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CHAPTER I
EXECUTIVE SUMMARY

The objective of this study is to determine the validity of a sugges-
tion that the properties of Langmuir-Blodgett films might be exploited
in the fabrication of mercury-cadmium telluride (MCT) infrared detectors
that could operate at room temperature. Such devices would have major
Defense applications by eliminating the current need to cool small bandgap
Tong wavelength IR detectors to liquid nitrogen temperatures.

The approach followed in this study was to review the characteriza-
tion of the performance of infrared detectors in terms of the specific
detectivity, identifying internal noise sources, and analyzing their
temperature dependence to determine whether Langmuir-Blodgett films could
reduce their magnitude.

The major IR detector devices are photoconductors and diode devices
such as p/n junction, Schottky barrier, and MIS charge coupled devices.

The internal noise sources can be classified as either bulk or surface
sources. Langmuir-Blodgett films can only affect surface sources.

The results of the study show that the fundamental noise current
source in photoconductive detectors is thermal generation-recombination
of electron-hole pairs. This process in ideal n-type MCT material is
limited by the Auger process. It is found that to reduce thermal GR noise
to the level of background photon induced GR noise, PC detectors with
response in the 8-12 micrometer band must be cooled to about 90°K. Present
PC detectors achieve essentially BLIP performance at 77°K. Better passi-
vation such as might be provided by LB films would provide only a marginal
improvement--mostly by reducing 1/f noise.

The results of the study also show that the fundamental noise current 1:
sources in p/n junction detectors are minority carrier diffusion, d
Shockley-Read GR in the depletion region, and surface leakage. Above
about 100°K to 60°K, depending on the quality of the MCT material, diffu-
sion current is dominant. Down to about 50°K, GR current is dominant and
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. below about 50°K leakage current is dominant. To achieve BLIP performance :

_. with p/n junction detectors in the 8-10 micrometer spectral band, it is j}
necessary to reduce the diffusion current by cooling to about 77°K. Thus, K

'? better passivation will not permit room temperature operation. However, K
2 better passivation would yield higher RoAd products and BLIP operation with ‘
! longer cutoff wavelength detectors at temperatures below 77°K. *1
B! Since minority carrier diffusion and Shockley-Read GR currents are )
".‘ due to bulk properties common to all junction devices, cooling to the ]
i_ vicinity of 1iquid nitrogen temperatures will be required to achieve BLIP }
performance with any detectors in the 8-12 micrometer spectral band. Better *

passivation will reduce 1/f noise due to surface states and allow higher
RoAd products for low background operation at less than 77°K,

it
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1' CHAPTER 11
! 1 INTRODUCTION
ga In a previous study,1 the properties of Langmuir-Blodgett {(LB) films
< and their potential applications were reviewed. In particular, it was
observed that LB films possess high dielectric breakdown voltages and
-~ induce low surface stéte densities on semiconductor surfaces. These pro-
N perties are valuable for surface passivation in the manufacture of infrared
ii detectors. It has been suggested2 that these properties might be exploited
) in the fabricaticri of mercury cadmium telluride (MCT) IR detectors that
33 could operate at room temperature. Such devices would have major Defense
- applications by eliminating the need to cool small bandgap MCT IR detectors
o to liquid nitrogen temperatures. With this in mind, the objective of this
» study is to theoretica’ly analyze the temperature dependence of the perform-
- ance of MCT IR detectors and to determine if the use of LB films to passi-
iﬁf vate IR detectors could yield high performance IR detectors operating at
room temperature.
i' The major MCT IR detection devices are photoconductors and diode
devices such as p/n junction, Schottky barrier, and MIS charge coupled
o devices. The approach will be to analyze the noise limitations of these
[ )

devices and their temperature dependencies to determine if ideal surface
passivation could yield high performance room temperature operation. The

