
7 AD-At34 699 REPORT ON A KNOWLEDGE-BASED
SOFTWARE ASSISTAN(U)KESTREL INS PALOALT CA C GREENET AL AUG 83

NCCS.E ADC-TR-83-195 F30602-81-C 0206

UNC ASSIFED FG 6/4

MEENMOEENOE
"""IEOEE NN

11111 1.01112.0

I~ 3

, III8

MICROCOPY RESOLUTION TEST CHART

NATONAL NVRfAVJ Of StAODARMS - .963 -

I

. .d

rawl Todmwes nopw

REPORT ON- A KNOWLENEUAED
t SOFTWARE ASSISTANT

Kestiw Instituft

C. Ovs". D. Ludkhum. E, Bier. T. Ch"ehm. Mn C, Rd.

AMM FORX MCn Ol AfWTR m9

TIC
~ftECTE

ROME Ait DWKOM@WTa .
sAfir Plor Sytaw sma

or""t Air rem s3m..'y fla 144

82 1' &. i

Thb~ repprt has, been. reylam byth A mOpStw
is rela fitl to the httiohal Twd~S~ 4 UitaOIu

it iiU be veiuesable to th. sglpulc Imuiafp!rg Uti

RADC-.TR-83-195 has beum risvieMA sa4 to approd fot "Kbidatin.,

APPROVED: / 4 e
NORTHRUP FOWLER III
Project Engineer

chi, Comand and Control Division

F OR THE COWI4DER:

JOHN P. RUSS
Acting Chief, Plane Off ie

If your address has changed or If you wish to be rainmd from tle "I"
mailing list, or if the addressee Is no longer em*yed by yt06$ tP

* pleas notify MWC J01 -) Grifflas AnI MY 13441. VAls will aeatt
uslatalulng a curling wai$" l1.:u

Do not retrneaie of this, wepot but~e ou~eta COUP" t 4ea
ea sdaiffc dottmat reqUfree that it be r"t'Was. 'A

.~..k

.. ~le

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (Uioet D.Enlred),

REPORT DOCUMENTA.TION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

I REPORT NUMBER 2. GOVT ACCESSION NO, S. RECIPIENT'S CATALOG NUMBER

RADC-TR-83-195 0-
4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOO COVERED

Final Technical Report
REPORT ON A KNOWLEDGE-BASED SOFTWARE Jun 82 - Jun 83
ASSISTANT . PERFORMING O'G. REPORT NUMSER

N/A
7. AUTHOR(e) B. CONTRACT OR GRANT NUMBER(.)

C. Green T. Cheatham F30602-81-C-0206
D. Luckham C. Rich
R. Balzer

S. PERFORMING ORGANIZATION NAME AND ADDRESS tO. PROGRAM ELEMENT. PROJECT, TASK

Kestrel Institute AREA& WORK UN.IT NUMERS

1801 Page Mill Road 61102F/62702F
Palo Alto CA 94304 558119P5
I. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Rome Air Development Center (COES) August 1983
Griffiss AFB NY 13441 13. NUMBER Of PAGES

80
14. MONITORING AGENCY NAME a AOORESS(II differen feom Controlling Office) IS. SECURITY CLASS. (of this

t
eport)

Same UNCLASSIFIED

ISO. DECLASSI FICA TION/OOWNGRADING

N/ASCHEDULE

IS. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20. If different from Roport)

Same

IB. SUPPLEMENTARY NOTES
RADC Project Engineer: Northrup Fowler III (COES)

This effort was funded jointly by thL Rome Air Development Center
and the Air Force Office of Scientific Research
19. KEY WORDS (Continue on reore side if nec.. ery, and Identify by block number)

Artificial Intelligence Knowledge-Based Programming
Knowledge-Based Systems Automatic Programming
Software Production Expert Systems
Software Maintenance Software Assistant
Software Environments
20. ABSTRACT (Continue anwo.re side if neeeeaty end Identify by block number)
'This report presents a knowledge-based, life-cycle paradigm for the
development, evolution, and maintenance of large software projects. To
resolve current software development and maintenance problems, this
paradigm introduces a fundamental change in the software life cycle -
maintenance and evolution occur by modifying the specifications and then
rederiving the implementation rather than attempting to directly modify
the optimized implementation.. Since the implementation will be rederived

DD . 1473 EDITION OF I NOV 6S IS OBSOLETE UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (WhIen Del Entered)

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(Whbi. Dae Entomd)

for each change, this process must be automated to increase its

reliability and reduce its costs. Basing the new paradigm on the

formalization and machine capture of all software decisions allows

knowledge-based reasoning to assist with these decisions. 4Thie-report %&t

describes a knowledge-based software assistant (KBSA) that provides for

the capture of, and reasoning about, software activities to support this

new paradigm. This KBSA will provide a corporate memory of the develop-

ment history and act throughout the life cycle as a knowledgeable software

assistant to the human involved (e.g., the developers, maintainers, project

managers, and end-users). In this paradigm, software activities, including

definition, management, and validation will be carried out primarily at

the specification and requirements level, not the implementation level.

The transformation from requirements to specifications to implementations
will be carried out with automated, knowledge-based assistance. -The

report presents descriptions for several of the facets (areas of-expertise)

of the software assistant including requirements, specification validation,

performance analysis, development, testing, documentations, and project

management. This report also presents a plan for the development of the
KBSA, along with a description of the necessary supporting technology._

This new paradigm will dramatically improve productivity, reliability, "

.adaptability, and functionality in software systems.

IAo..

SECURITY. CLASSIFICATION OF '-"C "e Date e-"

Conteitts u

Contents
Page

1 EXECUTIVE SUMMARY 1
1.1 Objectives 1
1.2 The Problem..
1.3 Solution: A New Computer-Assisted Paradigm. 2
1.4 Areas of Assistance. 3
1.5 Usage 3

1.6 The Development Plan. 4
2 PROBLEMS AND SOLUTIONS. 8

2.1 Statement of the Problem 8
2.2 Proposed Solution 9

2.2.1 The Basis for a New Knowledge-Based Software
Paradigm 9
2.2.2 Major Changes in Life-Cycle Phases. 10

2.2.3 An Automated Assistant 15
3 KBSA INTERNAL STRUCTURE. 17

3.1 Activity Coordination 19
3.2 Project Management and Documentation. 20

3.2.1 Project Management Facet 21
3.2.2 Documentation. 23

3.3 KBSA Facets 25
3.3.1 Requirements 25
3.3.2 Specification Validation. 30
3.3.3 Development. 32
3.3.4 Performance. 35
3.3.5 Testing 38
3.3.6 Reusability, Functional Compatibility, and Portability. 40

3.4 KBSA Support System. 42

4 SUPPORTING TECHNOLOGY AREAS 45
4.1 Wide-Spectrum Languages. 45

4.1.1 Formal Se~mantics 46

4.1.2 Advanced Systems Analysis Tools. 46
4.2 General Inferential Systems 47
4.3 Domnin-Specific Inferential Systems 47

4.3.1 Formal Semantic Models 48

4.3.2 Knowledge Representation and Management 8

4.3.3 Specialized Inference Systems. 49
4.4 Integration Technology 49

4.4.1 KBSA Support System Technology 50

4.4.2 Interfaces and Standards 50
5 PROJECT PLAN. 51

5.1 Outline 52
5.2 Tasks. 53
5.3 Staged Development of KBSA Facets. 55
5.4 A Note on Limitationq 62

5.5 KIISA Milestones 63
6 REFERENCES. 71

iv

Plates

Page
Figure 1. DEVELOPMENT OF PARALLEL KBSAs OVER TIME 6
Figure 2. GENERALIZED KBSA STRUCTURE 18
Figure 3. FUNCTIONAL ELEM NTS OF A MATURE FACET 56
Figure 4. FIRST STAGE OF DEVELOPMENT: TIlE PROPERTY STAGE 58
Figure 5. SECOND STAGE OF DEVELOPMENT: THE INFERENCE STAGE . . 59
Figure 6. THIRD STAGE OF DEVELOPMENT: THE ACTION STAGE 60
Figure 7. FOURTH STAGE OF DEVELOPMENT: TIlE PLANNING STAGE . . . 61
Figure 8. SIORZT-TERM MILESTONE 65
Figure 9. MID-TIRM MILESTONE. 68
Figure 10. LONG-TERM MILESTONE 69

1.2 The Problem 1

§EXE CUTIVE SUMMARY

1.1 Objectives

The purposes of this report are:

1. To propose a formalized computer- assisted paradigm for the development, evolu-
tion, and long-term maintenance of very large software application programs.

2. To describe the knowledge-based software assistant (KBSA) needed to support that
paradigm.

3. To outline a long-termn deVelopmtTI plan designed to realize such a knowledge-
based assistant.

1.2 The Problemn

The existence of a soft'Aare problemi for large systems and its relevance to the military,
which is becoming ever inore reliant oil software in its weapon systems, its planning,
its logistics, its training, and its commnandl and control has long been recognized and is
well chronicled !Gi To (late, attempts to resolve this problem have yicldcd only iaodest
gaini (a factor of 2- comipared with the thousand fold increase in hardware perfor-
malice) arising primarily horn use of higher level languages and improved management
techniquos (software engineering).

Although further modest gains can still be achieved by continuing and accelerating this
current technology, a fuindamnental flaw in the current software life cycle precludes larger
qualitati~e iinprovenient3. The process of programiming (conversion of a specification
into an implementation, requirenment into specification, etc.) is informal and largely
undocuIniented. It is just this inforuinmtion, and the rationale behind each step, that is
crucial, but unavailable, for- rainlenaiiee. The current paradigm fails to recognize the
gcneral iedto capture -i life-cycle activities andl the rationale behind then).

In order to capture the prograllillinrg process and~ use k now ledge- based tools ap-
propriate ly, we fuitist o'o I a I'C tll lVels of' aC0VIVi is as w('ll S hetrnsfrna
tions between theni. Consider lie cirrent. situlation in which only the source code
(implementation l'l)Is available, bt 1he speciIfi'at ion and the mapping froml it to
he source code is not. In tbils situa~t ion, maintenance can be performed only on the

source code (i.e., the iniplenmentat ion) wiichi has already been optimized by the pro-
grainers. Tlhe~,e optimiiza tions sprood in inrinat ion (take advantage of what is known
elsewhierv) ond stibstI'ZoIit colmple\ but, elficjliit revihi .ations for siimpler abstiactCions.
Bioth of these effects exnct'rbh the unin temnici problein by mnaking the system har-
(]ir to undcerstandl, by, thr'ain e du'[uet~encips ainuong the parts, and by (lelocahiz-

2 1. EXECUTIVE SUMMARY

ing informnation. Simillar situations hold for the mnappings between requirement and
Specification, or requirement and testing levels.

1.3 Solution: A New Compuiter- Assisted Paradigm

We propose to shift die current Informal person- based software paradIigm into a formal-
ized comipu-ter-assisted paradigmi and to provide the knowledge- based software assistant
(KH3SA) required to support the paradigmi.

The goals are inore reliable an(1 rapid development of systems with greater functionality
an(1 the Ibuild- * p of a comjpu terizedl corporatc mnemory which, through tire KIISA,
w ill aid tile cont inue (d evolu tion artd(adopt ion of' the system, especially in the face of
person nel turnover. The processes tairgeted l'u- suich assist ance constituite thre entire
life cycle of mtajor so fkwa ic (developmt ent: projcci mtantage rne tit, require menits (Jelfinition,
Validlat ion, ilileltitat ion, testirtg, (lOChimenutat ion, and~ nmaintenance. Thus, KI3SA
cleairly parallels the lDol) Softwaire Initiative [I] and Is a natural, long-term c'omiplemnent
to it..

The 1cst 1K13s 1\ pa~l girlu cati be sit niwt:tr zedl as 'tiachine-In-the loop"', where all
software life-cycle aictivities are niachitre miediated -in(I supported. Initially,

he 1KBSA will artoit 0 tically (Inrtinnert thre octurrence of every activity and ensure the
proper sequenicing arid coordinat ott of aill the activities performed by thre individuals
involved in a large project. Thten, as thle variorti, activities are itcreasinigly formalized,
more stoj'tist teat ed k nowledge-basr sti pboit. %%-III be prov'ided.

ItI odiloit ttt Inirr lin rg arild >rrtipport jg all life-cycle aictivities, all decisions (whether
theiy ciiitern re(tiii-iretts, vnlIrLit ion, irirtletrttrtt;tation , testing, or mnaintenianlce) must

alobe re'ordedr t ogethIter with thIteir rit t on ale. Akll t hese dat a itrst be machinie readable
Indl ritaChlic nIrrrilahrIIle, So thaM, t lt(, sy.stemT (rit itlize programiming andl aplplication

t ~kitowledge ha ses ats well ats inference- ba-,ed methIodls to explaiin conmplex asp~ects of the
progprit rli d suppo~rrt its rnaiirtvn ice. l,:vvrtia~llv on the basis of understanding the
relat iontsltips betWeeN !Itegoals ahrd tire (Ode of t le application programn - KIISA should
be a Ible to rI],gcst pla risible stratepics for thre design of program mi rodi fications and1 bear

ain all prec'laaI) Ivpport To I o f thIte I)rt d t o F (I iiplerinen t Ing an d testi ng those st rategies.

llc'arsi' lKISA is i'lating .ill de'vlopiriert, ;wit' tvs, it, crn siipport iot onily those
inidivitlral brtvteIill. also thle rlevelopmerril als a whrole. It (iir coordintate one(activity
with ;It aot her to rilit ;irIn consisterncy; it. ca:n ;irlt irrnageriit. if resources are, or are
abouit to be, e'xceeded'(it, ('an hIl prevent irairt ainers fron reexploring iiunfruitful

Iimplieientatrons. InI short, by nrediating all of 'It(e developiuent activity andl by being
kirowlerlgealle aibout t hal, (levelroftrrert , 1KIIS. coni help people bring to b~ear whatever
knowledge is relvanit f'or t heir p.;iticiilair t ask. Tis is especially important on large
project s where it Is (-it rre''i]l% rljllirirdt it' trot, Imrpossible, for people to coinpjrehiend

mnd is~itiritv allI llie ro'Io',;1rut In frtn1r:1t lolr, wkjelr tray he frogirenited, incomuplete, or
inrconrsistent.

1.5 Usage 3

Rather than being merely a collection of capabilities, the KBSA would be an intelligent
assistant that interfaccs jto;A to the computerized "corporate memory," aids them in
performing their tasks, and coordinates their activities with those of other members of
the team.

1.4 Areas of Assistance

We plan to incrementally formalize, and provide knowledge-based support for, all
aspects of the software life cycle. In this section we highlight three areas that readily dis-
tinguish the KBSA paradigm from incremental improvements to the current paradigm.
The first such area is "development," which encompasses both implementation and
maintenance. We propose to formalize it so that implementations are the result of
a series of transformations of the specifications. This formalization of the develop-
ment process will enable maintenance to be perforined by altering the specification
and replaying the previous development process (the series of transformations),
slightly modified, rather than by attempting to patch the implementation.

Such a capability will have profound effects. Systems will be larger, more integrated,
longer lived, and will be the result of a large number of relatively small evolution-
ary steps. Software systems will finally reach their potential of remaining "soft"
(modifiable) rather than becoming ossified, hardware-like, with age.

Another important life-cycle area is specification validation. Rather than validating al-
ready implemented syst ems which are dillicult and expensive to change when problems
are detec ted, validation will he performed by using the specification itself as an ex-
ecutable prototype. Specification errors detected will be much simpler and cheaper
to correct, and systems will normally undergo several such specification/validation
cycles (to get the specification "correct" and to get the end-users to completely state
their requirements) before an implementation is produced.

A third life-cycle area is perhaps the most important: project management. The for-
malization, mediation, and support of life-cycle activities includes project management
itself. Protocols will define the interaction between successive activies of a single agent
and the concurrent activities of multiple agents. These activities will be mediated by
an "activities coordinator." New 1ni:,nagement techniques will have to be developed for
such a forimalized an.] partially automated environment.

The other areas of assistance (limcussed in this report include requirements, perfor-
mance, testing, and docutiientation.

1.5 Usage

As the l(IISA evolves, it will be able to serve the needs of all participants in the
program development, from the program manager to the journeyman coder. As it

4 1. EXECUTIVE SUMMARY

serves those needs, it will also serve as the rep~ository of' corporate knowledge, making
possible both effective coordination of a large numrber of' programmers and smooth
transit ions withouit serious setbacks as progral'rnrnIiVg personnel change. While the
1K ISA will suipport all programmring activ It ii>,, It \%Ill present very different faces to
d ifl'ererit p)articipants, depenidinrg o00 thiir role, in t it program developmient process.
To I te project mianager, it will ;ippea r as it jIlaim i ig assista lit, to help allocate tasks, and
as a crisis moni t our, wvarning ol' significanit chlanjes in systemn reqluirements or schedules
andl serving as a record inrg conin iun0icat ions cha n el to lie echl on of managers below.
To the(programmer in charge, for example, of testing a pairticular module, it will also
serve as a news wire informing hint/her of relevant pirogrami changes. B~ut, in this case,
it will further bring to bear its knowledge of p)rogran dependencies and of the rationale
of' prior test dlesigns in order to assist the progIrmmenr in both the design and execution
of the consequent retesting.

The a pplicatjr ii programs targeted include the(very large (more than one million
instrICi ion) programs, suich as t hose associated with commiandl and control or weapons
svstenis, that todiy requtire teanis of more than a hutndred programmers working several
years on the origin;d development and at least aI decadle onl system maintenance.

