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NUMERICAL METHODS FOR SINGULAR PERTURBATION PROBLEMS

INTRODUCTION

Numerical analysis of singular perturbation problems has been of

considerable interest recently since these problems mimic difficulties

encountered with the Navier-Stokes equations. The existence of a small

parameter, e, in singular perturbation problems causes the appearance of a

thin boundary layer in their solutions. If E tends to zero, an infinite

number of grid points need to be clustered near the physical boundary so

that the boundary layer can be properly resolved. Moreover, in the

nonlinear case, the location of the boundary layer is not known a priori,

and this renders the problem more difficult.

Finite difference approximations of singular perturbation problems lead

to unsymmetric matrices. Reliable and fast iterative methods will be

presented here for linear and nonlinear problems. The assumption is that

matrices are diagonally dominant, and the methods do not require the

symmetry property of matrices. Numerical results will be compared with

solutions from standard algorithms.

THE LINEAR PROBLEM

Consider the linear advection-diffusion equation in conservative form:

a u - e: +1 vo - E =A 0 , (1)
ax (u C) a + ay ( 3Y ) O-(

where 0 is the advected quantity, u and v are velocity components in x and

y directions respectively, and E is the diffusivity constant. Fiadeiro and
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Veronis proposed the weighted mean (W-M) scheme to discretize equation

(1) as

W i- + E i+l'j + S ij-l + N Oi - C i =0

where

W 1/2 coth u - 1/2 Ax + 1
2Ax coh2c

uE + 1/2 F i +1/2 Ax
2Ax coth 2c

S =  v j coth v - 1/2 Ay +

N =  [ + 1/2 + 1/2 Ay)26y coh2E -1

C = W + E + S + N.

The W-M scheme retains the five-point operator character of central

difference except that, in the limit, it tends to central difference for

strongly diffusive cases and to upwind difference for strongly advective

cases. This scheme is derived by using the flux conserving principle; the

discretization error is 0 (Ax2, Ay2). Significant advantages of the

scheme are that there are no local instabilities in the solution with

respect to central difference and that no testing is required at each grid

point with respect to upwind difference. Its stability for all grid

spacings has been found to result in fast convergence when using the

preconditioned minimal residual method and the multigrid method. For

comparative purposes, the successive line over-relaxation (SLOR) algorithm,

which serves as a standard iterative method, is briefly described.
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SUCCESSIVE LINE OVER-RELAXATION (SLOR) METHOD

Equation (1) can be rewritten as

L = 0,

where L is a differential operator. The SLOR method2 can be implemented

as follows:

/n n6o) io
6yy + xx e j w L Oij

where e'1 = Hn+l n an

where - nij and w is the relaxation parameter.

The scheme is implicit in the sense that in the x and y directions an

inversion of a tridiagonal matrix equation for a given value of i or j is

required. In these numerical examples an optimal relaxation factor, w, is

assumed.

THE PRECONDITIONED MINIMAL RESIDUAL (PMR) METHOD

The discretization of equation (1) yields a large system of linear

equations

Ax = b, (2)

where A is a large, sparse, and nonsynnetric coefficient matrix; x is the

solution vector; and b contains boundary terms.

Introduced now is a nonsingular matrix, C, called the preconditioning

matrix. Equation (2) is thus equivalent to

Ax - b, (3)

where A - C-1 A, x = x and b - C-lb. This case is denoted as PMR I. A more

general choice for equation (2) is A - PAQ, X Q-ix, and b - Pb, where

3



P and Q are nonsingular matrices. The second case is called PMR II. The

procedure for transforming equation (2) into equation (3) is known as a

preconditioning technique. Once the matrix C or the matrices P and Q have

been chosen, the standard minimal residual (MR) method 3 can be applied to

the transformed equation. A different choice for C or for P and Q, there-

fore, leads to a different preconditioned MR method and, in consequence,

different rates of convergence.

