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SEC IION 1

INIRODUCTION AND SUMMARY

The basic requirement of feedback systems is to achieve certain desired

levels of performance and also to be tolerant of uncertainties. Performance

levels concern such things as command following, disturbance rejection, sen-

sitivity, etc., while uncertainty tolerances deal with the inevitable dif-

ferences which exist between a physical plant and its mathematical design/

analysis model. As discussed in various textbooks and references e.g.,

[1,2], these two aspects of the feedback problem lead to fundamental trade-

offs and compromises which motivate the entire body of feedback theory.

An essential difficulty in the theory has been to capture both the perfor-

mance and uncertainty aspects of feedback in a single problem statement.

Thus we have optimization theories which emphasize performance, robustness

theories which emphasize uncertainties, and a host of ad hoc tools which

attempt to compromise the two.

-: In this report, we propose a problem formulation which captures both aspects

of feedback under the umbrella of what we will call the "block-diagonal

bounded perturbation (BDBP) problem." The solution to this problem, intro-

duced in [3], involves a generalization of the ordinary singular value

decomposition (SVD). It provides a reliable, nonconservative measure to

determine whether both the performance and robustness requirements of a

feedback loop are satisfied. This measure, which we will call the struc-

tured singular value (SSV) and denote by the symbol u, serves as an essen-

*, tial analysis tool. Synthesis tools based on the structured singular value

are under development.

The report is organized into four major sections. Section 2 formulates the

robustness and performance aspects of feedback as a block-diagonal bounded

perturbation problem. This problem is solved In Section 3 using the new

structured singular value concept. Performance implications of these

*: results are then examined in Section 4, which includes a fundamental theorem

,' relating performance in the face of uncertainty to the SSV, as well as an

example. Section 5 contains concluding comments.

* . .,.: ." - .7 * . . . . . .. . ... . . .



Notation

RL(k) = Algebra of complex kxk matrices

U (k) = Unitary matrices inlL(k)

(M)= Maximum singular value of M

p(M) = Spectral radius

= Magnitude of largest elgenvalue

M* = Conjugate transpose of M

diag (M1, M2,

M3 ,.o., Mn) = Block diagonal matrix with M

(not necessarily square) on the diagonal.

IMI = magnitude of det(M)

.. (k) kxk rational matrices

-2-
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SECIION 2

FEEDBACK ANALYSIS AS A BLOCK-DIAGONAL BOUNDED

PERIURBATION PROBLEM

*This section formulates the basic feedback problem of achieving performance

in the face of uncertainties as a stability problem in the presence of block-

diagonal bounded perturbations. The formulation involves cone-bounded

transfer functions as basic building blocks, in terms of which both the

robustness and performance aspects of feedback can be characterized.

Basic Building Blocks: Cone Bounded Transfer Functions

Throughout this report, we will deal with multi-variable feedback systems

whose models are linear, time invariant, and finite dimensional. Hence,

they can be represented by transfer function matrices with rational ele-

ments. The robustness and performance properties of these systems will be

expressed in terms of a collection of transfer matrices, A 1(s), i=1,2,

*.-, m, which each satisfy

Ai(s) = Lil (s) e(s)Ri (s) (1)

where L (s) and R (s) are constant transfer matrices and 9(s) is any

stable transfer matrix from a set satisfying

5[e (Jca)] < I J#u 0

We will also require that L and R have no poles or zeros in the open

right half plane. These assumptions assure that A has no rhp poles.

.Reasons for this restriction are discussed later. Note that the functions

which satisfy (1) belong to conic sectors, as initially defined by 7ames

([4], [5]) and generalized by Safonov ((6], [7]). Their sector centers are

zero, and their sector radii are characterized by L(s) and R(s). We will

use such cone bounded transfer functions as basic building blocks in a com-

bined robustness/performance characterization of feedback systems.