1.6 The Developrrient Plan

'[he 1K!R d8\(evel(l)[iIemit lanli e-ats for the so idy and con struction, over approximately
a Wi- to 13-year Itorird, of tiidi i rn mecha n izcd facets of ithe assistant knowledgeable

I tiro.(,rain Ti.!!,ii irsI eina i V s, iri1 plelICTien at Ion, val idat ion, perfor-
flii ice opt inn/a tnci, tes;ting, aind portability. At first, roost of' these facets will serve
J)p ri I il s dVaCne (10(.111 nientat ion systems, record ing the rationale for all design
a (it di pletmerit at ion decisions. Thel(first major tecliiical efforts must be to formalize
ie(r;'l)rvsentat inn of' the suh)ject mnatter and strategies in the domain of each facet.

Neixt., iii eree inec han is nr,t he in trod (elf to iijpport, the mechanical exploita-
I Vn of' 'lie forri a I sy.tI Icn velomert d atabhases. li,i l, knowledge bases specific
to e~icfi facet, e.g'., I(tiristic k nowledge ahonit the circunnist afces under which various
choices of p rogra in t r'an sfor to at ionS itthlice per1forIIn ance effic iencies, must, be compiled.
The I rite s(rergtili of' 1KHSA will enrierge aS these knowledge-based methods provide
tgrci'i r loee ol' nlitirat ion for the iridivid ii~il domraini facets. RIISA niust, Just as
iiini~riitly, p)roiik ir 1'ofll llfv-cvelc Irrograii mu(evc1i('IiieiU crivironnienit a mnatrix in
,hic th IfIe -,cvra;I .c I I I ui v1 ve i n itegcatd ;i Id %v~ I. I II se rve as th Ie alliimportan t
CO;i iiiutilkiatior j[nd (otrdlrit on clrTiiic h'1MCIb ener t (rein. [hei development of such ad-
vairiied prog-am coordiit n aiid a new form of p~roject. riianagernent appropriate fbr
stich tit elivirti niiat is arit i' gral paii4 of the~ 1IKIISA proplmsal.

To achieve these goals one ontist,:

I1. lncremnrirtally Forinialize eatch sof(war, lilt,-(cle t, I Ii,~ y (with particular emphasis
'iii project niaTiagenrTlVIcit, 1dOelnprient, and v,;dIMitin) arid create k nowl]edge- based

1.6 The Development Plan 5

tools and automated aids to support their use.

2. Formalize the coordinations and dependencies that arise in large software projects,
create a language for stating project management policy in terms of these coor-
dinations and dependencies, and an "interpreter" which coordinates all project
activity in accordance with these rules.

3. Construct a framework in which all the tools and capabilities can be integrated
(i.e., a life-cycle support environment) as they are incrementally created.

We believe that these requirements necessitate the use, and further development, of
knowledge-based artificial intelligence techniques. Toward this end, our plat includes
a major thrust of fundamental work in the supporting technologies of --rated
knowledge representation, knowledge base management, and inference.

I

6 1. EXECUTIVE SUMMARY

SUPPORTING
TECHNOLOGY\

KBSA

FACETS

FRAME-
WOR K

PARALLEL
DEVELOPMENT
EFFORTS

SUPPORTING
TECHNOL0OGY

-KBSA

FRAME-
WO K

DLVELOPING TECH
FACETS &FRAMEWORK INT&(,RATION TRANSFER

Figure 1)V1IMN FIAALFh11SAs O)VER TIME

I t l . v,,le. ., ieit Plan 7

In I he .liort Lerm, tie plan cAIl for several parallel elfort to constru:t Ihe ,ys',i,

framework, including activities coordination. The more successl'ul will lead I) tilt'

st.ndards into which the forimalized activities and autoinated aids will Ie iti,,ra' I,11

as they mature. Several such separate, unintegrated forializatiois an(d antolal l

efforts will be started. ihese developiint eflorts are illustrated in Iigure 1.

In the mid term, the separate fornialization and automation efforts will be integraled
into the standard framneworks to produce demonstrabhe prototypes. Meanwhile, the

separate formalization and automation efforts will continue.

[it the long term, one or riore integrated prototypes will be production engineered for

real use and transferred.

The plan distinguishes between varying degrees of au tomation and promises a certall
a muo unt, of near- and mid-term tech nological "fallout." It. also provides for a crucial

mid-term attempt at system integratioi, tile watershed test of Wlether thie evolki ng
KISA meets the goals of rapid re-prototyping and retained software ilexibility. ()n ly if

it does Nviii knowledge-base inianaged system development and maintemance go eyoniud
a brave new paradigm to become a reality.

The plan calls for a steering coinmtittee to help in further planning and to oversee (fie
development of the KISA.

8 2. PROBLEMNS AND) SOLUTIONS

§2 PROBLEMS AND) SOLUJTIONS

2.1 Statement of the Problem

The existence of asoftware problem and(its relevance to thev mrilitary, wichI is becomning
ever more reliant on software in it~s weaponi systemns, its planning, its logistics, it.9

trai ninrg, and its command andl control lios long been recognized. 'lle multitude of
p)roblemls withi the existing soft ware developmient and maintenance life cycle, and thecir
particular acuiteness for the military, hiave b~eeni well elit-rnilcled elsewhiere [1]. As pointed
out in the lDol) Software Initiative [11, mrerely dloub~ling cuirrent productivity would
rvsult fit yearly IDol savings of $2.5 to $3 billion and a payoff factor of over 200 on the
nves tmren t.

Ybet, attempts to date to resolve Otiis problemii ave yielded only modest gains arising
prlimarily fronti use of' highier- level languages and imuprovedI mianiagemient tecthn iquei.

Th'lese iroproveruenis, which1 b) theO most opt imistic estJirrates, hiave resulted in far less
tlimi :an order-of- nagnit ilde gain over t lie last 15 to 201) year-s, htave fin no way kept paice

with thie astounding thiousand-f'old increase- that has occurred in hlrdwvare f)('rformnarice
over the(sanie poriod. liecauwm tlie hadwrervoluitilon Ippa rently will .onltinuel at thlis

pace for at least tIlie resi, ol' t his decade, it is (lear thiat t lii' utilt of computers to tile

ilit arvy, anid to society as aI whaole, will hi limiitcd primiarily by our abilit v to cons t ruct,
ruanuitam. and evolve software systeiiis.

(oitl iliat ioll ol* existinig eifoltoI inl!)roe tlie ('tirriit >-oftw~rv paradigm, broadly

cliwra:cterized a-. !;oft warve (iiiieriiig. will undoubi edlv \ield furil hr iiureflnivilal filn-

provernients miore or less comifiiiiiurate wit ii those p)rcvioii- ly obt ained, -ilibject 1(th le
law of dimn iisli i rg reht is.

Rat her that dis;cuss problems wit fi the(cmuit softwairc pairadgmn lien', we instead

examninle I lie underlying causes of' tivsi prolvens aid m,,.,ocst thiat qjraitMive irinprove-

iients (-auuiot hev made unilI lose- iinderlyiiig causes ar-e r(monvedl. liifnrtinitely, thie

current sofi ware piaradligmii, witichi arose lin iii ema whent nunuehis rat her thian people
wvere expensive 1iniul i linilt id siiuply, Is Ililnd.1 ienflyll flawed fin aI way fliat precludes

larger qua lit t ye in proverierit s.

Tlla lw Is [t lieu Is rio feIlcli iuluqy Fit rimlII1j~, Hiai c i ~nwude ii~v activitlies

11liii const it ut e tw lie 'oft wa e uvlopnvoi proesses. 'Ille lpri)(s oil programiiing

tHIn cnrvvrsioi of' a speumlli rat on io .ini uiiplennueiit ii urnm) iN inufommuual and largely

I idihO'amen ted -

It is ju1st this in]Formatilol ,rm thed l ran lonuale louinud each It'fvp(of Hti proucess, thlat IS

crulcia1l, but unvialfor iiaintenanice. %,s a cuinicunce. miaiuitcnuanice is p~erformiedl

ont the IInI plecil;Ientaiou (..t II(' soui i-' oile) I)-lscai - t11 L; II ial a is 'waidable. All

(if tOlie pro1gralInivI's skill arid knwldg i.v A urea;lvk hen' .utulli III opt ifiizirig thlis

sijire codei. I'ltisi' opf jnnuI'.tI lolls '-pread iwuform it ion. 'Ill. is4, IL', ike ad vant age of'

2.2 Proposed Solution 9

what is known elsewhere and substitute complex but efficient realizations for (simple)
abstractions.

Both of these effects exacerbate the maintenance problem by making the system harder
to understand, by increasing the dependencies among the parts, and by delocalizing
information.

Requireients analysis, specification, implementation, documentation, and maintenance
are all knowledge-intensive activities. But the current paradigm precludes the
use of automated tools to aid these processes because it deals only with the
products of these processes rather than with the processes themselves.

Thus, the current software paradigm must be changed to explicitly represent and
support these knowledge-intensive processes. The rest of this report is a description
of such a knowledge-based approach to software support, and an identification of the
technology needed to achieve it.

2.2 Proposed Solution

This section describes the long range objective of this effort in terms of a shift from the
current informal, person-based software paradigm to a formalized, computer-assisted
software paradigm and the knowledge-based software assistant that it both facilitates
and requires. A more detailed view of the KBSA and its various facets is given in
Section 3. The technology needed to support this paradigm is discussed in Section 4,
and our incremental approach toward obtaining the goal KBSA system described here
is presented in Section 5.

2.2.1 The Basis for a New Knowledge-Based Software Paradigm

The knowledge-based software paradigm of the future will provide a set of tools antI
capabilities integrated into an "assistant" that directly supports the human developers
in the requireinents analysis, specification, implementation, and maintenance processes.
It will be (haracterizcd by the fact that "the machine is in the loop."

:\ll software life-cycle activities are machine mediated and supported

by the knowledge-based assistant as directed by the developers. These activities will
be recorded to

o provide the "corporate memory" of the system evolution

and will be used by the ,-sistant to determine how the parts interact, what assump-
tions they make about e, :h other, what the rationale behind each evolutionary step
(inclding implementation steps) was, how the system satisfies its requirements, and
how to explain all these to the developers of the system.

10 2. P'ROBLEMS AND SOLUTIONS

This knowledge base will be (lynamically acquired as a by-product of the development
of each system. It must include not only the individual manipulation steps which
ultimately lead to an implementation, but also the rationale behind those steps. Both

pieces may initially have to be explicitly stated by the dlevelopers. Alternatively, explicit
statement or the rationale by the developer imay enable the automated assistant to select
and perform a set of nmanip~ulations which achieve that objective for the developer. To
make the process possible, it will be necessary to

* formalize all life-cycle activities.

For the knoxvledge-based assistant to begin to participate in the activities described
ab~ove, and niot Just merely record thiem, the activities must be at least partially for-
nlialized. Fornialization is thle most fundamental basis for automated support; it creates
thle opportunity for the assistant to undertake responsilbility for the performance of the
act ivitv, antalysis of its effects, aind eventually decidig whiichi activitiesaeaporae

Not only will Ie tI(indliil ial (levelopiunt activities become increasingly formalized,
bult so, Loo, will i oord intatedl sets of tliin. which accomnplishi larger development steps.
lIn flact, thie dtliveloprent process it self will be increasingly formialized as coordinated
;'ctrvit es amlong"' 11ultiple developers.

".2.2 Major Changes inl Lil'e-Cycle Pha-ses

We hiave dew ri bed tfih we uirajor differences bot ween tile kniiowledge- based software
1joriadigni atid I lie, current siuftNware 1aradigi t lie role of' ilie history of system evolu-
toln, thle foriuli tat loll of, li1e cycleI(act ivit jes, and tIlle auitomation it. will enable -but

le ave riot v-t d'';crikcd the, changpes tliat, will occuir mIl the variouis phases of thle
I)t ware tIle, cce Itself.

We are sift ig fromi ani Informial person- based pa rad igin to a formalized computer-

;i> i:st ed pa raigmn. Tbis forimai ization and (cornipu ter sit pport %%-ill alter and improve

eachi life-cyclect wtII. 1 ii our intent is not. to II(-remntally Iniprove the current
Ile' cyclec activ it ies. nor eveni to attenipt. to Mnake large qittantu rn improvements in them
vi;, advanced knrowledge-boased -itjpport. As we have argued, thle. current paradigm is
hl!radamiirttarlly flawed anid evnlarge jmnt itative improvmeinents will niot correct those
flaws.

Iiluteou, ouir goal is to Alter t lie curirent. li[e cycle to reve the flaws and take advantage
of' Ol form a lied corn piit r-asisteel parai gtn described ab)ove. We therefore focus here
onl iour life-cycle act ivit ies t hat differ lin kind, ratlher Irain juist dlegree, from current
pmrtice. Theiy serve to dist1iguish thle K1l SA fron increnen tal imnproverment of the
current life cycle.

2.2 Proposed Solution 11

2.2.2.1 The Development (Implementation) Phase

First and foremost among these changes will be the emergence of formal specifications
(expressed as machine-understandable descriptions) as the linchpin around which the
entire software life cycle revolves.

In contrast to current practice, in which a specification serves only as an informal
description of functionality and performance, which implementers and testers use as a
guideline for their work,

* the actual implementation will be derived from the formal specification.

This will occur

* via a series of formal manipulations, selected by the developer and applied by the
automated assistant

which convert descriptions of what is to happen into descriptions of how it is to
happen efficiently. To the extent that these formal manipulations can be proved correct,
the validation paradigm will be radically altered. Rather than testing the resulting
im plenientation against the (informal) specification,

* the validity of the implementation will arise from the process by which it was
developed.

That. is, the development and the proof of correctness will be co-derived.

2.2.2.2 The Maintenance Phase

In order to maintain a program, it will be necessary only to

* modify the specification and/or refinement decisions and reimplement

by "replaying" the development.

* Systems are not static;

even ones that, via prototypiig (see below) match the user's original intent, and are
validly implenmeted via autoimated assistance require updating. They evolve because
the user's needs evolve, at least. in part in response to the existence and use of the imple-

t'tmtcd system. Today, such ,volution is acconiplished by modifying (maintaining) the
i plcm e nt:1tion. In the knowlede-)ased software paradigni, such evolution will occur
by mo,lifying (m:di t .iin ing) the formal specification (rather than the in, plementation)
and then reiniplementing the altered specification by modifying and "replaying" the
previously recorded implementation process (the sequence of formal manipulations
that. converted tie specification into the implementation).

This represents another major shift from current practice.

* IRather than consisting of attempts to "patch" the optimized implementation,

" the imn;intenance activity will much more closely parallel the original development.

12 2. PROBLEMS AND SOLUTIONS

That is, first the specification will he augmented or revised (just as it is modified
as a result of feedback from the prototyping/speci fication- revision cycle). Such
modifications should be much simpler because they more closely approximate the con-
ceptual level at which managers understand systems and for which their perception
is that such miodifications are trivial (it is the highly intertwined, delocalized, and
sophisticated optimizations that make modification of implementations so difficult).
The second step in maintenance is reirnplenmenting the specification. This is another
situation in which recording the development process provides leverage. Rather than
recreating the entire imuplemnentation process, the developer will identify and modify
those aspects of the previous developmenCTt which either Must be altered because they
no longer work, or should he altered because they are no longer appropriate (i.e., no
longer lead to an efficien~t implementation). Then, this altered development will be
"replayed" by the autoniated assistant, to obtain a new imiplemnentation.

*Increased[(developmnrt automation facilitates the "replay."

To the extent that automiat ion has been used to fill in the details of the implementation
process, as described earlier, the need to rnodify the development will be lessened as
hese details can be aiitoniically ad justed to the new situation. In any case, the
efort required to reiiple men t a sp~ec;ificat ion is expected to be a sinall percentage of
hat requiired for the iniitial iniplenieritat inn, which in tuiirn is expectedl to be a smnall

percent age of t ha t reqiired for ciirrentl con ventionral imiplenmen tation.

Thlis, in thbe k nowvledlge-blasedl sort ware pa rad igni, the ef[fort (anid corre.-pon1ing ti rue
delay) rcq ilredi hoth For irriplernent at ion of the Hit ial speiihicrition andl especially for
nCrei,'rital nilodiFica1 loll (inairitenance) of' that specification, will be greatly reduced.

Th'Iiis wil l Ilow (flat salved eniergy to he refoc used onl im proved specific(at ion (matching
dIre user's intent), onl iicrea,,eec turret joniality in the specification (bePCauSe 11fiinlenrta-
tiol. costs and comlplexity restrietins have)eni iot igated), and oil iuicreased evolution
o1f that Spec('iflication as thIie uiser's int ('lt chianges over ti roe (at least in part because of
ile cxistence (if the inlipleiiienited systeri).

Th'fis will produce three of' rl(he 11st pr-ofounrd~ effects of the knowledge-based software

fpara(Iiglri:

e Systmni-s will he larger. moore infevrat ed , longer lived, anrd will he tire result. of a large

number of relatively siia I evolution st eps.

0 Soflwairv sN'St ellis %%ill fli in re ict I ficir pot ent A of' remainingll ''Soft"' (miodifiaible)
rathier tha fiilcoiniilg oslfivd hardware like, with age.

0 E'voliitior will becorro' I he cent ral act 1% ity in t he software process.

hii far.t, rat her t iran heirg imitled to mauit'nran'c after the Initial release,

* evolution will also becolni thre rliearis by which thle '"initial'" specification is (derived.

The current ''hatch'' apiproach to spiecific'at ion in which thle specification eniierges

fullI- blown all at once (oftenl as a eVeri-h 1(e-paetonic') willI be rcp laced by

2.2 Proposed Solution 13

an "incremental" approach in which a very small formal specification is successively
elaborated by the developer into the "initial" specification. These elaborations will
occur via semantic manipulations (rather than "text editing") which capture the
various types of elaboration (i.e., adding exceptions to a "normal" case, augment-
ing the functionality of a process, revising an earlier description, and so on). Thus,
specifications will undergo a development just as the implementations they describe.

Maintenance of the specification, whether after initial release of the implemented sys-
tem or as part of the elaboration of the initial specification will occur by modifying
this development structure rather than "patching" the specification.

