an M113A1 APC equipped with a 6V-53 engine. The relatively larger amount of Na in this vehicle engine oil was probably the result of a slight leak in the engine coolant system. The third element, boron, was present in insignificant amounts in all engines except E-21 and E-24, M113Al APCs with 6V-53 engines and E-26 and E-27, M60Al tanks with 1790-2 engines. All four of these engines were operated using the red mineral multiviscosity oil. New oil samples were taken and evaluated for content by the CCAD AOAP laboratory and by the company supplying the red oil. In both cases, a high boron content was determined to be in each sample. The representative for the company supplying the red oil attributed the boron to a refining process used in producing the oil. However, he stated that, although not considered harmful, the quantity of boron present was almost double the amount normally expected and that he would conduct an inquiry into the production process to determine the reason.

TABLE 9. USED OIL ANALYSES ADDITIVE AVERAGES VERSUS NEW OIL ADDITIVE QUANTITIES*

european arrespon apressos

THE SECOND CONTRACTOR OF THE PROPERTY OF THE P

								Additives	es.					
Bumper	Type	Type	Ba, wi	wt%	Ca,	wt%	Zn, v	wt%	Mg, v	wt%	P, W	't%	S, t	wt%
Number	Engine	011	Used	New	Used	New	Used	New	Used	New	Nsed	New	Osed	New
E-11	6V-53		0.15	0.23	0.10	00.00		0.12	0.04	0.09	0.09	0.11	0.78	0.55
E-12			0.13	0.23	0.07	00.00		0.12	0.07	60.0	0.08	0.11	0.67	0.55
E-21		Red	<0.02	<00.005	0.11	0.10	0.11	0.13	0.07	0.09	0.08	0.10	0.65	0.58
E-24			<0.01	<00.00	0,13	0.10	0.12	0.13	90.0	60.0	0.08	0.10	0.57	0.58
E-31	6V-53	Blue	<0.01	ND	0,16	ND	0.10	ND	0.08	MD	0.07	ND	0.79	£
E-32			<0.01	S S	0.19	QN Qu	0.12	R	90.0	ğ	90.0	QN	0.59	ON
E-16		Yellow	0.13	0.23	0.09	00.00	0.13	0.12	0.07	60.0	0.08	0.11	0.49	0.55
E-17			0.14	0.23	90.0	00.00	0.14	0.12	90.0	60.0	0.09	0.11	0.50	0,55
E-26	1790-2	Red	0.03	<00.005	0,13	0.10	0.12	0.13	0.07	0.09	0.09	0.10	0.55	0.58
E-27	1790-2	Red	0.01	<0.005	0.16	0.10	0.13	0.13	90.0	60.0	0.08	0.10	0.62	0.58
E-36	1790-2	Blue	<0.01	NO	0.16	ND	0.11	ND	0.08	NO	0.07	ND QN	0.65	QN
E-37	1790-2	Blue	<0.01	E	0.14	QN	0.12	QN QN	90.0	QN QN	0.08	2	0.68	ND

*All elements except Mg determined by XRF; Mg determined by AA. ND = Not Determined.

IV. CONCLUSIONS

Conclusions derived from the program include the following:

- There were no apparent differences in the high-temperature performances of the synthetic multiviscosity oil, the conventionally formulated multiviscosity mineral oil, or the MIL-L-2104C control oil.
- During this test, no abnormal increases in oil temperatures were reported.
- There was no apparent change in the engine failure/removal rate.

V. RECOMMENDATIONS

Based on information generated during this evaluation, the following actions are recommended:

- Expand the program to include all operational ordnance and engineer equipment which uses a MIL-L-2104C lubricant in one or more cavalry squadrons/self-propelled artillery battalions. Such a program could be performed as a user acceptance test for a MIL-L-2104D multiviscosity product.
- Until such a program expansion can be initiated, a limited field test should be conducted in very warm weather conditions allowing the use of the yellow synthetic oil and the red mineral oil in transmissions, final drives, and other components where MIL-L-2104C is used.

VI. REFERENCES

- Dufenach, J. and Slavin, C., "Research Test of Lubricants, Engine Sub-Zero," Final Letter Report, Scientific and Engineering, USAATC, APO Seattle 98733 (USATECOM Project No. 7-5-0053-04), May 1969.
- Bowen, T., "Development of Internal-Combustion Engine Lubricants for Sub-Zero Operation," USARDC-CCL, Report No. 265, AD 693866, September 1969.
- 3. Method 354, Federal Test Method Std. 791B, "Performance of Arctic Lubricating Oils in a Two-Cycle Diesel Engine Under Steady State Turbo-supercharged Conditions," January 1973.
- 4. Lestz, S.J., "Development of a Diesel Engine Test Technique for Evaluating Arctic Engine Oils," Interim Report AFLRL No. 24, AD 768901, prepared by U.S. Army Fuels and Lubricants Research Laboratory, Southwest Research Institute, September 1973.
- 5. Lestz, S.J. and Bowen, T.C., "Army Experience With Synthetic Engine Oils in Mixed Fleet Arctic Service," SAE Paper 750685, presented at National F&L Meeting, Society of Automotive Engineers, Houston, Texas, 2-5 June 1975.
- 6. Lestz, S.J. and Bowen, T.C., "Development of Army Synthetic Automotive Engine Oils for Arctic Service," Interim Report AFLRL No. 73, AD A019113, prepared at U.S. Army Fuels and Lubricants Research Laboratory, Southwest Research Institute, September 1975.
- 7. Lestz, S.J., Russell, J.A., Bowen, T.C., and LePera, M.E., "Evaluation of Synthetic Automotive Crankcase Lubricants for Military Applications," Interim Report AFLRL No. 71, AD A023613, prepared at U.S. Army Fuels and Lubricants Research Laboratory, Southwest Research Institute, December 1975.

