AD-A134 699

UNCUASSIFIED

REPORT ON A KNOWLEDGE BASED SOFTWARE ASSISIANT(U)

KESTREL INST PALO ALTO CA C GREEN
RADC-TR-83-195 F30602-81-C-0206

ET AL.

AUG 8
F/G 6/4

!
10 & g
== = k& |22
=)
[~
= =

iz i i

=i

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAY OF STANDARDS -1963 - A

A

INE PLE CopPY

\

~

AD-AI3y 692

 Kestrel Institute

RADC-TR-83-193
Finel Tochnlcal Report
Avgust 1963 .

SOFTWARE ASSISTANT

C. Green, D. Luckham, R, Balzer, 7. Cheatham and C. Rich

PUiLony
&mwm]
A

ROME Ammommam
~ Alr Porce Systems Command
Gﬂﬂ!u Alr Force Inlo NY wm

88 1115 011

& (

mn—sa-xes has b«u mm ud is mtoud for puuteutm- :

.y

wnom: [l Foobze -

NORTHRUP FOWLER II1I
Project Engineer

#mmcmnn:%p%/‘

JOBN P. HUSS
Acting Chief, Plans Office

If your address has changed or 1f you wish to be removed fmmm
mailing list, or if the addressees is no longer employed by your o
please notify RADC (COES ') Griffiss AFB NY 13441, Thia wili mm ﬂ 2
maintaining & current nuu,n. list. . _ .

Do mot return copies of this Teport ualess m;rwmu mww o
on & mm.c document requires that ic h nemd

1

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Dare Entered)

REPORT DOCUMENTATION PAGE A1 U L
. REPORT NUMBER 2. GOVY ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER
RADC-TR-83-195 0-A13Y LT
4. TITLE (end Subtitle) S. TYPE QF REPORT & PERIOD COVERED
Final Technical Report
REPORT ON A KNOWLEDGE-BASED SOFTWARE Jun 82 - Jun 83
ASSISTANT 4. PERFORMING OG. REPORT NUMBER
N/A
7. AUTHOR(Y) 8. CONTRACY OR GRANT NUMBER(s)
C. Green T. Cheatham F30602-81-C-0206
D. Luckham C. Rich
| skg;::oz%?i;os::c;::é:ou NAME AND ADDRESS 10. ::ginAA.‘o!RLxEns:‘TT'Npuan?i'ESsY' TASK
1801 Page Mill Road 22102F/62702F
Palo Alto CA 94304 8119P5
1. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Rome Air Development Center (COES) August 1983
Criffiss AFB NY 13441 é’(‘) NUMBER OF PAGES
4. MONITORING AGENCY NAME & ADORESS({! ditferent {rom Controliing Office) 15. SECURITY CLASS. (of this report)
Same UNCLASSIFIED
18Sa. DECLASSIFICATION/ DOWNGRADING
N/ASCHEDULE

16. DISTRIBUTION STATEMENT (of thia Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the sbatract entersd In Block 20, i different from Report)

Same

18. SUPPLEMENTARY NOTES

RADC Project Engineer: WNorthrup Fowler III (COES)

This effort was funded jointly by the Rome Air Development Center
and the Air Force Office of Scientific Research

19. KEY WORDS (Continue on reverse side if necessary and Identity by dlock number)

Artificial Intelligence Knowledge-Based Programming
Knowledge-Based Systems Automatic Programming
Software Production Expert Systems

Software Maintenance Software Assistant

Software Environments
2C. ABSTRACT (Continue on reverse aide if necessary and Identify by block number)
PThis report presents a knowledge-based, life-cycle paradigm for the

development, evolution, and maintenance of large software projects. To
resolve current software development and maintenance problems, this
paradigm introduces a fundamental change in the software life cycle -
maintenance and evolution occur by modifying the specifications and then
rederiving the implementation rather than attempting to directly modify
the optimized implementation. Since the implementation will be rederived ﬂ

DD 553", 1473 eoimion oF 1 nov 6815 ossoLETE UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

~

UNCLASSIFIED

SECURITY CLASSIPFICATION OF THIS PAGE(When Date Entered) N

i

for each change, this process must be automated to increase its
reliability and reduce its costs. Basing the new paradigm on the
formalization and machine capture of all software decisions allows)
knowledge-based reasoning to assist with these decisions. ~YThie-report J{ af
describes a knowledge-based software assistant (KBSA) that provides for
the capture of, and reasoning about, software activities to support this
new paradigm. This KBSA will provide a corporate memory of the develop-
ment history and act throughout the life cycle as a knowledgeable software
assistant to the human involved (e.g., the developers, maintainers, project
managers, and end-users), In this paradigm, software activities, including
definition, management, and validation will be carried out primarily at
the specification and requirements level, not the implementation level.
The transformation from requirements to specifications to implementations
will be carried out with automated, knowledge-based assistance. -,The
report presents descriptions for several of the facets (areas of expertise)
of the software assistant including requirements, specification validation,
performance analysis, development, testing, documentations, and project
management. This report also presents a plan for the development of the
KBSA, along with a description of the necessary supporting technology._
This new paradigm will dramatically improve productivity, reliability, ™~
adaptability, and functionality in software systems.

. [P ’
Al d e
: e
i . #
il
. -
PR DN M
Avel LAY |
- -
A0 Vo

SECURITY CLASSIFICATION OF Tu' D AGL ‘When Date rre-

.. ot s Mbaman

Contents L 1
Contents

Page

1 EXECUTIVE SUMMARY i it i i 1

1.1 Objectives« i i i i i e e e e 1

1.2 The Problem. i it i e e e 1

1.3 Solution: A New Computer-Assisted Paradigm 2

1.4 Areas of Assistance, 3

15 Usage o o o i e e e e e e e e e e 3

1.6 The DevelopmentPlan 4

2 PROBLEMS ANDSOLUTIONS 8

2.1 Statecment of the Problem 8

2.2 Proposed Solution. L L0, 9
2.2.1 The Basis for a New Knowledge-Based Software

Paradigm. e e e e 9

2.2.2 Major Changes in Life-Cycle Phases 10

2.2.3 An Automated Assistant 15

3 KBSA INTERNAL STRUCTURE, 17

3.1 Activity Coordination. 19

3.2 Project Management and Documentation 20

3.2.1 Project Management Facet. 21

3.2.2 Documentation 0000w 23

33 KBSA Facets. e e 25

3.3.1 Requirements 25

3.3.2 Specification Validation 30

3.3.3 Development. L. 32

3.3.4 Performance 35

335 Testing« . . Lo e 38

3.3.6 Reusability, Functional Compatibility, and Portability. . 40

34 KBSA Support System 42

4 SUPPORTING TECHNOLOGY AREAS. 45

4.1 Wide-Spectrumn Languages 45

4.1.1 Formal Semanties. 46

4.1.2 Advanced Systems Analysis Tools. 46

4.2 Geneceral Inferential Systems, 47

4.3 Domain-Specific Inferential Systems 47

4.3.1 Formal Semantic Models. 18

4.3.2 Knowledge Representation and Management 18

4.3.3 Speccialized Inference Systems 49

4.4 Integration Techmnology, e 49

4.4.1 KBSA Support System Technology. 50

4.4.2 Interfaces and Standards 50

5 PROJECT PLAN o e e e e e s s e e e 51

51 Qutline e e 52

5.2 Tasks o o e e e e e e e e e e e 53

5.3 Staged Development of KBSA Facets. 55

54 A Note on Limitations 62

5.5 KBSA Milestones e 63

6 REFERENCES. o e e e e e 1

]
iv . e e — e e . o — e e e e ——
Plates
Page
Figure 1. DEVELOPMENT OF PARALLEL KBSAsOVERTIME 6
Figure 2. GENERALIZED KBSA STRUCTURE 18
Figure 3. FUNCTIONAL ELEMENTS OF AMATUREFACET 56
Figure 4. FIRST STAGE OF DEVELOPMENT: THE PROPERTY STAGE 58
Figure 5. SECOND STAGE OF DEVELOPMENT: THE INFERENCE STAGE . . 59
Figure 6. THIRD STAGE OF DEVELOPMENT: THE ACTION STAGE. 60
Figure 7. FOURTH STAGE OF DEVELOPMENT: THE PLANNING STAGE . . . 61
[Figure 8, SHORT-TERM MILESTONE« 65
Figure 9. MID-TERM MILESTONE v i i . 68
Figure 10. LONG-TERM MILESTONE 69

1.2 The Problem 1

§1 EXECUTIVE SUMMARY

—

1.1 Objectives

[The purposes of this report are:

3 1. To propose a formalized computer-assisted paradigm for the development, evolu-
tion, and long-term maintenance of very large software application programs.

2. To describe the knowledge-based software assistant (KBSA) needed to support that
paradigm.

3. To oulline a long-term development plan designed to realize such a knowledge-
based assistant.

1.2 The Problem

The existence of a software problem for large systems and its relevance to the military,
which is becoming ever inore reliant on soltware in its weapon systems, its planning,
its logistics, its training, and its command and control has long been recognized and is
well chronicled {t]. To date, attempts to resolve this problem have yiclded only 1aodest
gains (a factor of 2-4 compared with the thousand fold increase in hardware perfor-
mance) arising primarily from use of higher level languages and improved management
techniques (software engineering).

Although further modest gains can still be achieved by continuing and accelerating this
current technology, a fundamental flaw in the current software life cycle precludes larger
qualitative improvements. The process of programming (conversion of a specification
into an implementation, requirement into specification, etc.) is informal and largely
undocumented. It is just this information, and the rationale behind each step, that is
crucial, but unavailable, for maintenance. The current paradigm fails to recognize the
general need to capture sl life-cycle activities and the rationale behind them.

In order to capture the programming process and use knowledge-based tools ap-
propriately, we rust formalize @l levels of activities as well as the transforma-
tions between them. Consider the current situation in which only the source code
(implementation level) is available, but the specification and the mapping from it to
the source code is not. In this situation, maintenance can bhe performed only on the
source code (i.e., the implementation) which has already been optimized by the pro-
gramnmers. These optimizations spread information (take advantage of what is known
clsewhere) and substitute complen but elficient realizations for simpler absteactions.
Both of these effects exacerbate the maintenance problem by making the system har-
der to understand, by inercaving the deperdencies among the parts, and by delocaliz-

o Ten EEe T TR e T

o it SR

b NIV

2 1. EXECUTIVE SUMMARY

ing information. Similar situations hold for the mappings between requirement and
specification, or requirement and testing levels.

1.3 Solution: A New Computer-Assisted Paradigm

We propose to shift the current informal person-based software paradigm into a formal-
ized computer-assisted paradigm and to provide the knowledge-based software assistant
(KBSA) required to support the paradigm.

The goals are more reliable and rapid development of systems with greater functionality
and the build--p of & computerized corporate memory which, through the KBSA,
will aid the continued evolution and adoption of the system, especially in the face of
personnel turnover. The processes targeted for such assistance constitute the entire
life cycle of major soltware development: project management, requirements definition,
validation, implementation, testing, documentation, and maintenance. Thus, KBSA
clearly parallels the DoD Software Initiative [1] and is a natural, long-term complement
to it.

The basic IKBSA paradigm can be summarized as “machine-in-the-loop”, where all
software life-cycle activities are machine mediated and supported. Initially,
the KBSA will automatically document the occurrence of every activity and ensure the
proper sequencing and coordination of all the activities performed by the individuals
involved in a large project. Then, as the various activities are increasingly formalized,
more sophtsticated knowledge-based support will be provided.

In addition to mediating and supporting all life-cycle activities, all decisions (whether
they concern requirements, validation, implementation, testing, or maintenance) must
also be recorded together with their rationale. All these data must be machine readable
and machine manipulable, so that the system can utilize programming and application
knowledge bases as well as inference-based methods to explain complex aspects of the
program and support its maintenance. Eventually on the basis of understanding the
relationships between the goals and the code of the applieation program - KBSA should
be able to snggest plausible stratepies for the design of program modifications and bear
an appreciable portion of the burden of implementing and testing those strategies.

Because KBSA ix mediating all development activities, it ean support not only those
individual activities, but also the developmentas a whole. Tt can coordinate once activity
with another to maintain consisteney; it can alert management if resources are, or are
about 1o be, exceeded; it can help prevent maintainers from reexploring unfruitful
implementations. In short, by mediating all of the development activity and by being
knowledgeable about that development, KBSA can help people bring to bear whatever
knowledge is relevant for their particular task. This is especially important on large
projects where it is currently diflicolt, it not impossible, for people to comprehend
and assimilate all the relevant information, which imay be fragmented, incomplete, or

inconsistent.

e PO R~

_1.5 Usage I

Rather than being merely a collection of capabilitics, the KBSA would be an intelligent
assistant that interfaces propic o the computerized “corporate memory,” aids them in
performing their tasks, and coordinates their activities with those of other meinbers of
the team.

1.4 Areas of Assistance

We plan to incrementally formalize, and provide knowledge-based support for, all
aspects of the software life cycle. In this section we highlight three areas that readily dis-
tinguish the KBSA paradigm from incremental improvements to the current paradigm.
The first such area is “development,” which encompasses both implementation and
maintenance. We propose to formalize it so that implementations are the result of
a series of transformations of the specifications. This formalization of the develop-
ment process will enable maintenance to be performed by altering the specification
and replaying the previous development process (the series of transformations),
slightly modified, rather thau by attempting to patch the implementation.

Such a capability will have profound cffects. Systems will be laiger, more integrated,
longer lived, and will be the result of a large number of relatively small evolution-
ary steps. Software systems will linally reach their potential of remaining “soft”
(modifiable) rather than becoming ossified, hardware-like, with age.

Another important life-cycle area is specification validation. Rather than validating al-
ready implemented systems which are diflicult and expensive to change when problems
are detected, vaiidation will be performed by using the specification itself as an ex-
ecutable prototype. Specification errors detected will be much simpler and cheaper
to corrcct, and systems will normally undergo several such specification/validation
cycles (to get the specification “correct” and to get the end-users to completely state
their requircments) before an iinplemnentation is produced.

A third life-cycle arca is perhaps the most important: project management. The for-
malization, mediation, and support of life-cycle activities includes project management
itself. Protocols will define the interaction between successive activies of a single agent
and the concurrent activities of multiple agents. These activities will be mediated by
an “activities coordinator.” New management techniques will have to be developed for
such a formalized and partially automated environment.

The other arecas of assistance discussed in this report include requirements, perfor-
mance, testing, and documentation.

1.5 Usage

As the KBSA cvolves, it will be able to serve the needs of all participants in the
program development, {rom the program manager to the journecyman coder. As it

A . e v N

4 1. EXECUTIVEE SUMMARY
serves those needs, it will also serve as the repository of corporate knowledge, making
possible both effective coordination of a large number of programmers and smooth
transitions without serious setbacks as programming personnel change. While the
KBSA will support all programming activitics, it will present very different faces to
different participants, depending on their roles in the program development process.
To the project manager, it will appear as a planniug assistant to help allocate tasks, and
as a erisis monitor, warning of significant chanpes in system requirements or schedules
and serving as a recording communications channel to the echelon of managers below.
To the programmer in charge, for example, of testing a particular module, it will also
serve as a news wire informing him/her of relevant program changes. But, in this case,
it will further bring to bear its knowledge of program dependencies and of the rationale
of prior test designs in order 1o assist the programmer in both the design and execution
of the consequent retesting.

The application programs targeted include the very large (more than one million
instruction) programs, such as those associated with command and control or weapons
systerus, that today require teams of more than a hundred programmers working several
vears on the original development and at teast a decade on system maintenance.

1.6 The Development Plan

The KBSA development plan calls for the study and construction, over approximately
a M- to t3-year period, of individual mechanized Tacets of the assistant knowledgeable
in program management, requirements analysis, implementation, validation, perfor-
mance optimization, testing, and portability. At first, most of these facets will serve
primarily as advanced documentation systems, recording the rationale for all design
and implementation decisions. The first major technical efforts must be to formalize
the representation of the subject matter and strategies in the domain of ecach facet.
Next, iuference mechanisms must be introduced to support the mechanical exploita-
tinn of the formal system development databases. Finally, knowledge bases specilic
to cach facet, e.g., heuristic knowledge about the circumstances under which various
choices of program transformations induce performance efliciencies, must be compiled.
The triue strength of KBSA will emerge as these knowledge-based methods provide
greater fevels of antomation for the individual domain facets. KBSA must, just as
importantly, provide a fall Tle-exele program developiment environment a matrix in
which the several facets may be integrated and which cin serve as the all-important
communication and coordination channel between them. The development of such ad-
vanced program coordination and a new form of project managemnent appropriate for
such an environment is an integral part of the KBSA proposal.

