
ADA14701 RADC (ROME AIRDEVELPMENT CENTER) P (DISTRIBUED I/I
DATA PROCESSING) TOPOLOGY EVALUATION(U) GENERAL
ELECTRIC CO SUNNYVALf CALIF D DUBOIS AUG 83UNCLASSIFIED RADC-TR-83-79 F 30602-80O-C 0267 F/G 9/2 NIL

IIIIA.I

EEIIIIIIIIEEI
EEEEEEIIIEIIIE
IIEEIIEIIIIIIE
IEEEIIEEEEIIEE
IIIIIIIIIIIIIuI

1.0.

11I11_25 =4 -1116

MICROCOPY RESOLUTION TEST CHARTt NATIONAL. BUREAU Of STAN~DADS - ES- A

~i4

, 5q

__ K-w-

o' -SWM"

L~il' mO

Y.*L 'M

~ ~y~~i~- -,I

AN~-~.~

Vol

UNCLASSIFIED

SECURITY CLASSIFICATION Of THIS PAGE (MYen Date Entered),
REPOT DCUMETA'ION AGEREAD INSTRUCTIONS

REPOT DCUMNTATON AGEBEFORE COMPLETING FORM
1REPORT NUMBER 2.GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMMER

4. TITLE (mnd Subtitle) 5. TYPE OF REPORT & PERIOD COVERED

Final Technical Report
RADC DDP TOPOLOGY EVALUATION 125 Aug 80 - 25 Sep 82

S. ERFORMING 0O40. REPORT NUMBER

7. AUTHOR(&) S. CONTRACT OR GRANT NUMBER(@)

Dr. Donald DuBois F00-0C06

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK

Generl EletricAREA & WORK UN IT NUMBERS

Space Systems Division 55225

I I. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Rome Air Development Center (COTD) August 1983
Griffss AF NY 1441I1. NUMBER OF PAGES

14. MONITORING AGENCY NAME & ADDRESS(It different from, Controlling Office) IS. SECURITY CLASS. (af this report)

UNCLASSIFIED

IS5. DECLASSIFICATION/OQWNGRAOING
__ _ N/ASCHEDULE

1S. DISTRIBUTION STATEMENT (of tis, Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, If different troin Report)

Same

I0. SUPPLEMENTARY NOTES

RADC Project Engineer: Patricia J. Baskinger (COTD)

I9. KEY WORDS (Continue on reverse side It necessary mid Identify by block numbier)

Modeling
Simulation
Distributed Systems
Networking

20. ABSTRACT (Continue an revee, side If noceeeay a"d Identify by block nhmi be)

XThis report pr.esents a technical overview of the Distributed System
Simulator (DSS)\' a modeling tool which can be used to facilitate the
performance analysis of computer systems and networks through simulation.
It is implemaented in Simscript 11.5 (an event oriented simulation
language) and ECSS II (a special-purpose simulation language designed to
simulate computer systems). The DSS models may use any of the statements
from these two languages; its major function is to extend the capability A.-

DD IAN *, 1473 EDITION OF I NOV 65 It OBSOLETE UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (119km Date Entered)

UNCLASSIFIED

SCCUMITY CLASSIFICATION OF TH4IS PAGE(W1Ian Data 5nI..d)

)Of these languages to model computer networks.

UNCLASSIFIED

SECURITY CLASSIFICATION OF T-'" -AGE(Wha, Date F -

q2
TABLE OF CONTENTS

Section Pace

INTRODUCTION 1-1

1.1 TASK OVERVIEW .-1

1.2 TASK OBJECTIVES 1-1

1.3 THE DISTRIBUTED SYSTEM SIMULATOR (DSS) 1-2

1.4 BACKGROUND 1-E

2 OVERVIEW OF DSS 2-1

2.1 NODAL MODELS 2-?

2.2 EXTENDABLE COMPUTER SYSTEM SIMULATOR (ECSS). 2-4

2.2.1 SYSTEM DESCRIPTION 2-

2.2.2 WORKLOAD DESCRIPTION 2-6

2.2.3 RESOURCE MANAGER DESCRIPTIONS 2-7

2.2.4 SIMSCRIPT 11.5 2-8

2.2.5 AN EXAMPLE OF A COMPLETE NODAL MODEL 2-9

2.3 DSS MODELS 2-16

2.3.1 DSS MODEL DEFINITION 2-16

2.3.2 INTERNODAL COMMUNICATION 2-20

2.4 DSS INPUT FILES DESCRIPTION 2-26

2.4.1 EXEC FILE DESCRIPTION 2-26

2.4.1.1 Multiplexed/Dedicated Option 2-27

2.4.2 TP.FILE DESCRIPTION 2-28

2.4.3 M.FILE DESCRIPTION 2-31

2.4.4 OSS INTERNODAL TRANSMISSION DEVICES AND PATHS. . 2-32

2.5 DSS SIMULATION OUTPUT. _,,_ 2-37

-
I

' TAE aIF].

,..,liHni

.Vl

TABLE OF CONTENTS

Section Pae

3 DEVELOPING MODELS OF COMPUTER NETWORKS 3-1

3.1 GENERAL METHODOLOGY 3-1

3.2 MODULARITY AND RECONFIGURABLE SIMULATORS 3-3

3.3 VERIFICATION, VALIDATION AND CALIBRATION 3-4

3.3.1 VERIFICATION 3-6

3.3.2 AN AID TO VERIFICATION: THE EVOLUTIONARY APPROACH

TO MODEL DEVELOPMENT 3-7

3.3.3 CALIBRATION/VALIDATION 3-8

4 HIGH LEVEL MODELS OF COMPUTER NETWORKS 4-1

4.1 INTRODUCTION 4-1

4.2 MODEL SPECIFIC INPUT FILES 4-3

4.3 HIGH LEVEL MODEL 1 4-3

4.3.1 MODEL ARCHITECTURE 4-3

4.3.1.1 Host Sites 4-3

4.3.1.2 Switching Nodes 4-5

4.3.2 FUNCTIONAL LOGIC FLOW 4-7

4.3.3 SIMULATOR OUTPUT 4-10

4.4 HIGH LEVEL MODEL 2 4-17

4.4.1 MODEL ARCHITECTURE 4-17

4.4.1.1 Host Sites 4-17

4.4.1.2 Switching Nodes 4-19

4.4.2 FUNCTIONAL LOGIC FLOW 4-22

4.4.3 SIMULATOR OUTPUT 4-28

4.5 HIGH LEVEL MODEL 3 4-36

4.5.1 ADAPTIVE ROUTING 4-36

4.5.2 SIMULATOR OUTPUT 4-36

ii

4p

TABLE OF CONTENTS

Section Page

5 DETAILED MODELS OF COMPUTER NETWORKS 5-1

5.1 OVERVIEW 5-1

5.1.1 COMMUNICATION PROTOCOL (CP) DETAILED MODEL . . . 5-4

5.1.2 RELIABILITY/AVAILABILITY (R/A) DETAILED MODEL. .. 5-5

5.1.3 DISTRIBUTED DATABASE (DB) DETAILED MODEL 5-6

5.2 COMMUNICATION PROTOCOL MODEL 5-7

5.2.1 THE X.25 INTERFACE RECOMMENDATION 5-7

5.2.2 DATA FLOW DIAGRAMS 5-8

5.2.3 MODEL ARCHITECTURE 5-11

5.2.3.1 Host Sites 5-11

5.2.3.2 Switching Nodes 5-14

5.2.4 FUNCTIONAL LOGIC FLOW 5-16

5.2.5 SIMULATION OUTPUT 5-27

5.3 RELIABILITY/AVAILABILITY MODEL 5-27

5.3.1 NETWORK RELIABILITY 5-27

5.3.2 LAYERED APPROACH TO BUILDING

RELIABILITY/AVAILABILITY MODEL 5-28

5.3.3 MODEL ARCHITECTURE 5-28

5.3.3.1 Host Sites 5-29

5.3.3.2 Switching Nodes 5-32

5.3.4 FUNCTIONAL LOGIC FLOW 5-34

5.3.4.1 Transmission Errors 5-38

5.3.4.2 Nodal Failures 5-38

5.3.4.3 Adaptive Routing 5-40

5.3.5 SIMULATION OUTPUT 5-42

ii

,
.32

TABLE OF CONTENTS

Section Page

5.4 DISTRIBUTED DATABASE MODEL 5-42

5.4.1 DISTRIBUTED DATABASE MANAGEMENT

SYSTEM ARCHITECTURE 5-43

5.4.1.1 Database Topology (DT) SubModel 5-45

5.4.1.2 Transaction Manager (TM) SubModel 5-46

5.4.1.3 Database Manager (DM) SubModel 5-48

5.4.2 LAYERED APPROACH TO BUILDING DATABASE MODEL. . .. 5-51

5.4.3 MODEL ARCHITECTURE 5-51

5.4.3.1 Host Sites 5-51

5.4.3.2 Switching Nodes 5-54

5.4.4 FUNCTIONAL LOGIC FLOW 5-56

5.4.5 SIMULATION OUTPUT 5-62

References R-1

iv

)

LIST OF ILLUSTRATIONS

Figure

Number Page

1.4-1 DSS Model Description Levels 1-4

1.4-2 Range of Model Generality - Case Studies

to Model Libraries 1-4

2-1 Overview of OSS 2-3

2.2.5-1 System Configuration for an On-line Text Editor 2-10

2.2.5-2 A Complete Simulation Model 2-12

2.2.5-3 Text Editor User Behavior 2-15

2.3.2-1 A Logical View of Communicating Nodes 2-21

2.3.2-2 External Process CP 2-24

2.4.4-1 Creation of Internodal Transmission Devices 2-35

2.4.4-2 DSS Topology Summary Report 2-38

2.5-I Message Statistics Report 2-40

3.1-1 Three Views of a Simulated Computer System 3-2

3.2-1 Modular Construction of Network Simulator 3-5

3.3.2-1 Complexity Levels 3-10

4.2-1 Model Specific Input Files 4-4

4.3.1.1-1 Host Site Configuration 4-5

4.3.1.2-1 Switching Node Configuration 4-6

4.3.2-1 Functional Logic Flow of High Level Model I 4-8

4.4.1.1-1 Host Site Configuration 4-18

4.4.1.2-1 Switching Node Configuration (Dedicated Option) 4-19

4.4.2-1 Host Site Message Initiation Logic 4-24

4.4.2-2 Host Site Message Reassembly Logic 4-25

4.4.2-3 Switching Node Packet Handling Logic 4-27

v

.1

LIST OF ILLUSTRATIONS

Figure

Number Page

5.1-I ISO Reference Model 5-3

5.2.2-1 Datagram Data FLow 5-9

5.2.2-2 Switched Virtual Circuit Data Flow 5-10

5.2.3.1-1 Host Site Configuration 5-13

5.2.3.2-1 Switching Node Configuration (Dedicated Option) 5-14

D.2.4-1 CP Topology - Level C 5-16

5.2.4-2 High Level Functional Flow of Communication

Protocol Model 5-18

5.3.3.1-1 Host Site Configuration 5-30

5.3.3.2-1 Switching Node Configuration (Dedicated Option) 5-32

5.3.4-1 External Process CRASH and RECOV Relationship 5-37

5.3.4.1-1 Transmission Error Logic 5-39

5.3.4.3-1 Adaptive Routing Functional FLow 5-41

5.4.1-1 DDBMS System Archatecture 5-44

5.4.1.2-1 Functional Flow Chart Transaction Manager 5-47

5.4.1.3-1 Functional Logic Flow for Timestamp Ordering

(T/O) Scheduler 5-50

5.4.3.1-1 Host Site Configuration 5-52

5.4.3.2-1 Switching Node Configuration (Dedicated Option) 5-54

5.4.4-1 External Process CRASH and RECOV Relationship 5-59

5.4.4-2 Functional Logic flow for TM-DM Interactions 5-61

vi

.Imam

LIST OF TABLES

Table

Number Page

2.3.1-1 Standard DSS MOdel Program File 2-17

2.3.1-2 DSS Model Program File Sample 2-18

2.3.2-2 Message Attributes 2-25

3.3.2-1 Summary of Key Model Characteristics 3-9

4.1-1 Summary of Key Model Characteristics 4-2

4.3.1.1-1 System Description for Host Site

4.3.1.2-1 System Description for Switching Node 7

4.4.1.1-1 System Description for Host Site

4.4.1.2-1 System Description for Switching Node

5.2.3.1-1 System Description for Host Site

5.2.3.2-1 System Description for Switching Node 5-15

5.2.4-1 Communication Protocol Message Types 5-17

5.2.4-2 Detailed Functional Flow for Communication

Protocol Model 5-20

5.3.3.1-1 Host Site Configuration 5-31

5.3.3.2-1 System Description for Switching Node 5-33

5.3.4.1-1 Host Site Configuration 5-53

5.4.3.2-I System Description for Switching Node 5-55

vii

SECTION 1

INTRODUCTION

1.1 TASK OVERVIEW

The/Distributed Data Processing Topology Evaluation Project is being conducted

in support of the RJme Air Development Center's (RADC) mission to proviJe

standards and technical guidance in the effort to develop and implement

distributed data processing networks.

1.2 TASK OBJECTIVES

The purpose of this project is to develop and install on the RADC HIS 6130

computer facility a user-oriented modeling capability for computer networks.

This capability should be easy to learn and use, provide an easily readable

language for model description, minimize the time and effort required for
model development, produce easily modified models, produce models that are

economical to run and produce clear and concise tabular output statistics.

This project had two major phases. In the first phase a simulator development

tool called the Distributed System Simulator (DSS) has been developed alo'
with three high level models of computer networks. These models have the

ability to yield performance measures to evaluate DDP configurations for giver)

workloads. These models include, as a minimum, nodes for various computers,

varying processing loads and rates for each node, ana different band widths of

communication lines between nodes.

During the second phase, DSS has been used to develop three detailed models of

computer networks using the ISO Reference Model 3s a framework. These
detailed models include a communication protocol (CP) model, a

reliability/availability (R/A) model and a distributed data base (DB) model.
These models follow the ISO architecture framework in that each succeeding

model uses the services of the preceeding model in a hierarchical fashion.
The communication protocol model simulates the X.25 interface for packet

switched networks (levels one through three of the ISO Reference Model).
Adaptive routing procedures necessitated by noCal failures are simulated in

the reliability/availability model.

00321 1-1

Fi.ally DSS was used to build a distributed data base model (the application

leiel, layer 7, of the ISO reference model) using the facilities provided by

the CP and R/A models.

1.3 THE DISTRIBUTED SYSTEM SIMULATOR (DSS)

The Distributed System Simulator (0SS) has been developed as a modeling tool

to facilitate the performance analysis of computer networks through discrete

event simulations. There are two broad categories of problems that had to be

addressed in designing DSS. The first is the large set of problems which

naturally arise in providing a simulation tool that would be applicable to

many types of computer networks. Even a brief survey of the literature

describing computer networks and the likely developments in the future

strongly suggest that there are no typical networks. The design of computer

networks is in its infancy and therefore constantly evolving on both the

software an. hardware levels.

The second broad problem that the design of DSS has addressed is the fact that

simulation, expecially of diverse and complex systems such as computer

networks, can be a time consuming and costly exercise. DSS has been designed

to minimize the development time of simulators and to aid in their debugging

ana verification phases. DSS is a precompiler which has as a subset a

language specifically designed for simulating single and multiple processing

systems called ECSS (Extendable Computer System Simulator) [DOSY 75]. The

output of DSS is an ECSS program which is translated into Simscript 11.5,

compiled and run. DSS has been designed as a modelling tool which has special

facilities for simulating a broad range of computer networks.

l.d BACKGROUND

A survey of research efforts on the simulation of computer networks reveals

two major parellel trends. The first is the development of special-purpose

nigh-level languages to simulate computer systems. These include, among

others ASPOL [MACD 13], CSS (an IBM product) [SEAM 69], and ECSS II

(Extendable Computer System Simulator) [KOSY 75, UNGE 78]. Generally these

00321 1-2

languages have evolved from high-level languages such as FORTRAN and ALGOL 68

or general-purpose simulation language- such as Simscript 11.5 [KIVI 73].

Simulation can be a time consuming and costly exercise. Special-purpose

simulation languages help to alleviate this problem. They make tne

specification of computer systems easier. Trade facilities and detailed

output reports reduce the time needed to verify and validate a simulator. A

typical problem with such languages is that increased specialization implies

decreased flexibility. ECSS II, along with some other languages, has solved

this problem by allowing all valid Simscript 11.5 statements in an ECSS

simulator. This is an important factor in the usefulness of these languages

since high-level constructs, wnich reduce the time needed to build most

sinulators, cannot be expected to meet all model's needs. The next lower
leve], Simscript 11.5 in the case of OSS, provides complete flexibiliLy

(Figure 1.4-1).

The second major trend is that some of these simulators have increasea

applicability with respect to the range of the systems they can model. At one

end of the spectrum are (see Figure 1.4-2) case studies, specially designed
simulators to study particular problem, of computer systems [MACD 67, HUIL

73]. Usually these simulators are not used once the modeling project for

which they were designed has ended. Simulators with a wider scope of

applicability are parametric models [PRIC 77, SHOE 78]. With these simulators

it is possible to vary certain well-defined parameters such as the input rate

of application jobs and average message lengths. By varying the input

parameters, it is possible to perform a range of experiments. However, these
simulators are restricted to very specific assumptions about the system

architecture being modeled. Further, the user cannot change the network
protocols, such as routing algorithms and flow control procedures. A

simulator that goes beyond the limitation of parametric models, called a
structural simulation model, has been developed [SCHN 78]. This system, named

VANS (Value Added Network Simulator), assumes that the communications network

is a store-and-forward packet-switched network like the ARPANET. Instead of

having fixed protocols, the user may replace a subprogram that is currently

00321 1-3

.-SMPUTER SYSTEM SIMULATOR (CSS)

•TOPOLOGY FILE
SMODEL LIRRARY 0 SINSCRIPT 11.5
•SYSTEM4 DESCRIPTIONS * INTqERACTIVE USER INTERFACE a PROCESSES
Sw ORKLOAD DESCRIPTIONS a ECSS HIGH LEVEL CONSTRUCTS * ROUTINES
R ESOURCE MANAGERS e INTERACTIVE USER INTERFACE

LEVEL I LEVEL 11 LEVEL III

Figure 1.4-1 OSS Model Description Levels

SPECIFIC GENERAL MODEL LIBRARY

CASE PARAMETERIZED STRUCTURAL
STUDIES MODELS MODELS

Figure 1.4-2 Range of Model Generality - Case Studies

to Model Libraries

(0321 1-4

SECTION 2

OVERVIEW OF DSS

DSS has been designed as a modeling tool to facilitate the performance

analysis of computer systems and networks through simulation. It is

implemented in Simscript 11.5 (an event oriented simulation language) and ECSS

II (a special-purpose simulation language designed to simulate computer

systems). The DSS models may use any of the statements from these two

languages; its major function is to extend the capability of these languages

to model computer networks.

A separate DSS model can simulate a single node in a computer network. (A

node is simply a collection of system components that communicate with other

components of the network over some transmission medium. See Section 2.1 for

a fuller description.) If two or more nodes have similar characteristics, 0SS

can duplicate the model as many times as there are similar nodes. This

capability greatly reduces the amount of code to be generated by the user.

These DSS models are then combined to form a simulator of the entire network.

OSS models are not limited to simulating a specific architecture or set of

protocols since they have access to all of the high-level constructs of ECSS

II and Simscript 11.5. There are several advantages to having a separate

model for each node. First, DSS provides the capability of debugging and

verifying DSS models separately. In a network with fifty nodes, there may be

only two distinct DSS models: one for the switching computers and one for the

host sites. Instead of trying to verify a fifty-node network simulator, the

problem is reduced to verifying two DSS models separately. The secona

advantage is that a library of DSS models may be created that can focus on

particular network problems, such as flow control or routing algorithms.

These OSS models may be used again in other simulators so that, as the library

grows, the time to build a simulator can be reduced in some cases. In this

sense OSS is an extendable system.

SS has an internodal communication facility that is the mechanism by which

one DSS model communicates with another. This facility allows messages cf

00321 2-1

arbitrary size and content to be passed between models without presuppositions

concerning the communication protocols that are simulated. In other words,

the DSS communication facility is the means by which separate 0SS models are

connected to form a simulator of an entire network without biasing the user to

favo- one communication protocol over another.

There are three main input files to OSS that a user must supply. The first is

the file consisting of the DSS models. These models, described in Section 2.3

may iae been previously defined or created by the user. The second input

ie i -re topology file (TP.FILE,). This file describes the internodal paths

c~nn- c-in S tne nodes in the network. The third file (M.FILE) specifies for

eacn node or subsystem in tne network the particular OSS model that will

simu'ate it. The user creates these files at a terminal. The DSS is a

precompiler that has, as a subset, a language (ECSS) specially designed for

simulating single and multiple processing systems. The output of OSS is an

ECSS program that is translated into Simscript 11.5, compiled and run (Figure

2-1).

2.1 NODAL MODELS

DSS views a computer network as a set of interconnected nodes that communicate

with each other over some transmission medium. At each of these nodes reside

computer resources, such as hardware devices, protocol handlers and data

bases. This view of computer networks is very general, so that a broad range

of networks from local area networks to geographically dispersed packet

swit:hed networks may be modeled.