Robustness Characterization

The use of cone bounded transfer functions to characterize robustness has

been a central theme in many recent references, including [8] where such

transfer functions were inserted at the inputs or outputs of a plant model

in order to represent so called unstructured uncertainties (modelling errors

-3-' t
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p. .

with no assumed structure except for known magnitude bounds on their trans-

- fer functions). Necessary and sufficient conditions were then derived for

stability robustness in the face of such uncertainties. For example, a

stable feedback loop with plant 6(s) and compensator K(s) will remain stable
in the face of all possible perturbed plants G'(s) = [I + A]G(s), with Ai
given by (1), if and only if

Y[RtGK(I + GK)- L1 - < 1 1 _ 0 (2)

Note that with R and L specified, this inequality imposes conditions

on the shape of the closed loop frequency response, GK(I + GK) - , which

must be satisfied in order to assure robust stability. These conditions

are unique to the assumed form of plant perturbations (e.g., G' = (I + A)G

in the present case). Each such assumed form corresponds to a specific

location where A is inserted in the nominal feedback loop. The location

for our present case is shown in Row 1 of Table 1. Other locations corres-

pond to other assumed forms for G' and produce different necessary and suf-

"* ficient stability robustness conditions. A representative set of possibili-

ties is summarized in the remaining rows of Table 1. (Most of these cases

can be found in [9]).

Table 1 also indicates representative types of physical uncertainties which

can be usefully represented by cone bounded perturbations inserted at the

indicated locations. For example, the representation G' = (I + A)G in

Row 1 is useful for output errors at high frequencies, covering such things

as unmodelled high frequency dynamics of sensors or plant, including diffu-

sion processes, transport lags, electro-mechanical resonances, etc. The

representation G' - 6(I + A) in Row 2 covers similar types of errors

occuiring at the inputs. Both cases should be contrasted with Rows 4 and 5

which treat 6' = (I + A 6 and G' = 6(I + A)- . These representations are

more useful for variations in modelled dynamics, such as low frequency

errors produced by parameter variations with operating conditions, with

aging, or across production copies of the same plant. Discussion of still

other cases is left to the table. Note from the table that the stability

requirements on A do not limit our ability to represent variations in

either the number or location of rhp singularities.

-4-
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The most significant thing to understand about Table 1 is that the stability

*. robustness conditions shown are sufficient to assure stability only if all

the uncertainties occur at the indicated locations and none occur else-

where. In order to use the conditions directly, therefore, designers are

obliged to reflect all known sources of uncertainty from their known point

of occurance to a single reference location in the loop. Such reflected

uncertainties invariably have a great deal of structure which must then be

"covered up" with a larger, arbitrarily more conservative perturbation in

* order to maintain a simple cone bounded representation at the reference

'. location.*

Alternatively, designers could choose to treat uncertainties occurring at

several different locations in the feedback loop as a single uncertainty

occurring at one location in a larger feedback loop. To be specific about

this alternative, let Ai. 1=1, 2, oo*., m, denote a collection of such

uncertainties positioned at location 1V, 1=l, 2, 'so, m. Note that at each

Ii. the feedback loop has an input, where it receives the signals from AV

and also an output, where it supplies signals to A Let M be the

transfer function matrix between these two sets of signals. Further, let

M i denote the transfer matrix between the inputs at location I. and

the outputs at location I V Then the block-structured matrix

M f j (3)

represents all interactions of the feedback loop with its uncertainties, and

indeed, the block-diagonal bounded perturbation diagram in Figure 1 is an
equivalent representation of the loop. Here we have A - diag(A l, a2,***,m

Note that the feedback elements in this larger loop are zero in the absence

of uncertainties. Hence, M will be a stable "plant" whenever the original

nominal loop Is stable. As an example of this representation, consider the

system in Figure 2. This system, with two uncertainties present simulta-

neously, the first from Row 2 and the second from Row 4 of Table 1, is

described by the following M matrix.

* By "arbitrarily more conservative," we mean that examples can be construc-

ted where the degree of conservatism is arbitrarily large. Of course, other
examples exist where it is quite reasonable.