To achieve these goals one must:

1. Incrementally formalize cach software Hite-cvele cetivity (with particular emphasis
on project management, development, and validation) and create knowledge-based

B

1.6 The Development Plan 5

tools and automated aids to support their use.

2. Formalize the coordinations and dependencies that arise in large software projects,
create a language for stating project management policy in terms of these coor-
dinations and dependencies, and an “interpreter” which coordinates all project
activity in accordance with these rules.

3. Construct a framework in which all the tools and capabilities can be integrated
(i-e., a life-cycle support environment) as they are incrementally created.

We believe that these requirements necessitate the use, and further development, of
knowledge-based artificial intelligence techniques. Toward this end, our plar includes
a major thrust of fundamental work in the supporting technologies of Jrated
knowledge representation, knowledge base management, and inference.

ch e e e e,

é 1. EXECUTIVE SUMMARY

SUPPORTING

TECHNOLOGY\\\

\\\\ll/,

 KBSA :
FACETS {
FRAME -
WORK
. . °
PARALLEL
DEVELOPMENT . . .
EFFORTS
SUPPORT ING
TECHNOLOGY
‘\\\‘//’,
> KBSA =
FACETS
.
FRAME -
WORK
: TECH
DEVELOP ING INTEGRAT LON TRANSFER

FACETS & FRAMEWORK

Figure 1. DEVELOPMENT OF PARALLEL KBSAs OVER TIMI

L6 The Development Plan 7

In the short term, the plan catls for several parallel efforts to construct the system
framework, including activities coordination. The more suceessful will lead to the
standards into which the formalized activities and automated aids will be integrated
as they mature. Several such separite, unintegrated formalizations and automation
efforts will be started. These development eflorts are illustrated in FPigure 1.

In the inid term, the separate formalization and automation cfforts will be inteprated
into the standard frameworks to produce demonstrable prototypes. Meanwhile, the
separate formalization and automation efforts will continue,

1 the long term, one or more integrated prototypes will be production engineered for
real use and transferred.

The plan distinguishes between varying degrees of automation and promises a certain
amount of near- and mid-term technological “fallout.” It also provides for a crucial
mid-term attempt at system integration, the watershed test of whether the evolving
KBSA meets the goals of rapid re-prototyping and retained soltware Hexibility. Only if
it does will knowledge-base managed system development and maintenance go beyond
a brave new paradigm to become a reality.

The plan calls for a steering committee to help in further planning and to oversee the
development of the KBSA.

-

/ - . B e T R

8 2. PROBLEMS AND SOLUTIONS

§2 PROBLEMS AND SOLUTIONS

2.1 Statement of the Problem

The existence of a software problem and its relevance to the military, which is becomning
ever more reliant on software in its weapon systems, its planning, its logistics, its
training, and its command and control has long been recognized. The multitude of
problems with the existing soltware development and maintenance life eycle, and their
particular acuteness for the military, have been well chronicled elsewhere [1]. As pointed
out in the DobD Software Initiative {1}, merely doubling current productivity would
result in yearly DoD) savings of $2.5 to $3 billion and a payolfT factor of over 200 on the
investment.

Yet, attempts to date to resolve this problem have yicelded only modest gains arising
primarily from use of higher-level languages and improved management techniques.
These improvements, which by the most optimistic estimates, have resulted in far less
thon an order-of-magnitude gain over the last 15 to 20 yvears, have in no way kept pace
with the astounding thousand-told increase that has occurred in hardware performance
over the sate period. Because the hardware revolution apparently will continue at this
pace for at least the rest of this decade, it ts elear that the utility of computers to the
military, and o society as a whole, will be imited primarily by our abnlity to construct,
maintain, and evolve software systems.

Continuation ol existing ¢florts to improve the current =oftware paradigm, broadly
characterized as software engineering, will undoubtedly vield further incremental un-
provements more or less connnensurate with those previously obtained, subject to the
law of diminishing returns.

Rather than discuss problems with the current software paradigm here, we instead
examine the underlving causes of these problems and suepest that qualitative improve-
ments cannot be made qutil these underlying causes are removed. Unfortunately, the
current soltware paradigm, which arose in an era when machines rather than people
were expensive and in limited supply, is fundamentally Hawed ina way that precludes
larger qualitative improvements.

The flaw is that there is no techuology Tor managing the knowledge-intensive activities
that constitute the soltware development processes. The process of programming
(the conversion of a specilication into an implementation) is informal and largely
undocumented.

It is just this information, and the rationale behind cach <tep of this process, that is
crucial, but unavailable, for maintenance. As a consequence, maintenance is performed
on the inplementation (e the source code) beeause this s all that is available. All
of the progeammer’s skill and knowledge have already been applied in optimizing this

sonree code. These optimizations spread information. Tho v is) they take advantage of

2.2 Proposed Solution 9
what is known elsewhere and substitute complex bu efficient realizations for (simple)
abstractions.

Both of these cffects exacerbate the maintenance problem by making the system harder
to understand, by increasing the dependencies among the parts, and by delocalizing
information.

Requirements analysis, specification, implementation, documentation, and maintenance
are all knowledge-intensive activities. But the current paradigm precludes the
use of automated tools to aid these processes because it deals only with the
products of these processes rather than with the processes themselves.

Thus, the current software paradigm must be changed to explicitly represent and
support these knowledge-intensive processes. The rest of this report is a description
of such a knowledge-based approach to software support, and an identification of the
technology needed to achieve it.

2.2 Proposed Solution

This scction deseribes the long range objective of this effort in terms of a shift from the
current informal, person-based software paradigm to a formalized, computer-assisted
software paradigm and the knowledge-based software assistant that it both facilitates
and requires. A more detailed view of the KBSA and its various facets is given in
Section 3. The technology needed to support this paradigm is discussed in Section 4,
and our incremental approach toward obtaining the goal KBSA system described here
is presented in Section 5.

2.2.1 The Basis for a New Knowledge-Based Software Paradigm

The knowledge-based software paradigm of the future will provide a set of tools and
capabilities integrated into an “assistant” that directly supports the human developers
in the requirements analysis, specification, implementation, and maintenance processes.
It will be characterized by the fact that “the machine is in the loop.”

o All software life-cyele activities are machine mediated and supported
by the knowledge-based assistant as directed by the developers. These activities will

be recorded to

¥

e provide the “corporate memory” of the system evolution

and will be used by the assistant to determine how the parts interact, what assump-
tions they make about ei :h other, what the rationale behind each evolutionary step
(including implementation steps) was, how the system satisfies its requirements, and
how to explain all these to the developers of the system.

10 2. PROBLEMS AND SOLUTIONS
This knowledge base will be dynamically acquired as a by-product of the development
of cach system. It must include not only the individual manipulation steps which
ultimately lead to an implementation, but also the rationale behind those steps. Both
pieces may initially have to be explicitly stated by the developers. Alternatively, explicit
statement of the rationale by the developer inay enable the automated assistant to select
and perform a set of manipulations which achieve that objective for the developer. To
make the process possible, it will be necessary to

e formalize all life-cycle activities.

For the knowledge-based assistant to begin to participate in the activities described
above, and not just merely record them, the activities must be at least partially for-
malized. Formalization is the most fundamental basis for automated support; it creates
the opportunity for the assistant to undertake responsibility for the performance of the
activity, analysis of its effects, and eventually deciding which activities are appropriate.
Not only will the individual development activities become increasingly formalized,
but so, woo, will coordinated sets of them which accomplish larger development steps.
In fact, the development process itself will be increasingly formalized as coordinated
activities among multiple developers.

2.2.2 Major Changes in Life-Cycle Phases

We have deseribed three maojor differences between the knowledge-based software
paradigm and the current software paradigm the role of the history of system evolu-
tion, the forimalization of fife-cvele activities, and the automation it will enable - but
we have not you deseribed the changes that will occur in the various phases of the
<oftware hife eyele itself,

We are shifting from an informal person-based paradigm to a formalized computer-
assisted paradigm. This formalization and computer support will alter and improve
cach life-evele setivity., But our intent is not to incretmentally improve the current
life-cyele activities, nor even to attempt to make large quantumn improvements in them
via advanced knowledge-based support. As we have argued, the current paradigm is
Fundaentally fhiwed and even large quantitative improvements will not correct those
flaws.

listead, our poal is to alter the current life cyele to remove the flaws and take advantage
of the formalized computer-assisted paradigm deseribed above. We therefore focus here

on four life-cyele activities that differ in kind, rather than just degree, from current
practice. They serve to distinguish the KBSA from incremental improvement of the
current life eyele.

2.2 Proposed Solution 11

2.2.2.1 The Development (Implementation) Phase

First and foremost among these changes will be the emergence of formal specifications
(expressed as machine-understandable descriptions) as the linchpin around which the
entire software life cycle revolves.

In contrast to current practice, in which a specification serves only as an informal
description of functionality and performance, which implementers and testers use as a
guideline for their work,

o the actual implementation will be derived from the formal specification,
This will occur

e via a series of formal manipulations, selected by the developer and applied by the
automated assistant

which convert descriptions of what is to happen into descriptions of how it is to
happen efficiently. To the extent that these formal manipulations can be proved correct,
the validation paradigm will be radically altered. Rather than testing the resulting
implementation against the (informal) specification,

e the validity of the implementation will arise from the process by which it was
developed.

That is, the development and the proof of correctness will be co-derived.

2.2.2.2 The Maintenance Phase

In order to maintain a program, it will be necessary only to

e modify the specification and/or refinement decisions and reimplement
by “replaying” the development.

e Systems are not static;

even ones that, via prototyping (see below) match the user’s original intent, and are
validly implemented via automated assistance require updating. They evolve because
the user’s needs evolve, at least. in part in response to the existence and use of the imple-
mented system. Today, such evolution is accomplished by modifying (maintaining) the
implementation. In the knowledge-based software paradigm, such evolution will occur
by modifying (maintaining) the formal specilication (rather than the implementation)
and then reimplementing the altered specification by modifying and “replaying” the
previously recorded implementation process (the scquence of formal manipulations
that converted the specification into the implementation).

This represents another majoe shift from current practice.

e Rather than consisting of attempts to “pateh” the optimized implementation,

e the maintenance activity will much more closely parallel the original development.

PR

12 2. PROBLEMS AND SOLUTIONS

That is, first the specification will be augmented or revised (just as it is modified
as a result of feedback from the prototyping/specification-revision cycle). Such
modifications should be much simpler because they more closely approximate the con-
ceptual level at which managers understand systems and for which their perception
is that such modifications are trivial (it is the highly intertwined, delocalized, and
sophisticated optimizations that make modification of implementations so difficult).
The second step in maintenance is reimplementing the specification. This is another
situation in which recording the development process provides leverage. Rather than
recreating the cntire implementation process, the developer will identify and modify
those aspects of the previous development which either must be altered because they
no longer work, or should be altered because they are no longer appropriate (i.e., no
longer lead to an efficient implementation). Then, this altered development will be
“replayed” by the automated assistant to obtain a new implementation.

e Increased development automation facilitates the “replay.”

To the extent that automation has been used to fill in the details of the implementation
process, as described earlicr, the need to modify the development will be lessened as
these details can be automntically adjusted to the new situation. In any case, the
clfort required to reimplement a specification is expected to be a small percentage of
that required for the initial implementation, which in turn is expected to be a small
percentage of that required for current conventional implementation.

Thus, in the knowledge-based software paradigm, the effort (and corresponding time
delay) required both for implementation of the initial specification and especially for
incremental modification {maintenance) of that specification, will be greatly reduced.
This will allow that saved energy to be refocused on improved specification (matching
the user’s intent), on increased functionality in the specification {(becauze implementa-
tion. costs and complexity restrictions have been mitigated), and on increased cvolution
of that specilication as the user’s intent changes over time (at least in part because of
the existence of the implemented system).

This will produce three of the most profound effects of the knowledge-based software
paradigu:

o Systems will be larger, more integrated, longer lived, and will be the result of a large
number of relatively small evolution steps.

o Software systems will finally reach their potential of remaining “soft” {modifiable)
rather than becoming ossified, hardware like, with age.

e Fvolution will become the central activity in the software process.
In fact, rather than being lmited to maintenanee after the initial release,
e evolution will also become the means by which the “initial” specification is derived.

The current, “bateh” approach to specilication in which the specification emerges

full-blown all at once (often as a several-hundred-page tome) will be replaced by

2.2 Proposed Solution 13

an “incremental” approach in which a very small formal specification is successively
claborated by the developer into the “initial” specification. These claborations will
occur via semantic manipulations (rather than “text editing”) which capture the
various types of elaboration (i.e., adding exceptions to a “normal” case, augment-
ing the functionality of a process, revising an earlier description, and so on). Thus,
specifications will undergo a development just as the implementations they describe.
Maintenance of the specification, whether after initial release of the implemented sys-
tem or as part of the elaboration of the initial specification will occur by modifying
this development structure rather than “patching” the specification.

2.2.2.3 Specification Validation Phase

Current testing supports more than just the comparison of the implementation with the
(informal) specification, it also provides the means, through hands-on experience with
the working implementation, to compare actual behavior to the user’s intent. Often,
if not usually, mismatches are detected and the implementation must be revised.

This second function of current testing will be replaced in the knowledge-based software
paradigm by

e treating the specification as a testable prototype.

I'o make this possible, a subclass of formal specifications, called
e cxccutable specifications must be employed.

FFurthermore, some form of

e automatic or highly autormated “compilation” must be used to provide reasonable
(though not production quality) efficiency for running test cases.

Thus, the formal specification will be used as a prototype of the final system.
¢ This prototype will be tested against the user’s intent.

Once it matches that intent, it will be developed into that final production implemen-
tation.

As opposed to current practice, in which prototyping is the exception,
e prototyping will become standard practice

in the new soltware paradigm because of its ready availability (via automatic or highly
automated “compilation”). In fact,

e most systems will go through several prototyping or specification-revision cycles
before implementation is undertaken.

14 2. PROBLEMS AND SOLUTIONS

2.2.2.4 Project Management

Project management has the responsibility for controlling, and therefore monitoring,
all the soltware life-cycle activities. Currently project managers are severely hampered
in this objective by the informal and undocumented nature of these activities and by
the fragmentary, obsolete, and inconsistent data now available. 1n the KBSA paradigm,
the situation will be very different. All the life-cycle activities will be formalized, their
operation will be mediated and supported by the KBSA, and their progress will be
recorded in the “corporate memory.”

Thus, all the data needed for effective management will be available through the KBSA.
e Management must define what informa on it needs for on-line management
in terms of these data.

Furtherimore, since the KBSA is mediating all life-cycle activities, the opportunity exists
to

e formalize the coordination of activities.
e Management must define the project policies and procedures

to be implemented as protocols between the activities. These policies and procedures
describe the operation of the project as a whole in terms of differentiated management
styles. They define project organization, resource allocation, states and choices, tran-
sition between those states, and authorization of those transitions.

[t should be noted that two desirable capabilities have been explicitly omitted from the
knowledge-based software paradigm: fully automatic program synthesis (the automatic
generation of production quality code from a formal specification) and natural language
specification (the translation of an informal deseription into a formal specification).
The rationale behind these omissions is described in Seztion 5.

