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THE GEORGE WASHINGTON UNIVERSITY

School of Engineering and Applied Science
tnstitute for Reliability and Risk Analysis

THE U.S. ARMY (BRL'S) KINETIC ENERGY PENETRATOR
ri PROBLEM: ESTIMATING THE PROBABILITY OF

RESPONSE FOR A GIVEN STIMULUS

Thomas A. Mazzuchi
Nozer D. Singpurwalla

1. STATEMENT OF THE PROBLEM

The following statement of the problem is based on our several

discussions with Dr. Robert L. Launer of the Army Research Office, Re-

search Triangle Park, North Carolina, and Dr. J. Richard Moore of the

Ballistic Research Laboratory (BRL), Aberdeen Proving Ground, Maryland.

The crew compartment of an army vehicle is protected by a certain

kind of material which we will refer to as an "armor plate." It is

desired to test the strength of this armor plate so that we may be able

to assess its appropriateness for use on the vehicle.

In order to do this, a 10' x 10' specimen of the armor plate is

taken, and a projectile is fired from a gun which is aimed at different

points on the plate. In Figure 1.1 below, we indicate a possible firing

pattern according to which the gun is aimed.

Typically, the distance between the muzzle of the gun and the

target is about 200 meters, and lie velocity of the projectile, measured
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0 00
10' 0 0 0

0 0 0

Figure 1.1--Illustration of a firing pattern of a gun.

between two conveniently located points between the gun and the target

is about 5000 feet per second.

The projectile is known as the "penetrator," and the outcome of

each firing is described by a binary variable which takes the value 1 if

the penetrator defeats the target, and the value 0 if the penetrator

fails to defeat the target. The penetrator induces a stress on the armor;

the stress is a function of two quantities, the "striking velocity" and

the "angle of fire." the striking velocity, also known as the "stimulus,"

is the velocity with which the penetrator strikes the armor, whereas

the angle of fire 0 (indicated in Figure 1.2 below) is the amount by

which the armor plate is tilted.

Angle of Fire 0

Armor Plate Line of Fire

Figure 1.2--Illustration of the angle of fire.
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Both the armor specimen and the penetrator are very expensive and

thus the testing has to be kept to a bare minimum. One strategy that

has been adopted is to fix the angle of fire, say at e* , and then to

fire the penetrator at different striking velocities. After each firing,

a record is made of whether the penetrator defeated the target or not.

It is essumed that the striking velocity can be measured without any

error.

30
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2. GOALS, OBJECTIVES, AND SOME COMMENTS

ON CURRENT APPROACHES

Given that our goal is to be able to assess the appropriateness

of the armor plate for use on a vehicle, our objective should be to es-

timate the relationship between the striking velocity (the stimulus) and

the probability of penetration (a response of 1). This is illustrated

-in Figure 2.1, wherein it is assumed that the probability of penetration

is a nondecreasing function of the stimulus.

The situation described above is identical to the one encountered

in "bioassay experiments," and "low dose radiation experiments," in which

the relationship mentioned before is known as the quantal response curve.

The dose level of a drug is the stimulus, and interest generally centers

around V 5 , the stimulu7 at which the probability of response is .5

Since it is possible to subject more than one animal to a particular

dose level, the number of tests at each value of the stimulus can be

more than one. Furthermore, tests are often conducted at several dose

levels, and thus the large sample theory which typically justifies in-

ference from bioassay experiments is adequately substantiated.

1 Quantal Response
Curve

, Probability of

Penetration

I "Stimulus, V

0 V
.5

Figure 2.1--Probability of penetration vs. stimulus.
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Despite these conspicuous differences between bioassay experi-

pmentation and the problem described here, the methodology and techniques
of the former have been directly adopted for use in the latter. In so

doing, a serious compromise has been made--the estimation of V 5

rather than the entire quantal response curve, has been made the domi-

nant issue of the kinetic energy penetration problem. Specifically, the

BRL's commonly used "Langley Method" [Rothman, Alexander, and Zimmerman

(1965, pp. 55-58)] and the "Up and Down Method" [op. cit., pp. 101-103]

focus exclusive attention on the estimation of V
.5

The typical approach used in bioassay for estimating V is to
.5

assume that the probability of response p is an arbitrary nondecreasing

. function of the stimulus V , specified via the relationship

%.4

p

where F is a distribution function determined by a symmetrical density

function with location parameter p and scale parameter a . Often F

is taken to be the normal distribution function

x s2

F(x) = f---- e ds

or the logistic distribution function F(x) = (1 - e -X)

The data from a bioassay experiment consists of n. , the number'4 1
',

of subjects receiving stimulus Vi , i=l,...,K , and X.. , j=l,...,n i

where

Xij = 1 if the j subject responds under stimulus V., and

0 , otherwise.

