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SECIION 1
INTRODUCTION AND SUMMARY

The basic requirement of feedback systems 1s to achieve certain desired
levels of performance and also to be tolerant of uncertainties. Performance
levels concern such things as command following, disturbance rejection, sen-
sitivity, etc., while uncertainty tolerances deal with the inevitable dif-
ferences which exist between a physical plant and its mathematical design/
analysis model. As discussed in varilous textbooks and references e.g.,
{1,2], these two aspects of the feedback problem lead to fundamental trade-
offs and compromises which motivate the entire body of feedback theory.

An essential difficulty in the theory has been to capture both the perfor-
mance and uncertainty aspects of feedback in a single problem statement.
Thus we have optimization theories which emphasize performance, robustness
theories which emphasize uncertainties, and a host of ad hoc tools which
attempt to compromise the two.

In this report, we propose a problem formulation which captures both aspects
of feedback under the umbrella of what we will call the "block-diagonal
boundcd perturbation (BDBP) problem.® The solution to this problem, intro-
duced in [3], involves a generalization of the ordinary singular value
decomposition (SVD). It provides a reliable, nonconservative measure to
determine whether both the performance and robustness requirements of a
feedback loop are satisfied. This measure, which we will call the struc-
tured singular value (SSV) and denote by the symbol w, serves as an essen-
tial analysis tool. Synthesis tools based on the structured singular value
are under development.

The report 1s organized into four major sections. Section 2 formulates the
robustness and performance aspects of feedback as a block-diagonal bounded
perturbation problem. This problem is solved in Section 3 using the new
structured singular value concept. Performance implications of these
results are then examined in Section 4, which includes a fundamental theorem
relating performance in the face of uncertainty to the SSV, as well as an
example. Section 5 contains concluding comments.
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Notation

m (k) = Algebra of complex kxk matrices

u (k) = Unitary matrices in M (k)

a(M) = Maximum singular value of M

p(M) = Spectral radius

= Magnitude of largest eigenvalue
M* = Conjugate transpose of M
diag (H1. "2’
n3,..., Hn) = Block diagonal matrix with MJ

IM| = magnitude of det(M)

R (k) = kxk rational matrices
R
S
S
=
2
;i
2
-,

-2-

(not necessarily square) on the diagonal.




SECIION 2
FEEUBACK ANALYSIS AS A BLOCK-DIAGONAL BOUNDED
PERIURBATION PROBLEM

This section formulates the basic feedback problem of achieving performance
in the face of uncertainties as a stability problem in the presence of block-
diagonal bounded perturbations. The formulation involves cone-bounded
transfer functions as basic building blocks, in terms of which both the
robustness and performance aspects of feedback can be characterized.

Basic Building Blocks: Cone Bounded Transfer Functions

Throughout this report, we will deal with multi-variable feedback systems
whose models are linear, time invariant, and finite dimensional. Hence,
they can be represented by transfer function matrices with rational ele-
ments. The robustness and performance properties of these systems will be
expressed in terms of a collection of transfer matrices, A1(s), i=1,2,
see, m, which each satisfy

8,(s) = 13" (s) @(s)R, () ()

where L1(s) and R1(s) are constant transfer matrices and ©(s) 1s any
stable transfer matrix from a set satisfying

a[® (Ju)l ¢1 %0 >0

We will also require that L1 and R1 have no poles or zeros in the open

right half plane. These assumptions assure that A, has no rhp poles.

i

. Reasons for this restriction are discussed later. Note that the functions

which satisfy (1) belong to conic sectors, as Initlally defined by 7ames
([4], [5]) and generalized by Safonov ([6], [7]). Their sector centers are
zero, and their sector radii are characterized by L(s) and R(s). We will
use such cone bounded transfer functions as basic building blocks in a com-
bined robustness/performance characterization of feedback systems.