To surimarize, the knowledge-based software paradigm will differ markedly from the
existing paradigm. The basis for this new paradigm will be capturing the entire de-
velopment process (the identification of requirements, the design of the specification,
the implementation of that specification, and its maintenance) and supporting it
via an automated knowledge-based assistant. The development process will revolve
around machine-understandable descriptions. Capabilities will exist to develop an
“initial” specification incrementally from a kernel via a series of formal manipula-
tions, to test the specification against the user’s intent by treating it as a prototype
(because the specification is executable), to develop an efficient implementation from
that specification via further formal manipulations (which co-derive its proof of cor-
rectness), and to maintain the system by further developing the specification and its
implementation and then replaying that implementation development. This will result
in evolution as the central development activity and will produce systems that are longer
lived, larger, more highly integrated and which remain pliable to further modification
as user needs themselves evolve.

e

2.2 Proposcd Solution 15
2.2.3 An Automated Assistant

In describing the knowledge-based software paradigm, frequent reference was made
to an automated assistant. This paradigm both facilitates and requires the ex-
istence of such an assistant, as a consequence of having the whole development
processes (requirements analysis, specification, implementation, and maintenance)
machine mediated and supported. Thus, these development processes must be broken
up into individual activities.

The KBSA will participate in all the coordinated development activities (including the
coordinaticn itself) to aid the developers. The existence of such an assistant will, in
turn, flundamentally alter the software life-cycle activities, as described in Section 2.2.2,
as its capabilities alter the feasibility and cost of these various developinent activities.

e The KBSA will support the new software paradigm by recording the development
activities, performing some of them, analyzing their effects, and aiding their selection.

It is because of the sophistication of the capabilities involved and the fact that
several different sources of knowledge will be involved (knowledge of requirements,
specification, implementation, evolution, validation, analysis, etc.) that this assistant
is called the knowlcdge-based software assistant or KBSA.

Because KBSA is mediating all development activities, it can support not only those
individual activities, but also the development as a whole. It can coordinate one activity
with another to maintain consistency; it can alert management if resources are, or are
about to be, cxceeded; it can help prevent maintainers from reexploring unfruitful
unplementations. In short, by mediating all of the development activity and by being
knowledgeable about that development, KBSA can help people bring to bear whatever
knowledge is relevant for their particular task. This is especially important on large
projects where it is currently difficult, if not impossible, for people to comprehend
and assimilate all the relevant information, which is often fragmented, incomplete, or
inconsistent.

The KBSA is an intelligent assistant that interfaces people to the computerized
“corporate memory,” aids them in performing their tasks, and coordinates their ac-
tivilies with other members of the team.

o The evolutionary creation of the KBSA and the incremental formalization of the
development activities upon which it is based is the central theme of our research
plan.

As we learn to formalize the various life-cycle activities, we will build KBSA capabilities
to perform, analyze, select, and/or coordinate them. Over time, this will allow devel-
opers to concentrate more and more on the higher level aspects of the development
process and turn more and more of the low-level details over to the KBSA. That is,

e i the development process is incrementally formalized, it can be increasingly
automated.

b e s -

16 2. PROBLEMS AND SOLUTIONS

Because, for the foreseeable future, we intend to keep the developer, as well as the
machine, in the loop, provision of suitable interfaces are necessary so that the developers
and the KBSA can work effectively together.

To summarize, we begin with the commitment to having “the machine in the loop.”
This will cause the development processes of requirements, specifications, design, im-
plementation, and maintenance to be divided into a larger number of smaller, more for-
malized steps. This finer granularity and increased formality will enable the cmergence
of a KBSA that aids developers in coordinating and performing of all of the activities
and records those activities as the documentation of the system’s development. This
incremental approach to formalizing the individual development activities and their
coordination, and to providing automated assistance to the developers through the
KBSA, is the foundation of the shift from the current informal person-based software
paradigm to the new formalized computer-assisted KBSA paradigm.

Related Work

Since surveys are available,and to limit the scope of this planning effort, we have inten-
tionally not prepared a survey of related work. We refer the reader to three references.
The first hook (2] covers knowledge-based systems in general, and the referenced chap-
ter specilically covers applications of knowledge-based systems to software assistance.
The second two references, (3] and [4], review soltware engincering environments.

3. KBSA INTERNAL STRUCTURE 17

§3 KBSA INTERNAL STRUCTURE

In Section 2, we described the KBSA as a single unified knowledge-based assistant
that mediated and supported all the life-cycle activities, recorded them to provide
a “corporate memory” of the development, and coordinated the activities of the in
dividual project members. tere we consider the internal structure needed to realize
such capabilities.

The KBSA is a complex, highly interconnected system. Nevertheless, it is necessary to
divide it, both for explanation and creation purposes, into its major functional blocks.
There are four of these, as illustrated in Figure 2. The central foundation of the
KBSA is the framework, which includes an activities coordinator and a knowledge-base
manager.

The job of the KBSA is to validate each activity as it is performed, record that activiny,
and coordinate it with other activities as defined by formal protocols.

Project management policies and procedures establish those protocols. Its docwmen-
tation requirements are satisfied by the recorded activity, and its tasking {resource
allocation) is handled as a coordinated activity.

The other activities which are coordinated in the KBSA could be grouped in many
different ways. We have chosen to group them according to the familiar software life-
cycle phases to make them more understandable and to present one feasible decam
position. While this grouping helps us describe the evolutionary staged developmient of
automated support we cnvision in cach area, it Is important to remember that ajor
change in the life cycle (as deseribed in Section 2.2.2) will result from the KWBSA.
Therefore, other groupings may well be more appropriate for the construction of tha
KBSA. Our choice of groupings and their evolutionary development must he considered
illustrative and is not meant to restrict the selection of other gronpings or developnient
scenarios.

Fventually, as the integration between these activities becomes tighter, we expect them
to lose their individual identity and to become the single knowledge based seviain
described in Section 2. Only then will we have fullilled the promise of the new sofrware
paradigm.

To prevent misinterpretation, we feel it is important to reiterate that although thie rest
of this section deseribes the Tacets separately, the users will =ee Lt o snele enting
the WBSA, wirth many capabilities. Instead of a multitude of ntefaces, Lo
and conventions, users will experience a single KBSA, expert i all aspects of <ofivire
development,

Finally, there ts the support environment upon which such a systenm is built, ltineludes
version and access control an inference engine, and user interface capabilities.

This KBSA internal steacture s further deseribed in the following subsections. At the
end of cach section we have provided a set of short and mid-tern goals tor cach tacet.

T

18

3. KBSA INTERNAL STRUCTURE

The long-term goals are given in the description of each facet, and in some sections,
certain long-term goals have also been included in the list of goals at the end of the

section.

Life-cycle Facets

Specification
Requiremencs Validacion

Development Performance

Testing

LI I

Project Management

Tasking
Documentacion

Policies & Procedure <>

\]

Activicies
Coordinator

Knowledge Base
Manager

Y

!

Support System

Version & Access Controls
Inference Engine
User Interface

Figure 2. GENERALIZED KBSA STRUCTURE

Wv—f

3.1 Activity Coordination 19

3.1 Activity Coordination

The facets of the KBSA must be embedded in a large framework and support sys-
tem, which includes an activities coordinator, knowledge base manager, inference
mechanisms, program analyzer, version and access control, user interfaces, etc. In
this subsection we have singled ouu for discussion the novel concept of the activities
coordinator; the more familiar supporting components of knowledge-based systems
are discussed in Section 3.4, “KBSA Support System,” and Section 4, “Supporting
Technology.”

The development and subsequent maintenance of a large application program or
family of related application programs often involve a considerable number of agents —
analysts, programmers, test engineers, managers, documentation specialists, users, and
so on. The activities being carried on by these agents require various kinds of coordina-
tion. For example, suppose that some agent has the task of modifying some program
module. Before incorporating the result of the modification into a new release, project
management policy may require that certain tests have been performed satisfacterily,
that the changes have been logged appropriately, and that relevant documentation has
been updated. Furthermore, the approval of some manager may be required before the
result can be distributed.

How can such policics and procedurcs be formalized so that automated support can
be provided? Modern programming environments, with their software data bases and
integrated tool sets, often already provide some preliminary coordination capablities.
For example, they asually provide mechanisms for version control so that one can
determine those elerments of the software data base that are up to date and those that
are not. In addition to being part of a version, a program module derived by some tool
(e.g., a compiler) often has a derivation history that relates it to the parent modules
involved in its derivation. If onc or more of these parents is subsequently modified,
resulting in a new version, then the derived module also requires updating.

These environments also include lock and key mechanisms to ensure that only those
agents having the requisite authority (the key) are permitted to take certain actions,
like modifying certain modules or invokiag certain tools.

While such version control and locking mechanisms are certainly necessary, they are
not suflicient for “he kinds of protocols nceded to describe other software development
and maintenance activities. Instead, we need a language to describe the types of coor-
dination (i.c., protocols} that exist between the software development agents and an
interpreter of that fanguage. This would provide the basis for the formalization not
only of the types of coordination, but also of the soflware development activities being
coordinated. As described earlier, such formalization is the basis for the entire KBSA
approach to computer-assisted suppart. Such a language would enable the wide range
of idiosyneratic policies and procedures that have successfully been used by managers
to be expressed. The interpreter couid then monitor and facilitate project develop-
ment in complhiance with these policies and procedures. As with other aspects of the

20 3. KBSA INTERNAL STRUCTURE

KBSA, staged incremental introduction of knowledge-based capabilities would enable
increasingly sophisticated support from the KBSA with less explicit user direction.

In addition to knowing about the elements of the software data base and the tools
available in the tool set, this extended system would have knowledge of agents, both
human and mechanized, that participate in the development and maintenance activities
and the relationships among them. Rather then being limited to the current mode in
which users explicitly invoke separate discrete tools, the extended system would support
a collection of ongoing activities with each activity having an underlying protocol that
specifies the coordination with other activities. Thus, the environment would be active
rather then passive. It would ensure the validity of each agent’s actions and instigate
further activity from other agents as defined by the cocrdination protocols.

Communication among the agents and activities would bie via messages. These messages
would not just be text but would be formal objects in the system that included
references to other formal objects - the modules, agents, organizations, activities, other
messages, etc. Examples would include queries regarding some element (e.g., a “bug”
report), replies to specific queries, requests for permission to take some action, grants
and/or denials of such requests, and so on. The movement of a message (plus other
messages generated on account of that message) would gencrate an audit trail that
would, for example, enable the determination of the status of or prognosis for some
activity that was generated in accordance with a query (for example, the repair of a
problem in accordance with some “bug” report).

Each activity ongoing in the system would, at any point in thine, be in some state. For
cach state there would be a sct of choices that were possible, some of which could result
in the transition to a new state. The inter- and intra-coordination of activities would be
accomplished by controlling the choices that were possible at cach state of an activity.
There could be a number of ways of controlling these choices. One would most certainly
be through the usual lock and key mechanisms; an agent could choose a certain action
because he had the right (the key) to do so. Another means of control would be to
require the agent to obtain formal permission from another agent or organization that
had the right to authorize the action proposed. The request for a permission and the
grant of the permission would be via formal message objects that were so interpreted by
the system. A third means of control would entail a collection of rules that dynamically
described the relationships among the various clements of the system.

That a particular choice was permitted or denied would result from demonstrating that
the predicate enabling the choice could or could not be inferred from the current state
of the activities within the system.

3.2 Project Management and Documentation

This section describes two facets - project management and documentation - that
are called out for treatment here in a separate section from the other facets because

3.2 Project Management and Documnentation 21

they have strong, across-the-board interaction with all the other facets. That is, the
power of these two facets contributes to the power of each of the other facets, and
is derived [rom the existence of each of the other facets. For example, the project
management facet helps to manage tasks being carried out with the assistance of the
development assistant and also derives information from the development assistant.
The documentation facet helps to explain specifications, requirements, performance,
etc., using information from these facets.

3.2.1 Project Management Facet

The long-tern goal of the project management facet is to provide knowledge-based help
to users and managers in project cormmmunication, coordination, and management tasks
that range from simple inquiries about tasks to reorganization of project plans. The
goals are to reduce project costs, speed project development and maintenance, manage
more cffectively, provide greater project continuity, improve project. communication,
increase so{tware reliability, and improve responsiveness to change. The nranagement
facet will assist throughout the life eycle from inception through maintenance. It will
provide assistance to all KBSA users, not just managers.

The project management facet (PMEF) consists of a formalirm, a knowledpe base and
message manager, and an accompanying set of hnowledge-based tools and procedares.
All important (designated) project information, communication, and decizions will he
forinally expressed, recorded in the knowledge base, and available through these tuols

The project management facet uses the coordination and message handhng capabilities
of the activities coordinator to carry out its work. It is distinguished from the activities
coordinator by its domain of discourse and types of decision making (taskh assipnment,
cte.). The PMFE will use other general KBSA inference and knowicdge-base mamapement
tools where appropriate. A tutoring systems will help human agents (designers, users,
and managers) learn how to use the assistant system.

The knowledge base, including the set of seripts and procedures, forms a seantic
model of the entire project, including its history, and its procedures and policies. The
power of the PMI" derives from being able to use this semantic model or knowledge
source to reason abont the project rather than just act as a data management system,
Most activities will have at least an underlying protocol that provides the means for
internal coordination with other activities. More complex management activities will
have more complex protocols and inference procedures to provide means for reasoning
about management decisions, iimplementing policies, weighing evidence, ete. A uniform
interface will allow human or automated agents to make requests for manapement

assistance without having to know details about all the tools.

22 3. KBSA INTERNAL STRUCTURE
Short-Term Goals

e Project Management Formalism

The first step is to develop a machinable formalism for project management
knowledge.

This formalism is the framework that will be used to implement all knowledge base
operations, message handling, inference procedures, and other facet capabilities, To
the extent that messages, tasks, etc. are not described within this formalism, the
PMI® will not be able to do intelligent things with them. At first there will be more
free-form text associated with these entities, largely incomprehensible to machines,
but as the PMI grows, more of this text will be expressed as knowledge in the PMF
formalism.

e Knowledge Base and Message Handling

Using the above formalism and the activities coordinator, the PMI' knowledge
base manager and message handler will deal with all formalized aspects of PMF
knowledge. They will store and retrieve PMI" knowledge and send and receive PMF
messages. All messages and knowledge base entries will cither include descriptors
within the formalism or be entirely within the formalism. All important communica-
tions and decisions car be recorded, but au liest their formalization (which allows
indexed entry into the knowledge base) will be manual.

The knowledge base of project tasks will let managers and other agents keep track of
the tasks to be done and keep records of what is completed. (At first, completion will
be explicitly reported to the WBSA; later the PMEF facet will recognize completion
antomaticallv.) Managers will be able to ook at the set of tasks and organize and
assien them. The task structure will refleet the developiment of the system and the
tasks completed, and those remaining will be explicit and available for study when

[the project is reviewed.
Ancinitial set of message-handling capabilities will be develoned to allow agents to be

aasipned tasks and report their progress and to allow huinan agents to communicate.
In the early stages, the arbitration of messages will be entirely by human desiguer or
manager, but human arbitration will gradually receive increasing knowledge-based
assistance. An interface will allow people to understand and monitor the formal
messages to and from automated agents.

o Task Tracking

The above formalism, knowledge-base system, and message-handling system together
lay the necessary groundwork so that the PME can be extended by the addition of
sitnple project management. procedures and deductive inferences. For convenience,
we will group these simple procedures and inference capabilities under the heading
of task tracking., The infercnces will require that dependency huks, messages, and

other tems can be traced throupgh the knowledpe base.

r————_———z*» T ———

3.2 Project Management and Documentation 23

Scripts for project management disciplines or paradigms will be developed and used
to guide or enforce these management disciplines.

! Mid-Term Goals
l e Suggesting Simple Management Decisions

Using all the above tools, the capability of the PMF will then be extended so that
it will suggest simple management decisions. The inferences made in this decision
making differ from those inferences made in the task tracker, in that the decisions
here require weighing of evidence and more detailed models of tasks and agents. The
decisions will still be limited to relatively local decisions about particular tasks or
agents, however.

e Plan and Procedure Creatiqn and Modification

Using all the above tools, the PMI" will-be cxtended to generate or modify plans ‘
and procedures. At this stage the PMF will deal with entire plans and procedures 1‘
and carry out significant refinements and transformations of them. Transformational :
methods developed in the development facet could be brought to bear on the problem.

e Knowledge Acquisition

Extensions of the above tools will allow simple knowledge aquisition by having PMF
knowledge available and all transactions capturable and manipulable within the
formalism.

