

NOTICE

The United States Government does not endorse products or manufacturers. Trade or manufacturer's names appear herein solely because they are considered essential to the object of this report.

Technical Report Documentation Page

1. Report No.	2. Government Accession No.	3. Recipient's	Catalog No.
FAA-EE-83-1			
d. Title and Subtitle	l	5. Report Date	
Noise Levels and Data Anal	vses for Small Prop-Dri	ven August 1	983
Aircraft	Jest the subar rop bra	6. Performing (Organization Code
7. Author's)		8. Performing (Organization Report No.
J. S. NEWMAN, T. L. BLAND.	S. A. DABOIN		
9. Performing Organization Name and Addre	••	10. Werk Unit I	No. (TRAIS)
Federal Aviation Administra	tion, Office of Environ	ment	
and Energy, Noise Abatement Branch, 800 Independence Av	Division, Noise Techno	logy 11. Contract of	r Grent No.
Washington. D.C. 20591	,	13. Type of Re	part and Pariod Covarad
12. Sponsoring Agency Name and Address			
Federal Aviation Administra	tion, Office of Environ	ment	
and Energy, Noise Abatement	Division, Noise Techno	logy	
Branch, 800 Independence Av	e., SW	14. Sponsoring	Agency Code
Washington, D.C. 20591		l	
16. Absured During the Summer and Fall of Abatement Division, conducter revisions of International a propeller-driven aircraft. propeller-driven light aircr engines were included, as we	of 1982, the FAA Office and a noise measurement p and U.S. noise certifica Tests were conducted us aft. Normally aspirate are both fixed and varia	of Environment a program to evalua- tion standards : ing both single- d, turbo-charge ble pitch prope	and Energy, Noise ate proposed for light-weight - and twin-engine d, and turboprop llers. Takeoff
16. Abstract During the Summer and Fall of Abatement Division, conducter revisions of International apropeller-driven aircraft. propeller-driven aircraft. propeller-driven light aircr engines were included, as we noise measurements were made of these aircraft (during ler relationship of noise level This report presents noise m and cockpit instrument readi 1) corrections to proposed m Mach Number and Power Correct propagation, 4) regression of and 5) correlation of acoust metrics. While this report feasible and will provide councertain whether or not equ achieved between the existin procedure.	of 1982, the FAA Office and a noise measurement p and U.S. noise certifica Tests were conducted us aft. Normally aspirate the both fixed and varia for eighteen aircraft. evel flight) provided su versus helical tip Mach measurements, aircraft p angs acquired during the toise certification refe tion functions, 3) empt of noise level versus we ical intensity (AL) and concludes that a takeof posistent results for a al stringency (or even ag certification procedu	of Environment a program to evalua- tion standards : ing both single- d, turbo-charged ble pitch prope Additional mea officient data to a Number and eng osition data, me etest. Data and prence conditions rical examination ight (and the lo acoustical dose f noise certific given aircraft, comparable strip re and the prope	and Energy, Noise ate proposed for light-weight - and twin-engine d, and turboprop llers. Takeoff asurements for ni o examine the ine power setting eteorological dat alyses include: s, 2) development on of sound ogarithm of weigh e (SEL) noise cation procedure it remains ngency) can be osed takeoff
16. Absured During the Summer and Fall of Abatement Division, conducter revisions of International apropeller-driven aircraft. propeller-driven aircraft. propeller-driven light aircr engines were included, as we noise measurements were made of these aircraft (during ler relationship of noise level This report presents noise m and cockpit instrument readi 1) corrections to proposed r Mach Number and Power Correct propagation, 4) regression of and 5) correlation of acoust metrics. While this report feasible and will provide councertain whether or not equ achieved between the existin procedure	of 1982, the FAA Office and a noise measurement p and U.S. noise certifica Tests were conducted us aft. Normally aspirate the both fixed and variate for eighteen aircraft. evel flight) provided su versus helical tip Mach measurements, aircraft p angs acquired during the boise certification refe tion functions, 3) empt of noise level versus we ical intensity (AL) and concludes that a takeof maistent results for a all stringency (or even ag certification procedu	of Environment a program to evalua- tion standards : ing both single- d, turbo-charged ble pitch prope Additional mea officient data to a Number and eng osition data, me etest. Data and etest. Data and erence conditiona- rical examination of noise certific given aircraft, comparable strin- tre and the prope	and Energy, Noise ate proposed for light-weight - and twin-engine d, and turboprop llers. Takeoff asurements for ni o examine the ine power setting eteorological dat alyses include: s, 2) development on of sound ogarithm of weigh e (SEL) noise cation procedure it remains ngency) can be osed takeoff
 16. Abstract During the Summer and Fall of Abatement Division, conducter revisions of International apropeller-driven aircraft. propeller-driven aircraft. propeller-driven light aircrent engines were included, as we noise measurements were made of these aircraft (during lerelationship of noise level This report presents noise mand cockpit instrument readid 1) corrections to proposed match Number and Power Correct propagation, 4) regression of acoust metrics. While this report feasible and will provide councertain whether or not equal achieved between the existin procedure. 17. Key Words General Aviation. Noise. 	of 1982, the FAA Office and u.S. noise certificat Tests were conducted us aft. Normally aspirate to both fixed and variat for eighteen aircraft. evel flight) provided su versus helical tip Mach measurements, aircraft p ings acquired during the toise certification refer tion functions, 3) empt of noise level versus we cical intensity (AL) and concludes that a takeof maistent results for a sal stringency (or even and stringency (or even set of the substantion procedue 10. Dismibut Propeller.	of Environment a program to evalua- tion standards : ing both single- ed, turbo-charged ble pitch prope Additional mea officient data to number and eng osition data, me test. Data and erence conditiona- rical examination fight (and the lo acoustical dose f noise certific given aircraft, comparable strin- tre and the prope	and Energy, Noise ate proposed for light-weight - and twin-engine d, and turboprop llers. Takeoff asurements for ni o examine the ine power setting eteorological dat alyses include: s, 2) development on of sound ogarithm of weigh e (SEL) noise cation procedure it remains ngency) can be osed takeoff
 16. Absureet During the Summer and Fall of Abatement Division, conducter revisions of International apropeller-driven aircraft. propeller-driven aircraft. propeller-driven light aircrengines were included, as we noise measurements were made of these aircraft (during lerelationship of noise level This report presents noise mand cockpit instrument readi 1) corrections to proposed mach Number and Power Correct propagation, 4) regression of acoust metrics. While this report feasible and will provide councertain whether or not equation and 5) correlation of acoust metrics. While this report feasible and will provide councertain whether or not equation achieved between the existin procedure. 17. Key Werds General Aviation, Noise, Certification, Regulation Exposure Level (SEL), dBate and Section S	18. Dismibut Propeller, A first first for a sound use that a takeof propeller, and use the fixed and variate of the second of the second and variate and use that a takeof the second of the second and the second of the second tion functions, 3) empty and the second of the second transition that a takeof and the second of the second transition that a takeof and the second of the second transition that a takeof the second of the second transition that a takeof the second of the second transition the second of the second transition that a takeof the second of the second transition the second of the second of the second transition the second of the second of the second transition the second of the second of the second of the second transition the second of the se	of Environment a program to evalua- tion standards : ing both single- d, turbo-charged ble pitch prope Additional mea officient data to a Number and eng osition data, me etest. Data and prence conditions rical examination in a consticut dose f noise certific given aircraft, comparable strin the and the prope	and Energy, Noise ate proposed for light-weight - and twin-engine d, and turboprop llers. Takeoff asurements for ni o examine the ine power setting eteorological dat alyses include: s, 2) development on of sound ogarithm of weigh e (SEL) noise cation procedure it remains ngency) can be osed takeoff ble to the U.S. onal Technical ringfield, VA 223
 16. Abstract During the Summer and Fall of Abatement Division, conducter revisions of International apropeller-driven aircraft. propeller-driven light aircrengines were included, as we noise measurements were made of these aircraft (during lerelationship of noise level This report presents noise mand cockpit instrument readi 1) corrections to proposed mach Number and Power Correct propagation, 4) regression of acoust metrics. While this report feasible and will provide councertain whether or not equachieved between the existin procedure. 17. Key Words General Aviation, Noise, Certification, Regulation Exposure Level (SEL), dBatter of the set of th	1982, the FAA Office and 1982, the FAA Office and U.S. noise certificat Tests were conducted us aft. Normally aspirate the both fixed and variat for eighteen aircraft. evel flight) provided su versus helical tip Mach measurements, aircraft p ings acquired during the oise certification refe tion functions, 3) empt of noise level versus we cical intensity (AL) and concludes that a takeof maistent results for a sel stringency (or even ag certification procedu Propeller, This down and Sound public A, Aircraft Information 20. Security Classif. (of this per	of Environment a program to evalua- ation standards : ing both single- ed, turbo-charged ble pitch prope: Additional mea officient data to a Number and engi- cosition data, me e test. Data and erence conditiona- rical examination attest. Data and erence conditiona- rical examination of noise certific given aircraft, comparable strin- are and the propo- ment is availa- through the Nati- tion Service, Sp () 21. No. 1	and Energy, Noise ate proposed for light-weight - and twin-engine d, and turboprop llers. Takeoff asurements for ni o examine the ine power setting eteorological dat alyses include: s, 2) development on of sound ogarithm of weigh e (SEL) noise cation procedure it remains ngency) can be osed takeoff ble to the U.S. onal Technical ringfield, VA 22:
 16. Absired: During the Summer and Fall of Abatement Division, conducter revisions of International apropeller-driven aircraft. propeller-driven aircraft. propeller-driven light aircrengines were included, as were noise measurements were made of these aircraft (during lerelationship of noise level This report presents noise mand cockpit instrument readi 1) corrections to proposed reference of and S) correlation of acoust metrics. While this report feasible and will provide councertain whether or not equation whether or not equation whether or not equation for the existing procedure. 17. Key Words General Aviation, Noise, Certification, Regulation Exposure Level (SEL), dB. 19. Security Clessif. (of this report) unclassified 	1982, the FAA Office d a noise measurement p and U.S. noise certifica Tests were conducted us aft. Normally aspirate the both fixed and variate for eighteen aircraft. wel flight) provided su versus helical tip Mach measurements, aircraft p ings acquired during the ioise certification refe tion functions, 3) emploi f noise level versus we ical intensity (AL) and concludes that a takeof maistent results for a al stringency (or even ing certification procedu Propeller, This down A, Aircraft Information and Aircraft Information and Aircraft Information unclassified	of Environment a program to evalua- tion standards : ing both single- d, turbo-charged ble pitch proper Additional mea officient data to a Number and engradient officient data, mea etest. Data and etest. Data and etest. Data and etest. Data and etest. Data and finite examination of noise certific given aircraft, comparable strin- tre and the proper when Stetement cument is availation through the Nati- tion Service, Sp 21. No. 1	and Energy, Noise ate proposed for light-weight - and twin-engine d, and turboprop llers. Takeoff asurements for ni o examine the ine power setting eteorological dat alyses include: s, 2) development on of sound ogarithm of weigh e (SEL) noise cation procedure it remains ngency) can be osed takeoff ble to the U.S. onal Technical ringfield, VA 222 of Peges 22. Price

ł

and the second and an and the market was been as a second to be a second to be a second second as a second second

Errata

In a recently conducted (July 1983) retest of the identical Cessna 210 Centurion discussed in this report it was determined that a tachometer error existed. While the tachometer read 2700 the actual propeller RFM was 2882.

Accordingly, it is assumed that the tachometer error existed during the 1982 test. Therefore, any reference in the main body of this document to the C-210 or any presentation of C-210 data should be noted as reflecting a propeller speed approximately 182 RPM greater than the stated value. The results of the 1983 retest are presented in Appendix E.

Addenda

Appendix E of this document provides a summary of the 1983 Cessna 210, "retest" measurement program designed to obtain additional data on the relationship between level flyover and takeoff noise levels.

Acknowledgments

The Authors wish to express appreciation to all of those who participated in the measurement program and whose cooperation was instrumental in making the program a success. Thanks to Mr. Neal Phillips for his assistance in preparing this document and to Ms. Loretta Harrison for her typing support.

Our special thanks are extended to the following participating organizations:

- General Aviation Manufacturer's Association
- Aircraft Owners and Pilots Association
- Beech Aircraft Company

鲁

- Cessna Aircraft Company
- Piper Aircraft Company

TABLE OF CONTENTS

SECTI	ON	PAGE
1.0	INTRODUCTION	4
2.0	AIRCRAFT OPERATIONS/REFERENCE CONDITIONS	8
2.1	NORTH OPERATIONS	8
2.2	SOUTH OPERATIONS	8
2.3	LEVEL FLYOVERS	9
2.4	REFERENCE METEROLOGICAL CONDITIONS FOR CALCULATING REFERENCE TAKEOFF ALTITUDES	9
3.0	ACOUSTICAL DATA	10
3.1	MEASUREMENT LOCATIONS	10
3.2	MEASUREMENT INSTRUMENTATION	10
3.3	NOISE DATA/DATA REDUCTION	11
4.0	METEOROLOGICAL DATA	15
5.0	AIRCRAFT POSITION DATA	16
6.0	COCKPIT INSTRUMENT READINGS	19
7.0	PROPAGATION	20
7.1	INTENSITY METRIC: PROPAGATION EFFECTS	20
7.2	ENERGY METRIC: PROPAGATION EFFECTS	20
7.3	RESULTS	21
7.4	EXAMINATION OF OTHER TEST DATA	21
7.5	DISCUSSION	22
8.0	COMPARISON OF SIMPLIFIED AND COMPLEX PROCEDURES FOR CONSIDERING THE EFFECTS OF ATMOSPHERIC ABSORPTION AND SPHERICAL SPREADING	23
8.1	ANALYTICAL PROCESS	23
8.2	A PARAMETRIC ANALYSIS OF COMPLEX VERSUS SIMPLIFIED DIFFERENCES	26

-

. ...

