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) PROBLEM: ESTIMATING THE PROBABILITY OF
RESPONSE FOR A GIVEN STIMULUS

Thomas A. Mazzuchi
Nozer D. Singpurwalla

The crew compartment of an army vehicle is protected by an armor
plate. It is desired to test the strength of this armor plate in order
to assess its appropriateness for use in the vehicle.

A specimen of the plate is taken and projectiles are fired at
different points on the plate at different striking velocities. If a
projoctile penctrates the armor it is said to have defeated the armor.
Our goal is Lo determine the relationship between the striking velocity
and the probability of pecnetration. Duc to the expensive nature of all
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THE GEORGE WASHINGTON UNIVERSITY
School of Engineering and Applied Science
wnstitute for Reliability and Risk Analysis

THE U.S. ARMY (BRL'S) KINETIC ENERGY PENETRATOR
PROBLEM: ESTIMATING THE PROBABILITY OF
RESPONSE FOR A GIVEN STIMULUS

Thomas A. Mazzuchi
Nozer D, Singpurwalla

1. STATEMENT OF THE PROBLEM

The following statement of the problem is based on our several
discussions with Dr. Robert L. Launer of the Army Research Office, Re-
search Triangle Park, North Carolina, and Dr. J. Richard Moore of the
Ballistic Research Laboratory'(BRL),:Aberdeen Proving Ground, Maryland.

The crew compartment of an army vehicle is protected by a certain
kind of material which we will refer to as an "armor plate." It is
desired to test the strength of this armor plate so that we may be able
to assess its appropriateness for use on the vehicle.

In order to do this, a 10' x 10' specimen of the armor plate is
taken, and a projectile is fired from a gun which is aimed at different
points on the plate. In Figure 1.1 below, we indicate a possible firing
pattern according to which the gun is aimed.

Typically, the distance between the muzzle of the gun and the

target is about 200 metcrs, and ~he velocity of the projectile, measured

28
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Figure 1.1--Illustration of a firing pattern of a gun.

between two conveniently located points between the gun and the target
is about 5000 feet per second.

' and the outcome of

The projectile is known as the 'penetrator,'
each firing is described by a binary variable which takes the value 1 if
the penetrator defeats the target, and the value 0 if the penetrator
fails to defeat the target. The penetrator induces a stress on the armor;
the stress is a function of two quantities, the "striking velocity" and
the "angle of fire." The striking velocity, also known as the "stimulus,"
is the velocity with which the penetrator strikes the armor, whereas

the angle of fire 6 (indicated in Figure 1.2 below) is the amount by

which the armor plate is tilted.

Angle of Fireme

Armor Plate -t Line of Fire

Figure 1.2-~Illustration of the angle of fire.
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Both the armor specimen and the penetrator are very expensive and
thus the testing has to be kept to a bare minimum. One strategy that
has been adopted is to fix the angle of fire, say at 0% , and then to
fire the penetrator at different striking velocities. After each firing,
a record is made of whether the penetrator defeated the target or not.
It is sssumed that the striking velocity can be measured without any

error.

30
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\ . 2. GOALS, OBJECTIVES, AND SOME COMMENTS

1 ON CURRENT APPROACHES

¢

{ Given that our goal is to be able to assess the appropriateness

% of the armor plate for use on a vehicle, our objective should be to es-
timate the relationship between the striking velocity (the stimulus) and

} the probability of penetration (a response of 1). This is illustrated

i . . in Figure 2.1, wherein it is assumed that the probability of penetration
is a nondecreasing function of the stimulus.

3 - The situation described above is identical to the one encountered

A

j in "bioassay experiments,' and "low dose radiation experiments," in which

" the relationship mentioned before is known as the quantal response curve.

A The dose level of a drug is the stimulus, and interest generally centers

. around V 5 s the stimulu~ at which the probability of response is .5 .

Since it is possible to subject more than one animal to a particular

e ’ dose level, the number of tests at each value of the stimulus can be

} more than one. Furthermore, tests are often conducted at several dosec
levels, and thus the large sample theory which typically justifies in-

- ference from bioassay experiments is adequately substantiated.