3.2.2 Documentation

The long range goal of the KBSA is to provide the project manager and each project
mermber with the equivalent of an cxpert on personal call to answer specific questions
on any aspect of the project or the soltware being developed. For example, a user may
inquire about the possible arguments to a command. A system developer/maintainer
may inquire about the purpose of a particular line of code. The project manager may
want to know the testing status of a particular module. In all these cases, the KBSA
could answer their questions because the relevant knowledge has been captured and
formalized as part of the software development process. In a scnse, all of the knowledge
used in cach of the KBBSA’s activities is available for explanation and documentation

Given adequate underlying knowledge, the main issues in documentation have to do
with how to communicate this information cogently. For example, what constitutes a
good cxplanation? How and when is it appropriate to summarize information? One
good way to explain something is to identify it as an instance of some familiar general
class, such as “this Is a temporary variable” or “this is a kind of directory listing
command.” Another effective Lype of explanation is to describe the role of a thing in
somc causal or goal structure, such as “the setting of this flag causes the following
actions to occur” or “the purposc of this test is to guarantee that the input satisfies

B ot

24 3. KBSA INTERNAL STRUCTURE

the foilowing condition.”

The feasibility of automatically generating explanations to
unforescen queries about the internal workings of a complicated program i3 being

explored in current research.

An example of the use of the documentation facet is in project management.
Maintaining up-to-date and accurate documentation is crucial to the management of
any large software product, as well as in providing help and tutoring facilities for the
users of the project management facet. The initial documentation facet will be for
experienced managers, designers, and programmers. The help facilitics initially will
be for these experienced people and will be similar to current help facilities. Once the
KBSA has evolved enough, it will have an environment that includes naive users as well
as designers and managers with a range of experience. The KBSA will include many
automated agents and will be used for production systems and maintenance. Therefore,
tutoring capabilities will be added that go far beyond the original help system. The
tutoring will allow new (and old) team members to learn about the assistant itself (and
about other agents) and about the state of the project (task structure as well as design
decisions and code state).

The most obvious benefit of this kind of explanation as compared to current documen-
tation practices 15 that the information delivered 15 more focused and directed to the
specific needs of the person inquiring at the time. However, the greatest benefit of this
technique rosults from the fact that the underlying knowledge from which explanations
are dravin s necessarily Kept up to date beeause the KBSA mediates and supports all
project activities. In the best current practice, most of the underlying decisions are
fost from the beginning.

Short Term Goals
e On-Line Docurnentation

There are many fairly standard kinds of documentation for various different
andiences that are now in common use: * A, B, and C spees,” hierarchical lowcharts,
user reference manuals, “help” files; and so on. In the short term, it will not be
possible to formalize much of the knowledge in these documents; most of it will
have to remain in the form of text strings to be read and interpreted by the user.
However, it will be a step in the right direction to provide a central data base with
a defined {and possibly extensible) vocabulary of structuring primitives available to
all agents in the software development process throughout the entire life cycle (this
5 an instance of KBSA's “corporate memory”). Furthermore, by cross-indexing this
documentation to other parts of the sofltware that are also kept on-line, such as the
code or the requirements, it will be possible to aatomatically monitor whether the
documentation is being kept up to date. Finally, it will be possible 1o automatically
generate various kinds of standard-format documents using specially written proce-
dures that read the appropriate subset of information out of the data base. Examples
already exist in which a simple hierarchical data base (with text files at cach node) is
used to maintain the status of all modules for project management purposes. Final

I

3.3 KBSA Facets 25
deliverable documents could then be automatically generated from the same data
base by combining the text files with standard boiler-plate.

e Partially Formalized Documentation

To cffectively increase the degree of formalization of the documentation, we propose
to reduce the “chunk” size in the data base and extend the vocabulary of keywords
describing the chunks and their relationships. At this stage, the chunks of unformal-
ized text should not exceed the size of paragraphs and might often be smaller, such
as a single line describing the purpose of a variable. One benefit of this fine-grain
structure is to allow an incremental change in the software to require only incremen-
tal effort in revising the documentation. The pointers between the software and the
documentation help to localize those parts of the documentation that are affected
by a particular modification to the software. Also at this point, one could begin
to design protocols for accessing and perusing the documentation which adjusted to
the user’s level of expertise, prior knowledge, and so on. With these facilities the
emphasis begins to shift from “documentation,” which suggests static pre-formatted
text, to an “explanation” dynamically generated in answer to specific questions in
an interactive relationship.

Mid-Term Goal
o Partially Automated Knowledge Acquisition

In mid-development of the KBSA, the system developer’s burden of being the sole
source of documentation information will begin to be lesscned by having the KBSA
automatically gather and record the knowledge needed for explanation and documen-
tation as a by-product of other system development activities. For example, a natural
by-product of using the KBSA is the knowledge about design decisions which is
needed for reference during future modifications. Another general source of informa-
tion is various kinds of program analyses, such as those performed for performance
optimization.

3.3 KBSA Facets

This subsection describes an example set of KBSA facets selected to aid comprehension
by their correspondence to current life-cycle phases. By selecting and describing these
specific facets, one particular view is provided in suflicient detail to define what would

sullice as a KBSA.

3.3.1 Requirements

The long-term goal of the requircinents facet is to provide the following: comprehen-
sive requirecments management, intelligent editing of requirements, testing of require-

o ——— - . - v e e e

oo g

T

26 3. KBSA INTERNAL STRUCTURE

ments for completeness and consistency (hoth self-consistency and consistency with
application domain models), performing requirements reviews, maintaining and trans-
forming requiremnents in response to changes, decomposing and refining requirements
into executable specification languages, and acquiring requirements knowledge. The
knowledge base available for these actions will include both general and application-
speeific knowledge.

Requirements will be acquired by KBSA via dialog with end-users (systems analysts
will have to be used until the level of this dialog becomes sufliciently high-level and
applicution-specific). These end-uscrs will define and modify the requirements and be-
havior of their desired system by a combination of high-level, domnain-specific require-
ments languages, examples, traces, state-transition diagrams, graphics, and so on, in
whatever mix they find comfortable. The process will be a mixed-initiative dialog,
where the sequence of statements need not correspond Lo the organization of the final
program. KBSA’s role is to have enough knowledge about requirement analysis and
about specific application domains to be able to accept and process these descriptions.
The requirements facet will organize the stated requirements and incorporate them
into existing descriptions. It will notice inconsistencies and missing parts of the re-
gquirements, and suggest remedies, fill in picces, and point out trade offs whenever it
can. The facer will also, on reguest, desceribe the current state of the requirements
spectfications in natural Inguage, graphicadly, or by simuvlating the behavior of the
svstem as much as possible. The facet will help integrate new requirements into an
existing requirements specification and will use knowledge-based program refinement
techniques to help transform these requircments into executable specification languages.

Knowledge based tools for the requirements facet will have a high payoff. Because the
lower-level program development and management tasks will be increasingly automated
and will take place in the background with less and less human iutervention, require-
ments definition and specification will be ol increasing importance, with most of the

human effort in software developrient eventually going into this process,

Softwiare development eflorts today do not approach such an ideal. Tu most projects,
. . . ‘ . .
requirenernts are argely vnformalized and stated in natural language. Current require-
ments fanpuanes do allow some formalization, principafly in the characterization of
dependencies, but requirements are rarely suachine comprehensible to any significant
extent. An additional consequence of informal requirements statements is that require-

ments usually cannot be executed in any conventional sense.

A formal requirements bingmage will allow, and in fact will demand, knowledge-based
reguirements processing. The veason s that formal requirements are incomplete; they
only partially deseribe the intended behavior of any system. For them to be understood
and processed i some meaningful senue, these partial deseriptions must be integrated
and completed in some reasonable manner. Such inference capabilities are prototypi-
eal of the type of assistance required by the KBSA facets. This formal language
might also be executable to allow rapid prototyping (see “Specilication Validation”

Section 3.3.2, tor o more complete deseription of rapid prototyping). It is important to

3.3 KBSA Facets 27

note that it is unlikely in the ncar future either extreme of machine understanding of
natural language requirements descriptions or formal languages for complete require-
ments specifications will be realizable. However, a knowledge-based facet could provide
capabilities that allow requirements to be combinations of formalized specifications,
machine-understandable but restricted natural language, keyword recognition, and un-
parsed text strings. The KBSA effort might use whatever natural language comprehen-
sion technology becomes available, but it is not committed to, or dependent upon,
advances in this area.

A few knowledge-based software systems have been built that dealt with requirements
specifications and have helped determine the consistency of these descriptions. They
demonstrated the basic feasibility of formal requirements analysis, despite the added
difficulty of working with restricted natural language.

Since generation of natural language is a more tractable problem than comprehension,
paraphrasing or summarizing requirements definitions from multi-format presentations
is possible. This is an achievable and valuable capability for helping people to handle
the complexity of large systems and could be especially useful in validation activities.

Domain models for different application areas will facilitate requirements definition.
These models give the requirements facet more knowledge to help understand user
descriptions, to notice inconsistencies, and to suggest missing parts of descriptions.
Since the potential range of applications areas is quite broad (and includes research
topics such as reasoning about time and space), it is unlikely that a complete set of
domain models can be supplied in advance. However, some simple and frequently used
domain models are likely to be available.

Requirements definition can also be viewed as a knowledge-acquisition problem. The
requirements activities will consist not only of acquiring new requiremnents descriptions,
but also of acquiring models of new application areas. These activities will draw
from the rescarch arcas of knowledge acquisition (including mixed initiative acquisition
of domain models from experts), problem reformulation, rule-acquisition, inductive
inference of requirements from examples, etc. Some practitioners of the requirements
analysis art feel that a very important part of their task is generalizing and structuring
the user’s ill-defined needs. As the lower levels of software production are increasingly
automated, requirements acquisition will become the main interface between the user
and the programming environment. This is an exciting and high payofl arca of research.

Short-Term Goals
e Analysis of Requirements Problem Definition

There has been less rescarch on knowledge-based tools for the requirements level
than for the later phases of the software development life cycle. Accordingly, less is
known and further problem definition should occur in the carly phase of the KBSA
project. The (irst year of work on the knowledge-based requirements facet should
include a planning phase to review and refine the short-, mid-, and long-term goals.

28 3. KBSA INTERNAL STRUCTURE

e A Formal Requirements Language

An initial requirements language will be designed that allows a combination of formal
specifications and text strings. This very high level language (VHLL) will probably
be an extension of the very high level specification languages being developed today.
In the early stages of the KBSA project, new insights will arise about the KBSA
life cycle and its effect on this facet. By the mid-term, these should be incorporated
into a revised VHLL for requirements. The language will also describe histories of
requirements modifications and refinements.

e St.art Editing and Managing of Requirements

Knowledge-based editing and management capabilities for the requirements facets,
including help facilities and a friendly user interface, are important aids to the
requirements definition activity. A variety of specification fragments, including
both a formal language for -requirements and text strings, need to be managed.
For convenicnce, even text strings will be handled in simple ways such as storage,
retrieval, keyword analysis, ete. Dependencies among requirements will be specifiable.

An intelfigent oditor will be used {o create and modify requirements definitions. At
first, the editor will ensure only that the syntactic structure of the formal require-
ments language is followed. Next, the editor will be used to trace through the con-
nections of related requirements during editing to ensure consistency. Later, generic
requirements deseriptions (for example, an input-process-output sequence) will be

stored in the knowledge base. Sucli descriptions can be used as models to fill in and i
can be matehed against a user-created deseription. These models will be used to
check completeness and may provide additional consistency tests. h

e Reviewing Requirements Delinitions for the User

Getting the user to view the requirements tn a new light and paossibly see problems
or opportunities is ~i inportant capability for producing requirements descriptions.

' Review wmethods could nclude paraphrase in natural language, graphic displays of
domain models 1 the krowledge base, executing the specification, writing stubs or
facades that derenstrate the format, if not the content, of the specified system, and
rapid prototyping to help determinie behavioral requirements.

e Requirements Testing

Simple inferences can be used to help determine the adequacy of requirements.
One source of help in requirements definition is the adaptation of capabilities and
paradigms from lower levels of the KBSA. Some activities can be carried out without
any domain knowledge consistency checking, analysis, and explanation, for example.
The first set of requirements tools will therefore check for a simple heuristic kind
of completer ss and consistency. These inference procedures can extend the require-
ments editor’s ability to either fill in details or test against stored general knowledge.
In addition, by employing traditional, non-knowledge-based analysis, the require-
ments tools will deteet entities that are undefined, entities defined but never refer-

3.3 KBSA Facets 29

enced, data flow anomalies, etc. Later, for suitably limited domains, we can include
the performance facet at the requirements level to help in assessing the cost of desired
features.

Mid-Term Goals
¢ Incorporating Domain Knowledge into the Requirements Capabilities

Simple models of frequently used domains will be developed. The first model will be
for a fairly narrow domain or application (e.g., simple classification programs). The
models will supply the knowledge base that will be used for domain-specific support
of the requirements capabilities.

As domain models are added, the requirements capabilities will be augmented to take
advantage of the new knowledge. For example, domain knowledge will be used by
the intelligent editor/manager to retrieve application-specific, previously described,
or generic requirements descriptions from the knowledge base that match the user’s
current needs. These descriptions will serve as useful models to be compared to
the specified requirements to check consistency and completeness. By employing
more sophisticated techniques such as symbolic evaluation of the requirements lan-
guage and some inductive inference, more application-specific inconsistencies can be
inferred.

o An Automated Structured Walk-Through System for Requirements Engineering

Many of the capabilities described above will be combiued in a script (process descrip-
tion) and applied with a form of symbolic interpretation. For example, a structured
walk-through tool based on a fault model representation and on a requirements lan-
guage will aid an expert systems analyst to keep track of loose ends and problem
areas. It accepts requircments as input, together with other management informa-
tion (e.g., who should approve it, who heads up the prime user groups, whc heads
the implementor group). Such a tool will be able to perform some useful background
analysis for missing or incompatible requirements.

¢ Requirements Transformation and Refinement

At this stage, techniques froin knowledge-based program synthesis could be extended
to allow transformations of requirements. For example, if a program is set up for
monthly reports, and weckly reports are required, the knowledge base could supply
descriptions of the necesary changes tc make. Depending on the level of difficulty, the
facet might cither suggest and remind the user of the kinds of changes, or actually
carry out the transformations automatically. Requirements refinement is the other
type of transformation. In this case the requirements are brought through succes-
sively more detailed stages until they reach the level of execctability. This type of
decomposition and filling in of detail is exactly what happens in program refinement
discussed in the development facet (Section 3.3.3), but higher-level knowledge is
needed here. The facet suggests alternative refinements and decompositions. The
transformations may be manual, interactive, or automated as fits the situatioa.

|
L
L
i

; 30 3. KBSA INTERNAL STRUCTURE

e A Requirements Tutor

Tutoring capabilities at the requirements level will help new members of the software
design team to start contributing sooner. For example, tutoring will help them learn
to use the software assistant’s capabilities. It also will help them to understand the
current configuration of requirements specifications and the previous decisions that
provide the context for new requirements decisions.

T T TR T Ve . R T e T

3.3.2 Specification Validation

:

Eventually, formal specilications will be developed using KBSA and starting from
informal requirements. Specifications will be the first formal representation of the
system to be built. As in all other arcas, this representation must be formal for KBSA
participation and support. Furthermore, it is crucial for the KBSA paradigm that the
specification language be exccutable so that the specification can be used as a testable
prototype and so that source-to-source program transformations can be used to convert
it into an eflicient implementation.

As the first formal representation of the svstem to be built, the question arises as to
whether this formal statement matches the user's original intent. Even though the
specification is much more abstract than the implementation, it is still complex for real
svstems. Therefore, the first formal specification will usually be wrong and will have
to be “debugged.” Tn fact, several debugging cycles will normally be needed to get the
specification correct.

Since we are dealing with a specification rather than an implementation, we use the
term “validation” rather than “debugging” to describe this process. Because the formal
speeification is being compared to the user’s informnal intent, only the user can make
this comparison.

Three techniques exist for validating the specification: prototyping, static validation,
and dynainie validation. They are complementary and will be intermixed in practice.