Given the data (ni,Xi ) , i=.,...,K , j=l,...,n i , the param-

eters i and a are estimated using the method of maximum likelihood,
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under the assumption that the test results can be judged independent.

Once p and a are estimated, the estimation of V follows from

the fact that F , the tolerance distribution, has been specified. Non-

parametric and robust estimators of V.5 . such as the Spearman-Karber

estimator, the L-estimator, the M-estimator, and the Tukey Biweight es-

timator, have also been obtained, all under the assumption that the

density function giving F is symmetric. These estimators have been

discussed by Miller and Halpern (1979). Furthermore, it has been empir-

ically shown that for the estimation of V it does not matter what
.5

specific form is chosen for F ; many of the commonly used nonparametric

estimators yield identical estimates of V.5 . as long as symmetry is

assumed.

A drawback of the assumption of symmetry is that the estimate of

the probability of response when the stimulus is zero is nonzero.

Whereas this may not be too disturbing in bioassay with its emphasis on

V , in the problem considered here and the low dose radiation experi-
.5 9

mentation, such an estimate would be clearly unacceptable. A zero value

of the stimulus should correspond to a zero value for the probability of

response.

In view of the above difficulty, the paucity of data at each

level of the stimulus, and our inability to specify a functional form

of F which has some practical merit, we are motivated to advocate a

Bayesian approach for the solution of this problem. Our approach is

described in Section 3.

9.
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3. AN OUTLINE OF A BAYESIAN APPROACH

A Bayesian approach to the bioassay problem was first proposed by

Kraft and Van Eeden in 1964, and was more fully developed by Ramsey in

1972. We consider here the theme proposed by Ramsey; extensions of

this theme are considered by Shaked and Singpurwalla (1982).

Let 0 E V < V < ... < V < V < ,be M distinct levels0 1 M M+1=

of the stimulus at which the target (armor plate) is tested; M is

chosen in advance. The outcome of a test at V. is described by a1

binary (0,1) variable X. , where X. = 1 if the penetrator with a1 1

striking velocity V i defeats the target. Let pi = P{X.=l} , i=l,...,M,

and without loss of generality, we assume that

0 E P < P2 < < < PM < PM+ 1 ; (3.1)

it is always possible to choose V and VM which satisfy the above

inequality.

Given X = (Xl,...,XM) , one goal is to estimate the unknown

pi's , i=l,...,M , subject to the inequalities (3.1). Another goal is

to estimate p. , for some j~i , such that if V.1 < V < V i+1  the

estimates satisfy pi < P < Pi+l I i=l,...,M ; this pertains to esti-

mating the probability of response at a stimulus where no target was

tested. Yet a third goal would be to estimate the largest stimulus,

say V , for which p < a , where 0 < a < 1 is specified.

Ramsey's approach for achieving the above goals is to assign a

Dirichlet as a prior distribution for the successive differences

Pl' P2 -pl, ... , pM-PMI , and then to use the modal value of the

-' 34
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resulting joint posterior distribution as a Bayes point estimate of

(Pl....,pM ) . The modal value is computed with the inequalities (3.1)

being satisfied. The modal value of the posterior distribution, if

unique, is also known as the generalized maximum likelihood estimator

[see DeGroot (1970, p. 236)], and is used as a Bayes estimator when we

do not wish to specify a particular loss function. Having estimated

the pi's , the estimation of p. and V is undertaken via an inter-

polation procedure.

