
AD-AI34 698 HIERARCHICAL CACHE ACCUMUATORS FOR SEQUENTIAL MODE /
ESTIMATON(U) ROCHESTER UN ANY SEPT OF COMPUTEN
SCIENCE C M BROWN JUL 83 NR 25 NOOD 4 N -C U 64

UNCLASSIFED 0/G9/2Em= 1hihEEEEEEE

I

11.2 12.2

Igo 12.

1.2 1111.4 11111 1.6

MICROCOPY RESOL.UTION TEST CHART
NATIO A L KAu O. STANOA1DS -. 963 -A

IL 140

1.1

I'll,'

I-IIERAICI-ICAI. CACHE ACCUMULATOIIS
FOR SEQUENT'IAL MIODE BSIIA'ION

Christopher M. Brown
Computer Science D~epartment

University of Rochester
Rochester, NY 14627 U.S.A.

TR 125
July 1983

Contract N00014-78-c-0164,

IIElRAiCHICAI1 CACHE ACCUMULATOUS

FIOR SEQUENTIAL MODE ESTIMATION

Christopher M. Brown
Computer Science Department

University of Rochester
Rochester, NY 14627 U.S.A.

TR 125

July 1983

Abstract

A quad-tree-like data structure can be implemented with a
content-addressab!e cache. The resulting structure captures spatial
relations at several resolutions. Spatial relations such as containment
and contiguity may be useful in flushing Cache-Hough Transform
accumulators. Algorithms for accumulator cache management nay be
written that are related to some proposed in the literature for
statistical mode estimation.

Key Words: Hough transform, histogram peak-finding, mode
estimation, cache, resolution pyramids.

This report will appear in a book based on the Proceedings of the
Workshop on Statistical Inage Processing and Graphics held in
l.urav, Virginia (May 1983), to be published by Marcei-l)ekker.

(,vZcT6'ooy-g-~-/6'DTIC
DL t~mO m' mm" " 1 ELECTE!

DMISTfION STATEMENrA~ NO L 4CTE
Approved tor public releasqINV1418 ~

Distibution Unlimited S

B

C

I. Background and Overview

The Hough Transform (HT) is a parameter estimation strategy based on the
statistical mode [)uda and Hart 1972; Ballard 1981]. More common strategies such
as least squared error fitting (e.g. linear regression) are based on the statistical mean.
The HT has achieved engineering importance in several areas of image
understanding. It is an efficient implementation of generalized matched filter
(template matching) detection, and its mode-based nature makes it highly noise-
resistant. Outliers do not affect it, whereas they always have some effect on simple
regression (of course, much research in statistics is concerned with rejecting outliers).
HT is an important technique in some massively parallel computing architectures
[l:eldmai and Ballard 1982].

In the HT, features (in the transform space) produce votes for parameters with
which the features are compatible. After the voting process, the cell with the most
accumulated votes indicates the parameters explaining (consistent with) the most
input evidence. HT implementations usually use an N-dimensional array that
accumulates votes in discrete cells of N-dimensional parameter space. Then Tl
interpretation usually consists of finding the winning cell (or cells) by searching the
array for local or g!obal maxima using more or less complex algorithms. If the array
is considered as a histogram, then the maxima (peaks) correspond to its modes.

In an effort to avoid the space requirements inherent in an N dimensional
accumulator array, we at the University of Rochester [Brown and Sher 1982; Brown
1983] proposed to implement vote accumulation and peak-finding (mode estimation)
in HT with a content-addressable cache (a hash-table is a software equivalent). The
cache is smaller than the full accumulator array, but it must be flushed when its
capacity is filled .o make room for more votes. The hope is that in a space sparsely
filled with votes Lhe cache reliably finds the mode using much less storage then the
array. Preliminary experiments with a simulated cache and both simulated and real
data were undertaken, and are reported in [Brown and Sher 1982], and summarized
in Section 3.4.

I here propose a cache-flushing "tehnique and associated architecture that may_
gignificanIy improve the lbrbrinahcae-6f ca'che-based sequential mnbde-estiinafion
schemes. The basic strategy is inspired by an iterative mode-estimation scheme in the
statistical literature [Robertson and Cryer 1974], which uses spatial contiguity
(intervals on the real line). The Robertson and Cryer algorithm is similar to tile
"converging squares" mode-finding algorithui [O'Gorman et al. 1983; O'Gorman
and Sanderson 19831. -Thenew:Thtsdng algorithm- takes into ae:ount cOntiguity in
parameter Space; the old flushing algorithms did (indeed, could) 'not. Th.: nev
kheme needs more cache complexity -thin the old, and'its logic is mbre complex.
However, It seems the added .complexities are not . ruinous, and are perhaps
amenable to hardware implemetition. -The new scheme generalizes most mode-
finding algorithms in that it can find multiple modes..

' Section 2 o.tlines the prbblem and the proposed soluLtion. Section 3 is a list of
ideas that are more or less relted, and- n assessment of their -utility.- Section 4
explores the proposed scheme iin more detail. Some technical details appear in
Section 5.

A il CodeslAvall and/or- -

Dist Special

r ,I

2

2. The Problem and Proposed Approach

This section is meant to provide context for the basically bottom-up organization
of the remainder of this report. One mode-estimation strategy takes samples from a
one-dimensional density function, sorts them, and.then iteratively constructs ever
smaller intervals, each the smallest in the last containing some number of samples
determined by the sample size [Robertson and Cryer 1974, and Section 331. This
basic converging strategy easily extends to many dimensions, though this may affect
the technical results on convergence, consistency, etc. The iterative convergence
behavior is achieved also by the converging squares technique of [O'Gorman and
Sanderson 1983].

A convergence algorithm for sequential sampling was proposed by Hall 119821.
The work in this report is an implementation inspired by Hall's suggested approach,
filtered through some current computer science ideas and existing implementations,
such as Cache-based implementations of the Hough transform.