•

- -

v

SECTION

8.3	ATMOSPHERIC ABSORPTION VARIATION WITH TEMPERATURE AND DELATIVE HIMIDITY FOR DOMINANT ONE-THIRD OCTAVE BAND	27
9 0	ANALYCIS OF DEDATION CORPORTION PROCEDURE	A 1
3.0	ANALISIS OF DURATION CORRECTION PROCEDURES	44
9.1	ESTABLISHING THE RELATIONSHIP BETWEEN 10-dB DURATION TIME AND AIRCRAFT TO OBSERVER DISTANCE	41
9.2	ESTABLISHING AN EMPIRICAL RELATIONSHIP BETWEEN SEL, AL, AND 10-dB DURATION TIME	41
9.3	SUMMARY OF OBSERVATIONS/CONCLUSIONS	42
10.0	DEVELOPMENT OF PROPELLER TIP MACH NUMBER CORRECTION FUNCTIONS	45
10.1	INFLUENCES ON HELICAL TIP MACH NUMBER	45
16.2	REMOVING THE INFLUENCE OF OTHER FACTORS	47
10.3	DETERMINATION OF NOISE LEVEL-MACH NUMBER RELATIONSHIPS	48
10.4	NOISE-MACH NUMBER RELATIONSHIPS	50
10.5	DISCUSSION	50
11.0	DEVELOPMENT OF ENGINE POWER CORRECTION FUNCTIONS	55
11.1	INFLUENCES ON ENGINE POWER	55
11.2	ANALYTICAL METHODOLOGY	55
11.3	RESULTS	58
11.4	DISCUSSION	58
12.0	FULLY CORRECTED TAKEOFF NOISE DATA AND A DESCRIPTION OF THE CORRECTION PROCESS	62
12.1	THE NEED FOR CORRECTIONS	62
12.2	REFERENCE TEST - CONDITIONS	62
12.3	REFERENCE TEST PARAMETERS	62
12.4	CORRECTIONS INVOLVING DEVIATIONS FROM REFERENCE ALTITUDE	64
12.5	ATMOSPHERIC ABSORPTION AND SPHERICAL SPREADING	67
12.6	MACH NUMBER CORRECTIONS	67
12.7	POWER CORRECTIONS	67

PAGE

SECTI	<u>n</u>	PAGE
12.8	DISTANCE - DURATION CORRECTION	68
12.9	VELOCITY - DURATION CORRECTION	68
12.10	FULLY CORRECTED ALM and SEL EQUATIONS	68
13.0	CORRELATION BETWEEN SEL AND ALM	70
13.1	REGRESSION ANALYSIS	70
13.2	DISCUSSION	70
14.0	SUMMARY OF OTHER AVAILABLE NOISE LEVEL DATA ACQUIRED USING THE PROPOSED CERTIFICATION TAKEOFF NOISE TEST	73
15.0	GA REGRESSION ANALYSIS	75
16.0	EQUAL STRINGENCY ANALYSIS	80
17.0	NOISE CERTIFICATION "TEST WINDOWS"	83
17.1	DEVIATIONS FROM REFERENCE FLIGHT PATH	83
17.2	DEVIATIONS FROM REFERENCE AIRSPEED	88
17.3	DEVIATIONS FROM REFERENCE HELICAL TIP MACH NUMBER	90
18.0	EVALUATION OF AIRCRAFT POSITION DETERMINATION SYSTEMS	93

LIST OF FIGURES

FIGURE 3.1 SCHEMATIC OF MEASUREMENT ARRAY..... 12 3.3 NAGRA TAPE RECORDER NOISE MEASUREMENT INSTRUMENTATION...... 14 5.1 RADAR PHOTOGRAPH..... 18 10.1 INFLUENCES ON HELICAL TIP MACH NUMBER AND ENGINE POWER SETTING (SCHEMATIC)..... 46

viii

PACE

LIST OF TABLES

TABLE		PACE
1.1	GA AIRCRAFT PERFORMANCE PARAMETERS	6
1,2	REFERENCE TAKEOFF CONDITION	7
8.1	A-WEIGHTED ACOUSTICAL SPECTRA DOMINANT ONE-THIRD OCTAVE BANDS	39
8.2	ATMOSPHERIC ABSORPTION FOR SELECTED TEMPERATURES AND RELATIVE HUMIDITY	40
9.1	DISTANCE/10 dB DOWN TIME CORRELATION ANALYSIS	43
9.2	DURATION/CORRECTION ANALYSIS SUMMARY	44
10.1	ALM VERSUS LOG MACH NUMBER REGRESSION ANALYSIS	49
10.2	ALM VERSUS MACH NUMBER REGRESSION ANALYSIS	51
10.3	SEL VERSUS LOG MACH NUMBER REGRESSION ANALYSIS	52
10.4	SEL VERSUS MACH NUMBER REGRESSION ANALYSIS	53
11.1	ALM VERSUS LOG POWER	60
11.2	SEL VERSUS LOG POWER	61
12.1	FULLY CORRECTED TAKEOFF NOISE LEVEL (SEL & ALM)	63
12.2	STATISTICAL ANALYSIS OF ACOUSTICAL ANGLE DATA	66
14.1	BRITISH, GERMAN, AND FRENCH AIRCRAFT NOISE LEVELS AND PERFORMANCE PARAMETERS	74
15.1	GA AIRCRAFT NOISE VERSUS GROSS WEIGHT REGRESSION ANALYSIS (FAA DATA)	77
15.2	GA AIRCRAFT NOISE VERSUS GROSS WEIGHT REGRESSION ANALYSIS (FAA, FRENCH, GERMAN, AND BRITISH)	77
17.1	TAKEOFF ALTITUDE CORRECTIONS	86

CRAWSTON CO. N

A CONTRACT OF A DESCRIPTION OF A CONTRACT OF A DESCRIPTION OF A DESCRIPA DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A D

Sea 1 WHEN SHE WAS IN THE WAS AND

in the site

TABLE		PAGE
17.2	TAKEOFF VELOCITY CORRECTIONS	89
17.3	TAKEOFF MACH NUMBER CORRECTIONS	92
18.1	MEASUREMENT SYSTEM COMPARISON	94

LIST OF APPENDICES

Appendix

- Takeoff Noise Data A
- Level Flyover Noise Data B
- Cockpit Instrument Data C
- Meteorological Data D
- Cessna 230 Supplemental Noise Measurements E

·* e* - 1

CLOSSARY

- ***** -

ABS	-	Atmospheric absorption correction applied to each 1/3 octave band of the ALM
AGL	-	Above Ground Level
AL	-	A-Weighted Sound Level, expressed in decibels (See L_A)
ALM	-	Maximum A-weighted Sound Level, expressed in decibels (see L _{AN})
ALCX	-	Maximum A-weighted Sound Level Corrected using complex procedure
AL _C s	-	Maximum A-weighted Level corrected using aimplified procedures
ALAM	-	As measured maximum A-weighted Level
ALT	-	Aircraft altitude above the microphone location
ALTR	-	Reference Altitude - reference height of aircraft
ALTT	-	Test Altitude - actual height of aircraft directly over noise measurement site
ATM	-	Standard day atmospheric correction
BRC	-	Best Rate of Climb
с	-	Speed of Sound
Ca	-	When used as subscript on refers to distance and Mach number corrected levels
CPA	-	Closest Point of Approach
CR	•	Correction Ratio
dB	-	Decibel
d BA	-	A-Weighted Sound Level expressed in units of decibels (see A_L)

xi

17.8 **19**72...

df	u	Degree of freedom
đ	-	Distance
d ₅₀	-	Distance from brake release to clear a 50° (15.4m) obstacle
Δ	-	Delta, or Change in Value
Δ1	-	Correction term obtained by correcting SPL values for atmospheric absorption and flight track deviations per FAR 36, Amendment 9, Appendix A, Section A36.11, Paragraph d
△2	-	Correction term accounting for changes in event duration with deviations from the reference flight path
EPNL	-	Effective Perceived Noise Level (symbol is ^L EPN)
EV	-	Event, test run number
FAA	-	Federal Aviation Administration
FAR	-	Federal Aviation Regulation
FAR-36	-	Federal Aviation Regulation, Part 36
GA	-	General Aviation
GLR	-	Graphic Level Recorder
LAS	-	Indicated Airspeed
K(A)	-	Propagation constant describing the change in dBA with distance
K(DUR)	-	The constant used to correct SEL for distance and velocity duration effects in $\triangle 2$
K(S)	ui	Propagation constant describing the change in SEL with distance
K(M) _A	-	Mach Number correction constant for AL
K(M) _S	-	Mach Number correction constant for SEL

xii

K(P) _A	-	Power correction constant for the AL
K(P) _S	⊾	Power correction for SEL
Kts	≡ i	Knots
LA	-	Symbol for A-Weighted Sound Level expressed in decibels (see AL)
LAcx	-	Symbol for Maximum A-weighted Sound Level corrected using complex procedure
LAE	-	Symbol for Sound Exposure Level expressed in decibels (see SEL)
LAECS	=	Symbol for Sound Exposure Level corrected with simplified procedure
LAECX	-	Symbol for Sound Exposure Level corrected with complex procedures
LAEAM	-	Symbol for As measured Sound Exposure Level
LAM	-	Symbol for maximum A-weighted Sound Level expressed in decibels (See ALM)
LAM(am)		Symbol for as measured Maximum A-weighted Sound Level expressed in decibels
^L AM(am) Leq	-	Symbol for as measured Maximum A-weighted Sound Level expressed in decibels Symbol for Equivalent Sound Level
LAM(am) Leq LFO	-	Symbol for as measured Maximum A-weighted Sound Level expressed in decibels Symbol for Equivalent Sound Level Level Flyover operational mode
LAM(am) Leq LFO MH	- -	Symbol for as measured Maximum A-weighted Sound Level expressed in decibels Symbol for Equivalent Sound Level Level Flyover operational mode Helical Tip Mach number
LAM(am) Leq LFO M _H M _H (T)	- - -	Symbol for as measured Maximum A-weighted Sound Level expressed in decibels Symbol for Equivalent Sound Level Level Flyover operational mode Helical Tip Mach number Test helical tip Mach number
LAM(am) Leq LFO M _H M _H (T) M _H (R)		Symbol for as measured Maximum A-weighted Sound Level expressed in decibels Symbol for Equivalent Sound Level Level Flyover operational mode Helical Tip Mach number Test helical tip Mach number Reference helical tip Mach number
LAM(am) Leq LFO M _H M _H (T) M _H (R) MTOGW		Symbol for as measured Maximum A-weighted Sound Level expressed in decibels Symbol for Equivalent Sound Level Level Flyover operational mode Helical Tip Mach number Test helical tip Mach number Reference helical tip Mach number Maximum Takeoff Gross Weight
LAM(am) Leq LFO M _H M _H (T) M _H (R) MTOGW N		Symbol for as measured Maximum A-weighted Sound Level expressed in decibels Symbol for Equivalent Sound Level Level Flyover operational mode Helical Tip Mach number Test helical tip Mach number Reference helical tip Mach number Maximum Takeoff Gross Weight Sample Size
LAM(am) Leq LFO M _H M _H (T) M _H (R) MTOGW N P _R		Symbol for as measured Maximum A-weighted Sound Level expressed in decibels Symbol for Equivalent Sound Level Level Flyover operational mode Helical Tip Mach number Test helical tip Mach number Reference helical tip Mach number Maximum Takeoff Gross Weight Sample Size Reference engine power
LAM(am) Leq LFO M _H M _H (T) M _H (R) MTOGW N P _R P _T		Symbol for as measured Maximum A-weighted Sound Level expressed in decibels Symbol for Equivalent Sound Level Level Flyover operational mode Helical Tip Mach number Test helical tip Mach number Reference helical tip Mach number Maximum Takeoff Gross Weight Sample Size Reference engine power Test engine power
LAM(am) Leq LFO M _H M _H (T) M _H (R) MTOGW N P _R P _T Q	- - - - -	Symbol for as measured Maximum A-weighted Sound Level expressed in decibels Symbol for Equivalent Sound Level Level Flyover operational mode Helical Tip Mach number Test helical tip Mach number Reference helical tip Mach number Maximum Takeoff Gross Weight Sample Size Reference engine power Test engine power
LAM(am) Leq LFO M _H M _H (T) M _H (R) MTOGW N PR PT Q RH		Symbol for as measured Maximum A-weighted Sound Level expressed in decibels Symbol for Equivalent Sound Level Level Flyover operational mode Helical Tip Mach number Test helical tip Mach number Reference helical tip Mach number Maximum Takeoff Gross Weight Sample Size Reference engine power Test engine power Time history "shape factor" Relative Humidity in percent

xiii

SD	-	Standard Deviation
SEL	-	Sound Exposure Level expressed in decibels. The integration of the AL time history, normalized to 1 second (symbol is L_{AE})
SELAM	-	As measured Sound Exposure Level
SELCX	-	Sound Exposure Level corrected with complex procedures
SELCS	-	Sound Exposure Level corrected with simplified procedure
SELFC	*	Fully corrected SEL value
Sph	-	Correction added to the 1/3 octave band value to adjust for spherical spreading
SPL	-	Sound Pressure Level
SR	-	Distance from the noise source to receiver
Т	-	Ten-dB-down duration time
T/ 0	=	Takeoff
v	-	Velocity
٧y	-	Velocity for best rate of climb
v _R	=	Rotational Velocity
٧ _T	82	Translational Velocity
Vg	-	Ground speed
V _{IAS}	=	Indicated Air Speed
æi	F	Atmospheric absorption coefficient for the i-th 1/3 octave Sound Pressure Level
≪°1	-	SAE ARP-866A absorption coefficient for the i-th $1/3$ octave band for the reference conditions of 59°F (15°C) and 707 RH

xiv

Executive Summary of Findings

1. For the aircraft, groundspeeds, and altitudes tested, a strong correlation is observed between SEL and ALM. ALM and SEL are linearly related, with a coefficient of determination (R^2) of 0.965.

I. a noise certification scheme the use of ALM is substantially simpler and more direct than SEL because:

- a. there is no need for tracking information, which is required to measure ground speed;
- b. measurement instrumentation is far less sophisticated;
- c. corrections for off-reference test conditions are simpler and less time-consuming; and
- d. fewer corrections are required.