-5-
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I + KG)- KG ( I + KG)-I K(: G K ) -G ( I + G K ) 
1

Given the equivalent system in Figure 1 with Ai's characterized by equa-

tion (1), it follows from the Small Gain Theorem [10] that the loop remains

stable in the presence of these uncertainties if

E [R(Jj)M(JG))L(Jjy1 ] ] 1 V- > _ 0 (5)

where R = diag(R1 R2 oo R) and L = diag(L1 L2 ,.. Lm)

This condition provides an alternate test for stability robustness. Like

the procedure of reflecting all uncertainties to one reference location,

however, the new test can be arbitrarily more conservative because it

ignores the known block-diagonal structure of the uncertainties in Figure 1.

The objective of our results in this report is precisely to reduce the con-

servatism of robustness and performance tests for block diagonal structures

such as Figures 1. We do this by introducing a generalized notion of the

maximum singular value for block-dtagonal structures. This generalization

is developed in Section 3. It is called the structured singular value (SSV)

and is denoted by the symbol IL. It yields the following necessary and

sufficient conditions for robust stability of the BDBP problem:

L[R(Jc)M(J )C (J)] C 1 V > 0 (6)

This represents our extension of the Small Gain Theorem which we call the

Small I Theorem.

Since all simultaneous uncertainties can be put into block-diagonal form by

merely constructing the associated matrix M, the SSV allows us to nonconser-

vatively analyze simultaneous occurences of uncertainties anywhere in a

feedback system. The uncertainties may be cone bounded errors of individual

components of the system (SISO or MI1O), they may be individual parameter

variations in the model, or even polynomial approximations of parameters

entering nonlinearly. In fact, the only restrictions which remain is that

all variations must be allowed to be complex. Pure real variations or pure

imaginary variations cannot be separated into individual blocks.

-6-



Performance Characterization

The ability to treat simultaneous, structured uncertainties also offers,

almost as a free byproduct, the ability to deal simultaneously with the per-

formance and robustness aspects of feedback. This is made evident in Column

4 of Table 1, where each of the conditions imposed on feedback loop shapes

by perturbation A at location It is given a performance interpreta- -

tion. For example, the perturbations in Row 4 impose requirements (through

L and R) on the shape of the function (I + KG) This function is, of

course, the classical (output) sensitivity function of the feedback loop.

Small values over some frequency range guarantee low closed loop sensitivity

to open loop variations and low command following errors to output commands

over that range. A particular specification on these performance parameters

can thus be imposed on a design by introducing a "fictitious uncertainty" at

the location in Row 4 with cone bounds R and L selected to meet the perfor-

mance requirement.

To illustrate how such fictitious uncertainties actually enforce performance

specs, consider the simple case where a single true uncertainty, say A

from Row 2, and a single fictitious (performance) uncertainty, "ay A
p

from Row 4, are specified for our feedback system. Let the struc.tured sin-

gular value condition (6) be satisfied for the corresponding M matrix

(equation 4). Then the system remains stable in the face of Ar and A

occurring simultaneously. Obviously, it will also remain stable for A
p

with A = 0. This means that the nominal system must satisfy the per-
r

formance condition

i[R (I + KG) - L ] < 1 c a > 0 (7)
p p

because the latter is also a necessary and sufficient condition for robust

stability with Ap only. This much is straightforward. What is not so

evident but much more important is that Condition (7) is also satisfied for

all perturbed feedback loops. That is, for all true plants G'=G(I+A )
r

we have

[R p(I + KG')-L - 1 ] < I ( > 0 . (8)

Hence, the performance spec is satisfied in the face of all possible true

uncertainties. A proof of this consequence of the structured singular value

condition is left to Section 4.