A cache-based Hough scheme [Brown and Sher 1982; Brown, Curtis, and Sher
1983; Section 3.41 maintains a content-addressable cache of vote tallies for parameter
vectors. Content-addressability means that geometric relations (e.g. contiguity)
between vectors are not necessarily mirrored in the cache data structure. The
algorithm of Robertson and Cryer thus differs from current Cache-Hough schemes
in two important ways (and some unimportant ones such as requiring absolutely
continuous pdfs for convergence proofs).

1) Their algorithm assumes a fixed sample size, and that all the
samp lng is completed before it runs.

2) It is based on spatial contiguity (intervals), over which it
constructs density measurements.

In both these respects the convergence algorithm has an advantage over Cache-
Hough, which must deal with samples collected sequentially and which (so far) has
no notion of geometric contiguity and hence of vote "density" over a finite area. The
first difference is fundamental. It is the purpose of this- report. to address the second
difference and endow Cache-Hough with a flushing strateg-uided by geometrical
contiguity. The resulting" cache-management algorithms resemble existinf.
convergence algorithms to an extent, especially as regards the use of interval;
converging on the mode. They are much closer to the suggestion of Hall (19821.

The idea is to use a cache versio*.f quad (oct,...2d).trees to. guide flushing of the
highest-resolution tally cache-(H-,C), In [ie lower .resolution caches (I.Rs), each

tally entry corresponds to. a 2..2 x-,..,x.-2, dl-dimensionl hypercube of the next
higher-resolution cells or parameter vectors, and contains the total number of voles
in the corresponding higher-.resolution hypercube. In the cache version, only cells
and vectors with non-zero counts are explicitly represented. Since the vector
components are quantized and tLus discrete, I shall usually refer to vector (HRC)
entries as cells. The hope is that flushing (and perhaps thereafter barring) votes from
contiguous hypervolumes of low voting strength renders mode-capturing more
robust. (This hope is so far unsubstantiated by experiment, ind arises from intuitioi
only.)

3

Ini the proposed scheme, a cache version of a 2d tree is constructed as votes come
in to the HRC. The LRCs implementing lower-resolution levels are updated to be
consistent with the HRC. Flushing is triggered by a full HRC, but emanates from
some LRC, say FlushCell, whose vote count is low, say FlushCount. Vote counts in
I.RCs of lower resolution than IlushCell are decremented by lPlushCount, and
higher-resolution cells in FlushCell's hypervolume are completely removed from the
cache. Thus the flush proceeds in both directions, decrementing in the lower-
resolution direction and removing in the higher-resolution direction.

Current Cache-Hough schemes only have the HRC, and flush on the basis of low
individual tallies (optionally using random mercy to preserve a fraction of low
tallies). Single-resolution, content-addressable caches are limited to such "pointwise"
flushing strategies. The hierarchical cache captures geometrical structure in the data
for use by cache-maintenance algorithms. It provides some concept of vote density,
can support a version of accumulator space smoothing, and can implement a flushing
algorithm that captures the advantages of convergence schemes without accepting all
their limitations. The known convergence algorithms concentrate on finding a single
peak. This algorithm penalizes low counts but allows for multiple peaks to survive in
the cache, thus implementing multiple mode-finding.

3. Related Work

The ideas in Section 2 suggest various results from statistics and computer
science. This section mentions several, and passes judgement on their utility in this
context. Briefly we conclude the following.

1) Con',ergence algorithms for mode estimation seem at this
writing to be the most directly relevant statistical methods,
though they are most at home in unimodal situations. Other
problems, such as PDF estimation and the maximum of a
sequence problem, are not as relevant.

2) No technical results about the exact problem of mode
estimation with finite memory and a discrete sample space have
been found in the literature.

3) Cache Hough methods have promising performance, but suffer
from severe myopia when flushing. The incorporation of
geometrical contiguity information may help.

4) The usual management of multi-resolution data structures (such
as Quad (oct...) trees, Dynamically Quantized (I)Q) spaces, ands.
DQ pyramids) is not suited for this application.

3.1 Nonparametric Multivariate PDF Estiniation

One natural idea is to estimate not just the mode of the histogram embodied in
the accumulator array, but to estimate the corresponding PI)IF [Wegman 1972,.1982].
PI" estimation is inherently harder than mode estimation, because there is more
information to be gleaned from the same input. In fact, some lP)F estimation
assumes the mode is known. N-dimensional (i.e., multivariate) PI)F estimation is

4

thought in the statistical community to be quite difficult and to require many
samples because N-dimensional spaces are (hyper)voluminous. Another difference is
that usually a P1: is to be estimated from a fixed-size, completely-gathered sample,
rather than from the sequential samples that arise in cache methods. Because of the
greater inherent difficulty and the seeming lack of relevant methods, nonparametric
PI)I" estimation does not seem to be an attractive alternative to mode-finding.

Often data is neither purely parametric nor completely non-parametric, and
partial information about the form of the underlying PI)F can be used to advantage
[Sager 1983]. Translating to HT terms, Sager advocates ordering N-dimensional cells
by their counts and then applying conventional (one-dimensional) rank statistics. In
other words, he would use vote count contours in n dimensions to help describe the
PIDF. This suggestion appeals to me because sometimes we know the shape of the
vote count surface [Brown 1983] and it could be used to help locate peaks. However,
again, the resulting algorithm is not for sequential data.

3.2 The Maximum of a Sequence

The sequential nature of cache-based mode finding leads one to associate it with
the Maximum of a Sequence (MaxSeq, Secretary, Beauty Contest, etc.) Problem. The
pure version of MaxSeq is: you are presented n face-down slips of paper, on each of
which is written an integer, and you are to turn them up sequentially until you
decide that the current slip has the maximum integer. What strategy should you use
to maximize the probabilty of choosing the slip with the maximum integer? It is
surprising that even under such seemingly underconstrained conditions an optimal
strategy exists and gives you the respectable and elegant win'ning probability of l/e.
MaxSeq has been extended in several ways, including allowing a finite buffer of
candidates, searching costs, call backs, and so forth [Gilbert and Mosteller 1966;
Smith and Deely 1975; Lorenzen 1979, 1981].