Based on these observations, it is reasonable to consider use of ALM as the noise evaluation measure for a takeoff noise certification procedure. 2. For ratios of test altitude to reference altitude from 1.2 to 0.8, a comparisons of two methods (i.e., a "simplified" and a "complex) for correcting nonreference altitudes and nonstandard atmospheric absorption resulted in an average difference of only 0.2 dB between the two methods. It is concluded that the less complex correction method is quite acceptable. Using the "simplified" procedure, measured noise levels (ALM) may be corrected for altitude by algebraically adding an increment equal to:

 $Delta-1 = 22 \log (ALT_T/ALT_R) dB.$

3. The results of the helical tip Mach Number $(M_{\rm H})$ correlation study suggest that no single function should be universally applied. Test results show that functions for the aircraft tested lie between 20 and 150 times $\log (M_{\rm H(R)}/M_{\rm H(T)})$. However, the method of application as a correction function minimizes the net difference in correction value, since, in most cases, the $M_{\rm H(R)}/M_{\rm H(T)}$ was very close to 1.0. On the average there was less than a 1 percent difference over the range of coefficients, primarily due to warmer than standard day temperatures.

4. Test results reveal a range of values for the power correction constant $K(P)_A$ between 2 and 30, with an average $K(P)_A = 17$. The relationship $\Delta = K(P)_A \log (P_{(R)}/P_{(T)})$ db is considered a reasonable correction factor for estimating change in noise level with engine power. 5. Pilots participating in the FAA tests flew within 5 kts, of the reference airspeed.

6. In most cases (11 of 18) the altitude correction ratios (ALT_T/ALT_R) for the test aircraft lie within the limits of 0.7 and 1.4. In a number of cases an unusually high correction ratio is observed, generally associated with winds aloft and/or light weight.

7. Linear and logarithmic regression analyses of noise level versus maximum gross takeoff weight failed to reveal any significant trends for the general population of aircraft tested. Subsequent analyses using sub-ground populations made no significant improvement.

8. Pilots participating in the FAA test reported difficulty in maintaing the reference heading due to their inability to see the ground while in the climbout flight regime. Typically each pilot would make practice flights

until receiving radio confirmation from ground observers verifying the proper flight track. The pilot would then fly that compass heading for subsequent takeoff events. After having found the right compass heading, pilots typically deviated no more than ± 10 degrees from the zenith over the microphone location. 1.0 <u>Introduction</u> - During the Summer and Fall of 1982, the Federal Aviation Administration's Office of Environment and Energy, Noise Abatement Division, conducted an extensive propeller-driven aircraft noise measurement program at Dulles International Airport. This program was intended to obtain noise measurement data necessary for analysis of the proposed revision of ICAO Annex 16/FAA FAR Part 36, noise standards for certification of small (less than 12,500 lbs) propeller-driven aircraft.

ICAO and FAA noise standards prescribe procedures for noise certification of small propeller-driven airplanes. The standards require measurement of noise levels associated with 1000 ft (300m) level flyover at not less than the highest power in the normal operating range. The regulations also require application of a general performance correction. This correction considers climb performance capability and the associated effect on noise levels.

Suggested changes to Chapter 6 of ICAO Annex 16 and FAR Part 36 Appendix F would substitute a takeoff test for the current flyover test. Along with this change comes the need to develop reliable correction procedures for changes in noise level which accompany non-reference helical tip Mach Number, non-reference engine power levels, and nonreference altitudes.

In an effort to assess the proposed revision, takeoff noise measurements were made for 18 aircraft. Additional measurements for nine of these aircraft during level flyover provided sufficient data to examine the relationship of noise levels versus variations in helical tip Mach Number and engine power setting.

Table 1 presents selected physical attributes for each of the test aircraft, while Table 2 lists the reference takeoff performance characteristics for each airplane. The parameters shown in Table 2 are used for normalizing test measurement data to reference takeoff performance and meteorological conditions. TABLE 1.1

CENERAL AVIATION AINCRAFT SPECIFICATIONS 1952 NOISE TEST; DULLES INTERNATIONAL AIRPORT

· · · ·

ىرى بىر يەرىپەر يېزىغى بەر يەرىپ

			Engine(s.					Prope	Iter				Sear
	(aban	Max Cont	Prop Shaft	Manifold Brass/T	Number Enefore	Engine	Air Tataka	Medal 1	į	- Ma		13	Firsd/
	Tance	(total)						-					
Cesana 180	Continental 0-470-L	230hp	2550	27.5	-	piston	normaily aspirated	McCaulsy	2	82. Z	VAF	0.8	-
Archer II PA-28 181	Lycoming 0-360	180hp	2700	fixed pitch	-	piston	normally aspirated	Sensenich	8		fired	35.0*	•
Turbo ArrowIV PA28RT 201T	Continental TSI0-360	200hp	2575	-14	-	pliston	turbocharged	Hartsoll	m	76.	784	35.4	e
Toeohavk PA-36-112	Lycoming 0-235	112hp	2356	fixed pitch	-	piston	mormaily aspirated	Seasen1 : h	7	22	fised	34.0	-
Cessils 170	Continental 0-300C	145hp	2375	fixed pitch		platon	mormaily aspirated	Sensenich	2	76.	fired	36.0	•
King Air 200	TSA-41	850ehp	2000	2230 (Torque)	7	turboprop	compressor Jiages	Hertsell.	m	is 8	A R L	X .5	al.
Che yeane PA-42	P64 PT64-41	720ehp	2000	1985 (Torque)	7	turboprop	compressor stages	lert sel 1	m	*	ž	47.7*	a t
Chencellor C-414	Continental TS10-520	016	2700	39.5"	2	pleton	turbocharged	NcCeuley	-	76.5	Ì	4.7	-
laron 358-P	Continental TS10-520-45	325hp	5700	39.5"	7	platon	turbocharged	Hart sel 1	ŝ	-82	ž		-
Centurion C-210	Continental 10-520-L	300hp	2700	2	-	piston	normaily aspirated	NcCeuley	•	2	ř		-
Skylane C~132	Continentel 0-470	230hp	2400	31.	-	pietoa	norwelly aspirated	H c Cauley	~	79-	LI R	35.8	-
Skynauk C-172	Lycoming 0-320	160hp	2300	fixed		piston	sormaily aspirated	HcCauley	~	75	ł	36.07	•
Merlia 227-AT	Gerrett TPL-331-110	1000shp	1591	3301 (Torque)	7	turboprop	compressor stages	Dowt y-ilotal	•	106-	ž	57.0	-
Culfstrees Commenter 900	Gerrett TPL-331-5	712shp	191	1	2	turboprop	compr.sepr.	Desty-Netal	m	10,	ž	52.1'	=
Beech Duchess	Lycoming 0-360	160hp	27.00	-6 2	7	platon	normaily aspirated	Wartsell	7	76"	184	-0- R	-
Beech Bonanza/-36	Costinental 10-520	23 Shp	.100	5 62	-	piston	norwilly aspirated	NcCauley	n	5	VAF	33.5	-
Piper Navajo 350	Lycoming T10-540	340hp	2525	41 <u>-</u>	2	piston	turbocharged	Mart zel 1	m	2	I	+0.7	e f
Cessna Conquest I C-425	NW FT6A-112	4 SOhp	0061	1244 (Torque)	7	turboprop	conpressor stages	McCeuley	m	33.47	7		-

TABLE 1.2 Reference takeoff

CONDITIONS

	Max Gross	T/0 Ref	¢	Sea	Level Std Day	Climb	Refa
Aircraft	T/0 Wt (16s)	Mach No.	(יז)טלש	Vy (kt)	(feet per mini e)	(degrees)	Alt (ft)
Cessna 180	2800	.8271	1205	76	1100	8.2	1058
Archer II PA-28 181	2550	.7074	1860	76	735	5.5	658
Turbo Arrow IV PA28KT 201T	2900	.7789	1620	97	046	5.5	682
Tomohawk PA-38 112	1.080	. 6697	1460	70	718	80 V1	736
Cessna 170	2000	1317.	1850	77.3	760	5.6	699
King Air 200	12500	. 7932	2579	126	2450	11.1	1149
Cheyenne PA-42	11200	. 7645	3220	120	2400	4.11	1052
Chanceilor C414	6750	.8236	2592	108	1520	8.0	837
Baron B58-P	6200	.8413	2643	115	1475	7.3	759
Centurion C-210	3800	.8571	2030	98	950	5.5	643
Skylane C-182	3100	. 7529	1570	88.2	1040	6.7	827
Skyhawk C-172	2300	.6839	1625	76	700	5.2	650
Merlin 227-Af	14500	6959	3760	147.0	2330	9.1	752
Gulfstream Commander 900	10700	106 9.	1850	130	2840	12.4	1452
Beech Duchess	3900	. 8155	2119	97.5	1248	7.3	824
Beach BonanzaA-2	6 3400	.8564	2041	95	1036	6.2	717
Piper Navajo 350	7000	.8195	2780	101	1390	6.3	830
Cessna Conquest I r_k75	8200	.7151	2341	115	2027	10.0	1085

#8200 ft (2500m) from breke release

2.0 <u>Aircraft Operations: Reference Conditions</u> - For purposes of this series of tests, a reference ground track was defined as a line parallel to, and fifty feet west of the edge of Runway 36 at Dulles. The test program was structured to accommodate either a north or a south traffic flow.

2.1 <u>North Operations</u> - In the case of a northbound traffic flow, it was necessary to use a simulated takeoff procedure. Calculations were made to determine the ground location and altitude to intercept the climbout path. The resulting altitude achieved over the North measurement location (Site 2) theoretically would equal the reference takeoff altitude.
2.2 <u>South Operations</u> - In the case of southbound traffic flow, a full stop takeoff procedure was utilized with brake release at a point nominally 8200 feet (2500 meters) from the south measurement location (Site 1). The full stop takeoff procedure has been specified in the proposed noise certification test as follows:

First phase

- a. takeoff power shall be used from the brake release point to the point at which the height of 50 ft (15m) above the runway is reached.
- a constant takeoff configuration selected by the applicant shall be maintained throughout this first phase.

Second phase

- a. the beginning of the second phase corresponds to the end of the first phase.
- b. the aircraft shall be in the climb configuration with landing gear up, if retractable, and flap setting corresponding to normal climb throughout this second phase.

- c. the speed shall be the best rate of climb speed Vy.
- d. The maximum continuous power and RPN that can be delivered by the engine or engines in this flight condition shall be maintained throughout the second phase (unless a lower limiting power is established by the certificating authority,.

2.3 <u>Level Flyovers</u> - In both cases (north or south traffic flow), level flyover operations were conducted in concert with the normal traffic flow. In each level flyover test, target values were specified for altitude, propeller RPM, and engine power.

2.4 <u>Reference Mateorological Conditions for Calculating Reference Takeoff</u> <u>Altitudes</u> - the following paragraph, taken from the proposed takeoff noise certification standard, specifies reference meteorological conditions:

The airplane reference flight procedures shall be calculated under the following atmospheric conditions.

- a. sea level atmospheric pressure of 1013.25 hPa (1013.25mb);
- b. ambient air temperature of 15°C;
- c. relative humidity of 70 percent; and
- d. zero wind.

3.0 <u>Acoustical Data</u> - This section describes the procedures used in measurement, recording and reduction of acoustical data.

3.1 <u>Measurement Locations</u> - Two noise measurement sites were utilized during takeoff and level flyover conditions. The sites were located on the flight track centerline, 3000 feet (914m) epart on level ground with short clipped grass. The full-stop takeoff measurement site was approximately 9000 feet from the start of takeoff roll. In the case of full stop takeoff and in the case of flight path intercept takeoff, noise data were corrected to values which would be expected at a distance of 8200 feet from brake release. A schematic of the test array is shown in Figure 3.1.

3.2 <u>Measurement Instrument</u> - Each noise measurement site utilized two identical microphone-preamp systems situated 12" apart. The systems consisted of General Radio one-half inch electret microphones (1962-9610) driving General Radio P-42 Preamplifiers, with the microphones oriented for grazing incidence and mounted 4 feet (1.2m) above the ground. A three-inch windscreen covered each microphone. A 100-foot (30.5m) cable connected one microphone system with a General Radio 1988 Precision Integrating Sound Level Mater driving a Matrosonics Graphic Level Recorder (GLR). The other microphone system was connected by a 100-foot (30.5m) cable to a two-channel Nagra IV-SJ Magnetic Tape Recorder. Amplification was provided by Ithaco Model 451 Amplifier. Data were recorded simultaneously on both channels in the linear mode; however, on windy days, one channel was A-weighted in order to increase the signal-to-noise ratio. Measurement instrumentation schematics are shown in Figures 3.2 and 3.3.

3.3 <u>Noise Data/Data Reduction</u> - The 1988 system provided ALM, SEL, Equivalent Sound Level (Leq), and the duration of the integration. The 10-dB-down duration time was scaled from the Graphic Level Recorder time history charts. The data from the magnetic tape recorder system were processed using a General Radio 1995 1/3 octave rual time analyzer interfaced to a PDP 11/05 computer system. It provided ALM, SEL, 10-dB-down duration, time of ALM, one-third octave spectrum for ALM, and one-half second average AL values encompassing the entire 10-dB-down time history.

The 1988 systems were the primary measurement instruments and generated the data presented in the appendices of this report. The magnetic tape recorder systems were deployed selectively on a limited number of days at certain measurement sites. As explained in subsequent sections, the tape recorder systems were utilized for the express purpose of evaluating complex versus simplified data correction procedures to account for non-standard atmospheric absorption.

Summary tables of acoustical measurements data are provided in Appendix A (Takeoff) and Appendix B (Level Flyover).

FIGURE 3.1

1988/GLR Direct Read

Acoustical Measurement Instrumentation

FIGURE 3.2

Acoustical Measurement Instrumentation

4.0 <u>Meteorological Data</u> - On-site measurements were taken approximately every 1/2 hour using a sling-psychrometer to measure air temperature and relative humidity. Wind was monitored constantly using a three-cup anemometer.

The U.S. National Weather Service provided upper air observations from routine Radiosonde launchings at nearby Sterling, Virginia. FAA personnel also monitored the wind information provided by the Dulles Low-Level Wind Shear monitoring system.

A tabulation of meteorological data is provided in Appendix D of this report.

5.0 <u>Aircraft Position Data</u> - Aircraft position relative to the reference flight track and noise measurement sites was determined using three different techniques; radar, photoscaling and transit.

A brief description of each technique is provided below:

<u>Photo-Scaling</u> - 35mm photographs were taken of each aircraft as it passed over the noise site. Each image was measured and compared with an appropriate calibration photograph to determine altitude.

<u>Radar</u> - Aircraft position data were supplied, for some events, by a tracking radar system. A photograph of the radar system is shown in Figure 5.1.