Specifically, if a. > 0 , i=l,...,M , and 3 > 0 are ccn: .s

rM+I
such that .~l a. = 1 , then the prior density function r is ol

form

S(P i - Pi-1)  (3.2)
(i=l

It is important to note that when averaging according to T in-

tegration must be done with respect to N M dp. I M+I (pi'. l=l d~ i=l (i - Pi-i )

Since M has been prechosen, the stopping rule is clearly de-

lineated, and so the likelihood for the response probabilities at the

observed stresses is

M Xi  l-X.

Pi (I - pi) 1 (3.3)
i=l

The joint density function of the posterior distribution of

pip,...,p M  is proportional to the product of the prior density function

(3.2) and the likelihood function (3.3). Thus
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f (PI' ... " PM I'" "' )M X1--xl
M+1 X. 1-X. O

i pi 1 F(3) H Pi -i 

0CI Pi I(I - pi)  M+1 I P -1 . (3.4)

1 i~l

Ramsey has not been able to obtain the posterior marginal dis-

tributions of pi , i=l,...,M , nor has he commented on any aspects of

these distributions. He uses a nonlinear programming algorithm to ob-

tain (p,...,pM) , the modal value of (3.4), subject to the constraint

that p p < ... < PM ; this is his Bayes estimator of (pI'''''

In contrast to this Mazzuchi (1982) has been able to obtain all the

moments of the marginal posterior distribution of the pi , i=l,...,M

This work of Mazzuchi's represents an extension of Ramsey's results,

and is one that takes us a step closer to a fully Bayesian analysis.

The moments can be used to approximate the marginal posterior distri-

butions of the pi s using the techniques given in Elderton and Johnson

(1969). The approximated posterior distributions give us a measure of

uncertainty associated with our using the first moment of the marginal

0. posterior eistribution of pi , i=l,...,M , as our Bayes estimate of

Pi * The first moment of the marginal posterior distribution is used as

a Bayes estimator when we are willing to assume the square error as a

loss function. The formulae for the moments and their use for approxi-

mating the marginal posterior distributions are Fiven in Appendix A.

The computational effort required to compute the moments men-

tioned above increases with M . Thus there is a trade-off between the

convenience of using an optimization algorithm to obtain the modal value

36
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of (3.4), versus the laborious computational effort involved in obtain-

ing several moments of each of the M posterior marginal distributions.

The optimization algorithm cited above is based on the "Sequential

Unconstrained Minimization Technique" (SUMIT) of Fiacco and McCormick

(1968). A computer code which adopts SUMT for the problem considered

here is described by Mazzuchi and Soyer (1982). This code can also be

used for the computation of the moments of the marginal posterior dis-

tributions of the pi 9 i=l,..M .

3.1 Specification of the Prior Parameters

In order to implement the Bayesian procedure, we need to specify

the prior parameters a. , i=l,...,M , and 8 , given in (3.2). In order

to do this, we observe (see Ramsey) that ui = Pi - pi- i=l'' .

°*. . has a beta distribution on the unit interval (denoted as

-i  Beta(3ia, 8(1 - aid; 0,1))

F(U3) i (lzi

f(ui; a i , a(l-ai)) = M() r(f(l i u. (1-u.) , 0 < u. < I

with

E(ui) ai, and (3.5)

*Va"ua i(l - ai)
Var(u ) (3.6)

If P* denotes our best prior guess about P. consistent with

the fact that the PW's increase in i , then the ot.'s can be ob-

tained via (3.5) as

37
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a P- PL i=2 ,M
3.i i i-i ' ''

and

'M+l 1 M

In order to choose the parameter 8 , we naed to have some idea

about the uncertainty associated with our choice of p* . This in1I
practice can be done in one of the following two ways:

(i) Suppose that in addition to p* , our best guess about the

variance of p1  is Var(pl) Then, substituting a, P*

in (3.6), we have

• a1l - a1 )
Var(ul) Var(pl) 1

,1 1 + l)

so that

:; p*(l - p*)
1- 1 if > 0," - = Var(pl)

S0 , otherwise.

Note that 8 0 corresponds to the case of isotonic

regression.