Robustness Characterization

The use of cone bounded transfer functions to characterize robustness has
been a central theme in many recent references, including [8] where such
transfer functions were inserted at the inputs or outputs of a plant model
in order to represent so called unstructured uncertainties (modelling errors
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with no assumed structure except for known magnitude bounds on their trans-
fer functions). Necessary and sufficient conditions were then derived for
stability robustness in the face of such uncertainties. For example, a
stable feedback loop with plant G(s) and compensator K(s) will remain stable
in the face of all possible perturbed plants G'(s) = [I + A1]G(s), with A1
given by (1), if and only if

SIR,GK(I + GK) 'L, 1 < 1% 020 (2)

Note that with R1 and L1 specified, this inequality imposes conditions

on the shape of the closed loop frequency response, GK(I + GK)'], which
must be satisfied in order to assure robust stability. These conditions

are unique to the assumed form of plant perturbations (e.g., G' = (I + A)G j
in the present case). Each such assumed form corresponds to a specific
location where A is inserted in the nominal feedback loop. The location
for our present case is shown in Row 1 of Table 1. Other locations corres-
pond to other assumed forms for G' and produce different necessary and suf-
ficient stability robustness conditions. A representative set of possibili
ties 1s summarized in the remaining rows of Table 1. (Most of these cases
can be found in {9]).

Table 1 also indicates representative types of physical uncertainties which
can be usefully represehted by cone bounded perturbations inserted at the
indicated locations. For example, the representation G' = (I + A)G in

Row 1 is useful for output errors at high frequencies, covering such things
as unmodelled high frequency dynamics of sensors or plant, including diffu-
sion processes, transport lags, electro-mechanical resonances, etc. The
representation G' = G(I + A) in Row 2 covers similar types of errors
occuiring at the inputs. Both cases should be contrasted with Rows 4 and 5
which treat G' = (I + A)’]G and G6' = G(I + A)'1. These representations are
more useful for variations in modelled dynamics, such as low frequency
errors produced by parameter variations with operating conditions, with

aging, or across production copies of the same plant. Discussion of still
other cases is left to the table. Note from the table that the stability
requirements on 4 do not 1imit our ability to represent vartations in
either the number or location of rhp singularities.
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The most significant thing to understand about Table 1 is that the stability
robustness conditions shown are sufficient to assure stability only if all
the uncertainties occur at the indicated locations and none occur else-
where. In order to use the conditions directly, therefore, designers are
obliged to reflect all known sources of uncertainty from their known point
of occurance to a single reference location in the loop. Such reflected
uncertainties invariably have a great deal of structure which must then be
*covered up" with a larger, arbitrarily more conservative perturbation in
order to maintain a simple cone bounded representation at the reference
location.*

Alternatively, designers could choose to treat uncertainties occurring at
several different locations in the feedback loop as a single uncertainty
occurring at one location in a larger feedback loop. To be specific about
this alternative, let A,, 121, 2, eee, m, denote a collection of such

«‘l
uncertainties positioned at location 21. ¥=1, 2, eee, m. Note that at each
!1, the feedback loop has an input, where i1t receives the signals from A1,

and also an output, where it suppliies signals to A1. Let H11 be the
transfer function matrix between these two sets of signals. Further, let
"13 denote the transfer matrix between the inputs at location &, and
the outputs at location 21. Then the block-structured matrix

A

represents all interactions of the feedback loop with its uncertainties, and
indeed, the block-diagonal bounded perturbation diagram in Figure 1 is an
equivalent representation of the loop. Here we have A = d1ag(A1, AZ"'°'Am)'

Note that the feedback elements in this larger loop are zero in the absence
of uncertainties. Hence, M will be a stable "plant" whenever the original
nominal loop is stable. As an example of this representatton, consider the
system in Figure 2. This system, with two uncertainties present simulta-
neously, the first from Row 2 and the second from Row 4 of Table 1, is
described by the following M matrix. ‘

* By "arbitrarily more conservative," we mean that examples can be construc-
ted where the degree of conservatism is arbitrarily large. Of course, other
examples exist where 1t s quite reasonable.