<u>Transit</u> - A surveyor's transit was placed approximately 1500' (457m) abeam (east) of the primary noise site. The observer visually followed the target aircraft through the transit until the aircraft passed over the noise site (transit turret was blocked from moving beyond the noise site). An elevation reading was taken to determine the aircraft's altitude above the noise site. This method was included in the test program merely to evaluate its feasibility. None of the transit data was used in the analyses presented in this paper.

The three different measurement systems were used, in part, for the purpose of evaluating comparative performance and in part, to maintain back-up tracking capability. A comparative analysis is provided in sections which follow.

The aircraft position data used in level flyover analyses (see Appendix B) were primarily from the photo-scaling systems while radar data were primarily used in evaluating takeoff noise data (see Appendix A). This methodology reflects the timing and sequence of data analysis as well as delays encountered in developing radar data reduction software.

6.0 <u>Cockpit Instrument Readings</u> - Cockpit data were logged by an FAA observer for each noise run when the aircraft was approximately over the (proposed) noise certification measurement location. These data were essential for developing and (in the case of takeoff), applying propeller tip speed corrections and power corrections. A tabulation of the acquired cockpit data is presented in Appendix C.

A REAL PROPERTY AND INCOME.

.

7.0 <u>Propagation</u> - This section of the report utilizes takeoff noise data from test runs in which aircraft position data were available at both measurement sites. An implicit assumption is that the acoustical emission characteristics of the test aircraft remain constant over the 3000 feet between sites.

7.1 Intensity metric: Propagation Effects - In the case of the intensity metric, maximum A-weighted Sound Level, the primary considerations are spherical spreading and Atmospheric absorption. Adjustment for these factors is referred to as the Delta-1 correction. The Delta-1 process involves application of the spreading law plus absorption to each of the 24 one-third octave Sound Pressure Levels between 44 Hz and 11,200 Hz. The correction for most atmospheres and most spectra is given in simplified format as:

 $\Delta_1 = K(A) \log \left(\frac{d_1}{d_2}\right) dB$

where K(A) is greater than 20 and generally less than 27.

7.2 <u>Energy Metric: Propagation Effects</u> - In the case of the energy metric, SEL, one observes the same losses described above plus the effects of duration. In the example below we consider only distance-duration effects, assuming no change in ground speed. The change in SEL with distance can be written as:

$$\Delta = K(A) \log ({}^{d}1/{}_{d_2}) + K(D) \log ({}^{d}2/{}_{d_1})$$

or

 $\Delta = (K(A) - K(D)) \log (d^{1}/d_{2})$

By defining (K(A) - K(D)) = K(S), the SEL propagation constant, one can write:

 $\Delta = K(S) \log (d^{1}/d_{2})$

In summary, the object of this study is to determine empirical values of K(A) and K(S) using takeoff noice measurement data.

7.3 <u>Results</u> - A total of 30 individual takeoff noise events (encompassing six different aircraft types) have been examined. If all data are grouped as a single population, the following overall averages result:

	N	Propagation Constant	u-	90% C.I.	90% C.I. Range for True Value of "K"
K(A)	31	21.1	4.9	1.5	22.6 to 19.6
K(S)	30	15.0	3.4	1.07	16.1 to 13.9

It is seen that a much greater uncertainty exists in the estimate of X(S), while the K(A) estimate appears reasonable within the context of applicable theory. As seen in the next sub-section, the K(A) estimate is largely corroborated by other similar studies.

7.4 <u>Examination of Other Test Data</u> - This section uses values of Delta-1 computed in previous noise tests to determine comparison values of K(A). Using available information the following calculation was made.

 $K(A) = [Delta-1] + \log [d_1/d_2]$

Each value of Delta-1 used in this analysis contains three components. The first term accounts for the effects of change in atmospheric sound absorption between actual and reference atmospheres. The second term accounts for the effects of atmospheric sound absorption on the change in sound propagation path length between actual and reference flight path. The third term accounts for the effects of the inverse square law on the change in the sound propagation path length.
The following values of K(A) were obtained using this method for a number of previous helicopter and general aviation aircraft noise tests as described below:

- a. K(A) = 24.38, S.D. = 2.7, Sample size 23 for seven general aviation aircraft tested in 1978.¹
- b. K(A) = 21.7, S.D. = 0.6, Sample size 15 for four helicopters tested in 1979.²
- c. K(A) = 23.3, S.D. = 4.0, Sample size = 30 for eight helicopters tested in 1978.³

7.5 <u>Diccussion</u> - The method of determining K(A) in this paper is strictly empirical, depending entirely on measured data. The comparison technique using previously reported data employs computed values of Delta-1. These computed values are in turn dependent on the accuracy of Society of Automative Engineers Aerospace Recommended Practice -866A.⁴ While the two techniques are not strictly comparable, they both provide a means for evaluating propagation decay rate. When considered together they point to the similarity of the results and lead to the conclusion that for small propeller-driven aircraft, the appropriate value of K(A) fails between 20 and 24.

Since experimental values of K(A) determined from the summer 1982 tests are slightly over 20, it can be concluded that there is little absorption taking place. This is not surprising since the test aircraft produce sounds dominant in the low frequency range (i.e., <260 Hz). It is worthwhile to note that some changes in acoustical emission characteristics probably take place between two sites which may account for some of the variability.

8.0 <u>Comparison of Simplified and Complex Procedures for Considering the</u> <u>Effects of Atmospheric Absorption and Spherical Spreading</u> - the new ICAO proposal would substitute takeoff noise measurements for the current level flyover measurement requirement. This proposal would also incorporate some form of combined atmospheric absorption and spherical spreading correction similar to that outlined in Annex 16/FAR Part 36 Appendix A. This complex correction is referred to as "Delta-1". One option is a "simplified" correction concept for atmospheric absorption. In this section simplified values are calculated and compared with those of the more complex Delta-1 correction procedure to determine the magnitude and significances of the differences.

8.1 <u>Analytical Process</u> - Computer software was developed at the FAA's Noise Lab for use in this test. One such program accepts noise, position, and weather data, calculates corrections, and computes the desired metrics. These metrics are described below:

1. <u>Determination of As-Measured ALM</u> - Using the spectrum of the half-second sample producing the maximum noise level, provided by the "1995" system, this software applies A-weighting constants (unless A-weighting was applied during the test) to each 1/3 octave band sound pressure level and computes the A-weighted value.

 $L_{AM} = 10 \log \left[\sum_{i=1}^{24} \left[\text{ANTILOG} \left[\frac{\text{SPL}_{i} + [A-Wt]}{10} \right] \right]_{M} (EQUATION 1) \right]$ 2. Determination of Complex Correction AL (AL_{CX}) - This program

calculates "corrected" A-weighted value as it does ALM. However, in this case the program also computes, for each 1/3 octave band, corrections which are added to the A-weighted SPL's to adjust for effects associated with differences between test and reference conditions.

$$L_{ACX} = 10x \log \left[\sum_{i=1}^{24} \left[\text{ANTILOG} \left[\frac{\text{SPL}_{i} + [A-WL]_{i} + ATM_{i} + ABS_{i} + SPB_{i}}{10} \right] \right] \quad (EQUATION 2)$$

The corrections applied (ATM₁, ABS₁, SPH₁) in the above equation are defined as follows:

ATM represents the standard day atmospheric correction for a particular 1/3 octave band

$$ATM_{1} = ((\alpha_{1} - \alpha_{1})/1000') (ALT_{T})$$

NOTE: q_1 : is the SAE-ARP-866A⁴ absorption coefficient for the i-th

1/3 octave band for test day temperature and relative humidity. *C. i: is the SAE-ARP-866A absorption coefficient for the i-th 1/3 octave band for the reference conditions of 59°F (15°C) and 70% RH. All data have been analyzed using the 77°F, 70% RH reference conditions as well as the 59°F, 70% RH reference values. Although only the 59°F, 70% RH results are reported herein, the 77°F, 70% RH values are nearly identical.

ALT_T: Test altitude

ALT_p: Reference altitude

ABS₁: is the atmospheric absorption correction applied to each 1/3 octave band of the ALM spectrum.

$ABS_{1} = (e_{01}/1000')(ALT_{T}-ALT_{R})$

SPH₁: is the correction added to the 1/3 octave band value to adjust for spherical spreading.

$$SPH_1 = 20 \log (ALT_T/ALT_R)$$

This correction strictly parallels the "Delta-1" correction process contained in FAR Part 36 and ICAO Annex 16.

3. <u>Determination of Simplified Corrected ALM (AL_{CS})</u> - To "correct the ALM value using the proposed simplified technique, this program adds as a correction factor the product of a constant (24) and the log of the ratio between the test and reference altitudes.

 $LA_{CS} = L_{AM} + 24 \log (ALT_T/ALT_R)$ (EQUATION 3) NOTE: The value 24 has been derived from previous empirical studies of noise propagation characteristics. For further discussion please refer to Section 12.5.

4. <u>"As Measured" Sound Exposure Level (SEL_{AM}) - The A-weighted values</u> for each half-second sample (provided by the "1995" system) were used to compute the "as measured" SEL.

 $L_{AE_{AM}} = 10 \log \left[\sum_{i=1}^{n} ANTILOG \left[L_{A_{1}} / 10 \right] \right] - 3dB$ (EQUATION 4) NOTE: The correction of 3 dB normalizes the value to a one-second base.

5. <u>Complex Corrected Sound Exposure Level (SEL_{CX})</u> - The "corrected" SEL was calculated by adding to the AL_{CX} values an "as measured" duration correction (SEL_{AM}-AL_{AM}) along with an altitude duration correction, 7 log (ALT_R/ALT_T). In this analysis it is essumed that test and reference velocities are equal.

 $L_{AE_{CX}} = LA_{CX} + (L_{AE_{AH}} - L_{AM(am)}) + 7 \log (ALT_R/ALT_T)$ (EQUATION 5)

6. <u>Simplified Corrected Sound Exposure Level (SEL</u>_{CS}) - The simplified version for determining a corrected SEL is the same as the SEL_{CV} procedure, except the value AL_{CX} is replaced with the value AL_{CX}

 $L_{AECS} = L_{A_S} + (L_{AE_{AM}} - L_{AM} + 7 \log (ALT_R/ALT_T) (EQUATION 6)$

NOTE: Use of the constant 7 in the above equations (5 and 6), rather than the value of 10, was found to provide a better fit to the test data. (see Section 9.2).

8.2 <u>A Parametric Analysis of Complex versus Simplified Differences</u> - The "Delta-1" process described above incorporates corrections for the influence of non-reference temperature and relative humidity operating over some finite "Correction Ratio", the test altitude divided by the reference altitude (ALT_T/ALT_R) . As discussed in later sections the "Altitude is observed to be approximately equal to the "Closest Point of Approach". Therefore, in subsequent discussion the correction ratio is defined as CPA_T/CPA_R). This chapter attempts to explore the differences between simplified and complex correction procedures taking into account the three variables 1) temperature, 2) relative humidity, and 3) correction ratio.

This analysis uses takeoff noise spectra for test aircraft measured over a wide range of temperature (T) and relative humidity (RH) conditions.

For each spectrum acquired at a given T, RH, and test altitude, the following corrections are developed:

1. Correct to 77°,70% using simplified procedures for a series of reference altitudes resulting in Correction Ratios (CR) which span the range 0.5 to 1.5.

2. Correct to 77",70% over the same CR range using the complex procedures.

Having exercised both the complex and simplified techniques over the dimensions T,RH,CR, for a variety of representative aircraft spectra, we have plotted the differences in figure 8.1-8.10. It is observed that the complex-minus-simplified differences increase as the CR diverges from 1.0 (as one might expect), with the complex procedure yielding greater corrections (resulting in higher corrected noise levels) when CR is less than 1.0 (CPA_T less than CPA_R). When the CR is greater than 1.0 the simplified technique yields a higher correction value resulting in a lower corrected noise level. In both cases one will find a higher corrected noise level using complex procedures.

The magnitude of this difference, however, is small (generally less than 0.5 dB) with a CR range of 0.7-1.3. As long as allowable deviations from the reference flight path are restricted to CR range of 0.7-1.3, differences between the complex and simplified Delta-1 corrections are so small that the additional time and expense of generating complex correction values is unjustified.

8.3 <u>Atmospheric Absorption Variation with Temperature and Relative</u> <u>Humidity for Dominant One-Third Octave Bands</u>. - This analysis examines which one-third octave sound pressure levels dominate the A-weighted acoustical spectrum for each aircraft. A summary of dominant and second highest bands is presented in Tabel 8-1 for typical takeoff and level flyover noise events for test aircraft. As these bands are the most influential in determining the maximum A-weighted sound level their sensitivity to atmcspheric absorption is an important indicator of the need for the more rigorous "Delta-1" correction process.

. ..

A CONTRACT OF A CO

Having established the dominant bands one can now examine the sensitivity to absorption by inspecting Table 8-2 which provides rates of absorption for the standard acoustical day (77°F,70%) and five other T-RH combinations which encompass a realistic test condition window. In cases where a significant difference (ldB/1000°) exists between the 77°F,70% rate of absorption and a selected test condition, one would expect to see greater sensitivity to atmospheric absorption in the correction process and perhaps a greater need for the complex correction procedure. Accordingly, one would expect to see a greater difference between the results of complex and simplified correction procedures. In cases where very little difference exists between reference and test rates of absorption then the need for complex procedures is diminished and one would expect good agreement between complex and simplified procedures.

This is in fact the case observed for almost all of the aircraft tested with the exception of the Duchess and Archer II which are dominated by acoustical energy in the 1 kHz to 2 kHz range.

TABLE 8-1

A-WEIGHTED ACOUSTICAL SPECTRA

DOMINANT ONE-THIRD OCTAVE BANDS

		TAKEOFF		LEVEL	FLYOVER	
AIRCRAFT TYPE	NO. 1 FREQ (Hz)	NO. 2 FREQ (Hz)	dB DOWN	NO. 1 FREQ (Hz)	NO. 2 FREQ (Hz)	dB DOWN
CESSNA 170	125	315	0.9	125	315	3.3
TURBOW ARROW IV	250	400	0.2	250	125	1.0
TOMOHAWK	160	315	2.3	160	315	1.0
KING AIR 200	400	315	2.3	500	400	1.1
CESSNA 414	125	630	3.6	125	250	6.5
PIPER CHEYENNE	200	315	1.7	315	100	3.8
BARON 58P	400	630	1.6	250	400	2.0
CESSNA 210	800	1000	0.5			
CESSNA 182	125	250	10.3			
CESSNA 172	160	315	2.3			
MERLIN 227AT	20	125	1.8			
GULFSTREAM 900	160	315	8.7			
DUCHESS	1000	800	0.5			
ARCHER II	2000	2500	0.5			
CESSNA 441	200	315	1.8	315	250	3.5
NAVAJO 350	125	400	2.7			
BONANZA A-36	400	250	1.24			
CESSNA 180	315	500	0.4	125	400	1.96

6.344

zueren hen eta

TABLE 8.2

Ç

ATMOSPHERIC ABSORPTION FOR SELECTED TEMPERATURES AND RELATIVE HUMIDITY

(dB/1000 ft.)