Prototyping consists of running test cases on the specification. This is theoretically
possible since the specification is executable. However, to achieve reasonable efficiency
(so that test cases can be run), considerable optimization must be achieved. This would
either be done via a partial interactive development or, preferably, by a smart compiler
capable of producing testable, rather than production-quality, code. Such prototyping
has all the «trengths and weaknesses of current testing. Specific cases can be tried
quickly and castly and can expose some bugs rapidly, but such probing is {ar from
comprehensive.

The second validation technique is static validation, which consists of paraphrasing
the formal specification in natural langunage so that an easily read form is avail-
able for the end-user to conduct a design review (as is being done with manually
produced Bi specifications). Two advantages arise frem such paraphrasing: first, formal

3.3 KBSA Facets St

specifications in any language are hard to read and comprehend; second, by regrouping
the elements, a different view or perspective is presented which also aids comprehension.

The last validation technique is dynamic validation, which is an extension of the
prototyping technique. Rather than running specific test cases, symbolic execution will
be used to characterize all the behaviors produced for an entire class of test cases. In
order to understand the set of such behaviors, an explanation must be produced which
characterizes the “main line” and then details the exceptions and/or augmentations
that are test-case specific. A mixture of natural language and graphic animation will
be the medium of such an explanation.

Short-Term Goals
e Executable Sperification Language

We propose to develop « high level specification language that is still capable of being
executed (albeit extremely slowly). Note that interaction with the development, facet
will occur via the specification language. The KBSA specification language must be
beth executable and wide spectrum,

o Specification Wellformedness Checking

This would include the capability to check [or internal consistency within a
specification (e.g., all types and actions used are deflined, number and type of actual
arguments agree with the formal argument).

e Specification Testing

It would be important to develop the capability to run test cases, both concrete and
symbolic, on the specification.

e Specification Paraphraser

The capability to automatically paraphase a formal specification in natural language
(to make it more comprchensible, especially to end users) should include the ability
to identify which portion or portions of the specification to emphasize.

Mid-Term Goals
¢ Rapid Prototyping

This would entail developing the capability to automatically (or at least nearly
automatically) compile a formal specification to an efficiency level that pecmits
realistic testing of the specilication as a prototype.

e Sclf Consistency Checker

This would include verification of satisfaction of forinal requirements, establishment
of pre and post conditions, and detection of deadlock and starvation.

e Behavior Explanation

We propose to develop the capability to explain in natural language the behavior of a

h 32 3. KBSA INTERNAL STRUCTURE

specification (as opposed to just the result produced) on both concrete and symbolic
test cases.

Long-Term Goals
e Summarize Behavior

The idea is to develop the capability to automatically summarize specification be-
havior in natural language for different audiences and experience levels (e.g., highlight
surprising results or normal case behavior).

3.3.3 Development

The job of this KBSA facet is to aid the creation of a production quality implemen-
tation. Since the full functionality of the intended system has been captured in the
formal specification, that specification “merely” needs to be compiled 1o accomplish
this task. Unfortunately, even smart, knowledge-based compilers, may not be capable
of producing production-quality implementations. The reason is that to the extent
that the specification language is fulfulling its purpose as a description of what rather
than how, the gap between the formal specification and an eflicient implementation is
too wide to bridge totally automatically. Therefore, we will need to keep people, the
developers, in the implementation loop. What should their role be and how can we aid
them in that role?

These questions can hest be answered by considering a related question: what im-

plementation functions are difheult to automate {and hence will be perforined by the

developers)? The answer is simply, the decision-making portion. The implementation

process consists of numerous implementation decisions such as how to represent some

information, what algorithm to employ to obtain some result, what information to
3 save, when and how to recompute that information not saved, etc..

There are three difficulties in automating these decisions. First, the decisions are not
independent. The choice made for one decision often affects which choice should be
made for another. Sccond, techniques for evaluating the relative values ol different
choices in the presence of other unmade decisions are quite limited or nonexistent
{partly because of the interactions among these decisions). Finally, little is known about
the order in which these decisions should be considered (good designers are observed
to employ very different orderings).

These difficulties argue for a continuing role for the developer as decisionmaker in the
implementation process. But what of the rest of the process? It consists of carrying out
these decisions. Currently this is done all at once, after most (or all) of the decisions

have been made, by incorporating them in the code of the implementation (the first
and only formal representation of the system).

o e

..3.3 KBSA Facets £ 14

In the knowledge-based software paradigm, this p-ocess will proceed very differently.
First, each decision will be captured as it is made to document the development process.
Next, it will be realized in the “specification.” That is, portions of the specification will
be replaced with pieces of “implementation.” Aslater decisions get made and realized,
other pieces of the specification will be replaced, or the replacements themselves may
undergo further refinement. Many such levels of implementation may occur before
the final efficient implementation is obtained. Thus, through realizing the decisions
as they get made, implementation will become a process of gradually replacing the
constructs in the specification language by those in the implementation language.
Since this replacement is gradual, the specification constructs must coexist with the
implementation constructs. This requires a “wide-spectrum” language that containg
both the specification and implementation languages as subsets.

The gradual refinement of the specification is accomplished via formal manipula-
tions that realize the implementation decision chosen by the developer. Such formal
manipulations are possible because the specification, and all its refinements, are for-
mal (i.e., expressions in the wide spectrum language), and are necessary because such
manipulations can be quite complex {as sophisticated algorithms replace simpler ones)
and quite distributed (as information is spread through optimization). Autemation is
needed both to ensure that the manipulations are correctly performed (this presupposes
that the transformations have been formally verified) and performed everywhere that is
required and because the sheer magnitude of the task would be overwhelming otherwise.
Fortunately, such autoruation of the formal manipulations required to realize decision
making appears quite feasible and several prototype systems exist that accomplish im-
plementation in this manner. Furthermore, the codification of programming knowledge
in catalogs of such formal manipulations has already begun.

But experience with incremental implementation systems has shown that in addition
to the implementation decisions, many other formal manipulations are required which
‘stmnplify” the result
of " 1t realization. These low-level manipulations are much more numerous than the
deci-ions made by the developer, and their employment must also be automated. In

either “prepare” the specification for the decision being realized or

fact, the set of developer decisions forms a rich hierarchy (actually a heterarchy) of
preparatory and simplification manipulations for cach other. This raises the possibility
of having the developer make only the “conceptual” or “strategic” implementation
decisions with a knowledge-based problemi-<olving tool filling the remaining “tactical”
implementation decisions antomaticall:. Advanced versions of the knowledge-based
software paradigm will enploy such capabilities.

In this incremental implementation process, wue ;utomation of the formal manipulation
will ensure that the resulting implementation is ‘nrrect (i.e., is functionally equivalent
to the specification). This means that the current phase of testing the implementation
con be eliminated. The energy thus saved will be shifted to validating the specification
(ensuring that it matches the user's intent, as described in Section 3.3.2) and evolving
the system as the user's requirements change.

34 3. KBSA INTERNAL STRUCTURE

This brings us to the question of retmplementation. In the knowledge-based software
paradigm, maintenance will be performed by modifying the specification (which is
normally straightforward and simple) and then reimplementing that specification. But
rather than repeating the incremental implementation process from scratch, the KBSA
will help the implementer modify (normally only slightly) the previous incremental
implementation, which will have been automaltically recorded, and then replay it to
obtain the new implementation. This reimplementation facility is another powerful
automated tool for the developer. Furthermore, to the extent that the original (or
previous) incremental implementation was achieved by the KBSA that filled in the
“strategic” developer decisions with the remaining “tactical” ones, this development
will tend to be automatically self adapting to changes in the specification and/or any
changes the developer wishes to make in the decisions previously made.

Short-Term Goals
¢ Wide Spectrum Language

We will develop a wide spestrum language capable of representing the design of a
system in all stages from formal specification through optimized implementation.

» Transformation Language

This language should be capable of describing transformations tfrom the more
abstract constructs within the wide spectrum language to the more concrete.

e Property Language

This should be a language capable of describing the properties of program segments
(such as the variables set and referenced, the module involved, the criteria under
which it is rcachable, the effects it creates, and the invariants it maintains.)

e Interactive Mechanical Development

The idea is to develop a system capable of performing and documenting the devel-
opment steps selected by the user. This requires the creation of a catalog of trans-
formations.

e Automated Property Proving

The aim is to develop an inference facility to automatically prove (or disprove)
properties as they are needed during development.

Mid-Term Goals
¢ Automated Development

We propose a system capable of taking a simple goal stated by the user and creating
a short sequence of development steps to achieve that goal.

e Automated Replay

We propose a system capable of adapting a previous development to an altered

~Ed

sl - e -

>

vy RN e o . v

3.3 KBSA Facets 35

specification with a degree of automation commensurate with that available in the
original development.

Long-Term Goal
e Enhance Replay

This would mean extending replay capability so that, in addition to changing those
designer decisions that had to be changed for correctness, the system also detects
those which ought to be changed for performance reasons and suggests appropriate
changes. Notice that this entails interaction with the performance facet.

3.3.4 Performance

The long term goal of the performance facet is to help to create and maintain efficient
programs that meet their performance requirements. The performance facet will guide
performance decisions at many levels from requirements specifications to very-high
level programs to low-level code. Performance assistance capabilities are critical for
making practical tools of very-high-level, executable specification languages. Because
the key disadvantage ol such specifications is their lack of efficiency when executed
straightforwardly, the important factor in their utility is being able to find efficient
implementations. During development, efficiency estimation will be used to predict
and compare the costs of proposed alternative data structure choices. With this
capability, either a programmer or an automated program synthesizer can select a
data structure. KBSA will also give performance advice about what control structures
to use, what optimizing transformations to apply, and what algorithms to use. Thus,
program analysis includes not only data flow and control flow analysis, but also higher-
level analysis, such as algorithm analysis, to determine the time and space efficiency
of programs, to suggest modularizations, and to find bottlenecks. It also involves
augmenting application domain models to include some cost information. At the
requirements level, advice will be given about the relative costs of different proposed
features.

Currently, most efliciency estimation and optimization is performed by designers and
programmers without much automated assistance. There are a few tools for estimating
program timing information, and some data flow information is derived by compilers.
However, the information is usually ncither available in machine-understandable form
nor available cutside the compiler.

Performance advice can be given regardless of the degree of automation in the devel-
opment phase. We assume that some combination of the following three development
methiods will be used: manually implementing programs from specifications; interac-
tively synthesizing programs by applying transformations; and automatically synthesiz-
ing programs by a system that selects and uses transformations, simplifications, and

36 3. KBSA INTERNAL STRUCTURE

infcrences. In the case of automated synthesis, it is the efficiency estimator that bridges
the gap from interactive synthesis to automated synthesis.

In all these cases the user, programmer, or knowledge-based assistant searches a space
of possible combinations of implementations and decides among them on the basis
of knowledge and their relative efliciency. Other factors come into play, such as the
amount of effort (human or machine) available to implement the program and the
relative importance of the particular part of the program being implemented. For
example, a human programmer or a synthesis program might well try to find the most
important bottleneck in a program and allocate the largest optimization cffort to that
portion.

Lfficiency analysis facts can be gathered in several ways: rule of thumb estimations,
algorithm analysis, or simulation coupled with statisties-gathering. By simulation we
mean cither directly executing the specification or executing an automatically com-
piled prototype implementation. By having default implementations for all levels of
refinement, we could ensure that, at any time during program development, the pro-
gram can be quickly impleruented (even if it has been only partially refined or op-
timized). These multiple-level executable specifications can be used for both validation
and collecting performance statistics. When analysis and simulation both fail, the fall-
back position will be to implement various versions and measure their performance.
The feasibility of this technique will be dependent upon the cost of creating multiple
implementations, which will in turn depend strongly upon the degree of automation of
the development phase.

Efficiency estimation is also valuable in the knowledge-based project management and
requirements activities, for example, a bottleneck analyzer can locate causes of delays
in implementation. As with processor allocation, projects could be reallocated to the
most cfficient implementors, toking into account their workload and cost.

Short-Term Goals

o Symbolic Evaluation

Symbolic evaluation (see Section 4.3.1) is a basic analysis technique that is uscful
in many of the KBSA facets deseribed. However, it is crucial for the performance
facet. The performance facet needs to be able to propagate and integrate efficiency
estimations and to perform symbolic analysis on partial specifications.

o Data Structure Analysis and Advice

A short-term target for the performance facet will be a set of estimators for data
structare selection that are reasonably robust when handling conventional data
structures (probably excluding external memory devices). These estimations could
be used for automatic data structure selection or for advice to manual implementors.
Efliciency estimation activities will be limited to those necessary for data structure
selection, including the use of both rules of thumb and heuristic algorithm analysis.
As an inttial target, clliciency estimation will provide approximate, average-case

3.3 KBSA Facets 37

performance analysis. The agents will compute and transform annotations about
efliciency characteristics as programs are transformed, and will record cost analysis
decisions for the benefit of future users. Some bottleneck finding also should be
feasible in the short term; it is valuable for both automated and manual systems,
and is a fairly straightforward extension of the basic performance analysis capability.
By limiting the performance facet initially to data structure selection advice, we take
a conservative position and increase the likelihood of success. It may be necessary,
if certain applications are undertaken, to include other optimization decisions.

Subroutine and Module Decomposition Advice

One class of perforinance decision is when to create new subroutines or modules.
Given a definition of a potential subroutine, the decision about whether it shouid be
kept as a subroutine or compiled in line is relatively easy, and such a capability will
be developed as a useful adjunct for the manual programmer. However, the ability to
logically find or formulate subroutines or modules that share substantially the same
function is a more complex task and may require inductive inference. Such advice
may not be available until later in the project.

Mid-Term Goals

e Domain Models for Analysis

Once domain models have been developed to help with other activities such as re-
quircments definition, they will be augmented to cover performance or other analysis
information. This domain information will be an inexpensive roplacement for infor-
mation that would otherwise have to be gathered by some form of simulation and
monitoring,.

Algorithm Design Analysis and Advice

The data structure analysis and advice capability will be extended to include the
ability to analyze control structures and other classes of optlimizations. Sonie op-
timizations are almost always performed when possible (such as combining two
enumerations through the same set) and thus are not especially interesting for
efliciency analysis, but their effects need to be understood so efficiency characteristies
can be updated. Also, combinations of optimizations sometimes necd to be compared
(say to determine file aggregation). Determining how to apply some of these trans-
formations and deciding which combinations are really most efficient is a dillicult
problem.

We could also consider the effects of simplifying tne cost function the user specifies.
For example, additive cost functions are much ecasier to compute and may be suflicient
for the user’s needs.

Real-Time Performance Advice

Real time systems are an important application domain. To achieve analysis and
advice in these domains, the degree of completeness and accuracy of performance

38 3. KBSA INTERNAL STRUCTURE

estimation will be improved to deal with worst-case performance. Better analyses
will be available, and the ability to specify different accuracy goals for analysis will
be provided. While in many cases a fast, approximate estimation is sufficient, for
important cases (bottlenecks, rcal-time critical response programs) a more expensive
analysis, taking closer account of interactions, should be available.

In the longer term, even more sophistication might be attempted, such as taking into
account statistical distributions on input data.

3.3.5 Testing

In current software practice, program testing is a haphazard activity, generally not
supported by sophisticated tools. In the best current practice, a set of test cases is
defined at the beginning of the project, before detailed design has taken place, and put
aside to be run after the final implementation is complete. More typically, test cases
arc generated after implenentation has taken place with a view toward “exercising’
all parts of the code. Test cases arc almost never kept up to date during the long-term
maintenance and evolution phasc of the typical software life cycle.

In the long term, program testing will disappear as a separate activity in an automated,
knowledge-based software developinent process. Most of what we now think of
as program testing will be redistributed into the validation and development ac-
tivities discussed in preceding scctions. To understand this redistribution, we need
to reexamine what a test case is and how it functions in the program development
process. Fundamentally, a test case has two features: it is a small fragiment of the total
behavior of a system, and there is some sense in which that behavior can be judged
correct or incorrect. The purpose of a test case differs, depending on whether it is
primarily concerned with the specifications or with the implementation of a system.