.....
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(1 + Ke)‘]xe (1 + xe)"x

M= (4)

(1 +6K) 6 (1 + 6K)™)

Given the equivalent system in Figure 1 with A1's characterized by equa-
tion (1), it follows from the Small Gain Theorem [10] that the loop remains
stable in the presence of these uncertainties if

5 [R(JOIM(JOIL(JOT 11 ¥ 20 (5)

where R = d1ag(R] R, eee Rm) and L = d1ag(L1 L, oo Lm)

2 2

This condition provides an alternate test for stability robustness. Like
the procedure of reflecting all uncertainties to one reference location,
however, the new test can be arbitrarily more conservative because it
ignores the known block-dlagonal structure of the uncertainties in Figure 1.

The objective of our results in this report is precisely to reduce the con-
servatism of robustness and performance tests for block diagonal structures
such as Figures 1. We do this by introducing a generalized notion of the
maximum singular value for block-dtagonal structures. This generalization
s developed in Section 3. It is called the structured singular value (SSV)
and is denoted by the symbol u. It ylelds the following necessary and
sufficient conditions for robust stability of the BOBP problem:

uR(IOMIC (J0)1 €1 ¥o 20 (6)

This represents our extension of the Small Gain Theorem which we call the
Small u Theorem.

Since all simultaneous uncertainties can be put into block-diagonal form by
merely constructing the associated matrix M, the SSV allows us to nonconser-
vatively analyze simultaneous occurences of uncertainties anywhere in a
feedback system. The uncertainties may be cone bounded errors of individual
components of the system (SISO or MIMO), they may be individual parameter
variations in the mocdel, or even polynomial approximations of parameters
entering nonlinearly. 1In fact, the only restrictions which remain is that
all variations must be allowed to be complex. Pure real variations or pure
imaginary variations cannot be separated into individual blocks.
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Performance Characterization
The ability to treat simultaneous, structured uncertainties also offers,

PR VORI

almost as a free byproduct, the ability to deal simultaneously with the per-
formance and robustness aspects of feedback. This is made evident in Column
4 of Table 1, where each of the conditions imposed on feedback loop shapes
by perturbation A1 at location 21 s given a performance interpreta-

tion. For example, the perturbations in Row 4 impose requirements (through
L and R) on the shape of the function (I + KG)']. This function is, of
course, the classical (output) sensitivity function of the feedback loop.

oo e -
PRSI TP W

Small values over some frequency range guarantee low closed loop sensitivity

3

ﬁ
>
¥

to open loop variations and low command following errors to output commands
over that range. A particular specification on these performance parameters
can thus be imposed on a design by introducing a "fictitious uncertainty" at
the location in Row 4 with cone bounds R and L selected to meet the perfor-
mance requirement.

To ¥1lustrate how such fictitious uncertainties actually enforce performance
specs, consider the simple case where a single true uncertainty, say Ar
from Row 2, and a single fictitious (performance) uncertainty, <ay Ap

from Row 4, are specified for our feedback system. Let the structured sin-
gular value condition (6) be satisfied for the corresponding M matrix
(equation 4). Then the system remains stable in the face of Ar and Ap
occurring stmultaneously. Obviously, it will also remain stable for A

with Ar = 0. This means that the nominal system must satisfy the per-
formance condition

1

SR (1 + KG)"L; 141  ¥w>0, (1)

because the latter 1s also a necessary and sufficient condition for robust
stability with Ap only. This much 1s straightforward. What is not so
evident but much more important is that Condition (7) 1s also satisfied for
an perturped feedback loops. That is, for all true plants G':G(I+Ar)

we have

SR (1 + Ke-)"Lp"] <1 Y¥ed0. (8)

Hence, the performance spec 1s satisfied in the face of all possible true
uncertainties. A proof of this consequence of the structured singular value
condition is left to Section 4.
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N SECTION 3 i
§ THE STRUCTURED SINGULAR VALUE AND THE SMALL u THEOREM d
.- S
j We have discussed how the problem of analyzing performance in the face of j
- structured uncertainty can be expressed as a BDBP problem. We noted that .
% standard singular value tests applied to the BOBP can be excessively conser- E
o vative because they ignore the block diagonal structure. A more general ;
i non-conservative test (the Small u Theorem) 1s developed in this section f
; which removes this 1imitation. By non-conservative we mean providing a f
Q necessary and sufficlent condition. The test 1s expressed in terms of a new

E measure, the structured singuiar value u. This section begins with review

of the results in [3], where u was introduced.