-7-
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SECTION 3

THE STRUCTURED SINGULAR VALUE AND THE SMALL IL THEOREM

We have discussed how the problem of analyzing performance in the face of

structured uncertainty can be expressed as a BDBP problem. We noted that

standard singular value tests applied to the BDBP can be excessively conser-

vative because they ignore the block diagonal structure. A more general

non-conservative test (the Small l Theorem) is developed in this section

. which removes this limitation. By non-conservative we mean providing a

necessary and sufficient condition. The test is expressed in terms of a new

measure, the structured singular value lj. This section begins with review

of the results in [3], where I was introduced.

To provide a more precise description of block diagonal perturbations, let

K = (mlim 2 ,e I,mn, k1 -k2 ,oo*,kn) be a 2n-tuple of positive

integers. All the definitions that follow depend on K, but to simplify not-

ation this dependency will not be explicitly represented. Let

n n
k E m k and m= Z n"

J=lJ iJ=l

For each.6c[O,co), let X cl11(k) be a set of 6-norm-bounded
6

block-diagonal matrices defined by

m m m
12 n

;.|Xw= Jdig " v**o'A1t a 29 a29 000'a21 a 39 an-1 AI rt& "Ad n  (9)

I A eTfl(k J) and ( ) _6 for each 3 = 1,2,ooon)

Let X= =U X be the set of all such matrices with no restriction on the norm,
or1

L be the set of block diagonal unitary matrices,

Ak . U(k)/X

and the set of real diagonal matrices such that

= { diag(d1Ik , dn d Ik dm k Ikm ) (10)
11 1 2 m

d c R+= (0, w))

PREVIOUS PAGE
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What is desired is a function (depending ondK)
IZLMI(k) -, LO, -m) (

with the property that for V Mcll(k)

det(I+MA) A 0- AcX6
(12)

iff 6L(M),<I1

This could be taken as a definition of IL. Alternatively, IL could be

defined as

0 if no AcX solves det(I+MA) =0
wL i (13)

[r(A) I det(IMA)= 0-) otherwise

This definition shows that a well-defined function satisfies (12). It pro-

bably has little additional value since the optimization problem involved

does not appear to have useful properties.

Using these definitions, the following useful properties of I are easily

proven.

1) Ii(aM) = Ia.li±(M) It Mcln(k)

2) IL(1) 1 1

3) IL(AB) i i(A)IL(B) 4 AcX, Bct(k)

4) I(A) = -(V) * AcX 6

5) If n=l and ml 1 then L(M) -V(M) * McM(k)

6) If n=l, k1=1 , then k=m I

X = (%Ijc,1\I !_ 6) and IL(M) = p(M) *Mc"lt(k)
6

7) If AcX 6 , UcU then UAcX 6 and AUcX6

8) For VAcX 0 and Y-0cJ DAD -

9) For 4 Ucl. and McllL(k)

1(MU) = W(UM) = I(M

10) For -V DcB and Mfcl(k)
-1

l(OMD) = M

11) max p(UM) I_ l(M) inf (DM - ) for-V Mept(k)
UeL.. DeJ

-9-



" Properties 5) and 6) show that the structured singular value has as special

-. cases both the spectral radius and the maximum singular value. Property 9)

*. means that IL isZL-invariant.

* The most important results from [3] are the following, which deal with the

bounds in property 11):

a) The left-hand-side inequality in (11) is always an equality.

This expresses I in familiar linear algebraic terms, but the

optimization problem involved may have multiple local maxima.

b) The right-hand-side inequality in (11) is an equality when

there are three or fewer blocks, and the blocks are not

repeated. The blocks themselves, and therefore M, may be of

arbitrarily large dimension. A tedious but straightforward

computation shows that the optimization problem involved is

always convex [11]. Furthermore, the minimization is over

only n-i parameters for n blocks, independent of block size,

making this an attractive alternative to a).

Note that the transformation DMO I is simply a rescaling of the inputs and

" outputs of M. The SSV is invariant with respect to such rescaling (property

. 10), while singular values do, of course, vary with rescaling. This

i implies, for example, that the ad hoc method of performing a change of units

can reduce the conservatism associated with singular values. For some time

*- we have been using Osborne's technique [12], which minimizes the Frobenius

norm of DM0 to compute frequency-dependent 0 matrices. We now have new

- algorithms which compute 0 to directly minimize (DMD-).