Loui [1983] investigated the application of these results to cache-based mode-
finding: the conclusion is that MaxSeq is a different problem. In HT mode-finding
terms, MaxSeq assumes that all the votes are in and saved, that the final tallies are
sequentially presented, and that there is no recalling a previously dismissed tally. The
non-recall constraint is especially stringent and non-intuitive in the JlIT context, and
again there is the basic difference that in cacheing the votes come in sequentially,
whereas in MaxSeq the totals are in and they (not individual votes) are presented
sequentially.

3.3 Mode Estimation

A common method of estimating the mode of a continuous unimodal
distribution from n samples is (in I-D) to sort them and then find the shortest
interval containing some number h(n) of them. Then the mode is taken to be some
point in that interval (e.g. its midpoint, or the mean or median of the samples it
contains) (Venter 1967]. The convergence scheme of Robertson and Cryer is designed
to lend robustness to finding the mode of "contaminated" distributions. It refines the
interval iteratively, at each stage finding the shortest subinterval containing c(t)(n)
samples, for t = 1,2,...s(n) stages [Robertson and Cryer 1974]. Thus the interval is cut

(5

down by a fraction of [(c(t'1)(n)-c(t)(n)I/[c(t')(n) on iteration t. In all these cases,

the technical statistical results have to do with choices of h(n), c(n), and sn) that
yield consistent and quick convergence, and with asymptotic distributions.
Experimental results of Robertson and Cryer using a cn) of approximately 211/3 to
3n/4 (here n is the number of samples in the interval being refined, not the total
number of samples), indicate that with outliers (noise) or contaminated data
(multimodal or in their case a mixture of two distributions) the intervals must start
smaller and converge faster to avoid getting confused by local maxima. They
recommend that c(n)/n be significantly smaller than I-p, p the fraction of
contaminated data.

The mathematical restrictions on these methods that must be imposed to allow
anaiytic results are fairly severe, bu. the strategies are clear and appealing and extend
to multiple dimensions. They inspired the approach proposed in this paper.

F~inding the shortest interval containing a given number of samples requires
search. In statistical models, the samples are from a continuum, and hence will be
duplicated only with probability zero. In the accumulator array search, the samples
are discrete, and the cells can have more than a unit count. Thus the search will have
to keep an updated sum of counts in a (d-dimensional) rectangular volume, which
requires slightly more computational effort than merely counting single samples.
lFast techniques exist for running rectangular averages, however.

The iterative search of convergence methods is not more expensive than one-time
search. To compare Robertson and Cryer's approach to that of Venter, both presume
n 1-I) sorted real data. The search for the smallest interval containing h(n) = c(t(n)
of them requires comparing the lengths of n - h(n) +1 intervals (thus n-h(n)
comparisons). Robertson and Cryer point out that in the iterative scheme, the
number of intervals to compare is

t
S[c(i-1)(n) - c(i)(n)] = n-c(t)(n) = n-h(n).

i=1

If the fraction by which the interval is diminished on each iteration is constant, write
it as r. Then the above result is derivable from geometric series summation, by
which it generalizes to d dimensions. Surprisingly, the iterative search in d
dimensions takes fewer comparisons than the one-time search in d dimensions.
(Remember, this is the number of hypervolume densities (or total occupancies) that
must be computed to find the densest interval. It does not include the number of
operations needed to compute each total. For that operation, fast rU nni|g-total
algorithms exist [Rosenfeld and Thurston 1971: Narendra 1978].) In the one-time
search, the number of hypervolume densities in d dimensional MxMx...M space that
must be computed to find the densest hxh...xh hypervolume, h = rtM is

C1 = (M-rtM) d = Md (l-rt)d

(Here t is an honest exponent, not an index.) In an iterative search, the number of
hypervolumes to be considered is

6

C2 = (M-rM) d + (rM - r2 M)d + (r2 M -r3M)d+

= (l-r)d (Md + rdMd + ... + r(t-)dMd)
= Md(l-r)d (1 + rd + r2d + ... +r(t -)d)

- Md (1-r)d(1-rtd) / (1-rd).

The ratio C2 / C1 is the fraction of comparisons that the iterative search must

make compared to the one-time search. The behavior of this ratio is not obvious
from the formulae, although for small r it is approximated (from below) by

(I)-dr)/(l -drt).

Table 1 gives values of the ratio for relevant r, d, and t. It shows that as dimension,
the siue of the ratio, and the number of iterations go up, the number of density
comparisons falls off.

t: 2 4 8 t: 2 4 8 t: 2 4 8
d

2 0.680 0.605 0.600 0.556 0.378 0.336 0.510 0.275 0.175
4 0.411 0.323 0.318 0.210 0.086 0.068 0.140 0.026 0.009
8 0.168 0.103 0.100 0.039 0.007 0.004 0.013 0.000 0.000

r: .25 r: .5 r: .75

Table 1: The fraction of hypervolumes that must be compared in an
iterative search for the densest, compared to a non-iterative search.

In the converging squares algorithm [O'Gorman et al. 1983; O'Gorman and
Sanderson 19831, a space of size nxn (in two dimensions) yields four smaller
overlapping spaces. In 2-I), the new spaces are the (k-I) x (k-I) squares in the four
corners of the old space. The single (k-1) x (k-i) square of maximum density is
chosen for expansion at the next cycle. The common area between the overlapping
spaces allows it to be disregarded in computing the differences in density, resulting
in substantial computational savings.

Comparing the computations needed for converging squares to two other simple
mode-finding algorithms:

-- maximum value: C(n2-1)
-- smoothing (four points) then maximum value: 3An 2 + C(n2-1)

-- converging squares: A(n2 +7n-22) + C(5n-7)

where C is a conditional operation, A is an addition operation. Typically a C takes
twice as long as an A, and an implementation of converging squares is in fact about
three times faster than maximum value and six times faster than smoothing on a
VAX 11/780.

3.4 Cache Hough Implementation

The performance of Cache Hough schemes under a variety of conditions (noise,
cache length, length of vote bursts, image scanning order, flushing strategy) is tested
in [Brown and Sher 1982]. These experimental studies are not backed by formal
analysis.