(ii) Often in practice [cf. McDonald (1979)], associated with

the best guess value p* , a user is able to specify two

numbers a* > 0 and b* < I such that for some y1

(specified by the user), 0 < y < 1
I ~P(a* < Pl < b*) =I- yI

Since p1 - Beta(i, 3(1-ai); 0,1) , given Pl we set

a, = p* , and find that value of 3 such that

38

.4 .i



r(ca) ((1-a)) P 1  (l-P1 ) dpi 1-^-"1

(3.7)

Suppose, further, that for any one or more of the indices

i , i=2,...,M , a user is also able to specify two numbers

a* > p* 1  and b* < 1 such that for some yi (speci-

fied by the user), 0 < y. <1

P(aO < W P ' ''" b) 1 - Y

Then, using the fact (see Ramsey) that

(Pi Pt Beta(t., (l- a) c 1)- -i x1 -" " o iP-I'1

.= f(pi I P* " , say,

we can find the smallest value of B , , which satisfies

(3.7) and (3.8), where

f f( Pi-ptl; Bai)dpi 1- Y , (3.8)
a* I
i

with a, = - , 2
i P - "± =, ,

A computer code which determines the smallest value of B described

above is available; the details of this program are given by Mazzuchi

and Soyer (1982). Our reason for choosing the smallest value of g

stems from the fact that large values of B give a very strong prior,

with the result that even a large amount of failure data will not change

our prior distribution.

4.3

r.4".
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3.2 Interpolation Procedure and the
Estimation of Quantiles

Let the M-dimensional point

if the mode of the joint posterior is

1 'M) = ... ,M ,if the first moments of the marginal poste-

rior are

used as the Bayes estimator of (pl,...,pM)

Suppose that we wish to estimate p. , for some j# i , i=l,...,M

where V. < V. < V. . Let p* be our best prior guess of p. , the
1 J i+l* .J

prcbability of response at a nonexperimental impulse V. Then, follow-

ing Ramsey, we pick p. in such a manner that

pi+l 1 = __ -I
+ + + + •
P i l - p i j - P

For the estimation of V , the ath quantile (0 < a < 1) , we
°,'

first see if there is an observation stimulus, say Vi , for which

pi = a " If so, then V.i is our Bayes estimate of V . If not, we

determine the pair of observational impulses, say V. and V , for• i~ Vi+l

which + +
which Pi <a < * Since the probability of response curve is as-

sumed to be increasing, the straight line segment joining the points

0, pl .. '. P' Pi+l' ", PM, 1 ,will be an increasing function of 1

We shall find that value of the impulse, say V V < V < V for
a i i+l'

"-: +
which pa =a..Ot

40
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4 APPLICATION TO SOME BRL DATA

In Appendix B we present eight sets of data labelled 1, 2, 3, 4,

6, 7, 8, and 9, pertaining to 60 kinetic energy penetration tests.

These data were given to us by Dr. Moore of BRL and have been carefully

sanitized to maintain confidentiality. Data sets labelled 5 and 10,

also given to us by Dr. Moore, have been eliminated from consideration

because the striking velocity for these data is much too different from

those of the other sets. All the 10 sets of data were obtained sequen-

tially over time, in the sense that data set 1 was the first one to be

obtained, followed by data set 2 (obtained after some lapse of time),

and so on, until we reach data set 9, which is the last considered here.

.° To the best of our knowledge, all eight data sets are assumed to have

. "been collected under identical conditions. That is, there is no indica-

tion that, except for differences in striking velocity, the material and

the methods of testing used for data set 1 are different from those used

in data set 2, and so on. This, plus the sequential nature of the data,

enables us to use the posterior obtained from one data set as the prior

for the next set, and so on, until we obtain the posterior using data

set 9, which then gives our final estimate of the response curve.

Data set 1 consists of 13 observations taken at striking veloci-

ties ranging from 128.60 (in some unspecified units) to 166.16. The
. p.

result of each test is indicated by a binary variable X. . The best

prior guess values p* , necessary to choose the prior parameters a.,

were not specified by BRL. However, what appears to be reasonable is to

assume that the probability of response at a striking velocity of 100 is

close to zero, and that at a striking velocity of 200 it is almost I.