~

«

’
-9

Quantal Response
Curve

i
[

N ]

Probability of

N Penetration T e =

i

5 |

N |

: . ) + Stimulus, V
': ° Vs

s . Figure 2.1--Probability of penetration vs. stimulus.
)

®
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Despite these conspicuous differences between biocassay experi-
mentation and the problem described here, the methodology and techniques
of the former have been directly adopted for use in the latter. 1In so
doing, a serious compromise has been made--the estimation of V.5 ,
rather than the entire quantal response curve, has been made the domi-
nant issue of the kinetic energy penetration problem. Specifically, the
BRL's commonly used '"Langley Method" [Rothman, Alexander, and Zimmerman
(1965, pp. 55-58)] and the "Up and Down Method" [op. cit., pp. 101-103]
focus exclusive attention on the estimation of V .

)

The typical approach used in bioassay for estimating V 5 is to
assume that the probability of response p 1is an arbitrary nondecreasing

function of the stimulus V , specified via the relationship

p = F((v-p)/o) ,
where F 1is a distribution function determined by a symmetrical density
function with location parameter U “and scale parameter o . Often F

is taken to be the normal distribution function

X 1 2
F(x) = [ 1 e ?% gs ,
—o V27

x)—l ]

or the logistic distribution function F(x) = (1 - e
The data from a bioassay experiment consists of n, , the number
of subjects receiving stimulus Vi , 1=1,...,K , and Xij , j=1,...,ni ,
where
xij =1, if the j subject responds under stimulus Vi’ and
= 0 , otherwise.
Given the data (ni'xij) , 1=1,...,K , j=l,...,ni , the param-

eters U and O are estimated using the method of maximum likelihood,

32
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under the assumption that the test results can be judged independent.

Once u and O are estimated, the estimation of V 5 follows from

the fact that F , the tolerance distribution, has been specified. Non-

parametric and robust estimators of V , such as the Spearman-Karber

.5
estimator, the L-estimator, the M-estimator, and the Tukey Biweight es-
timator, have also been obtained, all under the assumption that the
density function giving F 1is symmetric. These estimators have been
discussed by Miller and Halpern (1979). Furthermore, it has been empir-

ically shown that for the estimation of V it does not matter what

.5
specific form is chosen for F ; many of the commonly used nonparametric
estimators yield identical estimates of V.S , as long as symmetry is
assumed.

A drawback of the assumption of symmetry is that the estimate of
the probability of response when the stimulus is zero is nonzero.
Whereas this may not be too disturbing in bioassay with its emphasis on
V.5 » in the problem considered here and the low dose radiation experi-
mentation, such an estimate would be clearly unacceptable. A zero value
of the stimulus should correspond to a zero value for the probability of
response.

In view of the above difficulty, the paucity of data at each
level of the stimulus, and our inability to specify a functional form
of F which has some practical merit, we are motivated to advocate a

Bayesian approach for the solution of this problem. Our approach is

described in Section 3.
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3. AN OUTLINE OF A BAYESIAN APPROACH

A Bayesian approach to the bioassay problem was first proposed by
Kraft and Van Eeden in 1964, and was more fully developed by Ramsey in
1972, We consider here the theme proposed by Ramsey; extensions of
this theme are considered by Shaked and Singpurwalla (1982).

Let O = V0 < Vl < ... < VM < VM+l L @, be Mdistinct levels
of the stimulus at which the target (armor plate) is tested; M is
chosen in advance. The outcome of a test at Vi is described by a
binary (0,1) wvariable Xi , where Xi = 1 1if the penetrator with a
striking velocity Vi defeats the farget. Let Py = P{Xi=1} » 1=1l,...,M
and without loss of generality, we assume that

OEp.0<pl<p2<..,<pM<pM+lEl; (3.1)

it is always possible to choose Vl and VM which satisfy the above

inequality.

Given § = (Xl,...,XM) , one goal is to estimate the unknown

pi's , i=1,...,M , subject to the inequalities (3.1). Another goal is

to estimate pj , for some j#i , such that if v, < Vj < Vi+l , the

estimates satisfy Py < pj < pi+1 , 1=1,...,M ; this pertains to esti-
mating the probability of response at a stimulus where no target was
tested. Yet a third goal would be to estimate the largest stimulus,
say Va s for which Py L{a, where 0 <o <1 is specified.

Ramsey's approach for achieving the above goals is to assign a

Dirichlet as a prior distribution for the successive differences

pl, pz-pl, ey pM—pM_l , and then to use the modal value of the

’
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resulting joint posterior distribution as a Bayes point estimate of
(pl,...,pM) . The modal value is computed with the inequalities (3.1)
being satisfied. The modal value of the posterior distribution, if

unique, is also known as the generalized maximum likelihood estimator

[see DeGroot (1970, p. 236)], and is used as a Bayes estimator when we
do not wish to specify a particular loss function. Having estimated

the pi's , the estimation of pj and Va is undertaken via an inter-

polation procedure.