The user describes each node separately. Models for nodes with similar

characteristics may be duplicated automatically. The total network model is a

collection of these separate nodal models. The degree of detail in each of

these nodal models determines the level of detail of the entire network

model. For example, a work station in a local area network that communicates

with other stations over a shared bus may be viewed as a separate node. In a

satellite/terrestrial system, the satellite and earth stations may be modeled

as individual nodes. On a more global level, an entire local area network may

00321 2-2

C6.6

L-

-z <

-JLA V)
L~LlI

C9,

3C
a)

0D 0

LAJ -

LWL

00.0

V)-

0032 1 2-3

be modeled as a separate node that communicates with other networks through

gateways. The nodal models are stored in a model library to be used as

needed. There may be both separate user libraries and a system wide library

that all users may access.

Each nodal model is an ECSS program.

DSS extends the capabilities of ECSS in two important ways:

* .* library of models may be developed that can be used in more than one

simulator.

s Nodal models can be duplicated any number of times for similar

subsystems in the overall network.

This allows DSS to be an extendable system and minimizes the time needed to

build simulators. To provide these capabilities, DSS is a preprocessor of

ECSS programs. ECSS output is translated into Simscript, compiled, and run.

Models may reside in the model library as compiled programs, reducing initial

configuration time.

Regardless of the detail level of a node, each node may be modeled as the

interaction of three main components: a set of resources with finite

capa:ity, (System Description); the tasks or demands the system is designed to

service (Workload Description); and the allocation policies that determine how

these resources are to be apportioned among the jobs (Resource Manager

Description). The next three subsections describe each of these components.

Section 2.2.5 gives an example of a complete nodal model using the System

Description, Workload Description, and Resource Manager sections.

2.2 EXTENDABLE COMPUTER SYSTEM SIMULATOR (ECSS)

ECSS is a high level simulation language especially designed to simulate

single or multiple processing systems. ECSS contains as a subset Simscript

11.5 which is a general purpose simulation language [KIVI 73]. The main

purpose of this section is to highlight major parts of ECSS so that the

following sections of this report may be more easily understood. A more

comprehensive view of ECSS is contained in [KOSY 75].

00321 2-4

2.2.1 SYSTEM DESCRIPTION
The System Description section defines the system resources in terms of

hardware devices, their characteristics and interconnections. There are five

basic types of devices, each with its own set of properties.

Private devices

* Storage devices

* Processor devices

* I/O devices

* Job store devices

The name, number of members, and characteristics of a class of devices are

declared by a SPECIFY statement:

SPECIFY I Device Class Name EACH

Characteristic Clauses

An example of a SPECIFY statement:

SPECIFY 2 PROCESSORS EACH

EXECUTES 500000 INSTRUCTIONS/SEC,

STORES JOBS FOR EXECUTION,

TRANSMITS 50000 BYTES/SEC

In this statement two processors are defined. Each one has three specifi:

properties defined by the characteristic clauses. As this example
illustrates, a device may have properties from more than one of the five basic

types of devices. 'I' is the number of devices being defined in the SPECIFY
statement. 'Device Class Name' is an arbitrary variable name, and a

'Characteristic Clause' defines a property from one of the five basic types of
devices. There is a total of 10 possible characteristic clauses that describe

the properties of the basic device types.

00321 2-5

The interconnections between devices are defined in the System Description

Section by means of PATH statements with the general form:

PATH name CONNECTS

Device Name I TO

Device Name 2 TO

Device Name N

For example, assuming that devices DISK and CHANNEL were defined by SPECIFY

statements, they may be interconnected by the PATH statement:

PATH 10 CONNECTS

DISK TO

CHANNEL

The System Description section, as can be seen from these examples, is a high

level, self documenting language.

2.2.2 WORKLOAD DESCRIPTION

The second major part of a nodal model is the Workload Description section.

This is where the load on the resources of a computer system is described.

The basic component of this section is a simulation process that may be

described as a sequence of related events. For example, the pattern of

resource requests that comprise a computer job may be defined as one process.

A job is initiated on a particular processor by the statement:

START A Job Name ON Device Name WITH PRIORITY E

'Job Name' is the unique identifying name for the job; 'Device Name' is the

predefined processor device on which the job is to run; 'E' is the priority of

the job, i.e., higher priority jobs interrupt lower priority jobs on the

processor (this may be varied as described in the Resource Manager Section).

00321 2-6

Two examples of the basic statements that simulate resource requests of

computer jobs are as follows.

Example:

EXECUTE N INSTRUCTIONS

The 'EXECUTE' statement holds a processing device for a time that depends on

the instruction rate of the processor and the number of instructions in the

statement. The processor is the device upon which runs the job that was

declared in the START statement at activation time.

Example:

SEND N DATA.UNITS VIA PATH NAME

The SEND statement causes a set of 11O devices to be held for a simulated

time. This set is specified implicitly by the 'PATH NAME' that had previously

been defined in the System Description section and that logically connects a

string of devices such as channels and disks. The length of the simulated

time depends on the transmission speed of the slowest device at either end of

the path and the number of DATA.UNITS in the SEND statement.

2.2.3 RESOURCE MANAGER DESCRIPTIONS

The allocation policies for the resources of a node depend on the operating

system. This component of real systems is simulated by resource managers.

There is a resource manager for each of the five basic types of devices. For

example, when a job runs on a particular processor, the order in which it will

be served (e.g., round robin or pre-emptive priority) is determined by the

Execution Manager. EXECUTE statements in jobs invoke the Execution Manager.

Resource managers are ECSS/Simscript routines to which the user has access and

which he may alter. This factor gives DSS great flexibility in the types of

operating systems that may be simulated.

00321 2-7

By dividing a nodal model into the three categories of System Description,

Workload Description and Resource Managers, it is possible to run one Workload

Description section using the System Description section of another simulator

(providing the names of the devices are compatible). This feature is quite

valuable when performing simulation experiments for different computer design

alternatives. The amount of simulator effort is greatly reduced.

2.2.4 SIMSCRIPT 11.5

As stated above ECSS is a superset of Simscript 11.5. Any Simscript statement

is alloweo in an ECSS program. Simscript 11.5 is a full programming language

desijned specifically for simulation. Simscript 11.5 provides a general

purpose high-level base language, comparable in power with PL/I and ALGOL.

The base language is augmented with the facilities necessary for simulation:

e The entity-attribute-set "world view" of Simscript

Both internal and external events

e Process and resource orientation

* A large collection of random number distribution generation procedures

- Beta - Log Normal

- Binomial - Normal

- Erlang - Poisson

- Exponential - Uniform (Discrete)

- Gamma - Uniform (Continuous)

- Hyperexponential (DSS) - Weibull

- Hypoexponential (DSS)

* Automatic statistics collection, triggered by the nonprocedural

ACCUMULATE and TALLY operations

* The report generator of Simscript

Simscript 11.5 is implemented to handle large simulation models. Virtual

storage is provided for all data structures.

00321 2-9

2.2.5 AN EXAMPLE OF A COMPLETE NODAL MODEL
In this section we briefly describe how the various statements from the System

Description, Workload Description and Resource Manager Sections can be

combined to form a complete nodal model. The model will represent an on-line

text-editor system. This model may be saved in the model library and used as
a stand-alone model or combined with other models from the library to form a

larger network-wide model. (This example is taken from the ECSS User's Manual

[KOSY 75]).

The configuration for this hypothetical system being modeled is depicted in

Figure 2.2.5-1. It consists of a central computer, two channels, three

random-access disks, 20 terminals, and a printer. Although one of these

elements does contain a processor, there are also I/O devices, data paths,

storage and other types of resources. This hardware is to be used for on-line

text editing by up to 20 users simultaneously. The System Description section
and the Workload Description section which model this configuration are shown
in Figure 2.2.5-2. Lines I through 30 of this figure constitute the System

Description section. At the top of this Section, a device called CPU is

specified to have three components: a job store, a processor, and a storage
component. Since all users employ the same text-editor program, the system

has been designed such that enough main memory has been set aside to contain
it, including a block of working storage for each user. We are not interested

in this portion of memory in this model, thus it is not represented. We are

interested in the remaining memory which is divided into ten message buffers

that can be allocated dynamically to users as necessary, and four batch
partitions. We assume that each buffer and partition is identical to the

others, so its actual size does not matter in the model. The time-unit for

this model is a second; and so the CPU's average execution rate is 100,000

instructions/ second.

The twenty TERMINALS are private I/O devices having a 150 character/second

transmission rate. They are private because we will want to allocate one to

each user exclusively.

00321 2-9

7:EIM!'NAL-zD4K

*1 *3

!cc,,COc :,S7,UC7:tONS SEC
PLE:(C .L ATZ PARTTI1ONS

110 "ESSAGE SU FT2RS

Figure 2.2.5-1 System Configuration for a On-line Test Editor

00321 2-10

CHI represents a 3-port multiplexor channel ana CH2 represents a selector

channel. Since no transmission rates have been specified, messages between

them will proceed at the speed of the devices to which they connect.

The three DISKS are I/O devices which can transfer data at 32,000

bytes/second. They are fixed head disks with a rotational period of 40

milliseconds and contain 2 records per track. The average latency is 2)

milliseconds. Text files for the various users are stored on each disk.

One disk, designated as the MASTER.DISK, also stores a file used to check tni.

validity of a user's account numoer at log on, ana to record syste:,

utilization data for billing purposes. When this file is in use, it is

protected from tampering by using the ACCT.FILE private device as a software

lock.

The PRINTER is a simple I/O device representing a 600 line per minute

printer. The last lines in the system description indicate the data paths

connecting the channels to each of the other I/0 devices. Although the CPU

will not participate in simulated I/O operations, its logical connection to

the channels is indicated in the CONNECTS clause.

As in any model, this is a simplification of a real system. For example, no

consideration has been given to disk or terminal control units, though these

could be easily added if considered important to system performance. Using an

average latency is another simplification which could be modified by supplying

a latency function. In general, System Descriptions are written to include

only the most important resources, described at % level of detail consistent

with the rest of the model. This example is not meant to be a complete

presentation of the model description language, but serves only to give an

indication of its self-documenting nature and the wide range of resources that

may be defined. Overhead clauses are not necessary and may be left out of a

System Description section when the level of detail permits it.

00321 2-11

_.
-,

-

-- a .+ 'I - 7 .,a * - - '

-C a..
......

+,

-

-+

1- '' ", hC- flrS E

" + +-" + ' :
r

+'-

a

zC

-z z
-, -

-.....

• ,- .

_ - • +
,+t

r+.
.

-
--

- .-. + +,+

aO..A
.

S.......

.

'I" t+

'C -- ' -
'-' + .

,,' + -,
- - - - - - + C

002 2i

Line 29 declares that the CPU is allocated to jobs on a round robin basis.

The default manager for processor devices is first-come-first-served.

Changing this one line in effect changes the operating system model (that is,

the resource manager for the CPU) without having to change any other lines in

tne model. There is a library of resource managers available to the user.

Alternatively, the user may choose to write his cwn resource manager for 3

particular device or class of devices. This new manager would be given

unique name and stored in a system wide or user-defined liorary for resourc-

-anagers. We now turn to the Workload Description section.

For this example, each user at his terminal makes a related series of demanis

on the system, which cause different kinds of internal operations and requires

rapid, interactive responses. The applications programs driving the system

must produce these responses and perform the operations. This activity

includes logging users in and out, transferring text data from disk storage to

main memory and back, performing the editing operations, and printing the

results, thus utilizing proce-sor, storage, I/0 and other resources as

necessary for each function. Using a ,nodel, it is possible to determine the

average time it takes to respond to a user request, and to evaluate the effect

of different numbers of users on response time, the utilization of each

device, the effect of queueing delays, to determine how the system performs

under various conditions, and to indentify the important factors in

determining that performance.

The WorKload Description section for this hypotheti-al system is described in

lines 32 through 1o of Figure 2.2.5-2. It contains three processes: one

external process ana two jobs.

The External Process USCR

Lines 34 through 55 describe the behavior of each user. The

statements represent tne events and activities charted in Figure

2.2.5-3 Nhich is a scenario of text editing behavior.

OC321 2-13

0 The TEXT.EDITOR Job

The TExT.EDITOR job defined by lines 57 through 94 is more complex

than the user process. It contains more activities ind uses more

resources. All joos in this model are executed by the CPU processor

concurrently, i.e., the processor is multiprogrammed.

0 The LISTOFF Job

The LISTOFF joo descrioed by lines 95 through 99 represents data

transfer from a text file to main memory and then to the printer.

The amount, (LNS), is interpreted as the number of lines averaging 80

bytes per lne. The text file is specified by tne number of the disk

on vinich it is stored. A single message represents the entire

printing activity; consequently, there is no danger that segments of

different listings will be interspersed by LISTOFF jobs competing for

tne printer.

Jobs may be parameterized so as to have general processing characteristics.

Each job, under its own name, may be saved in a Workload Description library

that is user specific or available on a system-wide basis. For instance,

tner(may be a graphics output Job called JOB GRAPHICS that requires as

parameters (which may be defined as a menu of options) the format and data

rate of the graphical output to be modeled. This job would then simulate the

CPU, cnannel, and disk overhead that would be incurred by a real graphics

display terminal.

It should be noteo that each major component of a nodal model (the System

Description, Workload Description, and Resource Manager sections) allows for

tne :onstruction of models in a modular fashion. Changes in one component do

not necessitate cnanges to another component. In tnis brief example, the

workload could be redefined and scientific application jobs run against the

same System Description and Resource Manager sections. This modularity

facilitates the running of model experiments as system components are varied.

00321 2-14

ow n.M a:

,)a~ in ea~~rc

.sske inevO ,n

1:zcrider next

:CNE

e- ues '

* -:q of n

Fi:tire 2.2.5-3 Test-Editor User Behavior

1))3 21 2-IS

2.3 DSS MODELS

As srated above a DSS model is essentially an ECSS program that -nodels the

activity within a single node of a network. The user -nay design different DS3
Models independently and later connect the mooels to form a simulator for a

network. This capability to simulate a node with an individual DSS model

encourages a modular approach to the design of network simulators. Also,
modifications within a single node can be easily made without changing the

rest of the network model. Finally, as the user develops new DSS Models they

may be stored in a DSS Model Library. The models can be retrieved and used

for future simulations.

2.3.i OSS MODEL DEFINITION

Since each DSS model conforms to ECSS syntax it may contain its own Preamble,

System and Workload Description sections, as well as Simscript routines. Each
DSS model must be bracketed by a model number statement (eg., Model #1) and an

END statement. Table 2.3.1-1 is a schematic representation of the basic
structure of a DSS model. An entire program file consisting of several DSS

models is outlined in Table 2.3.1-2. Generally a DSS simulation consists of

more than one model from the DSS model library. Figure 2.3.1-2 is an actual

example of a DSS simulation program.

00321 2-16

Table 2.3.1-1 Standard DSS Model Program File

MODEL #1
PREAMBLE [optional]

Preamole (optional)

END "PREAMBLE

SYSTEM DESCRIPTION

System Description

END SYSTEM DESCRIPTION
WORKLOAD DESCRIPTION

Workload Description (optional)

END "WORKLOAD DESCRIPTION
SIMSCRIPT 11.5 ROUTINES

Routines (optional)

END "MODEL #1
Figure 2.3.1-1 0SS Mooel Structure

PREAMBLE "SYSTEM WIDE PREAMBLE

NETWORK AIDE
PREAMBLE

END "PREAMBLE
MODEL #A

SYSTEM DESCRIPTION

WORKLOAD DESCRIPTION CODE FOR MODEL X

ROUTINES

END "MODEL #x

MODEL -Y
SYSTEM DESCRIPTION

CODE FOR MODEL Y

WORKLOAD

ROUTINES

END "MODEL *Y

00321 2-17

Table 2.3.1-2 OSS Model Program File Sample

PREAMBLE
EVENT NOTICES
EVERY MESSAGE HAS AN 10

DEFINE CLASS AS AN INTEGER VARIABLE
END "NETWORK PREAMBLE

MODEL #1
PREAMBLE

PERMANENT ENTITLES
EVERY ..NODE OWNS AN OVERFLOW

TEMPORARY ENTITLES
EVERY ..MSG MAY BELONG TO AN OVERFLOW

END
SYSTEM DESCRIPTION

SPECIFY 1 CPU, WHICH STORES JOBS FOR EXECUTION
EXECUTES AT 500000

INSTRUCTIONS
/ SEC

SPECIFY 2 CHANNEL, WHICH TRANSFERS MESSAGES AT 2000000
BYTES/SEC

SPECIFY 10 TERMINAL, WHICH TRANSFERS MESSAGES AT 9600
BY TES /SE C

SPECIFY 1 BJF, WHICH HAS CAPACITY OF 10000 DATA.UNITS
PATH T.PATH CONNECTS CHANNEL TO TERMINAL
EXTERNAL PROCESSES ARE CP
JOBS ARE JBR

END "SYSTEM DESCRIPTION
WORKLOAD DESCRIPTION

EXTERNAL PROCESS CP GIVEN N
LET CLASS = 1

HERE START JBR GIVING N
WAIT FOR SIGNAL
LET CLASS z 1
JUMP BACK

END "CP
JOB jBR GIVEN N

SEND 400 BYTES FROM CHANNEL #1 TO TERMINAL #8
GET 1000 BYTES FROM BUF
EXECUTE 5000 INSTRUCTIONS
FREE 1000 BYTES FROM BUF
SIGNAL ..CP (N)

END "JBR
END "WORKLOAD DESCRIPTION
ROUTINE GOPHER

FOR I = 1 TO 1000
LOOP
RETURN

END "GOPHER
END "MODEL 1

00321 2-13

Table 2.3.1-2 DSS Model Program File Sample (Con't).

MODEL #2

PREAMBLE
TEMPORARY ENTITIES

EVERY ROOM HAS A DOOR
END "PREAMBLE
SYSTEM DESCRIPTION

SPECIFY I CPU, WHICH STORES JOBS FOR EXECUTION,
EXECUTES AT 500000 INSTRUCTIONS / SEC

SPECIFY 1 BUF, WHICH HAS CAPACITY OF 10000 DATA.UNITS
EXTERNAL PROCESSES ARE CP, XYZ
JOB'- ARE AKNOL

END "SYSTEM DESCRIPTION
WORKLOAD DESCRIPTION

EXTERNAL PROCESS CP GIVEN K
HERE IF CLASS = 1

START AKNOL ON CPU
ALWAYS
START XYZ
WAIT 5 SEC
JUMP BACK

END "CP
EXTERNAL PROCESS XYZ

WAIT 2 SEC
LET CLASS = 0

END "XYZ
JOB AKNOL

GET 1000 BYTES FROM 3UF
EXECUTE 1000 INSTRUCTIONS
FREE 1000 BYTES FROM BOF

END
END "WORKLOAD DESCRIPTION

ROUTINE HOG LET X = TIME.S + 4.0
RETURN
END "HOG

END "MODEL #2

00321 2-19

2.3.2 INTERNODAL COMMUNICATION

Because OSS models are created independently of each other there is a need for

a standard mechanism for inter-nodal communication. The communication

facility within DSS was designed with this purpose in mind.

In a network with M nodes each of the nodes has an active instance of an

external process associated with it (Figure 2.3.2-1). For example, node 2 is

associated with external process CP02. The CPXX process (where 'XX' stands

for a nodal number from I to N) is responsible for all inter-nodal

communication. Communication between nodes is simulated by four basic steps.

In describing these steps we shall assume that the communication between two

arbitrary nodes in a network, called NI aind N2, is to be simulated, and that

there is a direct link, an ECSS path naned IO]A.Nl.N2 connecting these two

nodes.

STEP I Simulate the transmission times between nodes N] and N2 with a

standard ECSS SEND statement using path. The form of this

statement is:

SEND n data units VIA IOIA.Nl.N2

where n data units is the length of the message expressed in bits,

bytes or some other previously chosen unit of information.

After the delay is simulated actual message data must be passed between nodes

NI and N2. We assume that a message entity (simply an area of memory) has

been created with information contained in it such as a source, destination

and intermediate nodes traversed. Steps 2 and 3 are responsible for this part

o tre transmission.

STEP 2 Put a pointer to the message that is being sent from Nl to N2 in

the message file of node N2. The code for this step is:

00321 2-20

Figure 2.3.2-1 A logical View of Communicating Noes

00321
2-21

NOD

Figur . 3 .. .2 - A lo ic l.i w...omu
ic t.gNo e

FILE MSG IN ..MGFILE (N2)

where MSG is a pointer to the defined temporary entity which is

the internodal message; ..MGFILE is a FIFO set owned by the

receiving node, in this case node N2. DSS creates a message file

called ..MGFILE for each node which can be indexed by node

number. In this way each node has its own message file reserved

for internodal communication.

STEP 3 Notify the communication process for node N2 (CP.N2) that it has a

message waiting for it. The code for this step is the standard

ECSS SIGNAL statement:

SIGNAL ..CP (N2)

The variable called ..CP is a one dimensional array, created by

OSS, which can be indexed by nodal number. It contains the

pointers to the unique communicating processes for all of the

nodes.

STEP 4 The receiving process, CP.N2, will wake up, look in its message

file, find the pointer to the message and take appropriate action

depending on the destination of the message, its priority, type

etc. The communication process CP.N2 will be in a wait state when

signaled by a job or process at node N]. It CP.N2 then removes

the message pointer from its own message file, ..MGFILE(N2), and

processes the messages in some way. Typical code for this step

would be:

WAIT FOR SIGNAL

REMOVE THE FIRST MSG Code in CP.N2 for accepting

FROM ..MGFILE(N2) incoming message.

IF PRIORITY (MSG) IS ...