- 8. Stavinoha, L.L., Fodor, G.E., Newman, F.M., and Lestz, S.J., "Analytical Approach to the Characterization of Military Lubricants," Interim Report AFLRL No. 77, AD A027397, prepared at U.S. Army Fuels and Lubricants Research Laboratory, Southwest Research Institute, March 1976.
- 9. Stavinoha, L.L., "A Gas Chromatographic Method for Fingerprinting Synthetic Lubricants," Interim Report AFLRL No. 87, prepared at U.S. Army Fuels and Lubricants Research Laboratory, Southwest Research Institute, January 1977.
- 10. Tosh, J.D. and Russell, J.A., "Evaluation of Environmental and Economic Benefits Through Use of Synthetic Motor Oils," Interim Report AFLRL No. 91, AD A046277, prepared at U.S. Army Fuels and Lubricants Research Laboratory, Southwest Research Institute, September 1977.
- 11. Memorandum for Record, DRXFB-GL: Multiviscosity Engine 011, 23 July 1976.
- 12. Owens, E.C., Lestz, S.J., Quillian, R.D., and McCormick, H.W., "Approaches to Extended Oil Drain Intervals in Army Tactical Equipment," presented at SAE International Fuels and Lubricants Meeting, Royal York, Toronto, Canada, SAE Paper 780954, November 1978.
- 13. Tosh, J.D. and Owens, E.C., "Use of Multiviscosity/Synthetic Engine Oil in Army Combat/Tactical Vehicles," Interim Report AFLRL No. 118, AD AO81444, prepared by U.S. Army Fuels and Lubricants Research Laboratory, Southwest Research Institute, October 1979.
- 14. Tosh, J.D., Alvarez, R.A., Butler, W.E., Jr., Owens, E.C., and Bowen, T.C., "Pilot Field Testing of Arctic Engine Oil in Army Combat/Tactical Vehicles at Fort Carson, CO and Fort Lewis, WA," Interim Report AFLRL No. 157, prepared by U.S. Army Fuels and Lubricants Research Laboratory, Southwest Research Institute, July 1982.

- 15. Letter, USAMERADCOM, DRDME-GL to Commander Ft. Bliss and 3rd ACR, Attn: Regimental Materiel Mgmt Office, Maj. M. Olson, Ft. Bliss, TX 79906, Subject: Proposed Pilot Field Test, dated 11 October 1979.
- 16. Butler, W.E., Jr., "Trip Report of Visit to 3rd ACR, Ft. Bliss, TX," prepared by U.S. Army Fuels and Lubricants Research Laboratory, 29 May 1981.
- 17. Butler, W.E, Jr., "Trip Report of Visit to 3rd ACR, Ft. Bliss, TX," prepared by U.S. Army Fuels and Lubricants Research Laboratory, 30 October 1981.
- 18. "Army Oil Analysis Program Laboratory Guide for Nonaeronautical Equipment," prepared by U.S. Army Fuels and Lubricants Research Laboratory, Southwest Research Institute, September 1976 through March 1978.

APPENDIX A

BACKGROUND TO PILOT FIELD TEST
OF MULTIVISCOSITY/SYNTHETIC ENGINE OIL
IN ARMY COMBAT/TACTICAL VEHICLES

AFLRL personnel visited Ft. Bliss, TX on 8 May 1980 to effect initial coordination with the 3rd ACR of Ft. Bliss (A1)*, and an AFLRL representative made a subsequent trip on 3 July 1980 to effect final coordination of the Multiviscosity Engine Oil Pilot Field Test.(A2) The changes made to the initial Proposed Pilot Fleet Test Plan in the 8 May trip and the agreements reached as a result of the 3 July field trip are contained in Reference A3.

Initially the scope of the test was limited to eight M60Al tanks powered by TCM AVDS 1790-2A and 1790-2C RISE engines. Four of these engines were to be charged with a multiviscosity synthetic lubricant, 5W-20 grade, and the remaining four engines were to be charged with the standard issue MIL-L-2104C OE/HDO lubricant in accordance with pertinent lubrication orders. In Phase I, the synthetic oil containers and some components on the M60Al tanks were to be painted yellow. The MIL-L-2104C OE/HDO oil containers and some components on the remaining M60Al tanks were to be painted blue. However, MERADCOM desired that a multiviscosity conventionally formulated mineral oil be included in the test. Thus, the scope of the test was changed, decreasing the number of M60Al tanks from eight to six and adding six M113Al APCs powered by 6V-53 Detroit diesel engines. Two AVDS 1790-2 engines and two 6V-53 engines were to be charged with the multiviscosity synthetic oil. OW-20 grade, color coded yellow; two AVDS 1790-2 engines and two 6V-53 engines were to be charged with a multiviscosity conventional formulated mineral oil, 10W-30 grade, color coded red; and the remaining four engines were to be charged with the MIL-L-2104C standard issue oil, color coded blue. Both multiviscosity oils had been previously evaluated in laboratory tests at AFLRL.

Reference A3 also specified that:

1. Vehicles would be selected from only two units to facilitate control and data gathering.

^{*} Underscored alphanumeric designation in parentheses refer to the list of references at the end of this appendix.

- 2. The 3rd ACR would exercise control and security procedures which would ensure issuance of test oils only to test vehicles.
- 3. Follow-up procedures were formulated to determine cause of engine failure should it occur in any of the test vehicles.

In addition to these agreements, the progress report of Reference A3 also noted that the AFLRL representative of the 3 July field trip had arranged for the arrival of 165 gallons of the 0W-20 synthetic oil and 165 gallons of the experimental 10W-30 grade mineral oil at Ft. Bliss, TX. These oils were stored in the 2d Squadron POL storage area.

One other aspect of the initial program was the request for retention at Ft. Bliss of a spare AVDS-1790 engine for immediate use as a replacement test engine should one be needed. (A4) It was determined, however, that, although desirable, it would not be feasible for this action to be taken since the AVDS-1790 engine is designated as a direct exchange item. To make this policy work, any item in the system requiring major overhaul, repair, or replacement, and which is too costly to stock in large quantities must be turned in to the proper repair facility as soon as possible. A direct exchange is made by issuing a repaired or overhauled item for the failed item. At Ft. Bliss, the AVDS-1790 engine had to be turned in to the 513th DSU, which, in turn, had to ship it within 24 hours of receipt to Anniston Army Depot. There were no significant delays caused by a lack of replacement engines.