Specifically, if oy >0, i=1,...,M, and B > 0 are ccn: .~s
M+1 . . . .
such that Zi=l a, = 1 , then the prior density function 7 is o1
form
M+1 o B
Ty o (p; - p;_ ) . (3.2)
i=1

It is important to note that when averaging according to m in-

M+1

R . M
tegration must be done with respect to I, dpi / Hi=l (pi ~ pi—l)

i=1
Since M has been prechosen, the stopping rule is clearly de-
lineated, and so the likelihood for the response probabilities at the

observed stresses is

X, 1-X.
i i

p, I -p) . (3.3)

hax

i=1
The joint density function of the posterior distribution of

pl,...,pM is proportional to the product of the prior density function

(3.2) and the likelihood function (3.3). Thus

35
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f(pl,.'.’pM I Xl’...,)(M)

MHL X, 1-X, r 8 M+1 a)8
© 0 h ey Wi [ |h, @ P oo G08)
= I T(Ba) 't
. 1
i=]1

Ramsey has not been able to obtain the posterior marginal dis-
tributions of P, i=1,...,M , nor has he commented on any aspects of
these distributions. He uses a nonlinear programming algorithm to ob-
tain (61""’6M) , the modal value of (3.4), subject to the constraint
that ﬁl < 52 < eee < SM ; this is his.Bayes estimator of (pl,...,pM) .
In contrast to this Mazzuchi (1982) has been able to obtain all the
moments of the marginal posterior distribution of the P; > i=1,...,M .
This work of Mazzuchi's represents an extension of Ramsey's results,
and is one that takes us a step closer to a fully Bayesian analysis.

The moments can be used to approximate the marginal posterior distri-
butions of the pi's using the techniques given in Elderton and Johnson
(1969). The approximated posterior distributions give us a measure of
uncertainty associated with our using the first moment of the marginal
posterior cdistribution of P; i=1l,...,M , as our Bayes estimate of

P, - The first moment of the marginal posterior distribution is used as
a Bayes estimator when we are willing to assume the square error as a
loss function. The formulae for the moments and their use for approxi-
mating the marginal posterior distributions are given in Appendix A.

The computational effort required to compute the moments men-—
tioned above incfcases with M . Thus there is a trade-off between the

convenience of using an optimization algorithm to obtain the¢ modal value

36
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of (3.4), versus the laborious computational effort involved in obtain-
ing several moments of each of the M posterior marginal distributions.
The optimization algorithm cited above is based on the "Sequential
Unconstrained Minimization Technique" (SUMT) of Fiacco and McCormick
(1968). A computer ccde which adopts SUMT for the problem considered
here is described by Mazzuchi and Soyer (1982). This code can also be
used for the computation of the moments of the marginal posterior dis-

tributions of the P; » i=1,...,M .

3.1 Specification of the Prior Parameters

In order to implement the Bayesian procedure, we need to specify
the prior parameters a; i=1,...,M , and B , given in (3.2). 1In order
to do this, we observe (see Ramsey) that U =Py - Py oo i=1,...,M ,
has a beta distribution on the unit interval (denoted as

u; ~ Beta(Ba,, B(1 - a,); 0,1)) ,

i

Ba, B(l-a.)
. _ T'(B) i, i
£(ugs Bay, B(l-a)) = T(Ba,) T(B(1=a,)) u, T (L-uy) » 0Zu <1,
with
E(ui) =0, and (3.5)
a, (1 - a,)
Var(ui) _l(B_+T)i_ . (3.6)

If P; denotes our best prior guess about Pi , consistent with
the fact that the P{'s increase in i , then the ai's can be ob-

tained via (3.5) as
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and

1 i
a; = PX-PE. ., i=2,...,M,
= - *
N1 1-p§-

In order to choose the parameter B , we need to have some idea

about the uncertainty associated with our choice of p* . This in

1

practice can be done in one of the following two ways:

(1)

(ii)

Suppose that in addition to pf , our best guess about the
variance of P is Var(pl) . Then, substituting a = pf
in (3.6), we have
al(l - ul)

Var(ul) = Var(pl) =~ EFD
so that

p*(1 - p%)

1 1

-1, if B >0,
8 = Var(pl) .