00321 2-22

These four basic steps form the framework for simulating transmission

between neighboring nodes regardless of the type of network which is

simulated.

The communicating processes arf simply logical constructs whose primary

function is to pass data from one node to the next. No simulation time is

incremented for any of the actions taken by these processes. A communicating

process may start jobs on the processing units for the node with which it is

associated but the jobs are the users of computer resources, not the

comiuni:ating process. The communication process within a DSS Model is always

called 'CP' ana it has exactly one argument. The first line of this process

is therefore:

EXTERNAL PROCESS CP (NODE.NUMBER)

which agrees with ECSS syntax. DSS will append to the name 'CP' the unique

nodal ID number so as to create a unique name (and therefore a unique process,

not just a separate instance) for each of the nodes in the simulated network.

OSS will also activate each of the communication processes at the start of the

simulation and pass to each CP process its unique ID number through its one

argument. In this way each CP process will have access to its own ID number.

This is the one piece of information DSS provides to each of the communication

processes. In making routing decisions it is necessary for a communication

process to have a local variable containing its own ID number.

A second major function of the communication process is to coordinate all

activities within a node. It is the executive process of a node. It performs

the initialization functions and starts the jobs and processes which are in

the Workload Description of a given node (Figure 2.3.2-2). If JOB.A wants to

communicate with JOB.B in a particular node it must first SIGNAL its own CP

process, pass a message to the CP process by the mechanism described above,

which the CP process then passes on to JOB.B. JOB.B will communicate with

JOB.A in the same way.

00321 2-23

Figure 2.3.2-2

External Process CP

The OP process at each node does not limit the ability to simulate the

functions at any node but it does provide a structured way to communicate

between nodes and also among jobs and processes within a given node.

The messages in DSS which are passed between nodes have a standard format.

Each message is a temporary entity with certain attributes which are defined

in Table 2.3.2-3. The TYPE attribute is used in cases where more than one

kind of message is transmitted between nodes. For example, a TYPE 1 message

might signify a data base update; d TYPE 2 message, a data base query. TYPE 2

messages would require a response from the destination site; a TYPE 1 message

might not generate a - :onse and after the update ha. been completed the

message could be destrojed. The communicating process for a node has the

responsibility of interpreting the type of messages which arrive at its site

and :aking the appropriate action - such as starting jobs on processors -

basec on this and other information contained in the message.

In the three High Level models, message at'Lributes are used in this fashion.

In the three detail models, new attributes are defined a required. However,

messages (or transactions in the DB Model) are still the- media used to

activate different functions in the CP Process.

0032' 2-24

Message Attributes

Table 2.3.2-3

TEMPORARY ENTITIES

EVERY ..MASG HAS AN ..ID,

MESSAGE ID

A ..TYPE, " MESSAGE TYPE

A ..PT, " MESSAGE POINTER

A ..LGTH, " MESSAGE LENGTH

A .. SRC, SOURCE NODE NUMBER OF MESSAGE

A .. DEST, " DESTINATION NODE NUMBER OF MESSAGE

A .. Cur, " CURRENT NOTE NUMBER OF MESSAGE

A ..CR.TIME CREATION TIME OF MESSAAGE

A ..NXT.NODE " NEXT NODE NUMBER MESSAGE IS GOING TO

A ..STAT, " STATISTICAL GROUP OF MESSAGE

A ..NPK, " NUMBER OF PACKETS IN MESSAGE

A ..PKID, " PACKET ID NUMBER

A ..Tl, " TI,T2,T3,T4, ARE GENERAL ATTRIBUTES

A ..T2, " OF MESSAGE

A ..T3,

A ..T4,

A ..PRTY, " MESSAGE PRIORITY

A ..Rl, " RI,R2 ARE GENERAL ATTRIBUTES OF

A ..R2, " MESSAGE

OWNS A ..HIST.Q, "NODAL

HISTORY OF MESSAGE IS CONTAINED

AND MAY BELONG TO A ..MGFILE " IN

THIS SET

DEFINE ..CR.TIME, ..LGTH, ..R- AS REAL VARIABLES

EVERY ..HST.MSG HAS AN ..ND,

AN ..ETIME,

AND BELONGS TO A ..HIST.Q

DEFINE ..ETIME AS REAL VARIABLES

00321 2-25

Eacn message owns a set called HIST.Q. When a messaQe enters a node the time

of its arrival along with the nodal identification numoer is saved in tn,:

HIST.Q set. This standard proce(;ure allows DSS to trace tne route a messag,!

takes through the communication network. It is also a device for collecting

statistics on messages such as average delay time at a particular node for 3

given type of message.

The PT attrioute of a message is a place for a DSS user to insert a pointr t,)

a temporary or permanent Simscript entity. Even though a message has a fixe,

for-nat in DSS, this pointer attribute permits complete flexibility in the

actual amount of information that is passed from node to node. The entit,

that is pointed to can be user d,4ined and of arbitrary length. For example,

in a very detailed simulation the user defined entity could be the actual

header for MESSAGES in a packet switched network. It should be emphasized

that wnen message transmission is simulated only a pointer to a message is

placed in the message file of a node since this is the only information that

is required in order to have access to the contents of the message.

2.4 DSS INPUT FILES DESCRIPTION

In addition to a library of DSS models DSS requires tnree main input files:

* EXEC File

* TP.FILE

* M.FILE

The content and format for each of these files is discussed ir, the following

three sections.

2.d.l EXEC FILE DESCRIPTION

Tne EXEC File has tMc purposes:

1. To provide a means for specifying the dedicated or multiplexed option

for interconnection of nod-al models;

2. To provide all necessary simulation defaults on the model specif-

level.

00321 2-26

The file is keyword ariven 3nd is expandable to meet user requirements. The

format of the EXEC File is:

KW OS

where:

KW - is the Keyword

(alpha characters)

OS - option selector

(real or integer value depending on the keyword chosen)

At least one plank between tne keyword and the option selector is required.

The only keyword in the EXEC File recognized by the OSS preprocessor is

"MLT". The value of the option selector for "MLT" - in this case either 0 or

I - determines whether internodal transmission devices are dedicated or

multiplexed. The follow4-nq-section describes this option in greater detail.

The other keywords in the EXEC File are model specific and will be described

in the sections on the High Level Models (Section 4) or the Detailed Models

(Section 5).

2.4.1.1 Multiplexed/Dedicated Option

The difference between the multiplexed and dedicated odtions is:

Under the dedicated option, a node will have as many transmission devices as

it has paths entering or leaving which connect it to other nodes.

Example of the dedicated option.

dedicated

devices

1 2

dedicated cevices

lev~ces 3eire

00321 2-27

A multiplexed device has access to many paths. Under the multiplexed option a

node will nave only one internoual transmission device regardless of the

number of paths.

Example of the multiplexed option.

multiolexed
/ Ievices"

mu: iplexea

device

The user may select tnis option (dedicated or multiplexed) in three ways:

1. By supplying the EXEC file with a "MLT" as the keyword and a "0" for

the option selector, the device configuration will be dedicated.

2. By supplying the EXEC file with a "MLT" as the keyword and a "I" for

the option selector, the device configuration will be multiplexed.

3. By omitting the "MLT" keyword and option selector from the EXEC file

the device configuration will default to the dedicated option.

Exarnle ase of this file is as follows:

MLT I - Multiplext option

MLT 0 - Dedicated option

2.4.2 TP.FILE DESCRIPTION

Tne TP.FILE's purpose is to allow the user to generate a ae-c-iption of the

topological interconnections of the network to be simulated.

00321 2-28

OEM-

The format of the TP.FILE consists of two statement types, the "SPD" and "NL"

statements.

The format for the "SPD" statement type is:

SPD S

where:

SPO - is the keyword

S - is the transmission device default speed (integer value)

The format for the "NL" statement type is:

NL I , S ; J S 0 ; J S D ;

where:

NL - is the keyword

I - Key node (integer value - required input)

J - Adjacent node (integer value - required input)

S - Internodal transmission device speed (integer value - optional)

D - Delay associateo with the path between node I and J (real value -

optional)

The first statement, "SPO", assigns the default speed of the internodal

transmission device. This speed is used by the DSS for the devices that are

defined in the "NL" statements. A new default speed may be re-entered at any

succeeding line in the TP.FILE which will then override the previous default

speed.

The second statement, "NL", establishes the connection between the nodes, the

internodal transmission device speed at each node and the delay associated

with the path between the nodes. Device transmission speeds are optional and

will default to the current "SPD" value. Path delays are also optional in the

"NL" statement and default to zero.

All inputs in the TP.FILE must be separated by at least one blank. Each "NL"

statement is limited to 80 characters and cannot be continued on another

line. Examples of the use of these two statements follow.

00321 2-29

Example 1 - All defaults are in effect.

SPD 25000

NL1 ; 2

NL 3 ;2 ; 4

This example indicates that the transmission device speed is 25000 bytes/sec.

The EXEC file "MLT" option is zero; therefore the resulting transmission

device configuration is dedicated. The result from this TP.FILE is shown

below.

NETWORK TOPOLOGY FOR EXAMPLE 1

O- NODE
Example 2 - Complex Configuration

0SPD 40000

NL 6 ; 34000 1.0 ; 7 1. 5 ;9 45000 2.0

NL 7 ; 2 40000 .75 ; 8 50000

SPO 75000

NL 8 ; 3 25000 1.0 ; 28000 3.0

NL 9 ; 4 18000 4.0 5 2.4

This example illustrates the explicit assigning of device speeds and path

delays.

This example also ShowS the use of the "SPO" statement to change the

transmission device default speed from 40000 to 75000 bytes/sec.

00321 2-30

MWA~d

The EXEC file "MLT" option is zero ana therefore the resulting transmission

aevice configuration is dedicated. The following figure illustrates this

configuration:

2

(40000)

.75

(40000) (40000)(00)

SINTERNODAL

C TRANSMrSS IN DEVICE

2A83/l1 - AT
2.4.3 4.F2LE DESCRIPTION

The function of the M.FILE is to provide the relationship between the node

number and the model type associated with that node. The format of the M.FILE

is as follows:

NN MT

where:

NN - node number (Integer value)
MT -(model type (Integer value)

At least one blank is required between the node number and the model type.

Examples of the use of this file follow.
00321 2-31

2.5 4.

(40000 (18000)

Example 1 - Four node case.

01 01

02 02

03 02

04 01

Noces 1 and 4 are of model type 1; nodes 2 and 3 are of model type 2.

Example 2 - Nine node case.

1 01

2 01

3 01

4 01

5 01

6 02

7 02

8 02

9 02

This example Shows that nodes 1 thru 5 are of model type I and nodes 6 thru J

are of model type 2.

2.4.4 DSS INTERNODAL TRANSMISSION DEVICES AND PATHS

DSS offers the user a modular approach to solving network simulation

problems. Each node of a network may be simulated with a structured model.

The model- are joined together to form a simulation model of the entire

network.

One of the prime functions of the TP.FILE and M.FILE is to provide the

necessary information to the DSS Preprocessor so that these individual models

can be joined. OSS uses the information contain in the TP.FILE and M.FILE to

create Internodal Transmission Devices and Paths which provide the ECSS link

between the individual models.

00321 2-32

All Internodal Transmission Device names begin with a "T". Information from

the TP.FILE and M.FILE combine to construct the rest of the lame. From the

TP.FILE the node number is taken. From the M.FILE the associated model type

is secured. DSS maintains a count of all Internodal Transmission Devices as

they are created for each node. As a device is created, DSS assigns a letter

representing its occurence, for example, "A" = First Internodal Device for the

node, "B" the second etc.. For each nodal pair (e.g., NL 6 ; 1) two

Internodal Transmission Devices, one for each node and an Internodal Path

linking the devices are created.

;nerncial Paths are created in a similar fashion. All Internodal Paths begin

with an "I". Information is combined from the TP.FILE (node number) and the

M.FILE (model types of both nodes being connected) to construct the Internodal

Path name. DSS also maintains a count of the number of Internodal Paths

created at eacn node.

Suppose the following conditions exist:

The user desires to connect node 06 to node 01. The following TP.FILE

statement would accomplish this:

NL 6 ; I TP.FILE STATEMENT

Also tne model types for the two nodes are defined in the M.FILE. Suppose

node 06 was of model type 2 and node 01 was of model type 1, the M.FILE would

contain the following information:

M.FILE

06 02

The following illustration (Figure 2.4.4-1) graphically displays the

information required to create internodal devices and paths.

In the above example, two Internodal Transmission devices called TO6A.M02 and

TOIA.MO1 and an Internodal Path called 106A.NO6.NOI are created. The DSS

00321 2-33

Preprocessor uses these device and path names to create a SPECIFY statement,

ana a PATH statement, whicn connects the transmission devices, in the System

Description Section of an ECSS program. For example, the SPECIFY statement

that DSS generates for the inter-nodal devices above is:

SPECIFY I T06A.M02 WHICH TRANSFERS MESSAGES AT 40000 BYTES/SEC

The above SPECIFY statement assumes that the default speed for the Internodal

Transmission Device is 40000 bytes/sec. Should the "NL" statement connecting

noce 06 to nooe 01 contain a device speed of 34000 bytes/sec for node 01, the

resilting SPECIFY statement would be:

SPECIFY I TOlA.MOI WHICH TRANSFERS MESSAGES AT 34000 BYTES/SEC

The devices and paths that DSS creates are summarized in the DSS Topology

Summary Report. Each line of this report summarizes the devices and patn

created for each nodal pair. Below is an example of a line from that report:

00321 2-34

0w -

I.-

LUA

LM

Q. 100
x~x *-

Z

= L=i LA

L I *

:: CO~

LU~

LU" CD V

c- -)C)-. o
o~N =.. /*

o LU - .60

0032 2-35

Sample line from the DSS Topology Summary Report

TO6A.M02 40000 TO1A.MOl 34000 106A.N06.NOl 1.0 06 02 01 01

LDEVICE SPEED LDEVICE SPEED PATH DELAY CONNECTS

FOR TO6A.M02 F6R TO1A.MOl ON PATH NODE 06 TO

106A.NO6.NOl NODE 31

INTERNODAL TRANSMISSION

DEVICE CREATED FOR

INTERNODAL TRANSMISSION NODE 01 INTERNODAL PATH

LJ-EVICE CREATE FOR CREATED BY DSS

NODE 06

00321 2-36

To summarize the SS creation of Internodal Devices and Paths Figure 2.4.4-2

provides a capstone illustration of the DSS Topology Summary Report.

INPUTS:

TP.FILE

SPD 40000
NL 6 1 34000 1.0 ; 7 1.5 ; 9 45000 2.0
NL 7 ; 2 40000 .75 ; 8 50000 SPD 75000
NL 8 ; 3 25000 1.0 ; 9 28000 3.0
NL 9 ; 4 18000 4.0 ; 5 2.5

M.FILE
1 01

2 01
3 01
4 01
5 01 M.FILE
6 02
7 02
8 02
9 02

EXEC FILE
LT-0 -EXEC file

2.5 DSS SIMULATION OUTPUT

As messages are transmitted from one node to the next in a DSS Simulator,

statistics are collected and a report is generated when the simulation

:e-mina:es. An example of a message statistics report is shown in Table

2.3-1. The header of this report is summarize below.

- Type defines a group of messages upon which message statistics are

gathered. User defined.

- Total number of message associated with each message type.

- The time required for a message to traverse the network.

- Minimum delay time for each message type.

- Maximum delay time for each message type.

- Average delay time for all messages of this message type.

- Standard deviation of message delay time.

00321 2-37

_____ _____ ____

CONNECTS
DEVICE CREATED PATH CREATED NODE MODEL NODE MODEL

DEVICE SPEED DEVICE SPEED PATH DELAY NO. TYPE NO. TYPE

T0oA.M02 '0000 T0'iA.MO1 34000 106A.N06.N0l .00005 06 02 01 01

T063.M02- 40000 -T07A.M1O2 40000 106B.N06.N07- .00015 06 02 --- 07 02

T0610.M02 40000 T09A.M02 45000 106C.N06.N09 .0002 06 02 09 02

T073-MO2- 40000 -TO2A.MO1 40000 107A.N07.N02- .0001 -07 02 --- 02 --- 01

T07'.M02 40000 T'SA.M02 13'00 107B.N07.N08 07 02 08 02
03.0 4000 T-3A.M -l-2500 IO8.0.0 .000 08 02 03 01 ------

T083.M02 40000 TO9B.M02 23000 I08B.N08.N09 .00035 08 02 09 02

T09:.M02- 18000 -TO4A.MO1 40000 109A.N09.N04- .0005 -09 02 --- 04 --- 01

T09D.M02_- 13000 -TO5A.MO1 40000 109B.N09.N05- .00035 09 02 05 --- 01

Figure 2.4.4-2 DSS Topology Summary Report

00321 2-38

In addition, DSS collects these same statistics on a system wide basis for all

messages.

Message characteristics, such as message length, are defined in the MESS

file. For each type of message defined there the user has the option of

specifying what statistics gathering group (SGG) it belongs to. The number

following the "STT" keyword defines the group. For example, three typical

lines in the MESS file might be:

1 2 MML 30. STTI ;

1 3 MML 40. STT 2

1 4 MML 50. STT ;

In this example the messages defined in lines) and 3 belong to the same

Statistical Gathering Group. These messages will be treated as one group for

statistics gathering purposes. The second line defines a second SGG. In this

way, by oefining an arbitrary number of SGG's, the user can decide how

detailed the report generatcr should be in collecting separate statistics on

sub-classes of messages in the network. The user must specify the maximum

number of SGG's used in a particular run by using the NSG Keyword in the EXEC

file. The default is tuat only system wide statistics will be generated.

,I
00321 2-39

Table 2.5-1

Message Statistics Report

MESSAGE STATISTICS

Nb. OF DELAY TIME

TYPE MESSAGES MIN MAX AVE STD

1 27 3.70 31.26 17.43 8.50

2 39 2.70 32.80 14.64 7.52

3 26 1.70 30.10 15.75 8.58

4 8 1.40 6.40 4.00 1.60

5 33 1.71 24.11 13.26 6.76

SYSTEM - WIDE

NO. OF DELAY TIME

MESSAGES MIN MAX AVE STD

133 1.40 32.80 14.44 8.13

00321 2-40

Since OSS programs are translated into ECSS and SIMSCRIPT, all of the ECSS

statistics gatnering routines and report generators are availaDle to OSS.
Since e3ci node in the network simulator has its own unique uevice, patr, job

and process names, the statistics collected from the simulator are quite

detailed. A summary of these reports is given below. (Refer to LFEDE 76] for

a complete description).

ALLOCATION REPORT

This report provides utilization statistics as well as average and maximum

allocation times for all private devices at every node in the simulator.

ALLOCATION QUEUE REPORT

This report provides all of the queueing statistics associated with private

devices including:

- Total number of requests

- Average wait for allocation

- Total enqueued

- Average queue length

- Maximum time in queue

- Percent time empty

EXECUTION REPORT

The Execution Report gives the percent of time that a processor device was

busy by specific jobs that executed on that device. This is an excellent way

to determine what jobs are requiring the most processor time.

PROCESSOR UTILIZATION REPORT

This report gives the utilization of all processors in the network as well as

tne number of activations for each device during the reporting period.

EXECUTION (READY) QUEUE REPORT

The Execution Queue Report displays statistics on number of arrivals to a

processor and all of the queueing statistics including average and maxinum

w-iit for service, average and maximum queue length and percent time empty.

00321 2-41

JOB STORE REPORT

The Job Store Report shows statistics for each storage device on:

- Number of jobs loaded

- Average number of jobs loaded

- Job loaded times

- Batch capacity

BATCH JOB STORE QUEUE REPORT

For ali storage devices in the network this report provides:

- Total number of requests for a given device

- Average wait for loading

- Average and maximum queue lengths

- Percent time empty

TRANSMISSION PATH REPORT

The Transmission Path Report summarizes how busy a particular path was for t'e

reporting interval. It includes the total number of transmissions across the

path, and the average and maximum number of messages transmitted across the

path at any one time. Also, average transmission lengths and percentage

utilization are reported.

TRANSMISSION PATH QUEUE REPORT

This report provides all of the queueing statistics associated with any path

in the network. It includes:

- Total number of requests during the report interval

- Average wait for transmission

- Total enqueued

- Average queue length

- Maximum queue length

- Average and maximum time in queue

- Percent time empty

00321 2-42

TRANSMISSION REPORT

Tnis report displays statistics on the amount of traffic a transmission device

handled. Included are total number of transmissions, average number of

transmissions, transmission capacity and the average and maximum transmission

lengths. The percentage of the transmission capacity used during the

reporting interval is also provided.

CRITICAL DEVICE TRANSMISSION QUEUE REPORT

This report is an excellent means of locating bottlenecks in the transmission

medium of networks. A critical device on a path is the device which causes a

message to be enqueued before it can be transmitted. Any device which is a

critical device by this criterion at any time during the simulation is

included by name in this report. Specifically, this report includes:

- Device name

- Total enqueued

- Average queue length

- Maximum queue length

- Average and maximum time in queue

- Percent time empty

TRANSMISSION RATE REPORT

The transmission rate report gives the total number of messages which were

transmitted on a particular device. In addition it gives the average

cumulative transmission rate for a device during the reporting intervals. The

cumulative rate is the sum of the rates of the transmissions occurring

simultaneously on the device. The average and maximum transmission rate per

message is provided with the percent idle time.