The cache model is that of a single-resolution tally cache (the HRC of Section 2),
flushed by either of two strategies. In "Slaughter of Innocents" flushing, all tallies
below a threshold are flushed. In "Draft Lottery" or "Random Mercy" flushing, a
fraction of all tallies below a threshold is selected at random and flushed. The
performance of a cacheing scheme is measured by the ratio

(votes for the vector known to be correct)
SNR3 = --

(maximum votes for any incorrect vector)

There are few qualitative surprises in this work. Performance improves with
increasing cache length and falls off with increasing noise and fraction of incorrect
votes in a vote burst. Scanning strategies seem equally matched except for random
with replacement, which may have been prejudiced by relatively small sample size
(400 samples (vote bursts) from a 20 x 20 array of features). The lottery flushing
strategy works better than the slaughter strategy. Figure 1 shows some sample results.

After it fills (which can be after a few features cause vote bursts), the cache is
continuously flushing. Since the content-addressable cache does not maintain
contiguity information, a low tally from an active (dense) region of parameter space
is as likely to be flushed as a low tally from an inactive (sparse) area. The noise
modeled in the experiments is additive noise that does not "spread the peak" in
parameter space as does quantization noise. In fact quantization noise is important,
and is sometimes taken to be the only important noise effect [Shapiro and lannino
1979]. It is usually combated by smoothing the accumulator array before searching
for modes. Such contiguity-based techniques are difficult and unnatural using only
the content-addressable HRC, but become possible in the proposed scheme, which
leads to an "urban renewal" flushing strategy in which good neighborhoods are
preserved. The analysis of [Brown 1983] shows that when multiple votes are
produced for each feature, neighborhoods of high voting strength arise around peaks.
Thus the "urban renewal" strategy offered by hierarchical caches seems a promising
approach for all known voting schemes.

8

Cache I etigth: 3Z. cdi,: ILOU, tto H. Cache Length: 64. Scan: Itth. I LoR.
Noise: 15%. Instances: . Noise. 15. InLances: 1.
Parts: 1. Fpsf length: 9. Parts: 1. Fpsf length: 9.
Part Length: II. N: IOU Pert Length: 11. N: JUN

F lush: Ihreshold Flush: Threshold

Medif of Ratios: 1.21225o mean of RatIos: 1.805774
Std. 0oy. of Ratios: 0.972063 Std. 0ev. of Ratios: 0.501593

U.0 .
0.2 0.2
0.4 0.4
0.6 "" 0.6
o.a s** 0.0
1.0 **'0*0* 1,0 0*
1 00 .. .ooooo. 1.2
1.4 00 0 1.4 ,00•00 *eeeo
1.6 .6.0000 1.6
1.8 eooe00 1.6 oooeoe oeooo eoeeo ooeeo

2.U 0o0o., 2.0
2.2 .o*.oss 2.2 ooo*o***o
2.4 * 2.4 0000000
2.6 " 2.6 eo.
2.a 2.8
3.0 00000 3.0
3.2 3.2
3.4 3.4 S
3.6 3.6
3.8 3.8
4.0 4.0

Flush: Random below threshold Flush: Random ilelow Ihleshold

Mean of Ratios: 1.578250 Mean of Ratios: 1.191405
Std. Dev. of Rat as: O.895169 Std. Dev. of Ratios: 0.461134

0.0 00000,, o,. 0.0 *
0.2 0.2
0.4 0.4
0.6 o. 0.6
0.8 * 0.8 0
1.0 0000 1.0 ,.,
1.2 00*0*0 1.2 o. *.
1.4 1Ol• 00 1.4 .0000• ,0 -
1.6 1.6 •.* *ee*...1.6 *000****' e*°0*.

1.81.8 o eoo*ooooee*oo*eo.ooe

2.0 oo 0o 0o Z.0 **o o**e *eo*

2.2 nee0ne000ee 2.2 0eeeeeeeeee
2.4 2.4 sOS

2.6 *SSS02.6 00
2.8 00 2.8
3.0 0 3.0 *
3.2 o ..- +. 3.2 0

3.4 " 3.4
3.6 3.6
.38 A3.8
4.0 4.0

Figure 1: Sample SNR3 histograms for four configurations of cache 11T, showing the
beneficial effects of increased cache length and flushing with random mercy. SNR3 >
I means the correct parameter vector received the most votes. The bimodality of the
distributions is unexplained--the peak at SNR3 = 0 represents trials in which the
correct vector was not even in the cache after the 11T.

9

3.5 Quad rrees and DQ Methods

Multi-resolution approches to image understanding and processing have been
popular and useful for a long time [Kelly 1971; Warnock 1969. Keeping the
multiple resolutions explicitly in a pyramid data structure has also proven quite
useful [Samet 1980; Tanimoto and Pavlidis'19751. When the resolution pyramid is
made of predefined cells, they are usually split symmetrically along each dimension,
and the resulting strudure is called a quad (oct,...) tree. I call them 2d trees here.
When the cells are split asymmetrically, or the density of resolution varies over a
pyramid level, especially when the splitting varies as the contents of the data
structure arrive sequentially, a Dynamically Quantized (i)Q) space or pyramid results
[O'Rourke 1981; Sloan 1981].

A control progran usually adapts these data structures to high-resolution data by
generating new cells where data is densest. In 2d trees, this is done by splitting the
lower-resolution cells. In DQ spaces, the data structure is a k-d tree [Bentley 1975],
and cells are split and merged as data arrives sequentially. Ir 'Q Pyramids, the
number of cells at a level is fixed but their extent is varie, y moving the d-
dimensional "crosshairs" that split each level into, 2d Usually th "magement of the
data structures has the goal of producing cells with equal comp .-y, or numbers of
counts. The density of the data is thus mirrored in the data str re (dense data in
a region produces a tree that is deeper for that region, for instar iis approach is
natural in a sense--it does not require search if enough inforr, ,u is kept in the
cells to allow splitting and merging. The data structure and some ancillary
information is sufficient to reconstruct the approximate density of the original data,
which is inversely proportional to the size of the cells.