0 , otherwise.
Note that B = 0 corresponds to the case of isotonic
regression.
Often in practice [cf. McDonald (1979)], associated with
the best guess value pf , a user is able to specify two
numbers a{ >0 and bi < 1 , such that for some Yy
(specified by the user), 0 < Yy < 1,
P(a’i<p1<b'1‘) = 1-—Yl .
Since Py ~ Beta(eai, B(l—ai); 0,1) , given P} » we set
a, = pf , and find that value of f such that

38
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bT re) Ba, -1 B(1-)-1
i* P(Bal) F(B(l-al)) pl (l'Pl) dpl = l_n.l,l
1

(3.7)
Suppose, further, that for any one or more of the indices
i, i=2,...,M , a user is also able to specify two numbers
* > pk *x i -
af > Pf_y » and bi < 1 , such that for some Yy (speci

fied by the user), 0 < Yy <1,

* * % %) = -
P(aj < (p¥ | P¥_1»---,P%) < bF) L-vy, -
Then, using the fact (see Ramsey) that

(pi | pi_l) ~ Beta(Bai, B(1l -, - ... —0a,); p* 1)

1 i/’ Pi-1»
= f(pi | pi_l; B’ai) 3 Say,

we can find the smallest value of B , 8% , which satisfies

(3.7) and (3.8), where

b*
i
* = -

LU Eey | pp s Beddp, = 1oy, (3.8)
a

i

= x - p% =

with ai Py pi_1 , 1=2,...,M .

W

A computer code which determines the smallest value of B described

above is available; the details of this program are given by Mazzuchi
and Soyer (1982). Our reason for choosing the smallest value of B
stems from the fact that large values of B give a very strong prior,
with the result that even a large amount of failure data will not change

our prior distribution.

39




3.2 1Interpolation Procedure and the
Estimation of Quantiles

Let the M-dimensional point

(5 ,...,S ) , if the mode of the joint posterior is
+ + 1 M
(pl’...’pb’l) = ~ -~
(pl,...,pq) , if the first moments of the marginal poste-
' rior are

used as the Bayes estimator of (pl,...,pM) .

Suppose that we wish to estimate pj , for some j# i , i=1,...,M,

< < . * i

where Vi Vj Vi+1 Let pj be our best prior guess of pj , the

prcbability cf response at a nonexperimental impulse Vj . Then, follow-

+ .
ing Ramsey, we pick pj in such a manner that

5~ p%  pf - pk
Bl S SR R B 4 (3.9)
+ + + +° g
Pi+1 = Pj Pj = P4

For the estimation of Va , the ath quantile (0 < a < 1) , we
first see if there is an observation stimulus, say Vi , for which
p. = o . If so, then Vi is our Bayes estimate of Va . If not, we

determine the pair of observational impulses, say Vi and Vi+ , for

1

+ +
which P; <a < Py . Since the probability of response curve is as-

+1

sumed to be increasing, the straight line segment joining the points

+ + + + . . . . .
0, Pys +oes Pis Pigys -0 Py 1 , will be an increasing function of i .
+
We shall find that value of the impulse, say V; . Vi <V < Vi+l , for

+
which Py =0 .

40
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4, APPLICATION TO SOME BRL DATA

In Appendix B we present eight sets of data labelled 1, 2, 3, 4,
6, 7, 8, and 9, pertaining to 60 kinetic energy penetration tests.
These data were given to us by Dr. Moore of BRL and have been carefully
sanitized to maintain confidentiality. Data sets labelled 5 and 10,
also given to us by Dr. Moore, have been eliminated from consideration
because the striking velocity for these data is much too different from
those of the other sets. All the 10 sets of data were obtained sequen-

tially over time, in the sense that data set 1 was the first one to be

obtained, followed by data set 2 (obtained after some lapse of time),
and so on, until we reach data set 9, which is the last considered here.
To the best of our knowledge, all eight data sets are assumed to have
been collected under identical conditions. That is, there is no indica-
tion that, except for differences in striking velocity, the material and
the methods of testing used for data set 1 are different from those used
in data set 2, and so on. This, plus the sequential nature of the data,
enables us to use the posterior obtained from one data set as the prior
for the next set, and so on, until we obtain the posterior using data
set 9, which then gives our final estimate of the response curve.