FREQUENCY (Hz)	77°F 70%	36°F 607	36°F 95%	45°F 30%	65°F 50%	95°F 20%	95°F 90%
50	0.1	0.1	0.1	0.1	0.1	0.1	0.1
63	0.1	0.1	0.1	0.1	0.1	0.1	0.1
80	_0.1	0.1	0.1	0.1	0.1	0.2	0.2
100	0.2	0.1	0.1	0.1	0.2	C.2	0.2
125	0.2	0.1	0.1	0.1	0.2	0.3	0.3
160	0.3	0.2	0.2	0.2	0.2	0.3	0.3
200	0.3	0.2	0.2	0.3	0.3	0.4	0.4
250	0.4	0.3	0.3	0.4	0.4	0.5	0.5
315	0.6	0.4	0.4	0.5	0.5	0.7	0.7
400	0.7	0,5	0.5	0.8	0.6	0.9	0.9
500	0.9	0.7	0.6	1.1	0.8	1.1	1.1
630	1.1	0.9	0.7	1.5	1.0	1.3	1.3
800	1.4	1.3	0.9	2.2	1.2	1.7	1.7
1000	1.8	1.9	1.3	3.1	1.6	2.2	2.2
1250	2.2	2.7	1.7	4.3	2.0	2.7	2.7
1600	2.9	3.9	2.4	6.2	2.6	3.5	3.5
2000	3.6	5.6	3.4	8.5	3.4	4.7	4.4
2500	4.6	7.8	4.8	11.7	4.6	6.2	5.5
3150	5.9	11.1	7.0	16.4	6.3	8.6	7.1
4000	7.6	16.0	10.2	21_6	9.1		9.1
5000	8.7	19.0	12.2	24.3	10.9	14.7	10.4
6300	11.0	25.9	17.3	30.1	15.4	20.7	13.2
8000	14.9	36.6	25.0	37.4	22.7	30.5	17.2
10000	20.6	52.0	36.1	45.4	33.1	44.2	22.7

a the

وأأبا والاعتر المغشمين ورحال

9.0 <u>Analysis of Duration Correction Procedures</u> - Originally, the proposed metric for evaluating takeoff noise was the Sound Exposure Level, abbreviated SEL (symbol, L_{AE}). This metric considers not only the intensity but also the duration of the noise event. This section develops an empirical approach to evaluating changes in SEL with changes in event duration associated with non-reference testing. However, in light of recent conclusions favoring the use of ALM rather than SEL for certification purposes, this discussion can now be considered moot.

9.1 Establishing the Relationship Between 10-dB Duration Time and

<u>Aircraft-to-Observer Distance</u> - In order to develop this relationship it was necessary to utilize takeoff data. In this flight condition it is assumed that acoustical emission characteristics of the aircraft are nominally the same as the aircraft passes over the two measurement locations. As the two sites were separated by 3000 feet, the aircraft altitudes differed significantly. Table 9.1 depicts the results of correlation analyses between distance and duration. The high average correlation coefficient indicates that a change in distance is accompanied by a proportional change in duration. These results are consistent with theory and substantiate the assumptions inherent in the ICAO Annex 16, Distance Duration Correction Adjustment (Δ 2) procedure.

9.2 Establishing an Empirical Relationship Between SEL, AL, and 10-dB Duration Time - In order to investigate this relationship an empirical formula was developed, $L_{AF} = L_A + K(D) \times \log (T)$ and evaluated using measurement data. For selected noise events the "duration constant"

K(D) was determined. Table 9.2 is a summary of these results. As the table shows, the values are consistently between 5.7 and 7.2 with the overall average of 6.5. This suggests that the appropriate value should be somewhere in this range. These results are generally consistent with the findings of Reference 2 in which a nominal duration constant K(D) of 7.0 was observed.

This similiarity of results has led to the decision to adopt a duration constant of 7.0 as the appropriate value for duration corrections in this study.

NOTE: It is worthwhile to note that on May 13, 1983, the ICAO Committee on Aircraft Noise formally endorsed a value of 7.5 as the duration correction constant for use in aircraft noise certification and noise impact assessment.

9.3 <u>Summary of Observations/Conclusion</u>

- a. Change in distance is proportional to change in 10-dB down duration time.
- b. $L_{AE} = L_A + 7 \log [Duration Time].$ c. Duration Correction = 7 log $\begin{bmatrix} DUR_1 \\ DUR_2 \end{bmatrix}$

d. Distance Duration Correction = 7 log $\left[\frac{\text{Dist}_1}{\text{Dist}_2}\right]$

e. Assuming that the same physics which govern change in duration with change in distance apply to changes in velocity then the expression $\Delta L_{AE} = 7 \log \left[(Vg_{(T)}/Vg_{(R)}) \right]$ (where $Vg_{(T)}$ is test speed and $Vg_{(R)}$ is reference ground speed) would be appropriate for establishing the velocity duration correction adjustments.

TABLE 9.1

2

1

CORRELATION BETWEEN DISTANCE AND 10dB DOWN DURATION TIME

AIRCRAFT	TEST DATE	R	N
C-180	6-3	•943	4
C-170	6-23	.859	3
PA-38	8-10	-858	7
KING AIR 200	8-31	.956	6
C-414	9–14	.946	6
BEECH 58-P	9–28	•963	2
		R = .92	1

43

tanta a parte la Contacta de la casta de la contracta de América.

TABLE 9.2

K(DUR) SUMMARY SHEET

AIRCRAFT	TEST DATE	AVG K(DUR)	SAMPLE SIZE
CESSNA 170	6-23-82	7.04	10
Turbow ARROW	7-13-82	6.48	8
KING AIR 200	8-31-82	5.70	7
CESSNA 210	10-5-82	6.3	6
PIPER NAVAJO	10-20-82	7.2	6

AVG K(DUR) = 6.5

ana ar

15412597

10.0 <u>Development of Propeller Tip Mach Number Correction Functions</u> - This section describes the procedures employed in developing propeller tip Mach Number corrections along with derived correction functions formine test aircraft.

When noise measurement tests are conducted under conditions other than those specified as reference test conditions, corrections are required to account for the resulting changes in the measured noise levels.

There are two categories of factors which significantly influence the noise levels of small propeller-driven aircraft and give rise to the need for corrections: 1) test flight procedures and 2) non-standard environmental conditions.

10.1 Influences on Helical Tip Mach Number - Figure 10.1 shows a schematic representative of the factors which influence helical tip Mach Number (M_H) and aircraft power. It is seen that in determining the M_H of an aircraft, one has to consider such influences as outside air temperature, propeller RPM, and indicated airspeed (V_{TAS}) .

In general terms, the higher the Mach Number, the higher the noise levels produced. The following equations show the relationship of RPM, V_{IAS} , and air temperature in determining aircraft helical tip Mach Number.

(1)
$$M_{H} = \left(\frac{V_{R}^{2} + V_{T}^{2}}{c}\right)^{1/2}$$
 $V_{T} = V_{IAS}$ (kts.) x 1.689
(2) where $V_{R} = \frac{Prop \ Dis. \ (in) \ x \ RPM}{229.18}$
(3) c = 49.02 x (T°F + 459.67)^{1/2}

While temperature is an environmental influence, RPM and airspeed are influences governed by test flight procedures. It should be noted that usually the contribution of V_{τ} (translational velocity) is small in determining the

~

CAUSES OF VARIATION OF AIRCRAFT PERFORMANCE

CATEGORY #1 PILOT TEST FLIGHT PROCEDURES

CATEGORY #2 ENVIRONMENTAL CONDITIONS

INFLUENCES ON HELICAL TIP MACH NO. AND ENGINE POWER SETTING

FIGURE 10.1

Mach Number, while the dominant components of Mach Number are the variables V_R (rotational velocity) and C (speed of sound). This shows that both test flight procedures and environmental conditions can affect the noise levels produced, due primarily to an increase or decrease in helical tip Mach Number. 10.2 <u>Removing the Influence of Other Factors</u> - To identify the variation of noise level with Mach Number, the test program included a selected group of flights for which power was held constant while the Mach Number was varied by varying propeller RPM and airspeed.

The first step involves normalizing all variables within the data set except the variable of interest $(M_{\rm H})$. This is accomplished by correcting the "As Measured" metrics for spherical spreading, absorption, and duration differences associated with deviations from a reference altitude of 500 ft.

The intensity metric, AL, was corrected for spherical spreading and atmospheric absorption using the following equation:

 $L_A = L_A$ (As Measured) + 24 log $\frac{ALT_T}{ALT_R}$

where:

 ALT_{T} = measured test altitude.

 ALT_{R} = reference altitude (typically 500 ft).

The constant 24 accounts for spherical spreading and atmospheric absorption.

(NOTE: Upon analysis of the test data, this constant was found to be closer to the value of 22 as discussed in Section 7.0).

The energy metric, SEL, was corrected for spreading, absorption, distanceduration and velocity-duration effects using the following equation:

 $L_{AE} \sim L_{AE}$ (As Measured) + 17 log $\frac{ALT_T}{ALT_R}$ + 7 log $\frac{V_B}{V_y}$

where: Vg = ground speed determined by radar or consideration of airspeed from cockpit data logs along with radiosonde upper air wind data. Vy = speed for best rate of climb which is the reference speed for a takeoff operation.

The constant 17 accounts for spreading, absorption and distance-duration and the constant 7 accounts for velocity-duration.

10.3 <u>Determination of Noise Level - ^MH Relationships</u> - At this point the noise levels have been corrected for all influences except aircraft Mach Number and power setting.

It was assumed that Mach Number is related to noise level in either a linear or logarithmic fashion. The following relationships provide the appropriate mathematical models used in regression analyses.

 $L_{A} = K(M)_{A} \log (M_{H}) + b \qquad \text{or } L_{A} = K(M)_{A} \times (M_{H}) + b$ $L_{AE} = K(M)_{S} \log (M_{H}) + b \qquad L_{AE} = K(M)_{S} \times (M_{H}) + b$

where $K(M)_A$ and $K(M)_S$ represent the slopes and b represents the y-intercepts of the relationships. Each equation is developed for a specific power setting, and airspeed, depicting variation of noise levels with Mach Number.

The constants $K(M)_A$ and $K(M)_S$ are used in the following manner to correct for influence of M_H variation on noise levels.

$$L_{Aam} = L_{Ac} + K(M)_{A} \log \frac{M_{H}(R)}{M_{H}(T)}$$
$$L_{AEcm} = L_{AEc} + K(M)_{S} \log \frac{M_{H}(R)}{M_{H}(T)}$$

where L_{AC} and L_{AEC} are the "as-measured" noise metrics corrected for distance and duration. The subscription "cm" refers to distance and duration corrected as well as Mach Number corrected noise levels. TABLE 10-1

SUMMARY

\mathbf{A}_{L} v. BASE 10 LOGARITHM OF HELICAL TIP MACH NUMBER

AIRCRAFT	EQUATION	ĸ	ZPWR	M _H rance
c-170	Ŀ _A = 70.2 log M _H + 86.4	16.	1	.5673
PA-38	$L_{A} = 75.8 \log M_{H} + 83.6$.95	ł	.6168
PA-28	$L_{A} = 148.2 \log M_{H} + 92.2$.93	75	.7484
	L _A = 114.8 log M _H + 88.0	.70	55	.6975
c-180	L _A = 126.6 logM _H + 91.5	.90	75	•79 - •84
	L _A = 105.2 log ^{M_H} + 87.6	•85	50	.7178
KARON 58P	L _A = 143.6 log M _H + 95.4	•95	67	.7286
C-414	L _A = 148.9 logM _H + 95.6	.71	89	.8084
	L _A = 85.8 log M _H + 89.2	.79	75	.7183
	L _A = 69.5 log M _H + 83.7	.61	52	.6875
KING AIR200	L _A = 53.7 log M _H + 89.0	.79	85	.7484
PA-42	L _A = 76.6 log M _H + 91.8	.92	85	.7282
CONQUEST 441	L _A = 21.5 log M _H + 82.1	.36	06	.6876

- Structures

0.00

10.4 <u>Noise-Mach Number Relationships</u> - Table 10-1 represents the results of regression analyses relating AL to the Base 10 logarithm of helical tip Mach Number. The correlation coefficient is displayed along with the equation for the line of regression, percent power (for the sample population) and $M_{\rm H}$ range. Table 10-2 provides the corresponding results for linear regression analyses of AL versus Mach Number.

Table 10-3 and 10-4 present comparable analyses for the SEL metric. 10.5 <u>Discussion</u> - The first, and most obvious conclusion is that a negligible difference exists between results of linear and log-linear regression of noise level versus Mach Number. Further, results suggest that no single function can be universally applied. It is observed that functions for the aircraft tested lie between 20 log $M_{\rm H}$ and 150 log $M_{\rm H}$. However, the method of application as a correction function minimizes the net difference in correction value: $M_{\rm H}$ forr. = k log ($M_{\rm H}$ ref/ $M_{\rm H}$ test). For a $M_{\rm H}$ ratio of 1.001, (0.1 percent) the difference between 20 log ($M_{\rm H}$ ratio) and 150 log ($M_{\rm H}$ ratio) is only .05 dB. For a 1 percent ratio the difference increases to .56 dB and for a 10 percent ratio the difference with acceptable window limits it would be possible to arrive at a 1.4 percent deviation in $M_{\rm H}$ due to low/high temperature ani/or RPM deviations.