2.2.2.3 Specification Validation Phase

Current testing supports more than just the comparison of the implementation with the
(informal) specification, it also provides the means, through hands-on experience with
the working implementation, to compare actual behavior to the user's intent. Often,
if not usually, mismatches are detected and the implementation must be revised.

This second function of current testing will be replaced in the knowledge-based software
paradigm by

* treating the specification as a testable prototype.

To make this possible, a subclass of formal specifications, called

* executable specifications must be employed.

Furthermore, some form of

e automatic or highly automated "compilation" must be used to provide reasonable
(though not production quality) efficiency for running test cases.

Thus, the formal specification will be used as a prototype of the final system.

a This prototype will be tested against the user's intent.

Once it matches that intent, it will be developed into that final production implemnen-
tation.

As opposed to current practice, in which prototyping is the exception,

e prototyping will become standard practice

in the new software para(lign because of its ready availability (via automnlatic or highly
aiutomated "compilation"). In fact,

* most systems will go through several prototyping or specification-revision cycles
before implementation is undertaken.

14 2. I' IBIEMS AND SOIUT'I'IONS

2.2.2.4 Project Management

Project management has the responsibility for controlling, and therefore monitoring,
all the software life-cycle activities. Currently project managers are severely hampered
in this objective by the informal and undocumented nature of these activities and by
the fragmentary, obsolete, and inconsistent data now available. In the K13SA paradigm,
the situation will be very different. All the life-cycle activities will be formalized, their
operation will be umediated and supported by the KB3SA, and their progress will be
recorded in the "corporate memory."

Thus, all the data needed for effective management will be available through the KBSA.

* Management must define what informa.)n it needs for on-line management

in terms of these data.

Furthermore, since the KBSA is mediating all life-cycle activities, the opportunity exists
to

" formalize the coordination of activities.

" Management must define the project policies and procedures

t.o be implemented as protocols between the activities. These policies and procedures
describe the operation of the project as a whole in terms of differentiated management
styles. They define project organization, resource allocation, states and choices, tran-
sition between those states, and authorization of those transitions.

It. should be noted that two desirable capabilities have been explicitly omitted from the
knowledge-based software paradigm: fully automatic program synthesis (the automatic
generation of production quality code from a formal specification) and natural language
specification (the translation of an informal description into a formal specification).
The rationale behind these omissions is described in Section 5.

To summarize, the knowledge-based software paradigm will differ markedly from the
existing paradigm. The basis for this new paradigm will be capturing the entire de-
velopment process (the identilication of requirements, the design of the specification,
the implementation of that specification, and its maintenance) and supporting it
via an automated knowledge-based assistant. The development process will revolve
around machine-understandable descriptions. Capabilities will exist to develop an
"initial" specificalion incrementally from a kernel via a series of formal manipula-
tions, to test the specification against the user's intent by treating it as a prototype
(because the specification is executable), to develop an efficient implementation from
that specification via further formal manipulations (which co-derive its proof of cor-
rectness), and to maintain the system by further developing the specification and its
implementation and then replaying that implementation development. This will result
in evolution as the central development activity and will produce systems that are longer
lived, larger, more highly integrated and which remain pliable to further modification
as user needs themuselves evolve.

2.2 Propost d Solution 15

2.2.3 An Automated Assistant

In describing the knowledge-based software paradigm, frequent reference was made
to an automated assistant. This paradigm both facilitates and requires the ex-
istence of such an assistant, as a consequence of having the whole development
processes (requirements analysis, specification, implementation, and maintenance)
machine mediated and supported. Thus, these development processes must be broken
up into individual activities.

The KBSA will participate in all the coordinated development activities (including the
coordination itself) to aid the developers. The existence of such an assistant will, in
turn, fundamentally alter the software life-cycle activities, as described in Section 2.2.2,
as its capabilities alter the feasibility and cost of these various development activities.

9 The KBSA will support the new software paradigm by recording the development

activities, performing some of them, analyzing their effects, and aiding their selection.

It is because of the sophistication of the capabilities involved and the fact that
several different sources of knowledge will be involved (knowledge of requirements,
specification, iml)lementation, evolution, validation, analysis, etc.) that this assistant
is called the knowledge-based software assistant or KBSA.

Because KBSA is mediating all development activities, it can support not only those
individual activities, but also the development as a whole. It can coordinate one activity
with another to maintain consistency; it can alert management if resources are, or are
about to be, exceeded; it can help prevent maintainers from reexploring unfruitful

implementations. In short, by mediating all of the development activity and by being
knowledgeable about that development, KBSA can help people bring to bear whatever
knowledge is relevant for their particular task. This is especially important on large
projects where it is currently difficult, if not impossible, for people to comprehend
and assimilate all the relevant information, which is often fragmented, incomplete, or
inconsistent.

The KBSA is an intelligent assistant that interfaces people to the computerized
"corporate memory," aids them in performing their tasks, and coordinates their ac-
tivi3ies with other memnbrs of the team.

* The evolutioniary creation of the KBSA and the incremental formalization of the
development activities upon which it is based is the central thenic of our research
plan.

As we learn to formalize the ":arious life-cycle activities, we will build KRSA capabilities
to perform, analyze, select, and/or coordinate them. Over time, this will allow devel-
opers to concerntrate more and more on the higher level aspects of the development
process andi turn more and more of the low-level details over to the KHSA. That is,

e as the development process is increimcntally formalized, it can be increasingly

aLtoniated.

19 2. PROBLEMS AND SOLUTIONS

Because, for the foreseeable future, we intend to keep the developer, as well as the
machine, in the loop, provision of suitable interfaces are necessary so that the developers
and the KBSA can work effectively together.

To summarize, we begin with the commitment to having "the machine in the loop."
This will cause the development processes of requirements, specifications, design, im-
plementation, and maintenance to be divided into a larger number of smaller, more for-
malized steps. This finer granularity and increased formality will enable the emergence
of a KIISA that aids developers in coordinating and performing of all of the activities
and records those activities as the documentation of the system's development. This
incremental approach to formalizing the individual development activities and their
coordination, and to providing automated assistance to the developers through the
KBSA, is the foundation of the shift from the current informal person-based software
paradigm to the new formalized computer-assisted KBSA paradigm.

Related Work

Since surveys are available,and to limit the scope of this planning effort, we have inten-
tionally not prepared a survey of related work. We refer the reader to three references.
The first hook [21 cover:; knowledge-based systems in general, and tho referenced chap-
ter spccili(ally covers applications of knowledge-based systems to software assistance.
The second two referencns, [3] and [4], review software engineering environments.

3. KBSA INTERNAL STRUCTURE 17

§3 KBSA INTERNAL STRUCTURE

In Section 2, we described the KI3SA as a single unified knowledge-hbased assistant
that mnediated and sup)ported all thle life-cycle activities, recorded1 them to provide
a "'corporate memory" of the development, and coordinated the activities op" ifh inl

dividual project members. Here we consider the internal structure needed to realize
such capabilities.

The KI3SA is a complex, highly interconnected system. Nevertheless, it. is nece~ssary to
divide it, both for explanation and creation purposes, into its miaior functional blocks.
There are four of these, as illustrated in Figure 2. The central foundation of thle
KI3SA is tile framework, which includes an activities coordinator andl a knowledre- base
manager.

The job of the KBSA is to validate each activity as it is perforined, recordl that :ict vit,
and coordinate it with other activities as defined by formial protocols.

Project management policies and procedures establish those protocols. Its ilo in-
tation requirements are satisfied by thle recorded activity, an(J itstskn reirv

allocation) is handled as a. coordinated activity.

The othier activities which are coon]l Mated in the 1lSA couldl he group(,d in mia ny\
different ways. We have cliosen to groump them accor(l ing to t he la iiliar softwaml' Ilfe-

cycle phases to mnake tieim more undlerstandable aind to present one(Feasibledo m
position. While this grouping helps uis dlescrib~e the evoluttionary staged(l evololmu ill at

autoimiatcul support we cilnvislon in eachi area, it is imiportant to rerticetber Ilia? :ijr

change in ilhe life cycle (as dIescribedl in Section 2.2.2) will resulth Froin Ole

Therefore, other groupings inay well be more appropriate for tI lie -I-- ensoil Or of,

KHSA. Our (choice of' groupings and their evolutionary dvelopmetIC~ moIst be cun!c-ubrd
illust~rative an(l is not mecant to restrict, the selection of' other groujpiripgs or devuepiiii

scenarios.

Event ualvy ;is t lie integration between these activities becomesV1 tiht r, we expect iho

to lose their in11divdal WeIntilty andl to b~ecorme the single knowleilge basod.

described iii Section 2. Only then will we have fulfil led thle promiise of the(iic\ f wr

paradligil

To prevenit iiimmiiterpretaion, wo feel It. is important to reiterate $tlt ihOutI~'i fk. t'

oif this sect loi Ic-tcribes tlhe facet s sepair;0tely, the users w Ill Sc, ki 'I ~i
Iie k I IS,. w Ii mI i t I a Ia hl I li t I es. 1I cu ad of a niul1t1 it (I e of' 1 11c I f;n Is (c i I 11.

arnd (mivei lons,, users wvill experIAince a single KBSA, expert, iii ;ill aspect atI -)f
dle vvIopil1 ciii.

Fimially tere is thIe support eimvironiineiit ipot wh ich Such a syst c Ill is bil t. It I 1-l11bs

version a(id ace(,,s oto ;in iniferer,ce tigmne , and(uiser initerlface caiahilit iCS.

This KIIS.\ iteri.il s tri tre 0, fimtlir dlescribedI die followiiifl Ibscctloll'. \ i

11 id of cat secI 'Iton1 1,e Ii\c 1) ro', i I la se t of I'shIo rt ariil (I iId -tevr it 1,ol s Ior en- (ItaIcevt

18 3. KBSA INTERNAL STRUCTURE

The long-term goals are given in the description of each facet, and in some sections,

certain long-term goals have also been included in the list of goals at the end of the

section.

Life-cycle Facets

Requirements cValidation Development Performance Testing

Framework

Projet M n Activities
rocenen Coordinator

Policies & Procedure 4-)
Tasking Knowledge Base

Documentation Kaciager

Support System

Version & Access Controls
Inference Engine

User Interface

Figure 2. GENERALIZED KBSA STRUCTURE

3.1 Activity Coordination 19

3.1 Activity Coordination

The facets of the KBSA must be embedded in a large framework and support sys-
tem, which includes an activities coordinator, knowledge base manager, inference
mechanisms, program analyzer, version and access control, user interfaces, etc. In
this subsection we have singled out for discussion the novel concept of the activities
coordinator; the more familiar supporting components of knowledge-based systems
are discussed in Section 3.4, "KBSA Support System," and Section 4, "Supporting
Technology."

The development and subsequent maintenance of a large application program or
family of related application programs often involve a considerable number of agents -
analysts, programmers, test engineers, managers, documentation specialists, users, and

so on. The activities being carried on by these agents require various kinds of coordina-
tion. For example, suppose that some agent has the task of modifying some program
module. Before incorporating the result of the modification into a new release, project
management policy may require that certain tests have been performed satisfactorily,
that the changes have been logged appropriately, and that relevant documentation has
been updnted. Furthermore, the approval of some manager may be required before the
result can be distributed.

How can such policies and procedures be formalized so that automated support can
be provid]dd Modern prograroming environments, with their software data bases and
it (egrate(l tool sets, often already provide some preliminary coordination capablities.
For example, they tistilly provide mechanisms for version control so that one can
determine those elements of the software data base that are up to date and those that
are riot. In addition to being part of a version, a program module derived by some tool
(e.g., a compiler) often has a derivation history that relates it to the parent modules
involved in its derivation. If one or more of these parents is subsequently modified,
resulting in a new version, then the derived module also requires updating.

These environments also include lock and key mechanisms to ensure that only those
agents having the requisite authority (the key) are permitted to take certain actions,
like modifying certain modules or invoking certain tools.

While such version control and locking mechanisms are certainly necessary, they are
not sufficient, for 'lie kinds of protocols needed to describe other software development

and molatitetance ctivitics. Instead, we' need a language to describe the types of coor-
dinllatio'i (i.e., protocol) Ilhat exist between the software development agents and an
interprt'e, of that languamge. This would provide the basis for the formalization not
0ny of the types of (oordinat.ion, but, also of the software development activities being
coorohi:1I.,,,..,\; describ,(earlier, such formalization is the basis for the entire KBSA
approitch to comnpntier-;iaststl supp,)rt. Such a language would enable the wide range
of idioSvnc(r:Iti(' poli iWs amd proctedures that have successfully been used by managers
to be expressed. Ihe interpreter could then monitor and facilitate project develop-
mnent in compliance with these policies and procedures. As with other aspects of the

20 3. KBSA INTERNAL STRUCTURE

KBSA, staged incremental introduction of knowledge-based capabilities would enable
increasingly sophisticated support from the KBSA with less explicit user direction.

In addition to knowing about the elements of the software data base and the tools
available in the tool set, this extended system would havc knowledge of agents, both
human and mechanized, that participate in the development and maintenance activities
and the relationships among them. Rather then being limited to the current mode in
which users explicitly invoke separate discrete tools, the extended system would support
a collection of ongoing activities with each activity having an underlying protocol that
specifies the coordination with other activities. Thus, the environment would be active
rather then passive. It would ensure the validity of each agent's actions and instigate
further activity from other agents as defined by the coordination protocols.

Communication among the agents and activities would be via messages. These messages
would not just be text but would be formal objects in the system that included
references to other formal objects -- the modules, agents, organizations, activities, other
messages, etc. Examples would include queries regarding some element (e.g., a "bug"
report), replies to specific queries, requests for permission to take some action, grants
and/or denials of such requests, and so on. The movement of a message (plus other
messages generated on account. of' that message) would generate an audit trail that
would, for example, enable the determination of the status of or prognosis for some
activity that was generated in accordance with a query (for example, the repair of a
problem in accordance with some "bug" report).

Each activity ongoing in the system would, at any point in time, be in some state. For
each state there would be a set of choices that were possible, some of which could result
in the transition to a new state. The inter- and intra-coordination of activities would be
accomplished by controlling the choices that were possible at each state of an activity.
There could be a number of ways of controlling these choices. One would most certainly
be through the usual lock and key mechanisms; an agent could choose a certain action
because he had the right (the key) to do so. Another means of control would be to
require the agent to obtain forrnal permission from another agent or organization that
had the right to authorize the action proposed. The request for a permission and the
grant of the permission would be via formal message objects that were so interpreted by
the system. A third means of control would entail a collection of rules that dynamically
described the relationships among the various elements of the system.

That a particular choice was permitted or denied would result from demonstrating that
the predicate enabling the choice could or could not. be inferred from the current state
of the activities within the system.

3.2 Project Management and Documentation

This section describes two facets project management and documentation - that
are called out for treatment, here in a separate section from the other facets because

L66-

3.2 Project Management and Documentation 21

they have strong, across-the-board interaction with all the other facets. That is, the
power of these two facets contributes to the power of each of the other facets, and
is derived from the existence of each of the other facets. F or example, the(project
management facet helps to manage tasks being carried out with the assistance of the
dlevelopmennt assistant and also derives information from the dlevelopmienit assistant.
Trhe documentation Facret helps to explain specifications, reqluiremntts, p~erformlance,
etc., using information from these facets.

3.2.1 Project Manlagement, Facet

The long-term goal of the project mianagement facet is to provide knowledge-based h~elp
to users anid managers in project commi iiunficat ion, coord in ationi, a rid iariger eir tasks
that range from sim ple inquiries about tasks to reorganiizat ion of project plains. 'Ile
goals are to redIuce project costs, speed project de velop ment. anrd riainrtenfance, rril nage

more effectively, provide greater p~roject continuity, improve project, communrnicat ion,
icrease software reliability, arid imrrprove respolfsil.veniess to c barr ge. Tile fi: ia~fi

facet will aissist th ron gliut the life c cIe from ifncept ion througi rniainiteffafuce. It will
providle assistance to al I 1 ISA users, riot Jufst mri agers.

The project. manageineit facet (l\l)consists of' a forrnmlV-irn, a krucrwlvdcl.v h~insc anlnI
li ssage1 tMn an ager ,1ar1d an1 accoifnpafivilrf set of k itowledgv-balsid took aid pror(dnnrls.

Al irotaint (designiated) project iflria ocofinninlinlicat joll ar1i de(i'i ,.- 11l be

forimally exprecssed, recordled in thle kfiowledge hiase, and :aaible tlinrouigh ilvcct look-.

The proJect franagefucit. facet uises (fie ('oordiriat ioif and1 nfiess;ig-e liaifllifig e~nni c

of the(activilties coordifnator to carry out its work. It Is (list 11iffiishd froni t lilt mi fiff ,

coordinator by its (loffiiln of discourse and(ypeCs of decision rrnlrkilg (1 rs n.14 fficn

etc.). TintoM will uise other general IKBSA inference andn krro'\ iilge- balse f1ia;l ~eftift
tools whiere appropriate. A tutoring systeri will help liurrianl agents (desigoners, users,
arid mnrHfifgers) learn hr ow to ii,,(e the aissist;1ant systVermi

The k now ledge base, inicilrdirng tit(c set of scripts arid procedu nres, foruris a seminant ic

model of' the eritire project, including its history, arnd its procedures arnd po 'i'llre
powe ofthe M Fnler ye froir e I able to rise' (hiis senman tic iruodel or- k flow ledge

soufrce to reasorn abut tie(piroject rut her thian r1ist act as a da*tta mfaaiinefit tii

Mocst aictivities willl lai\e ;it leaist. an iiclevirfgn, protocol thalt pros it t11c n1nctnil 1or

iriterid coordirnat ion Wit hi othecr act ivities. \lore(cciflex \%.irefrn c ii ' Ill

hlave inlre conilipleX pint ocols arnd irolrelice procedlures to i-mrdi~e iflearis for nI'.iscfirig

abouit moiriagemerit dlecisionrs, imipleimeinting policies, weigingq evidence, e'tc. A 1rnnilorrir

interface will allow hurinian or aritorinatec! agents to inake reqlnists fcor mai,,uacnwnert

assistanlce Withiout. hay irg to knlow details abcoiit. all t ie(tools.