Data set 1 consists of 13 observations taken at striking veloci-
ties ranging from 128.60 (in some unspecified units) to 166.16, The
result of each test is indicated by a binary variable Xi .  The best
Prior guess values pi » nNecessary to choose the prior parameters a s
were not specified by BRL. However, what appears to be reasonable is to
assume that the probability of response at a striking velocity of 100 is

close to zero, and that at a striking velocity of 200 it is almost 1.
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Thus we make an arbitrary choice for pi , say pfo » by letting

I‘ pgo =1 - exp[—.O?(Vi ~ 100)] . Data on striking velocities outside the
range of 100 to 200 were excluded. Despite this arbitrary choice of
- pio » we shall see how even a scant amount of data significantly changes
' - the posterior response curve, provided that the smoothing parameter 8
‘ is not too large. Three values of 8 were also chosen arbitrarily;
these are 1, 10, and 25. Recall that small values of B tend to em-
phasize the data, whereas large values of B tend to emphasize the
prior distribution. 1In Appendix B we show our analysis for the case
of B=10.

Since, in reality, the data are generated sequentially over time,
our first step would be to revise the best prior guess values pgo ,
i=1l,...,61 , based on data set 1 alone. The posterior (modal) values
corresponding to the striking velocities of data set 1, p:l » Will be
the revised values of p?o , for 1i=1,...,13 ; these are given in column
5 of the table in Appendix B. The revised values of pgo , for i=4,...,61 ,

are obtained via the interpolation formula (3.9), using p:l , 1=1,...,13 ,

and pio , 1=14,...,61 . Let the revised values of p{o , i=14,...,61 ,

be denoted by pil ; these too are shown in column 5 of the table in
Appendix B.

Upon receiving data set 2, we revise the values pgl , i=14,...,19 ,
by the posterior modal values corresponding to the six striking veloci-
ties of data set'2. We denote these revised values by Pzz , i=14,...,19 ;
these are given in column 5 of the table in Appendix B. The revised

values of p?l , i=20,...,61 , arc obtained by interpolation, using

42
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i=1,...,13 , p , i=14,...,19 , and p?l , 1=20,...,61 ; we

Pj1 i2

denote these revised values by , 1=20,...,61 , and show them in

%
i2
column 6.

We continue the above scheme of systematically revising the

pi_'s , either via tlie posterior modal values or by interpolation, until

we incorporate the effect of all eight sets of data. Data set 9, the
last one considered here, consists of eight observations taken at start-

ing velocities ranging from V_, = 144.83 to V_. = 198.94 . The pos-

54 61

terior modal values corresponding to the striking velocities of data set

9, p;B s 1=54,...,61 , are given in column 12; the interpolated values
+

p§7 required to obtain the pi8's are given in column 1l1. Since the

's incorporate the results of the previous seven sets of data, we

*
Pi7
. claim that the final posterior modal values pf , i=54,...,61 , are
i8
based on the results of all the testing. Had we ignored the sequential
nature of the data and computed the posterior modal values by using
Bayes Theorem on the best prior guess values pio , i=1,...,61 , then

the posterior modal values corresponding to V through V would be

14 61
.'77 different from the pI. values, i=14,...,61 , given in the table. This
difference is due to the interpolation scheme that is used to constantly
revise the best prior guess values, when we consider the data sets
sequentially.

A plot of pIB versus Vi , i=54,...,61 , represents our final
estimate of the quantal response curve. Estimates of the probabilities

of response at striking velocities different from V, , i=54,...,61 ,

i

can be obtained using the interpolation formula (3.9). When we use

. the interpolation formula to obtain an estimate of pj , for some

43
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j=1,...,53 , we need to specify a value pg , the best prior guess value

!. of pj . Suppose that the index j appéars in data set k , for some
é;:‘- k < 9 ; then for pg we will use p;k . In so doing, we will have in-

corporated the effect of the last data set, data set 9, in our obtaining
the estimate of pj , and ghus achieve a certain amount of smoothness.
Note that the effect of the data sets between k and 9 is already pres-
ent in our estimates pIs , 1=54,...,61 , and these are used in our in-
terpolation scheme. For example, suppose that we wish to estimate the
probability of response at a stiiking velocity of 158.52. This striking
velocity occurs in data set 2, and lies between the striking velocities
148.97 and 159.15 of data set 9. The index j corresponding to the
value 158.82 is 17. To use (3.9), we identify p§+l and p:+l as
being .70499 and .53014, respectively, pg and pI as .62881 and
.42386 (see data set 9), and pg as .64436 (see data set 2), and com-
pute p; as our estimste of pj .