DQ structures in the literature suffer from a f~w difficulties. The cells in J)Q
spaces can be unintuitive (Figure 2). The splitting and merging algorithms are
complex. The cells contain only approximately correct counts after splitting and
merging, operations which are controlled by total counts and by count gradient
information within a cell. The high-resolution parameters (locations) of counts are
lost. DQ Pyramids, since the numbers of cells is fixed, have simpler algorithms, but
again produce wrong counts as the crosshairs are moved away from their origirral
positions by adaptive warping as data comes in. Despite all this, the l)Q structures
seem to be practically usable for some applications, including HT accumulation.

The usual count- (or complexity-) equalizing control strategies for hierarchical
data structures have a dual sort of effect from the one we desire, although it is
possible to imagine working with (i.e., around) them. In the cache mode-estimati6n'
application there is one cache entry per cell, and it would be best if modes were
captured inside single cells insteid of distibuted across several. Also the possibility of
flushing everything but one cell (at some level) is attractive. Thus the data structures
'of dynamically quantized structures are useful, but the management algorithms are
inherently difficult and in any case can be modified to match our purposes better.

10

00

to

I--.

I0O

0 1 2 3 4 5 6 7 8 9 10

x

Figure 2: A DQ Space with two modes froi [O'Rourke 19811. The cells in

the sp.:!ce result fromn splitting and merging as data arrive.

4. Tlhe D~ata Structure

4.1 I)Q 3d..'1ree

The DQ 3d Tree is a DQ 2d Tree (Pyramid) modified to be more useful for our
purposes. It is a natural data structure to associate with the convergence rnode-
finding algorlLhrns. The idea is simple, and shown in F-igure 3 in the 32 (two-
dimensional) case: Construct cells that contain and converge on dense areas, rather
than splitting dense cells. The search necessary to create these structures is related to
that analyzred in Section 3.3. 1 do not seriously propose this structure for
im-plementation since adaptive warping wvould raise all the problems encountered inl
standard 1)Q Pyramids, but offer an approximate and(presumably simpler version in
the next section.

,

.. ...-- -i

- -A

Figure 3: The DQ-3d Tree. In two dimensions, the I)Q non-tree. Central
cells co:tain and converge upon dense areas of data. Non-central cells
are candidates for flushing from a cache. Multiple modes simply require
splitting a non-central cell at some level.

4.2 Unplhased 2 d Tree

As an approximation to the l)Q 3d Tree, consider the Unphased 2d Tree (lFig. 4).
It is simply a 2CI tree augmented a[each level by a phase-shifted version of the cells.
For definiteness, call the usual cells the U cells, and the shifted ones the S cells.

g 12

k U Cells S Cells

LI1

1 i k--i
I-I

2

I -

I -

3 I

0 */

Figure 4: The unphased 2d tree. In 2-I), the unphased quad tree. The kth
layer consists of 2 kd U (usual or unshifted) cells and (2k-l)d S (shifted)
cells. The usual cells are augmented by those shifted half a cell size. The
size of shift depends on the level. Their sub-cell inclusion rules are more
complicated than for U cells.

'This compromise allieviates (but does not cure, unfortunately) the problem of
dense areas that lie on predetermined boundaries in the tree, at a considerable
computational saving over the (better) solution offered by DQ 3d Trees. A vote for
parameter vector increments the count of a sequence of cells, namely 'all those cells
containing the vector. Each such U cell may- be addressed by the highest-order
componentwise bits of the last. This produces the normal 2d tree, structure,. The
construction of the out-of-phase cells is treated in some detail in Section 5.1.

The shifted cells are some insurance againsi splitting a peak over several cells, as
is guaranteed to happen in traditional multi-resolution schemes. We do not want this
to happen: it loses a resolution level. Worse, it can make the new cells (each. with
only about 2 -d of the votes for the mode) vulnerable to flushing. Thus, both non-
traditional tree management and phase-shifted cells may have a more important
efect than just a gain of resolution in the context of cache-based schemes.

'3

5. Technical Details

5.1 Vector Addresses and Arithmetic

The 2d tree is implemented as a set of separate but communicating caches, one
per level for each of S and U cells. The Vector addresses have a number of bits that
increases by d with each level of increasing resolution. I propose to use a
straightforward translation for the address of U (natural) cells in the 2d tree, based
on their Cartesian coordinates in d-space. The S cell locations in natural, Cartesian
coordinates do not have the elegant leading-bits relation with their underlying cells,
and so are transformed into T addresses that do. U and T addresses must be
differentiated.

The following discussion relates to U cells. In order for a parameter vector
(address, d-dimensional location) to be related to its 2d tree address, it is represented
as follows. If x is a d-vector of m-bit quantities (m = Iog2M)

x = x!l x12x13 ... xIn
x21 x22 ... x2m
xdl xd2 ... xdm,

where the xij are bits. The write x as the single bit string (dm vector)

y = xli x21 ... xdl x12 x22 ...xd2 ...xdm.

In other words, read the above array of bits out columnwise. Thus the d high-order
bits come first, and last come the d low-order bits. We shall need one bit to
distinguish U LRC addresses from T LRC addresses. The final form of address is

address = {U/T} y

Let the HRC be assigned level in and the lowest resolution cache entry (a single
entry counting the total votes in each cache) have level 0. Then at level k, 0(k(m, x's
parameter vector (address) is the bit string of length kd (interpreted as a d-vector of
k bit quantities)

RightShift(y, d(m-k)).

Now consider S cells (Fig. 4), which introducc considerable complication. They
are shifted by a different amount on every layer. The kth layer of the 2d tree has 2k
U cells in it. That layer has (2k -1)d S cells of the same size. To generae a unique
vector address (the "1T address) for the S cells, I subtract half their linear difnension
from their cartesian (U) addresses. (Think of sliding the 3x3 S cells in layer 2 of a
quad tree down so they cover the "lower left" 3x3 square in the 4x4 array of U cells.)
This is to generate a unique address for the S cell--all its members will now have T
addresses with identical leading bits (kd of them at level k), just like the U addresses.