22 3. KIISA INTERNAL STRUCTURE

Short-Term Goals

"Project Management For malism

The first step is to develop a machinable formalism for project management
knowledge.

This formalismi is the framework that will hie used to implement all knowledge base
operations, miessage handlhing, Inference procedures, andl other facet capabilities. To
the extent that mtessages, tasks, etc. are not (describedl within this formalism, the
PktP will not he able to (d0 intelligent things with themn. At first there will be more
free-forin text associated wvithI these entities, largely incomprehensible to machines,
but ats the PM 1" grows, more of this text will be expressed as knowledge in the PMIF
formialism.

" Knrowledlge Base anid Message H andling

Using the above formnalismn and the activities coordinator, the I'MIF knowledge
base mtanager arid mtressage handler will deal with all formialized aspects of lPMF
knowledge. They will store and retrieve PIMP knowledge and send and1 receive PMF
nie-sages. Al ni essages arnd k nowlvdge base, entries will either include dlescriptors

Sit lifii the formalismr or bfe mi irly withIin the foirmalismn All important commoiinica.-
OilsI anf(eiliscr ercrebta irst their Formializat ion (which allows

I rdexe d entry Into the k nowledlge base) will be manual.

''lk iio," ledge base of project tanks will let man agers atid(other ageritis keep track of

Ire(tasks to be (lone andi keep records of what. is comipletedf. (At first, completion "-Ill
bce xfplicitl v reporied to thle l\ [SA; later the fP\ll facet will recognize completion1
aol oirilatirall.%.) Mlaiagers wdl1 be ablv to look at the set of' tasks aid orgainize anid

e-githemn. 'I'lle task structutre will reflect thle developmieiit of thre stemand the
talsks cortiplet edl, aitd those rerrrairiing will be explicit. arid available for study when
lie project its re Viewedl

.An Init ial set ()f lre~sageiua olifir apailitieS1c will be deviloped~ to allow agenits to he

... ,Wi-d~s tasks tie1 re-port tHeir progress arid to allow 1iiiiiiari agents to coiirilrlicate.

In0 li e early st ages, I lie arbii rat loli of, rrre',ws w Ill be emlit irelv by hiiriari dlesigner or

rilrtger. hut fiiii rbit rallTIn will gradually receive inicreasinig knowledge-based
;1-smst arie. \ir interfiatc will aillow people to rindcrs arid arid iotiitor the(forniral

irie,,;iges to a rid from iiiltoitat d agenits.

*Taik Trackirig

'li l,bve f'orinuutlvrii, kittwledge-base syst ciii, and1(rlsa-lrrligSystemii togyet her
lay the(ricce-s,4rv grond%%ork so that thie ~Il' carl bc e\IvJ cure by thle amlditionl of

sirrple p~roject It]]a 41g1riut, jroce iurve arid (dedutive inferences. For convenience,
wec will group t hcose sirirplv pr-ocedires ard Inrueeice caipabilitiles tindler t he heading

of 1,,-k traclkiig. 'F'lue Mrciices v dil reinire thfat de penldency llinks, nwu;ssageVs, auid
itther Itemns cart bre t taceu throiiu'li ithe knowledge't base.

3.2 Project Management and Documentation IS

Scripts for project management disciplines or paradigms will be developed and used
to guide or enforce these management disciplines.

Mid-Term Goals

Suggesting Simple Management Decisions

Using all the above tools, the capability of the PMF will then be extended so that
it will suggest simple management decisions. The inferences made in this decision
making differ from those inferences made in the task tracker, in that the decisions
here require weighing of evidence and more detailed models of tasks and agents. The
decisions will still be limited to relatively local decisions about particular tasks or
agents, however.

" Plan and Procedure Creation and Modification

Using all the above tools, the PMF willbe extended to generate or modify plans
and procedures. At this stage the PMF will deal with entire plans and procedures
and carry out significant refinements and transformations of them. Transformational
methods developed in the development facet could be brought to bear on the problem.

* Knowledge Acquisition

Extensions of the above tools will allow simple knowledge aquisition by having PMF
knowledge available and all transactions capturable and manipulable within the
forimalism.

3.2.2 Documentation

The long range goal of the KBSA is to provide the project manager and each project
member with the equivalent of an cxpert on personal call to answer specific questions
on any aspect of the project or the software being developed. For example, a user may
inquire about the possible arguments to a command. A system developer/maintainer
may inquire about the purpose of a particular line of code. The project manager may
want to know the testing status of a particular module. In all these cases, the KBSA
could answer their questions bec;uise the relevant knowledge has been captured and
formalized as part of the software development process. In a sense, all of the knowledge
used in each of the lISA's activities is available for explanation and documentation

Given adequate underlying knowledge, the main issues in documentation have to do
with how to communicate this information cogently. For example, what constitutes a
good explanation? flow and when is it appropriate to summarize information? One
good way to explain something is to identify it as an instance of some familiar general
class, such as "this is a temporary variable" or "this is a kind of directory listing
cornmnd." Another .ffective type of explanation is to describe the role of a thing in
some causal or goal structure, sich as "the setting of this flag causes the following
actions to occur" or "the purpose of this test is to guarantee that the input satisfies

24 3. KI3SA INTERNAL STRUCTURE

the foilowing condition." The feasibility of automatically generating explanations to
unforeseen queries about the internal workings of a complicated program i3 being
explored in current research.

An example of the use or the documentation facet is in project management.
Maintaining upj-to-date andl accurate documenttationi is crucial to the management of
any large software product, as well as in providing help and tutoring facilities for the
users of the project managenment facet. The initial documentation facet will be for
exp~erienced managers, designers, and programmers. The help facilities initially will
be for these experienced people and will be similar to current help facilities. Once the
IK1SA has evolved enough, it will have an environment that includes naive users as well
as designers and managers with a range of experience. The K13SA w,%ill include many
autornated agents andl will b)e usedl for production systems and maintenance. Therefore,
tut oring capabilities will be adidedl that go far beyond the original hlp system. The
tutoring will illow new (and old) team members to learn about, the assistant itself (and
about other agents) and about the state of' the project (task structure as well as design
d ecision,, and code state).

The inost obviol', benepfit of' this kind of expLa nat ion as coumpared to current documen-

tat ion pritt itt's is; that the lirtiorrIlat ion (lhveredl is more f'ocused and directed to the

,specific npeds. (if' the person inquiring at the timre. I lowever, the greate(st benefit of this
to(li ttiqii(r~s ilts frn the 1';i(t that the uinderly ing knrowledlge from whichi explanations
;Irt. dr:ivi IS ke,~aivLept tip to (Lit becaulse the 1KIIS.\ inedliat es and supports all
plotect aIctltltits. III the hut, current. practice, inost of' the(underlying (lecisions are
fo'l froml thefoitntg

Short T-r in C oals

0 Ott - 'lie Do(n iittetit at ion

There are iittv fali-rlv st kinl a rd k ind~s of (doc1 utent ation for various different
a rid ettees thftat aIre now Iit comtmtton use: " A, 13, and C specs,' 'nierarc hical flowcharts,
user referenice tiantuals. 'help" files, arid so on. Ili Ile short term, it will not be
pos ,ihlr toi tortttahi'/e tuch of' thle kitowledge Ii ticse dlociuments; most of it will

It vt' to remtai tin t flip forni of' text st riits to he rv.ail and interpreted by the user.
I lowevver it will be a ste p Ii the right di ret ion to provide a central data base with

adefinled (anrd possibly extenisible) v'ocabld:ry of structuring primitives available to
aill aigents Ii the soft ware tleveloptitnti prtce'ss tltrotigltoit the entire life cycle (this

i i sta ice of K IIS\' s "corporate itenory"). Fuitrt hertmore, by cross-indexing this
docue nt i t ot to other pirt s of the soft ware that are also kept ott-line, such as the
(code or tflip' teqtti rentenit 5, it. will he possilble to aio totnat iWally montitor whether the
docuen etat ion is l)(ing kept ipl to (Lite. Finally, It will be possible to automatically
ge nerate various k indls (of sta ida t-fortinat docu tntetts iising specially written proce-

tdures that re'ad the appropri.t te stibsut of' inini natioti oult of' the dat a bas(,. Examples
alremdy exist inl which a sirtiple ierarchica data baise (withI text. files at, each node) is

uised(to main ta in the statitws of ill Iritod it es for project ttt anagemrcnit purposes. Final

I

3.3 KBSA Facets 25

deliverable documents could then be automatically generated from the same data
base by combining the text files with standard boiler-plate.

Partially Formalized Documentation

To effectively increase the degree of formalization of the documentation, we propose
to reduce the "chunk" size in the data base and extend the vocabulary of keywords

describing the chunks and their relationships. At this stage, the chunks of unformal-
ized text should not exceed the size of paragraphs and might often be smaller, such
as a single line describing the purpose of a variable. One benefit of this fine-grain
structure is to allow an incremental change in the software to require only incremen-
tal effort in revising the documentation. The pointers between the software and the
documentation help to localize those parts of the documentation that are affected
by a particular modification to the software. Also at this point, one could begin

to design protocols for accessing and perusing the documentation which adjusted to
the user's level of expertise, prior knowledge, and so on. With these facilities the
emphasis begins to shift from "documentation," which suggests static pre-formatted
text, to an "explanation" dynamically generated in answer to specific questions in
an interactive relationship.

Mid-Term Goal

Iartially Automated Knowledge Acquisition

In mid-development of the K13SA, the system developer's burden of being the sole
source of documentation information will begin to be lessened by having the KBSA

automatically gather and record the knowledge needed for explanation and documen-
tation as a by-product of other system development activities. For example, a natural
by-product of using the KIISA is the knowledge about design decisions which is

needed for reference during future modifications. Another general source of informa-
tion is various kinds of program analyses, such as those performed for performance
optimization.

3.3 KBSA Facets

This subsection describes an example set of KBSA facets selected to aid comprehension
by their corresporlderice to current life-cycle phases. By selecting and describing these
speMilic facets, one particular view is provided in sufficient detail to define what would
sullice as a KBSA.

3.3.1 Requirements

The long-term goal of the requirements facet is to provide the following: comprehen-
sive requirements management, intelligent editing of requirements, testing of require-

26 3. KBSA INTERNAL STRUCTURE

ments for comipleteness and consistency (both self-consistency and consistency with
application domnain models), performing requirements reviews, maintaining and trans-
form ing requirements in response to changes, decomposing and refining requirements

into executable' specification languages, and acquiring requirements knowledge. The
knowledge base available for these actions will include b)oth general and application-
specific knowledge.

Requirements will be acquired by NI3SA via dialog with end-users (systems analysts
will have to be used until the level of this dialog becomies sufficiently high-level and
appli4-tion-specific). These PA-uscrs will define and miodify the requirements and be-
hiavior of their dlesired1 systei by a comibination of high-level, domain-specific require-
mients languages, examiples, traces, state- transition diagrams, graphics, and so on, in
whatever inix they find comfortable. The process will be a mixed-initiative dialog,
where the sequnence of stati ents need not correspond to the organiization of the final

programn. KI ISA's role is, to have e nonugh k noV ledge a bouit requ iremnent analysis arid
about specific ap plicationi doinairis to be able to accept arid process these descriptions.
Th'fe requ irernemiits facet will organize thle stated requnirerierits andl incorporate them
rnt o existinrg (feseript ionls. It will riot ice iricoiist eic res arin issing parts of the re-
(iilirents, arid ~ig~treflia(les, fill InI 1)eces, and polit out trade offs whenever it

call The f1met, wvill also, onl rc,1lnest decrcilic tire currenit state of the requirements

Io'(iia ivn.i in maturral;,riac ,r;iphicaIly, or by sinwieting the behavior of the
Sslvsllr1 as iriurefi as possibule. 'Ilfie facet willl help initegrate new requiii-rments into an
exist ing euWT"t qcl;l f('i n \N'l tisc knwvIe-ae rograni refinemient

t echrniquecs to lit Ili I raii.lorri thlese riqtircnents into executaible specification languages.

K riowledge based t ok for the revijnrcrricril facet will have a high payoff. Because the

luiwer-level progi auin de cloluinuri arid rialiagvrliert tasks will be increasingly automiated

arnd will take plicc iii ifir bImkrrouiaf wNith less arnd less hnuan intervention, reqluire-

irierits nlefiiiin l spnti j~(it ol ol will be of l InCreasinlg iriportance, wvith most of thle

liniai effort Iii soft warn nfI'c lopiueviu vvent ilally goinig inito this proceIss.

Softw;ire (lev~!uu)ilenu i'lbrts iinfu' do iot ;ippiroaci ;iteiI idleal. Ilii riost lirojects,

rcitiniet, ;ii(i' rgclv Iirllor[1u 1ui(:id auIi tatef In niau orl lanrguage. Current reqtuire-

ruiru s irgiagi~dfi allow -one fornui i on, pririuplly, in thne (characterization of

dvejicruilnrcies. hint r('nfriirinirs ire rarely riafiie conri citsible to anly signi1ficant

extivrit'. An add iorual croiseutunerice o~f' informl1 requtiretierits stat crnieits is that require-

Inieits uislullyv ci mint be exc(II-u *11 iaiynoiiveiiltionial senlse.

A forrinal reqilre rie ii IsL ciig ll allow, a rid in fact will dennid, k rrowledge- based

riireIIrtin vi ts fiuucrm .t 'flu rea ;son (IIs t I hit. fo i iilI r vqI i ro e iIierts a re iii c ornpletev; t hey

only part il ly ,leseif Ifb ie i I ernleif lwfmauvior of any systemII. For thiin to be understood
ati mn roc ed .it oiiioric rruea ni r'fnl .,Pw~c, t lose partial descriptions nluist, lbe integrated

and~ corple li n t~ire reasnniall riiirmier. Such inference capabilit ies are prototypi-

cal1 of tilie typec of asitareqiuiiredf by ti fuKH SA facets. This formnal language
Ilighrt also Ie) vxeco table to llurx% ~iil11 pr mt)nutg (see "Specificat ion Validation"'
Sect ion 3.3.2, for ai more coroiplte (cscmtii u of' raipid prototyping). It is important to

3.3 KBSA Facets 27

note that it is unlikely in the near future either extreme of machine understanding of
natural language requirements descriptions or formal languages for complete require-
ments specifications will be realizable. However, a knowledge-based facet could provide
capabilities that allow requirements to be combinations of formalized specifications,
machine-understandable but restricted natural language, keyword recognition, and un-
parsed text strings. The KBSA effort might use whatever natural language comprehen-
sion technology becomes available, but it is not committed to, or dependent upon,
advances in this area.

A few knowledge-based software systems have been built that dealt with requirements
specifications and have helped determine the consistency of these descriptions. They
demonstrated the basic feasibility of formal requirements analysis, despite the added
difficulty of working with restricted natural language.

Since generation of natural language is a more tractable problem than comprehension,
paraphrasing or summarizing requirements definitions from multi-format presentations
is possible. This is an achievable and valuable capability for helping people to handle
the complexity of large systems and could be especially useful in validation activities.

Domain models for different application areas will facilitate requirements definition.
These models give the requirements facet more knowledge to help understand user
descriptions, to notice inconsistencies, and to suggest missing parts of descriptions.
Since the potential range of applications areas is quite broad (and includes research
topics such as reasoning about time and space), it is unlikely that a complete set of
domain models can be supplied in advance. However, some simple and frequently used
domain models are likely to be available.

Requirements definition can also be viewed as a knowledge-acquisition problem. The
requirements activities will consist not only of acquiring new requirements descriptions,
but also of acquiring models of new application areas. These activities will draw
from the research areas of knowledge acquisition (including mixed initiative acquisition
of domain models from experts), problem reformulation, rule-acquisition, inductive
inference of requirements from examples, etc. Some practitioners of the requirements
analysis art feel that a very important part of their task is generalizing and structuring
the user's ill-defined needs. As the lower levels of software production are increasingly
automated, requirements acquisition will become the main interface between the user
and the programming environment. This is an exciting and high payoff area of research.

Short-Term Goals

* Analysis of Requirements Problem Definition

There has been less research on knowledge-based tools for the requirements level
than for the later phases of the software development life cycle. Accordingly, less is
known and further problem definition should occur in the early phase of the K1ISA
project. The first year of work on the knowledge-based requirements facet should
include a planning phase to review and refine the short-, mid-, and long-term goals.

28 3. KBSA INTERNAL STRUCTURE

* A Formal Requirements Language

An initial requirements language will be designed that allows a comibination of formal
specifications and text strings. This very high level language (VIILL) will probably
be an extension of the very high level specification languages being developed today.
In the early stages of the KBSA project, new insights will arise about the KBSA
life cycle and its effect on this facet. By the mid-term, these should be incorporated
into a revisedl VIILL for requirements. The language will also describe histories of
r-quirements modifications and refinemients.

* Sz~iart Editing and Managing of Requirements

Knowledge-based editing and management capabilities for the requirements facets,
including help facilities and a friendly user interface, are important aids to the
requiremients definition activity. A variety of specification fragments, including
both a formnal langiuage for -requirements and text. strings, need to be managed.
For convenience, even text strings will be handled in simple ways such as storage,
retrieval, keyword analysis, etc. Dependencies among requirements will be specifiable.