41
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Thus we make an arbitrary choice for p, say p 0 , by letting
P* = I - exp[-.07(V. - 100)] . Data on striking velocities outside the

range of 100 to 200 were excluded. Despite this arbitrary choice of

Pio ' we shall see how even a scant amount of data significantly changes

the posterior response curve, provided that the smoothing parameter I

is not too large. Three values of were also chosen arbitrarily;

these are 1, 10, and 25. Recall that small values of a tend to em-

phasize the data, whereas large values of tend to emphasize the

prior distribution. In Appendix B we show our analysis for the case

of =i0

Since, in reality, the data are generated sequentially over time,

our first step would be to revise the best prior guess values P0

i=l,...,61 , based on data set 1 alone. The posterior (modal) values
i +

corresponding to the striking velocities of data set 1, p + will be

the revised values of p40 5 for i=l,...,13 ; these are given in column

5 of the table in Appendix B. The revised values of p ,for i=4,...,61
+

are obtained via the interpolation formula (3.9), using p + i=i,''"13

and p*0 t i=14,...,61 . Let the revised values of p*0 ' i=14,...,61

be denoted by pt ; these too are shown in column 5 of the table in

Appendix B.

Upon receiving data set 2, we revise the values pl i14,...,19

by the posterior modal values corresponding to the six striking veloci-
+

ties of data set 2. We denote these revised values by Pi2 ' i=14,...,19

these are given in column 5 of the table in Appendix B. The revised

values of P*I , i=20,...,61 , arc obtained by interpolation, using
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4 p 2~ i=-1,...1 and pil i=20 ,.,61 ; we

denote these revised values by p 2 , i=20,...,61 , and show them in

column 6.

We continue the above scheme of systematically revising the

pi. 's , either via ti'e posterior modal values or by interpolation, until

we incorporate the effect of all eight sets of data. Data set 9, the

last one considered here, consists of eight observations taken at start-

ing velocities ranging from V5 4 
= 144.83 to V6 1 = 198.94 The pos-

terior modal values corresponding to the striking velocities of data set

9, + i=54,...,61 , are given in column 12; the interpolated values
¢,n * reu~ire tooti teP8o

P7 required to obtain the p. s are given in column 11. Since the
17 i

P* s incorporate the results of the previous seven sets of data, we
17 +

claim that the final posterior modal values pi8 i=54,.,61 are

based on the results of all the testing. Had we ignored the sequential

nature of the data and computed the posterior modal values by using

Bayes Theorem on the best prior guess values p*O I i=,...,61 , then
iO

the posterior modal values corresponding to V1 4  through V6 1 would be

different from the p values, i=14,...,61 , given in the table. This

difference is due to the interpolation scheme that is used to constantly

revise the best prior guess values, when we consider the data sets

sequentially.

* +A plot of pi8 versus V. , i=54,...,61 , represents our final

estimate of the quantal response curve. Estimates of the probabilities

of response at striking velocities different from Vi , i=54,...,61

can be obtained using the interpolation formula (3.9). When we use

the interpolation formula to obtain an estimate of p, for some

43
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J=1,.. .,53 we need to specify a value p, the best prior guess value

of pj . Suppose that the index j appears in data set k , for some
+

k < 9 ; then for pY we will use p In so doing, we will have in-
:1 jk

corporated the effect of the last data set, data set 9, in our obtaining

the estimate of pi , and thus achieve a certain amount of smoothness.

Note that the effect of the data sets between k and 9 is already pres-

ent in our estimates i=54,. .. ,61 , and these are used in our in-

terpolation scheme. For example, suppose that we wish to estimate the

probability of response at a sUri~ing velocity of 158.52. This striking

velocity occurs in data set 2, and lies between the striking velocities

148.97 and 159.15 of data set 9. The index j corresponding to the

value 158.82 is 17. To use (3.9), we identify pi 1  and p+, as
1+

being .70499 and .53014, respectively, pi and p as .62881 and
1 1

.42386 (see data set 9), and p• as .64436 (see data set 2), and com-

pute p. as our estimate of p.