STORAGE PEPORT

For storage devices this report provides these statistLics:

- Total number of requests

- Average and maximum storage utilization

- Average and maximum storage request size

- Storage capacity

- Percentage utilization
00321 2-43

STORAGE QUEUE REPORT

All of tne queueing statistics associated with storage devices are summarized

in this report. These include total requests, average wait for service,

average and maximum queue lengths, average and maximum queue times and percent

time empty.

PROCESS/JOB REPORT

There is a very extensive report put out on each of the external processes and

jobs in the Workload Description section for each of the nodes in the network

simlator. This report includes, by process or job name:

- Total number of instances of the process or job

- Number of completed instances

- Average instance length

- Maximum instance length

- Total length of instances

- Average execution time per instance (Jobs only)

- Maximum execution time per instance (Jobs only)

- Total execution time per instance (Jobs only)

- Average transmission time

- Maximum transmission time

- Total transmission time per instance

- Aierage time blocked for loading (Jobs only)

- Maximum time blocked for loading (Jobs only)

- Average time blocked for activation (Jobs only)

- Maximum time blocked for activation (Jobs only)

- Average time blocked for transmission

- Maximum time blocked for transmission

- Average time blocked for allocation

- Maximum time blocked for allocation

- Average time blocked for storage

- Maximum time blocked for storage

00321 2-44

-- -- - -- -

SECTION 3

DEVELOPING MODELS OF COMPUTER NETWORKS

3.1 GENERAL METHODOLOGY

The purpose of this section is to providean overview and introduction to the

technical approach used in the development of the high level and detailed

level computer network simulations.

Before all major design concerns can be identified, one of the most important

initial considerations must be what types of analyses the models are going to

support. It is necessary to understand the intended use of a simulation model

to effectiv 1v design it. The way a model is to be used or the types of

analyses it will support affect the level of detail of the model, what aspects

of a system will be represented, the format and content of the output reports,

and the inputs required. In other words, the purpose of a simulator is to

answer certain performance and/or cost-related questions. This is the driving

factor in simulator design.

Once the intended use has been defined, a first approximation can be made as

to the level of detail that should be incorporated into the model. From past

experience with models of computer systems and networks, a continuum of detail

levels can be described. Any particular model is just one point on that

continuum. What s important is to provide a simulation tool that has the

flexibility to easily and quickly build models along a wide portion of that

spectrum. This is necessary because it is not always possible to determine a

priori the appropriate level of detail to answer certain questions. For

example, a system-level model may contain a disk subsystem model as one

component (see Figure 3.1-1). Under lightly loaded conditions file access

time may be adequately represented as a simple delay. However, if the file

transfer times in this model are short compared with the known overhead

involved, such as disk latency times, then it may be necessary to explicitly

account for this overhead. That is, it may not be feasible to assume one

overall transmission delay in order to estimate job response times and devic,!

utilizations with an acceptable degree of accuracy. What is clearly needed is

00321 3-1

i I

C-

Ij S

LU Z

La .
r-

ooo

-6 -
C

-------- ------- -

0

EI-

0032 3-

"o

-o - ---

C i

P.- -

LU C~LU

0 L4

002 -

a simulation tool that provides the user with an effective means of easily

incorporating different levels of detail within a model to help solve two

related classes of proolems:

* Sensitivity analysis

To determine those critical system components (ooth nardware and

software) that, when varied, have a significant impact on the

performance of the system.

* Tradeoff analysis

To estimate the accuracy of performance measures (e.g., throughput,

response times, etc.), given certain run time constraints (and

therefore detail level constraints) of the simulator.

For these reasons, it is unsatisfactory to have a simulation tool that can

-model systems along a narrow band in the spectrum of possible detail levels.

In addition, computer and software vendors are providing new products on a

regular basis. Here again it is not possible to predetermine the level of

model detail that will be required to analyze these new offerings.

3.2 MODULARITY AND RECONFIGURABLE SIMULATORS

As described in Section 2.3.1 DSS allows the user to build models of nodes in

a system and save each model separately in a model library.

By having direct correspondence between models in the simulator and nodes in

the simulated system, models can be mixed and matched, depending on the type

of experiments that are to be performed. For instance, Figure 3.1-1 depicts

three nighly simplified views of a simulated computer system. Going from top

to oottom in this figure, more detail is included in the model. There is a

total of nine models stored in the model library: a workstation model, a CPU

model, and a file server model for each of the three detail levels. Figure

3.1-1 shows only the increased complexity of the hardware configuration; there

could also be a corresponding increase in the detail of the resource managers

(operating system models) and in the workload characterizations. To test the

sensitivity of the file access mechanisms on the job throughput rate, the

workstations would act only as sources and sinks for generated message flows.

00321 3-3

r

Then, to answer questions about the file access mechanism, the workstation

model and processor model of detail level one and the file server model of

detail level three could be used, while varying the file access methods. To

answer other types of questions, the simulator can be reconfigured in a

similar manner.

In tne more traditional approach, a single simulator is designed and built

with the object of answering all of the questions that motivated the

simulation study at the outset. Building DSS simulators, we can be more

selective in our approach. The simulator can be reconfigured depending on the

requirements of a particular subset of the proposed exper.iments. This makes

the experimentation stage less time-consuming in terms of run time costs, and

the simulation output is reduced and directly applicable to the questions the

experiments were designed to answer. DSS has been used with this approach in

building simulators of computer networks. The key to this approach is that

DSS supports the building of simulators in a highly modular fashion. As can

be recalled from the example in Section 2.2.5, every nodal model is

constructed from three basic components that may be built separately: the

System Description, Workload Description, and Resource Manager sections. Each

nodal model is built separately, but may be connected to other nodal models at

a later time to form one large network-wide model. This structure is depicteo

in Figure 3.2-1. This modular construction enables the user to move easily

from one level of detail to another. For example, it would take only a few

minutes to describe, using the model language of Section 2.3, the

configurations depicted in Figure 3.2-1.

Similarly, the Workload and Resource Manager sections can be created or used

from a model library. In this way, DSS provides reconfigurable simulators

based on the modularity of its design approach.

3._ VERIFICATION, VALIDATION, AND CALIBRATION

When developing and testing models of computer systems and networks,

verification, validation and calibration are three essential elements in

determining the usefulness of the models. These processes are usually done on

an iterative basis. For example, in modeling the job arrival process to a

00321 3-4

= i
~- S-

00

-J~ - -

CD 0

CjC

060
ex-

0 0 0 0 0 0 d

cm-
oc 0 z
oo 0 6" U

-j' 00 01- I. = 00 01- " 00 01-0

W 6") ;.>.j CM t

0032 3-5.C

computer system by a Poisson process, one is first interested in whether or

not the simulator is generating jobs with an interarrival time that comes

from an exponential distribution (verification). Once this has been

established, the rate of the Poisson process may be adjusted to agree as

closely as possible with the rate suggested by the empirical data

(collected, perhaps, by a software monitor); this is the calibration stage.

Finally, validating the model might consist of checking the output from the

simulator against a range of data collected from several samples. If the

agreement is not satisfactory, a new distribution may be suggested by the

data, and the verification process would begin again. Usually with

developed simulation tools it is not necessary to test the random number

generators although this can be a useful exercise.

The design of DSS has taken into account the verification, validation anu

calibration stages of simulators by providing special capabilities for the

analyst in these stages of model development. In the following three

sub-sections we describe in greater detail what is entailed in verification,

validation and calibration and the way in which DSS can be used in all three

stages.

3.3.1 VERIFICATION

In this initial stage, one need not be concerned with how well the model

represents the real system; the principal interest is in the ability of the

simulator to represent the model structure. The verification process used

for the simulators in the system-level and data-transfer-level models can be

outlined in four steps.

Internal Consistency

This step involves checking to ensure that all of the model elements

have the minimum number of required parameters; that allocated

resources are later deallocated and, in general, that the flow of

information in the system is not impeded by the simulator structure.

00321 3-6

0 Exogenous Variables

This step in the verification process ensures that the simulator is

driven by processes and loaaing parameters that are consistent with

the model design. For instance, a workload description that does

simulated disk reads and writes is not appropriate for a high-level

model whose only elements are switching nodes and channels.

o Trace reports

There are two classes of trace reports that are of primary

importance. Simulator programs may be viewed as a hierarchically

structured set of interacting processes. The first trace facility

allows for checking that the intended hierarchical structure is

inieed oeing implemented: only certain processes may initiate other

processes. The second trace facility produces a detailed listing of

elementary operations and the simulated time at which each one

occurred. This microscopic view of the simulator can be turned on

and off when desired and is an invaluable aid in debugging and

verifying simulators.

* Dump Reports

Simulator programs have many internally defined sets and tables that

are usually transparent to the user. For instance, there is a global

set called the staging list for jobs that are waiting for execution

time on simulated processing devices. The state of these sets and

tables may be interrogated at random times and dumped to a specified

file for later analysis. A dump report is of help in verifying that

the simulator is performing as planned, and not just producing

acceptable results because of a peculiarity in the loading parameters

or system description.

3.3.2 AN AID TO VERIFICATION: THE EVOLUTIONARY APPROACH TO MODEL DEVELOPMENT

As already stated, the OSS simulators model each node of a network

separately, and the nodal models are combined to simulate the entire

network. Network simulators can become quite complex and difficult to debug

as new nodes are added. The ideal situation would be to have a network

simulator grow incrementally as new nodes are added, with each new addition

debugged separately. This approacn has been used with the high level and

detailed level simulators.

00321 3-7

Three high-level models of networks were built using the facilities of OSS.

Table 3.3.2-1 summarizes the characteristics of each of these models. These

models are of packet-switched (store-and-forward) networks. Going from

Moael I to Model 3 (see Table 3.3.2-1) the architecture of a node, routing

algorithms, flow control procedures, and data formats become more detailed.

The purpose of this section is not to go into the particulars of each one of

the models, but to describe how an evolutionary approach to model

development can greatly reduce the time needed to build and verify

si-ilators.

Three levels of network complexity were identified for each one of the high

level models. In level A (Figure 3.3.2-1), the simplest network is

described: a two-node network in which one host communicates directly with

another host site. In this configuration, only one model from the OSS model

library is used, since the nodes are identical. Trace output, one of the

most effective means of verifying the behavior of a simulator, can be

voluminous for a multinode network simulator. By starting with very simple

corfigurations, it is possible to take very detailed looks at the behavior

of tme simulator wnile keeping the trace output to a manageable level. In

complexity level B (Figure 3.3.2-1), a switching node site is added. This

three-node configuration requires two models from the DSS model library, one

for the switching node and one for the host sites. Again, keeping things as

simple as possible increases the chances of detecting problems at an early

stag.!. The third level of complexity, level C (Figure 3.3.2-1), is an

arbitrary network configuration using the verified models from complexity

levels A and B. The changes to the TP.FILE and M.FILE are quickly made when

going through these different levels. For all three high-level models, this

approach to model development was instrumental in producing completely

debugged simulators by the time complexity level C is reached.

3.3.3 CALIBRATION/VALIDATION

After a simulator has been verified, a set of validation experiments is

00321 3-8

caretuI)y designed to determine whether or not the model, which is

implemented by the simulator, conforms to expectations. If the agreement is

not good, the parameters or the structure of the model is manipulated and

the resulting output data are again compared with independently generated

historical data. This procedure, calibration of a model, is continued until

the model and historical data agree within a predetermined tolerance. This

procedure, however, does not necessarily produce a valid model since it may

only be representative of a particular set of input data. A successfully

calibrated model must then be compared with other sets of historical data to

ensure that the model is sufficiently general to be a predictor of behavior

across 3 broad range of input data.

Table 3.3.2-I Summary of Key Model Characteristics

CHARACTERISTICS HIGH-LEVEL HIGH-LEVEL HIGH-LEVEL
MODEL 1 MODEL 2 MODEL 3

* PROCESSOR * PROCESSOR
MODEL 9 PROCESSOR e CHANNELS * CHANNELS
ARCHITECTURE * INTERNODAL * TERMINALS # TERMINALS

TRANSMISSION * BUFFERS s BUFFERS
DEVICES a INTERNODAL * INTERNODAL

TRANSMISSION TRANSMISSION
DEVICES DEVICES

ROUTING FIXED FIXED NONDETERMINISTIC
ADAPTIVE

DATA FORMAT MESSAGE PACKET PACKET

FLOW CONTROL NO YES YES

MESSAGE CONSTANT OR CONSTANT OR
INTERARRIVAL CONSTANT STOCHASTIC PROCESS STOCHASTIC PROCESS
TIME - UNIFORM DIST. - UNIFORM DIST.

- EXPONENTIAL DIST. - EXPONENTIAL DIST.

CONSTANT OR CONSTANT OR
MESSAGE CONSTANT STOCHASTIC PROCESS STOCHASTIC PROCESS
LENGTH - UNIFORM DIST. - UNIFORM DIST.

- EXPONENTIAL DIST. - EXPONENTIAL DIST.

00321 3-9

TP.FILE

SPO 35000

(a) NL 1; 2

M.FILE

1 01
2 01

(b) TP.FILE

ISPO 35000
2 INL 1; 2

NL 2; 3
M.FlLE

I 01
2 02
3 01

2A.131/6

TP.FILE

SPnl 35o0
L 6; 1; 7; 4
4L. 7; 2; 8
4L 8; 3; 9
4L 9; 4;. 5

M.FLE
2 at

o4 0I
5 01
6 02
7 02
8 02
9 02

Q MOST

(c) SW'ITCH

CINTERNnOAL
?A1ll1/5 7AN9 S?4 InN

Figure 3.3.2-1 Complexity Levels
A. Complexity Level A - Host to Host Configuration
B. Complexity Level B - Host/Switch/Host Configuration
C. Complexity Level C - Arbitrary Configuration

00321 3-10

Below is an outline of some of the steps in the validation and calibration

process for computer network simulations.

* Simplified Workload Description

In this step, the loading factors are minimized to include only one

or a very few jobs. By simplifying the workload description, it is

possible in many instances to determine quite accurately what the

expected values of the performance measures should be. The

complication of resource contention is practically nullified, and the

job flow can usually be more easily determined. Characteristics of

the models not load dependent can be validated in this step.

s Deterministic Models

Some models may be more easily analyzed and performance measures

calculated if the random variates that determine key parameters of

the system, such as interarrival times, are assumed to be

deterministic. This step may be used with the simplified workload

description to validate some of the performance measures of the

simulator. For example, routing protocols may be validated in this

way, since they do not depend on the distribution of job interarrival

times, but on the congestion and availability of switching nodes.

* Analytic Models

Analytic models can provide an independent source of performance

measures. For instance, a communication network in the high-level

model may be simulated as a set of nodes (switching computers) and

connected by high-speed channels. Assuming the service ates of the

nodes and channels are exponentially distributed with a Poisson

stream of jobs as input to designated nodes, this system can be

modeled as a Markovian network of queues ana servers. This allows

derivation of performance measures, such as utilization and message

response time, independently of the simulator. These measures may

then be used to validate the simulator. Analytic models, when they

are mathematically tractable, will be used in the proposed validation

experiments.

00321 3-11

* Hypothesis Testing

Certain systems have known or expected behavior characteristics that

can be tested using the simulator. This expected behavior may be

known in only a qualitative sense. For instance, it might be

determined that utilization of specified resources cannot be improved

in a certain system due to capacity constraints. Another

quantitative hypothesis might be that, as throughput increases,

response time is degraded. These hypotheses, even though they cannot

be stated precisely in quantitative terms, can be tested using the

simulator. If there is disagreement between the hypotheses and the

simulator output, either the fault in the simulator must be corrected

or an explanation of why a hypothesis is false must be found.

Usually in this stage other subsidiary hypotheses concerning the

behavior of the system are suggested, which can be checked in turn by

the simulator.

e Independent Random Number Generation

In analyzing the output from a simulator during the

calibration/validation phases we are interested in the true

performance measures of the modelled system independently of the

noise generated by using a particular random number stream.

Simscript 11.5 provides ten starting seeds for this purpose. This

allows for greater flexibility in the design of experiments and

reduces the cost of simulation runs without reducing the usefulness

of the results. In representing random processes in a model, it is
important to be able to isolate various processes. For example, in a

simple queuing system, one expects that the arrival distribution

should be independent of the service mechanism. If we are limited to

one sequence of random numbers, it would be difficult to represent

this independence. (It could be done, to a degree, with very long

runs.) However, by assigning different random number streams to the

two processes and thereby starting from different values, we can have

the desired independence. Further, from an experimental design point

of view, we can more quickly demonstrate the effects of a change in

value of a controlled variable. For example, if we change the number

00321 3-12

of servers in our simple queueing system and repeat the experiment

with the same starting seeds for each stream, then, through careful

implementation of the model, we can show that any changes in the

results from the simulations are the direct result of the changes in

the controlled variable (number of servers) and not due to random

variations. [RUSS 82].

Since there is literally an unlimited number of models that can be

implemented using the simulators for the high level and detailed level

models, only a subset of these possibilities can be tested. However, the

number of different types of elements in these simulators is finite and well

defined. For instance, there are computing resources and input devices in

the high level model. All of the elements have been tested by applying

different loading factors over a broad spectrum of values to ensure that the

utilization of the system resources goes from lightly loaded to nearly 100

percent of their capacity. The library routines that implement standard

rescurce managers, communication protocols, etc. have also been tested in

this way.

The models that have been developed are documented in the order of

increasing complexity, and the loading factors applied to them are described

to ensure that all combinations of model elements have been verified.

00321 3-13

6#

SECTION 4
HIGH LEVEL MODELK OF COMPUTER NETWORKS

4.1 INTRODUCTION

In Section 4 each of the High Level Models (HLM) is described - the input

files that are required, the architecture and functional flow of each model

and the output generated by each mocel.

HLM #1 simulates a message switched network. Messages are generated at host

or user sites, routed through tne network by a deterministic, routing

algorithm and finally destroyed at the destination site. HLM #2 has all of

the facilities of HLM #1. In addition, it incorporates two types of flow

control procedures to control congestion within the network. The model

architecture explicitly represents input/output devices at the host sites

and buffer sizes at every node in the network. Also, messages may be broken

into packets and routed through the network in this format. HLM #3 is

similar to HLM #2. However, HLM #3 simulates adaptive routing procedures

through a non-deterministic routing table. See Table 4.1-1 for a summary of

these differences. Statistics representing message delays, resource

utilization, bottlenecks in the system, queueing etc. are collected and

reports generated for each node in the network.

As we move from HLM #1 to HLM #3 the complexity of the models increases,

which requires more detailed input data from the user. The models are

upwardly compatible. For example the routing table for HLM #1 may be used

as an input file to HLM #3. By providing a range of models of increasing

complexity the network designer is not constrained to inputting model

parameters at only one level of detail. For instance, buffer size is a

required input for HLM *2. If this data is not avai]able the oesigner may

use HLM #1 where this does not play a factor in the model inputs.

00321 4-1

_ _ _ _ _

Table 4.1-1 Summary of Key Moael Characteristics

HIGH LEVEL HIGH LEVEL HIGH LEVEL
CHARACTERISTICS MODEL I MODEL 2 MODEL 3

e PROCESSOR @ PROCESSOR
* PROCESSOR * CHANNELS e CHANNELS

"OEL * INTERNODAL * TERMINALS . TERMINALS
.RCHITECTURE TRANSMISSION * BUFFERS . BUFFERS

DEVICES * INTERNODAL e INTERNODAL
TRANSMISSION TRANSMISSION
DEVICES DEVICES

ROUTING FIXED FIXED NON-DETERMINIST
ADAPTIVE

DATA FORMAT MESSAGE PACKET PACKET

FLOW CONTROL NO YES YES

MESSAGE CONSTANT OR CONSTANT OR
INTERARRIVAL CONSTANT STOCHASTIC PROCESS STOCHASTIC PROCESS
TIME (MIT) - UNIFORM DIST. - UNIFORM DIST.

- EXPONENTIAL DIST. - EXPONENTIAL DIST.

CONSTANT OR CONSTANT OR
MESSAGE CONSTANT STOCHASTIC PROCESS STOCHASTIC PROCESS
LENGTH (MML) - UNIFORM DIST. - UNIFORM DIST.

- EXPONENTIAL DIST. - EXPONENTIAL DIST.

00321 4-2

4.2 MODEL SPECIFIC INPUT FILES

Several model specific input files are required to run ECSS simulations. They

are:

e The EXEC file which provides the defaults required for the simulation,

e The ROUT file which provides the routing table for the simulation and
* The MESS file which defines all message characteristics.

The format of these input files are designed to be upwardly compatible so as
to require little or no alternations when running any of the high level
models. For example, the ROUT file used for High Level Model I can be used

witnout any changes when running High Level Model 3.

The dashed box in Figure 4.2-1 identifies the Model Specific Input files.
These files are detailed in the SS User's Manual.

4.3 HIGH LEVEL MODEL 1
High Level Model 1 simulates a message switching network. Messages are routed
through the network by a deterministic, fixed routing algorithm. This model
contains no flow control procedures in that when a message is transmitted it
will always be accepted by the receiving node.

4.3.1 MODEL ARCHITECTURE

High Level Model 1 requires two OSS model types:

@ A model to describe the behavior of the host sites and

* A model to describe the behavior of the switching nodes.

The association between the model type and node number is defined in the

M.FILE.

4.3.1.1 Host Sites

The function of the host site is to generate new messages and destroy messages

sent from other host nodes. Each host site consists of:

* A processor;

00321 4-3

< (-d AV)

;I 66 -. I

L0'i

-1 - ") 0 -

L6 -jI I. V) Li= I.

rC-W

4 w
CLi

60.