A~n intelligeont ,ditor will he unsed to Create and modify requirements definitions. At
first, the editor willI enisuire only tliat the syntactic striuctu re of the formal require-
mtents language is followed. Next, thle editor will be used(to trace th rough the con-
nections of related requirements during editing to ensure consistency. Later, generic
requiremcenls S eCriptIOfIs (for example, an inpUt-proCess-output seqluence) will be
stored! in lie knowledge base. Suech dosc riptions can he used as rriodlels to fill in and

ca e i tebdagirstai s'r era e lscipioi.These models will be used to

check comipleteness ,iiid ra1;y p~ro\vidI, additional consistency tests.

* flcviewingl R~equiremnts Defoi nit ions for the User

Cetilg thle user to view Hie require nients in a new light and possibly see problems
or opplot tu nit Ies Is ,.i iti port ant. capabhilIit~y for producing requirem[lents descriptions.

Review Inet Ii ms '-wil d ic lode pa raph rase in naturral language, gra phic displays of

dour ai niiTi u VIOCS n thle k i ow lelge hteexecutinrg th e specification, writing stubs or
fa;cades thiat deirion si rate the forini at , If niot the COnto ut, of the specified system, and
rapid pr otofy plrig to li 0'ip ii 0termitc hefi ax'oral reqr i remnents.

* Requiremre nts T'esti ng

Simriule Ii-ricrrs caiI Ire iused to, help rleterniiire fte adequacy of requirements.
One, soil rr of helpi III requ irenIriCtS (lohirIItion is the adapltat ion of capabilities and
pa radignis t'ron lower lo vels of' thOi KSA. Sorte activities can he carried out without
anly d ofi;)J raiik f w ledlg on)1sist en cy chieck ing, an alysis, arid explanation, for example.

Trhe first set of requirerments tools will therefore chieck for a simple heuristic kind
of coniplet er ss andl consistency. Th'lese inference procedures can extend the require-
nienits ('(ito(r's abil ity to eitheor fill iii rot ails or test' a1gaIinst storedl general knowledge.
In adldititon, by emiployinig traditional, rirn- knowlerlge-lbased analysis, the require-
tients tools will detect ont it ies thA. are in nvlfi ned, entities defined but never refer-

3.3 KBSA Facets 29

enced, data flow anomalies, etc. Later, for suitably limited domains, we can include
the performance facet at the requirements level to help in assessing the cost of desired
features.

Mid-Term Goals

Incorporating Domain Knowledge into the Requirements Capabilities

Simple models of frequently used domains will be developed. The first model will be
for a fairly narrow domain or application (e.g., simple classification programs). The
models will supply the knowledge base that will be used for domain-specific support
of the requirements capabilities.

As domain models are added, the requirements capabilities will be augmented to take
advantage of the new knowledge. For example, domain knowledge will be used by
the intelligent editor/manager to retrieve application-specific, previously described,
or generic requirements descriptions from the knowledge base that match the user's
current needs. These descriptions will serve as useful models to be compared to
the specified requirements to check consistency and completeness. By employing
more sophisticated techniques such as symbolic evaluation of the requirements lan-
guage and some inductive inference, more application-specific inconsistencies can be
inferred.

An Automated Structured Walk-Through System for Requirements Engineering

Many of the capabilities described above will be combiined in a script (process descrip-
tion) and applied with a form of symbolic interpretation. For example, a structured
walk-through tool based on a fault model representation and on a requirements lan-
guage will aid an expert systems analyst to keep track of loose ends and problem
areas. It accepts requirements as input, together with other management informa-
tion (e.g., who should approve it, who heads up the prime user groups, whc. he-ds
the implementor group). Such a tool will be able to perform some useful backgr-wund
analysis for missing or incompatible requirements.

Requirements Transformation and Refinement

At this stage, techniques from knowledge-based program synthesis could be extended
to allow transformations of requirements. For example, if a program is set up for
monthly reports, and weekly reports are required, the knowledge base could supply
descriptions of the necesary changes tc make. Depending on the level of difficulty, the
facet might either suggest and remind the user of the kinds of changes, or actually
carry out the transformations automatically. Requirements refinement is the other
type of transformation. In this case the requirements are brought through succes-
sively more dcailed stages until they reach the level of executability. This type of
decomposil Wi and filling in of detail is exactly what. happens in program refinement
discussed in the development facet (Section 3.3.3), but higher-level knowledge is
needed here. The facet suggests alternative refinements and decompositions. The
transformations may be manual, interactive, or automated as fits the situation.

so 3. KBSA INTERNAL STRUCTURE

0 A Requirements Tutor

Tutoring capabilities at the requirements level will help new members of the software
design team to start contributing sooner. For examtple, tutoring will help them learn

to use the software assistant's capabilities. It also will help them to understand the
current configuration of requirements specifications and the previous decisions that
provide the context for new requirements decisions.

3.3.2 Specification Validation

Eventually, formal specilications will be developed using KBSA and starting from
informal requirements. Specifications will be the first formal representation of the
systern to be built. As in all other areas, this representation must be formal for KBSA
participation and support. "urthermoce, it is crucial for the KBSA paradigm that the
specification language be executable so that the specification can be used as a testable
prototype and so that source-to-source program transformations can be used to convert
it into an ellicient impileme ntation.

A\s the first Fornial re presentation of tihe svsteri to be built, the question arises as to
whether this l oriial slateient matches the user's original intent. Even though the
specification is uouch inore abstract than the implementation, it is still complex for real
-vstnii s. Therefore, the first formal specification will usually be wrong and will have

to be Idbged Ii fact, several debugging cycles will normally be needed to get the
siecifi(.;tion correct.

Since we ire dealing with a specification rather than an implementation, we use the
term "vali(lation" rat her thai "dcebugging" to describe this process. Because the formal
specificatiorl iN being c)inpared to the user's informal intent, only the user can make
this comparison.

Three techniques exist for validating the specification: prototyping, static validation,
;1l d\mol;i it, validatlion. They are coimplernentary and will be intermixed in practice.

lPrototypiigl consists of running test cases on the specification. This is theoretically
possible sine, lhe specificaition is executable. Ilowever, to achieve reasonable efficiency

(so that .est cases can be run), consi(erable optimization must be achieved. This would
cither be dor,' via a part ll interactive (hevelopment or, preferably, by a smart compiler

capable of' pro(liicing testalble, rather t h an prod tic tion- quality, code. Such prototyping
has all le ,I rengths alld w(aknesses of current testing. Specific cases can be tried

quickly and easily and can expose sonic bugs rapidly, but such probing is Iar from
conipr,'heisiVe.

The second validation techniqu e is static validation, which consists of paraphrasing
Ihe formal specification iil natuiral language so that an easily read form is avail-

able for the end-user to conduct ;i (lesign review (as is being done with manually

producud IH:) spcc ficat ioii). Two ad vaitages arise from such paraphrasing: first, formal

3.3 KBSA Facets S1

specifications in any language are hard to read and comprehend; second, by regrouping
the elements, a different view or perspective is presented which also aids comprehension.

The last validation technique is dynamic validation, which is an extension of the
prototyping technique. Rather than running specific test cases, symbolic execution will
be used to characterize all the behaviors produced for an entire class of test cases. In
order to understand the set of such behaviors, an explanation must be produced which
characterizes the "main line" and then details the exceptions and/or augmentations
that are test-case specific. A mixture of natural language and graphic animation will
be the medium of such an explanation.

Short-Term Goals

" Executable Sperification Language

We propose to develop a high level specification language that is still capable of being
executed (albeit extremely slowly). Note that interaction with the development facet
will occur via the specification language. The KBSA specification language must be
beth executable and wide spectrum.

" Specification Wellformedness Checking

This would include the capability to check for internal consistency within a
specification (e.g., all types and actions used are defined, number and type of actual
arguments agree with the formal argument).

* Specification Testing

It would be important to develop the capability to run test cases, both concrete and
symbolic, on the specification.

" Specification Paraphraser

The capability to automatically paraphase a formal specification in natural language
(to make it more comprehensible, especially to end users) should include the ability
to identify which portion or portions of the specification to emphasize.

Mid-Term Goals

o Rapid Prototyping

This would entail developing the capability to automatically (or at least nearly
automatically) compile a formal specification to an efliciency level that pe,mits
realistic testing of the specification as a prototype.

o Self Consistency Checker

This would include verification of satisfaction of formal requirements, establishment
of pre and post conditions, and detection of deadlock and starvation.

*lhhavior Explanation

We propose to develop the capability to explain in natural language ie behavior of a

32 3. KBSA INTERNAL STRUCTURE

specification (as opposed to just the result produced) on both concrete and symbolic
test cases.

Long-Term Goals

* Summarize Behavior

The idea is to develop the capability to automatically summarize specification be-
havior in natural language for different audiences and experience levels (e.g., highlight
surprising results or normal case behavior).

3.3.3 Development

The job of this K1SA facet is to aid the creation of a production quality implemen-
tation. Since the full functionality of the intended system has been captured in the
formal specification, that specification "merely" needs to be compiled to accomplish
this task. U7nfortunately, even smart, knowledge-based compilers, may not be capable
of producing production-quality implementations. The reason is that to the extent
that the specification I;a uguagC is flfulling its purpose as a description of what rather

than how, the gap between the formal specification and an efficient implementation is
too wide to bridge totally autonatic:lly. Therefore, we will need to keep people, the
develowrs, in the im)l inen tatrion loop. What should their role be and how can we aid

them in that role?

These questions can best be aniswered by consi(lering a related question: what im-
lii' ,itat ion fIrnctioln; ,re difhicult. to ;iu tomnate (and hence will be performed by the

l.(eors)? The answer is simply, the(decision-making portion. The implemlentation
)rocess coii ists of nillitcrowis imple men t tion (Iecisioris such as how to repre:tnt some

infornation, what algorithin to eni ploy to obtain some result, what in formation to

save, when and how to recompute that iformation not saved, etc..

There ;re three difficulties in automating these decisions. First, the decisions are not
indepnildc Ill. The choice m de for one decision often affects whi ch choice shoild be
mde for ainother. Se(cond, techni(ites for evaluating the relative values of different
choie,, ii the pre,.'wnce of other tii ade decisiots are pi ite limited or nonexistent

(part IN bee'tse of the [i eractions ainotng these decisions). Finally, lit tle is knowtn about

the ord'r it, which lhitose d,'ecisioris should be considered (good designers are observed
to ,miploy very different. or(Ierings).

These (ilihi'h i es argue for a continiing role for the (developer as decisionmaker in the

imple iilat ionl process. Iltit what of the rest of the process? It consists of carrying out
these dec(isions. Currently this is don, all at once, after most, (or all) of the decisions

have been Iiade, by iicorporating them in the code of the implfementation (the first

ani(d only formal represntviio of tile systen).

* •.3.3 KBSA Facets S

In the knowledge-based software paradigm, this p-ocess will proceed very differently.
First, each decision will be captured as it is made to document the development process.
Next, it will be realized in the "specification." That is, portions of the specification will
be replaced with pieces of "implementation." As later decisions get made and realized,
other pieces of the specification will be replaced, or the replacements themselves may
undergo further refinement. Many such levels of implementation may occur before
the final efficient implementation is obtained. Thus, through realizing the decisions
as they get made, implementation will become a process of gradually replacing the
constructs in the specification language by those in the implementation language.
Since this replacement is gradual, the specification constructs must coexist with the
implementation constructs. This requires a "wide-spectrum" language that contain,
both the specification and implementation languages as subsets.

The gradual refinement of the specification is accomplished via formal manipula-
tions that realize the implementation decision chosen by the developer. Such formal
manipulations are possible because the specification, and all its refinements, are for-
mal (i.e., expressions in the wide spectrum language), and are necessary because such
manipulations can be quite complex (as sophisticated algorithms replace simpler ones)
and quite distributed (as information is spread through optimization). Autemation is
needed beth to ensure that the manipulations are correctly performed (this presupposes
that the transformations have been formally verified) and performed everywhere that is
required and because the slicer magnitude of the task would be overwhelming otherwise.
Fortunately, s(ich autornation of the formal manipu lations required to realize decision

making appears quite feasible and several prototype systems exist that accomplish imn-
plementation in this manner. Furthermore, the codification of prograimning knowledge
in catalogs of such fornal inanipulations has already begun.

Rut experience with increnental implementation systems has shown that in addition
to the inmpl'fI en tation (fh..isions, many other formal manipulations are required which
either "prepa re" the specification for the decision being realized or "simplify" the result
of -t realization. These low-level manipulations are much more numerous than the
dC(i~ons Miade by the developer, and their employment mus" also be automated In
fact, the set of' devlopr decisions forms a rich hierarchy (actually a heterarchy) of
preparatory and simplifiat ion man ipulat ions for each other. This raises the possibility
of having the developer make only the "conceptual" or "strategic" implementation
decisions with a knowleldlg-based problni- solving tool filling the remaining "tactical"
inipleinent at ion decision s at uonaticall-' Advanced versions of the knowldge-based

software paradigm will erolov such rap bili ties.

In this incremental irnpe nen itation process, ne mut omnation of the formal manipulation
will ensure that the resulting implenientatioi is orrect (i.e., is functionally equivalent
to the specification). This means that the current phase of testing the implementation
cpn be elininated. The energy thus saved will be shifted to validating the specification
(ensuring that it. miatches the user's intent,, as (escribed in Section 3.3.2) and evolving

the system as the user's requirements change.

-74 3. KIISA INTIINAIL S'rijCTUREfm

This)rings uis to the question of reirnplementation. in the knowledge-based software

paradigm, maintenance will be performed by modifying the specification (which is
normally straightforward and simple) and then reimplementing that specification. But

rather than repeating the incremental implementation process from scratch, the KBSA
will help the implementer modify (normally only slightly) the previous incremental
implementation, which will have been automatically recorded, and then replay it to

obtain the new implementation. This reimplementation facility is another powerful

automated tool for the developer. Furthermore, to the extent that the original (or

previous) incremental implementation was achieved by the KBSA that filled in the
"strategic" developer decisions with the remaining "tactical" ones, this development

will tend to be automatically self adapting to changes in the specification a-d/or any
changes the developer wishes to make in the decisions previously made.

Short-Term Goals

* Wide Spectrum Language

We will develop a wide spectrunm language capable of representing the design of a
system in all stages from formal specification through optimized implementation.

* Transformation Language

This language should be capable of describing transformations from the more
abstract constructs within the wide spectrum language to the more concrete.

* Property Language

This should be a language capable of describing the properties of program segments
(such as the variables set and referenced, the module involved, the criteria under

which it is reachable, the effects it creates, and the invariants it maintains.)

* Interactive Mechanical Development

The idea is to develop a system capable of performing and documenting the devel-
opment steps selected by the user. This requires the creation of a catalog of trans-

formations.
* Automated Property Proving

The aim is to develop an inference facility to automatically prove (or disprove)
properties as they are needed during development.

Mid-Term Goals

* Automated Development

We propose a system capable of taking a simple goal stated by the user and creating

a short sequence of development steps to achieve that goal.

* Automated Replay

We propose a system capable of adapting a previous development to an altered

3.3 KBSA Facets 35

specification with a degree of automation commensurate with that available in the
original development.

Long-Term Goal

9 Enhance Replay

This would mean extending replay capability so that, in addition to changing those
designer decisions that had to be changed for correctness, the system also detects
those which ought to be changed for performance reasons and suggests appropriate
changes. Notice that this entails interaction with the performance facet.

3.3.4 Performance

The long term goal of the performance facet is to help to create and maintain efficient
programs that meet their performance requirements. The performance facet will guide
performance decisions at many levels from requirements specifications to very-high
level programs to low-level code. Performance assistance capabilities are critical for
making practical tools of very-high-level, executable specification languages. Because
the key disadvantage of such specifications is their lack of efficiency when executed
straightforwardly, the important factor in their utility is being able to find efficient
iniplerditations. I)uring development, efficiency estimation will be used to predict
and compare the costs of proposed alternative data structure choices. With this
capabifity, either a programmer or an automated program synthesizer can select a
data structure. K1BSA will also give performance advice about what control structures
to use, what optimizing transformations to apply, and what algorithms to use. Thus,
program analysis includes not only data flow and control flow ana!ysis, but also higher-
level analysis, such as algorithm analysis, to determine the time and space efficiency
of programs, to suggest modularizations, and to find bottlenecks. It also involves
augmenting application domain models to include some cost information. At the
requirements level, advice will be given about the relative costs of different proposed
feitures.

Currently, most efficiency estimation and optimization is performed by designers and
programmers without much automated assistance. There are a few tools for estimating
program timing information, and sone data flow information is derived by compilers.
However, the information is usually neither available in machine-understandable form
nor available outside the compiler.

Performance advice can be given regardless of the degree of automation in the devel-
opment phase. We assume that some combination of the following three development

methods will be used: mnually implenmenting programs from specifications; interac-
tively synthesizing prograns by applying transformations; and automatically synthesiz-
ing programs by a system that selects and uses transformations, simplifications, and

..

36 3. KI3SA INTERNAL "STRUCTURE

inferences. In the case of automated synthesis, it is the efficiency estimator that bridges
the gap from interactive synthesis to autornated synthesis.

In all these cases the user, programnmer, or knowledge-based assistant searches a space
of possible combinations of implementations and decides amnong them on the basis
of knowledge and their relative efficiency. Other factors comie into play, such as the
amount of effort (human or machine) available to implement the program and the
relative importance of the p~articular part of the programn beinig imnplemented. For
example, a human programmer or a synthesis programn might well try to Find the most
important bottleneck in a prograimi and allocate the largest optinmiizationi effort to that
portion.