In Figures 4.1, 4.2, and 4.3, we show plots of our Bayes estimate

of the probability of response at the eight striking velocities of data

set 9, for 1 - 1, 10, and 25 , respectively. Also shown are the 90%

probability of coverage intervals for each estimate. These intervals

are obtained using the moments of the posterior distributions of pi

i=54,.. .,61 , and then using the techniques of Elderton and Johnson

(1969) to approximate the posterior distribtitions--see Appendix A. On

each of these figures we also show a graph of our best guess values

Pi i=l...,61 • these enable us to see how the data have changed our

prior estimates. We observe that the 90% probability of coverage inter-

vals tend to be small in the middle of the range of the striking velocities.
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In Figure 4.4, we superimpose the plots of Figures 4.1, 4.2, and 4.3, in

order to give a perspective of the effect of 0 in our computations.

It appears that our Bayes estimates for the three cases of t 1, 10,

and 25 tend to converge toward each other; this is to be expected,

since we have 61 observations with which we revise our prior

probabilities.
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APPENDIX A

Moments of the Marginal Posterior Distributions

The moments of the posterior distribution of pi , i=l,...,M

have been obtained by Mazzuchi (1982); a formula for obtaining these is

given below. A computer code which facilitates the computation of the

moments is described by Mazzuchi and Soyer (1982).

Let X. - 1 - X. , i=l, ... ,M , B(a,b) = r(a)r(b) / P(a+b) , and1 1 "

X ii r .I M i
"K =  

( =) l IT B X. + + r

r1 =O rM=O i= j=i J i+l

Then, for Z=1,2,...

"1 IM riE~ )=1 1 .. I (-i) i= i B IXt, + 8a reKrl= r=O i=l =0 r M = Ji+l)

where

X. + z j =s43
X*.=
3 IX , otherwise.

These moments can be used to approximate the posterior distribu-

tion of pi ' f(pi) , i=l,...,M . In order to do this, we consider a

system of frequency curves described by Elderton and Johnson (1969)

which are based on the transforms of a standard normal variate Z

The system of curves which is appropriate to our problem is that referred

to as the "bounded system of curves," denoted by Elderton and Johnson

S." (1969, p. 123) as SB , and described by

Z =y + 6 Ln[(pi-c) / (c+\-pi) 1 
, < p < C+X
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where y , 6 , A , and c are parameters whose values are determined

by the first four moments of f(pi )  about its mean.

Hill, Hill, and Holder (1976) give a computer code which deter-

mines y , 6 , X , and C from the first four moments of f(pi) about

its mean. Since it was assumed that pi-i < pi < pi+l , we estimate

X and C from the Bayesian estimates of the p ; "y and 6 are ob-

tained from the computer code. Having obtained these parameters, the

distribution f(pi) is obtained from Elderton and Johnson (1969, p.

130) as

f(p.) = N 1 exp Iy + 6 kn p

A X LE1+XPf
E < p < + X

1

where N in our case is 1.

In order to obtain the approximate (l-y)% probability of coverage

intervals for each pi . which contain its Bayes estimate p. (mode or

mean), we use the fact that since

z = y + 6 ]n[(p.)/(E+Xp)1 , C < pi < s + A

-1

Pi = X exp[ - + 1]-1 + .

Thus, to find two numbers, a and b , such that

P{pt-a < P, i +b 1 -6

we use f A) ) =1 6
" R1) + y < z < -6Un X -

p • ia-C pi++b-c

and solve for a and b by setting
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-6£n ia+  i) + Y = zi_(6/2 )
,., Pi-a-C

and

____ 1 + Y =z 6/2

where z6/2 is the (l-(6/2))th percentile of a standard normal distri-

bution. Taking c = max(a,b) , we form our interval

Pr{p+ - c < Pi < Pi + c} > 6

These intervals may not be symmetric about the mean or modal estimate.

This case arises when the boundaries of the probability of coverage

interval exceed the boundary of the variable. In such cases the variable

boundary is used as the boundary of the probability of coverage interval.

The probability of any symmetric interval about the mean or modal esti-

mate may be obtained by proceeding in the reverse or the above and

evaluating the interval for the standard normal variate.
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APPENDIX B

In the table below we give values of the striking velocity Vi

the response X, , and the best prior guess values p*0 ,i1l,.-.,61

for the eight sets of data described in Section 4. We also show, for
+

0 -0, the revised values of pO PI ,or p~j based on data set

j , J1,2,3,4,6,7,8,9
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