!5 results of the study show that the fundamental noise current source in

photoconductive detectors is thermal generation--recombination of electron-

Ei hole pairs. This process in ideal n-type MCT material is limited by the
Auger process. It is found that to reduce thermal GR noise to the level of
2? background photon induced GR noise, PC detectors with response in the
« 8-12 micrometer band must be cooled to about 90°K. Present PC detectors
;: achieve essentially BLIP performance at 77°K. Better passivation such as 5
N might be provided by LB films would provide only a marginal improvement-- j

mostly by reducing 1/f noise.
The results of the study show that the fundamental noise current

sources in p/n junction detectors are minority carrier diffusion, Shockley-

LY
.

A Read GR in the depletion region, and surface leakage. Above about 100°K
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to 60°K, depending on the quality of the MCT material, diffusion current
is dominant. Down to about 50°K, GR current is dominant and below about
50°K leakage current is dominant. To achieve BLIP performance with p/n
junction detectors in the 8-10 micrometer spectral band, it is necessary to
reduce the diffusion current by cooling to about 77°K. Thus, better passi-
vation will not permit room temperature operation. However, better passiva-
tion would yield higher RoAd products and BLIP operation with longer cutoff
wavelength detectors at room temperatures below 77°K,

Since minority carrier diffusion and Shockley-Read GR currents are
due to bulk properties common to all junction devices, cooling to the
vicinity of liquid nitrogen temperatures will be required to achieve BLIP
performance with any detectors in the 8-12 micrometer spectral band. Better
passivation will reduce 1/f noise due to surface states and allow higher
RoAd products for low background operation at less than 77°K.
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CHAPTER III
CHARACTERIZATION OF THE PERFORMANCE OF INFRARED DETECTORS

3 The performance of IR detectors is commonly characterized by the
specific detectivity, i , for incident radiation at wavelength,A. By

) definition Df 1is given by

- - - 1/2

| 0y = (AdBn) /NEPd(A) (m

- where A, is the area of the detector, B is the noise bandwidth of the

preamplifier and NEPd(A) is the noise-equivalent-power at wavelength, A.
Thus, Df is the normalized detectivity of a detector and is equal to the
signal-to-noise ratio when one watt of incident radiant power falls on a
detector of area 1 cm2 and the noise bandwidth is 1 Hz.

The values of NEPd(A) and, hence, ox depend on the responsivity
(e.g., in amperes/watt) of the IR detector to incident radiant power and
the magnitudes of the various noise currents.

The photocurrent resulting from incident radiant power Pd(AS) is

5 given by

4 Rp(AS)Pd(AS) (2)
where Rp(x) is the primary responsivity (not including internal gain) of
an IR detector within the pass band of the electrical circuit.

By the conventional definition of NEP, the noise current is given by

I, = Rp(A)NEPd(x) (3)

By substituting NEPd(A) from Equation (3) into Equation (1), we
obtain

0§ = Ry (AT, (4)

'''''''''
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ii By expressing the incident power in terms of the photon flux and the
' photocurrent in terms of the quantum efficiency, it can be shown that the
o3 responsivity is given by
= AJe A/hc
- Ry(A) = n(x)e a/ (5)
7 where 7(A) is the quantum efficiency in excited charge carriers per
LE photon at wavelength X, e is the electron charge, h is Planck's constant
o and ¢ is the speed of light. The responsivity at A= 10 micrometers is
= given by Rp = 8.057 amperes per watt.
X If we substitute Equation (5) into Equation (4), we obtain
.:‘ i * = ]/2
w DF = e n(A)A(AB,)"/“/hel (6)
gf The most fundamental source of noise current in IR detectors is that
o«
due to fluctuations in the photogeneration of charge carriers by the inci-
ﬁi dent radiant power. The goal of IR detector developers is to reduce the
magnitude of internal noise current sources below that due to the incident
background radiant power. If all else fails, the internal noise sources

can be reduced by cooling the detector. Hence, infrared detectors in most
sensor systems are operated at cryogenic temperatures.