In a natural way, each U cell on any level k has associated cells on all other
levels. They are the cells of higher k whose (hyper)volume it contains and the cells

14

of lower k that contain it. The rule associating U cell addresses at level kI with a cell
address y at level k is the following.

RI) Ifk 1 > k, all cells at level k1 having addresses whose high-order
kd bits are the same as y are associated with (lie within) the k-
level cell at y.

R2) If kI < k, the single cell at level k1 whose address is the first
k1 d bits of y is associated with (includes) the k-level cell at y.

S cells are not so simply associated with each other, since the amount of offset
varies from layer to layer. However, an S cell on the k layer is made up of 2d U cells
on the k + 1st layer, and it is this correspondence that is used in the flushing strategy.

Figture 5 shows the U, S, and T coordinates of cells (and the association between
U and S cells) in a "two-tree," where d = 1.

U Coords U Coords of T Coords

S Cells

0 -- NONE

0 01, 10 0

2 00 001, 010 UtoT - 00
0 1 011, 100 01
10 101, 110 -4-TtoU 10

S-000 0001.0010 000
001
010

100

4 0000....
0001-
0010.3
0011

Figure 5: U, S, and T coordinates. The connected brackets show association
relations between U cells and other U and S cells. These 1-i)
coordinates and transformations extend, componentwise, to d
dimensions. UtoT and TtoU transformations are given in, the text.

Figure 5 shows that two (in d dimensions, 2d) cells. at level k + I are included in a
cell at level k. The transformation UtoT maps U addresses at level k + 1. to T
addresses at level k. TtoU maps T addresses at level k backto U addresses at level
k+1.r,

!C

UtoT(k,d): Subtract 2 (dk-1) (k leading O's and a 1) from the k + 1-
bit U address. The leading k bits are the T address.

TtoS(k,d): Take the k bits of T address, append to them the two (in
d dimensions, 2 d) possible configurations of one (d) bit(s). Then
add 2(dkl) (k leading 0's and a 1). The leading k+1 bits of the
resulting two (2 d) addresses are the U addresses.

UtoT and TtoU are easily extended to operate on the linearized dM-vectors in d
dimensions. Use the usual truth tables for addition and subtraction (Fig. 6).

U XXXXXXX XXXXXXX . XXXXXXX 1010110 1011010

Borrows ... 0100001 0100101

Subtract Componentwise 1111111

Discard 0100101

T ... 1110011

T XXXXXXX XXXXXXX ... XXXXXXX 1110011

Append, as one of 2**d choices 0100101

Carries ... 0100001 0100101

Add Componentwise ... 1111111

U .. • 1010110 1011010

X Y X-Y and X+Y Borrow Carry

0 0 0 0 0
0 1 1 1 0
1 0 10 0
1 1 0 0 1

Figure 6: Addition and subtraction of address vectors. Simply a carry-ripple
operation done bitwise (the ith bit in the each block belongs to the ith
dimension's coordinate.) The carries and borrows alone are added and
subtracted since the leading bits of the addend and subtrahend are 0.
"Overflow" here results from using illegal operands (trying to compute
T addresses for U addresses that do not have them, or vice versa).

16

A more elegant scheme for accessing the shifted cells might result from a more
sophisticated coding scheme. Other space-filling addressing schemes are possible and
are potentially useful. The Generalized Balanced Ternary scheme is one such, using
hexagonal cells in 2-1), truncated octahedra in 3-1), and in genera n+I
permutahedra in n-space [Gibson and Lucas 1982]. We hope to pursue these topics
as time allows.

5.2 Fluslhing Algorithms

Two strategies for flushing the caches seem useful. The first iZ called static, and
seems primarily usefil for uni-modal accumulators and data that comes in from a
static situation (for example, a random scan of a single image). The second is called
dynamic, and seems more suited for multi-modal data or data from changing sources
(time-varying images or raster scans). Both flushes are initiated by conditions in the
HRC, usually that it is close to filling up. In both flushing strategies, S or U I.RCs
with low counts are found and flushed.

To flush a U cell at level k, use UFlush(ACeli): remove all ACell's entries.
Decrement the count of the cells including ACell in lower-k U cells by ACel's
count. Remove entries in higher-resolution (higher-k) cells that are included in
ACell--whose leading address bits agree. Every time a U cell at level k+ I is flushed,
decrement its associated S cell at level k.

To flush an S cell at level k, use Sllush(ACeli): remove its entries and U.lush its
associated U cells at level k+l. This latter flush works its way up and down the
hierarchy, flushing and keeping S and U counts consistent.

lFlushing could trigger other flushing, as lower-k cells may become flushable
through higher-k flushes. In the dynamic algorithm, flushing is all that happens. In
static flushing, information is recorded about which cells were flushed, and no new
votes in those areas are accepted. This can be implemented several ways, using filter
registers to check on the addresses of incoming votes. The registers can contain
acceptable or unacceptable ranges of addresses to he checked before votes are
inserted in the HRC.

5.3 Number of Lower Resolution Cells

How many lower resolution cells will there be? We can easily put upper and
lower bounds on their number, and can appeal to statistics for some more intuitions.

If the HRC is 2 m on a side for d dimensions, there are 2md possible HRC cells.
There are 2 (in-])d possible LRC U cells on level mn-1, (2md-1)/(2d-1) IRC U cells,
and a total of (2(m+I)d-)/(2 d-1) potential cells in all caches. U cells in m+l levels
(clown to the single cell at k = 0). With increasing d the number of I.RC cells
approaches the number in the first IRC, or 2 (m-1)(1. For example, in the four-level
quad tree with 64 HRC cells, there are 85 total U cells and 64 + 16 = 80 of these
are in the I IRC and the first I.RC. The S cells approximately double the size of the
I.,C cache. The entire set of U and S LRCs thus is at worst only about 2 (rd) as big
as the HRC.