In the absence of suitable level flyover data from which to derive a unique M_H function it may be reasonable (in a conservative sense) to permit correction using the most sensitive function, 150 log M_H when M_H test is less than M_H ref. This will relieve the applicant from the

TABLE 10-2

VALABAUX

AL VS. HELICAL TIP MACH NUMBER

LINEAR RECRESSION

AIRCRAFT	EQUATION	24	ZPUR	NH RANGE
C-170	L _A = 48.06 M _H + 16.95	-95	ł	.5673
PA-36	L _A = 51.44 M _H + 11.64	16.	I	.6168
PA-28	$L_{A} = 84.5 M_{H} + -7.77$.93	75	. 7484
	L _A = 69.96 M _H + 1.05	11.	55	.6975
C-180	L _A 58.04 4 _H + 17.96	.87	75	. 7984
	$L_{A} = 61.40 M_{H} + 9.92$.85	20	.7178
MARON 58P	$L_{A} = 78.79 M_{H} + 2.32$	96.	67	.7286
C-414	L _A = 79.26 M _H + 3.11	.71	89	.8084
	$L_{A} = 48.83 M_{H} + 23.55$	-80	75	.7183
	L _A = 50.30 M _H + 16.21	.65	52	.6875
KING AIR200	$L_{A} = 29.79 M_{H} + 43.18$.80	85	.7484
PA-421	ī _A = 43.12 _{Мн} + 31.06	.93	100	.7282
CONQUEST 441	$L_{A} = 11.86 M_{H} + 49.71$.35	8	.6876

.

TABLE 10-3

SUMMARY

SEL V. BASE 10 LOCARITHM OF HELICAL TIP MACH NUMBER

AIRCRAFT	EQUATION	24	ZPWR	M _H RANGE
c-170	L _{AZ} = 40.7 log M _H + 87.2	0.72	ı	.5673
PA-38	LAE = 72.9 log M + 90.5	0.88	1	.6168
PA-28	LAE = 112.5 log M _H + 92.4	0.98	75	.7485
	$L_{AE} = 58.4 \log M_{H}^{1} + 86.5$	0.42	55	.6975
C-180	L _{AE} = 75.1 log M _H + 92.2	-84	75	.7984
	L _{AE} = 80.4 log M _H + 90.6	*8 •	50	.7178
BARON 58P	LAE = 88.9 log M _H + 95.3	.88	67	.7286
C-414	$L_{AE} = 122 \log M_{H} + 97.6$.72	68	. 80 – .84
	LAE ~ 43.9 log M _H + 89.4	.69	75	.7183
	LAE = 40.9 log M _H + 86.5	.58	52	.6875
KING AIR200	LAE = 34.8 log M _H + 90.2	-47	85	.7484
PA-42	LAE = 52.1 log M _H + 92.3	-87	85	.7282
CONQUEST I	LAE = 13.9 log M _H + 85.0	.26	06	.6876

*BOTE - SEL BECOMES LAE

TABLE 10-4 SUBBARY

SEL VS. HELICAL TIP MACH NUMBER

	TURNER AND A STREET	RECRESSION		
AIRCRAFT	RQUATION	*	ZPHR	^M ⁱ I. I. I.
c-170	LAE = 22.8 M _H + 38.54	.61	1	57 2 2.
PA-38	LAE = 52.92 M _H + 15.73	-94	•	.6168
PA-28	LAE = 62.4 M _H + 12.6	86.	75	. 7485
	$L_{AE} = 35.9 M_{H} + 30.2$.43	S	
C-150	LAE = 40.00 M _H + 37.13	\$.	75	48 61.
	$L_{AE} = 46.97 M_{H} + 25.45$	8 .	20	.7176
AARON 56P	LAE = 48.90 M _H + 30.44	.88	67	.7286
775	LAE = 67.22 M _H + 16.59	.74	68	.8084
	LAE = 25.03 M _H + 45.77	.70	75	.7163
	$L_{AE} = 29.26 M_{H} + 36.15$.62	52	.6875
KING AIR200	LAE = 19.45 MH + 53.84	.48	85	.7484
PA-42	LAE = 29.52 M _H + 44.05	.88	100	.7282
CONQUEST I	$L_{AW} = 7.16 M_{H} + 56.09$	7.	8	.6876

burden of additional testing and analysis, while providing motivation to be on target with performance parameters. Any deviations from reference M_H due to test temperature variation higher than reference temperature can also be accounted for using the 150 log M_H relationship. Additional testing should be required to derive a unique M_H function for a particular aircraft when the test M_H is higher than reference M_H as would occur in the case of low temperature testing. 11.0 <u>Development of Engine Power Correction Functions</u> - This section describes the analytical procedures employed in developing engine power corrections along with the correction values derived for test aircraft. 11.1 <u>Influences on Engine Power</u> - Aircraft power level is another performance parameter that can have a significant contribution in determining aircraft noise levels. In Figure 10.2 we see that power is a function of temperature, barometric pressure and engine manifold pressure (or torque).

Temperature and barometric pressure fall into Category 2 (environmental conditions) influencing (thermodynamically) the internal combustion process. Engine manifold pressure (or torque) setting can be placed in Category 1, affected by test procedures.

Horsepower is related to temperature as follows:

H.P.
$$=\sqrt{\frac{460 + 59^{\circ}F}{460 + T^{\circ}F}}$$

This equation provides approximately one percent correction for each 10°F variation from 59°F.

In the case of pressure/density effects, a simplified but reasonable approach is to assume that horsepower changes are directly related to changes in density ratio (pressure ratio).

The values can be obtained from typical standard atmosphere tables.

11.2 <u>Analytical Methodology</u> - Two different schemes were employed (as required) in developing Power Correction relationships: 1) using data runs that have the same Mach Number, a constant is derived which relates the change in AL to the log of the power ratio; 2) when two constant-power, noise versus log ($M_{\rm H}$) functions overlap, a common Mach Number was evaluated and the change in AL was determined, from which the power correction constant was derived. These two methods are shown in the following example. Example (Power correction constant determination)

Method 1: Data with same Mach No.

Deta

75% 50% 50% $L_{AC} = \frac{55.4}{85.4} dB$ $L_{AEC} = \frac{55.4}{85.4} dB$ $L_{AEC} = \frac{56.5}{100} dB$ $L_{AEC} = \frac{56.5}{100} dB$ $L_{AEC} = \frac{56.5}{100} dB$ $V_{S} = 166.4 \text{ mph}$ $V_{S} = 166.4 \text{ mph}$ $V_{S} = 139.7 \text{ mph}$ $\Delta L_{A} = L_{A} 75\% - L_{A} 50\% = K(P)_{A} \log \frac{P1}{P2}$ $= 85.4 - 82.3 = K(P)_{A} \log \frac{75\%}{50\%}$ $K(P)_{A} = 17.60$

In the case of SEL we must make certain that we consider the effects of velocity on the noise levels, at two different power settings. Therefore, we will normalize the SEL at 50% to the ground speed of the 75% power level, as follows:

SEL(50% normalized to 75% pwr Vg) = ${}^{L}_{AE = 50\%}$ + 7 log <u>139.7</u> = 86.9 + (-.53) = 86.4

Then proceed as above

 $\Delta L_{AE} = L_{AE75X} - L_{AE50Xnorm} = k(P)_{S} \log \frac{P1}{P2}$ = 88.4 - 86.4 = K(P)_{S} \log \frac{75X}{50X} K(P)_{S} = 11.4

NOTE: Vg above is the average ground speed for the runs used in the analysis at the particular power setting.

Mathod 2: Identify two constant power (noise versus log Mg) functions where the Mach numbers are the same.

Data

 $L_{A} = 148.87 \log (M_{H}) + 95.64$

 $L_{AE} = 122.17 \log (M_{H}) + 97.67$

75% pwr

Common Mach Number = .83

 $L_{A} = 85.82 \log (M_{H}) + 89.16$

 $L_{AE} = 43.93 \log (M_{H}) + 89.13$

Substitute the common Mach Number into each of the above equations and solving yields:

897 pwr	75% pwr
L _A = 83.6	L _A = 82.2
L _{AE} = 87.8	L _{AE} = 85.9

Vg - 156.3 mph

Hence now we can derive a power correction constant for AL as in Method 1, as follows:

 $\Delta L_{A} = L_{A} 89\chi - L_{A} 75\chi = K(P)_{A} \log \frac{P1}{P2}$ $83.6 - 82.2 = K(P)_{A} \log (89/75)$ $K(P)_{A} = 18.8$

Again as in Method 1 in correction SEL for power differences, the effects of velocity on the noise levels at different power settings must considered. Hence, normalize the 89% SEL down to the 75% pwr setting as follows:

 L_{AE892} normalized to = L_{AE892} + 7 log <u>170.5</u> 752 Vg = 156.3 156.3

= 87.8 + .26 = 88.1

and the state of the second second
Then we proceed to calculate a correction constant for SEL as before.

$$L_{AE} = L_{AE_{89}Xnorm} - L_{AE_{75}X} = K(P)_{S} \log\left(\frac{P1}{P2}\right)$$

88.1 - 85.9 = K(P)_{S} \log\left(\frac{89}{75}\right)
K(P)_{S} - 29.6

The resulting power correction equations are as follows:

$${}^{L}A_{FC} = {}^{L}A_{mc} + K(P)_{A} \log\left[\frac{P1}{P_{REF}}\right]$$
$${}^{L}AE_{FC} = {}^{L}AE_{mc} + K(P)_{S} \log\left[\frac{P1}{P_{REF}}\right]$$

where P, is the actual test power.

11.3 <u>Results</u> - Tables 11-1 and 11-2 show the derived relationships between AL (and SEL) and the base ten logarithm of the power ratios respectively for 7 of the 9 aircraft tested. The reference $M_{\rm H}$ and power ratio are identified for each equation. In the case of the Cessna 170 and the Piper PA-38 (fixed pitch propeller) the power and $M_{\rm H}$ vary simultaneously, thus a single relationship is adequate, reflecting both of these influences (see Section 10.0).

11.4 <u>Discussion</u> - In the case of $K(P)_{\underline{k}}$ power correction constants, once again there is a wide range of values. The range 1.5 to 39.3 has a central tendency toward a value of 17. The method of deriving these values is acutely sensitive to the measured and corrected difference in sound levels between the two power settings. Thus a 0.6 dB change in the difference between noise levels for two different powers (i.e., 1.2 dB rather than 1.8 dB) can result in a difference in $K(P)_{\underline{A}}$ of nearly 8 for a power ratio of (90/75):

22.7 = 1.8/log (90/75)

15.2 <u>s</u> 1.2/log (90/75)

Viewed within this experimental context, the variation in $K(P)_A$ is better understood.

k (

While this analysis is by no means definitive, the selection of the average observed $K(P)_A$, = 17 is proposed as an interim factor to be used in adjusting for non-reference engine power. The constant is recommended as applicable to all engine/exhaust combinations.

TABLE 11-1 SUMMARY

TABLE 11-2

1

SUMMARY

SEL VARIATION WITH BASE 10 LOGARITHM OF POWER RATIO

AIRCRAFT	EQUATION	POWER RANGE Z	м ^н
C-170		ŧ	1
PA-38	1	ı	I
PA-28	L _{AE} = 1.6 log (100/75)	100-75	.79
	L _{AE} = 9.9 log (75/55)	75-55	.735
C-180	L _{AE} . = 10.4 log (100/75)	100-75	.85
	L _{AE} = 17 log (75/50)	75-50	.78
BARON 58P	L _{AE} = 13.4 log (97/75)	7567	48.
	L _{AE} = 11.4 log (75/50)	7550	48.
CESSNA 414	L _{AE} = 29.6 log (89/75)	`89-75	.83
	L _{AE} = 21.4 log (75/52)	75-52	.72
KING AIR 200	L _{AE} = 16.9 log (95/71)	95-71	.81
	L _{AE} = 5.6 log (71/47)	71-47	.78
PA-4.2	L _{AE} = 30.7 log (100/75)	100~75	.77
	L _{AE} = 12.2 log (75/50)	75-50	.76
conquest 1	L _{AE} = 30.6 log (100/90)	100-90	.77
	L _{AE} = 13.9 log (90/75)	9:2-75	.76

12.0 <u>Fully Corrected Takeoff Noise Data and a Description of the</u> <u>Correction Process</u> - Fully corrected takeoff noise levels are presented in Table 12-1 for both SEL and ALM computed for the 18 GA aircraft participating in the aircraft noise measurement program. The 90 percent confidence interval is also displayed for each aircraft along with sample size. All noise levels have been corrected to account for nonreference altitude, velocity, Mach Number and power associated with actual takeoff operations.

12.1 <u>The Need for Corrections</u> - When noise measurement tests are conducted under conditions outside those specified as <u>reference test conditions</u> corrections are required to account for the resulting influence on the measured noise level.

12.2 <u>Reference Test Conditions</u> - The measured noise data obtained during the noise measurement tests conducted by the FAA in the summer and fall of 1982 were corrected to the following reference atmospheric conditions;

a. sea level atmospheric pressure of 1013.24 hPa (1013.25),

b. ambient air temperature of 15°C(ISA),

c. relative humidity of 70 percent; and

d. zero wind.

Note: The acoustic reference day conditions are the same as the airplane reference flight conditions except that the ambient air temperature shall be 25°C (ISA + 10°C).

12.3 <u>Reference Test Parameters</u> - In addition to these "primary" reference conditions it was necessary to compute three test parameter reference values, based on the reference atmospheric conditions.

62

1.50,500 1.00,000

TABLE 12-1

AIRCRAFT	Mgtow	SEL fc	90% C.I.	N	AIM fc	90% C.I.	N	
C-180	2800	87.5	0.7	5	78.7	.6	5	
C-1170	2000	80.5	1.2	5	71.8	1.8	5	
PA-28	2900	82.6	0.7	10	76.5	.9	10	
PA-38	1680	80.0	0.5	5	69.9	0.8	5	
KING AIR	12,500	86.0	0.5	7	80.0	.8	7	
PA-42	11,200	87.1	0.7	6	81.1	.7	6	
C-414	6750	88.6	1.1	6	82.4	1.1	6	
B58-P	6200	91.0	.4	7	84.8	.5	7	
C-210	3800	96.5	0.9	6	92.C	1.1	6	
C-182	3100	80.4	1.1	6	72.4	.2	6	
C-172	2300	83.0	0.3	6	74.1	.5	6	
MERLIN	14,500	85.3	0.3	6	80.6	.5	6	
COMMANDER 900	10,700	79.3	0.5	6	70.9	.6	6	
DUCHESS	3900	91.6	0.4	7	84.5	.5	7	
ARCHER	2550	87.3	0.7	6	78.5	.9	6	
BONANZA	3400	93.2	0.3	7	87.3	.5	6	
NAVAJO	7000	94.1	0.3	7	87.9	.5	7	
C-425	8200	80.7	0.6	7	72.7	.5	7	

FULLY CORRECTED TAKEOFF NOISE LEVEL

1. <u>Speed of Sound</u> - The reference speed of sound (c) used to compute the reference Mach No. was computed using the formula $(T^*F + 459.67)^{1/2} \times$ 49.02. The reference temperature of 59°F yields the value for c of 1116.4 feet per second

2. <u>Reference Helical Tip Mach Number</u> - The reference helical tip Mach Number for each aircraft was computed using the specified propeller diameter and rpm along with the manufacturers specification of speed for best rate of climb (Vy) at sea level and at 59°F.