The noise current due to photogeneration, known as shot noise, is
given by the well-known shot noise formula

I = (2 el

1/2
. 8,) (7)

b

where Bn is the noise band pass of the detector and its electrical circuit

and Ib is the detector current generated by the background incident power.
Thus, in analogy to Equation (2), the background current is given by

I, =ﬁp(A)PdAdA (8)

e et dide
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where PdA is the incident background spectral radiant power and the -

R4

integral is over the spectral bandpass of the cold filter generally
included in IR sensor systems.
If Equations (6-8) are combined, the Di of a background limited
photodetector (BLIP) is given by
— 1/2
* =
D% 1 {a Iag/he(2 7 Ny) (9)

At b
.

where Nd is the incident background photon flux density and n is the mean
quantum efficiency in the spectral bandpass. M 1is given by

n= (1/NdAdhc) ﬁ(A)PdA(A)AdA (10)

To the approximation that the quantum efficiency is constant within
the spectral band, we have

0 = (A/he)(n /aNg)' /2 (1)

The expression for DX , given by Equation (11), is not applicable
to ali BLIP infrared detectors. It is applicable to junction type IR
photodetectors such as p/n photovoltaic and photodiode detectors,
Schottky barrier detectors, and MIS detectors such as CCDs. In these
devices, the photoexcited carriers are swept out before recombination can
occur. However, in photoconductive detectors usually the conditions are

TN TNY

[ such that recombination as well ‘as photogeneration occurs. The addi-
tional effect of recombination in BLIP photoconductive detectors is to
F double the noise power and, hence, reduce the value of Di by a factor
cf square root of 2.
If the incident background photon flux is collected by the detector

-—
.

ﬁ from the entire hemisphere in front of the detector, we have Ng = Np» i.e.,

» the incident flux density in photons/cmz-sec is equal to the radiant flux

E emitted by a square cm of the hemisphere per second into 27 sterradians. -

: By definition, Dxf is the specific detectivity of a detector exposed to 'ﬂ

E the full hemisphere. Hence, by Equation (11) we have f?
A

b o'}
~
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D* = (A/hc)( M /2N,) (12)

If the exposure is limited by an ideal cold stop, we have

Ng = Nb/4(f/no.)2 (13)

and if we substitute Equation (13) into Equation (12), we obtain

‘ D{ = 2(f/no.)D§f (14)
e For the 8.5 - 11.5 micrometer spectral band, D%* is approximately
‘o 6x10]0cm-Hz/w. This the value often quoted for D-star, but note DX depends

on f/no. For example, if the f/no. is f/4, the value of the BLIP D-star is
given by D{ = 4.8x]01]cm-Hz/w.

E: In terms of the IR detector performance parameter, 0% » the objec- ::
tives of this study can be stated as (1) to determine the fundamental :j
- 1imits on the temperature dependence of internal noise current sources, E

and (2) to determine if the deposition of LB films on MCT detectors could
reduce the internal noise current and allow BLIP operation at a higher
operating temperature (room temperature).
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i CHAPTER IV <
= PHOTOCONDUCTIVE MCT DETECTORS A
3 " .

S The responsivity (including gain) of a photoconductive (PC) IR
- detector within the passband of the electrical circuit is given by
e

R = (/1 JR(A) (15)

fie

'~ where T is the photoexcited carrier liftime, Ty is the mean transit time
4 of carriers between the detector electrodes, T/ 7 . is the PC gain, and
o
% Rp(A) is given by Equation (5). The mean transit time ( 7 r) is given
y by L/uE where L is the distance, p is the carrier mobility, and E is the
gﬁ electric field. Thus, by Equation (15) the responsivity is proportional
a to E and, hence, the signal current of a PC detector given by
(%

I, = R(As)Pd(AS) | (16)

is also proportional to E.
The chief sources of internal noise current in PC detectors are
Johnson noise given by