17

If all the l-IRC votes are in a small area (a single HRC cell), then only k+ 1 cells
are allocated in the U cache, and k in the S cache, for a minimum of some 2k cells.

We may wonder how the cache will look between these two extremes. How
likely are we to get empty cells that do not appear in the caches? This question is
addressed by occupancy statistics [Johnson and Kotz 19771 and urn models [Cohen
1978]. Say we have C cells and v votes, then there are Cv ways to vote into the cells.
Suppose we wish to count the number of ways to vote into C cells so that exactly C -
p of them are empty (p of them contain votes). For p chosen cells, the number of
distinct ways to vote is

p! {v,p}
where {v,p} is the Stirling number of the second kind (see below). There are (C,p)
ways to choose the p full cells, where (C,p) is the binomial coefficient (see below).
Thus the fraction of voting trials in which exactly p cells is filled is

p! (C,p) fv,p}
F=----------------

Cv

This quantity may be interpreted as a probability if each cell is equally likely to
receive votes. If X is the number of occupied cells, Pr[X = p] = F is known as the
classic occupancy distribution. If cells are not equally likely to receive votes, the
expression becomes extremely complex [Johnson and Kotz 1977, eq. 3.51. The equal-
probability situation minimizes the expected number of empty cells, and so is a worst
case [ibid].

The binomial coefficient (Cp) is C! / (C-p)! p!

The Stirling number of the second kind {v,pl counts the number of ways of
partitioning a set of v elements into exactly p subsets, none empty. We have

{v,O} = 0, [v,11 = 1, {v,21 = 2(P-1) -1, {v,v-1} (v,2), jv,vj = 1.

and the recurrence

{v,p} = p{v-1,p} + {v-1,p-1},

which leads to a Pascal's triangle like construction.

p 1 2 3.4 5 6
v
1 1
2 1 1
3 1 3 1
4 1 7 6 1
5 1 15 25 10 1
6 1 31 90 65 15 1 -

F 18

There is a helpful identity for computing occupancy numbers:

p! [v,p) = (p,p)pV - (p,p1)(p.l)v + (p,p-2)(p-2)v -

As an example, the distribution of full bins after 8 votes into 8 bins (there are
224 possibilities) is approximately (in percent)

Occupied Bins 1 2 3 4 5 6 7 8
%of trials .0... .04 2 17 42 32 6 .2

Occupancy distributions have been thoroughly studied in the literature [Johnson
and Kotz 1977). They would be expected to occur in studies of cacheing, and in fact
were used to formalize the behavior of working sets [Denning and Schwartz 1972].
For the classical occupancy distribution of interest here, a normal approximation is
quite good [Vantilborgh 1974].

Certain limit theorems are known for the classical occupancy distribution. For a
fixed number of votes v, as the number of cells p goes to infinity, the expected
number of empty cells, es to infinity, the expected number of cells with one vote
goes to v, and the expected number of cells with more than one vote goes to zero.
As v and p both go to infinity, with pe(vP) -> w, then the probability that there are
t empty cells approaches a limit

lim Pr[M 0 = t] = wt/ewt!
V---) 0

Also, if v and p go to infinity, with v/p -- w < oo, then the limit standardized

distribution of Mr (the number of cells with r votes) is unit normal, and

f F[Mr] = p(v,r)p-r (1l-/p)(v-r) - wr/(eWr!)

var(Mr)/ E[Mr] = - wr [I + ((r-w) 2)/w]/(r!ew)

The last two paragraphs deal with limits of expected values in occupancy
distributions, not with the distributions themselves. The results in this section may
be useful in ca!culating expected cache occupancy, or at least in lending some basis
for order of magnitude calculations should they be desired. It appears that as a
practical matter, the allocation of adequate space for the IRC caches might pay for
itself in simplification of the management algorithms.

6. Conclusions and Future Work

Real HT data includes the effects of quantization error as well as inherent
sidelobes surrounding peaks. In practice, accumulator arrays are usually smoothed to
gather local evidence into a point. NWuh only a few modes in the accumulator array,
large volumes of it will be subject only to votes from noise. In traditional cache-I'I,
spatial contiguity is lost, and the above observations do us no good. A vote flushing
and filtering strategy that makes use of spatial contiguity seems likely to improve
cache-IFlT performance, and this report proposes an architecture and algorithms for

19

that purpose. The strategy is based on statistical mode-estimation algorithms, and the

data structure is an augmented version of quad (oct,...2d) trees. The management of
the data structure differs from the usual in that the goal is to keep votes in the fewest
cells possible, rather than to spread them out evenly between cells.

For a small investment in space, a hierarchical data structure that keeps track of
geometric contiguity can be implemented in a cache environment, with vector
addresses encoding the inclusion relations between multi-resolution cells. The
flushing algorithms for this structure are simple. Matters become more complicated
when an ancillary data structure of shifted cells is added to cope with phasing
problems (peaks being split across predetermined cell boundaries). Some aspects of
the resulting structure are subject to analytic treatment.

One desirable analytic problem that might be feasible is the treatment of discrete
sample space mode-estimation with finite memory, and in particular some properties
of an iterative technique such as the one proposed here. How often, say, will it fail to
find the mode of an analytically tractable distribution? Continuous approximations
(say a continuous version of the whole problem) begin to resemble known
convergence algorithms.

Dave Sher implemented a software simulator for HRC-only caches [Brown and
Sher 1982]. He is now working on a VLSI implementation of a content-addressable
tally cache [Sher 1983]. Neither of these implementations incorporates the
hierarchical structure discussed here. We have plans to extend the software
simulation to hierarchical flushing algorithms. The relation of the complex flushing
algorithms to hardware is under study.

The next step is to simulate this hierarchical cache (initially only with U cells).
Methods for vote filtering should be developed and tested. Static and dynamic
flushing should be tried with various scanning strategies. If hierarchical caches
perform significantly better than single-resolution caches, we must investigate the
interaction of hierarchical structure with hardware caches under development.