To accelerate the convergence rate of the PMR method, it is desirable to

find matrices such that K(C- A) << K(A) or K(PAQ) << K(A), where K(M) is

the condition number of matrix M. The PMR I method can be implemented by

the following algorithm:

Let K = 0 , r = b - A X. For K = 0,.1, 2, ... , compute the

vectors XK+I rK+ 1 from

XK+I = XK+ aKrK'where % = (rK' rK

(IrK ' rK)

rK+ b-A XK+ 1  rK - aK ArK

A similar procedure can be applied to the PMR II method. To minimize

the computational work involved in the preconditioning technique, the

matrix C should easily be invertible. In general, C is chosen to be the

product of lower and upper triangular matrices; i.e., C - LU. The inverse

can therefore be obtained through simple forward and backward substitutions.

4



ROW-SUM AGREEMENT FACTORIZATION

4
Wong suggested an incomplete factorization based on the principle of

agreement of row-sum between the preconditioning matrix C and the original

matrix A:

Row-sum (A) = Row-sum (C) - Row-sum (LU)

A - LU+R, where R is the defect matrix; hence Row-sum (R) = 0

Therefore, matrix C resembles matrix A in the sense that their

eigenvalues have the same bound, namely the norm of A. Different r ,rithms
4

can be found in Wong for constructing L and U. The row-sum agreem

factorization is shown schematically in figure 1. L and U have not

elements in these positions which correspond to the nonzero elements Li the

lower and upper triangular parts of A. The off-diagonal elements of C,

whose locations correspond to the nonzero off-diagonal elements of A, are

set to those values. If IIRII is small, LU will be a good approximation to

A; consequently, a fast convergence can be achieved by the PMR method.

THE MULTIGRID PROCEDURE

The <<Cycle C>> algorithm with correction storage is used here, as
5

presented by Brandt. The initial approximate solution is defined on the

finer grid, and then relaxed. When the relaxation is found to be

inefficient, a correction is projected on a coarser grid. When the

relaxation converges on any grid, the values on the finer grid are updated,

and relaxation performed at this finer level. The sequence of grids used is

not defined a priori, but depends on the efficiency and convergence of the

relaxation just completed. Data are transferred from fine to coarse grids

5
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Figure 1. Row-Sum Agreement Factorization
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by projection, and from coarse to fine grids by linear interpolation. The

relaxation performed is point Gauss-Seidel. Since the problem is linear and

the velocity field is explicitly given, the coefficients N, S, E, W are

explicitly computed at each level, using the appropriate location (x,y) and

Ax, Ay.

Used here for an efficiency criterion is:

residual at present relaxation < 0.6 (residual at former

relaxation); and for a convergence criterion:

residual on "coarse" grid K) < 0.3 (residual on "fine" grid K + 1).

This scaling takes into account the fact that the method is second

2order, i.e., error -h

A simple local analysis produces an interesting result for variable flow

fields. Consider the smoothing rate for Gauss-Seidel relaxation in the

usual ordering, with both x and y increasing:

- MAX. E ei  + Nei

< < f f! C - We - i  -Se i
n

Since p is the reduction factor for high frequency modes, it should be as

small as possible. But, from the explicit expression for N, S, E, W, it can

be seen that if u or v is negative and large in magnitude, E >> W and N >> S,

as they should be in an upstream differentiation formulation. This produces

a smoothing rate very near to one. Thus, if u is negative, relaxation

should not be in the direction of increasing x.
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If the flow field is reasonably simple, so that the relaxation can be

explicitly performed following the flow, i.e., x, y, increasing if only u,

v > 0, then the convergence is much fast-r.

It wasn't necessary to use this method on these test problems as u, v > 0

everywhere, but there are results showing speedup of convergence of a Benard

cell type problem solved by Lustman, et al. In any case, multigrid

iteration is evidently faster than SLOR, even when the best overrelaxation

parameter is used, as table I shows.