From the point of view of specilications, the fragments of the total possible system
behavior selected for test cases are determined by knowledge of the application task.
The purpose of defining a set of test cases and their correctness conditions is to help
clarify what the user desires. In the mid term, program testing should therefore begin
to be coordinated and integrated with requirements and specification validation (sce
Sections 3.3.1 and 3.3.2). For example, the emergence of cxecutable specifications will
make it possible not only to define and record test cases carly in the development
process. but actually to run test cases before the bulk of the implementation is begun.
The benefits of this methodology will be both in the area of helping users figure out
what they actually want, and avoiding effort wasted in implementing what turn out to
be incorrect specifications.

Automatic gencration of test cases based on specific knowledge about the user and the
application is also a possibility. This knowledge may be cither in the form of domain-
specific test generation procedures or precompiled, but highly parameterized, test cases
for specific types of applications. For example, the KBSA will have knowledge about

3.3 KBSA Facets 39

how to generate test data for specific computer-controlled hardware devices, such as a
radio scanner or a motor mount.

et et o 1ot

A number of automatic test generation tools already exist which, given a complete
program in some high level language, produce test input data guaranteed to satisfy
some form of completeness property over the program, such as traversing each branch
peoint in each direction. The main weakness in this approach is that the tools are in a
sense too general — they treat all parts of the program the same, and at the code level.
There is no way to incorporate specific knrowledge of either the application domain
or the software design. Given that program testing is inherently a partial process
(i.e., in real software one can never test all possible input data), the advantage of the
knowledge-based approach over uniform test generation algorithms is the use of specific
knowledge to increase the density of tests in the areas of most relevance.

The second major purpose of current program testing has to do with the implementation
process. The purpose of test cases from this point of view is to compensate for the fact
that implementing a large and complicated software design is an error-prone process.
Here, the fragments of the total system behavior selected for test cases are determined
from knowledge of the software implementation design. In the long term, most of
this kind of program testing will become unnecessary because a more formal program
development methodology (see Section 3.3.3) will allow the interacting properties of
different implementation steps to be explicitly managed and checked by automatic or
semi-automatic tools.

Knowledge-based methods will also be applicable to the generation of test cases which
address program implementation needs. In this arca, the specific knowledge has to
do with how to properly test specific kinds of software design structures, such as a
multi-level interrupt system or a hash-serted data base. As with application-specific
test generation, this will be achieved through a combination of design-specific test
generation procedures and libraries of parameterized test cases.

| Short-Term Goal
o Test Case Maintenance Assistant

) The first step toward more automated, knowledge-based program testing is to provide
tools that better support the current best practices. What is called for immediately is

a uniform mechanism for associating test data with every unit of a software project

(c.g., a requirement, specification, module). The purpose of a test (which may

initially be only a keyword meaningful to the user) should also be recorded with the

p: test itself. The main functions of the KBSA at this level will be to accept changes in
y test data, to schedule the running of relevant tests automatically when units undergo
changes, and to give notification of problems. Such a facility will make it easier and
thercfore more likely for the system developer to define a test case at any point in the
soltware development process at which it naturally comes to mind. Also, with more
detailed knowledge about the relationship between specific test cases and features of
the requirements, design, and implementation, testing will become much less of an

40 3. KBSA INTERNAL STRUCTURE

all-or-none business, as it is today. A knowledge-based test-case maintenance system
will allow incremental rerunning of test cases appropriate to the particulars of the
modification.

Mid-Term Goal
e Knowledge-Based Test Generation

In the mid term, it will be possible to begin to move from simply maintaining user-
provided test cases to some automatic generation of test cases. The same underlying
test case maintenance facilities can then be used to keep track of a mixture of user-
deflined test cases, test cases generated by uniform, automatic procedures, and those
generated from specific domain and design knowledge. One of the first knowledge
sources to exploit for automatic test case generation may be software “fault models,”
which are accumulations of heuristics, based on past experience, for the kinds of
errors that correlate with specific kinds of tasks and programming structures.

Long-Term Goal

Testing will disappear as a separate activity; it will be redistributed into the validation
and development activities.

3.3.6 Reusability, Functional Compatibility, and Portability

Many cestly problems in present software production are essentially special cases of a
general problem which we refer to as compatibility between modules. [For example,
a software module is reusable if it can be used as a component in differing systems;
the facilities it exports must mecet the requirements of a component and the facilities
it imports must be provided by other components of the system. A module is por-
table to a new installation if the facilities it requires (imports) are provided by that
installation. In the long term, complex systems will be hierarchically specified in wide
spectrum specification languages (see previous sections); interface specifications will
be separated from implementation details; the various VHLL’s will eventually be rich
enough to express all manner of complex details such as timing and I/O requirements,
so that one may expect to have available the design of a complete system (hardware
and software). At this time, many of our current problems will boil down to checking
the compatibiliy of module interface specifications.

This section proposes a spectrum ol KBSA facilities that provide assistance in deter-
mining compatibility of modules. These components could be developed in the short-
and mid-term phases of the project and could become useful tools in production-quality
programming support environments in the mid term. The long-term focus is to develop
support technology for automating aids to the general modular interface compatibility
problem. The long-term tools cvolving from this effort will provide comiponents for
other KBSA facilities in requircments, validation, and testing.

. | o g

AR e e

3.3 KBSA Facets 41

Short-Term Goal
e An Automated Structured Walk-Through System for Software Portability

This capability will help check the transportability of software packages between
different installations and machines. It will accept and record information about
various computer installations, and give advice on the system constraints on software
currently in force at a particular installation when asked.

The capacity for cnsuring portability will accept interface specifications about various
computer installations. Initially, these interface specifications will be highly restric-
tive, but they will include I/O requirements and limits, file access and privacy con-
ventions, memory limitations, and run-time scheduler interface specifications. Later,
more complete and formal interface specifications will be used. Based on such in-
formation about an installation, the assistant will build up a set of constraints to
which a program running on that installi.lion must conform. If a software specialist
is tailoring a module for that installation and requests the portability walk through,
he will get a checklist of constraints that his program must meet in order to run
there. Items on the checklist will be displayed one at a time and will require an
answer. The actual sequence of items displayed will probably depend on his previous
answers.

Such portability assistants cou!d be very useful in the short term and could probably
be implemented using very simple facts about installations and rather simple rule-
based reasoning to generate sequences of constraint checks.

Mid-Term Goals

Construction of a sophisticated mid-term version of a portability facet should focus
rescarch on (and take advantage of) several basic technology areas:

¢ Knowledge domains - Facts about an installation that affect the running of a
software package will have to be represented together with dependencies.

e Fault models = The assistant, in some versions, may use a modcl of previous
experience reports in reasoning about portability.

¢ Specification languages - As program design languages become more power-
ful, the information required by the portability facet will become precise and well
defined, depending only on the formal specification of an installation (operating sys-
tern and hardware). Construciion of portability facets should promote research on
specification in a precise high-level specification language of conventional operating
systems in particular, and complete installations in gencral.

Mid-term development of portability facets should therefore tuke advantage of advances
in specification languages, the existence of more complete modular specifications of
systems (installations), and the development of complete glossaries of keyword con-
cepts affecting portability (together with logical interrelations between those concepts

expressed in a form suitable for automated reasoning including rules, special purpose

42 3. KBSA INTERNAL STRUCTURE

deduction packages, etc.). The mid-term assistance would also be in the form of
generated checklists. However, these would encompass a much more complete set of
parameters affecting portability. Using associations with analysis of installation inter-
face parameters, the assistant may also track histories of previous reports of software
portability attempts to the installation in question. It may then issue advice during a
portability walk through, e.g., who to contact about a particular interface requirement.

Long-Term Goals

Long-term development of a sophisticated reusability facet may involve a highly in-
tegrated KBSA. Reusability could be made a factor in requirements planning and
refinement, module histories and documentation, and in activities coordination during
system implementation. The reusability facet would track particular facts relevant to
flexible use of a module and specification changes of system components.

3.1 KBSA Support System

This subsection identifies the lower-level utilities needed in the support system for
the development, evolution, and cventual integration of the KBSA facets. Iligher-level
support utilities that require more sophistication, such as inference systems or symbolic
evaluators, are discussed in Section 4, “Supporting Technology Areas.”

The KBSA support system will be an integrated programming support environment,
that provides facilities for a number of agents to pursue a variety of simultaneous
activities concerned with program development, testing, and maintenance, as well as
with project management. The environment will be integrated in the sense that several
policies must be adhered to by each of the many tools available in the environment;
these policies arc cnforced through a set of system utilities. The two most important
policies are those of version control and access control:

o Version control-

The version control policy derives from a desire to minimize the amount of work
each tool must do in order to account for the changes made since the last time
that tool did the same job. To implement this, each program entity (for example,
a procedure, a type, a data object, a fragment of documentation, a collection of
program cntities) will bear a version number. The version number will change only
when that entity changes, thus enabling a tool like a symbolic evaluator to know
what has (and what has not) changed since the last time it did an analysis of some
collection of entitities. In addition, each program modaule that is derived by some tool
will have a derivation history that relates it to the particular version of the parent
modules and the particular version of the tool that contributed to its derivation.

e Access control -

Access to all the elements of the KBSA devclopment environment will be strictly

"

3.4 KBSA Support System 43

controlled. The user (whether involved in developing/maintaining some software
product or in modifying or augmenting the KBSA development environment itself)
will be constrained to deal with the environment through the activity coordinator,
which will ensure that any action that is taken is appropriately authorized.

The KBSA support system has three major components: the data base, the tool set,
and the user interface; we discuss these in turn.

e Data base-

The data base maintained by the KBSA development environment consists of three
functionally distinct major components: the administrative data base, the software
data base, and the knowledge base. The administrative data base will be a data
base that contains a variety of information to do with the agents and organizations
that are known to the KBSA. Various administrative and management agents will
be able to query and update this data base in order that the relationships among
the organizations and personnel currently engaged in the projects under way are
correctly reflected.

The software data base will contain a set of modules -collections of program entities
that, together, embody all aspects of the set of products currently being developed
or maintained by some instance of a KBSA development environment. The creation
and manipulation of the program modules is done by various tools, whose use is
mediated by the activity coordinator.

The knowledge base contains all the various kinds of knowledge acquired by and
available to the collection of knowledge-based facets that will be integrated into the
KBSA environment as well as by the activity coordinator.

A set of data-base utilities will be provided by the KBSA to de.l with the addition
and deletion of various data-base elements, with backup and archiving, and with
organizing and reorganizing the various contained databases to ensure a timely
response to a query or update.

e Tool set-

The set of tools available in the KBSA development environment will grow as new
tools that provide assistance in various aspects of the life cycle of some software
product are integrated into the KBSA. Initially, however, there will be a basic set
of (standard) tools including tools for editing, compiling, and program transforma-
tion; debugging aids; tools for analysis, query, project management; for creating,
dispatching, and responding to messages; for data base management and so on. It
is assumed that the initial tool set will be developed by modifying various existing
tools to adhere to the version and access control policies that are enforced by the
KBSA. This initial tool st will later be superseded by the KBSA facets.

e User Interface-

The user interface to the KBSA will be through the activities coordinator. 1t is

H 3. KBSA INTERNAL STRUCTURE

el

assumed that this interface will be realized through a work station that provides high-
resolution graphic output plus a keyboard and various kinds of pointing mechanisms
for input. It is further assumed that, at any time, there will be a number of windows
into displays concerned with various aspects of one or more activities in which each
agent is engaged.

A number of utilities will be provided to enable various tools to create and manage
a variety of displays and to permit the user to control the positions, size, and other
aspects of the windows currently open.

4.1 Wide-Spectrum Languages 45

§4 SUPPORTING TECHNOLOGY AREAS

The KBSA facets must support problem-solving activities at all stages in the software
life cycle. These automated facets depend on the application of different technologies,
which we call supporting technology areas. These arcas fall principally within software
technology and artificial intelligence technology. For example, within software technol-
ogy, the development of machine processable languages for formalizing programming
activities and knowledge is a supporting technology area. Within artificial intelligence,
the area of knowledge-based expert systems is a supporting technology area. The ul-
timate success of the KBSA depends very strongly on the development of the supporting
technology areas.

In the past several years, the relevant supporting technology areas have been developing
rapidly. There has, for example, been much research activity in the areas of require-
ments languages, knowledge-based expert systems, automated program verification,
and sophisticated program management systems. Some of this activity has led to
prototype experimental tools and in some cases to commercially applicable products.

These recent advances in the relevant supporting technology areas have created a sound
foundation for the short-term goals of the proposed KBSA plan. However, further
advances are required in these supporting technology arcas to achieve the KBSA’s mid-
and long-term goals. It is expected that the relationship between the KBSA plan and
the supporting technology will be symbiotic. The KBSA effort will produce growth in
the supporting arcas, and innovations in the supporting areas will contribute directly
to KBSA. The overall effect should be a vigorous program of technology development
followed by prototyping of and experimentation with advanced software support tools.

In this section, we discuss the major areas of technology required to support the KBSA.

4.1 Wide-Spectrum Languages

Work on all aspects of programmming languages and high-level specification languages
needs to be strongly encouraged. Language design and underlying formal semantics
should be particularly emphasized. Languages concerned with distributed and parallel
processing require special attention. It should be noted that our use of “language”
here is intended to cover graphic and schematic representations of systems as well
as conventional written representation. It is intended to cover the spectrum from
requirements to implementation, from management to maintenance.

The importance of language design lies in providing the human user with natural
methods of expressing different aspects of a computational system and focusing only on
relevant details at any given life-cycle stage. Many languages, cach somewhat suitable
for different stages of softwarce development, currently exist. These languages, although
useful, are far from adequate for their intended usc in the software development process,
and the existing support tools for one langnage have not been designed with a view to

P

46 4. SUPPORTING TECHNOLOGY AREAS

interfacing with the tools for any other language or system. The aim of this support
technology area should be development of a wide-spectrum language suitable for all
stages.

At this time, research in the design of very-high-level formal specification languages
should be emphasized. There is an immediate demand for specification languages
that extend and complement current programming languages, for use as program
design languages (PDL’s) as well as for formal documentation. Later on, specification
languages can be expected to provide the stepping stone for better systems design
languages. By the mid-term period, new specification languages may well be developing
as the new programming languages of the future. At that time, it should be possible
to formulate a detailed research and development plan to produce a wide spectrum
language suitable for KBSA needs.

4.1.1 Formal Semantics

Languages need a formal semnantics to provide a basis for the construction of tools
supporting activities such as ecrror checking, consistency and compatibility analysis,
and program transformation.

A great deal of progress has been made in the past few years in developing formal
semantic models for programming languages, but much still remains to be done. For
example, many of the conventional sequential high-level programming language con-
structs are quite reasonably modelled with denotational or Hoarc-style models. Others,
such as various aspects of memory management, arc not yet modelled completely satis-
factorily. As we consider adding certain very-high-level constructs and various notions
of parallelism to our programming languages, we must extend the formal semantic
modecls to encompass these new constructs.

4.1.2 Advanced Systems Analysis Tools

Support tools for activities carried out in a wide spectrum language must be developed.
These tools will be based on the formal semantics of the wide spectrum language, and
on expert systems techniques. This support area must be developed in conjunction with
the language design effort. Current approaches to advanced program analysis tools can

be placed in two broad categories. The first, often termed “smart compilation,” seeks

to gather certain facts about a program - use/set information about program variables
(essentially syntactic) comninon subexpression information, dead/live regions of progran
flow for variables and so on. Much of this work is reasonably ad hoc and the mechanisms
for doing it arc usually embedded deep within a compiler with the information neither
saved nor available to any other tool. This area of smart compilation tools needs to be
expanded and the analyses they perform made available to other tools in standardized
form. It can be expected to produce useful products in the short to mid term.

4.3 Domain-Specific Inferential Systems 47

The second category is often termed “inference-based” and includes symkbolic
evaluators, transformation of specifications into run time error checks, and program
verifiers. Tools in this area utilize not only the semantics of the underlying language
but also user-supplied knowledge about the system itself (e.g., formal specifications,
knowledge about the problem domain of the system). Development in this area of ex-
pert analysis tools needs to be vigorously encouraged and the results of these analyses
made available in standardized form. This area will produce sophisticated KBSA facets
in the mid to long term.