3. <u>Reference Altitude</u> - The reference altitude was computed for 8200 ft. (2500m) from brake release point (BRP) using the formula $(50 + (8200 - D_{50}) \times Tan 0)$. The distance to reach 50 ft. in altitude (D_{50}) was obtained from the manufacturer's specification for each aircraft tested. In each case, the climb angle 0 was computed using the reference value for Vy and best rate of climb specified in the pilot operating handbook. 12.4 <u>Corrections Involving Deviations from Reference Altitude</u>. Initially, it is helpful to define three terms intimately involved and sometimes confused in considering position deviations.

Closest Point of Approach (CPA) : The distance where a 90-degree angle exists between the aircraft flight path and a ray between the aircraft and the microphone.

- Slant Range (SR): The distance between the aircraft and the microphone at the time maximum noise level is recorded
- Altitude (ALT) : The distance between the aircraft and the microphone at the point where the aircraft is directly overhead (assuming no lateral deviation).

For the test conducted in the FAA noise measurement program, the "as measured" noise values were corrected for spherical spreading, absorption and distance duration using <u>altitude position data</u> as opposed to CFA or Slant Range.

This procedure may be considered a "simplified" method. Prior to using this technique, a careful evaluation was conducted of previous FAA propeller driven aircraft noise tests. It was observed that the CPA, SR, and ALT distances were so close that, from a practicable standpoint, any one of the three could be used as shown in the following synopsis.

A similar trend was also noted in a French technical report abstracted below.

"Measured DeBruit Prodvit Par Les Avions Legers AV Decollage"

Rapport D'eTude No. 283.

This report compares slant range and altitude position correction using the following formulas:

a. $S_{21} = 20 \log H/H_{ref}$ where: H = altitude

b. $S_{22} = 20 \log AB/AB_{ref}$ where: AB = slant range

 $S_{21} - S_{22}$ results in a mean average of 0.02 dB which suggests

that there is no significant difference between the two methods.

Report AEE-80-26 "Noise Levels and Data Correction Analysis for Seven

<u>General Aviation Propeller Aircraft</u>" - Tracking data were presented in this report in terms of the average "Acoustical Angle" or angle associated with the emission of ALM. Table 12-2 lists the aircraft tested, number of samples, and the mean and standard deviation of the acoustical angle. The distance from brake release is also provided. The individual mean acoustical angles range from 70° - 119° with an aggregate average of 88.1°. This translates to an average acoustical error of less than one tenth of a decibel.

TABLE 12-2

STATISTICAL ANALYSIS OF ACOUSTICAL ANGLE DATA

RPT. (REF. NO. 1) FAA-AEE-80-26, "NOISE LEVELS AND DATA CORRECTION ANALYSIS FOR SEVEN GENERAL AVIATION PROPELLER AIRCRAFT"

A/C TYPE	NO. SAMPLES*	MEAN ACOUST ANG	S.D. ACOUST ANG	MIC LOCAT
PIPER PA36 375	12	86.4	4.5	3896H(12781') from BRP
PIPER PA31 325	2	54.9	0	3896M(12781') from BRP
	œ	97.4	8.8	5296H(17375') from BRP
	2	93.8	0	5482H(19625') from BRP
CV 580	4	70.1	2.7	5115H(16781') from BRP
	8	82.2	5.6	6515M(21375') from BRP
CESSNA 421C	4	119.	17.3	5296K(17375') from BRP
	4	85.5	3.8	5982M(19625') from BRP
ROCKWELL 590B	4	89	2.3	5982H(19625') from BRP
ROCKWELL 500S	4	80.8	5.7	5296M(17375') from BKP
	8	82	16.6	5982H(19625') from BRP

*DEPARTURE EVENTS ONLY **ANGLE OF ALM DURING OVERFLIGHT

12.5 <u>Atmospheric Absorption and Spherical Spreading</u> - In this report, takeoff noise data were corrected for the effects of absorption and spreading by using a simplified technique. The analysis presented in Section 8.0 shows that the simplified technique is a reasonable correction methodology. The simplified method consists of the formula

 $\Delta AL = 24 \log (ALT_T/ALT_R)$, which was derived from previous studies of noise propagation characteristics.

12.6 <u>Mach Number Corrections</u> - Level Flyover data were used to derive the Mach Number Correction constants $K(M)_S$ and $K(M)_A$ for SEL and AL respectively for use in the following equation $\Delta dB = K \log (M_{H(R)}/M_{H(T)})$. The methodologies used in deriving these formulas (see Table 10.1 and 10.3) are discussed in Section 11.2. The results suggest that in order for the correction to be accurate the formula should be derived for each aircraft under study.

12.7 <u>Power Corrections</u> - The as measured noise levels AL (AL_{am}) and SEL (SEL_{am}), require a power correction (P-Corr) to account for the differential influences which accompany aircraft power variations due to nonreference environmental and test flight procedures. The first step in computing this correction is to compute the test day power. The formula used to compute the test day power (%pwr) is given as follows:

Percent Power = $\begin{bmatrix} 100 \times \sqrt{\frac{460 + 59^{\circ}F}{460 + T^{\circ}F}} & -21 \end{bmatrix}$

NOTE: The 2% is the power loss computed for the average altitude of 1000 ft AGL. This loss is not applicable to aircraft with a turboprop or a turbocharged engine.

The computed value is then substituted in the formula:

 $P-Corr = K(P)_A \log (100/%2Pwr)$

 $P-Corr = K(P)_{S} \log (100/%2Pwr)$

where: $K(P)_A$ and $K(P)_S$ are the constants derived from the formulas developed using level flyover data (see Table 11.1 and 11.2).

12.8 Distance - Duration Correction - The distance-duration correction accounts for the change in noise levels due to deviation of aircraft test altitude from reference altitude. The theoretical formula for this correction is $\Delta dB = 10 \log (ALT_R/ALT_T)$. However, after extensive analysis, it was observed that the empirical formula $\Delta dB = 7 \log (ALT_p/ALT_p)$ more accurately accounts for the effects of a change in duration with a change in d in Section 9.2. When this empirical formula is combined distance as dis. with the formula $\Delta dB = 24 \log (ALT_T/ALT_R)$ the equation $\Delta dB = 17 \log (ALT_T/ALT_R)$ is developed. This formula is used to correct the as-measured SEL value for spherical spreading, atmospheric absorption and distance-duration due to nonstandard environmental conditions and nonreference test flight procedures. 12.9 Velocity - Duration Correction - The theoretical equation utilized to correct for the difference in the test ground speed (Vg) and the speed for best rate of climb (Vy) is: $\Delta dB = 10 \log (Vg/Vy)$. However, the formula $\Delta dB = 7 \log (Vg/Vy)$ was used because the assumption was made that the same phenomena which govern a change in duration with a change in distance apply to a change in duration with a change in velocity. This concept is discussed in greater detail in Section 9.3.

12.10 Fully Corrected AL and SEL Equations - All the correction procedures discussed in previous sections are brought together to comprise the fully

corrected AL (AL fc) equation.

 $L_{Afc} = L_{Aam} + 24 \log (ALT_R/ALT_T) + Mach Corr + P-Corr$ The energy average metric SEL requires the same corrections as the intensity metric AL with the addition of (1) distance-duration and (2) velocity-duration corrections.

 $L_{AEfc} = L_{AEam} + 17 \log(ALT_R/ALT_T) + 7 \log(Vg/Vy) + Mach Corr + P-Corr$

13.0 <u>Correlation Between SEL and AL</u> - The purpose of this analysis is to examine the correlation between the intensity metric AL and the energy dose metric SEL, using fully corrected takeoff noise levels.

13.1 <u>Regression Analysis Results</u> - A linear regression of SEL vs ALM was performed (see Figure 13.1) which provided a R^2 (coefficient of determination) of .96 for the following relation:

 $L_{AE} = .81 \times (L_{AM}) + 22.26$

This provides the important capability (for test conditions with altitudes in the range of 4000 to 1600 ft and velocities in the range of 64 to 132 kts) to accurately estimate SEL from measured ALM noise level, and conversely ALM from measured SEL.

13.2 <u>Discussion</u> - Previous discussions within International Civil Aeronautical Organization indicated a preference for an energy-based noise evaluation measure for the proposed takeoff procedure, specifically the A-Weighted Sound Exposure Level, SEL. However, in light of the findings cited above it may be appropriate to consider use of maximum AL (ALM) which is a substantially simpler and more direct metric to acquire. Advantages of using the intensity (ALM) metric include:

- a. there is no need for tracking information, which is required to measure ground speed;
- b. measurement instrumentation is far less sophisticated;
- c. corrections for off-reference test conditions are simpler and less time-consuming; and
- d. fewer corrections are required.

Inasmuch as the two noise evaluation measures are highly correlated, so that either can be confidently determined from the other, and the observed 90% confidence intervals for the measured values of ALM were somewhat less the ose for SEL in our tests (contrary to previous intuition), it is recommended that the A-weighted maximum sound level, ALM, be used as the noise evaluation measure for any new takeoff noise certification procedure.

and a subscription of the subscription of the

And a state of the second state of the second state of the

14.0 <u>Summary of Other Available Noise Level Data Acquired Using the</u> <u>Proposed Certification Takeoff Noise Test</u> - This section provides a summary of results obtained from recent noise test programs conducted in Europe. British, German and French authorities were involved in assessing the proposed takeoff noise certification format. These data are presented here in order to expand the population of aircraft used in assessing the implications of the proposed revision. Table 14.1 presents pertinent information available from each report. REFERENCE TAKEOFF CONDITIONS.

AIRCRAFT	MGTOW (1bs)	D ₅₀ (ft)	Vy(kts)	BRC(fpm)	CLIMB ANGLE	REFERENCE ALT (FT)	ALM	90% C.I.	RFF #
Sportavia-Putzer RF-5	1433.0	1712.6	59.4	590.5	5.6 ⁰	364.2	74.5	.38	Ś
Robin DR 300-180	2204.6	1952.1	81.0	984.2	6.90	406.8	74.8	.16	5
Cessna 207A	3800.7	1870.1	81.0	905.5	6.30	360.9	83.6	.33	Ś
Cessna 340	5974.5	2401.5	87.1	1496	10.5	397.0	83.1	57	2
Beech 65 B90	9645.1	2260.5	1.001	1948.3	10.2	528.8	80.0	73	2
R 2160	1763.1	1453.4	78.2	925.2	6.7	705.4	74.1	.4	و
HR 100-250	3086.4	2427.8	94.4	984.2	5.9	928.1	78.7	.7	و
C 310R	5500.5	1837.2	106.8	1578.7	8.4	579.8	80.6	.5	9
110ST	1697.5	1345.1	75.5	629.9	4.7	825.1	71.2		و
TB 10	2535.3	1778 2	72 R	750.0	5.8	651.6	75.6	ĥ.	و
TB 20	2943.1	1673.2	91.7	1240.1	7.7	973.1	80.5	.2	9
Jet Stream	14,550	NA	123.3	NA	NA	NA	72.3	NA	٢
Skywan	<u>12 500</u>	NA	NA	NA	ЫA	NA	82.3	NA	8
Islander	6600	NA	NA	NA	NA	NA	72.9	NA	6
Firecracker	2840	1230	104	1380	7.5	NA	70.9	NA	10

*NA - Not Available

TABLE 14.1

15.0 <u>GA Regression Analysis</u> - The purpose of this analysis is to determine if there exists a well defined relationship between aircraft noise levels, SEL and ALM, and the base 10 logarithm of gross weight.

To examine this hypothesis numerous linear and logarithmic regression analyses were performed for four different populations: 1) single engine pistons, 2) twin engine pistons, 3) twin engine turboprops and 4) all the aircraft tested.

Table 15-1 shows the results of this analysis for FAA data only. Figures15.1 and 15.2 provide scatter plots of the noise metrics SEL and ALM versus the logarithm of maximum gross takeoff weight (MGTOW) for the various aircraft types.

Table 15-2 shows the results of this analysis with each population increased using data (ALM only) available from French, German, and British sources, referenced 5, 7, 8, 9, and 10 respectively.

It is seen in Tables 15-1 and 15-2 that this hypothesis seems somewhat reliable for single engine piston aircraft, since Table 15-1 shows an R^2 (coefficient of determination) of 0.65 and 0.55 for the metrics ALM and SEL respectively, and Table 15-2 shows an κ^2 of 0.47 for the increased single engine piston population for the metric ALM.

In viewing the results of this analysis for the remaining populations, twin engine pistons, twin engine turboprops and the grouped population, it is evident from the low values of R^2 (coefficient of determination) that there is very little correlation between the noise metrics ALM and SEL

and the base 10 logarithm of gross weight.

While a dependency is evident, it is clear that other factors such as propeller tip Mach Number and engine exhaust configuration play prominent roles in establishing noise levels. Nevertheless the concept of regulating noise level as a function of weight remains viable as a means for balancing increased productivity (weight) versus increased allowable noise level.