Efficiency analysis facts can be gathered in several ways: rufle of thumb estlimations,
algorithmn analysis, or simiulat ion coupled withI staist ics-giitIering. B~y simulation we
tncan c it Iier directly executing the spec ificat ion or executing a ii automatically corn-
piled prototype Imnplementation. B~y having dlefaLult Iimplemuittations for all levels of
refi nemuent, we c:oulId ensure that, at any time (luring prograuli dIevelopmnent, the pro-
gramn can be qu ickly linplemnent ed (even if It has been only p~artially refined or op-

imli ed). 'Phese ini ItipIc- level execumt able specifications can he used for hot h validation
and collecting perfOrmimance stati is. When analysis and simulation both fail, the fall-
back posit ion will be to implemniti . various versions and uieasa re their perf'ormiance.
'11w, ea-sIbiilty orfilth-s techinique will be (dependlenit upon the cost. of' eatI~ I multiple

irmplnmetaIos whlichi will inmto i dependl stroiigly upon thme degree of' ant omation of'
the develop ment p1hase.

Efficeiency' estimation is also valuable iii the knowledge-based projeoct mail [1; gemInent, andl
ruqiireien ts activities, for examinple, a bottleneck an aly zer can locate ca ulses of' delays
in implemienitation. As withi processor allocation, projects could(be real located to the
miost eificien t imlfcni('itors, t; king into accoiut t heir work load and cost.

Shiort-Terni Goals

* Symibolic Evaluation

Symnbolic eval uatioil (see Section 41.3.1) is a basic analysis technique t hat is useful
in miany of the 1KI SA facets described. I lowever, it, is crucial f'or the performance
facet. The perforianmce facet needs to be able to propagate and iiitegrAte efficiency
estiniatioiis in(l to perform symibolic analysis onl partuial specificat ions.

* lat a Structure :\ialysis andm Ad(vice

A short- tcriii target for the performance Facet will be a set of' estlimators for data
srt rire select ion that. are reasonably robust. when handling conventional data
stIT 11111res (proba bly excluding ext ernal miemory devices). Tlhiese est imat ions could
be uised for amiloimiut ic data st rtietire selection (,r f'or advice to manual iniplenmentors.
lificiency estimiat ion activities will be limited to thiose imleessary for dlata structure

seletion inluding tOlie use of both rules of trhummib aind hemurist ic algorithmn analysis.
As ain Initial target, effic ieincy estimnat ionr will pro0vide a pproximate, average-case

3.3 KBSA Facets 37

performance analysis. The agents will compute and transform annotations about
efficiency characteristics as programs are transformed, and will record cost analysis
decisions for the benefit of future users. Some bottleneck finding also should be
feasible in the short term; it is valuable for both automated and manual systems,
and is a fairly straightforward extension of the basic performance analysis capability.
By limiting the performance facet initially to data structure selection advice, we take
a conservative position and increase the likelihood of success. It may be necessary,
if certain applications are undertaken, to include other optimization decisions.

* Subroutine and Module Decomposition Advice

One class of performance decision is when to create new subroutines or modules.
Given a definition of a potential subroutine, the decision about whether it should be
kept as a subroutine or compiled in line is relatively easy, and such a capability will
be developed as a useful adjunct for the manual programmer. ilowever, thre ability to
logically find or formulate subroutines or modules that share substantially the same
function is a more complex task arid may require inductive inference. Such advice
may not be available until later in the project.

Mid-Term Goals

* Domain Models for Analysis

Once domain models have been developed to help with other activities such as re-
quirements definition, they will be augmented to cover performance or other analysis
information. This domnain information wi!l be an inexpensive i'placement for infor-
mation that would otherwise have to be gathered by sonie form of simulation and
monitoring.

* Algorithm)esign Aalysis and Advice

The data structure analysis and advice capability will be extended to include the
ability to analyze control Ntructures and other classes of optimizations. Some op-
timizations are almost always performed when possible (such as combining two
entmirerations through the same set) and thus are not especially interesting for
efficiency analysis, but their effects need to be understood so efliciency characteristics
can be updated. Also, combinations of optimizations sometimes need to be compared
(say to determine file .iggregation). Determining how to apply some of these trans-
formations and deciding whiCh combinations are really most efficient is a difficult
problem.

We could also consider the effects of simplifying ti cost function the user specifies.
For example, additive cost functions are much easier to compute and may be suflhcient
for the user's needs.

* Real-Timie Performance Advice

Real ti me systems are an important application domain. To achieve analysis and
advice in these domains, the degree of conpleteness and accuracy of performance

. " II I - i |

38 3. KBSA INTERNAL STRUCTURE

estimation will be improved to deal with worst-case performance. Better analyses
will be available, and the ability to specify different accuracy goals for analysis will
be provided. While in many cases a fast, approximate estimation is sufficient, for
important cases (bottlenecks, real-time critical response programs) a more expensive
analysis, taking closer account of interactions, should be available.

In the longer term, even more sophistication might be attempted, such as taking into
account statistical distributions on input data.

3.3.5 Testing

In current software practice, program testing is a haphazard activity, generally not
supported by sophisticated tools. In the best current practice, a set of test cases is
defined at the beginning of the project, before detailed design has taken place, and put

aside to be run after the final implementation is complete. More typically, test cases
are generated after implementation has taken place with a view toward "exercising"

all parts of the code. Test cases are almost never kept up to date during the long-term
maintenance and evolution phase of the typical software life cycle.

In the long term, program testing will disappear as a separate activity in an automated,
knowledge-based software development process. Most of what we now think of
as program testing will be redistributed into the validation and development ac-
tivities discussed in preceding sections. To understand this redistribution, we need
to reexamine what a test case is and how it functions in the program development
process. l'undanientally, a test case has two features: it is a snaill fragment of the total
behavior of a system, and there is some sense in which that. behavior can be judged
correct or incorrect. The purpose of a test case differs, depending on whether it is

primarily concerned with the specilications or with the implementation of a system.

From the point of view of speciications, the fragments of the total possible system
behavior selected for test cases are determined by knowledge of the application task.

The purpose of defining a set of test cases and their correctness conditions is to help
clarify what the user desires. In the mid term, program testing should therefore begin
to be coordinated and integrated with requirements and specification validation (see

Sections 3.3.1 and 3.32). For example, the emergence of executable specifications will

make it possible not only to define and record test cases early in the development

process, but actudly to run test. ca,;es before the bulk of the imnplenenitation is begu i.

The benefits of this methodology will be both in the area of helping users figure out

what they actually want, and avoiding effort wasted in implementing what turn out to

be incorrect specifications.

Automatic generation of test cases based on specific knowledge about the user and the

application is also a possibility. This knowledge may be either in the form of domain-

specific test generation procedures or precompiled, but highly parameterized, test cases

for specific types of applications. For example, the KBSA will have knowledge about

i • - , , r I i - I I . . I " •- -

3.3 KBSA Facets S9

how to generate test data for specific computer-controlled hardware devices, such as a
radio scanner or a motor mount.

A number of automatic test generation tools already exist which, given a complete
program in some high level language, produce test input data guaranteed to satisfy

some form of completeness property over the program, such as traversing each branch
point in each direction. The main weakness in this approach is that the tools are in a
sense too general - they treat all parts of the program the same, and at the code level.

There is no way to incorporate specific knowledge of either the application domain
or the software design. Given that program testing is inherently a partial process
(i.e., in real software one can never test all possible input data), the advantage of the
knowledge-based approach over uniform test generation algorithms is the use of specific
knowledge to increase the density of tests in the areas of most relevance.

The second major purpose of current program testing has to do with the implementation
process. The purpose of test cases from this point of view is to compensate for the fact
that implementing a large and complicated software design is an error-prone process.
Here, the fragments of the total system behavior selected for test cases are determined
from knowledge of the software implementation design. In the long term, most of
this kind of program testing will become unnecessary because a more formal program

development methodology (see Section 3.3.3) will allow the interacting properties of
different implementation steps to be explicitly managed and checked by automatic or

seni-automatic tools.

Knowledge-based met hods will also be applicable to the generation of test cases which
address program implementation needs. In this area, the specific knowledge has to
do with how to properly test specific kinds of software design structures, such as a
nulti-level interrupt system or a hash-sorted data base. As with application-specific
test generation, this will be achieved through a combination of design-specific test

generation procedures and libraries of parameterized test cases.

Short-Term Goal

. Test Case Maintenance Assistant

The first, step toward more automated, knowledge-based program testing is to provide
tools that better support the current best practices. What is called for immediately is
a uniform mechanism for associating test data with every unit of a software project
(e.g., a requirement., specification, module). The purpose of a test (which may

initially be only a keyword meaningful to the user) should also be recorded with the
test, itself. The main functions of the K13SA at this level will be to accept changes in
test data, to schedule the running of relevant tests automatically when units undergo
changes, and to give notification of problems. Such a facility will make it easier and
therefore more likely for the system developer to define a test case at any point in the
software development process at which it naturally comes to mind. Also, with more

detailed knowledge about the relationship between specific test cases and features of
the requiirements, design, and implementation, testing will become much less of an

40 3. KBSA INTERNAL STRUCTURE

all-or-none business, as it is today. A knowledge-based test-case maintenance system
will allow incremental rerunning of test cases appropriate to the particulars of the
modification.

Mid-Term Goal

Knowledge-Based Test Generation

In the mid term, it will be possible to begin to move from simply maintaining user-
provided test cases to some automatic generation of test cases. The same underlying
test case maintenance facilities can then be used to keep track of a mixture of user-
defined test cases, test cases generated by uniform, automatic procedures, and those
generated from specific domain and design knowledge. One of the first knowledge
sources to exploit for automatic test case generation may be software "fault models,"
which are accumulations of heuristics, based on past experience, for the kinds of
errors that correlate with specific kinds of tasks and programming structures.

Long-Term Goal

Testing will disappear as a separate activity; it will be redistributed into the validation
and development activities.

3.3.6 Reusability, Functional Compatibility, and Portability

Mlany costly problems in present software production are essentially special cases of a
g(,neral problem which we refer to as compatibility between modules. For example,
a software module is reusable if it can be used as a component in differing systems;
the facilities it exports must meet the requirements of a component and the facilities
it imports must be provided by other components of the system. A module is por-
table to a new installation if the facilities it requires (imports) are provided by that
installation. In the long term, complex systems will be hierarchically specified in wide
spectrum specification languages (see previous sections); interface specifications will
be separated from implementation details; the various VHLL's will eventually be rich
enough to express all manner of complex details such as timing and I/O requirements,
so that one may expect to have available the design of a complete system (hardware
and software). At this time, many of our current problems will boil down to checking
the (:ompatibiliy of module interface specifications.
This section proposes a spectrum of KBSA facilities that provide assistance in deter-

mining compatibility of modules. These components could be developed in the short-

and mid-term phases of the project and could become useful tools in production-quality
programming support environments in the mid term. The long-term focus is to develop
support technology for automating aids to the general modular interface compatibility
problem. The long-term tools evolving from this effort will provide components for
other KBSA facilities in requirements, validation, and testing.

3.3 KBSA Facets 41

Short-Term Goal

An Automated Structured Walk-Through System for Software Portability

This capability will help check the transportability of software packages between

different installations and machines. It will accept and record information about
various computer installations, and give advice on the system constraints on software
currently in force at a particular installation when asked.

The capacity for ensuring portability will accept interface specifications about various
computer installations. Initially, these interface specifications will be highly restric-
tive, but they will include I/O requirements and limits, file access and privacy con-
ventions, memory limitations, and run-time scheduler interface specifications. Later,

more complete and formal interface specifications will be used. Based on such in-
formation about an installation, the assistant will build up a set of constraints to
which a program -unning on that install;.,ion must conform. If a software specialist
is tailoring a module for that installation and requests the portability walk through,
he will get a checklist of constraints that his program must meet in order to run
there. Items on the checklist will be displayed one at a time and will require an
answer. The actual sequence of items displayed will probably depend on his previous
answers.

Such portability assistants coul!d be very useful in the short term and could probably
be implemented using very simple facts about installations and rather simple rule-
based reasoning to generate sequences of constraint checks.

Mid-Term Goals

Construction of a sophisticated mid-term version of a purtability facet should focus
research on (and take advantage of) several basic technology areas:

* Knowledge domains Facts al)out an installation that affect the running of a
software package will have to be represented together with dependencies.

* Fault models rhe assistant, in some versions, may use a model of previous
experience reports in reasoning about portability.

* Specification languages - As program design languages become more power-
ful, the inforniation required by the portability facet will become precise and well
defined, (lependin g only on the 'ormal specification of an installation (operating sys-
teTn aid hardware). Consjtrue (-.ioui of portability facets should promote research on
specification in a precise high-level specification language of conventional operating
systems in particular, and complete installations in general.

Mid-term development of portability facets should therefore take advantage of advances
in specification languages, the existence of more complete modular specifications of
systems (installations), and the development of complete glossaries of keyvord con-
cepts affecting port:ability (together with logical interrelations between those concepts
expressed in a form suitable for automated re;asoning including rules, special purpose

42 3. KBSA INTERNAL STRUCTURE

deduction packages, etc.). The mid-term assistance would also be in the form of
generated checklists. However, these would encompass a much more complete set of
parameters affecting portability. Using associations with analysis of installation inter-
face parameters, the assistant may also track histories of previous reports of software
portability attempts to the installation in question. It may then issue advice during a
portability walk through, e.g., who to contact about a particular interface requirement.

Long-Term Goals

Long-term development of a sophisticated reusability facet may involve a highly in-
tegrated KBSA. Reusability could be made a factor in requirements planning and
refinement, module histories and documentation, and in activities coordination during
system implementation. The reusability facet would track particular facts relevant to
flexible use of a module and specification changes of system components.

3.1 KBSA Support System

rhis subsection identifies the lower-level utilities needed in the support system for
the development, evolution, and eventual integration of the KBSA facets. Iligher-level
support utilities that require more sophistication, such as inference systems or symbolic
evaluators, are discussed in Section 4, "Supporting Technology Areas."

The KBSA support system will be an integrated programming support environment
that provides facilities for a number of agents to pursue a variety of simultaneous
activities concerned with program development, testing, and maintenance, as well as
with project management. The environment will be integrated in the sense that several
policies must be adhered to by each of the many tools available in the environment;
these policies arc enforced through a set of system utilities. The two most important
policies are those of version control and access control:

9 Version control--

The version control policy derives from a desire to minimize the amount of work
each tool must do in order to account for the changes made since the last time
that tool did the same job. To implement this, each program entity (for example,
a procedure, a type, a data object, a fragment of documentation, a collection of
program entities) will bear a version number. The version number will change only
when that entity changes, thus enabling a tool like a symbolic evaluator to know
what has (and what has not) changed since the last time it did an analysis of some
collection of entitities. In addition, each program module that is derived by some tool
will have a derivation history that relates it to the particular version of the parent
modules and the particular version of the tool that contributed to its derivation.

e Access control -

Access to all the elements of the KBSA development environment will be strictly

3.4 KBSA Support System 0S

controlled. The user (whether involved in developing/maintaining some software
product or in modifying or augmenting the KBSA development environment itself)
will be constrained to deal with the environment through the activity coordinator,
which will ensure that any action that is taken is appropriately authorized.

The KBSA support system has three major components: the data base, the tool set,
and the user interface; we discuss these in turn.

* Data base-

The data base maintained by the KBSA development environment consists of three
functionally distinct major components: the administrative data base, the software
data base, and the knowledge base. The administrative data base will be a data
base that contains a variety of information to do with the agents and organizations
that are known to the KBSA. Various administrative and managenent agents will
be able to query and update this data base in order that the relationships among
the organizations and personnel currently engaged in the projects under way are
correctly reflected.

The software data base will contain a set of modules -collections of program entities
that, together, embody all aspects of the set of products currently being developed

or maintained by some instance of a K1SA development environment. The creation
and manipulation of the program modules is done by various tools, whose use is
miediated by the activity coordinator.

The knowledge base contains all the vr:ous kinds of knowledge acquired by and
available to the collection of k nowledge-based facets that will be integratcd into the
KIBSA environment as well as by the activity coordinator.

A set. of data-base utilities will be provided by tho KI3SA to (te.l with the addition
and deletion of various data-base elements, with backup and archiving, and with
organizing and reorganizing the various contained databases to ensure a timely
response to a query or update.

* Tool set-

The set of tools available in the K13SA development environrnent will grow as new
tools that provide assistance in various aspects of the life cycle of some software
product are integrate(d into the KI3SA. Initially, however, there will be a basic set
of (standard) tools including tools for editing, cornpilirig, and program transforma-
tion; debugging aids, tools for analysis, query, project management; for creating,
di.patching, aid responding to messages; for data base management and so on. It
is assumed that, the initial tool set will be developed by modifying various existing
tools to adhere to the version and access control policies that are enforced by the
KBSA. This initial tool set will later be superseded by the KIISA facets.

o User Interface-

The user interface to the KINSA will be through the activities coordinator. It, is

44 3. KBSA INTERNAL STRUCTURE

assumed that this interface will be realized through a work station that provides high-
resolution graphic output plus a keyboard and various kinds of pointing mechanisms
for input. It is further assumed that, at any time, there will be a number of windows
into displays concerned with various aspects of one or more activities in which each
agent is engaged.

A number of utilities will be provided to enable various tools to create and manage
a variety of displays and to permit the user to control the positions, size, and other
aspects of the windows currently open.

4.1 Wide-Spectrum Languages 45

§4 SUPPORTING TECHNOLOGY AREAS

The KBSA facets must support problem-solving activities at all stages in the software
life cycle. These automated facets depend on the application of different technologies,

which we call supporting technology areas. These areas fall principally within software
technology and artificial intelligence technology. For example, within software technol-
ogy, the development of machine processable languages for formalizing programming
activities and knowledge is a supporting technology area. Within artificial intelligence,

the area of knowledge-based expert systems is a supporting technology area. The ul-
timate success of the KBSA depends very strongly on the development of the supporting
technology areas.

In the past several years, the relevant supporting technology areas have been developing
rapidly. There has, for example, been much research activity in the areas of require-
inents languages, knowledge- based expert systems, automated program verification,

and sophisticated program management systems. Some of this activity has led to
prototype experimental tools and in some cases to commercially applicable products.