4.2 General Inferential Systems

A general inferential system is a system that supports automated inference from user-
supplied inference rules applied to the modeled semantic properties of a user-defined
data base. (This generally includes first-order logical operators but may also include
other structural elements, e.g., operators and connectives from modal or temporal
logics.) Such systems are applicable to all problem domains. This support technology
arca needs to be strongly supported with special emphasis placed on KBSA needs.

Important aspects in the implementation of such systems are:

1. Efficient iinplementation of inference rules and data representation for general
logics. The inference rules are usually derived from the semantics of the language
in which the data are represented. Such logics include first-order logic but also
extensions and variants that may be useful in reasoning about programs such as
first-order logics of partial functions, time logics, and nonmonotonic logics.

2. Structural modular facilities for expansion to include domain specific inference
modules or cflicient decision procedures.

3. Userinterface lacilities specifically focused on making the system useful in practical
applications. For example, an area where general inferential systems have lacked
development so far is provision of facilities for explaining why a statement cannot
be derived ‘rom the given data.

4. Efficient decision procedures for subclasses of logical formulas.

Much of this work will depend on theoretical advances and basic research in such arcas
as inference systems for various first-order logics, time logics, and decidable first-order
theories. This basic rescarch should be encouraged whenever it is relevant to KBSA
facets.

4.3 Domain-Specific Inferential Systems

A major thrust of the KBSA is to provide facets that aid in the reasoning required
concerning specific problem domains at various stages in the software production and

P

48 4, SUPPORTING TECHNOLOGY AREAS

maintenance process. There is a wide variety of specific problem domains for #*-ich
the development of automated reasoning support is essential to KBSA facets. These
domains include the domain of programming languages, application-specific domains,
and the domain of project organization and the coordination of the activities ongoing
within a software project.

For each individual problem domain, special rules of reasoning and solution finding will
apply. Inferential systems based on the special rules are much more efficient than the
application of general inferential systems to an encoding of special domain within, say,
first-order logic. Specialized inferential and problem-solving systems will be essential
components of individual KBSA facets. Therefore, research in this area focused on
special problem domains related to proposed KBSA facets should be strongly supported.
This research can be divided into three areas outlined in the subsections below.

4.3.1 Formal Semantic Models

A formal semantic model for a problem domain is a system of definitions and rules
that permit a human bcing to reason about the objects in that domain, and their
interrelations. Such a mnodel is a most desirable, and perhaps necessary, precursor to
any techniques for mechanical reasoning and problem solving in that domain.

4.3.2 Knowledge Representation and Management

The knowledge concerning each domain must, at least conceptually, be available in
a knowledge base that is used by the various tools reasoning about that domain.
This knowledge is represented in a fashion appropriate for external use and is also
represented internally in such a way that it can be accessed, updated, and efficiently
maintained. Several external representations will often be desired. For example, the
form in which an expert in the domain presents knowledge to the knowledge base
may differ drastically from the form in which we wish the system to represent this
information to somcone who is not a domain expert - a user, programmer, or manager,
for example. For the nonexpert, we typically wish to explain, in lay terms, some aspect
of the knowledge about certain objects or situations.

Data (knowledge) about a problem domain may be of various forms. Some data may
be applicable to the knowledge base; these are generally called (inference) rules since
their function is to deduce (new) facts about the domain from the existing data. Other
data may take the form of heuristics for deciding when rules can be usefully applied.

Knowledge management concerns analysis of the knowledge data base. The knowledge
base for a problem domain may change as a function of the activity in that domain. For
example, a project progresses from a protolyping stage, during which the coordination

i e e N

4.4 Integration Technology 49

may be mostly informal, to a production stage and then a maintenance stage during
which the coordination may be highly formalized.

Support technology for knowledge management in KBSA must address the problems of
change and explanation. For example, in KBSA, the following examples of knowledge
management aids will be required:

e There must be mechanisms to “explain” the rules (appropriate to some situation)
to, for example, managers who are not particularly adept at dealing directly with
first-order logic or some variant thereof,

e [t must be casy to add, remove, and modify rules. The use of relations in a relational
data bise to represent certain (ground) rules and a reasonable management system
for the relational data base would be most helpful here.

e There should be mechanisms for checking the consistency of the data, noting redun-
dant facts, and so on.

4.3.3 Specialized Inference Systems

Effictent inference systems for a given problem domain will need to be developed based
on {and in conjunction with) the semantic model and data representation for that
domain. Such systems may be close enough to standard general inference systems
(resolution, equational rules, imiplicational rules, PROLOG schemes, cte.) to be imple-
menlable using general techniques. However we must also encour.uge reseaich into
specialized inference systems in order to explore all possibilities for efliciency. (This
situation is somewhat analogous to a current situation where, in the context of current
Von Neumann machines and programming languages built on top of them, research in
alternative data flow machines is being pursued.) Efficient inference systems for a given
problem domain are likely to be realized by building much of the inference mechanisms
into the data representation.

4.4 Integration Technology

A fundamental premise in the KBSA plan is that various facets can be integrated into
uniform (from the user’s point of view) environments in the mid to long term. The
ability to achicve this goal will depend on development of a supporting technology for
integrating separate facets. Integration technology covers both the underlying KBSA
support system itself (Section 3.4) and the integration of separately developed facets.

50 4. SUPPORTING TECHNOLOGY AREAS

4.4.1 KBSA Support System Technology

Adequate technology for implementing the basic facilities required of the KBSA support
system itself (Scction 3.4) must be developed. This may be categorized as basic
management facilities. While technology in this area is already well developed so that
implementation of initial KBSA support systems can be undertaken now, experience
will almost certainly demonstrate weaknesses and areas where further research and
development is required.

4.4.2 Interfaces and Standards

As the KBSA progresses, our experience with initial integration experiments should
be used to develop guidelines and standards for interfaces between KBSA facets.
Experience has already shown that such standards are difficult undertakings . Research
must be encouraged in investigating such support areas as

1. Definition of standard abstract data structure representations for internal forms
of broad spectrum languages (Section 4.1).

2. Standard interface facilities to be supplied by knowledge data bases.

3. A universal user command language for all KBSA facets.

5. PROJECT PLAN 51

§5 PROJECT PLAN

The KBSA effort involves a fundamental shift from the current informal person-based
software paradigm to a formalized computer-assisted paradigm and the creation of the
knowledge-based software assistant required to support it.

This ambitious undertaking cannot be achieved by a single effort in one giant step.
Rather, it must be approached through a series of simall steps over an extended period.
This recognition has been the major influence on our plan. This plan consists of a set
of coordinated parallel efforts which will be periodically integrated into a succession of
usable, and increasingly comprehensive, KBSAs.

The primary strengths of this plan lic in the identification and enunciation of the KBSA
paradigm as the solution to the problems besetting current software efforts, and in the
identification of a technical framework for fostering the distributed, gradual creation

of KBSAs.

The heart of this technical framework is the combination of the activities coordinator
and the knowledge-base manager which enables each life-cycle activity to be incremen-
tally formalized and ftted into the matrix of other activities. It forces consistency
among thesc activities and imposes standards. Most importantly, by formalizing the
activities and by managing the knowledge involved, il provides the basis for knowledge-
based support of both the individual activities and the software development as a whole.

Thus, two major tasks in the plan are the creation of suitable KBSA frameworks and the
incremental formalization and knowledge-based support of the individual facets of the
software life cycle. T'he individual facets identified in Section 3, and their development,
should be taken as illustrative and suggestive of the possibilities afforded by the KBSA
paradigm and must not limit further insights.

A third major task is the periodic integration of the cvolving individual KBSA facets
into a succession of more comprehensive KBSAs, These integration efforts will be used
as demonstrable measures of progress toward a complete KBSA. They will also serve
as the basis for the production enginecering and documentation necded to transfer the
KBSA technology and approach to actually impact the software development process.
This technology transfer is the fourth major task.

The final inajor task is the supporting technologics identified in Section 4, such as
knowledge-base management and inference techniques, which, while not specific to
either the framework or any individual KBSA facet, arc crucial to the overall develop-
ment of KBSA capabilitics.

Thus, planning of the KBSA project has been divided into five major tasks. The
interactions and dependencies between them over the 15-year time scale are described
below. Achievement of these tasks is discussed in terms of milestones (short-term =
3-5 years, mid-term == 7-10 years, long-term == 10- 15 years). Specific recommendations
aimed at achieving the planned developmental steps are also given.

52 5. PROJECT PLAN

A steering committee will oversee the implementation of the plan and advise the funding
agency on progress. The committee is to undertake a number of specific tasks in
addition to general planning. These include the definition of conventions, establishment
of guidelines and techniques for integration and technology transfer, and the selection
of facet capabilities to include in the integration cfforts.

5.1 Outline

The overall plan is to develop individual KBSA facets simultancously by supporting
parallel development efforts. The individual facets are to be integrated into prototype
KBSA systems.

Each individual facet development effort will be planned to produce intermediate

products, which may have immediate practical application. The intermediate products

represent developmental stages toward the final goal, and should be planned for the

short- and mid-term periods. Construction of prototype KBSA systems by integration 1
of facets or intermediate products is also planned as separate efforts in parallel with

fucther facet development.

Technology transfer cfforts will begin near the end of the short term and continue
through the end of the project. Support technology efforts will begin immediately and
continue through the end of the mid-term.

The plan contains three stages of milestones:

e The short-term milestones (3-5 years) are: first, the development and demonstration
of individual facets as specified in detail in Scction 3.3 and collated in Scction 5.4;
second, the demonstration of a framework for supporting the KBSA, including a
working activity coordinator and at least one facet, and integrated systems counsisting
of sorme of the individual facets or intermediate products; and third, a set of guidelines
and standards to facilitate integration of facets as defined by successful frameworks.
Some technology transfer is also expected in this stage, and a prelininary set of
guidelines for technology transfer wil! be defined.

e The mid-term stage (5-10 years) requires facets to conforin to the integration
guidelines. Milestones of this stage are; first, further development of more advanced
stages of facets as specified in Section 5.4; sccond, demonstration of integrated sys-
tems consisting of many facets; and third, {urther successful technology transfer
efforts.

e The long-term milestone is the coustruction of prototype KKBSA systems that in-
tegrate all facets.

It is clear that a planned effort of this nature requires careful monitoring by the steering
committee, particularly with regard to definition of individual facet efforts, production

e A - i

[P

(e

5.2 Tasks 58

of guidelines and standards for integration and technology transfer, and selection of
facets for technology transfer.

5.2 Tasks

The KBSA plan is structured into the following five tasks:

1. Definition and implementation of KBSA framework (i.e., an activities coordinator
and knowledge-base manager).

2. Definition and implementation of individual prototype facets with specific
capabilities. (Sample facets are described in Scction 3.)

3. Integration {i.e., development of integrated prototype KBSA systems that include
several coordinated facets).

4. Technology transfer of facets (short term through mid term) and of integrated
systems. (long term)

5. Development of the technology support base (described in Section 4).

These tasks and their interactions over the 15 year timne scale are tllustiated in Figure

1. Note especially the close “organic” relationship between the framework and facet
f ! I

tasks. "The tasks arc desceribed below:

1. Definition and (mplementation of KBSA Framework

The KBSA framework provides the basis for the development and integration of facets.
It consists of an activities coordinator, a knowledge-base manager, a wide-spectrum
language for representing multiple levels of software development knowledge within a
facet, and a set of support utilities (user interface, inference engine, ete.).

The magnitude of the conceptual and system-building efforts required to construct
such a KBSA framework necessitated our identifying it as one of the major KBSA
tasks. llowever, we cannot conceive of it being undertaken except in conjunction with
concurrent facet development.

Framework precursors will necessarily arise (in piecemeal, ad-hoc form) from early facet
cfforts. Some of these ad-hoc capabilities may be cnhanced into comprehensive and
well-founded KBSA frameworks. But this can only be done in the context of existing
and planned facets. As these frameworks mature, other developruent eflorts wishing to
focus on individual facets can do so by adopting one of the emerging framcworks on
which to build.

2. Definition and Implementation of Specific Facets and Capabilities

Seetion 3 gives a sample list of proposed KBSA lacets, i.e., assistants for requirement,
specification, development, testing, performance, reusability, and project management.
The actual tet of facets will probably include some not explicitly mentioned here.

54 5. PROJECT PLAN

Each individual facet effort will be required to contain a development plan that is
structured into short-, mid-, and long-term stages. This plan will include both short-
term and longer-term milestones leading to development of a sophisticated knowledge-
based facet.

Although the devclopment plan will differ somewhat from facet to facet, we expect it
generally to follow the staged knowledge-based development model outlined in Section
5.3. Thus, a typical facet effort will progress from the formalization of properties
relevant to the activities of the facet, to inferences that can be drawn on such properties,
to actions that can be explicitly invoked to modify and/or maintain those properties;
to the formalization of goals which, via planning and problem-solving, ¢an implicitly
invoke such actions; and finally, for some facets, to the inclusion of knowledge ac-
quisii‘on facilities that will further enhance the capabilities of the facet. During this
extended staged development of knowledge-based facet capabilities, periodic (every 3
years) demonstrations of working prototypes of the individual facet will be produced.

Some of these parallel individual facet efforts will be selected for inclusion in an
integrated KBSA, as described in Task 3 below. Such integration will be in addition to
the continued development of the facet and not a replacement for it. As the framework
aclivity matures, a set of standards and conventions will emerge that will guide further
facet development.

3. Integration

This task requires that the different facets and capabilities developed and implemented
in the course of the planned eifort be integrated into existing KBSA frameworks as
demonstrable working laboratory prototypes. The hrst integration prototypes should
be planne.' to start toward the end of the short-term period (5 years). This task is
preliminary to the building of production versions (described in Task 4 below).

A secondary goal of the integration effort will be the definition of guidelines and
techniques for integration of facets. These guidelines and techniques will be available
by the end of the short-term stage and will be a conformance standard for both facet
and framework efforts during the mid-term stage.

4. Technology Transfer

Technology transfer of a facet or integrated KBSA system means the production en-
gincering to make it available and usable by a broad segment of the software com-
munity.

Technology-transfer planning should be regarded as an extension of the integration
efforts. It entails roordination with existing automated environments and human
engincering for practical use. In order to plan technology-transfer activities, the
steering committee will need Lo track and evaluate other software technology efforts,
coordinate elements of the KBSA effort with outside efforts (when this is judged to be
possible and timely), and either cxtend the integration guidelines or produce separate
specific conventions for technology transfer.

I Ry e I

5.3 Staged Development of KBSA Facets 55

Technology-transfer guidelines and conventions should be available during the mid-term
phase. These should be compatible with the integration guidelines, and should be based
on experience with three to five technology transfer efforts. Accordingly, some KBSA
facets must be planned so that their short-terin goals merit technology transfer.

Some technology transfer will occur after the short-term milestone, and a major transfer
effort will begin after the mid term milestone. It is recommended that conformance
with the technology transfer guid:lines be encouraged in the mid-term planning,.

5. Technology Support Base

This is the technology that is nceded to support the KBSA effort. We have discussed in
Section 4 the areas of technology support needed. Such research should be supported
on the basis of its relevance to the KBSA objectives.

5.3 Staged Development of KBSA Facets

A key feature of the KBBSA project plan is the staged development of individual
KBSA facets. As an aid to understanding, for those unfamiliar with knowledge-based
systemns, we present here one particular model fo. describing such incremental staged
development of knowledge-based capabilities in the individual facets. We will also use
this model to establish a framework to describe the relative maturity of each facet in the
milestones presented in the following subsection. Naturally, actual knowledge-based
systems, both existing and future, display great diversity in their staged development
and may only follow this pedagogical model at the broadest level. Readers familiar
with knowledge-bascd systeins and their development can proceed directly to Section
5.4.

This section deseribes a possible sequence of stages through which each facet might
logically progress. The similarity in the order of development for each facet is due to
their common functional architecture (shown in Figure 3) and the logical dependencies
between the elements of that architecture. Note, however, that the relative timing
of similar stages will vary greatly between facets according to the difliculty of the
development issucs involved in cach area.