In addition to the actions taken to coordinate with the 3rd ACR, the AOAP laboratory at the CCAD agreed to provide AFLRL with oil sample analyses data on a regular basis. This information would be in addition to data developed through AFLRL analysis of oil samples received from the 3rd ACR. These oil samples would be taken at the same time samples for the AOAP laboratory were taken. Assurance was received from the 3rd ACR Regimental Materiel Management Office that the test units had sufficient oil sampling equipment on hand.

The test was conducted between 1 August 1980 and 31 October 1981. Because of difficulties encountered in the first months of the test due to unforseen operational practices and a turn-over in military personnel initially involved in the test, two separate phases of the test evolved. Phase I includes the time period 1 August 1980 through 24 March 1981, and Phase II includes the time period 25 March 1981 through 31 October 1981.

APPENDIX REFERENCES

- Al. Owens, E.C. and Moon, R., "Trip Report of Visit to 3rd ACR, Ft. Bliss, TX," prepared by U.S. Army Fuels and Lubricants Research Laboratory, San Antonio, TX, 8 May 1980.
- A2. Alvarez, R., "Trip Report of Visit to 3rd ACR, Ft. Bliss, TX," prepared by U.S. Army Fuels and Lubricants Research Laboratory, San Antonio, TX, 3 July 1980.
- A3. Owens, E.C. and Moon, R., "Progress Report for Ft. Bliss, TX, reporting agreements between AFLRL and 3rd ACR," prepared by U.S. Army Fuels and Lubricants Research Laboratory, 17 July 1980.
- A4. U.S. Army Mobility Equipment Research and Development Command, DRDME-GL to Commander, Ft. Bliss, TX, Attn: Director of Industrial Operations, ATZC-DI, Ft. Bliss, TX, Subject: Proposed Pilot Fleet Test in M60/M113 Vehicles dated 18 July 1980.

APPENDIX B

PROPOSED PILOT FIELD TEST PLAN FOR FT. BLISS, TX

PROPOSED PILOT FIELD TEST PLAN* FOR FT. BLISS, TX (TO COMMENCE 1QFY80 AND FINISH 4QFY80)

Purpose

To determine feasibility of using synthetic engine oils in combat/tactical vehicles, with particular emphasis on performance in a high-temperature environment.

Scope

Six M60 vehicles, powered by TCM AVDS 1790-2A and 1790-2C RISE engines and six M113 vehicles powered by DDAD 6V53 engines, will be subjected to normal mission/training operations. Four vehicles will use a synthetic engine oil, 0W-20 grade, provided by USAMERADCOM/AFLRL, and four vehicles will use a conventionally formulated, 10W-30 grade oil also provided by USAMERADCOM/AFLRL. The remaining four vehicles will use MIL-L-2104C 0E/HDO oil as a "baseline" oil.

Procedure

I. Pretest Vehicle and Engine Inspection/Preparation

A. Inspection

Review engines' operational/maintenance history for twelve selected vehicles. If a potential problem area is noted for a given engine, the engine will be replaced with another provided by DIO.

^{*} As modified by the initial coordination visit 8 May, 1980 and the final coordination visit of 3 July, 1980.

B. Preparation

Before draining the original MIL-L-2104C oil, record oil pressure under fully warmed-up operating conditions for each engine. Drain the MIL-L-2104C single-grade engine oil from the eight test vehicle engines while the oil is warm. Retain a 12-oz sample from each engine. Change engine oil filters and charge four engines (two of the model AVDS 1790-2 engines and two of the DDAD 6V-53) with the synthetic test oil, and four engines (two of the model AVDS 1790-2 and two of the 6V-53) with the conventionally formulated mineral oil, 10W-30 grade.

Warm up the engines and obtain a 4-oz sample from each engine using a suitable syringe and tubing to extract the oil through the dipstick tube. Repeat the oil pressure measurement for all eight engines in the same manner as described above. The oil samples must be identified with same information described in Section IIC.

C. Color Coding Lubricants/Vehicles

The drums of test oil will be color-coded as yellow (synthetic), red (mineral, multiviscosity), or blue (MIL-L-2104C OE/HDO). The test vehicles will also be identified and color-coded by painting the oil filler cap, oil filler cover, dipstick access cover, and dipstick handle, red or yellow as appropriate. Other labels in the vehicle will be considered and provided where appropriate.

II. Lubricant Testing

A. Duration

Subject the test vehicles to normal mission/training operation through 4QFY80. No engine oil change is to be made except as covered in Section III.

B. Information To Be Recorded

The following information should be maintained during the course of the test in the form of a "Test Diary":

- 1. Oil Consumption: Date, hours, miles, quantity added.
- 2. Fuel Consumption: Date, hours, miles, quantity added.
- 3. Engine Maintenance: Date, action, reason; i.e., scheduled or unscheduled.
- 4. Observed Differences in Engine Power/Performance (i.e., good, better or worse; runs "cooler," runs hotter, overheats, etc.).
- 5. Indications, if any, of oil leakage, and continuous observations of such leakage as long as it continues.

NOTE: For Items 4 and 5, observations of both the operating crew and maintenance personnel should be made and recorded in the Test Diary. Comments relating to any of the above items or any unusual operations which may be of significance should also be recorded in the Test Diary.

C. Oil Sampling and Identification

After the initial oil sample is taken at start of test, a 4-oz sample of warm oil should be taken from the engine every month or 25 hours of engine operation (normal AOAP sampling procedure). Also, these samples are in addition to the AOAP requirement. Each sample must be identified as follows:

- 1. Vehicle USA Number
- 2. Engine S/N
- 3. Vehicle Miles (total on vehicle)
- 4. Engine Hours (total on vehicle)
- 5. Date of Sample

Samples should be mailed to:

U.S. Army Fuels and Lubricants Research Laboratory c/o Southwest Research Institute, Attn: Ruben Alvarez P.O. Box 28510
San Antonio, Texas 78284

D. Conclusion of Test

On completion of test, a final oil sample of two gallons should be taken from each engine when the oil is drained. This sample should also be identified in the same manner as the other samples. All oil filters from each engine should be removed, packaged, and marked in the same manner as the final oil drain sample.