= 1/2

In = {4 TBn/Rd] (17)
Ej and thermal generation-recombinations (g-r) noise associated with the PC
! dark current is given by
-
o - 2 1/2
I,=(7/ 7 )4, A 68B) (18)
;; where in Equation (17) Rd is the resistance of the detector, in Equation

_ (18) Ien is the thermal generation rate of free carriers per unit volume
3y of detector, and & is the thickness of the PC detector. Note that the
Johnson noise is independent of bias while the g-r noise current (being
o proportional to 1/ r r and, hence, E) is proportional to bias.
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Since both the signal current and g-r noise current are proportional
to bias while the Johnson noise is independent of bias, if we increase the
bias the S/N ratio will increase until the g-r noise current is dominant.
Thus, the thermal g-r noise current is the fundamental internal source of
noise current in PC detectors.

Under optimum bias conditions, and at an operating temperature such
that the thermal g-r noise current is the dominant internal noise source,
the spectral detectivity is given by

D% = Rp/Ze(gthd)Vz (19)

Note that Equation (19) is a good approximation for detector thickness
greater than approximately the reciprocal of the absorption coefficient,
i.e., for

5> 1/ (20)

Generally, it has been assumed that gth = N/t where N is the thermal

o equilibrium free carrier charge density. However, Long3 pointed out that

+ this expression for I¢n only applies to extrinsic PC detectors. For
intrinsic n-type MCT PC detectors, where the electron mobility is much

! greater than the hole mobility, the correct expression is

: R, (21)

where P is the hole density.
If we substitute Equation (21) into Equation (19), we obtain

0y = (Ry/2e)(7 /P 62 (22)

N,
[ 10

3
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The minority carrier lifetime may be due to radiative recombination,
the Auger process, bulk Shockley-Read recombination centers or surface
Shockley-Read recombination centers. According to Kinch, et a].,4 the
minority carrier lifetime in high quality n-type MCT is limited by the
Auger process for Nd greater than approximately 4x1014

The Auger lifetime is given by

cm‘3.

. A2 2
T NOP) = NG TN (23)

_ anl
where Ni is the intrinsic carrier density and ‘rai is the Auger Tifetime
of intrinsic material.

If we substitute the approximate expression for Ta given by Equation

(23) into Equation (22), we obtain
0f = (Ry/e)( 7 ,;/2My8)' /2 (24)

According to Kinch, et al., at 77°K the intrinsic Auger lifetime in
0.1 ev MCT is about 1073 sec. Thus, for Np
and Rp = 8.05 71 at A= 10 micrometers we obtain DR = 1.78x10
Comparison of this value with the BLIP value with an f/4 optic (namely,
Di = 4.8x10]]), indicates that an Auger limited lifetime MCT PC detector
with 10 micrometer cutoff wavelength can be operated above 77°K. However,

12 1/2

cmHz '/ ®/w.

the Auger lifetime is an exponetial function of 1/T and, hence, X is a very

rapidly decreasing function as T increases. Indeed, Kinch, et al., indi-
cate the D% decreases by a factor of about 4 to about 4.5x]0]] in rais-
ing the operating temperature from 77°K to 90°K.

Since the fundamental noise current source in n-type MCT is g-r
noise due to the bulk Auger process and this limits the operating tempera-
ture to about 90°K, the use of Langmuir-Blodgett tilms to reduce surface
states will not permit a higher operating temperature. In practical PC
detectors, the presence of surface states may given rise to surface g-r
noise current and 1/f current noise. Thus, the use of LB films for