In Figures 4.1, 4.2, and 4.3, we show plots of our Bayes estimate
of the probability of response at the eight striking velocities of data
set 9, for B =1, 10, and 25 , respectively. Also shown are the 907
probability of coverage intervals for each estimate. These intervals
are obtained using the moments of the posterior distributions of P >
i=54,...,61 , and then using the techniques of Elderton and Johnson
(1969) to approximate the posterior distribitions--see Appendix A. On
each of these figures we also show a graph of our best guess values
P;O ,» i=1,...,61 ; these enable us to see how the data have changed our
prior estimates. We observe that the 90% probability of coverage inter-

vals tend to be small in the middle of the range of the striking velocities.
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. In Figure 4.4, we superimpose the plots of Figures 4.1, 4.2, and 4.3, in
! order to give a perspective of the effect of B in our computations.

It appears that our Bayes estimates for the three cases of £ =1, 10,
and 25 tend to converge toward each other; this is to be expected,
since we have 61 observations with which we revise our prior

probabilities.
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APPENDIX A

Moments of the Marginal Posterior Distributions

The moments of the posterior distribution of P; > i=l,...,M ,
have been obtained by Mazzuchi (1982); a formula for obtaining these is
given below. A computer code which facilitates the computation of the
moments is described by Mazzuchi and Soyer (1982).

Let )‘(i =1-X, ,i=1,...,M, B(a,b) = I'(a)T(b) / I'(a+b) , and

1

X4 XM T M i
K = ) ... ) (D m Bf{ ] X, +8Ba, +r,, Ba, ] -
10 r, =0 i=1  \j=1 J I

Then, for £=1,2,... ,

. ! XM B, M i
E() = % I ... I (D I Bl } Xt+Ba, +r., Ba, ] s
rl=0 rM=O i=1 j=1 J 3 J

where

o J X, , otherwise.

These moments can be used to approximate the posterior distribu-
tion of P > f(pi) , i=1,...,M . In order to do this, we consider a
system of frequency curves described by Elderton and Johnson (1969)
which are based on the transforms of a standard normal variate 2Z .
The system of curves which is appropriate to our problem is'that referred

to as the "bounded system of curves," denoted by Elderton and Johnson

(1969, p. 123) as SB , and described by

......

Z = Y+6Ln[(pi-6)/(f.+)\-pi)]. € <p;, <ehr,
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where y , § , A, and € are parameters whose values are determined
by the first four moments of f(pi) about its mean.

Hill, Hill, and Holder (1976) give a computer code which deter-
mines Yy, 6§ , A, and € from the first four moments of f(pi) about
its mean. Since it was assumed that Pi-1 < Py < Piy1 » Ve estimate
A and € from the Bayesian estimates of the P; Y and § are ob-
tained from the computer code. Having obtained these parameters, the
distribution f(pi) is obtained from Elderton and Johnson (1969, p.

130) as

£(p,) = — (pl_E -e):l +6
pi) B AT A exp Y Qn €+)\ ~P. )

€ < Py <g+ A,

where N in our case is 1.

In order to obtain the approximate (1-Y)% probability of coverage
intervals for each P; » which cont;in its Bayes estimate pz (mode or
mean), we use the fact that since

z = v+ 8nl(p;-e)/(etr-p)] , €<p <e+]A,

-1
-2z
Py = A exp[(xg—) +1] +e.
Thus, to find two numbers, a and b , such that

+
pi<pi+b} = 1-6’

-§4n TA—-—-]. +t+y<z ~-82n —_’_—):———1 + v
pi-a-s pi+b-€

and solve for a and b by setting

+
P{Pi-a

fia

we use

1 -6,

A

52

N PV ST S SR L VAT e

M ALY S W W WY




................

21-(8/2)

A
-GR.K‘I(T'— - l) + v 26/2 s

pi+b-€

where z5/2 is the (1-(8/2))th percentile of a standard normal distri-

bution. Taking ¢ = max(a,b) , we form our interval
+ +
- - < -
Pr{pi c<p; <p;t cl > 1-6.

These intervals may not be symmetric about the mean or modal estimate.
This case arises when the boundaries of the probability of coverage
interval exceed the boundary of the variable., In such cases the variable

, boundary is used as the boundary of the probability of coverage interval.
The probability of any symmetric interval about the mean or modal esti-
mate may be obtained by proceeding in the reverse or the above and

evaluating the interval for the standard normal variate.
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APPENDIX B

In the table below we glive values of the striking velocity Vi
the response Xi , and the best prior guéss values pgo , 1=1,...,61 ,
for the eight sets of data described in Section 4. We also show, for
+
= * *
B = 10 , the revised values of Pio » pij s OF Pij based on data set

3, 3=1,2,3,4,6,7,8,9 .
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