SN VR

To provide a more precise description of block diagonal perturbations, let
K = (nﬁ.mz,ooo,mn, kl'kZ"°°'kn) be a 2n-tuple of positive
integers. A1l the definitions that follow depend on K, but to simplify not-
ation this dependency will not be explicitly represented. Let a

n n
k= L mk and m= L .
g 39 g1 )

d
for each.8¢[0,»), Tet x6e1n(k) be a set of é-norm-bounded |
block-diagonal matrices defined by

PO et b

m_I m2 mn ]

X = 1d1ag(A (8, 000,8, Ao 8,,000,8, B 8 1, A A oo, A) (9) i‘

|AJcm(kJ) and B(AJ) £ & for each J = 1,2,e00en}

3

[}
Let X,=1U XJ be the set of all such matrices with no restriction on the norm, ’
3= 1
1A be the set of block diagonal unitary matrices, -
w-= U(k)/])(.l .
and P the set of real diagonal matrices such that 3
8-1 d"ag(d‘llk’ dzlk' ee dm Ik ' dm + 1 Ik » 0% q'n Ik ) (10) 1
1 M 1 2 m .

dy¢ R'= (0, =)}

PREVIOUS PAGE
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what is desired is a function (depending on K)
w:m(k) » {0, =) (1)
with the property that for V Mem(k)

L) s]“'. S

R siny IR
'-i REREIEN .
A

o det(I1+MA) # 0¥ Aex6
'jf (12)
ifF Su(M)<1
This could be taken as a definition of u. Alternatively, u could be
defined as
0 if no AeX solves det(I+MA) = O
w(M) = ® (13)
('X‘c"x {T(8) |det(I+MA) = 0}) -1 otherwise
[

This definition shows that a well-defined function satisfies (12). It pro-
bably has 1ittle additional value since the optimization problem involved
does not appear to have useful properties.

Using these definitions, the following useful properties of u are easily

1
h proven.

1) w(aM) = |a|u(M) ¥ Mem (k)
2) w(I) =1
3)  u(AB) £ o(A)u(B) ¥ AeX, Bem(k)
4)  u(8) = o(A) ¥ BeXg
5) If n=1 and m1=1 then u(M) = o(M) ¥ Mem(k)
6) If nal, k1=1. then k=m],
Xy = {NIINe, IN] £ 8} and u(M) = p(M) ¥ Mem (k)
7) I AeX, UeW then UdeX and AUeX,
8) For ¥AeX_ and ¥ DeD pap™' =4

9) For ¥+ UeW and Mem(k)
(MUY = W(UM) = (M)

10) For ¥ De L and Mem (k)
w(OMD ™'y = u(M)

1) max p(UM) < u(M) < Inf o (OMD' ) for ¥ Mem (k)
Ve W De &
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Properties 5) and 6) show that the structured singular value has as special
cases both the spectral radius and the maximum singular value. Property 9)
means that u 1sU-invariant.

The most important results from [3] are the following, which deal with the
bounds in property 11):

a) The left-hand-side inequality in (11) 1s always an equality.
This expresses u in familiar 1inear algebraic terms, but the
optimization problem invoived may have multiple local maxima.

b) The right-hand-side inequality in (11) is an equality when
there are three or fewer blocks, and the blocks are not
repeated. The blocks themselves, and therefore M, may be of
arbitrarily large dimension. A tedious but straightforward
computation shows that the optimization problem involved is
always convex [11]. Furthermore, the minimization 1s over
only n-1 parameters for n blocks, independent of block size,
making this an attractive alternative to a).