III. Supplementary Information

A. Lower Oil Pressure

It is possible that due to its lower viscosity, the MIL-L-46167 synthetic engine lubricant will cause the engine-oil low pressure light/alarm to be activated during idle speeds. Operating personnel should be advised of this condition and that the four engines using the synthetic oil might operate at lower oil pressure over the entire speed range.

B. Oil Changes

Since it is the intention of this field test to determine if the engine oil can help reduce routine maintenance and improve vehicle readiness, there will be no oil changes during the test. Exceptions to the above are as follows:

l. If the DIO, other responsible maintenance organization, or the Unit Commander decides that the four vehicles using MIL-L-2104 OE/HDO should be changed to the next higher viscosity grade due to expected temperature warming, then in accordance with the LO, the engine oil will be changed. However, it would be highly desirable to use only one OE/HDO

viscosity grade the year around and change the oil only if its condition indicates a change is needed.

2. If laboratory analysis of the MIL-L-2104C OE/HDO or the synthetic engine oil indicates an oil change is merited, then notification for a change will be issued.

C. Items To Be Finalized

- Identification of engine maintenance organization
- Identification of the test monitor at Ft. Bliss
- Current viscosity grade usage for MIL-L-2104C
- Is AOAP laboratory support available?
- Responsibilities of Ft. Bliss Test Monitor
- Selection of eight test vehicles
- Possible expansion of program to include the transmissions and final drives in the four test vehicles
- Possible extension of program beyond one year

APPENDIX C

TRIP REPORT ON LIAISON VISIT BY AFLRL REPRESENTATIVE TO FT. BLISS, TX

TRIP REPORT

Walt Butler, Jr. Fort Bliss, Texas

Subject: Liaison visit to 3rd Armored Cavalry Regiment concerning the Field
Test Program

Initial contact was made with Sgt. Toomey, the Regimental S-4 Sgt. and Lt. Holstein, the 2nd Sqd Maintenance Officer, at the Regimental S-4 office. After introductions, Lt. Holstein and I went to the 2nd Sqdn maintenance shop and discussed our views about the Fleet Test Program.

My comments and queries were as follows:

- a. AFLRL did not receive oil samples on a regular basis.
- b. AFLRL did not receive subjective comments with oil samples as to how the engines performed with the test lubricants.
- c. Were the oil samples received actually from the test engine instead of, perhaps, a transmission or final drive?
- d. What actions were taken which caused changes in oil sample results? (Engine rebuild?, oil added?, oil changed?)
- Lt. Holstein offered the following observations:
- a. The using units had problems about 60 to 90 days prior to the visit because rebuilt engines were being charged with non-test oil before being returned to the units.

- b. There is concern that the OW-20 synthetic multiviscosity and 10W-30 mineral multiviscosity engine oils will not hold up during high summer temperatures. (Last summer the temperature was stated to have gone up to 118°F).
- c. The program is unmanageable because there were two units (E and H Troops) involved as well as one and one-half platoons in each troop. Since Troops and Platoons are frequently miles apart on exercises, the amount of test lubricants on hand are inadequate to be issued on a separate basis.

Together, Lt. Holstein and I visited the 2nd Sqdn POL dump where it was immediately apparent that the drums of test oil last shipped to the unit were unopened and indistinguishable from other drums stored with them. Further, discussions with the crews of the test vehicles confirmed that in the absence of the test lubricants, they used any available, appropriate oil (OE/HDO-30 in the winter and OE/HDO-50 in the summer). Obviously, this negated all oil sample results to date.

Lt. Holstein's recommendations for changes in the program which will make the test work are as follows:

- a. Select all the test vehicles from one Troop (E Troop was selected).
- b. Issue test oil directly to each test platoon rather than keep them in the POL Dump.
- c. Paint the test oil drums with the following colors:
 - (1) OW-20 synthetic-multiviscosity oil-yellow
 - (2) 10W-30 mineral-multiviscosity oil-red
 - (3) MIL-L-2104C-OE/HDO 30 or OE/HDO 50-blue

- d. He will also have the oil cans and dip stick tube for each test vehicle painted with corresponding colors to match the test oil used in the vehicle engine.
- the gathering of the oil samples (when, by whom, how much) and its forwarding to USAFLRL. Since the program will essentially be starting from scratch, sampling and initial procedures will be followed as stated in the initial coordination meetings.
- f. Information accompanying oil samples will include:
 - (1) Vehicle bumper number
 - (2) Engine ID number
 - (3) Vehicle ID number
 - (4) Engine hours (total hours)
 - (5) Date of sample
 - (6) Hours/miles since last oil change
 - (7) Oil added since last sample
 - (8) Vehicle miles (total miles)
 - (9) Subjective comments of crew or maintenance personnel
- g. Subsequent oil samples will be taken and forwarded the first week in each month.
- h. Final test samples will be taken and forwarded as initially set up in the initial coordination meetings.
- i. Lt. Holstein estimated a minimum of 250 gallons of each test oil should be on hand initially and replenished as required each 30 days until usage becomes normal, then replenish as needed.

By mutual agreement, it was decided that USAFLRL would supply 250 gallons of each test oil to the 2nd Sqdn for further issue to E Troop which has the test platoons. The target date for getting the oil to Ft. Bliss will be 11 April 1981 which is the date E Troop returns from the field.

USAFLRL will ensure that the test oils are maintained as required.

USAFLRL will request exceptions be granted E Troop, 2nd Sqdn, so that they will not be penalized during scheduled inspections for painting the oil cans and dip stick tubes the identifying test colors.

USAFLRL will request authorization to send qualified personnel to Ft. Bliss for the purpose of examining any test engine which is believed to have failed because of test oil inadequacies. Lt. Holstein will call, collect, to Walt Butler, 512-684-5111-extension 3128 when such an engine has been turned into the 513th DSU.