Numerical software for computing I has been developed using algorithms

" based on these results. In addition to using this software to analyze some

simple feedback designs, test runs have been made on a large number of

psuedo-random matrices. It appears that the global maximum in a) is often

easily found, although a simple gradient search is inadequate. Also, the

"- bound obtained in b) appears to be quite good (to within 15%) for cases of

* more than 3 blocks. These observations are most encouraging, especially

*considering the experimental and preliminary nature of the software.

-10-
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There are essentially two direct applications of singular values to the BDBP

problem, which provide bounds for IL:

1) Ignore the block diagonal structure and compute 0(M). This

gives an upper bound for IL.

2) Treat each perturbation one at a time. Compute the largest

maximum singular value for each of the corresponding diagonal

blocks. This gives a lower bound for I.

The gap between these two bounds may be arbitrarily large.

An extension to 1) was proposed by Lehtomaki ([9],[13]), who uses the sin-

gular vectors for U(M) to sharpen the bound. Lehtomaki's method checks

for structure but not in the BDBP form. The optimism of 2) can be reduced

by using a method suggested by Freudenberg, et al [14], who evaluate the

differential sensitivity of the singular values at one point with respect to

perturbations at another. Although this method does not apply to simulta-

neous, large perturbations, it can be quite useful in indicating when the

lower bound for 1L obtained by method 2) is optimistic. It should be men-

tioned that Lehtomaki and Freudenberg did not present their techniques in

the context of the BDBP problem.

The preceding discussion of IL and the BDBP problem has dealt with deter-

mining the size of the minimum structured perturbation A that causes I +

MA to be nonsingular. We are interested in using the structured singular

value to answer robustness, sensitivity, and performance questions for mul-

tivariable feedback systems. The connection between IL and these essential

feedback properties is provided by the Small I. Theorem, which characte-

rizes the stability robustness properties of a feedback system with respect

to block diagonal perturbations. In order to state the Small IL Theorem we

need the following additional definitions (all depending on K):

Let L, R cXl {X x I ) be such that L and R have no poles or

zeros in the open right-half-plane. Then let

f {ecRA(Xx 9) I Z(e(S)) I -V Re(s) 0 01 (16)

-11-
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For the BDBP problem in Figure 1, McR(k), C is the set of allowable

block diagonal perturbations, and L and R are the weightings for the A

such that i(LAR) 1. We will say the canonical system in Figure 1

is stable 1ff I+MA is nonsingular in the closed right-half-plane.

" Although this definition does not distinguish between ill-posedness and

instability, it is adequate for our purposes. We can now state and prove

the following:

Theorem (Small IL): The canonical system is closed loop stable for all

Ac i 1ff

-1I- sup I(RML 1 ) c 1 (18)

Proof: To prove the if part, suppose Ic 4 1 and let A cX. Then

using Properties 3) and 11) and the definition of X

sup p(MA) - sup p(MA) A sup I(RML - ) = c 1I.

ResO sj (sJQ c

Thus I + MA is nonsingular for all Res > 0. Since A was arbitrary,

the canonical system is stable for all A cX.

Conversely, suppose I(RML- )i=( >1 (w 0may be i). Then 3 EcXi,),
0

det(I + RMV 19) = 0. Thus, .3 A cX,.,det(I + MA) I =0 ° 0 and the
00

canonical system is not stable for all A c H. 0

-1
This theorem guarantees that if I±(RML ) is less than 1 at every fre-

quency, then the closed-loop system is stable for all structured perturba-

tions AcZ. Conversely, if (RML - 1) is greater than or equal to 1 at

some frequency, then there exists a structured perturbation c3L that

results in closed loop instability. Note that a destabilizing A can be

expressed as L6R - for some constant e.

o-1

-, 2



As noted in Section 2, the Small IL Theorem can also guarantee a pre-

specified performance level by including a performance block in the BOBP

problem. Furthermore, this performance level is guaranteed for all struc-

tured perturbations Acr. These claims are made precise in the next

section by a corollary to the Small 1L Theorem that treats performance.