Note that the transformation DMD-] s simply a rescaling of the inputs and
outputs of M. The SSV is invariant with respect to such rescaling (property
10), while singular values do, of course, vary with rescaling. This
implies, for example, that the ad hoc method of performing a change of units
can reduce the conservatism associated with singular values. For some time
we have been using Osborne's technique [12], which minimizes the Frobenius
norm of DMD_] to compute frequency-dependent D matrices. We now have new
algorithms which compute D to directly minimize &(DMD-l).

Numerical software for computing u has been developed using algorithms
based on these results. 1In addition to using this software to analyze some
simple feedback designs, test runs have been made on a large number of
psuedo-random matrices. It appears that the global maximum in a) 1s often
easily found, although a simple gradient search is inadequate. Also, the
bound obtained in b) appears to be quite good (to within 15%) for cases of
more than 3 blocks. These observations are most encouraging, especially
considering the experimental and preliminary nature of the software.

-10-
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There are essentially two direct applications of singular values to the BDBP
problem, which provide bounds for wu:

‘ 1) Ignore the block diagonal structure and compute o(M). This
= gives an upper bound for u.

A 2) Treat each perturbation one at a time. Compute the largest
il maximum singular value for each of the corresponding diagonal

- blocks. This gives a lower bound for w.

The gap between these two bounds may be arbitrarily large.

An extension to 1) was proposed by Lehtomaki ([9],[13]), who uses the sin-
gular vectors for o(M) to sharpen the bound. Lehtomaki's method checks

for structure but not in the BDBP form. The optimism of 2) can be reduced
by using a method suggested by Freudenberg, et al [14], who evaluate the
differential sensitivity of the singular values at one point with respect to
perturbations at another. Although this method does not apply to simulta-
neous, large perturbations, 1t can be quite useful in indicating when the
lower bound for u obtained by method 2) is optimistic. It should be men-
tioned that Lehtomak! and Freudenberg did not present their techniques in
the context of the BDBP problem.

The preceding discussion of u and the BDBP problem has dealt with deter-
mining the size of the minimum structured perturbation A that causes I +
MA to be nonsingular. We are interested in using the structured singular
value to answer robustness, sensitivity, and performance questions for mul-
tivariable feedback systems. The connection between u and these essential
feedback properties is provided by the Small u Theorem, which characte-
rizes the stabi1ity robustness properties of a feedback system with respect
to block diagonal perturbations. In order to state the Small u Theorem we
need the following additional definttions (all depending on K):

- Let L, R eR.f){Xo x € } be such that L and R have no poles or
zeros in the open right-half-plane. Then let

MW = {OcRA(X_x €) | 3(8(S)) £ 1~V Re(s) 2 0) (16)

M-

r Ef_",'. e
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| Conversely, suppose w(RML™

and L = {L_]GRI O W} . (17)

For the BDBP problem in Figure 1, McR (k), s 1s the set of allowable
block diagonal perturbations, and L and R are the weightings for the A
such that E(LAR']) < 1. We will say the canonical system in Figure 1

1s stable iff I+MA is nonsingular In the closed right-half-plane.
Although this definition does not distinguish between 111-posedness and
instability, 1t 1s adequate for our purposes. We can now state and prove
the following:

Theorem (Small u): The canonical system is closed loop stable for all
A¢ X iff

u = sup W(RM) < (18)
[A]

Proof: To prove the if part, suppose U <1 and let A ¢eX. Then
using Properties 3) and 11) and the definition of X

sup p(MB) = sup  p(MA) <& sup  W(RMLT') = m <.

Res20 s2jw sajow
Thus I + MA 1s nonsingular for all Res > 0. Since A was arbitrary,
the canonical system is stable for all1 A ¢ X.