NUMERICAL RESULTS OF A LINEAR EXAMPLE

Consider the following model problem:

+ a)- , (u t) + (v)

where u = U(I - X/L), v = UY/L , and P = UL/K, with boundary conditions:

= 0 at left and bottom,

= at right and top.

P is the Peclet number which measures the intensity of advection relative to

diffusion. U, L, and K (diffusivity constant) are quantities used for

nondimensionalization. Figure 2 depicts the flow pattern where streamlines

enter along the left boundary and leave through the top boundary. Plots of

isotherms are shown in figures 3 and 4 for P = I and 100, respectively.

Observe the thin boundary layer developed near x - L and y = L for strong

advective cases. In table I the number of iterations for P from 10 to 400
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Figure 2. Flow Pattern
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Table 1. Number of Iterations with Different Relaxation Methods

Pellet No.

Relaxation
Method 10 50 100 400

SLOR in x and y Directions* 120 73 60 23

PMR I 45 48 37 22

PMR II 93 45 35 21

Multigrid, WUt 95.6 77.2 64.0 45.2

*One SLOR iteration is a sweep in the x direction, followed by a sweep

in the y direction. It is approximately equal to the work done by one PMR
iteration.

tOne WU (work unit) is equivalent to one point relaxation sweep over a
61 x 61 grid. It is about half the work done in one SLOR relaxation.
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is compared for a grid 61 x 61. Convergence was reached when the norm of

the residual vector was less than 10-6 .

For all four iteration methods considered, it was found that the W-M

scheme converges faster for more convective flows since the preconditioning

matrix C becomes closer to the original matrix A as the Piclet number

becomes larger. The PMR and multigrid methods need about the same storage

and are efficient for high as well as low Peclet numbers. Furthermore, no

parameter is required for the PMR algorithm. The multigrid program involves

some complexity since the various sizes of the arrays represent the same

quantity and there is a need for interpolations. On the other hand, the PMR

method needs an efficient LU decomposition.

THE NONLINEAR PROBLEM

Consider the following 2-D Burger's equation in a unit square in R2

(X, y) 1 0 < x < I, 0 < y < 1

I (u2) 1 (u2) + E V2 u 0 (4)2 x 2 y u 0

with boundary conditions:

u - 0 at left and bottom,

u - 1 at right and top.

For standard upwind differencing of the convective terms, the

nonlinearity might cause instabilities and convergence to the incorrect

(nonphysical) solution. Hence, the monotone difference scheme of Engquist

and Osher 7 is used here to approximate the nonlinear convective terms, and

central difference is used to discretize the Laplacian operator. For the

11



I-D singular perturbation equation, Osher 8 has proved, via the time-

dependent equation, that convergence to a unique steady-state solution

occurs. Moreover, computational evidence of the 1-D case in Osher's paper

indicates that the method is very useful in accurately locating regions of

large gradient even for complicated problems. For nonuniform grids,

Abrahamsson and Osher9 have proved general convergence results and have

shown that the Engquist-Osher scheme reproduces essential properties of the

true solution.

Next, the monotone difference scheme is described briefly. Let
1 2

f(u) = - u 2 The Engquist-Osher scheme is based on the approximation
2

f(u) -- A+f_ (ui ) + A_ f+ ui )] (5)

where

A u. ui -u. , A-u. = u. -u
+ 1 1. i i-I

and

f + (ui) = f [max (ui, o)] ,f_ (ui) -f[min (ui, o)]

For each grid point, the discretized form of equation (4) reads:

, [ui-l,j + ui+l,j + ui,j-l + ui, j+l - 4 uijl

- h [f - (ui+ij) - 2 f (Uij) + 2 f+ (Ui-j)

- f + u -1j + f-. (U ij+j) -f~ (iii, j-)1 0, (6)

12



where h is the uniform grid size and

2
u, u<O
2

f (u)
0, u>0

2(u_, u>0
2

f (u) =+ Cu O, u<O

Convergence to steady-state solution will be accomplished via artificial

time stepping and Newton's method.