.13-
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SECTION 4

PERFORMANCE IMPLICATIONS

Suppose that the plant perturbations are given by

Ar -diag(Al 2' A C3r

with corresponding weighting matrices Lr, Rr, interconnection matrix

M, and 2n-tuple K = (mil , -0, Mn , ki ,os,, k n). Suppose that a per-

formance specification is given as

* ."0(RpM'(Ar)Lp) l r V-ArE (19)

Here M' is a k xk performance matrix which we desire to be small (as
p p p

weighted by R and L ). Examples include M'p=(I+G'K) 1  M =G'K(I + G'K)
p p

etc., as discussed in Section 2. Note that M' depends on the perturba-
p

tion Ar , indicating that this performance should be met for all

uncertainties.

Let M and M denote the transfer function matrices between performancepr rp
outputs and perturbation outputs and between perturbation inputs and performance

inputs, respectively. In terms of these matrices, it can be shown that
S(Ar = Mp + M a (I + M Ar-l M

pr p pr r r r rp

where Mp is the performance matrix in the absence of uncertainties.

Define MT Mpr:
Ti = rMp Mrp

•I T = 11, ml, o"" mn, kp kit o k kn)

LT = diag(Lp, L )

RT R diag(Rp, Rr)T p r

)+r =14(Xr)

',i p 014((I, kr)

IHT = 4(IT) '-4 p x r

-14-



We have noted the dependence on /< here to avoid confusion. Of course, the

nominal interconnection matrix M is assumed to be stable.

For these definitions, the following relationship exists between perfor-

mance, stability robustness, and the SSV.

Theorem: (Robust Performance)

Mp'(Ar) stable and E(Rpt (A)L 1 ) 1 V-c and A r r (20)

lffl
iff L±(RPTMT LT 1~ V Ca

Proof: It follows from the Small IL Theorem that

IL(RTMTLT- ) 1 -

Jff 1I + RTMTLT-I81 > 0, -V Res > 0, -V 9 clT

1ff V Res )0, II + Rr rLr-lOr I > 0, VE r c)r

and II +Rp L ( 1 Op 0, 9 

Iff %Res > O.1I +Ma r 1>0 and

11 + R M4 A d CL1 9 p 1> 0 V, A r~ E 3Er VaPCU

1ff Ml ( ) stable and a(Rpl (Ar)Elp) 41

for V w and - c l r. a

We note that this theorem extends the Small IL Theorem's robust stability

results to a composite, simultaneous result on robust stability and perfor-

mance. Thus, given an uncertain plant model with structured perturbations

and a performance specification, we have a necessary and sufficient condi-

tion in terms of IL for satisfaction of the performance spec in the face of

the uncertainty. If the condition Il 4 1 is met, then the desired perfor-

mance is achieved for all perturbed plants. If ILzt 1, then there exists a

structured perturbation which causes the performance spec to be violated.

The robust performance condition may be thought of as arising from an equi-

valent "fictitious uncertainty," although this interpretation is not

necessary.

-15-



Example

In this section the ideas we have presented will be illustrated by a simple

"textbook* example. An example similar to this was discussed in [8].

The configuration for this example is shown in Figure 2 and was discussed

briefly in Section 2. The plant transfer function is

G(s) K (21)
s

the uncertainty weightings are L =L2 I, R =r I, and R r I, where1 2 l' 2 21

rl(s) = 1 + s and r2(s) = 1 + (22)

Interpreted in terms of uncertainty levels, these weightings mean that

a 1 is large at high frequency and A is large at low frequency. A design
1 2

that yields IL 4 -V ca has the property that the closed loop system

would remain stable for all simultaneous perturbations such that

(23)

Larger perturbations would destabilize the closed loop system. An alterna-

tive interpretation in terms of performance would be that low the closed

loop system has the following output sensitivity

,-l

+ KG')- I Il (24)
r2

in the face of all input perturbations which satisfy

r 1  -V( 2 5 )

The weighting r2 emphasizes sensitivity at low frequency.