1
)Im%z 1 (o may be @). Then 3 OcX,,3,

det(I + RHL']G)WQ = 0. Thus, 3 4 X, 3 det(I + HA)|030= 0 and the
(o) 0

canonical system 1s not stable for al1 A ¢ H. O

This theorem guarantees that if u(RML'1) is less than 1 at every fre-
quency, then the closed-loop system is stable for all structured perturba-
tions AcXx. Conversely, if u(RHL'1) is greater than or equal to 1 at
some frequency, then there extsts a structured perturbation AcX that
results in closed loop instability. Note that a destabiliizing A can be
expressed as LGR"I for some constant O,

-12-




As noted in Section 2, the Small u Theorem can also guarantee a pre-
specified performance level by including a performance block in the BOBP
problem. Furthermore, this performance level is guaranteed for all struc-
tured perturbations AeXx . These claims are made precise in the next
section by a corollary to the Small u Theorem that treats performance.

-13-
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SECTION 4
PERFORMANCE IMPLICATIONS

Suppose that the plant perturbations are given by

Ar = d1ag(A], A ., Am) cxr

2, [ N J
with corresponding weighting matrices Lr, Rr’ interconnection matrix
"r’ and 2n-tuple Kr = (m], see, mn. k., eee, kn). Suppose that a per-

1
formance specification is given as

LA S At it Bt AN il 0l ol of g T Toyww
P . R AR AR RN - . v,
LR . et PN - o

- . -1
c(RpHp(Ar)Lp )y <1 Yota e ':tr (19)

[ Here H'p 1s a k xkp performance matrix which we des1re to be small (as
o weighted by Rp and L ) Examples include M'p-(I+G K) -G K(I + G'K)
L etc., as discussed 1n Section 2. Note that H'p depends on the perturba-

tion Ar’ indicating that this performance should be met for all
uncertainties.

Let "pr and "r denote the transfer function matrices between performance
outputs and perturbation outputs and between perturbation inputs and performance

inputs, respectively. In terms of these matrices, it can be shown that

M'(B,) = M)+ Mo A (T + HrAr)-] M
‘ii where Hp is the performance matrix in the absence of uncertainties.
EE' Define - :p "pr
| rp r
pe Ky = (1omy, sos, mp ko, kg, see, k)
) Ly = diag(Ly, L))

diag(Rp, Rr)
My =HK)

Wp =M1, k)

le W =Hlkp) =W XM

o
u

- 18-
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We have noted the dependence on K here to avoid confusion. Of course, the
nominal interconnection matrix M 1s assumed to be stable.

For these definitions, the following relationship exists between perfor-
3 mance, stability robustness, and the SSV.

Theorem: (Robust Performance)

- , -1
Hp'(Ar) stable and o(RprL (A')Lp )< 1 WVoand = A cIr (20)

1FF u(RTnTLr") 41 Yo

Proof: It follows from the Small u Theorem that

u(RrHTLT']) <1 Yo

AFE |1 + RTHTLT']GI >0, ¥Res20, VO cH

-1
1ff ¥ Res 20, |I + Rr"r"r er | >0, ¥ Gr c')-l'r

-1 -1
and |1+ RM | (LT OR)IL 8 120, vepc’va

iff ¥ Res 20,]1 + "rA r |>0 and

-1
W
IT+RM 1 (BJL2T0 >0 ¥4 eX , ¥ cH

- 1 \
166 M| (4.) stable and S(R M| (A)T') ) 41 1:
for ¥ o and ¥ A cX,. a ¢

We note that this theorem extends the Small u Theorem's robust stability
results to a composite, simultaneous result on robust stability and perfor- *
mance. Thus, given an uncertain plant model with structured perturbations
and a performance specification, we have a necessary and sufficient condi-
tion in terms of u for satisfaction of the performance spec in the face of
the uncertainty. If the condition u <1 1s met, then the desired perfor- ;
mance 1s achieved for all perturbed plants. If u2 1, then there exists a :
structured perturbation which causes the performance spec to be violated.
The robust performance condition may be thought of as arising from an equi-
valent "fictitious uncertainty," although this interpretation is not

necessary. ?