A list of designated test vehicles is attached hereto as Enclosure 1.

It is believed that the above procedure, when instituted, will yield the data required to make the Fleet Test Program successful. This belief is further enhanced by the cooperation and positive attitudes exhibited by Lt. Holstein and Sgt. Toomey.

Bumper No.	Vehicle Type	Vehicle ID No.	Engine ID No.	Type 0il
E-11	M113A1	MSJ-20842	5185028	0W-20 Synthetic 0il
E-12	M113A1	4119	6D81720	OW-20 Synthetic Oil
E-21	M113A1	MSJ-20857	513904	10W-30 Mineral Oil
E-24	M113A1	H116	56602	10W-30 Mineral Oil
E-31	M113A1	MSJ-20884	5439094	MIL-L-2104C OE/HDO**
E-32	M113A1	4122	139094	MIL-L-2104C OE/HDO
E-16	M60A1	7260	*	0W-20 Synthetic 0il
E-17	M60A1	7305	*	OW-20 Synthetic Oil
E-26	M60A1	2385	*	10W-30 Mineral Oil
E-27	M60A1	6769	*	10W-30 Mineral Oil
E-36	M60A1	6877	*	MIL-L-2104C OE/HDO
E-37	M60A1	6737	23467	MIL-L-2104C OE/HDO

^{*} Not available at time of visit.

** OE/HDO 30 or OE/HDO 50 as determined by the pertinent lube order.

LIST OF ACRONYMS AND ABBREVIATIONS

MERADCOM - United States Army Mobility Equipment Research and

Development Command

APG PD-1 - Aberdeen Proving Grounds Purchase Description No. 1

AFLRL - Army Fuels and Lubricants Research Laboratory

AOAP - Army Oil Analysis Program

R/R - Remove and Repair

DIO - Director of Industrial Operations

CCAD - Corpus Christi Army Depot

ACR - Armored Cavalry Regiment

TCM - Teledyne Continental Motors

DSU - Direct Support Unit

APC - Armored Personnel Carrier

ID NO. - Identification Number

POL - Petroleum, Oil and Lubricants

DDAD - Detroit Diesel Allison Division

RISE - Reliability Improved Selected Equipment

XRF - X-Ray Fluorescence

AA - Atomic Absorption

USATECOM - US Army Test and Evaluation Command

USAATC - US Army Arctic Test Center

DEPARTMENT OF DEFENSE		CDR US ARMY MATERIEL DEVEL &
DEFENSE DOCUMENTATION CTR		READINESS COMMAND
CAMERON STATION	12	ATTN: DRCLD (DR GONANO) 1
ALEXANDRIA VA 22314		DRCDMR (MR GREINER) 1
DEPT. OF DEFENSE		DRCDMD-ST (DR HALEY) 1 DRCQA-E 1
ATTN: DASD-LMM (MR DYCKMAN)	1	DRCDE-SS 1
WASHINGTON DC 20301	-	DRCSM-WRS (MR. SCHEUBLE) 1
		5001 EISENHOWER AVE
COMMANDER		ALEXANDRIA VA 22333
DEFENSE LOGISTICS AGY	1	ann.
ATTN: DLA-SME (MRS P MCLAIN) CAMERON STATION	1	CDR US ARMY TANK-AUTOMOTIVE CMD
ALEXANDRIA VA 22314		ATTN: DRSTA-RG (DR W. WHEELOCK) 1
		DRSTA-NS (DR H. DOBBS) 1
COMMANDER		DRSTA-G 1
DEFENSE FUEL SUPPLY CTR		DRSTA-M 1
ATTN: DFSC-T (MR. MARTIN)	1	DRSTA-GBP (MR MCCARTNEY) 1
CAMERON STA ALEXANDRIA VA 22314		WARREN MI 48090
AMEANDRIA VA 22514		DIRECTOR
COMMANDER		US ARMY MATERIEL SYSTEMS
DEFENSE GENERAL SUPPLY CTR		ANALYSIS AGENCY
ATTN: DGSC-SSA	1	ATTN: DRXSY-CM 1
RICHMOND VA 23297		DRXSY-S 1 DRXSY-L 1
DOD		DRXSY-L 1 ABERDEEN PROVING GROUND MD 21005
ATTN: DUSDRE (RAT) (Dr. Dix)	1	ADDROLL ROVING GROOND IN 21003
DUSDRE (RTI) (Dr. Young)		DIRECTOR
WASHINGTON DC 20301		APPLIED TECHNOLOGY LAB
		U.S. ARMY R&T LAB (AVRADCOM)
DEFENSE ADVANCED RES PROJ AGENCY DEFENSE SCIENCES OF C	Y 1	ATTN: DAVDL-ATL-ATP (MR MORROW) 1 DAVDL-ATL-ASV (MR CARPER) 1
1400 WILSON BLVD	1	FORT EUSTIS VA 23604
ARLINGTON VA 22209		TORT BODIES VII BOOT
		HQ, 172D INFANTRY BRIGADE (ALASKA)
DEPARTMENT OF THE ARMY		ATTN: AFZT-DI-L 1
HC DEPT OF ADMY		AFZT-DI-M 1
HG, DEPT OF ARMY ATTN: DALO-TSE (COL NAJERA)	1	DIRECTORATE OF INDUSTRIAL OPERATIONS
DALO-AV	î	FT RICHARDSON AK 99505
DALO-SMZ-E	1	
DAMA-CSS-P (DR BRYANT)	1	CDR
DAMA-ARZ-E (DR CHURCH)	1	US ARMY GENERAL MATERIAL &
DAMO-RQL (MAJ WARD) WASHINGTON DC 20310	1	PETROLEUM ACTIVITY ATTN: STSGP-F 1
WASHINGTON DC 20310		STSGP-PE (MR MCKNIGHT),
CDR		BLDG 85-3 1
U.S. ARMY BELVOIR RESEARCH AND		STSGP (COL CLIFTON) 1
DEVELOPMENT CENTER	1.0	NEW CUMBERLAND ARMY DEPOT
ATT: STRBE-VF	10 2	NEW CUMBERLAND PA 17070
STRBE-WC FORT BELVOIR VA 22060	2	
TOTAL DEBTORK VII. BEOOD		APIDY N. 140
		AFLRL No. 160 10/83
		Page 1 of 6
		3