Figure 3 shows all the functional elements that must be present to support the behavior
of a mature KBSA facet like those described in Sections 3.3. First we will discuss
the relationships and dependencies between these functional elements in the mature
facet. We will then desceribe the typical order in which these elements are incrementally
developed.

5. PROJECT PLAN

KNOWLEDGE BASE

PROPERTIES I M

N E

F C

E H

ACTIONS R A

E N

N I

c s

REASONS E M

S.

FACET
QUERY/ ACTION KNOWLEDGE
UPDATE EXECUTION ACQUISITION
PLANNING &

PROBLEM SOLVING

Figure 3. FUNCTIONAL ELEMENTS OF A MATURE FACET

5.3 Staged Development of KBSA Facets 57

The first-level functional decomposition in Figure 3 is between the active parts of the
facet (bottom) and the knowledge base (top). Note that this division is not exact
because in knowledge-based Al systems, a certain amount of active processing, called
the inference mechanisms, is typically associated with the knowledge base itself.

The specific information in the knowledge base varies according to the domain of each
individual facet. It is possible, however, to distinguish three general types of knowledge
which are relevant in all domains: properties, actions, and reasons.

The most basic type of knowledge with which a facet is concerned is the properties of
objects (e.g., requiremcats, specifications, code, test cases) in its domain. A property is
typically a simple fact about the relationship between objects which may or may not
be true at a given point in time. For example, a property of test cases might be the
version number of the module on which it has most recently been executed.

A higher-level vocabulary within the knowledge base describes the actions of a par-
ticular domain. Actions are typically defined by a sct of inputs (objects upon whose
properties the action depends), a set of outputs (objects that are created by the ac-
tion or whose propertics are modified by the action), preconditions (properties that
are expected to hold between inputs prior to execution of the action), and postcondi-
tions (properties that will hold between outputs and inputs dne to the execution of
the action). Program transformations are examples of actions in the implementation
domain. Note that the action vocabulary builds on the property vocabulary because the
preconditions and posteonditions of the actions are expressed in terms of the properties.

In order to provide more advanced services to the user, a facet also nceds to
“understand” the veasons behind actions. The same action can be performed for
different reasons. lor example, the reason for changing an implementation decision
might be either because of a change in specilications, or in crder to increase efliciency.

In the active part of the facet, thece is a related generic layering of functionality. The
most (lundamental service the facet can provide is to function as a dala retrieval system,
i.e., to provide query ind update operations on the knowledge base. For example, it is
useful simply to record the history of modifications to a module.

At a more advanced level, a facet has the ability te execute specific actions under direct
command from the user. For example, the implementation facet will apply a program
transforination chosen by the user.

With 2 fully mature facet, the user specilies his goals, and the lacet, using planning
and problem solving techniques, chooses and executes appropriate actions to achieve
these goals. The user’s goals theu become the reasons that justify the actions taken by
the facet. For example, the user will tell the testing facet that he wants a given module
to be tested for refease, [t is then up to the facet Lo figure out what test cases to run.

A fully mature facet may also independently acquire new knowledge as a by-product of
its other activities. For example, an implementation facet may discover new optimiza-
tions.

-
3

58 5. PROJECT PLAN

Figures 4 through 7 show the typical order of intermediate stages through which each
! facet will develop from first prototype to maturity. In cach figure the newly added
functionality at each stage is indicated by asterisks. As mentioned above, the relative
timing of these stages will differ greatly between facets, but the order is essentially the
u same for each.

The iirst stage of development is shown in Figure 4. Work on each facet will begin by
! identifying the types of objects in the domain and the useful vocabulary of properties
: of those objects. A formal language and appropriate utilities are then provided for
specifying and querying those properties.

KNOWLEDGE BASE

PROPERTIES

FACET

QUERY/
UPDATE

Figure 4. FIRST STAGE OF DEVELOPMENT: THE PROPERTY STAGE

5.3 Staged Development of KBSA Facets 59

The next major stage of development, shown in Figure 5, is typically to enhance the
query and update capabilities of the facet by adding some inference mechanisms to the
knowledge base. Initially, these inference mechanism deal only with properties - for
example, inferring implicit properties from explicit ones, or detecting contradictions
between stated properties. However, as the knowledge base is enhanced by adding

actions and reasons, the inference mechanisms are also typically upgraded to deal with
the new types of knowledge.

KNOWLEDGE BASE

*

kkkkkkkk

*

« *«

* I M <«

« E‘k

PROPERTIES * N x

F C

« X

t E oH o3

x R A «x

k3

x E N

R T

x C S «x

E 3

x E M %

x

= S X

kikkhkkkkkkk

FACET

QUERY/
UPDATE

Iigure 5. SECOND STAGE OF DEVELOPMENT: THE INFERENCE STAGE

% 80 5. PROJECT PLAN

! The third stage of development, shown in Figure 6, is to introduce a representation
' for the actions in the facet’s domain and the ability to execute these actions. The
knowledge base at this stage may contain not only an cnumeration of possible actions,
but also the history of actions that were actually taken. Note that, at this stage, the
facet takes no initiative; actions are performed only on direct command from the user.
However, the facet can perform many uscful monitoring and recording functions at this
stage, such as verifying that the preconditions of an action hold before it is executed,
or allowing the user to edit and replay a sequence of actions already performed.

T

KNOWLEDGE BASE

PROPERTIES l
Shikkkkkkkkkhkkkhkhkkk

ACTIONS

MOZE@MmmZ -
ZuHZP X OMmMX

&k k Kk k ok ok k
kK k kkkk

khkkkhhkkkhkkkikkkkhk

-

FACET
dde ke kK de ok k ok ok kkk
» «
* «
QUERY/ * ACTION x
UPDATE * EXECUTION *
» *x
* x
%ok gk kokkkkkkkk

Figure 6. THIRD STAGE OF DEVELOPMENT: THE ACTION STAGE

T SRTNG TMGEMR N

L — i - —— —e ——7.4_—-__-,»_.,‘ .

5.3 Staged Development of KBSA Facets 61

The essence of the transition to the next stage of development, shown in Figure 7, is
that the facet begins to assume some initiative. This stage is fundamentally based on
developing a vocabulary of reasons (goals) in the domain. Given this vocabulary, the
facet can use problem-solving techniques to plan sequences of actions to achieve goals
that the user specifies.

KNOWLEDGE BASE

I M
P
ROPERTIES N E
F C
E H
ACTIONS R A
E N
N I
~k***************-k C S
E 3 *®
x REASONS P E M
« « S
PP S |
FACET
! QUERY/ ACTION
UPDATE EXECUTION
' -x*******************************i**:
X x
3 PLANNING & PROBLEM SOLVING *
L 3
«®
:**********************************'l

Figure 7. FOURTH STAGLE OF DEVELOPMENT: THE PLANNING STAGE

S s el el s e —

62 5. PROJECT PLAN

Finally, some mature facets (Figure 3) may include knowledge acquisition capabilities.
By this we mean not only the ability for the user to add new information, which is
provided by the query/update facilties from the beginning, but also the ability of the
facet to independently develop new vocabulary for itself to use to improve its own
performance.

5.4 A Note on Limitations

We close this section by discussing our position on including, as goals for the
KBSA, fully automatic program synthesis and comprehension of natural language
specifications.

An important issue is that of what degree of automation in program synthesis is the goal
for KBSA. The goal we have chosen for KBSA is machine-assisted program synthesis,
rather than fully automated program synthesis.

We feel this will allow the KBSA to work with the highest level of languages, since
at any point in time there may exist a gap between the level of language that is fully
automatically compilable and the level of language that can be implemented by experts
with machine assistance. Iiven though the level of language features that can be fully
automatically compiled will steadily rise in time, our strategy will allow the level of
specification and requirements languages to rise above that level.

By thus including the highest level constructs in the KBSA's formal specifications and
requirements language, many forms of knowledge-based assistance can be applied at the
highest level, even though the implementation of these languages will require human
interaction.

The KBSA will be structured so that as advances occur in the area of fully automatic
synthesis, they can be readily incorporated. Since we expect to keep the developer as
well as the machine in the loop, provision of suitable interfaces will be made so that
the developers and the KBSA can work cffectively together.

Natural language specification was omitted as a goal because it is orthogonal to the
KBSA approach. The KBSA approach is based on providing better and better for-
malisms for developers to use (and to assist them when they employ these formalisms),
while natural language specification attempts to reexpress informal description in some
formalism. llence, it presupposes the existence of those formalisms. Thus, it cannot
replace any of the proposed effort in defining those formalisms and providing assistance
when they are used, but rather is a “user interface” to those formalisms.

While this would certainly be a useful addition to the KBSA, it seems to represent an
unneceded dilution of focus and energy within our objectives of providing automated
assistance to the software development cycle. Rather, it should be pursued separately
as a research objective in its own right.

5.5 KBSA Milestones 83

5.5 KBSA Milestones

Figures 8, 9, and 10 show the stage of development each facet of the KBSA is expected
to reach in the short-, mid- and long-term time frames. In addition to characterizing
each facet in terms of the generic stages introduced in Section 5.3, we also repeat below
the major milestones for cach facet defined (and more fully described) in Section 3.

Note that as the capabilities of any one facet of the KBSA grow, it naturally begins to
overlap with the others. In each milestone, we point out some examples of integration
between facets which become feasible in that time frame. In general, we expect an
evolution of the overall structure of the KBSA from essentially separate facets in the
short term, to a set of integrated, cooperating tools in the mid term, to in the long
term, an assistant which is better viewed by the KBSA user as the single active agent
described in Section 2.2.3 rather than as scparate facets.

T

SHORT-TERM MILESTONE (Figure 8)
Project Management Facet
o Project management formalism
o Knowledge-base manager and message handler
o Task tracking

(Initially, it will be useful just to have a record of the status of all tasks on-line
with conveniont update and query facilities.)

Requirements Facet
o Analysis of requirements planning method
o A formal requirements language

! e Smarl. editing and managing of requirements

Reviewing the requirements definition for the user

q (Similarly, these milestones for Lhe requirements facet correspond roughly to the
properties stage of development.)

Specification Validation Facet
e Exccutable specilication language
o Specification wellformedness checking
* Spccification testing
o Specification paraphraser

(Checking the wellformedness of specificat.ns implies the existence of some
inference capabilities. Erecuttig specifications is a kind of action erecution.)

Y | o — e e

64 5. PROJECT PLAN

Development Facet

e Wide-spectrum language

Transformation language

Property language

Interactive mechanical development

Automated property proving

(Stmilarly, these milestones for the development facet imply the ezistence of both
inference and action capabilities.)

Performance Facet

e Data structure analysis and -advice
¢ Subroutine and module decomposition advice F

(In the short term, the performance facet will need a representation for perfor-
mance properties and the abilily to reason about them, but will not be able to
take any actions itself.)

Testing Facet
: o Test-case maintenance assistant

Test case maintenance, including automatically running ltest cases, will be
st o g y g
feasible in the short term.]

Project Documentation Facet

A o On-line documentation

(Similarly, in the short term all documentation should be at least on-line, even
if there isn’t a very deep understanding of it by the KBSA.)

Two examples of opportunities for integration between facets in the short term are
shown in Figure 8. First, test cases should be treated by the project documentation
facet as a form of documentation of the system being developed, and thus should
be accessible through the same sort of interface. Similarly, decisions made by the
development facet should also become part of the project documentation.

Cr e P

‘——m .

5.5 KBSA Milestones

[.

65

Activities Specification
Cooerdinator Requirements Validation Development
P P P P
A 1 A I
Q Q Q X Q| X
Performance }
P P P P
I A I
Q Q] x Q Q
|
Testing Project Documentation
Management
)
P=Properties A=Actions R=Reason
PL=Planning & X=Action Execution I=Inference Mechanism
Problem Solving Q=Query/Update

Figure 8. SHORT-TERM MILESTONE

66 5. PROJECT PLAN

MID-TERM MILESTONE (Figure 9)

Project Management Facet

e Suggesting simple management decisions
¢ Plan and procedure creation and meodification
¢ Knowledge acquisition

(These milestones require the addition of inference and action
capabilities.)

Requirements Facet

o Requirements transformation and refinement

(Similarly, this milestone requires the addition of inference and action
capabilities).

Specification Validation Facet

e Rapid prototyping
e Behavior explanation

(Ezplanations of behavior require representation of the reasons behind elements
of the specifications.)

Development Facet

e Automated development
e Automated replay

(Automated development and replay require planning and problem solving
capabilities.)

Performance Facet

e Domain models for analysis
o Algorithm design analysis and advice
e Real-time performance advice

(These more advanced types of performance analysis will require fully developed
problem-solving capabilities.)

Testing Facet

¢ Knowledge-based test generation

(At this point the testing facet will be fully mature, including the ability to
independently define test sequences for a particular program using its general
knowledge about the application domain. Planning abilitics are the key new
feature at this stage of development.)

B S P ey

b e—— .

T T e — s s e ety

5.5 KBSA Milestones 87

Project Documentation Facet

e Partially formalized documentation

(The formalization of documentation will allow a more powerful set of operations
to be performed on it.)

A number of examples of integration between facets in the mid term are shown in
Figure 9. The requirements facet should function as a source of test cases. The
performance facet should be able to invoke the testing facet to run test cases for the
purpose of measuring system performance (perhaps under different implementation
decisions). The devclopment facet should inform the testing facet of those parts of the
program that do not nced to be tested because they have been derived by correctness-
preserving transformations. Finally, the specification validation facet may call upon
the development facet for a rough implementation of specifications to be run to obtain
user feedback.

68 5. PROJECT PLAN

Activities Requirements Validation Development
P P P P
A 1 A 1 A I A I
R R
Q X QX QX Q X
P P
11
& - l 1L 1 1 P [2
P P P P
A 1 A 1 A 1 A 1
R R R
Q X Q X A Q| X Q | x
- PL PL. PL
Performance Testing Tasking Documentation
s
!
P=Properties A=Actions

R=*Reason

PL=Planning & X=Action Execution I=Inference Mechanism

Problem Solving Q=Query/Update
'

Figure 9. MID-TERM MILESTONE

/ - - T

5.5 KBSA Mileatones 69

, LONG-TERM MILESTONE (Figure 10)

In the long term, all of the facets will reach their mature form, with the exception of
! knowledge acquisition capabilities in some areas, which are expected to remain very
j difficult artificial intelligence problems. The mature capabilities of the various facets
are described in detail in Section 3. A new example of integration shown in Figure 10
is the invocation of the development facet by the requirements facet as an early [lter
on the technical feasibility of the user’s requirements as they are being defined.

Activities Requirements Validation Development
P P |4 P
A 1 A 1 A I A 1
R R R R
Q X Q X A Q!X Q X
P P P P
t]
13 3
P |4 P P
A 1 A 1 A I A 1
R R R R
Q] X Q| x|a Q| x Q | x
PL PL PL. rL
Performance Testing Tasking Documentat lon
P=Properties A=Actions R=Reason
PL=Planning & X=Action Execution I=Inference Mechanism
Problem Solving Q=Query/Update

Figure 10. LONG-TERM MILESTONE

} . : RSNy [T WY

R e DU

v e > o e -
o aan o

ACKNOWLEDGMENTS

70

Guidance and impetus for this study came from Northrup Fowler, Donald Roberts,
Douglas White, Samuel DiNitto, and William Price. Larry Druffel, William Riddle,
and Winston Royce all provided technical input to the study. Judy Tollner was
administrator of this project. Assistance in formulating the facet descriptions was
provided by Beverly Kedzierski and Elaine Kant. Carl Engelman helped formulate
Section 1.

8. REFERENCES T

§6 REFERENCES

1. Software Technology for Adaptable Reliable Systems (STARS) Program Strategy:
DoD Report, ACM-SIGSOFT Engineering Notes, Vol.8, No.2, April 1983, pp. 56-
84.

2. Barr, Avron and Feigenbaum, Edward A., The Handbook of Artificial Intelligence,
Volume 2, Chapter X, William Kaufmann, Inc., Los Altos, 1982, pp. 295-379.

3. Hinke, Horst (Ed.), Software Engineering Environments, North-Holland, New
York, 1981.

4. Special Issue on Programming Environments, JEEE Computer, Vol.14, April 1981,
pp. 7-45.

R

g
4