-15- 3
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Example
In this section the 1deas we have presented will be 11lustrated by a simple

"textbook" example. An example similar to this was discussed in {8].

The configuration for this example is shown in Figure 2 and was discussed
briefly in Section 2. The plant transfer function is

10
G(s) = 1 (21)

the uncertainty weightings are L L2-I 1-r]I, and R2 = rzl, where
1l
r1(s) =1 + s and rz(s) =1 + S (22)

Interpreted in terms of uncertainty levels, these weightings mean that
A] is large at high frequency and A2
that ylelds u € @ # o has the property that the closed loop system

would remain stable for all simultaneous perturbations such that

is large at low frequency. A design

38) < 2
A) & 3 Yo (23)

Larger perturbations would destabilize the closed loop system. An alterna-
tive interpretation in terms of performance would be that low the closed
loop system has the following output sensitivity

(1 + k6] ¢ == ) (24)
2
in the face of all input perturbations which satisfy
- "
a[A.|]<_ = Y o (25)

The weighting r_ emphasizes sensitivity at low frequency.

2
This example 1s not motivated by a physical design problem, and either
Interpretation 1s possible. We will simply compute u for 3 different
designs and compare them with each other rather than with a performance/
robustness specification. We will also compute some singular value bounds
and u for the case of Py =Ty = 1. No claims are made about the

quality of these designs. They are intended merely to be 11lustrative.

-16-
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The M matrix for this example 1s given in equation (4) and

-1

I ‘nf - r.lT1 d r]T1G
w(RML™) < G (26)
4" 25,68 r2S;

where T, = (I + KG)'1KG and 52 a (I + GK)'1. The compensator
matrices for the designs are

-8 9
1) K1 = {27)
9 10
2) K2 = 0,
10(s+1) 0
3) K3 . 0] 3s(s+16) 02
0 9(16s+1)
32s(s+1)
’za -2/3 3/4 2/3
where Q,= . 02.
2/3 3/4 2/3 -3/4

In the first design, K1 basically tnverts the plant, making KG=GK=1/s I.
The unweighted singular values for the two uncertainties considered

individually (E(T]) and 6(52)) are plotted as the lower two curves in
Figure 3. The maximum of these give a lower bound for the unweighted u(M).
The singular values of M are the upper two curves in Figure 3. The maximum
of these give an upper bound for u. The unwelighted SSV 1tself 1s shown

as the plots labelled with a 1 in Figure 4.

This example i1lustrates that u can equal the upper bound o(M) or lower

bounds G(T]) and 3(52) or be anywhere in between. Note that this design
can tolerate either A1 or A2 separately as large as 1, but simultaneous

variations of less than 0.1 can be destabilizing. Interpreted in terms of
performance for the weightings in (22), we can see that the design has good
output sensitivity (a(rzsz) < 1) for the unperturbed plant. Small input
perturbations, however, can lead to very poor output sensitivity since
u(RHL'1) > 1 implies that 3(r2$'2) »?> 1 for some perturbed 52' Designs 2 and
3 have substantially improved unweighted SSV's, as seen by the plots

-11-
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labelled 2 and 3 in Figure 4. It appears from these plots that Designs 2
and 3 are uniformly better than Design 1, with Design 2 best in the R
midfrequency range and Design 3 best at the high and low frequency
extremes. The significance of these differences, however, can only be
interpreted against the given performance and/or robustness specs. This is
done with the corresponding weighted SSV's in Figure 5. We see that

18 for Design 1

a =™y g - 18.5 for Design 2
5.5 for Design 3

e Yn

Thus, Design 3 offers the smallest a-value for equations (23) - (25) and ]
is the best system when judged against the spec.

This example has 11lustrated several important points:

1) Unscaled singular value bounds provide, in general, poor estimates

for .

2) Stability/performance evaluations with perturbations one at a time
can be highly optimistic.

3) Designs can be meaningfully compared only with respect to some per-
formance and robustness specification.