CDR			
US ARMY MATERIEL ARMAMEMT		PROJ MGR, FIGHTING VEHICLE SYS	
READINESS CMD		ATTN: DRCPM-FVS-SE	1
ATTN: DR SAR-LEM	1	WARREN MI 48090	
ROCK ISLAND ARSENAL IL 61299			
		PROJ MGR, M60 TANK DEVELOPMENT	
CDR			1
US ARMY COLD REGION TEST CENTER		US ARMY TANK-AUTOMOTIVE CMD (TACO	
ATTN: STECR-TA	1	WARREN MI 48090	TI
APO SEATTLE 98733	•	WARREN FIT 400 90	
ATO SHATTED JOYSS		DDOC WCD W112/W11241 PAWTIV	
HQ, DEPT. OF ARMY		PROG MGR, M113/M113A1 FAMILY	
* -	1	VEHICLES	
ATTN: DAEN-DRM	1		1
WASHINGTON DC 20310		WARREN MI 48090	
CDR		PROJ MGR, MOBILE ELECTRIC POWER	
US ARMY RES & STDZN GROUP			1
(EUROPE)		7500 BACKLICK ROAD	
ATTN: DRXSN-UK-RA	1	SPRINGFIELD VA 22150	
DRXSN-UK-SE (LTC NICHOLS)	1		
BOX 65		PROJ OFF, AMPHIBIOUS AND WATER	
FPO NEW YORK 09510		CRAFT	
			1
HQ, US ARMY AVIATION R&D CMD		4300 GOODFELLOW BLVD	
ATTN: DRDAV-GT	1	ST LOUIS MO 63120	
DRDAV-DP (MR EDWARDS)	1	01 20020 110 03220	
DRDAV-N	î	CDR	
DRDAV-E	1	US ARMY EUROPE & SEVENTH ARMY	
4300 GOODFELLOW BLVD	*		1
ST LOUIS MO 63120			1
51 L0015 MO 05120			1
CDR		APO NY 09403	
		PP07 WOD PARTOR PP07 070	
US ARMY FORCES COMMAND		PROJ MGR, PATRIOT PROJ OFC	
ATTN: AFLG-REG	1		1
AFLG-POP	1	US ARMY DARCOM	
FORT MCPHERSON GA 30330		REDSTONE ARSENAL AL 35809	
CDR		CDR	
US ARMY ABERDEEN PROVING GROUND		THEATER ARMY MATERIAL MGMT	
ATTN: STEAP-MT	1	CENTER (200TH)	
STEAP-MT-U (MR DEAVER)	1	DIRECTORATE FOR PETROL MCMT	
ABERDEEN PROVING GROUND MD 21005		ATTN: AEAGD-MM-PT-Q	1
	•	ZWEIBRUCKEN	
CDR		APO NY 09052	
US ARMY YUMA PROVING GROUND			
ATTN: STEYP-MLS-M (MR DOEBBLER)	1	CDR	
YUMA AZ 85364	_	US ARMY RESEARCH OFC	
			1
PROJ MGR. ABRAMS TANK SYS			1
ATTN: DRCPM-GCM-S	1	DRXRO-EG (DR SINGLEION) DRXRO-CB (DR GHIRARDELLI)	
DRCPM-GCM-LF (MAJ SIKES)	_	· · · · · · · · · · · · · · · · · · ·	1
· · · · · · · · · · · · · · · · · · ·	•		1
WARREN MI 48090		P O BOX 12211	
		RSCH TRIANGLE PARK NC 27709	

AFLRL No. 160 10/83 Page 2 of 6

DIR		CDR	
US ARMY AVIATION R&T LAB (AVRAD	COM)	US ARMY FOREIGN SCIENCE & TECH	
	1	CENTER	
NASA/AMES RSCH CTR	•		,
· · · · ·			1
MAIL STP 207-5		DRXST-BA	1
MOFFIT FIELD CA 94035		FEDERAL BLDG	
		CHARLOTTESVILLE VA 22901	
CDR			
TRADOC COMBINED ARMS TEST		CDR	
ACTIVITY		DARCOM MATERIEL READINESS	
ATTN: ATCT-CA	1	SUPPORT ACTIVITY (MRSA)	
FORT HOOD TX 76544		ATTN: DRXMD-MD	1
		LEXINGTON KY 40511	
CDR			
105TH S & T BATTALION		HQ, US ARMY T&E COMMAND	
	•		1
ATTN: LTC MCLEMORE	1	ATTN: DRSTE-TO-O	1
5TH INFANTRY DIV (MECH)		DR STE-CT	1
FORT POLK LA 71459		ABERDEEN PROVING GROUND MD 21005)
CDR		HQ, US ARMY ARMAMENT R&D CMD	
TOBYHANNA ARMY DEPOT		ATTN: DRDAR-LC	1
	1		_
ATTN: SDSTO-TP-S	1	DRDAR-SC	1
TOBYHANNA PA 18466		DRDAR-AC	1
		DR DA R-QA	1
DIR		DOVER NJ 07801	
US ARMY MATERIALS & MECHANICS			
RSCH CTR		HQ, US ARMY TROOP SUPPORT &	
·	1		
ATTN: DRXMR-M	1	AVIATION MATERIAL READINESS	
DR XMR-O	1	COMMAND	
WATERTOWN MA 02172		ATTN: DRSTS-MEG (2)	1
		DRSTS-WJ (LTC FOSTER)	1
CDR		DRSTS-S	1
US ARMY DEPOT SYSTEMS CMD		4300 GOODFELLOW BLVD	_
ATTN: DRSDS	1	ST LOUIS MO 63120	
),	31 E0013 MO 03120	
CHAMBERSBURG PA 17201			
		DEPARTMENT OF THE ARMY	
CDR		CONSTRUCTION ENG RSCH LAB	
US ARMY WATERVLIET ARSENAL		ATTN: CERL-EM	1
ATTN: SARWY-RDD	1	CERL-ZT	1
	•		
WATERVLIET NY 12189		CERL-EH	1
		P O BOX 4005	
CDR	_	CHAMPAIGN IL 61820	
US ARMY LEA	•		
ATTN: DALO-LEP	1	DIR	
NEW CUMBERLAND ARMY DEPOT	-	US ARMY ARMAMENT PLD CMD	
NEW CUMBERLAND PA 17070		BALLISTIC RESEARCH LAB	
NEW CUMBERLAND PA 17070			
		ATTN: DRDAR-BLV	1
CDR		DRDAR-BLI	1
US ARMY GENERAL MATERIAL &		ABERDEEN PROVING GROUND MD 21005	,
PETROLEUM ACTIVITY			
ATTN: STSGP-PW (MR PRICE)	1		
BLDG 247, DEFENSE DEPOT TRACY	•		
TRACY CA 95376			