002 4-

e A variable number of interrodal transmission devices. The number of

devices will vary depending on whether the option is multiplexed or

dedicated channels. The example shown in Figure 4.3.1.1-1 is

dedicated. Therefore, there will be as many internodal transmission

devices as there are paths entering or leaving each node.

Figure 4.3.1.1-1 shows the host site configuration.

INTERNODAL

TRANSMISSION

DEVICE

?RESSORQ

OUTGOING

MESSAGES

Figure 4.3.1.1-1 Host Site Configuration

The specifications describing the Processor, located at each host site, are

defined in the DSS Model Library. To change these specifications the user

must change the DSS Model.

The Internodal Transmission Device specifications are parameterized directly

through the TP.FILE. Table 4.3.1.1-1 summarizes the System Description for a

typical nost site.

4.3.1.2 Switching Nodes

The function of the switching node is to accept and forward messages along the

network. Each switching node consists of:

* A processor

9 A variable number of Internodal Transmission Devices. Refer to Host

description

Figure 4.3.1.2-1 is a representation of a switching node.

00321 4-5

Table 4.3.1.1-1 System Description for Host Site

DEVICE ECSS PERFORMANCE
NAME DEVICE SPECIFICATIONS

TYPE

DOIA.CPU EXECUTION AND
(Processor) JOB STORE DEVICE 500000 INSTRUCTIONS/SEC

TC 1,MiOI
(Internoaal TRANSMISSION 15000 BYTES/SEC
Transmission DEVICE

Device)

INCOMINIG PROCESSOR OUTGOING

MESSAGES MESSAGES

INTERNODAL

TRANSM IS SION

DEVICES

Figure 4.3.1.2-1 Switching Node Configuration

Specifications describing the processor are again defined in the DSS Model

Library. The specifications related to the Internoaal Transmission aevices

are defined in the TP.FILE. Table 4.3.1.2-1 summarizes the system description

for a typical switching node. The table also shows the internodal path

connecting two internodal transmission devices from node 1 and node 2.

4-6

WIN"

Table 4.3.1.2-1 System Description for Switching Node

DEVICE ECSS PERFORMANCE
NAME DEVICE TYPE SPECIFICATIONS

DO2A.CPU EXECUTION AND
(Processor) JOB STORE DEVICE 400000 INSTRUCTIONS/SEC

TO2A.M02
(Internodal TRANSMISSION
Transmission DEVICE 10000 BYTES/SEC

POlA.NO1.NO2 PATH CONNECTS TO1A.MOl
(Internodal) to TO2A.M02

4.3.2 FUNCTIONAL LOGIC FLOW

High Level Model I simulates a forward switching network. Host sites generate

and forward messages to a switching node. Switching nodes accept and forward

messages to either another switching node or to a host site. Passing messages

between switching nodes may require several transfers depending on the

topology of the network. Finally, the final destination host site accepts the

message, updates the message statistics and destroys the message. Figure

4.3.2-1 is a functional flow diagram of this process. Two major external

processes provide the control functions (eg., message generation and starting

computer jobs) for High Level Model 1. They are:

@ ..ARR process (message generation) and

e CP Process (communication process - controlling computer jobs)

A brief description of each process is provided:

00321 4-7

(l)

MESSAGES
GENERATED * ROUTINE RD.MSG.AR AND EXTERNAL PROCESSAT HOST SITE .ARR COMBINE TO ACCOMPLISH THIS TASK

MESSAGES
FORWARDED TO
SWITCHING NODE
BY DETERMINIS- * ECSS JOB JU PROVIDES THIS FUNCTION
TIC ROUTING
ALGORITHM

(3)

SWITCHING NODE
ACCEPTS AND 0 MAY REQUIRE SERAL MESSAGE TRANSFERFORWARDS MESSAGE DEPENDING ON NETWORK TOPOLOGY.
BY DETERMINIS-
TIC ROUTING * ECSS JOB JW ACCOMPLISHES THIS TASK
ALGORITHM

(4)

HOST NODE
ACCEPTS MES-
SAGE UPDATE * ECSS JOB JT PROVIDES THIS FUNCTION
STATISTICS
AND DESTROY
MESSAGE

Figure 4.3.2-1 Functional Logic Flow of High Level Model I 2A83/7

00321 4-8

Message Generation - External Process ..ARR

The ..ARR process provides the vehicle for generating every message introducea

into the networK. This process simply cycles according to the interarrival

rate ('IT) established in the MESS file or defaulted in the EXEC file.

Messages ire created each time the process cycles. The number of instances of

..ARk in the External Process Reports indicates the number of different

*qessae types generated during the imulation run.

Communication Process - External Process CP

ohe ri.rary function of the communication process is to control the

o;m.rnl:a--on between nodes. A communication process may start jobs on a

processing unit whici simulates the activity of transferring, switching and

receiving messages. Statistics on these external processes are displayed on

the External Process Report. The number of instances for the CP processes

should be one. These processes are started only once and continue to operate

for the full duration of the simulation.

The communication process activates and controls three computer jobs:

* JO 3U

* JOB JW

• JOB JT

. jes:ription of these jobs is provided.

JOB JU - Message Transferring

JOB JU simulates the activity of transferring a message from a host site to a

switching node. It accomplishes this task by filing the pointer to the

message (MSG) data in the switching nodes message file (..MGFILE). The JOB

concludes by signaling the switching node. This notifies the communication

process that it has a message waiting for it. The totdl number of instances

for JOB JU can be interpreted as the total number of messages transmitted from

JU's host site.

00321 4-9

JOB JW - Aessage Switchin.

Message switching is accomplished by activating JOB JW. This job is identical

in unction and logic to job JU except it is initiated in the communication

process of a switching node. The total number of instances for JOB JW can be

interpreted as the total number of messages switched at JW's switching node.

JOB JT - Message Receiving

Messages are received by activating JOB JT. When a message arrives at its

final destination, the host communication process invokes the message

receiving JOB JT. This job calls two routines:

* Routine ..TOT - which updates the message statistics and

* Routine ..DM - which destroys the message.

The total number of instances for JOB JT can be interpreted as the total

number of messages received at JT's host site. Refer to the 0SS User's Manual

for more information relating to Job/External Process reports.

4.3.3 SIMULATOR OUTPUT

Tne OSS Simulator produces two output reports:

* Message Statistics

e ECSS Standard Reports

For a description of each report contained in this section refer to Section

2.4 of the User's Manual. For a complete sample of these reports refer to

Appendix A - Level C. Examples of these reports follow:

00321 4-10

MESSAGE §TATISTIC REPORT

NO. OF DELAY TIME

TYPE MESSAGES MIN MAX AVE STD

1 27 3.70 31.26 17.43 3.50

2 39 2.70 32.80 14.64 7.52

3 26 1.70 30.10 15.75 8.58

4 8 1.40 6.40 4.00 1.60

5 33 1.71 24.11 13.26 6.76

SYSTEM - WIDE

NO. OF DELAY TIME

MESSAGES MIN MAX AVE STD

--

133 1.40 32.80 14.44 8213

- Refer to Section 2.4 for Report Description

- Refer to Appendix A - Level C for output sample

EXECUTION REPORT

00321 4-11

k= --W

LIP"

x 0i

ox

UJ 141

-0 Ni _j qw U.4 L

La ---

4 is

0 Z-
- r4

66PI
ui-

- IN
w II' L) Egg

002 4-12'

%46. O -

'~.J _
§

co

-,
IAJ

0 C; C

LAJ0 . .

I.

cn cncnc

2.-I

00000000000

_~ 8 o o i

01 o

z qT

L~ 000
NA

w~

z IC.u
= w ~0 000

o Po

000000

C-~~ 0 co-
LA A U, PY

. .~0 . .U,

003210000

UJ.

-~ UJ

z.

U.Jj I N

70 00000LIN 9%

C; ci CC

0 0k
0p 4 -UIc~ 0 ;

00321 4-15

LWW

LU 60

In-

0 C)0-0 .0 0 00J

C4.

a '
ODa

(/,(n c; .;C

0-0~~o 000 W

3. xX
i. ag id~0 U

002 4-16~'U.

4.4 HIGH LEVEL MODEL 2

Hign Level Model 2 differs from High Level Model I in five major ways:

1. The model implements two forms of flow control procedures.

2. Messages are generated and terminated at input/output devices.

3. Messages are divided into packets before they are transmitted through

the network.

4. Buffer space is explicitly modeled.

5. Packets are reassembled into messages at host sites.

4.4.1 MODEL ARCHITECTURE

High Level Model 2 consists of two model types:

e A model to describe the behavior of the host sites and

e A model to describe the behavior of the switching nodes.

4.4.1.1 Host Sites

Each Host site consists of:

* A processor

e A variable number of internodal transmission devices (refer to High

Level Model 1)

* 10 I/O devices

e 2 Channels

* 1 Buffer

Figure 4.4.1.1-1 illustrates the Host Site Configuration.

BUFFER

,4Tq,4CAL

Q 11-L0- ~AG

Figure 4.4.1.1-1 Host Site Configuration

00321 4-17

BU FFER

A I NTERNODAL
'N TRANSMISSION

N DEVICEA

Figue 4..1.11 Hot SECofurtn

010 L4NCMI8

The nimber of I/0 devices and channels can be changed in the OSS High Level

Modei 2 host model. The Internodal device specifications are defined in the

TP.FILE. Buffer specifications are changeable through the EXEC file and the

System Description Section of tie host model. The System Description

specifications for the host site are summarizea in Table 4.4.1.1-1.

4.4.1.2 Switching Nodes

Each switching node consists of:

a A Processor

* A variable number of Internodal Transmission devices (Refer to Section

4.3.1.2 Switching Nodes High Level Model 1).

s A Buffer

Figure 4.4.1.2-1 is a representation of such a switching node.

~BUFFER

ARRIVING PROCESO OUTGOIING
MESSAGE MESSAGE

2A83/6 INTERNODAL
TRANSMISS ION
DEVICES

Figure 4.4.1.2-1 Switching Node Configuration (Dedicated Option)

The Processor and Buffer declarations are provided in the DSS Switching

Model. The specifications for the Internodal Transmission devices are defined

in the TP.FILE. Table 4.4.1.2-1 provides a summary for the System Description

Section for the switching node.

00321 4-19

Table 4.4.1.1-1 System Description for Host Site

DEVICE ECSS PERFORMANCE

NAMvE DEVICE TYPE SPECIFICATIONS

DOIA.CPU EXECUTIONS ANDS

(Processor) JOB STORE DEVICE 500,000 INSTRUCTIONS/SEC

To IA. PO1I

(Internodal TRANSMISSION 20,000 BYTES/SEC

Transmission DEVICE

001B. CHANNELS TRANSM ISSI[ON
(Channel) DEVICE 2,000,000 BYTES/SEC

DO1D.BUF STORAGE 1,0 YE
(Buffer) DEVICE 1,0 YE

OOIC.TERMINAL 1/O

Ter'ninal) DEVICE 9600 BYTES/SEC

POIA.T.PATH PATH CONNECT D018. CHANNELS

(Internodal Path) TO DOIC TERMINALS

00321 4-20

Table 4.4.1.2-1 System Description for Switching Node

ECSS
DEVICE DEVICE PERFORMANCE
NAME TYPE SPECIFICATIONS

D02A. CPU EXECUTION AJD
(Processor) JOB STORE DEVICE 500,000 INSTRUCTIONS/SEC

T92A.MCI
,(inte-r00a TRANSN1ISSIlOh 30,000 BYTES/SEC
Transnission DEVICE
Device)

DO2B.BUF STORAGE
(Buffer) DEVICE 10,000 BYTES

POlA.NOI.NO2 PATH CONNECTS TOIA.MIO1
(Internodal Path) TO TO2A.M02

00321 4-21

4.4.2 FUNCTIUNAL LUGIC FLUW

High Level Model 2 simulates a store and forward packet switching network.

This model incorporates packet switching and flow control procedures.

Flow control procedures are implementea oy both the host and switching nodes.

These techniques include:

In the host site three limits are set by the user, they include:

- The upper limit (MM3) on the number of unacknowledged packets that

may be transmitted from a host site to the communication network.

This limit is specified in the EXEC file.

- The upper limit (MM2) on the number of messages that can be

assembled at any moment. This limit is specified in the EXEC file.

- The actual Duffer size (BFH) at the host site. This value is set in

the EXEC file.

% In the switching node two limits are set by the user. They include:

- The upper limit (MMI) on the number of packets at a switching node

waiting to be transferred or acknowledged. This limit is set in the

EXEC file.

- The buffer s ze (BFC) at the switching node. This limit is also set

in the EXEC file.

There are three major functional Flow logic areas within High Level Model 2.

They are:

* Host site message initiation logic

a Host site message reassembly logic

* Switching node packet handling logic

00321 4-22

. -. . . .x - I .

Tne nost site message initiation logic is displayed in Figure 4.4.2-1.

Messages are generated at the terminal. The messages are divided into packets

according to a user specified size (PKZ) and filed in the input Queue.

Packets may be assigned a priority (PTY). The lowest assignable priority is a

"0". A packet's priority defaults to zero if no default is defined. The MESS

file for High Level Model 1 can be used for High Level Model 2 if the packet

size (PKZ) specified by the user is equal to a constant message length (MML).

In this way, the MESS file is upwardly compatible.

The communication process verifies that the upper limit on the number of

unacknowledged packets (MM3) that may be transmitted has not been reached. If

this limit has been reached, the packet is denied transmission and forced to

wait until an acknowledgement for one of the outstanding packets is received.

If the limit has not been reached the packet is allowed to be transmitted. An

acknowledgement of a user specified length (AKL) from the receiving node

indicates a successful transfer of the packet. If the host does not receive

this acknowledgement within a user specified time (TMH), it retransmits the

packet. This cycle of waiting and retransmitting continues until a successful

transfer is accomplished.

The host site message reasembly logic is illustrated in Figure 4.4.2-2.

Packets arrive from adjacent n - to be reassembled at the destination host

site. Upon arrival two limiting factors, the reassembly buffer size (BFC) and

the number of messages being reassembled simultaneously (MM2), are checked.

If either factor exceeds its user defined limit the arriving packet is ignored

and the acknowledgement to the sender node is aborted. If neither of the

limits is exceeded, the communicaton process accepts the packet, allocates

buffer space and sends to the forwarding node an acknowledgment of the

packet's arrival. A check is made to determine if this packet is the last

packet missing from the reassembled message. If it is, the reassembled

message is sent to the terminals and the allocated buffer space is released.

If more packets are required, the arriving packet is stored until all of the

packets required to reassemble the message arrive. Single packet messages are

sent directly to an I/O device and no reassembly buffer space is allocated.

00321 4-23

Mes sage
genera ted
at
terminal

Figur 4.42-1 ostDitie MssaeIitain oi

00321 4-24ts

AD-A134 701 RADC (ROME AIR DEVELOPMENT CENTER) DDP DISTRIBUTED 24
DATA PROCESSING) TOPOLOGY EVALUATION(U) GENERAL
ELECTRIC CO SUNNYVALE CALIF D DUBOIS AUG 83UNCUASSIFIED RADC-TR-83-79 F3060 -80-C-0267 F/G 9/2 NL

mEE~lll~llEEEI
EEEEEEEEIIIIEE
IEIIIIIIIIEII
IEEEEEEIIEIII
IIIIEIIIIEIII
EHEHELIIII

I

11111t 1. 28 =12.5

1111 11 ~IIIII.

'iii~ IIi II _

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANOARDS -1963- A

L

i

lob

Pac~et arrives
frcm ad~Jacent
noce

Al locate
buffer
space If
new message

ck receo

Has s totalnumber v

ofk paktirie e

Isr uessae? limit

ES YES

endgs en
reasseble

3f acet

Figur 4.42-2fost Ses essgeseml oi

00321 4-5 2a83,'

The switching node packet handling logic is illustrated in Figure 4.4.2-3.

Switching nodes accept packets from adjacent nodes and forward these packets

to another switching node or a most site. However, the acceptance of the

packet is predicated on two limiting factors:

* available buffer storage (BFC) and

e the number of packets currently at the switching node (MMl).

If either of these user defined limits are exceeded, the switching node simply

ignores the packet and does not send an acknowledgement to the sending node.

If neither of the limits are exceeded the switching node sends an

acknowledgement to the sending node and transmits tne packet to its next

destination. The communication process retransmits the packet if it does not

receive an acknowledgement within a user-specified time (TAC).

The communication process for High Level Model 2 provides the same type of

functions as the communication process for High Level Model 1.

In addition to activating the many computer jobs, this communication process

accomplishes the following:

1. Breaks messages into packets according to a user specified size (PKZ),

2. Allocates buffer space,

3. Monitors unacknowledged messages,

4. Initiates the retransmit process for all unacknowledged packets,

5. Provides total control on all packet transmissions; internodal and

intranodal.

Jobs required to implement packet switching and flow control are described

below:

9 JOB JA - Job JA simulates the transmission of a packet from the I/O

device to the CPU processor. The number of instances of this

Job indicates the number of packets originating from the host

site which utilize JOB JA.

00321 4-26

Packe arrives
from adjacent
node

ignore
Is ouffer YES packet-
size do not
ex eeded? ack

.0

*10

Is upper limit
exceeced on YES
number of
packets at node?

NO

Y

Ac.,<
receipt
of oacket

Transmit
packet to
next node

,vait for
time out
period

Retransmit
packet if
unacked

Figure 4.4-2-3 Switching Node

00321 4-27 8 '31

JOB JC- JOB JC simulates the transmission of a packet along an Internodal
Path. The number of instances of tnis Job .iould indicate how many
packets were injected into the network at a particular node.

JOB JU - JOB JU retransmits the packet if an acknowledgement has not been
received within a user specified tine. Tne number of instances of
JOB JU indicates the number of packets sent from a particular node

which were rejected by an adjacent node.

JOb AK - JOB AK is responsible for sending acknowledgements for accepted
packets. This job is only operational when a "I" is indicated for

"ACK" in the EXEC file. The number of instances of JOB AK indicates
the number of packets accepted Dy a particular node.

JOb JD - JOB JD simulates the receiving and the acceptance of
acknowledgements from adjacent nooes. The number of instances of

this JOB indicates the number of acknowledgements received from

adjacent nodes.
JOB JB - JOB JB simulates the transmission of a completely reassembled

message from the CPU processor to the I/O devices. The number of
instances of JOB JB indicates the total number of completely

reassembled messages at a host node.

JOB PC - JOB PC is tne timing mechanism that schedules tne retransmit command
for all unacknowledged packets. The user specifies the frequency
with which this job is performed by selecting the maximum response

time tolerable for all acknowledgements at the host (TMH) and
switching nodes (TMC). The number of instance of this job indicates

how many times a particular node assessed the status of its outgoing

packets.

4.4.3 SIMULATOR OUTPUT
The same type of reports are generated by OSS as are produced for High Level

Model 1. Complete descriptions of these reports are provided in the DSS

User's Manual.

00321 4-28

MESSAGES STATISTICS

NO. OF DELAY TIME

TYPE MESSAGES MIN MAX AVE STD

1 208 1.08 2.17 1.60 .39

2 208 1.08 2.36 1.69 .37

3 163 .38 .64 .44 .07

4 200 .38 .78 .45 .08

SYSTEM - WIDE

NO. OF DELAY TIME

,IESSAGES MIN MAX AVE STD

784 .38 2.36 1.08 .66

Message Statistics Report - For A complete Description of The Report

Refer to Section 2.4

00321 4-29

SSW

0 x

07 N4

U,',

a

00320 4-3

lotl

zz

0h 0 0 C), 0 U

4c 0
0A

=000000000

I--3

z

w oc 0ui0 0 oo; oC; C;

AC--

00000100000

6IJ

r4 -N--

w- 8 -- I C

w

- Z-

-J 0 '0

(nP

• o , ° ,-

25 ClJ.4W 0 --

I0 0~ -C at S S (A

C =

C cN - - -

(- L - -

l.I .C

I . . 2 0

9-Cl, - ' PM

* .M.

U
w 00

0 '9-

WWI CD lD- Wt

2-

T-9- T- cc V4 W% 'DZ Z K N I I

=' =~~' 1 1 .

00321 4-32

611% 9% W. P

-rv F4a

qC eoC! ! C

oefly to

Vq % .88 r.. W-8 -9 0i

UAJ

L'Ia
m' N - '0I

u I I

6-

'~ 0 0 0l

UN a%

6a~f

4 0 0 -r0 WN0

o In cow

0032 4-33I%0

V-

C,,J

w -

Op.

z

-* - - N W 4 - -- Lj

op--

CD-

-CI

P. 4 " 6'

Ch gn

0w

0032 0000000

6 C;0 000-

aC I C0C 000 L .

oC-)
z ;C ; V

...........

00 00 -40,

8 0 0 . 0 0 U

u.0 LX"~ - --

I-U. w c

W _j -_j

z U.* .J z~ z
-- w -W

V 4In R v4
31 1-=

00321 4-35

4.5 HIGH LEVEL NIOOEL 3

High Level Model 3 is different from High Level ilooel 2 in that it uses a

non-deterministic routing table. The "C" level example of this moCel

illustrates the upward compatiDility of the DS' input files. For example, tne

simulation model for Level C consists of several files from Hign Level Model !

and 2. No new files are required.

4.5.1 ADAPTIVE ROUTING

Routing algorithms may generally be classified as either fixed or adaptive.