This example is not motivated by a physical design problem, and either

interpretation is possible. We will simply compute IL for 3 different

designs and compare them with each other rather than with a performance/

robustness specification. We will also compute some singular value bounds

and u for the case of r1  r2 - 1. No claims are made about the

quality of these designs. They are intended merely to be illustrative.

-16-



The M matrix for this example is given in equation (4) and

r T1  d r T1G-1 ( c ) inf 1 1
i" d I (26)

ir2 S2 G r 2 S2

where T1 = (I + KG) KG and S = (I + GK) The compensator

matrices for the designs are

1) K1 [ (27)

2) K2 = Q0Q 2

10(se~l)1
"3) K3 = Q 3s(s+16) 02

3 1 0 g(16s+l)

32s(s+l)j

[3/4 -2/31 [3/4 2/31

1 2/ 3  3/ Q 2 ' 2/3 -3/4

In the first design, K1 basically inverts the plant, making KG=GK=l/s I.
The unweighted singular values for the two uncertainties considered

individually (8(T1 ) and 8(S2 )) are plotted as the lower two curves in

Figure 3. The maximum of these give a lower bound for the unweighted I(M).

The singular values of M are the upper two curves in Figure 3. The maximum

of these give an upper bound for iL. The unweighted SSV itself is shown

as the plots labelled with a 1 in Figure 4.

This example illustrates that IL can equal the upper bound j(M) or lower

bounds Z(T1) and 8(S2) or be anywhere in between. Note that this design
can tolerate either A1 or A2 separately as large as 1, but simultaneous1 2
variations of less than 0.1 can be destabilizing. Interpreted in terms of

performance for the weightings in (22), we can see that the design has good

output sensitivity (8(r2S2 ) !_ 1) for the unperturbed plant. Small input

perturbations, however, can lead to very poor output sensitivity since

I(RML 1 ) >> 1 implies that a(r2S2)>, 1 for some perturbed D2 Designs 2 and

3 have substantially improved unweighted SSV's, as seen by the plots

.7
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7- 71

labelled 2 and 3 in Figure 4. It appears from these plots that Designs 2

and 3 are uniformly better than Design 1, with Design 2 best in the

midfrequency range and Design 3 best at the high and low frequency

extremes. The significance of these differences, however, can only be

interpreted against the given performance and/or robustness specs. This is

done with the corresponding weighted SSV's in Figure 5. We see that

18 for Design 1

max -L[RML7 18.5 for Design 2

5.5 for Design 3

Thus, Design 3 offers the smallest c-value for equations (23) - (25) and
is the best system when judged against the spec.

This example has illustrated several important points:

1) Unscaled singular value bounds provide, in general, poor estimates

for i.

2) Stability/performance evaluations with perturbations one at a time

can be highly optimistic.

3) Designs can be meaningfully compared only with respect to some per-

formance and robustness specification.
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SECTION 5

CONCLUSION

This report introduced an analysis technique based on the Structured Sin-

gular Value jI for linear feedback systems that provide a reliable, noncon-

servative measure of performance in the face of structured uncertainty. The

Small 1L Theorem gives a necessary and sufficient condition in terms of IL

for stability of a linear system with multiple, simultaneous, norm-bounded

perturbations of fixed but arbitrary structure. The Robust Performance

Theorem provides a similar condition for the satisfaction of performance

specifications in the presence of structured perturbations. Some simple

feedback designs were presented to illustrate the theory.
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A~ diag(Al. 62. 6*, m)

Figure 1. Feedback loop as a BDBP Problem

K

Flqure 2. Feedback loop with Two Uncertainties
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