AFLRL No. 160 10/83 Page 3 of 6

HQ		CDR	
US ARMY TRAINING & DOCTRINE CMD		US ARMY FIELD ARTILLERY SCHOOL	
ATTN: ATCD-S (LTC LESKO)	1	ATTN: ATSF-CD	1
FORT MONROE VA 23651	•	FORT SILL OK 73503	
DIRECTOR		CDR	
US ARMY RSCH & TECH LAB (AVRADCO	M)	US ARMY ORDNANCE CTR & SCHOOL	
PROPULSION LABORATORY	v1)		1
ATTN: DAVDL-PL-D (MR ACURIO)	1	ABERDEEN PROVING GROUND MD 21005	,
21000 BROOKPARK ROAD	1		
		CDR	
CLEVELAND OH 44135		US ARMY ENGINEER SCHOOL	
ann.			1
CDR		ATTN: ATZA-TSM-G (COL BENFER) ATZA-CDM	
US ARMY NATICK RES & DEV LAB			
ATTN: DRDNA-YE (DR KAPLAN)	1	ATZA-CDD	
DRDNA-U	1	FORT BELVOIR VA 22060	
NATICK MA 01760			
		CDR	
CDR		US ARMY INFANTRY SCHOOL	
US ARMY TRANSPORTATION SCHOOL		ATTN: ATSH-CD-MS-M	1
ATTN: ATSP-CD-MS	1	FORT BENNING GA 31905	
FORT EUSTIS VA 23604			
		CDR	
CDR		US ARMY MISSILE CMD	
US ARMY QUARTERMASTER SCHOOL		ATTN: DRSMI-O	1
ATTN: ATSM-CD (COL VOLPE)	1	DRSMI-R	1
ATSM-TD	1	· - ·	1
ATSM-DTP	1	REDSTONE ARSENAL AL 35809	_
FORT LEE VA 23801	1	KIDD TOTAL THROUGH THE STORY	
FURI LEE VA 23001		CDR	
TO TO A DATE A DIVER CONTROL		US ARMY AVIATION CTR & FT RUCKER	
HQ, US ARMY ARMOR CENTER	_		1
ATTN: ATZK-CD-SB	1	ATTN: ATZQ-D	1
FORT KNOX KY 40121		FORT RUCKER AL 36362	
CDR		PROJ MGR M60 TANK DEVELOP.	
101ST AIRBORNE DIV (AASLT)		ATTN: DRCPM-M60-E	1
ATTN: AFZB-KE-J	1	WARREN MI 48090	
AFZB-KE-DMMC (CPT MORRIS)	1		
FORT CAMPBELL KY 42223		CDR	
		US ARMY ARMOR & ENGINEER BOARD	
CDR		ATTN: ATZK-AE-PD	1
COMBINED ARMS COMBAT DEVELOPMENT		ATZK-AE-CV	1
ACTIVITY	•	FORT KNOX KY 40121	
ATTN: ATZL-CAT-E	1		
ATZL-CAL-A	_	CDR	
FORT LEAVENWORTH KA 66027	1	US ARMY CHEMICAL SCHOOL	
FORT LEAVENWORTH RA 0002/		ATTN: ATZN-CM-CS	1
CDB		FORT MCCLELLAN AL 36205	_
CDR		TOKI MODELLAM AL JUZUJ	
US ARMY LOGISTICS CTR	•	CHIEF, U.S. ARMY LOGISTICS	
ATTN: ATCL-MS (MR A MARSHALL)	1		
ATCL-C	1	ASSISTANCE OFFICE, FORSCOM	1
FORT LEE VA 23801		ATTN: DRXLA-FO (MR PITTMAN)	1
		FT MCPHERSON GA 30330	