*iti fixed routing algoritnms the next node to which to senc a messace

pre-determined. In adaptive routing the procedure to forward packets i;

sensitive to the changing state of the network. They are generally variarts

of Shortest path algorithms that route packets from a source node to a

destination over a path of least cost. The specific cost function used in a

particular network may vary widely. Some costs are functions of channel

capacity, link or transmission line capacity, number of hops from source to

destination, error rates over given paths, expected queue lengths at various

nodes and so on. Beside these differences in link cost functions, routing

tecnniques tend to differ in implementation and the place at which the

algorithms are run. They may be actually located in a single node or the

decision making functions may be dispersed throughout the network. How

frequently the routing tables are updated, routing oeck.ion overhead and the

number of parameters the adaptive procedures are sensitive to are also

distinguishing characteristics. However, a high level view of these adaptive

techniques suggests these overriding characteristics: multiple paths may exist

from source to destination and these paths change over time. That is, a

message going from node A to node B might go by way of path X at time T and by

path Y at a later time. If measured over time a certain percentage of the

total number of messages going from A to B will choose path X over path Y. It

is this average behavior that is approximated by a new type of routing table

that is incorporated in HLM #3.

4.5.2 SIMULATOR OUTPUT

DSS produces the same type of reports for High Level Model 3 as it provides

for High Level Models I and 2. Refer to the OSS User's Manual for a complete

description of each report. For complete examples of each report refer to

Appendix C.
00321 4-36

____ ____ ____ ____

MESSAGES STATISTICS

NO. OF DELAY TIME

TYPE MESSAGES MIN MAX AVE STO

1 199 .08 .28 .16 .08

2 188 .09 .18 .12 .08

3 165 .06 .22 .10 .05

4 40 .17 .22 .19 .02

5 133 .08 .15 .09 .02

SYSTEM - WIDE

NO. OF DELAY TIME

MESSAGES MIN MAX AVE STD

720 .06 .28 .12 .06

Message Statistics Report - For A complete Description of The Report

Refer to Section 2.4

00321 4-37

ii
i2

z I

0 -- ...

- gg - 0g

c,

"

£ RtI i .! _ _

LU e4

6r W

00321 4-3

cc 88 8 0 88 8

0000 0 0 0> 0 0;

0 0 C N

LU,

a- I I Imi

LU

,-j000000000 .

F I I I * I * Ia IS I IS

00321 4-3

N

008

CA~CC -

I C

C CA

z

Cn W t

-4

(fl J ~ -cN

L- 2 2

N NN

00321 4-40

WNN

-W --

CA

- >. 0 6

6Q -i jf

'nj UN NN Wfl

0 o0 0 C

LaJ
4-U~ N ~ % S N

m
0 000 0i

002 4-1N~o.

0 0 00000 p
-- 0 §§i

2. e4 f4

000000000

0 W _ 0000000000
<-

8 2

00 00 00

4 0 Rooooo

00

0032 4-42 0 00 00

SECTIuN 5

DETAILED MOUELS OF COMPUTER NETWORKS

5.1 OVERVIEW

This section gives a summary description of the design and rationale for each

of the Detailed Models for Phase II of the RADC DDP Topology Evaluation

Project. (Succeeding sections descrioe eacn of these models at greater

length.)

The three detailed models for phase II are:'

* Communication Protocol (CP) Detailed Model

* Reliaoility/Availability (R/A) Detailed Model

* Distributed Database (DB) Detailed Model

We have been concerned during both phases of the DUP project with two primary

tasks:

l) Development of high level (Phase I) and detailed level (Phase II)

models of distributed data processing systems that woula have wide

applicability;

2) Development of a modeling tool which would facilitate the building of

simulators that could be put into an expandable model library for

later use and enhancement. This tool is called DSS.

In light of these two primary tasks, the design and rationale for the detailed

models must serve the functions outlined above. In particular, DSS should be

able to model DDP Systems incorporating a great deal of variability in the

level of detail required. As a reference point the International Standards

ri-garization's (ISO) seven layer architectural design was used. The highest

ltvel is the application level which includes distributed data base management

systems (DDBM). The lowest layer of the ISO Model that has any significant

inpact on performance is the data link layer. (DSS incorporates a propagation

delay factor where that is appropriate, for instance satellite links or long

00321 5-1

lines, wnich is on the physical layer.) Accordingly, we chose two moaels that

incorporate either ,nd of the ISO Reference Mode I: the OB Systm Model rur

tnuk23olicatijn levtl inu the UP Model for the data link layer. Each of th,:sr,

models incorporates all of the seven layers of the ISO Reference Model (for

exampl!, eacn contains a routing mechanism which is part of the network layer)

but special attention is paid to the application layer in the 0B Model and "he

data linK layer in the CP Model. Figure 5.1-1 illustrates the ISO Reterenc,

Model's layered Network Architecture.

But tnis is only one of the reasons for having a OB Model and CP Model. The

,dnge of applicability is also important. One of the most important

applications in distributed data processing technology is DDBM Systens.

Almost any computer network will incorporate a DDBM System. Therefore a DOBM

Mode! is an important test for evaluatir- the capabilities of DSS.

One of the most fundamental ways in which a distributed system differs from

the traditional centralized systems is in the area of communication

protocols. DSS may be viewed as an extension of ECSS. ECSS was designed DJ

the Rana Corporation in 1975 to make the modeling of centralized systems

easier. DSS uses ECSS as a building block and adds, among other things, an

Inter-nodal Communication Facility. This facility, along with the ECSJ

transmission manager, allows the user to model communication protocols

effectively and easily. Because communication protocols are so important to

the performance of computer networks and because modeling this aspect of DDP

Systems goes beyond the traditional world view of ECSS we have chosen to

include the CP Model. The particular communication protocol that has been

mcoueled is the X.25 interface for packet switched networks which includes the

High Level Data Link Control (HDLC) protocol on the data link level of the ISO

'oael. This is the most widely used communication protocol and has been

adopted by several international organizations, including ISO, and nationally

by ANSI.

The Reliability/Availability (R/A) Model is included for several reasons. One

of the main rationales for the development of DDP technology is the increase

in the reliability/availability of the system that can be realized from a well

00321 5-2

A

I II
IIIIII

I II

'I n

i;;1

I 1

I I I
I I I I .

~yj t
I 032__ _ 5-3_

- III I 1 II . ..ii -il l ll I I i_ _ ,_ _ •

designed network. Therefore, DSS should be capable of modeling such a

design. We concluded, therefore, that a separate R/A simulator which modeled

only reliability and availability aould be a meaningless abstraction: The /,

Model should be embedded in a realistic model ot a total DUP System so thatth.,

design cnoices inherent in the system could be evaluated as to their impact on

reliability/availability. Further, the R/A modeling techniques that we have

chosen should be transportable to any functioning simulator of a DDP system.

The R/A Model has been designed to meet these two criteria (i.e., it must be

embedded in a total system model and not be separate from it; and secondly,

the techniques must be easily transportable to other simulators). We have

Chosen to embed the R/A Model in the communication protocol model since

different protocols can have an enormous impact on the

relability/availability of the entire system. In fact, one of the major

functions of a communication protocol is to correct and recover from

tratisnission failures and nodal downtime. Therefore a R/A Model in thi,

context would be particularly appropriate.

5.1.1 COMMUNICATION PROTOCOL (CP) DETAILED MODEL

Communication protocols are a relatively new area for simulation and modeling

due to the advent of distributed processing technology. Communication

protocols may be considered the operating system for networks. For DSS

(Distributed System Simulator) to be useful in modeling networks it must be

able to simulate communication at a detailed level. Network performance is

significantly affected by the communication protocols that the network is

using. User response time and throughput depend on the efficiency (degree or

overneac) of the protocols. DSS, in order to be a practical tool, must

facilitate tne modeling of communication protocols. The most widely used

communication protocol is the International Standards Organization's (ISO)

High-Level Data Link Control (HOLC). Toe CP Model is a OSS detailed Model ol

HDLC and the X.25 interface which includes the following components:

00321 5-4

* Number of Bits in an ACK Frame

* Number of Data Bits per Frame

* Interrupt the Processor Service Time

* Sender's 4indow Size

* Receiver's Window Size

* Negative Acknowledgement Frames

e Receive Ready Frames

5.1.2 RELIABILITY/AVAILABILITY (R/A) DETAILED MODEL

Increased reliability/availability is one of the most attractive features of

distributed processing technology. Because a well designed network is a

gracefully degradable system, traditional reliability models are not

applicable. Reliability/availability is a function of a broad range of

network characteristics, including hardware and system software components.

Because of this, the R/A Detailed Model has been designed as a general model

that can be used in a wide variety of environments - from distributed data

base models (layer 7 of the ISO Reference Model) to data link control models

(layer 2 of the ISO Reference Model). We have chosen to embed the R/A

detailed model in the communication protocol model, though the routines and

techniques used are just as applicable to any of the other detailed models.

The R/A detailed model includes these components:

* System Availability

e System Reliability

Failure Control

* Effects of Down Time

a Failure Recovery Rates

* Effects of Transmission Errors

@ Effects of Lost Messages

i7e inportince of the R/A detailed model stems from the fact that reliability

and availability as performance issues cut across all boundaries and affect

00321 5-5

all types of networks no matter what particular applications the networks are

servicing. This is why the R/A detailed model has the broadest possible scope

in terms of the general approach that it incorporates.

5.1.3 DISTRIBUTED DATABASE (DB) DETAILED MODEL

Distributed data bases are one of the most common application areas for

distributed processing technology. There are several advantages to DDbM

systems. As processor and memory costs are reduced, communication costs are

becoming a larger percentage of the data processing budgets of many

organizations. Local data bases, which can nevertheless be accessed from

remote locations, reduce communication costs. Another advantage of DDBM

systems is reliability. A particular site which is experiencing difficulties

need not cause the entire network to fail.

A third advantage is that networks allow for incremental growth without

restructuring the entire system. The performance characteristics of a DDBM

system are dependent on many factors. Simulation models can help in the

analyses that are necessary to design a cost-effective system that meets

certain performance requirements. The DDBM System Model includes these

components:

e Transaction Updates/Modifications

Transaction Retrievals

* Number of Lockups

9 Concurrency Control

File Allocation

* Transaction Rates

* Transaction Overhead

* Processor Utilization

* Buffer Utilization

@ Average Queue Lengths at File Servers

* Delays Due to Blocking/Synchronization

* Transaction Throughput

* Transaction Response Time

00321 5-6

The functional characteristics of Lne model are such tnat the jSer may vary a

wide range of DDBM system parameters and study the effects in terms of the

resource utiliz~itions (cfiannels, p-ocessors, buffers, transmission paths) and

tne net user effect (throughputs, response times).

5.2 COMMUNICATION PROTOCOL MODEL

The Communication Protocol ModeI simulates tne X.25 interface for packet

switched service. Two new mechanisms - v,-tual circuits and datagrams are

introduced in this model.

5.2.1 THE X.25 INTERFACE RECOMMENDATION

Tie X.25 Interface is the standard device independent interface between packet

networks and user devices operating in packet mode. The X.25 Interface was

recommended by the International Telegraph and Telephone Consultative

Committee (CCITT) in 1976 to estaolish an international standard for public

aita networks. The X.25 interface recommendation at the packet level defines

tie following services:

1) Permanent virtual circuits (PVC);

2) Switched virtual circuits (SVC); and

3) Datagrams.

A permanent virtual circuit is a permanent association between two nooes,

which is analogous to a point-to-point private line. Call setup or call

:learing procedures are not required for a permanent virtual circuit. This

r ... virtual circuit was simulated in High Level Model 2 and is not
i-rcluded ,n the Communication Protocol model. A switched virtual circuit

(-VC) creates a temporary association between an originating node and a target

node. Tie node initiates a 'call request' to the networK containing the

address of the target node. A switched virtual circuit is estaolished when

tie target node accepts the 'call request' and issues a 'call accepted' to the

originator. Once the SVC has been established, the virtual circuit becomes a

bioirectional, transparent, flow-controlled path between a pair of logical or

00321 5-7

pnysical ports. Packets can now be sent from the originator to target. Once

all packets have been received, a 'call clear' is sent from the target node to

the originator node. The 'call clear', upon receipt at the originator,

releases the temporary SVC.

The major benefit of SVC is the reduced overhead when exchanging large amounts

of data packets periodically with a variety of target nodes. When short units

of data need to be exchanged frequently, the overhead of SVC becomes

significant compared to the amount of data being transferred. With small
amounts of data the datagram can be more efficiently used. The datagram can

oe described as:

I) A self-contained message with a unique identifier, originator node and

target node information,

2) Usually delivered intact, most often implemented as a single packet

message,

3) Having a high probability of being delivered to the desired

destination, however it can also be lost due to transmission errors or

network problems,

4) The sequence of datagrams is not maintained,

5) Some form of error recovery for non-delivered datagrams is provided.

[FOLT 30, RYBC 80].

This section of the User's Manual will focus on both SVC and datagrams as

implemented in the Communication Protocol Model.

5.2.2 DATA FLOW DIAGRAMS

A Data Flow of a datagram traveling through a network is graphically portrayed

in Figure 5.2.2-1. The more complex case of a Switched Virtual Circuit is

oisplayed in Figure 5.2.2-2.

00321 5-8

T ERM INAL
TOI

HOSTII
TO
NIPI

NIPI TO
HOST

TOsr
7ER MINA

'000
ORIGINATOR NETWORK TARGET

2A153/7AFigure 5.2.2-1 Datagram Data Flow

003215-

nOS7

MCS7
7O

1 P

CALL CL
REQUEST SWITCH SWITCH R
SENT ED

CALL CALL
ACCEPT SWITCH SWITCH ACCEPT

REC 0SENT

BREAK
MSG 'ICSWTHRE -
INTOSWITCH ESWITCH MBLE
?ACKETS I PACKETS

"iL L CALL
CEAR SWITCH SWITCH CLEAR
REC'D SENT

7EAR NIP
DOWN i .TO

HOST
7O
TERM.

IT Q

':R',::NATR NETWORK TARGET

2A!5,'6 Figure 5.2.2-2 Switched Virtual Circuit Data Flow
00321 5-10

5.2.3 MODEL ARCHITECTURE

The Communication Protocol Model consists of two model types:

* A model to describe the behavior of the host sites and

* A model to describe the benavior of 'witccing nodes.

5.2.3.1 Host Sites

The function of the host site is to generate new messages and destroy messagos

sent from other host nodes. Each host site consists of:

* A Host processor

e A Network Interface Processor (NIP)

* A variable number of internodel transmission devices

* 2 Channels

1 Buffer

The host sites in the Detail Models differs from host sites in HLM Models

(Section 3) by allowing host to perform both host functions and switchi-1;

functions. Thus, one model (Model 1 - Host Sites) would have been sufficient

to simulate the different complexity levels, however two models - Host anj

Switch - were retained. The Switching Model is available for simulating nodes

performing switching functions exclusively.

00321 5-l1

Figure 5.2.3.1-1 graphically portrays the Host Site architecture.

Table 5.2.3.1-1 provides a summary of the System Description for the Host

Sites.

Taole 5.2.3.1-1 System Description for Host Site

DEVICE NAME ECSS DEVICE TYPE PERFORMANCE
SPECIFICATIONS

DOIA.CPU EXECUTIONS AND 500,000 INSTRUCTIONS
(Processor) JOB STORE DEVICE /SEC

DO]A.NIP NETWORK INPUT 500,000 INSTRUCTIONS
(Network Interface PROCESSOR EXECUTES /SEC
Processor) AND JOB STORE DEVICES

TOIA.M01 (Internooal TRANSMISSION DEVICE 20,000 BYTES/SEC
Transmission Device)

DOIB. CHANNELS TRANSMISSION DEVICE 20,000 BYTES/SEC
(Channel)

DOID.BUF (Buffer) STORAGE DEVICE 10,000 BYTES

DO1C.TERMINAL I/O DEVICE 9600 BYTES/SEC
(Terminal)

POIA.T.PATH PATH CONNECT DOIB. CHANNELS
(Internodal Path) TO DOIC TERMINALS

00321 5-12

3LJFF ER

A INTERNODAL
N TRANSMISSI~ON

Figur DEVICE ot ie ofiuato

0u321 5-1

5.2.3.2 Switching Nodes

The function of the s.itching node is to accept ano forward messages along tne

network. Each switching node consists of:

* A Processor

a A variaule number of Internoaal Transmission devices

* A Buffer

The Processor ano Buffer declarations are provided in the DSS Switching

Model. The specifications for the Internodal Transmission devices are defined

in tne TP.FILE. Figure 5.2.3.2-1 graphically displays this configuration.

Table 5.2.3.2-I provides a summary for the System Description Section for the

switching node.

PRODCESSOR

N77;!MAL
'~~~ C' . 70:, .,

Figure 5.2.3.2-1 Switching Node Confijuration (Dedicatec Option)

00321 5-14

Table .2.3.2-1 System Description for Switching Node

DEVICE DEVICL ECSS

NAE TYPE PERFORMANCE

SPECIFICATIONS

O'J2A.CPU EXECU-ION AND 500,000 INSTRUCTIONS/SEC

(Processor) JOB S ORE DEVICE

TO2A.MOl (Internodal TRANSMIISSION 30,000 3YTESiSEC

Transmission Device) DEVICES

D02B.BUF STORAGE 10,000 BYTES

(Buffer) DEVICE

POIA.NOI.NO2 PATH CONNECTS TOUA.MO1

(Internodal Path) TO TO2A.M02

00321 5-15

5.2.4 FUNCTIONAL LOGIC FLOW

The Communication Protocol Model simulates a Switched Virtual Circuit (SVC)

Packet Service Network that includes Datagrams. Host sites contain a Host

Processor which generates messages and forwards them to the host site Network

Interface Processor (NIP). If the message is a Datagram, then the NIP will

interject the message into the network and it will travel to its destination

in a manner similar to the messages in High Level Models I and 2.

If tne message requires a SVC, the virtual circuit will be allocated as a

:3nnecting log of nodes from originator to target. For example,

A

Figure 5.2.4-1 CP Topology - Level C

given the 5 node network illustrated in Figure 5.2.4-1, with node I as the

originator and node 5 as the target, two possible virtual circuits exist:

* VC A - 1 to 2 to 3 to 5

* VC 6 - 1 to 2 to 4 o 5

Whichever VC is taken by bcth the 'Lall Request' and 'Call Accept' messages,

that same VC will be used for all data packets of the original messages.

Switching sites accept and forward messages. The next node to forward a

message is determined by the allocated VC. Finally, the target NIP accepts

the packets, reassembles the packets into the original message, updates

message statistics, passes the message to its Host Processor and sends a 'call

clear' back to the originator.

00321 5-16

Figure 5.2.4-2 is a Hiign eveI Func:ional Flow of tnis process. Table 5.2.4-1

lists the message types while Table 5.2.4-2 provides a aetailed functional

flow)f tne Communications Protocol Model. The message types 4 through 9 3re

High Level Data Link Control (HDLC) message types. HDLC is one of the most

poDul)ar "bit-oriented" Data Link C)ntrol (OLC) protocols. The purpose of a

OLC Protocol is to assure the bit stream received is an error-free replica of

the bit stream transmitted [GREE 301.

Table 5.2.4-1 Communication Protocol Message Types

MESSAGE

TYPE DESCRIPTION

1 TERMINAL TO HOST

2 HOST TO NIP

3 RECEIVE AT NIP - CHECK IF VIRTUAL CIRCUIT REQUIRED

*4 CALL REQUEST

*5 CALL ACCEPTED

*6 DATA PACKETS

*7 ACKNOWLEDGEMENT BETWEEN NODES

*8 PACKETS REASSEMBLED INTO ORIGINAL MESSAGE,

PASSED TO HOST APPLICATION LEVEL

*9 CLEAR REQUEST

10 ORIGINAL MESSAGE TO BE RETRANSMITTED

* HOLC MESSAGE TYPES

00321 5-17

MESSAGE TYPES 1 Generator message at
3 originating Host site

3O (3)

~Set up Virtual Circuit1

MESSAGE TYPE 4 (VC) and send call~reques t

0* (4)

Switching node accepts) MAY REQUIRE SEVERAL
and forwards message MESSAGE TRANSFERS
using Virtual Circuit I DEPENDING ON NETWORK

_ TOPOLOGY

MESG TP Target node sends
I MESSAGE TYPE 5 call accept back

to originating Host

Figure 5.2.4-2 High Level Functional Flow of Communication Protocol Model

2A153/5

00321 5-13

I

(6)

Switching node accepts
and forwards message
using Virtual Circuit

MESSAGE TYPE 6 + (7)

D Originating node sends
Data in packet form to
target Host

Switching node accepts
and forwards message
using Virtual Circuit

+ (9)

Target node reassembles
MESSAGE TYPE 9 message and sends call

clear back to originator

+(10)
Switching node accepts

message and forwards
using Virtual Circuit.

+ (11)

Originating node -eleases
Virtual Circuit

2A153/1

Figure 5.2.4-2 High Level Functional Flow of Communication Protocol Model

(CONTINUED)

00321 5-19

411

_ '3

-_ z
UU

"-AJ

00321 5-20

~?

H I II I I i I I,~ . . . , , I " - i

~ ~2 ~
z

~: I
___________________ __________________ $ __________________

I 3 *~

C ~ -
U ~z U
C

C A

0
C -
o -J U

0- A

Z A A A
- - A A

o 0 0S 0

A
o C

A

_ I
z
o
C - 0
C

- - - -

A

A ..j
A

0~
~

~-

2

.0 3 22~

___ ___ Jo.. ___ ___

Lr K _ __

00321 5-21

n z

z 3

Z -)

UU

C A

~,, -

tC

00321 5-2

AZ -

A -

- A

I -

0{32 5-

Two major external Processes provide the control functions (e.g., message

generation and starting computer jobs) for the communication protocol model.