7. Acknowledgenments

This work was carried out under NSF Grant MCS-8302038, ONR (I)ARPA)
Grant N00014-82-K-0193, and CNA Grant SUB N00014-;7 -C-000l. R. Gabriel, J.
Hall, and J. Wellner have provided encouragement and gfiidance, and are in no way
responsible for technical inadequacies. P. Meeker helped greatly in document
preparation.

8. References

Ballard, D.H., "Generalizing the Hough transform to detect arbitrary shapes,"
Pattern Recognition 13, 2, 111-122, 1981.

Bentley, J.L., "Multidimensional search trees used for associative searching," CACA
18, 9, 509-517, September 1975.

20

Brown, G.M., M.D. Curtiss, and i).!. Sher, "Advanced H-ough uansforin

implementations," TR 113, Computer Science Dept., U. Rochester, March 1983;

Proc., 8th IJCAI, Karlsruhe, West Germany, August 1983.

Brown, C.M. and 1).B. Sher, "Hough transformation into cache accumulators:
Considerations and simulations," TR 114, Computer Science l)ept.. U.
Rochester, August 1982; Proc.,)ARPA Image Understanding Workshop, Palo
Alto, CA, September 1982.

Brown, C.M., "Bias and noise in the Hough transform 1: Theory," TiR 105,
Computer Science Dept.. U. Rochester, June 1982; to appear, IEEI Trans.
PAMI1, 1983.

Cohen, I.A. Basic Techniques of Combinatorial Theory. Wiley and Sons, 1978, p.
118ff.

l)enn~ing, P.J. and S.C. Schwartz, "Properties of the working set model," CAIM 15,
3, 191-198, March 1972.

Duda, R.O. and P.E. Hart, "Use of the Hough transform to detect lines and curves in
pictures," CACM i5, 1, 11-15, 1972.

Feldman, J.A. and D.H. Ballard, "Connectionist models and their properties,"
Cognitive Science 6, 205-254, 1982.

Gibson, L.. and D. Lucas, "Spatial data processing using Generalized Balanced
Ternary," Proc., IEEE Conference on Pattern Recognition and Image Processing,
566-571, Las Vegas, June 1982.

Gilbert, J.P. and F. Mosteller, "Recognizing the maximum of a sequence," 1 Amer.
Stat. Assoc. 61, 1966.

Hlall, W.J., "Estimating the mode of a multivariate density, based on sequential
sampling and with finite storage," Unpublished Note, Statistics l)ept., U.
Rochester, October 1982.

Johnson. N.L. and S. Kotz. Urn Models and Their Application. Wiley and Sons, 1977,
p. 107ff, 315ff.

Kelly, M.I)., "Edge detection by computer using planning," in Meltier, B. and !).
Michie (Eds). Machine Intelligence 6. Edinburgh: Edinburgh University Press,
1971.

Kong, A., "The Beauty Contest with a searching cost," Unpublished Working Paper,
Dept. of Statistics, Harvard U., 1982.

Lorenzen, 'I.J., "Generalizing the secretary problem," Adv. Appl. Prob. 11, 384-396,
1979.

Lorenzen, T.J., "Optimal stopping with sampling cost: The secretary problem,"
Annals of Prob. 9, 1981.

Loui, R.P., "How fast Hough?," Internal Working Paper, Computer Science Dept.,

U. Rochester, May 1983.
Narendra, P.M., "A separable median filter for image noise smoothing," Proc., PRIP-

78, 137-141, 1978.

21

O'Gorman, L., A.C. Sanderson, K. Preston, Jr., and A. Dekker, "Image segmentation
and nucleus classification for automated tissue section analysis," Proc., IE"EF
Conference on Computer Vision and Image Processing, 89-94, Washington,)C,
June 1983.

O'Gorman, L. and A.C. Sanderson, "The converging squares algorithm: An efficient
multidimensional peak picking method," Proc., 11-E1" Int'l. Conference on
Acoustics, Speech, and Signal Processing, 112-115, Boston, MA, April 1983.

O'Rourke, J., "Dynamically quantized spaces: A technique for focusing the Hough
transform," Proc., 7th IJCAI, 737-739, Vancouver, B.C., August 1981.

Robertson, T. and J.D. Cryer, "An iterative procedure for estimating the mode," .
Atne.- Stat. Assoc. 69, 348, 1012-1016, December 1974.

Rosenfeld, A. and M. Thurston, "Edge and curve detection for visual scene analysis,"
IEEE TC-20, 562-569, 1971.

Sager, T., "Some isopleth methods for mapping multidimensional distributions,"
presented at ONR Workshop on Statistical Image Processing and Graphics,
Luray, VA, May 1983.

Sarnet, H., "Region representation: Quadtrees from boundary codes," CACM 23, 3,
163-170, March 1980.

Shapiro, S.D. and A. lannino, Geometric constructions for predicting Hough
transform performance," IEEE Trans. PAMI-1, 3, July 1979.

Sher, I)., "The Hough chip," Internal Working Paper, Computer Science Dept., U.
Rochester, 1933.

Sloan., K.R., Jr., "Dynamically quantized pyramids," Proc., 7th IJCAI, 734-736,
Vancouver, B.C., August 1981.

Smith, M.H. and J.J. Deely, "A secretary problem with finite memory," J. Amer.
Stat. Assoc. 70, 1975.

Tanimoto, S. and T. Pavlidis, "A hierarchical data structure of picture processing,"
CGIP 4, 2, 104-119, June 1975.

Vantilborgh, H., "On the working set size and its normal approximation," BIT 14,
240-251, 1974.

Venter, J.H., "On estimation of the mode," Annals of Mathematical Statistics 38,
1446-55, October 1967.

Warnock, J.G., _"A hidden-surface algorithm for computer-generated halftone
pictures," TR 4-15, Computer Science Dept., U. Utah, June 1969.

Wegman, E.J., in S. Katz and N.L. Johnson (l'ds). Encyclopedia of Statistical
Sciences, Vol IV. Wiley and Sons, 1982.

Wegmen, E.J., "Nonparametric probability density estimation: 1. -A summary. of
available methods," Technometrics 14, 3, 533-546, August 1972.