METHOD OF TIME STEPPING AND NEWTON'S METHOD

ut = - (U2)x - (U2)y + C V2u (7)

with boundary conditions and initial conditions.

Discretization of equation (7) with respect to time yields

u n+l n n n
ui - ui j + At Lu

Ln n

where Lu represents the right hand side of equation (7) and At the

time increment. In this example, the time steps, Atn, which are limited

by the Courant-Friedrich-Levy (CFL) condition, are chosen to be fixed for all

n, At n _ to since the finite difference equation satisfies the maximum

principle.

Instead of solving the time-dependent equation (7), Newton's method can

be used to iterate an initial guess of the steady-state solution. However,

13



to ensure convergence, the starting guess of solution should be close enough

to the exact solution.

Consider now the basic idea of iterative methods for nonlinear systems

of equations. Any iterative scheme can be expressed as

n n
Mdun = -Lu , (8)

n n + I n nth

where 6un = u - u , Lun is the residual vector at the n iteration,

and M is an iterative matrix. It appears that many choices of M are

possible. The closer that M is to revresenting L, the faster convergence

is. In general, it is required that M will be chosen in such a way that:

1. M can be computed easily.

2. Only a little storage is needed to store M.

3. 6un can be computed rapidly from equation (8).

4. The iteration scheme as expressed in equation (8) should converge.

If M is selected to be the Jacobian of L, then equation (8) will be a Newton

iterative scheme and the rate of convergence will be quadratic.

th
In this example the Jacobian of L is given, at n step, by

Mu n = (6n + n,) un6un n 6 un - n + un 8un .(9)

Again &he convective and diffusive parts are approximated by the W-M scheme

since equation (9) is linear in 6un
. Then the calculations of the cor-

rection vectors, 6u n , should invoke the combination of the W-M scheme and

the preconditioned minimal residual method for efficiency reasons. Note

that in using the PNR method to solve the linearized system of equation (8),

only a few iterations are needed for each outer iteration, since the

14



interest is in the convergence for the whole nonlinear problem. The number

of inner iterations is fixed at six in these numerical examples.

A NONLINEAR EXAMPLE

The combined Newton and PMR methods discussed in the previous section

result in a very fast converging iterative method for the solution of

nonlinear systems of equations that approximate equation (4). In table 2

the number of iterations is compared for the explicit scheme and Newton's

method for E = 0.1, 0.05, and 0.01 with a grid 31 x 31. Note that all

calculations were started with the same uniform initial guess of u - 0.5,

and convergence was reached when the norm of the residual vector was less

than 10- 4 . Table 3 shows the total computing time on a VAX 11/780

computer for the two methods. There are slight changes in the number of

Newton's iterations and drastic increases in the number of time steps when E

decreases. Table 4 lists the number of Newton's iterations and the

computing time with c = 0.01 for different starting guesses of solutions.

CONCLUSIONS

The PMR and multigrid methods are very efficient iterative procedures

for large as well as small e. Moreover, numerical results indicate that

the stronger the convection is, the faster the convergence is. Finally, it

has been shown that Newton's method combined with the PMR method can be

applied very successfully to a nonlinear multidimensional problem.

15



Table 2. Iteration Numbers

E 0.1 0.05 0.01

Time Steps 68 134 437

Newton Iterations 8 { 9 7

Table 3. CPU Time

£ ~0.1 0.05 0.01

Explicit Scheme 19.72 32.01 1:26.45

Newton's Method 31.99 33.46 29.85

Table 4. Runs with Different Initial Guesses

= 0.01 1 11 111

Newton Iterations 9 78

Computing Time 32.94 29.85 31.51

I -uniform initial guess of 0

II -uniform initial guess of 0.5

III - uniform initial guess of I
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