AFLRL No. 160 10/83 Page 4 of 6

DEPARTMENT OF THE NAVY		CDR	
CDD		NAVAL RESEARCH LABORATORY	_
CDR NAVAL AIR PROPULSION CENTER		ATTN: CODE 6170 (MR H RAVNER)	
ATTN: PE-71	1	CODE 6180	1
PE-72 (MR D'ORAZIO)	i	CODE 6110 (DR HARVEY) WASHINGTON DC 20375	Ţ
P O BOX 7176	•	WASHINGION DC 20373	
TRENTON NJ 06828		CDR	
111111111111111111111111111111111111111		NAVAL FACILITIES ENGR CTR	
CDR		ATTN: CODE 120 (MR R BURRIS)	1
NAVAL SEA SYSTEMS CMD		200 STOVWALL ST	•
ATTN: CODE 05M4 (MR R LAYNE)	1	ALEXANDRIA VA 22322	
WASHINGTON DC 20362	_	HEMILINEE VII LESSE	
		CHIEF OF NAVAL RESEARCH	
CDR		ATTN: CODE 473	1
DAVID TAYLOR NAVAL SHIP R&D CTR		ARLINGTON VA 22217	•
ATTN: CODE 2830 (MR G BOSMAJIAN)	1		
CODE 2705.1 (MR STRUCKO)		CDR	
CODE 2831	1	NAVAL AIR ENGR CENTER	
ANNAPOLIS MD 21402		ATTN: CODE 92727	1
		LAKEHURST NJ 08733	
CDR			
NAVAL SHIP ENGINEERING CENTER		COMMANDING GENERAL	
ATTN: CODE 6764 (MR. BOYLE)	1	US MARINE CORPS DEVELOPMENT	
PHILADELPHIA PA 19112		& EDUCATION COMMAND	
		ATTN: DO74 (LTC WOODHEAD)	1
JOINT OIL ANALYSIS PROGRAM -		QUANTICO VA 22134	
TECHNICAL SUPPORT CTR	1		
BLDG 780		CDR, NAVAL MATERIEL COMMAND	
NAVAL AIR STATION		ATTN: MAT-08E (DR A ROBERTS)	1
PENSACOLA FL 32508		MAT-08E (MR ZIEM)	1
		CP6, RM 606	
DEPARTMENT OF THE NAVY		WASHINGTON DC 20360	
HQ, US MARINE CORPS	•		
ATTN: LPP (MAJ WALLACE)	1	CDR	
LMM/3 (MAJ WESTERN)	1	NAVY PETROLEUM OFC	
WASHINGTON DC 20380		ATTN: CODE 40	1
CDD		CAMERON STATION	
CDR		ALEXANDRIA VA 22314	
NAVAL AIR SYSTEMS CMD ATTN: CODE 5304C1 (MR WEINBURG)	1	CDB	
CODE 53645 (MR MEARNS)		CDR	
WASHINGTON DC 20361	•	MARINE CORPS LOGISTICS SUPPORT	
WADIINGION DO 20301		BASE ATLANTIC ATTN: CODE P841	1
CDR		ALBANY GA 31704	1
NAVAL AIR DEVELOPMENT CTR		ALDANI GA 51704	
ATTN CODE 60612 (MR L STALLINGS)	1	DEPARTMENT OF THE AIR FORCE	
WARMINSTER PA 18974	_	dolumnia of the are londe	
		HQ, USAF	
		ATTN: LEYSF (COL CUSTER)	1
		WASHINGTON DC 20330	•
		WILDIA 10101 00 2000	

AFLRL No. 160 10/83 Page 5 of 6

HQ AIR FORCE SYSTEMS CMD ATTN: AFSC/DLF (MAJ LARSON) ANDREWS AFB MD 20334 CDR		US DEPARTMENT OF ENERGY SYSTEMS EEF, ATTN: MR. ALPAUCH FORRESTAL BLDG. 1000 INDEPENDENCE AVE., SW WASHINGTON DC 20585	1
US AIR FORCE WRIGHT AERONAUTICAL		DEPARTMENT OF TRANSPORTATION	
LAB ATTN: AFWAL/POSF (MR CHURCHILL) AFWAL/POSL (MR JONES) AFWAL/MLSE (MR MORRIS) WRIGHT-PATTERSON AFB OH 45433	1 1 1	FEDERAL AVIATION ADMINISTRATION ATTN: AWS-110, MR. NUGENT 800 INDEPENDENCE AVE, SW WASHINGTON DC 20590	1
CDR		US DEPARTMENT OF ENERGY	
SAN ANTONIO AIR LOGISTICS		CE-1312, GB-096	
CTR		ATTN: MR ECKLUND	1
ATTN: SAALC/SFQ (MR MAKRIS)	1	FORRESTAL BLDG.	
SAALC/MMPRR KELLY AIR FORCE BASE TX 78241	1	1000 INDEPENDENCE AVE, SW WASHINGTON DC 20585	
RELEI AIR FORCE BASE IX 70241		WASHINGTON DC 20303	
CDR		US DEPARTMENT OF ENERGY	
WARNER ROBINS AIR LOGISTIC		BARTLESVILLE ENERGY RSCH CTR	
CTR		DIV OF PROCESSING & THERMO RES	
ATTN WR-ALC/MMIRAB-1 (MR GRAHAM)	1	DIV OF UTILIZATION RES	1
ROBINS AFB GA 31098		BOX 1398 BARTLESVILLE OK 74003	
CDR		BIRCIALDVIAL OR 74003	
USAF 3902 TRANSPORTATION		ENVIRONMENTAL PROTECTION AGCY	
SQUADRON	_	OFFICE OF MOBILE SOURCES	
ATTN: LGTVP (MR VAUGHN)	1	MAIL CODE ANR-455	
OFFUTT AIR FORCE BASE NE 68113		(MR. G. KITTREDGE) 401 M ST., SW	1
CDR		WASHINGTON DC 20460	
HQ 3RD USAF			
ATTN: LGSF (MR PINZOLA)	1	US DEPARTMENT OF TRANSPORTATION	
APO NEW YORK 09127		ATTN: AIRCRAFT DESIGN CRITERIA	_
		BRANCH	2
OTHER GOVERNMENT AGENCIES		FEDERAL AVIATION ADMIN 2100 2ND ST SW	
NATIONAL AERONAUTICS AND		WASHINGTON DC 20590	
SPACE ADMINISTRATION			
LEWIS RESEARCH CENTER		DIRECTOR	
MAIL STOP 5420	•	NATL MAINTENANCE TECH SUPPORT	
(ATTN: MR. GROBMAN)	1	CTR	2
CLEVELAND OH 44135		US POSTAL SERVICE NORMAN OK 73069	
NATIONAL AERONAUTICS AND		HORIAN OR 15005	
SPACE ADMINISTRATION		SCIENCE & TECH INFO FACILITY	
VEHICLE SYSTEMS AND ALTERNATE		ATTN: NASA REP (SAK/DL)	1
FUELS PROJECT OFFICE		P O BOX 8757	
ATTN: MR CLARK	1	BALTIMORE/WASH INT AIRPORT MD 2	1240
LEWIS RESEARCH CENTER			

AFLRL No. 160 10/83 Page 6 of 6