They are:

s ARR process (message generation)

CP Process communication process - controlling computer jobs)

A brief description of each process is provided:

' ssa e Generaticn - External Process ..ARR

The ..AkR process provides the vehicle for generating every message introduced

into the network. This process simply cycles according to the interarrival

rate MIT) established in tne MESS file or defaulted in the EXEC file.

Messages are created each time the process cycles. The number of instances of

..ARR in the external Process Reports indicates the number of different

message types generated during the simulation run.

Communication Process - External Process CP

The primary function of the communication process is to control the

communication between nodes. A communication process may start jobs on a

processing unit which simulates the activity of transferring, switching and

receiving messages. Statistics on these external processes are displayed on

the External Process Report. The number of instances for the CP processes

should oe one. These processes are started only once and continue to operate

for the full duration of the simulation.

The communication process activates and controls these jobs:

* JOB SM @ JOB AK

e JOB RM * JOB PA

* JOB HT 0 JOB PC

* J0B TH

@ JOB HN

e JOB NH

00321 5-2d

A description of these joos is provided.

JOB SM - Message Transferring

JOB SM simulates the activity of transfering a message from a ourrent site to

the next node. It accomplishes this task by filing the pointer to the message

(MSG) data in the switching nodes wessage file (..MGFILE). The OB concludes

by signaling the switching node. Tiis notifies the communication process tnat

it has a message waiting for it. The total number of instances for a unique

JOB SN, can be interpreted as the total number of messages transmitted from one

al z cther.

JOB R, - Retransmit Message

Job RM simulates the retransmission of a message if an acknowledgement has not

been received within a user specified time. The number of instances of JOB RM

indicates the number of packets sent from a particular node which were

rejected by an adjacent node.

JOB AK - AcKnowledgement

Job AK is responsible for sending acknowledgements for accepted packets. This

job is only operational when a "I" is indicated for "ACK" in the EXEC file.

The number of instances of JOB AK indicates the number of packets accepted by

a particular node.

JOB PA - Packet Retransmit

Job PA simulates the reassembly of a message at the NIP. The number of

instances of Job PA indicates the total number of completely reassembled

messages at a host node.

JOB PC - Post Communication

Joo PC is the timing mechanism that schedules the retransmit command for all

unacknowledged packets. The user specifies the frequency with wnich this joo

is performeo by selecting the maximum response time tolerable for all

acknowledgements at the host (TMH) and switching nodes (TMC). The number of

instances of this job iidicates hoY many times a particular node assessed the

status of its outgoing packets.

00321 5-25

JOB TH- Terminal to Host Transmission

This joo simulates the transferring of a message from a host site's terminal

to the host processor. Tasks accomplished by this job are:

Sending appropriate bytes from a randomly selected terminal via a

randomly selected channel,

e Message type is changed from a new message (Type 1) to 'received at

Host', (Type 2),

a Message is then filed in current node's message file,

@ CP is signaled.

Number of unique occurances of this job can be interpreted as total messages

received at that Host from its users.

JOB HN- Host to NIP Transfer

This job increases simulation time to model the overhead incurred by the host

CPU when relaying a message to its Network Interface Processor (NIP). JOB HN

accomplisnes this by changing message type to 'received at NIP' (Type 3),

filing the message in its message file and signaling CP. Total number of

instances for this job for any given node, represents total number of messages

entered into network.

JOB NH- NIP to Host Transfer

This job incurs sinulation time to represent overhead when messages flow from

a Host site NIP to its Host CPU. Total number of instances for that node

represent number of messages received by that node from the network.

JOB HT - Host to Terminal Transfer

This jOD simulates the transferring of a message from a Host CPU to its

terminals. It accomplishes this by sending appropriate bytes via a randomly

selected channel to a randomly selected terminal. Total number of instances

for this job for any given node represents communication activity between CPU

and its terminals. Refer to DSS User's Manual tor more information relating

to Job/External Process reports.

30321 5-26

5.2.5 SIMULATION OUTPUT

Tie DSS Simulator produces two output reports:

* Message Statistics

* ECSS Standard Reports

($e,! Appendix U F(jr ex.amples

For a description of each report containeo in tnis section refer to the User's

Manual. For a complete sample of these reports refer to Appendix D

:.3 RE,I43IL!TY,,AVA1LAbILITY MODEL

Tie ReliaDility/Availability Model extends the Communication Protccol Model oy

accounting for nodal failures and network transmission errors. Two new

mechanisms - rejections and adaptive routing are introduced in this model.

5.3.1 NETWORK RELIABILITY

Reliability is a major concern in communications oriented systems.

Communication lines can fail to give adequate service in one of the following

ways:

a Line errors - Some data transmitted over the line are garbled due to

bits being added or lost.

* Line Outages - The connecting line can become unavailable causing

transmissions to be blocked if an alternative line cannot be provided.

s Engaged or Busy Signals - A target node may be at maximum capacity in

respect to network inputs or outputs and thus unavailable.

* Disconnections - A node on the network can 'crash' and disconnect

itself from the network until it recovers. If the node is a host,

internal processing may continue while isolated from the network.

Certain steps can be taken to improve reliability. They include:

e Automatic Retry - When the line fails to send the data and no

acknowledgement is received, the sender will retransmit the message.

This process is of most value when outages are of short durations.

00321 5-27

* Alternate Patns - Tne network communication lines can be duplicated in

part, for reliaoility. Two or more communication lines may share the

load from a given 'ocation to another. when one line fails, service is

available on the alternate line. In a packet - switching network,

packets can traverse the networK, by passing parts of the network that

have failed. Packet switching thus forms the basis of an adaptive

networK that automatically adjusts tne route which the packet

traverses, to bypass failed lines or failed nodes.

s Buffering - As a 'last resort' tactic, messages blocked at a sending

node can be buffered until the required circuit becomes available.

The Reliability/Availability Model uses all the above methods to compensate

for line and nodal failures.

5.3.2 LAYERED APPROACH To BUILDING RELIABILITY/AVAILABILITY MODEL

The Cjmmunication Protocol Model described in 4.2 formed the foundation for

the new Reliability/Availability Model. The communication mechanisms

developed in the Communication Protocol Model were only slightly adapted to

accomodate the network support system required by the

Reliability/Availability Model. New jobs were added with minimal impact to

existing jobs.

Upward compatability of the CP model was retained, since the CP model could be

replicated by the R/A model if the user specifies no transmission error and no

nodal crashes.

5.3.3 MODEL ARCHITECTURE

The R/A model consists of two model types:

* A model to describe the behavior of the host sites and

e A model to describe the behavior of switching nodes.

00321

5.3.3.1 Host Sites

The finction of the host site is to generate new messages and cestroy messages

sent from other host nodes. Each host site consists of:

* A Host processor

e A Network Interface Processor (NIP)

* A variable number of internocal transmission devices

* 2 Channels

* I Buffer

The nost sites in the Detail Models differs from host sites in HLM Models

(Section 4) by allowing host to perform both host functions and switching

functions. Thus, one moael (Model I - Host Sites) would have been sufficient

to simulate the different complexity levels; however two models - Host and

Switcn - were retained. The Switching Model is available for simulating nodes

performing switching functions exclusively.

-. re 5.3.3.1-1 graphically portrays the Host Site architecture.

Table 5.3.3.1-1 provides a summary of the System Description for the Host

Sites.

00321 5-29

BUFFER

A INTERNODAL
IN TRANSIISSION

03 10 L- 3CN -N

Table 5.3.3.1-1 Host Site Configur~ticr

DEVICE NAME ECSS DEVICE TYPE PERFORMANCE
SPECIFICATIONS

DOIA.CPU EXECUTIONS ANDS 500,000 INSTRUCTIONS
(Processor) JOB STORE DEVICE /SEC

DOlA.NIP NETWORK INPUT 500,000 INSTRUCTIONS
(Network Interface PROCESSOR EXECUTES /SEC
Processor) AND JOB STORE DEVICES

TU1A.MOI (Internodal TRANSMISSION DEVICE 20,000 BYTES/SEC

Transmission Device)

DOIB. CHANNELS TRANSMISSION DEVICE 20,000 BYTES/SEC
(Channel)

DOID.BUF (Buffer) STORAGE DEVICE 10,000 BYTES

DOIC.TERMINAL I/0 DEVICE 9600 BYTES/SEC
(Terminal)

POIA.T.PATH PATH CONNECT DOiB. CHANNELS
(Internodal Path) TO DOIC TERMINALS

00321 5-31

5.3.3.2 Switching Nodes

Tie function of the switcning node is to accept and forward messages along the

network. Each switching node consists of:

* A Processor

* A variable number of Internoaal Transmission devices

* A Buffer

The Processor and Buffer declarations are provided in the DSS Switching

Model. The specifications for the Internodal Transmission devices are defined

in the TP.FILE. Figure 5.3.3.2-1 graphically displays the switching node

configuration. Table 5.3.3.2-1 provides a summary for the System Description

Section for the switching node.

, BUFFER

ARRVIN PRCSO DrrOTGOING
MESSAGEG MESPOCEAORE

INTERNODAL

ZA83/ 6 TRANSMISS ION
DEVICES

Figure 5.3.3.2-1 Switching Node Configuration (Dedicated Option)

00321 5-32

Taole 5.3.3.2-1 System Description for Swvitching Node

DEVICE DEVICE ECSS

NAME TYPE PERFORMANCE

SPEC IF ICAT IONS

002A.CPU EXECUTION AND 500,000 INSTRUCTIONS/SEC

(Processor) JOB STORE DEVICE

T02A.MOl (Internodal TRANSMISSION 30,000 BYTES/SEC

Transmission Device) DEVICES

D02B.BUF STORAGE 10,000 BYTES

(Buffer) DEVICE

POIA.NOI.N0j2 PATH CONNECTS TOIA.N1OI

Internodal Path) TO T02A.M02

00321 5-33

5.3.4 FUNCTIONAL LOGIC FLOW

Tvo major external processes provide the control functions (e.g., message

generation and starting computer jobs) for the R/A model. They are:

0 ..ARR process (message generation)

* CP Process (communication process - controlling computer jobs)

A brief description of each process is provided:

Message Generation - External Process ..ARR

The ..ARR process provides the vehicle for generating every message introduced

into tne network. This process simply cycles according to the interarrival

rate (.1IT) estaolished in the MESS file or defaulted in the EXEC file.

Messages are created each time the process cycles. The number of instances of

..ARR in the external Process Reports indicates the number of different

message types generated during the simulation run.

Communication Process - External Process CP

The primary function of the communication process is to control the

communication between nodes. A communication process may start jobs on a

processing unit which simulates the activity of transferring, switching and

receiving messages. Statistics on these external processes are displayed on

the External Process Report. The number of instances for the CP processes

should be one. These processes are started only once and continue to operate

for the full duration of the simulation.

Tne communication process activates and controls these jobs:

0 JOB SM jOB AK

e JOB RM JOB PA

* JOB HT 0 JOB PC

9 JOB TH e JOB RC

e JOB HN @ JOB RD

e JOB NH

00321 5-34

A description of these jobs is provided.

OB S;A - Message Transferring

JOB SM simulates the activity of transfering a message from a current site to

the next node. It accomplishes this task by filing the pointer to the message

(MSG/ data in the switching nodes nessage file (..MGFILE). The JOB concludes

by signaling the switching node. This notifies the communication process that

it has a message wvaiting for it. The total number of instances for a unique

JOB SM can be interpreted as the total number of messages transmitted from one

JOB RM - Retransmit Message

JOB kM simulates the retransmission of a message if an acknowledgement has not

been received within a user specified time. The number of instances of Job RM

indicates the number of packets sent from a particular node which were

rejected by an adjacent node.

JOB AK - Acknowledgement

JOB AK is responsible for sending acknowledgements for accepted packets. This

job is only operational when a "1" is indicated for "ACK" in the EXEC file.

The number of instances of JOB AK indicates the number of packets accepted by

3 particula- node.

JOB PA - Packet Assembly

JOB PA simulates the reassembly of a message at the NIP. Tne number of

instances of JOB PA indicates the total number of completely reassembled

messages at a host node.

JOB PC - Post Communication

JOB PC is the timing mechanism that schedules the retransmit command for all

unacknowledged packets. The user specifies the frequency in which this job is

performea by selecting the maximum response time tolerable for all

acknowledgements at the host (TMH) and switching nodes (TMCI. The number of

instances of this job indicates how many times a particular node assessed the

status of its outgoing packets.

00321 5-35

JOB TH- Terminal to Host Transmission

Tnis job simulates the transfering of a message from a host site's terminal to

the host processor. Tasks accomplished by this job are:

* Sending appropriate bytes from a randomly selected terminal via a

randomly selected channel,

* Message type is changed from a new message (Type I) to 'received at

Host', (Type 2),

* Message is then filed in current node's message file,

* CP is signaled.

Number of unique occurances of this joo can be interpreted as total messages

received at that host from its users.

JOB HN- Host to NIP Transfer

This job increases simulation time to model the overhead incurred by the HOST

CPU when relaying a message to its Network Interface Processor (NIP). JOB HN
accomplishes this by changing message type to received at NIP' (Type 3),

filing the message in its message file and signaling CP. Total number of
instances for this job for any given node represents total number of messages

entered into network.

JOB NH- NIP to Host Transfer

This job incurrs simulation time to represent overhead when messages flow from

a Host site NIP to its Host CPU. Total number of instances for that node

represent number of messages received by that node from the network.

JOB HT - Host to Terminal Transfer

This job simulates the transferring of a message from a Host CPU to its

terminals. It accomplishes this by sending appropriate bytes via a randomly

selected channel to a randomly selected terminal. Total number of instances

for this job for any given node represents communication activity between CPU

and its terminals.

00321 5-36

jOB RC - Reroute for Congestion

This job simulates tne selection of 3 new virtual circuit ,ren the next noce

in the :urrent virtual circuit is out of buffer space. Total number of

instances represents netvork rerouting cue to traffic overlcad.

JOB PD - Reroute because of Nodal Failure

Tnis j,:b simulates the selection of a new virtual circuit when the next node

in tre cirrent virtual circuit is ;isconnected from tne networK. Total number

of inszances represents network rerouting due to nodal failures.

-.- e,, xterna processes were aoced to the k/A model to si ula-e .ne fai J-e

of nodal sites. They are:

EXTERNmL PROCESS - RECOV

Contro;s the time interval a node is unavailable to the network. When the

External Process RECOV is signalled after the duration of tne crash, the

node's status is toggled to I (up).

EXTERNAL PROCESS - CRASH

Controls the time interval between failures for a network node. After a time

inte,-val has elapsed, the External Process CRASH is signaled and the node's

stats is toggled to 0 (Down).

CRASH RECOV CRASH

STATUS = 1 STATUS : 0 STATUS = I STATUS 0

/A / AA

TI T2 T3 T4

Figure 5.3.4-1 External Process CRASH and RECOV Relationship

Figure 5.3.4-1 shows the relationship between R/A model's external process

CRASH and external process RECOV (see 5.3.4.2 Nodal Failures).

.00321 5-37

From a functional perspective, three new mechanism were added to the C/P model

to implement the R/A model. The three mechanisms were:

1 Transmission Errors

2 Nodal Failures

3 Adaptive Routing

The following sections will describe each mechanism in detail.

5.3.4.1 Transmission Errors

ransmission errors are modeled in the Reltaoility/Availability Model by

inputting a user specified reject factor. The user can specify a reject

factor of less than 1.0 (e.g., .20 for 20%); its complement would of course,

be the site's reliability factor. If no reject factor (REJ) is specified in

the EAEC file, the model will default REj to 0.

The functional logic flow for rejects is displayed in Figure 5.3.4.1-1. If 3

message arrives at a node other then the originator, and it is not an

acknowledgement (type = 7) and not an intranodal message (type = 1, 2, 3 or

8), then the message is tested for rejection. The rejection test involves a

uniform random number in the open interval (0,1) being compared to the reject

factor. When a message is rejected by a receiving node, no acknowledgement

will be sent. Once the maximum time out (TMO) has been exceeded, the sending

node will retransmit the message that was rejected.

5.3.4.2 Nodal Failures

One of the major differences between the Communication Protocol Model and the

Reliaoility/Availability Model is the simulation of a nodal failure. A

network node becomes unavailable by a line outage, mechanical failure or

because it has temporarily used all of its buffer space. Two new attributes

for eacn node were added:

STATUS - 0 - down

1 - up

VC.NUM - Number of virtual circuits already allocated

00321 5-38

NEW MESSAGE TYPE NOTFAS
INTRA NODAL MESSAGE
OR AN ACKNOWLEDGEMENT

GENERATE RANDOM
NUMBER BETW~EEN
O AND 1.0

RANDOM NUMBER
LESS THAN OR FALSE ACKNOWLEDGE
EQUAL TO REJECT MESSAGE
FACTOR? AND PROCESS

TRUE

Figure 5.3.4.1-1 Transmission Error Logic

2A1 30/18 A

00321 5-39

The following user parameters were added to the ExEC file:

MTC - mean time between crashes

DMS - distribution for MTC

MOT - mean down time

DM0 - distribution for MDT

Distribution options are:

- No clange from EXEC file

specified value

2 - Uniform distribution

3 - Exponential distribution

For each node an interval (MTC) between crashes will be computed; when that

simulation time has elapsed, the status variable will be set to represent a

downed site. Another computation using MDT will result in the interval

representing the duration of the crash. After the down time has elapsed, the

status value will be toggled to represent up. As each virtual circuit is

3llocateG, the number of virtual circuits for any node on the virtual circuit

is ircrementea. As a virtual circuit is released, each node on that virtual

circuit has its variable VC.NUM decremented.

5.3.4.3 Adaptive Routing

In the Reliability/Availablity Model a message has a choice of paths that can

be travelled to a target node. The user specifies the possible multiple paths

that exist via the route file. When a virtual circuit is to be chosen, the VC

request routine will build a virtual circuit log one node at a time. Each

node added to a virtual circuit will be chosen from alternatives using the

following two step criteria:

00321 5-40

BUILD VC ONE
NODE AT TIME4
GET POSSIBLE 1
NEXT NODES

ELIMINATE ALL I
NOCES DOWN

ELIMINATE ALL 1
NODES AT MAX.VC

SELECT FROM
REMAINING NODES
THE LEAST BUSY
NODE

ADD SELECTED

NODE TO VIRTUAL
CIRCUIT4

FALSE SELECTED NODE
THE MESSAGE
TARGET NODE

4 TRUE

SVJ COMPLETED

Figure 5.3.4.3-1 Adaptive Routing Functional Flow

00321 2A130/17A 5-41

1) Eliminate from possible next nodes any nodes down and any nodes

already at maximum virtual circuits.

2) Select the node with the least number of virtual circuits allocated.

The second step minimizes network congestion, a similar approach is used in

routine VC.NODE when a node in the virtual circuit fails after the messdge nas

left the originating node. Thus, the new virtual circuit retains nodes

already traversed and appends nodes that are up and least busy. If no valid

alternate virtual circuit is possible, the message will De buffered until a

virtual circuit becomes available. The function flow chart for this adaptive

routing is presented in Figure 5.3.4.3-1

5.3.5 SIMULATION OUTPUT

The DSS Simulato, produces two output reports:

9 Message Statistics

* ECSS Standard Reports

(See Appendix E for examples

For a description of each report contained in this section refer to the User's

Manual. For a complete sample of these reports refer to Appendix E.

5.4 DISTRIBUTED DATABASE MODEL

The DB model provides a tool for the system designer to model and study a

proposed Distributed Database Management System (DDMS) during its planning

stages. Availability of such a tool is important because performance

characteristics of a DDBM System is dependent on many factors. Simulation

models can help in the analyses that are necessary to design a cost-effective

system that meets certain performance requirements. The DB Model includes

these components:

* Transaction Updates/Modifications

• Transaction Retrievals

00321 5-42

s Number of Lockups

* Concurrency Control

* File Allocation

* Transaction Rates

* Transmission Overhead

* Processor Utilization

e Buffer Utilization

* Average Queue Lengths at File Servers

s Delays due to Blocking/Synchronization

* Transaction Throughput

Transaction Response Time

The functional characteristics of the model are such that tne user may vary a

wide range of DDBM System parameters and study the effects in terms of the

resource utilization (channels, processors, buffers, transmission paths) and

the net user effect (throughputs, response times).

The)B model will oe explained by first describing the Distributed Database

Management System Architecture used as a reference to build the three

submodels that compose the D8 mode). Each submodel will then be described in

detail. Finally, the DB model implementation using DSS will be covered.

5.4.1 DISTRIBUTED DATABASE MANAGEMENT SYSTEM ARCHITECTURE

A Distributed Database Management System (DDBMS) may be viewed as a collection

of host sites connected by a communication sub-network. Each site of a DUBMS

contains one or both of the following software modules:

* A Transaction Manager (TM) that supervises transactions between users

and the DOBMS.

a A Data Manager (DM) that manages the stored Database.

Thus, a DDBMS contains four elements: transactions, TMs, DMs ane data (Figure

5.4.1-1). A user's transactions communicate with TMs which communicate with

DMs and DMs manage the data. TMs cannot communicate with other TMs nor can

DMs communicate with other fMs. [BERN 81].

00321 5-43

LAJ

Z::

5-44-

This model of a 001S assumes perfectly reliable communication links between

nodes. In order to make the model more realistic the DB Model used the

services provided by the Reliability/Availability (R/A) and the Communication

Protocol (CP) Models. In this section, however, we will be concerned

primarily with the model elements that are specific to a DODBMS. Models of

nodal and transmission failures as well as the X.25 interface model are

described in preceeding sections (See 5.1 and 5.2).