These recent advances in the relevant supporting technology areas have created a sound

foundation for the short-term goals of the proposed KBSA plan. However, further
advances are required in these supporting technology areas to achieve the KBSA's mid-
and long-term goals. It is expected that the relationship between the KBSA plan and

the supporting technology will be symbiotic. The KBSA effort will produce growth in
the supporting areas, and innovations in the supporting areas will contribute directly
to K13SA. The overall effect should be a vigorous program of technology development
followed by prototyping of and experimentation with advanced software support tools.

In this section, we discuss the major areas of technology required to support the KBSA.

4.1 Wide-Spectrum Languages

Work on all aspects of programming languages and high-level specification languages
needs to be strongly encouraged. Language design and underlying formal semantics
should be particularly emphasized. Languages concerned with distributed and parallel
processing require special attention. It should be noted that our use of "language"
here is intended to cover graphic and schematic representations of systems as well
as conventional written representation. It is intended to cover the spectrum from
requirements to implementation, from management to maintenance.

The importance of language design lies in providing the human user with natural
methods of expressing different aspects of a computational system and focusing only on
relevant details at any given life-cycle stage. Many languages, each somewhat suitable
for different stages of software development, currently exist. These languages, although
useful, are far from adequate for their intended use in the software development process,
and the existing support. tools for one langimage have not been designed with a view to

46 4. SUPPORTING TECHNOLOGY AREAS

interfacing with the tools for any other language or system. The aim of this support

technology area should be development of a wide-spectrum language suitable for all
stages.

At this time, research in the design of very-high-level formal specification languages
should be emphasized. There is an immediate demand for specification languages
that extend and complement current programming languages, for use as program
design languages (PDL's) as well as for formal documentation. Later on, specification
languages can be expected to provide the stepping stone for better systems design
languages. By the mid-term period, new specification languages may well be developing
as the new programming languages of the future. At that time, it should be possible
to formulate a detailed research and development plan to produce a wide spectrum
language suitable for KBSA needs.

4.1.1 Formal Semantics

Languages need a formal semantics to provide a basis for the construction of tools
supporting activities such as error checking, consistency and compatibility analysis,
and program transformation.

A great deal of progress has been made in the past few years in developing formal
semantic models for programming languages, but much still remains to be done. For
example, many of the conventional sequential high-level programming language con-
structs are quite reasonably modelled with denotational or Iloare-style models. Others,
such as various aspects of memory management, are not yet modelled completely satis-
factorily. As we consider adding certain very-high-level constructs and various notions
of parallelism to our programming languages, we must extend the formal semantic
models to encompass these new constructs.

4.1.2 Advanced Systems Analysis Tools

Support tools for activities carried out in a wide spectrum language must be developed.
These tools will be based on the formal semantics of the wide spectrum language, and
on expert systems techniques. This support area must be developed in conjunction with
the language design effort. Current approaches to advanced program analysis tools can
be placed in two broad categories. The first, often termed "smart compilation," seeks
to gather certain facts about a program use/set information about program variables
(essentially syntactic) common subexpression information, dead/live regions of program
flow for variables and so on. Much of this work is reasonably ad hoc and the mechanisms
for doing it are usually embedded deep within a compiler with the information neither
saved nor available to any other tool. This area of smart compilation tools needs to be
expanded and the analyses they perform made available to other tools in standardized
form. It can be expected to produce useful products in the short to mid term.

-d. - - ----.

4.3 Domain-Specific Inferential Systems 47

The second category is often termed "inference-based" and includes symbolic
evaluators, transformation of specifications into run time error checks, and program
verifiers. Tools in this area utilize not only the semantics of the underlying language
but also user-supplied knowledge about the system itself (e.g., formal specifications,
knowledge about the problem domain of the system). Development in this area of ex-
pert analysis tools needs to be vigorously encouraged and the results of these analyses
made available in standardized form. This area will produce sophisticated KBSA facets
in the mid to long term.

4.2 General Inferential Systems

A general inferential system is a system that supports automated inference from user-
supplied inference rules applied to the mo(!eled semantic properties of a user-defined
data base. ('[his generally includes first-order logical operators but may also include
other structural elements, e.g., operators and connectives from modal or temporal
logics.) Such systems are applicable to all problem domains. This support technology
area needs to be strongly supported with special emphasis placed on KBSA needs.

Important aspects in the implementation of such systems are:

1. Efficient implementation of inference rules arid data representation for general
logics. The inference rules are usually derived from the semantics of the language
in which the data are represented. Such logics include first-order logic but also
extensions and variants that may be useful in reasoning about programs such as
first-order logics of partial functions, time logics, and nonmonotonic logics.

2. Structural modular facilities for expansion to include domain specific inference
modules or cfficient decision procedures.

3. User interface facilities specifically focused on making the system useful in practical
applications. For example, an area where general inferential systems have lacked
development so far is provision of facilities for explaining why a statement cannot
be derived 'rom the given data.

4. Efficient decision procedures for subclasses of logical formulas.

Much of this vork will depend on theoretical advances and basic research in such areas
as inference systems for various first-order logics, time logics, and decidable first-order
theories. This basic research should be encouraged whenever it is relevant to KHSA
facets.

4.3 Domain-Specific Inferential Systems

A major thrust of the KIISA is to provide facets that aid in the reasoning required
concerning specific problem domains at various stages in the software production ,nd

48 4. SUPPORTING TECHNOLOGY AREAS

maintenance process. There is a wide variety of specific problem domains for w'°ich
the development of automated reasoning support is essential to KBSA facets. These
domains include the domain of programming languages, application-specific domains,
and the domain of project organization and the coordination of the activities ongoing
within a software project.

For each individual problem domain, special rules of reasoning and solution finding will
apply. Inferential systems based on the special rules are much more efficient than the
application of general inferential systems to an encoding of special domain within, say,
first-order logic. Specialized inferential and problem-solving systems will be essential
components of individual KBSA facets. Therefore, research in this area focused on
special problem domains related to proposed KBSA facets should be strongly supported.
This research can be divided into three areas outlined in the subsections below.

4.3.1 Formal Semantic Models

A formal semantic model for a problem domain is a system of definitions and rules
that permit a human being to reason about the objects in that domain, and their
interrelations. Such a model is a most desirable, and perhaps necessary, precursor to
any techniques for mechanical reasoning and problem solving in that domain.

4.3.2 Knowledge Representation and Management

The knowledge concerning each domain must, at least conceptually, be available in
a knowledge base that is used by the various tools reasoning about that domain.
This knowledge is represented in a fashion appropriate for external use and is also
represented internally in such a way that it can be accessed, updated, and efficiently
maintained. Several external representations will often be desired. For example, the

form in which an expert in the domain presents knowledge to the knowledge base
may differ drastically from the form in which we wish the system to represent this
information to someone who is not a domain expert - a user, programmer, or manager,
for example. For the nonexpert, we typically wish to explain, in lay terms, some aspect
of the knowledge about certain objects or situations.

Data (knowledge) about a problem domain may be of various form,. Some (Lita may
be applicable to the knowledge base; these are generally called (inference) rules since
their function is to deduce (new) facts about the domain from the existing data. Other

data may take the form of heuristics for deciding when rules can be usefully applied.

Knowledge management concerns analysis of the knowledge data base. The knowledge
base for a problem domain may change as a function of the activity in that domain. For
example, a project progresses from a prototyping stage, during which the coordination

4.4 Integration Technology 49

may be mostly informal, to a production stage and then a maintenance stage during
which the coordination may be highly formalized.

Support technology for knowledge management in KI3SA must address the problems of
change and explanation. For examp~le, in KI3SA, the following examples of knowledge
mianagemient aids will be required:

* There must be mnechantisms to "explain" the rules (appropriate to some situation)
to, for example, managers who are riot particularly adept at dealing directly with
first-order logic or sone variant thereof.

" It must be easy to add, remove, and miodify rules. The use of relations in a relational
data bi-se to represent certain (ground) rules and a reasonable management system
for the rela~tional (la base would(be most helpful here.

" There should be miechanisms for checking the consistency of the data, noting redun-
dant facts, and so on.

4.3.3 Specialized Inference Systemis

Efficient inference systems for a given problem domain will need to be developed based
on (and in conijunc tioni NithI) the semantic nmodel and (data representation for that
dom~ain. ('1c0 systenis May- be close enough to standard general inference systems
(resol tion, eqnittional rules, iniplicat ina I rid es, P~ROLOG schemnes, f r.) to be imple-
inentable usinhg gvnera I techliniues. H owever we inust also encou r-,ge reseam cl into
sp~ecializ~ed in f'erence svsft its inl order to cx plore all possibilities foi efficiency. (This
situation is somewhat analogous to a current situation where, in the context. of current
Von Neumia n n iiiachimnes and1(program iing languages builIt on top of' them, researc h in
ailternative data; lov ni;ichiiies is being pursuied.) Efficient inference systems for a given
p ro blemt (doma in arc li kely to be realized by build in ri uch of the in ference mechanisms
into the data represent~ationl.

4.4 Integration Techniology

A fu idat rlite it al premit Ise in t he 1K I NSA plian is that variouis facets can lie integra ted in to
uiniformn (from ithe user's point of' view) environnmii ts in the mnid to long term. The
ability to ac hi ieve thiis goal will d1epenid ott developmient, of a supporting technology for
integrating sevparate Facets. Intecgration technology covers both the underlying KIISA
support systemi itself (Seet ion 3.1) and] Chle integration of separately developed facets.

50 4. SUPPORTING TECHNOLOGY AREAS

4.4.1 KBSA Support System Technology

Adequate technology for implementing the basic facilities required of the KBSA support
system itself (Section 3.4) must be developed. This may be categorized as basic
management facilities. While technology in this area is already well developed so that
implementation of initial KBSA support systems can be undertaken now, experience
will almost certainly demonstrate weaknesses and areas where further research and
development is required.

4.4.2 Interfaces and Standards

As the KBSA progresses, our experience with initial integration experiments should
be used to develop guidelines and standards for interfaces between KBSA facets.
Experience has already shown that such standards are difficult undertakings . Research
must be encouraged in investigating such support areas as

1. Definition of standard abstract data structure representations for internal forms
of broad spectrum languages (Section 4.1).

2. Standard interface facilities to be supplied by knowledge data bases.

3. A universal uscr command language for all KBSA facets.

5. PROJECT PLAN 51

§5 PROJECT PLAN

The KBSA effort involves a fundamental shift from the current informal person-based
software paradigm to a formalized computer-assisted paradigm and the creation of the
knowledge-based software assistant required to support it.

This ambitious undertaking cannot be achieved by a single effort in one giant step.
Rather, it must be approached through a series of small steps over an extended period.
This recognition has been the major influence on our plan. This plan consists of a set
of coordinated parallel efforts which will be periodically integrated into a succession of
usable, and increasingly comprehensive, KBSAs.

The primary strengths of this plan lie in the identification and enunciation of the KBSA
paradigm as the solution to the problems besetting current software efforts, and in the
identification of a technical framework for fostering the distributed, gradual creation
of KBSAs.

The heart of this technical framework is the combination of the activities coordinator
and the knowledge-base manager which enables each life-cycle activity to be incremen-
tally formalized and fitted into the matrix of other activities. It forces consistency
among these activities and imposes standards. Most importantly, by formalizing the
activities and by managing the knowledge involved, it, provides the basis for knowledge-
based support of both the individual activities and the software development as a whole.

Thus, two major tasks in the plan are the creation of suitable K13SA frameworks and the
incremental formalizati i and knowldge-based support of the individual facets of the
software life cycle. The individual facets identified in Section 3, and their development,
should be taken as illistLrative and suggestive of the possibilities afforded by the KBSA
p)aradigm and must not limit further insights.

A third major task is the periodic integration of the evolving individual KBSA facets
into a succession of more comprehensive KBSAs. These integration efforts will be used
as demonstrable measures of progress toward a complete KBSA. They will also serve
as the basis for the production engineering and documentation needed to transfer the
KI3SA technology andl approach to actually impact the software development process.
This technology transfer is tie fourth major task.

The final major task is the supporting technologies identified in Section 4, such as
knowledge-base rnanajg,, (ent and inference techniques, which, while not, specific to
either the framework or any individual KI3SA facet, are crucial to the overall develop-
ment of KBISA capabilities.

Thus, planning of the KISA project has been divided into five major tasks. The
interactions and dependencies between them over the 15-year time scale are described
below. Achievement of' these tasks is discussed in teims of milestones (short-term z=
3-5 years, mid-term - 7-10 years, loig-termn - 10- 15 years). Specific recommendations
aimed at. achieving tle planned developmental steps are also given.

5. PROJECT PLAN

A steering committee will oversee the implementation of the plan and advise the funding
agency on progress. The committee is to undertake a number of specific tasks in
addition to general planning. These include the definition of conventions, establishment
of guidelines and techniques for integration and technology transfer, and the selection
of facet capabilities to include in the integration efforts.

5.1 Outline

The overall plan is to develop individual KBSA facets simultaneously by supporting
parallel development efforts. The individual facets are to be integrated into prototype
KBSA systems.

Each individual facet development effort will be planned to produce intermediate
products, which may have immediate practical application. The intermediate products
represent developmental stages toward the final goal, and should be planned for the
short- and mid-term periods. Construction of prototype KBSA systems by integration
of facets or intermediate products is also planned as separate efforts in parallel with
furtlher facet development.

Technology transfer efforts will begin near the end of the short term and continue
through the end of the project. Support technology efforts will begin inmediately and
continue through the end of the mid-term.

The plan contains three stages of milestones:

* The short-term milestones (3-5 years) are: first, the development and denionstration
of individual facets as specified in detail in Section 3.3 and collated in Section 5.4;
second, the demonstration of a framework for supporting the K13SA, including a
working activity coordinator and at least one facet, and integrated systins consisting
of some of the individual facets or intermediate products; and third, a set of guidelines
and standards to facilitate integration of facets as defined by successful frameworks.
Some technology transfer is also expected in this stage, and a preliminary set of
guidelines for technology transfer wil! be defined.

o The mid-term stage (5-10 years) requires facets to conform to the integration
guidelines. Milestones of tlh is stage are: first, further development of inore advanced
stages of facets as specified in Section 5.4; second, demonstration of integrated sys-
temns consisting of many facets; and third, further successful technology transfer
efforts.

* The long-term milestone is the construction of prototype KBSA syselms that in-
tegrate all facets.

It is clear that a planned effort of this nature requires careful monitoring by the steering
committee, particularly with regard to definition of individual facet elforts, production

5.2 Tasks 5s

of guidelines and standards for integration and technology transfer, and selection of
facets for technology transfer.

5.2 Tasks

The K13SA plan is structured into the following five tasks:

1. Definition and implementation of KBSA framework (i.e., an activities coordinator
and knowledge-base manager).

2. Definition and implementation of individual prototype facets with specific
capabilities. (Sample facets are described in Section 3.)

3. Integration (i.e., development of integrated prototype KBSA systems that include
several coordinated facets).

4. Technology transfer of facets (short term through mid term) and of integrated

systems. (long term)

5. Development of the technology support base (described in Section 4).

These tasks and their interactions over the 15 year time scale are illustiated in Figure
1. Note especially the close "organic" relationship between the framework and facet
tasks. 'The tasks are (escribed below:

1. l)efi nition and implementation of KBSA Framework

The K13SA framework provides the basis for the development and integration of facets.
It consists of an activities coordinator, a knowledge-base manager, a wide-spectrum
language for representing multiple levels of software development knowledge within a
facet, and a set of support utilities (user interface, in ference engine, etc.).

The magnitude of the conceptual and system-building efforts required to construct
such a KBSA framework necessitated our identifying it as one of the major K13SA
tasks. llowever, we cannot conceive of it. being tindertaken except in conjunction with

V" concurrent facet development.

Framework precursors will necessarily arise (in piecemeal, ad-hoc form) front early facet
efforts. Some of these ad-hoc capa bilities may be enhanced into comprehensive and
well-fontided KIISA framieworks. Ihlt tbhis can only be done in the context of existing
and planned facets. As these frameworks mature, other development efforts wishing to
focus on individual facets can do so by adopting one of the emerging frameworks on
which to build.

2.)elinition and Implementation of Specific Facets and Capabilities

Section 3 gives a sample list of proposed K13SA facets, i.e., assistants for requirement,
specitication, (hevelopmen|t, testing, performance, reusability, and project management.
The act ual !:et of facets will probably include some not explicitly mentioned here.

54 5. PROJECT PLAN

Each individual facet effort will be required to contain a development plan that is
structured into short-, mid-, and long-term stages. This plan will include both short-
term and longer-term milestones leading to development of a sophisticated knowledge-
based facet.

Although the development plan will differ somewhat from facet to facet, we expect it
generally to follow the staged knowledge-based development model outlined in Section
5.3. Thus, a typical facet effort will progress from the formalization of properties
relevant to the activities of the facet, to inferences that can be drawn on such properties,
to actions that can be explicitly invoked to modify and/or maintain those properties;
to the formalization of goals which, via planning and problem-solving, can implicitly
invwke such actions; and finally, for some facets, to the inclusion of knowledge ac-
quisi 'on facilities that will further enhance the capabilities of the facet. During this
extended staged development-of knowledge-based facet capabilities, periodic (every 3
years) demonstrations of working prototypes of the individual facet will be produced.

Some of these parallel individual facet efforts will be selected for inclusion in an
integrated KBSA, as described in Task 3 below. Such integration will be in addition to
the continued development of the facet and not a replacement for it. As the framework
activity matures, a set of standards and conventions will emerge that will guide further
facet development.

3. Integration

This task requires that the different facets and capabilities developed and implemented
in the course of the planned effort be integrated into existing KBSA frameworks as
demonstrable working laboratory prototypes. The first integration prototypes should
be planne,' to start toward the end of the short-term period (5 years). This task is
preliminary to the building of production versions (described in Task 4 below).