= 4x]0]4cm'3, 6 = 10 micrometers
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surface passivation might reduce these non-fundamental noise sources
and result in detectors operating at 77°K with Di values closer to the
BLIP value.
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l CHAPTER V
PHOTODIODE MCT DETECTORS

o The responsivity of IR photodiode detectors is simply the primary
!! responsivity given by Equation (5) (i.e., IR photodiode detectors are
' not normally operated with sufficient reverse bias to produce avalanche
. gain) and, hence, the responsivity and photocurrent are independent of
{? bias.
The power spectrum of the internal noise current of an IR photodiode
o is given by
g 12 = +
53 n = 4kT/R+2eI° I]/f (25)
o where the first term is the Johnson noise due to junction resistance,
08 the second term is the shot noise due to the dark current, Io’ and the
* third term is the 1/f noise current due to the interface states.
i' Since the photocurrent is independent of bias and both the shot
noise and 1/f noise currents increase with bias, the S/N ratio decreases
EQ with increasing bias. Thus, from a S/N ratio consideration, the optimum

4
W)

operating condition for IR photodiode detectors is at zero bias. In this
case, the noise current is given by

2
1.5 = (4kT/R,)B, (26)

L IR ARG |

-
e

Y

where Ro is the junction resistance at zero bias.
If we substitute Equation (26) into Equation (4), we obtain

D% = R(A) (R AL/KT)/2/2 (27)

Y

Note that Di is proportional to the square root of the RoAd product.

By combining Equations (5), (11), (14), and (27), it can be shown
" that the R A  condition for the Johnson noise Timited D} to equal the
E BLIP DK is given by

~—

L g e
o, e
Dt

Dt}

fal. e,
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- 2 2

! RoAd > 8(f/no.)"kT/e" n Nb (28)
o Note that the required value of RoAd is proportional to the detector

N operating temperature. For future reference, consider a PV detector

operated at 77°K, with an f/4 optical aperture and viewing a background
at 300°K in the 8.3 to 10-micrometer spectral band. At 300°K, the back-
ground radiant emittance into the hemisphere is equal to 2.5x10]7

cm2-sec. If we substitute the above values of the parameters into condi-

tion (28) and assume n = 0.7, we obtain RyAq > 32 ohm-cmz.
- To determine the temperature dependence of the ROAd product, we note

- that the junction resistance at zero bias is given by

photons/

L /R, = (dI_/dV) _ (29) 3

- where the dark current I, is given by

Io'= I Lexp(eV/KkT)-1J+/R, (30)

JOcs A CSC :

IS is the diode saturation current, V is the applied voltage, and RS is

the shunt resistance.
By Equations (29) and (30), we obtain

1
K

e

1/Ro = eIS/kT+’I/Rs (31)

MRS

The diode saturation current, the sum of two components, is given by

Ig = Ip * Igg (32)

"“1'4‘. ,i... e

where ID is the diffusion current of minority carriers across the junction

. from within a diffusion length of either side of the junction and IGR is the
: generation-recombination current due to Shockley-Read centers near mid- R
bandgap in the depletion region. These unwanted centers are caused by
impurities and defects in the MCT material.

. -ht R
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By substituting Equation (32) into Equation (31), we have
1/Ro = eID/kT+eIGR/kT+]/Rs (33)

We can identify a resistance with the diffusion and GR currents. Thus, 1
by Equation (33), we have

1/R0 = 1/RD+1/RGR+1/RS (34)
where

RD = kT/eID and R., = kT/eIGR (35)

GR

The expressions for RD and RGR are derived by deriving the expressions
for ID and IGR in terms of material parameters and substituting them into
Equation (35).