The DR model consists of three sub-models.

The three sub models are:

* Database Topology submodel (OT) which simulates distribution of data

across a computer network (See 4.4.1.1).

s Transaction Manager submodel (TM) which simulates the supervision of

transactions by the TM module of a DDBMS (See 4.4.1.2).

* Data Manager submodel (DM) which simulates the actual management of

stored data by a DM (See 4.4.1.3).

As stated before, the Communication Protocol Mechanisms were utilized to

transport data and transactions across a packet-switched network. The

Reliability/Availability Model's mechanisms of transmission errors and nodal

failures were utilized to simulate the real world constraints imposed on any

Distributed Database System.

Each of the three submodels will now be described in detail in the following

sections.

5.4.1.1 Database Topology (DT) SubModel

Tne Dataoase submodel contains three major elements

I) File allocation - Which allows the user to map logical files to

network nodes.

2) Data granularity - Which provides the user with the flexability to

define the level of abstraction. Data can be modeled as an entire

database, files, records or even fields within a record.

00321 5-45

3) Physical and Logical Database units - Both logical and physical

database units can be defined by the modeller. A logical database

unit can be declared as residing at only one node (centr3lized) or

replicated at several nodes (decentralized). A physical database unit

can be declared as physically locatea on a particular disk within a

nodal site.

5.4.1.2 Transaction Manager (TM) SubModel

A transaction is defined as a sequence of reads and writes (R/W) issued by a

database user. The idea of a message used in the previous models

(Communication Protocol, Reliability/Availability) has been expanded :o

incorporate the more general notion of a transaction. Just as parameters were

available to declare the dimensions of a nessage, the following parameters are

available to define transactions:

* Mean transaction lengtn - the average number of R/W operators.

* Read/Write Ratio - allows the analyst to declare the proportion of

reads to writes. In a distributed database, a read will only acce',s

one copy of a file with preference for the local copy (if one exists).

A write to any particular file must be exploded to the number

necessary to update all file copies existing in a distributed database.

e Originating node - this is the node from which transactions are

generated and can be specified by the user.

The software module of a DDBMS that supervises interactions between

transactions and the DDBMS is called a Transaction Manager (TM). In the

Distributed Database Model an external process named TM is used to model the

Transaction Manager. Figure 5.4.1.2-1 is the functional flow chart for the TM

external Process. When a message (Type 1) is received by a host from a

terminal, external process TM is started. External process TM will perform

the following functions:

00321 5-46

TYPE 1 MESSAGE
ARRIVES

GENEPATE R/W
OPERATIONS

FOR ALL WRITE GENER-
ATE DUPLICATE FOR

MtAY BE REPEATED EACH NODE CONTAINING

A COPY OF THAT FILE

ASSIGN TARGET NODE I
USING DT.FILE

ASSIGN A GLOBAL
TIMESTAMP AND FILE
IN CURRENT NODE'S
MESSAGE FILE

W AIT FOR SIGNAL
FROM RETURNING
R/W OPERATION

IF REJECT, RESTART REJECTED
TRANSACTION

NO ALL R/W OPERATIONS 1
COMPLETED?]

SEND TX COMPLETION
MESSAGE TO THE
ORIGINATING TERMINAL

Figure 5.4.1.2-1 Functional Flow Chart Transaction Manager
00321 5-47

2A160/8B

a Generate tne appropriate read ana write operations as new messages

with target files.

0 If a write was generated, duplicates will be created for each noie

that contains a copy of that target file.

* A database directory lookup will be performed using the declarations

from the DT File to obtain the nodal location and disk number for ean
file. On a read operation, the local file will be used if one exists.

* Each R/W operation is assigned a global timestamp to be used fr

timestamp ordering.

* Each R/W operation message is filea in the current node's message file.
* The TM then tracks all R/W operations created and upon their return,

checks for any rejects. If any R/W operation was rejected, the TM

will restart the transaction.

* Upon receipt of all R/W operations originally dispatched, the TM will

start JOB HT which signals the originating terminal that the

transaction was completed or restarted.

5.4.1.3 Database Manager (DM) SubModel

The Database Manager (DM) is the DDBMS software module that manages the stored

database. TMs issue commands to DMs specifying stored database units to be
read or written. In a distributed database environment, DMs may receive

commands from many TMs (See Figure 5.4.1-1). Because DMs may receive

operations from two or more TMs against the same database unit, conflicts may

occur. For example, if two different TMs issued simultaneous write operatons

against the same database item, a subsequent read operation could result in an

inconsistency at different sites depending on the sequence of the write

operations.

Concurrency control is the activity of preventing interference among

transactions that simultaneously access a shared database. It is tne
concurrency control mechanism that must resolve the conflict between aifferent

TM operations against the same data item. The concurrency control algoritnm

implemented in the DB model is Timestamp Ordering (T/0).

00321 5-48

TPe functional logic flow for the T/O is displayed in Figure 5.4.1.3-1.

The major functions that a T/O scheduler performs are listed below.

1) TMs assign a globally unique timestamp for eacn transaction.

2) TMs attach the transaction timestamp to each of its R/W operations.

3) DMs must process conflicting operations in timestamp order.

4) If an operation arrives 'late' with a timestamp less than the

timestamp of the last successful operation against that data item; the

operation is rejected by DM. This rejection occurs before the actual

storea data has been impacted to avoid the complexity of rollback.

5) The TM that originated the operation will audit each returning

operation. If any operation was rejected by a DM, the TM will restart

the transaction [BERN 81].

T/O is a type of schedule control. Schedulers can delay or reject

transactons. In a distributed environment schedulers can be centrally located

or distrituted throughout the network. In the DB model the T/O scheduler was

implemented as distributed control residing at each host site and performed by

OMs.

00321 5-49

UPATE TIME STAMP OF S X DIE
LATX PROCESS FORSFLI

THIS FILE AT THIS NODE

PROCESS TX

2AI60/74

Figure 5.4.3-1 Functional LOGIC Flow for timestaop Ordering (T/0) Scriedular

00321 5-50

5.4.2 LAYERED APPROACH TO BUILDING DATABASE MODEL

fhe CP and R/A models formed the ouilding blocks of the DB model. Since the

DB model's domain resided at the application level (layer 7) of the ISO

Reference Model (see 5.1), existing R/A and CP modules corresponding to lower

ISO levels were utilized without change. The CP model's virtual circuits

provided the point-to-point connection for transactions to access remote files

while the R/A model's mechanisms for nodal failures, transmission errors and

adaptive routing provide a more realistic setting for tne Distributed Database

Model.

5.4.3 MODEL ARCHITECTURE

The DB Model consists of two Model Types:

* A model to describe the behavior of the host sites and

e A model to describe the behavior of switching nodes.

5.4.3.1 Host Sites

The function of the host site is to generate new messages and destroy messages

sent from other host nodes. Each host site consists of:

* A host processor

* A Network Interface Processor (NIP)

* A variable number of internodal transmission devices

s 2 Channels

e 1 Buffer

v 10 Terminals

* 10 Disk Drives

The host sites in the Detail Models differ from host sites in HLM Models

(Section 4) by allowing hosts to perform both host functions and switching

functions. Thus, one model (Model I - Host Sites) would have been sufficieli.

to simulate the different complexity levels, however two models - Host and

Switch - were retained. The Switcning Model is available for simulating nodes

performing switching functions exclusively.

00321 5-51

Figure 5.4.3.1-1 graphicilly protrays tie Host Site Configuration.

Taole 5.4.3.1-1 provides a summary for the System Description for the Ho~t

Sites.

O CHANNELS

INTERNODALO -[" . TRANSMISSION

101/0 INCOMING &

I/C PROCESSOR N IP O ING

EVICES-MESSAGE

TWO -

0l

Figure 5.4.3.1-1 Host Site Configuration

00321 5-52

Table 5.4.3.1-1 Host Site Configuration

DEVICE NAME ECSS DEVICE TYPE PERFORMANCE SPECIFICATIONS

DO1A.CPU EXECUTIONS ANDS 500,000 INSTRUCTIONS
(Processor) JOB STORE DEVICE /SEC

DOA.NIP NETWORK INPUT 500,000 INSTRUCTIONS
(Network Interface PROCESSOR EXECUTES /SEC
Processor) AND JOB STORE DEVICES

TOIA.MO! (Internodal TRANSMISSION DEVICE 20,000 BYTES/SEC
Transmission Device)

DOIB.CHANNELS TRANSMISSION DEVICE 20,000 BYTES/SEC
(Channel)

DO1D.BUF (Buffer) STORAGE DEVICE 10,000 BYTES

DOIC.TERMINAL I/O DEVICE 9600 BYTES/SEC
(Terminal)

PO1A.T.PATH PATH CONNECT DOIB.CHANNELS
(Internodal Path) TO DOIC TERMINALS

00321 5-53

5.4.3.2 Switching Nodes

The function of the switching node is to accept and forward messages along the

network. Each switching node consists of:

* A Processor

e A variable number of Internoaal Transmission devices

* A Buffer

The Processor ana Buffer declarations are providea in the DSS Switching

oIoel. Tie specifications for the Internodal Transmission devices are defined

in the TP.FILE. Figure 5.4.3.2-1 displays the Switching Node

Configuration. Table 5.4.3.2-1 provides a summary for the System Description

Section for the switching node.

BUFFER

ARRIVING PRCSO OUTGOIN

MESSAGE IU ESIG

2 'INTERNODAL
A3i6 TRANSM ISS ION

DEV ICES

Figure 5.4.3.2-1 Switching Node Configuration (Dedicated Option)

00321 5-54

Table 5.4.3.2-I System Description for Switching Node

DEVICE DEVICE ECSS

NAME TYPE PERFORMANCE

SPECIFICATIONS

DO2A.CPU EXECUTION AND 500,000 INSTRUCTIONS/SEC

(Processor) JOB STORE DEVICE

T02A.,%O1 (Internodal TRANSMISSION 30,000 BYTES/SEC

Transmission Device) DEVICES

DO2B.BUF STORAGE 10,000 BYTES

(Buffer) DEVICE

POlA.NOI.NO2 PATH CONNECTS TOlA.MOl

(Internodal Path) TO TO2A.MO2

00321 5-55

5.4.4 FUNCTIONAL LOGIC FLOW

Tmo major external processes provide the control functions (e.g., message

generation and starting computer jobs) for the DB model. They are:

* ..ARR process (message generation)

e CP Process (communication process - controlling computer jobs)

A brief description of each process is provideo:

Aessige Generation - External Process ..ARR

The ..ARR process provides the vehicle for generating every message introductd

into the network. This process simply cycles according to the interarrivil

rate (MIT) established in the MESS file or defaulted in the EXEC file.

Messages are created each time the process cycles. The number of instances of

..ARR in the External Process Reports indicates the number of different

message types generated during the simulation run.

Communication Process - External Process CP

The primary function of the communication process is to control the

communication between nodes. A communication process may start jobs on a

processing unit which simulates the activity of transferring, switching and

receiving messages. Statistics on tnese external processes are displayed)n

the External Process Report. The number of instances for the CP processes

should be one. These processes are started only once and continue to operate

for the full duration of the simulation.

The communication process activates and controls these jobs:

0 JOB SM # JOB AK

* JOB RM s JOB PA

* JOB HT • JOB PC

* JOB TH e JOB RC

* JOB HN e JOB RD

* JOd NH * JOB SS

00321 5-56

A description of these jobs is provided.

JOB SM - Message Transferring

JOB SM simulates the activity of transfering a message from a current site to

the next node. It accomplishes this task by filing the pointer to the message

(MSG) data in the switching nodes message file (..MGFILE). The JOB concludes

by signaling the switching node. This notifies the communication process that

it has a message waiting for it. The total number of instances for a unique

JOB SM can be interpreted as the total number of messages transmitted from one

site to another.

JOB RM - Retransmit Message

JOB RM simulates the retransmission of a message if an acknowledgement has not

been received within a user specified time. The number of instances of JOB RM

indicates the number of packets sent from a particular node which were

rejected by an adjacent node.

JOB AK- Acknowledgement

JOB AK is responsible for sending acknowledgements for accepted packets. This

job is only operational when a "I' is indicated for "ACK" in the EXEC file.

The number of instances of JOB AK indicates the number of packets accepted by

a particular node.

JOB PA - Packet Assembly

JOB PA simulates the reassembly of a message at the NIP. The number of

instance of JOB PA indicates the total number of completely reassembled

messages at a host node.

JOB PC - Post Communication

JOB PC is the timing mechanism that schedules the retransmit command for all

unacknowledged packets. The user specifies tne frequency in which this job is

performed by selecting the maximum response time tolerable for all

acknowledgements at the host (TMH) and switching nodes (TMC). The number of

instances of this job indicates how many times a particular node assessed the

status of its outgoing packets.

00321 5-57

JOB TH- Terminal to Host Transmission

This job simulateF the transfering of a message from a host site's terminal to

the Host processor. Tasks accomplished by this job are:

9 Sending appropriate bytes from a randomly selected terminal via a

randomly selected channel,

s Message type is changed from a new message (Type 1) to 'received at

Host', (Type 2),

* Message is then filed in current node's message file,

* CP is signaled.

The number of unique occurances of this job can be interpreted as total

messages received at that host from its users.

JOB HN- Host to NIP Transfer

This job increases simulation time to model the overhead incurred by the HOST

CPU when relaying a message to its Network Interface Processor (NIP). JOB HN

accomplishes this by changing message type to 'received at NIP' (Type 3),
filing the message in its message file and signaling CP. Total number of

instances for this job for any given node, represents total number of messages

entered into network.

JOB NH- NIP to Host Transfer

This job incurs simulation time to represent overhead when messages flow from

a Host Site NIP to its Host CPU. Total number of instances for that node

represent number of messages received by that node from the network.

JOB HT - Host to Terminal Transfer

This job simulates the transferring of a message from a Host CPU to its

terminals. It accomplishes this by sending appropriate bytes via a randomly

selected channel to a randomly selected terminal. Total number of instances

for this job for any given node represents communication activity between CPU

and its terminals.

00321 5-58

JOB RC - Reroute for Congestion

This job simulates the selection of a new virtual circuit when the next node

in the currect virtual circuit is out of buffer space. Total number of

instances represents network rerouting due to traffic overload.

JOB RD - Reroute because of Nodal Failure

This job simulates the selection of a new virtual circuit when the next node

in the current virtual circuit is disconnected from the network. Total number

of instances represents network rerouting due to nodal failures.

JOB SS - Staggered Signal

This job staggers the signal to the External Process TM (Transaction Manager)

to prevent simultaneous (occurring in the same simulation time segment)

signals from being interpreted as the same signal.

EXTERNAL PROCESS - RECOV

Controls the time interval a node is unavailable to the network. When the

External Process RECOV is signalled after the duration of the crash, the
node's status is toggled to I (up).

EXTERNAL PROCESS - CRASH

Controls the time interval between failures for a network node. After a time
interval has elapsed, the External Process Crash is signaled and the node's

status is toggled to 0 (Down).

CRASH RECOV CRASH
STATUS a I STATUS 0 STATUS = 1 STATUS = 0

A A A A

TI T2 T3 T4

Figure 5.4.4-1 External Process CRASH and RECOV Relationship

Figure 5.4.4-1 shows the relationship between DB nodel's external process

CRASH and external process RECOV (See 5.3.4.2 R/A's Nodal Failures).

00321 5-59

-. 4- 4 -]

One new External Process was added to the 08.

External Process TM - Transaction Manager

This External Process supervises the interaction between transactions and the
Distributed Database Management System (DDBMS). Refer to Section 5.4.1.2 for

a detailed description of TM.

Section 5.4.1 explained how the Distributed Database Management System

Architecture was used as a framework to implement the DB model. Each of the
three submodels DT, TM and JM, were describec. Tnis section will cover the

functional logic flow of the TM to OM interactions. When a transaction

arrives at a host, the TM explodes the transaction into individual read and

write operations. Each read or write operation is routed to either its host
application level or a remote host's application level aepending on file

location. A read will always be routed to the current node's application

level if the target file exists at that site. Writes are duplicated for every

node at which the target file is located (See 5.4.1.2). Upon arrival at the

appropriate application site's level, the DM checks the operation's timestamp

against the timestamp of the last successful operation to access the target
file. If the operation is out-of-sequence, the DM rejects the operation and

reroutes the operation back to the originating TM. Otherwise, the OM
processes the operation, updates the file's last access timestamp and returns

the operation to originating TM as successful (See 5.4.1.3).

As the TM receives the returning operation, the TM checks for rejections. If

any operation was rejected by a DM, the entire transaction with its original

R/W operations is restarted. Once all transactions are received, the TM sends

a message to the originating terminal, appropriately advising "transaction

completed" or "transaction restarted". Figure 5.4.4-2 displays the Functional

Logic flow for the TM-DM interactions.

00321 5-60

TRANSACT ION
ARR IVES

TM CREATES
R/W
OPERATIONS

OPERATIONFAS
FOR LOCAL

APPLICATONPERATIOT

Figure 5.. O ucin LgcFlo o D AP InATION s

00321N NOD-61E O
REMOTE NOD

5.4.5 SIMULATION OUTPUT

Tne DSS Simulator produces two classes of output reports:

* Transaction Statistics

* ECSS Standard Reports

(See Appendix F for examples

For a description of each report contained in this section refer to Section

2.4 of the User's Manual. For a complete sample of these reports refer to

x F. A La-le of these reports follows.

00321 5-62

0II

01 I-- I I-O

MI I I

.1 * --I 00000

I I - I

0 I I-LA _.o 1o 0- 5 - ,- --©, - .

0 * I

I 3I -

t I
I L I

g
I

00321 5-63

. I " " - i - ' -. . . .I

6 xij

3E~ i. -

! - - U
U uJ

S00321
5-64

U..U

CKC

"~ Pt 0 I? M.MP

00

=~~ uNW

tn C> -0 0 00CW

CtC'

0 I.,0 E'U %

5 ~ c 0 (0 O V tt' O
x 1

0- C 0 0000

o0 0

00J

.r 0 0I

CDVC

0032 5-65f0 C O CS - ~ 0 e

=r4

0 - - 00

C! C,,

-- 0 0 -

-- 0

z

,J00321 5-66

[L

, ,, , , F I i~ ~ii II | II li i° ...

REFERENCES

Lr6ERN 81] Bernstein, P.A., Golaman, N., Concurrenc/ Control in Distributed

Database Systems, ACM Conputing Surveys, Vol. 13, No. 2, June 1932, pp.

185-221.

[FEDE 76] Federal Computer Performance Evaluation and Simulation Center,

Washington D.C., User's Guide - ECSS 11, Extended Statistics and Trace

Features, Ver. 1.1, August 1976.

LFOLT 80] Folts, H.C., X.25 Transaction - Oriented Features - Datagram ano

Fast Select, IEEE Transactions on Communications, Vol. Com-28, No. 4, April

1980, pp. 496-499.

[GREE 803 Green, P., An Introduction to Network Architectures and Protocols,

IEEE Transactions on Communications, Vol. Com-28, No. 4, April 1980, pp.

413-420.

[HUTC 73] Hutchinson, G.K., The use of Micro Level Simulatio-i in the Design

of a Computer Supervisory System, Proc. ACM Symp. on the Simulation of

Computer Systems, June 1973, pp. 243-254.

[KIVI 73] Kiviat, P.J., Markowitz, H.M., Villanueva, R., Simstcript 11.5

Programming Language, CACI, Los Angeles CA, 1973.

[KOSY 75] Kosy, D.W., The ECSS 11 Language for Simulating Computer Systems,

Rand, Santa Monica CA, 1975.

[MACU 67] MacDougall, M.H., Simulation of an ECS-Based Operating System,

SJCC, 1967, pp. 735-741.

[MACD 73] AacDougall, M.H., MacAlpine, J.S., Computer Simulation with ASPOL,

Proc. Sym. on Simulation of Computer Systems, June 19-20, 1973, p. 103.

00321 R-1 I
i

[PRIC 77] Price, W.L., Data Network Simulation: Experiments at the National

Physical Laboratory, 1968-1976, Computer Networ<s, Vol. 1, No. 4, May 1977.

[RUSS 82] Russell, E.G., Builaing Simulation Models with Simscript 11.5

(Preliminary Printing), CACI Inc., Los Angeles, 1982.

[RYBC 80] Rybczynski, A., X.25 Interface and End-to-End Virtual Circuit

Service Characteristics, IEEE Transactions on Communications, Vol. Com-28, No.

4, April 1980, pp. 500-510.

[SCHN 78] Scnneider, G.M., A Modeling Package for Simulation of Computer

Networks, Simulation, Dec. 1978, pp. 131-192.

[SEAM 69] Seaman, P.H., Soucy, R.C., Simulating Operating Systems, IBM

Systems Journal, Vol. 8, No. 4, 1969, pp. 264-279.

[SHOE 78] Shoemaker, S., Editor, Computer Networks and Simulation, North

Holland, New York, Sept. 1978.

[TOBA 80] Tobagi, F.A., Multiaccess Protocols in Packet Communication

Systems, IEEE Trans. on Comm., Vol. Com-28, No. 4, April 1980, pp. 468-488.

LUNGE 78] Unger, W., Programming languages for Computer System Simulation,

Simulation, April 1978, pp. 101-110

00321 R-2

IT~

Z.V~

__ , Z SA
4-- "-

t"f- Z

41