A secondary goal of the integration effort will be the definition of guidelines and
techniques for integration of facets. These guidelines and techniques will be available
by the end of the short-term stage and will be a conformance standard for both facet
and framework efforts during the mid-term stage.

4. Technology Transfer

Technology transfer of a facet or integrated KBSA system means the production en-
gineering to make it available and usable by a broad segment of the software com-
munity.

Technology-transfer planning should be regarded as an extension of the integration
efforts. It entails coordination with existing automated environments and human
engineering for practical use. In order to plan technology-transfer activities, the
steering committee will need to track and evaluate other software technology efforts,
coordinate elements of the KBSA effort with outside efforts (when this is judged to be
possible and timely), and either extend the integration guidelines or produce separate
specific conventions for technology transfer.

5.3 Staged Development of KBSA Facets 55

Technology-transfer guidelines and conventions should be available during the mid-term
phase. These should be compatible with the integration guidelines, and should be based
on experience with three to five technology transfer efforts. Accordingly, some KBSA
facets must be planned so that their short-term goals merit technology transfer.

Some technology transfer will occur after the short-term milestone, and a major transfer
effort will begin after the mid term milestone. It is recommended that conformance
with the technology transfer guidlines be encouraged in the mid-term planning.

5. Technology Support Base

This is the technology that is needed to support the KBSA effort. We have discussed in
Section 4 the areas of technology support needed. Such research should be supported
on the basis of its relevance to the KBSA objectives.

5.3 Staged Development of KBSA Facets

A key feature of the KBSA project plan is the staged development of individual
K13SA facets. As an aid to understanding, for those unfamiliar with knowledge-based
systems, we present here one particular model fo, describing such incremental staged
development of knowledge-based capabilities in the individual facets. We will also use
this model to establish a framework to describe the relative maturity of each facet in the
milestones; presented in the following subsection. Naturally, actual knowledge-based
systems, both existin and future, display great diversity in their staged development
and may only follow this pedagogical model at the broadest level. Readers familiar
with kno,.vledge-based systems and their development can proceed directly to Section
5.4.

This section describes a possible sequence of stages through which each facet might
logically progress. The similarity in the order of development for each facet is due to
their common functional architecture (shown in Figure 3) and the logical dependencies
between the elements of that architecture. Note, however, that the relative timing

of similar stages will vary greatly between facets according to the difficulty of the
development issues involved in each area.

Figure 3 shows all the functional elements that must be present to support the behavior
of a mature K13SA facet like those described in Sections 3.3. First we will discuss
the relationships and (ependencies between these functional elements in the mature
facet. We will then describe the typical order in which these elements are incrementally
developed.

_-A

50 5. PROJECT PLAN

KNOWLEDGE BASE

PROPERTIES I M
N E
F C
E H

ACTIONS R A
E N
N I
C S

REASONS E M
S.

FACET

QUERY/ ACTION KNOWLEDGE
UPDATE EXECUTION ACQUISITION

PLANNING &
PROBLEM SOLVING

Figure 3. FUNCTIONAL ELEMENTS OF A MATURE FACET

5.3 Staged Development of KBSA Facets 57

The first-level functional decomposition in Figure 3 is between the active parts of the
facet (bottom) and the knowledge base (top). Note that this division is not exact
because in knowledge-based Al systems, a certain amount of active processing, called
the inference mechanisms, is typically associated with the knowledge base itself.

The specific information in the knowledge base varies according to the domain of each
individual facet. It is possible, however, to distinguish three general types of knowledge
which are relevant in all domains: properties, actions, and reasons.

The most basic type of knowledge with which a facet is concerned is the properties of

objects (e.g., requirements, specifications, code, test cases) in its domain. A property is
typically a simple fact about the relationship between objects which may or may not
be true at a given point in time. For example, a property of test cases might be the
version number of the module oil which it has most recently been executed.

A higher-level vocabulary within the knowledge base describes the actions of a par-
ticular domain. Actions are typi ally defined by a set of inputs (objects upon whose
properties the action depends), a set of outputs (objects that are created by the ac-
tion or whose properties are modified by the action), preconditions (properties that
are expected to hold between inputs prior to execution of the action), and postcondi-
tions (properties that will hold between outputs and inputs ditie to the execution of

the action). Programi transfor mations are examples of actions in the implementation

domain. Note that the action vocabulary builds on the property vocabulary because the
prccon(litions and postcondit ions f the actions are expressed in terms of the properties.

In order to provide more a(dvatced services to the user, a facet also needs to
;nunderstand" the re <-ons behind actions. The same action can be perfornied for
diflerent reasons. l'or ,xamplih, the reason for changing an implemenation decision
might be either twcan,, of a 'lim ,pe in specific;lions, or in crdcr to increase efficiency.

In the active part of he a, acct, thce is a related generic layering of functionality. The
most fundlarrien la ser:ice the facet can provide is to function as a data retrieval system,
i.e., to provide query :in(t uipdatc operations on tle knowledge base. For example, it is
useful simply to recoid the history of' modificalions to a module.

At a more advanced level, a facet has the ability to execute specific actions under direct
command from the user. For exa inple, the implementation facet will apply a program
transformation chosen by the user.

Witli a fully m tre facet, the user specifies his goals, and the facet, using planning

and problem solving techniqu es, chooses and executes appropriate actions to achieve
these goals. The user's goals then lbecome the reasons that justify the actions taken by
the facet. For example, the user will tell the testing facet that lie wants a given module
to be tested for release. It is then up to the facet to figure out what test cases to run.

A fully minitre facet may also inide pendently acquire new knowledge as a by-product of
its other activities. F'or example, ati implementation facet may discover new optimiza-
tions.

58 5. PROJECT PLAN

Figures 4 through 7 show the typical order of intermediate stages through which each
facet will develop from first prototype to maturity. In each figure the newly added
functionality at each stage is indicated by asterisks. As mentioned above, the relative
timing of these stages will differ greatly between facets, but the order is essentially the
same for each.

The first stage of development is shown in Figure 4. Work on each facet will begin by
identifying the types of objects in the domain and the useful vocabulary of properties
of those objects. A formal language and appropriate utilities are then provided for
specifying and querying those properties.

KNOWLEDGE BASE

S PROPERTIES

FACET

QUERY/
UPDATE

Figure 4. FIRST STAGE OF DEVELOPMENT: TlE PiROIERTY STAGE

• l1

5,3 Staged Development of KBSA Facets 59

The next major stage of development, shown in Figure 5, is typically to enhance the
query and update capabilities of the facet by adding some inference mechanisms to the
knowledge base. Initially, these inference mechanism deal only with properties - for
example, inferring implicit properties from explicit ones, or detecting contradictions
between stated properties. However, as the knowledge base is enhanced by adding
actions and reasons, the inference mechanisms are also typically upgraded to deal with
the new types of knowledge.

KNOWLEDGE BASE

PROPERTIES 4(N E

F C
E H 4

' R A 4
4(E NM 4I 4(N I 4

4(C S 4

FACET

QUERY/
UPDATE

5

I"iqure 5. SEC(,(NI) ST1AGI O!" I)EI'MIENT: TIIlE 1N E1REN(,iE STAGE

" -- I -I - l- i "

60 5. PROJECT PLAN

The third stage of development, shown in Figure 6, is to introduce a representation
for the actions in the facet's domain and the ability to execute these actions. The
knowledge base at this stage may contain not only an enumeration of possible actions,
but also the history of actions that were actually taken. Note that, at this stage, the
facet takes no initiative; actions are performed only on direct command from the user.
However, the facet can perform many useful monitoring and recording functions at this
stage, such as verifying that the preconditions of an action hold before it is executed,
or allowing the user to edit and replay a sequence of actions already performed.

KNOWLEDGE BASE

I M
PROPERTIES N E

F C
E H
R A
E N
N I

ACTIONS C s
E M

FACET I -,I
QUERY/ - ACTION
UPDATE * EXECUTION

Figure 6. THIRD STAGE OF DEVELOPMENT: THE ACTION STAGE

.t-, l

5.3 Staged Development of KBSA Facets 61

The essence of the transition to the next stage of development, shown in Figure 7, is
that the facet begins to assume some initiative. This stage is fundamentally based on
developing a vocabulary of reasons (goals) in the domain. Given this vocabulary, the
facet can use problem-solving techniques to plan sequences of actions to achieve goals
that the user specifies.

KNOWLEDGE BASE

PROPERTIES N E

F C

E H

ACTIONS R A
E N
N I

SC S

REASONS . E M
S

FACET I
QUERY/ ACTION
UPDATE EXECUTION

-' 4'

PLANNING & PROBLEM SOLVING

Figure 7.)FOURTI S'AGE' OF DE EIVLOPM ENT: THE PLANNING STAGE

.....- |--

I

6* 5. PROJECT PLAN

Finally, some mature facets (Figure 3) may include knowledge acquisition capabilities.
By this we mean not only the ability for the user to add new information, which is
provided by the query/update facilties from the beginning, but also the ability of the
facet to independently develop new vocabulary for itself to use to improve its own
performance.

5.4 A Note on Limitations

We close this section by discussing our position on including, as goals for the
KBSA, fully automatic program synthesis and comprehension of natural language
specifications.

An important issue is that of what degree of automation in program synthesis is the goal
for KBSA. The goal we have chosen for KBSA is machine-assisted program synthesis,
rather than fully automated program synthesis.

We feel this will allow the KBSA to work with the highest level of languages, since
at any. point in time there may exist a gap between the level of language that is fully
automatically compilabie and the level of language that can be implemented by experts
with machine assistance. Even though the level of language features that can be fully
automatically compiled will steadily rise in time, our strategy will allow the level of
specification and requirements languages to rise above that level.

By thus including the highest level constructs in the KBSA's formal specifications and
requirements language, many forms of knowledge-based assistance can be applied at the
highest level, even though the implementation of these languages will require human
interaction.

The KBSA will be structured so that as advances occur in the area of fully automatic
synthesis, they can be readily incorporated. Since we expect to keep the developer as
well as the machine in the loop, provision of suitable interfaces will he made so that
the developers and the KBSA can work effectively together.

Natural language specification was omitted as a goal because it. is orthogonal to the
KBSA approach. The KBSA approach is based on providing better and better for-
malisms for developers to use (and to assist themn when they employ these forimalisins),
while natural language specification attempts to reexpress informal description in some
formalism. Hence, it presupposes the existence of those formalisims. Thus, it cannot
replace any of the proposed effort in defining those formalisms and providing assistance

when they are used, but rather is a "user interface" to those formalisms.

While this would certainly be a useful addition to the KBSA, it seems to represent an
unneeded dilution of focus and energy within our objectives of providing automated
assistance to the software development cycle. Rather, it should be pursued separately
as a research objective in its own right.

5.5 KBSA Mileitones 6

5.5 KBSA Milestones

Figures 8, 9, and 10 show the stage of development each facet of the KBSA is expected
to reach in the short-, mid- and long-term time frames. In addition to characterizing
each facet in terms of the generic stages introduced in Section 5.3, we also repeat below
the major milestones for each facet defined (and more fully described) in Section 3.

Note that as the capabilities of any one facet of the KBSA grow, it naturally begins to
overlap with the others. In each milestone, we point out some examples of integration
between facets which become feasible in that time frame. In general, we expect an
evolution of the overall structure of the K13SA from essentially separate facets in the
short term, to a set of integrated, cooperating tools in the mid term, to in the long
term, an assistant which is better viewed by the KBSA user as the single active agent
described in Section 2.2.3 rather than as separate facets.

SHORT-TERM MILESTONE (Figure 8)

Project Management Facet

* Project management formalism

* K nowledge- base ma nager and message handler

o Task tracking

(Initially, it will be useful just to have a record of the status of all tasks on-line
with convcnirnt up'bi and query facilities.)

Requirements Facet

* Analysis of requirefnenIs planning method

* A formal requirements language

* Smart editing and matnaging of requirements

e Reviewing the requirements definition for the user

(Similarly, these milestones for the requirements facet correspond roughly to the
properties stage of development.)

Specification Validation Facet

* l,;xecutabhv specification language

* Specification wellformedness checking

* Specification testing

* Specification paraphraser

(Checkin, the wellformedness of specificat,., s implies the existcnee of some
inference capabilities. t,,recutiag specifications is a kind of action execution.)

64 5. PROJECT PLAN

Development Facet

* Wide-spectrum language

* Transformation language

* Property language

e Interactive mechanical development

e Automated property proving

(Similarly, these milestones for the development facet imply the existence of both
inference and action capabilities.)

Performance Facet

" Data structure analysis and-advice

" Subroutine and module decomposition advice

(In the short term, the performance facet will need a representation for perfor-
mance properties and the ability to reason about them, but will not be able to
take any actions itself.)

Testing Facet

' Test-case maintenance assistant

(Test case maintenance, including automatically running test cases, will be
feasible in the short term.)

Project Documentation Facet

* On-line documentation

(Similarly, in the short term all documentation should be at least on-line, even
if there isn't a very deep understanding of it by the KBSA.)

Two examples of opportunities for integration between facets in the short term are
shown in Figure 8. First, test cases should be treated by the project documentation
facet as a form of documentation of the system being developed, and thus should

be accessible through the same sort of interface. Similarly, decisions made by the
development facet should also become part of the project documentation.

L+..

5.5 KBSA Milestones 65

Activities Specification
Coordinator Requirements Validation Development

A IA

~i11

BQ] E]WIl

Performance

PP

H HE El
Testing Project Documentation

Management

P=Properties A-Actions R-Reason

PL=Planning & XfAction Execution I-Inference Mechanism

Problem Solving Q-Query/Update

Figure 8. SHORT-TERM MILESTONE

66 5. PROJECT PLAN

MID-TERM MILESTONE (Figure 9)

Project Management Facet

" Suggesting simple management decisions

" Plan and procedure creation and modification

" Knowledge acquisition

(These milestones require the addition of inference and action
capabilities.)

Requirements Facet

• Requirements transformation and refinement

(Similarly, this milestone requires the addition of inference and action
capabilities).

Specification Validation Facet

" Rapid prototyping

* Behavior explanation

(Explanations of behavior require representation of the reasons behind elements
of the specifications.)

Development Facet

* Automated development

* Automated replay

(Automated development and replay require planning and problem solving
capabilities.)

Performance Facet

* Domain models for analysis

* Algorithm design analysis and advice

* Real-time performance advice

(These more advanced types of performance analysis will require fully developed
problem-solving capabilities.)

Testing Facet

* Knowledge-based test generation

(At this point the testing facet will be fully mature, including the ability to
independently define test sequences for a particular program using its general
knowledge about the application domain. Planning abilities are the key new
feature at this stage of development.)

.. .2 .-

5.5 KBSA Milestones 67

Project Documentation Facet

Partially formalized documentation

(The formalization of documentation will allow a more powerful set of operations
to be performed on it.)

A number of examples of integration between facets in the mid term are shown in
Figure 9. The requirements facet should function as a source of test cases. The
performance facet should be able to invoke the testing facet to run test cases for the
purpose of measuring system performance (perhaps under different implementation
decisions). The development facet should inform the testing facet of those parts of the
program that do not need to be tested because they have been derived by correctness-
preserving transformations. Finally, the specification validation facet may call upon
the development facet for a rough implementation of specifications to be run to obtain
user feedback.

68 5. PROJECT PLAN

Activities Requirements Validation Development

I I A IA I

R

Io1 1~= Io Io~ T7

Performance Testing Tasking Documentation

P-Properties A-Act ions R-Reason
PL-Planning XfAction Execution l-nference Mechanism

Problem Solving Q-Query/Update

Figure 9. MID-TERM MILESTONE

5.5 KBSA Milestones 69

LONG-TERM MILESTONE (Figure 10)

In the long term, all of the facets will reach their mature form, with the exception of
knowledge acquisition capabilities in some areas, which are expected to remain very
difficult artificial intelligence problems. The mature capabilities of the various facets
are described in detail in Section 3. A new example of integration shown in Figure 10
is the invocation of the development facet by the requirements facet as an early filter
on the technical feasibility of the user's requirements as they are being defined.

Activities Requirements Validation Development

P P P P

A I A I A I A I

u I . ION TR I

RR

~Performance Test ing Task inrg Doc umeat ion

P-Proper ties A-Act ions RffReason
PL-Planning bX=Act ion Execution I-Inference Mechant, a

Problem Solving Q-Query/Update

Figure 10. LONG-TERM M[llSTONE

70

ACKNOWLEDGMENTS

Guidance and impetus for this study came from Northrup Fowler, Donald Roberts,
Douglas White, Samuel DiNitto, and William Price. Larry Druffel, William Riddle,
and Winston Royce all provided technical input to the study. Judy Tollner was
administrator of this project. Assistance in formulating the facet descriptions was
provided by Beverly Kedzierski and Elaine Kant. Carl Engelman helped formulate
Section 1.

..

8..REFERENCES 71

§6 REFERENCES

1. Software Technology for Adaptable Reliable Systems (STARS) Program Strategy:
DoD Report, ACM-SIGSOFT Engineering Notes, Vol.8, No.2, April 1983, pp. 56-
84.

2. Barr, Avron and Feigenbaum, Edward A., The Handbook of Artificial Intelligence,
Volume 2, Chapter X, William Kaufmann, Inc., Los Altos, 1982, pp. 295-379.

3. Hiinke, Horst (Ed.), Software Engineering Environments, North-Holland, New
York, 1981.

4. Special Issue on Programming Environments, IEEE Computer, Vol.14, April 1981,
pp. 7-45.

_ __ _ _ _ _ _ _ _ _ -! .-

A.n&'.v N''<92

u :'.. i3 " *w ni

aw~~~ -.MI magt lweck

3ete ftai*aO 4 4,A"t Oj kOMAd Co~***2

I MSM9 Me(VTI -MX~~u.reds~ - j

A A PA

In

TiV