A'.'.""‘n. 4

-18-
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SECTION 5
CONCLUSION

This report introduced an analysis technique based on the Structured Sin-
gular Value u for linear feedback systems that provide a reliable, noncon-
servative measure of performance in the face of structured uncertainty. The
Small u Theorem gives a necessary and sufficient condition in terms of 1
for stability of a linear system with multiple, simultaneous, norm-bounded
perturbations of fixed but arbitrary structure. The Robust Performance
Theorem provides a similar condition for the satisfaction of performance
specifications in the presence of structured perturbations. Some simple
feedback designs were presented to i1lustrate the theory.

-19-




1
{
I
4
1
4
4
Zad

Acknowledgments

ﬁ_.‘vr..<,,
L 2

We would like to thank our colleagues at the Honeywell Systems and Research

Center for their contribution to this report, and in particular, Or. Norman
Lehtomaki and Prof. Michael Safonov (USC). Jim Freudenberg (University of
I111nois) made a major contribution to the im:lementation of the algorithms

. . " P T T S 3 s

Ty

used in the examples.

-20-

!

& F TR T S VN SN NN W A S S S W A W Y W Gy S ShiY Y I G U T Y R LLJ




(]

(2}

(3]

(4]

(5]

(6]

(7]

(8l

(9]

(10]

(]

(12]

(3]

(14]

.oy PR BRI PR e . - S - N - '
RN R AT SN TN U UV O T e W W NP N Y S P g P I R P

References

1.M. Horowitz, Synthesis of Feedback Systems, New York: Academic,
1963.

Special Issue on Linear Multivariable Control Systems, IEEE Tranms.
Automatic Control, February 1981.

J.C. Doyle, "Analysis of Feedback Systems with Structured Uncertain-
ties," Proc. IEE, November 1982.

G. Zames, "On The Input-output Stability of Time-varying Nonlinear
Feedback Systems - Part I,* IEEE Trans. Automatic Control, Volume
AC-11, No. 2, pp. 228-238, April 1966.

G. Zames, "On The Input-output Stability of Time-varying Nonlinear
feedback Systems - Part II," IEEE Trans. Automatic Control, Volume
AC-11, No. 3, pp. 465-476, July 1966.

M.G. Safonov, Stability and Robustness of Multivariable Systems,
Cambridge, MA: MIT Press, 1980.

M.G. Safonov, "Tight Bounds on the Response of Multivariable Systems

with Component Uncertainty," 16th. Allerton Conference, October, 1978.

J.C. Doyle and G. Stein, "Multivariable Feedback Design: Concepts
for a Classical/Modern Synthesis,* IEEE Trans. on Automatic Control,
Volume AC-26, No. 1, pp. 4-16, February 1981,

N.A. Lehtomaki, "Practical Robustness Measures in Multivariable
Control System Anaiysis," Ph.D. Dissertation, MIT, May 1981.

C.A. Desoer, and M. Vidyasagar, Feedback Systems: Input-Output
Properties. New York: Academic, 1975.

J.C. Doyle and M.G. Safonov, "Convexity of the Block Diagonal Scaling
Problem," Honeywell Internal Memo, August 1982.

E.E. Osborne, "On Preconditioning of Matrices," I. Assoc. Comput.,
Mach, 7, 338-345, 1960.

N.A. Lehtomak), et. al., "Robustness Tests Utilizing the Structure of
Modeling Error," Proc. 1981 CDC, San Diego, CA, December 1981.

J.S. Freudenberg, D.P. Looze, and J.B. Cruz, "Robustness Analysis
Using Singular Value Sensitivities,” Int. J. Control, Vol. 35, No.
1, pp. 95-116, 1982.

~21-

. '

NN G R

e e o

P
i
K
«
4
"
i
i
.
‘

L.'J___..A PRI EENE BUDY - Wiy S W O SRR X > NS S N Y

A



A

A= diag(4y, 82, ..., Ay)

Figure 1. Feedback loop as a BDBP Probiem
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Fiqure 2. Feedback loop with Two Uncertainties
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Figure 3. Singular value bounds for Design 1
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