For an n on p photodiode, where the p-type layer is of thickness
considerably less than a diffusion length, the RA products are given by

RoAy = kTN, T /eNob and RoA, = E. 7 /€N, (36)
n i GR"'d g o i
where NA is the acceptor ion density on the p side, Ni is the intrinsic
free carrier density, Th is the minority carrier (electron) lifetime on
the p side, 7 o is the effective electron-hole lifetime in the depletion
region due to Shockley-Read centers and W is the width of the depletion
region.
The intrinsic carrier density, Ni’ is given by

Ny = (NeNy) 72 exp (~E4/2KT) (37)

where Nc and NV are the conduction and valence band densities of state,
respectively. Thus, the temperature dependence of RdAd and RGRAd resides
mostly in Ni'

15
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By substituting Equation (37) into Equation (36), we obtain

_ 2 1/2
RoRy = [kNy 7 7e%(NcNy) "/ “bIT exp(E /kT) (38)
and
. 2 1/2
RerAq Eg T,/ WNN, )/ Cexp (EQZkT) (39)
By taking the logarithm of Equations (38) and (39), we obtain
log RyAy = Tog Cp+logT+(E Tog e/k)(1/T) (40)
and
log RepAy = Tog CGR+(EgTOQ e/2k)(1/T) (41)

where CD and CGR are coefficients of the explicitly temperature dependent
terms in Equations (38) and (39).

Note that log RDAd and log RGRAd are essentially proportional to 1/7
but log RDAd increases twice as fast. In practice, it is found that at
room temperature RoAd is determined by RDAd' As the operating temperature
is lowered, this condition holds until T is in the vicinity of 100°K to 60°K
depending on the quality (purity, crystalline perfection) of the MCT
material. Below this transition temperature, RoAd is adetermined by either
RGRAd or Rs’ the shunt resistance depending on the quality of the diode
passivation. For T less than about 50°K, nearly all experimental data
reported indicate that RoAd is determined by shunt resistance.

The best measured RoAd products of 8-10 micrometer diodes at 77°K are
somewhat less than 100 ohm-cm2 (10-80 ohm-cm3). Since RA4 > 32 ohm-cm2
is required to achieve BLIP performance, these best diodes are roughly
BLIP. However, since RoAd equals RDAd above about 77°K and decreases
exponentially with increasing temperature, there is no possibility of
achieving BLIP performance at room temperature by the use of Langmuir-
Blodgett films for better passivation. Better passivation potentially
provided by LB films could result in higher RoAd products at temperatures
below 77°K where RoAd is determined by shunt resistance.

16
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i With reference to Equation (36) for RDAd and RepA,, it should be i
T noted that heavier doping could increase both RoAd products since RdA'd
is proportional to NA and RGRAd is inversely proportional to W which is X
narrowed by heavier doping. However, it has been found that present )
" doping of NA > 10]6 is about the 1imit before tunneling across the narrowed 3
o depletion region begins to occur.
l-_.‘
3
|

‘4

b

x
..

‘i

fes

WM

:-j 17

R

re

(IS Y




P i Shue St anes Sive S e s daae Sabe Snge Sets st shos e dnts Mas Zaety oo BR e IR SRR SBL
[ 0 B Ara b At A T i A i AL S S e e o T T ; . b

I

: THE BDM CORPORATION

.l-l.L‘AJA;h‘

CHAPTER VI 3
CONCLUSIONS ]
The performance of infrared detectors depends on their ability to ,@

convert an incident photon flux into a current without adding noise current
to that resulting from the photon flux itself. Noise currents in IR
detectors arise from thermal excitation of charge carriers by means of a
number of fundamental processes.

Ih photoconductive detectors, the fundamental source of noise is
thermal generation-recombination noise current. It has been shown that
in high quality n-type mercury cadmium telluride g-r noise is determined
by the Auger process. Examination of the temperature dependence of the
g-r noise current and comparison with photon g-r noise current indicates

that small bandgap IR detectors sensitive to the 8-12 micrometer spectral
band can not be operated at room temperature regardiess of the ideality

b L
RO R

of surface passivation.

A similar result was obtained for junction type detectors in
particular p/n photodiodes, where the fundamental noise current is the
Johnson noise of the junction resistance which in turn depends on diffu-

sion current and the generation-recombination current due to defects in
the depletion region of the junction.

Better passivation, such as might be provided by Langmuir-Blodgett
films, would reduce 1/f noise and leakage current in junction devices.
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