ALM VERSUS GROSS WEIGHT

REGRESSION ANALYSIS

FAA DATA

		LINEAR			LOGARITH	MIC
	SINGLE	TWIN	IWIN TURBO	SINGLE	TWIN	TWIN TURBO
SLOPE	0.01	3.2x10 ⁻⁴	0.00	53.06	3.52	37.22
INTERCEPT	52.63	82.97	60.31	-103.73	71.64	-72.70
к ²	.71	.04	0.49	.65	0.03	.49
R	.84	.20	0.70	.81	0.18	.70
SAMPLE	9	4	5	9	4	5

TABLE 15-1

REGRESSION ANALYSIS

ALM VERSUS GROSS WEIGHT

FAA, FRENCH, GERMAN, BRITISH

	SINGLE	TWIN	TWIN TURBO	SINGLE	TWIN	TWIN TURBO
SLOPE	0.01	-4.4x10 ⁻⁴	4.18×10^{-4}	33.26	-7.11	12.82
INTERCEPT	60.54	84.98	72.72	-36.09	109.14	25.53
R ²	0.55	0.03	0.04	0.47	0.03	0.05
R	.74	0.16	0.20	0.69	0.10	0.23
SAMPLE	17	8	8	17	8	8

TABLE 15-2

77

The second s

LARRAL ARGUNT MOLT

16.0 <u>Equal Stringency Analysis</u> - The purpose of this analysis is to examine how the rank-ordering of aircraft already certificated using FAR 36 Appendix F, would be affected if the proposed revision of ICAO Annex 16 is adopted using a takeoff procedure.

The first number indicates the rank ordering using takeoff ALM and the second number represents the rank ordering using their FAR 36 certificated ALM levels. As this figure shows, there would be some change in the ranking of aircraft. This difference is accounted for in part by the fact that the FAR 36 ALM levels were obtained using level flyover data corrected for takeoff performance, whereas the levels for the takeoff procedures were obtained for actual takeoff operations. The remaining differences likely reflect intrinsic differences between acoustical emission characteristics for the level flyover and takeoff flight regimes. The maximum change in pattern is seven places as exhibited by the King Air, and the average change in position is 2.3 for this population.

A linear and logarithmic regression analysis was performed for this population yielding equations of the formula:

Linear

App F $L_{AM} = 0.47$ (Takeoff L_{AM}) + 37.22 with R² (coefficient of determination) = .66 for a sample of 17 GA Aircraft. Logarithmic

App F L_{AM} = 85.96 log (Takeoff L_{AM}) - 88.97 with R² (coefficient of determination) = .66 for a sample of 17 GA Aircraft. Conclusions: The relationship between FAR 36 Appendix F ALM versus takeoff ALM yields a respectable coefficient of determination R^2 of .66 for both linear and logarithmic regression analyses. This finding coupled with the fact that the average deviation in rank ordering is about 2 positions seems to suggest that certification using takeoff ALM noise levels would be roughly equivalent to certification using level flyover ALM corrected for performance.

NOTT: The first number indicates the rank ordering using takeoff ALM and the second number represents the rank ordering using the FAR 36 Appendix F certificated ALM levels. Level Flyover ALM versus Takeoff ALM 95. E^{C-210} -6-4 BONANZA NAVAJC 3,5 C C NAVAJC CB59-P 4,7 89 DUCHESS . 96 D C-414 6,6 83 D MERLIN DARCHER 8,8 11,9 D KING AIP. 9,2 ALM (FC) PA-42 D -8 n C-180 10,14 FIGURE 16.1 DPA-28 12,15 1-1c-172 13,10 4 C-441 D 14,12 C-182. 15,13 DPA-38 2 GULP-900 COMM D 16, 11 68 65 60+ 624 64--99 ŝ 801 78-76-74-70-72-**9**£ RAR .ХЧЧА ארא F

17.0 <u>Noise Certification "Test Windows</u>" - One of the objectives of the 1982 FAA General Aviation Noise Test program was to assess the impact of deviations from prescribed reference conditions. Another objective was to develop a logical structure of permissible deviations from reference test conditions, while quantifying the degree of confidence associated with any given correction procedure. The confidence one places in the correction procedure often plays a prominent role in defining boundaries of the "Test Window".

17.1 <u>Deviations from Reference Flight Path</u> - The subject of flight path deviations logically divides into separate discussions of vertical deviations and horizontal deviations.

17.1-2 <u>Vertical Deviations</u> - At the outset it is useful to review the probable causes associated with a vertical deviation from the reference takeoff flight path:

- 1. head wind (aloft)
- 2. non-standard day temperatures
- 3. non-reference weight
- 4. improper airspeed (not Vy)
- 5. high altitude testing

A second useful background tool is the concept of "correction ratio", defined herein as the ratio of the test altitude divided by the reference altitude. In Figure 17.1, the correction ratio is shown along the abscissa and corresponding decibel correction to ALM using the relationship $\Delta L_{AM} = 22 \log (Corr. Ratio)$. Using this figure one can select any given allowable correction value in decibels and compute the allowable deviation above and below the reference altitude (note the asymmetry). While this particular figure has been developed for 22 log (Corr. Ratio), a similar graph can be made for any other propagation constant. For the purpose of this discussion let us assume 1000' is the reference altitude (ALT_{REF}). For a 3 dB limit on the correction ratio we would allow a test window of 1368 feet to 730 feet, permitting 368 feet above or 270 feet below reference altitude.

Another useful perspective is gained by examining the performance of the 18 aircraft in the FAA 1982 test program. Table 17-1 shows that in many cases (12 of 18) the correction ratios lie within the nominal 3 dB ratio limits of 0.7 and 1.4. In a number of cases an unusually high correction ratio is observed, generally associated with winds aloft and/or light weight. From the data in Table I, it appears that, barring anomalous or incorrect testing conditions, a correction ratio window of 0.7 to 1.4 on vertical deviation is realistic and easily attainable.

The correction for non-standard altitude can be constrained (for reasons associated with the observed ability of pilots to perform), within the correction ratio range of 0.7 and 1.4. The limiting factor in this case does not appear to be the correction algorithm itself. In fact the 90% confidence interval on the use of K(A) = 21,

 $L_{AM} = K(A) \log (d_{1}/d_{2})$

is less than 0.5 dB.

17.1-2 <u>Lateral Deviation</u> - In the case of lateral deviation from reference ground track, one usually thinks in terms of degrees from zenith. In the case of a 1000-foot reference altitude we, observe the following lateral deviations as a function of deviation angle(s):

TABLE 17.1

and the second second

T/O CORRECTION(s) ANALYSIS

ſ		LALT	TALT.	2	ALTm/	1221og(ALTm /	
RCRAFT	N	R	-		ALTR	LTR/	
. 081	2	1058	1582.6		1.5	3.8	
170	S	6691	633.6		6.	-0.5	
-28	10	6821	619.1		6.	-0.9	
-38	8	736'	420.3		.6	-5.4	
IGAIR 200	7	9691	754.6		8.	-2.1	
42	9	1052*	587.5		.6	-5.6	
414	9	8361	901.8		1.1		
3-5	· ^	759'	521.5		.7	-3.6	
210	و	643'	761.9		1.2	1.6	
182	9	827*	835.2		1.0	.1	
72	9	650°	659.1		1.0	.1	
IL IN	6	762*	1136.9		1.5	3.9	
PSTREAM	9	1337'	1543.9		1.2	1,7	
CHESS	7	824	1421.1		1.7	5.2	
OLAU	7	676'	1343.6		2.0	6.6	
CHER	9	658'	1242.2		1.9	6.1	
NANZA	7	717'	1180.4		1.6	4.8	
141	~	1085'	1357.7		1.3	2.1	

are:

17.

35 C C C - C -

......

86

.

Deviation Angle 0 (Degrees)	Later_1 Deviation (Tan $\theta \ge 1000$), Feet
5	88
10	176
15	268
20	364
25	466
30	577

As a practical matter it was reported by pilots participating in the test that maintaining the reference heading was difficult due to their inability to see the ground while in the climbout flight regime. Typically each pilot would make practice flights until receiving radio confirmation from ground observers verifying the proper flight track. The pilot would then fly that compass heading for subsequent takeoff events. After having found the right compass heading, pilots typically deviated no more than ± 10 degrees from the zenith.

In establishing a boundary on lateral deviation, it is necessary to consider the effects of exhaust shielding and source directivity. As these effects are largely unquantified and differ from one aircraft to the next, it is deemed inappropriate to allow any unnecessary latitude in this parameter. These concerns, coupled with the known ability to fly repeatedly within ± 10 degrees, leads one to the conclusion that 10 degrees be prescribed as the maximum allowable lateral deviation angle.

17.2 <u>Deviations from Reference Airspeed</u> - Maintaining the proper airspeed is one of the most important aspects of the test procedure. Improper airspeed generally results in both a velocity duration correction and the need for an altitude adjustment. The airspeed is a parameter totally within the control of the pilot and governed by visual resolution of the instrument reading. Adherence of pilots participating in the FAA test was, in every case, within 5 kts of the reference airspeed, (see Table 17-2).

In view of observed pilot performance, a limitation of ± 5 kts is recommended as an appropriate test window. TABLE 17.2

T/O CORRECTION ANALYSIS

VELOCITY CORRECTION

					1/0 AUALYELS STOUND	corr assumed = 0										assume V corr = 0		
					NOTE no vcorr used in shore* speed missing	ksame as above i.e., V								*Note no ground speed	same as above	same as above	same as above	
																	•	
108 Vg/	-0.5	-0.3	-0.2	-0.1			-0.1	-0.2	-0.3	-0.1	0.1	-0.3	-0.4					-0.7
V ^g (Kts)	64.3	69.2	89.8	67.8			106.1	107.6	89 .4	84.0	78.2	132.5	118.3					91.4
Vv(Kts)	76	77.3	97	70	i26	120	108	115	98	88.2	76	147.5	135.0	97.5	101.0	76 • 0	95.0	115
N	5	5	10	8			6	۲.	7	6	6	6	6					7
AIRCRAFT	C-180	C-170	PA-28	PA-38	KINGAIR 200	PA-42	C-414	B58-P	C-210	C-182	C-172	MERLIN	GULFSTREAM 900	DUCHESS	OLAVAJO	ARCHER	BONANZA	C-441

NOTE: N = Vg sample size

17.3 <u>Deviations from Reference Helical Tip Nach Number</u> - The test belical tip Mach number (H_{H(T)}) may be non-reference due to any of the following influences =

- 1. non-standard day temperature
- 2. improper air speed (very minor influence)
- 3. improper test RPM

First, consider temperature effects, probably the greatest potential cause of off-reference $M_{\rm H}$. A few useful facts are provided below:

- Speed of Sound at $59^{\circ}F = 1116$ feet per second Speed of Sound at $95^{\circ}F = 1154$ feet per second Speed of Sound at $36^{\circ}F = 1091$ feet per second - $M_{H}(95) = 0.967 M_{H}(59)$, 3.3X above reference - $M_{H}(36) = 1.023 M_{H}(59)$, 2.3X below reference - $\Delta = K \log \frac{M_{H}(R)}{M_{H}(T)} dB$

- K is approximated as equal to 150

For a 36°F test day, one would need to subtract 3.2 dB from the measured data to arrive at a reference sound level, assuming $\Delta = 150 \log (M_{\rm H(R)}/M_{\rm H(T)})$. Conversely a value of 2.2 dB should be added to measured data on a 95°F day, using the same assumptions.

It is clear, that an arbitrary limit on the correction value in decibels will impose a restriction on the allowable test temperature window. This poses quite a predicament as the confidence associated with any generic correction function is generally very low. That is to say, a unique correction function appears necessary for each individual aircraft. This would, of course require a significantly greater amount of testing for each aircraft. In order to avoid or reduce the additional testing burden it may be feasible to establish the following scheme:

- 1. No limit on test temperature related M_H corrections
- 2. If the test temperature is greater than 59°F then \triangle = 150 log M_{H(R)}/M_{H(T)} may be used to correct.
- 3. If the test temperature is less than 59°F then a separate, and independent correction function must be developed.

A comparison is shown in Table 17-3 between test and reference $M_{\rm H}$ for the aircraft participating in the 1982 FAA test. It is observed that in most cases the $(M_{\rm H(R)}/M_{\rm H(T)})$ ratio is very close to 1.0. On the average there is less than a 1 percent error, primarily due to warmer than standard day temperatures.

TABLE 17.3

TAKEOFF CORRECTION ANALYSIS

MACH NO. CORRECTIONS

	l																	
171og/H(R) //H(T)	+0.1	+0.1.	+0.1	+0.1	+0.1	+0.1	+0.1	+0.1	+0.03	+0.1	+0.1	+ .3	02	+ .05	+0.1	0	+0.1	-
1501cgram	+1.1	+1.2	+0.8	+1.2	+0.3	6.0+	+0.5	10+7	+0.3	+0.5	+1.1	+2.5	-0.2	+0.5	+1.0	0	+0.5	ſ
ны (к) На (Г)	1.0	1.0	1.0	1.C	1.0	1.0	1.0	1-0	1.0	1-0	1.0	1.0	1.0	0.1	C•1	1.0	1.0	ç
M _{BT}	.813	.702	.769	.658	.789	.755	.818	.840	.853	.747	.673	.670	.692	.810	R08	.707	.631	202
Mag	.8271	217.	677.	.670	. 793	• 765	.824	.841	.857	. 753	.684	696	.690	.816	.820	.707	.857	715
-	9	8	н	•0	7	6	6	. 8	7	6	6	6	6	7	8	6	7	-
AIRCRAFT	c-180	c-170	PA-28	PA-36	KINGAIR 200	PA-42	C-414	158-2	C-210	C-162	c-172	NEXT.131	COL STREAM	DUCHESS	NAVAJO	ARCHER	BOWARZA	177-0

92

 $M_H(T)$ = Average of the takeoff Mach numbers.

and the second se

18.0 <u>Evaluation of Aircraft Position Determination Systems</u> - Three position determination systems were evaluated in the course of the measurement program. The first system was a 9.1 GHz primary radar unit which continuously tracked the test aircraft. The second system was a surveyers transit, set up perpendicular to the ground track at a distance of approximately 1500 feet opposite the microphone location. The third system involved a 35 millimeter SLR camera using slide film situated at the primary takeoff measurement location. While no great revelations were uncovered in comparing the three systems, a number of observations may be useful:

- The photographic system using slide projections was remarkably accurate and easy to use.
- Although the transit system is potentially prone to large operator error, with practice it constitutes an acceptable method for determining altitude. The transit operator also has the advantage of being able to calculate the altitude immediately.
- 3. The radar system, the only system capable of providing aircraft ground speed as one might expect, involves considerable expertise to operate and maintain.

Based on the above observations and the comparison of performance provided in Table 18-1 we arrive at the following recommendations:

- The photographic system is recommended as the primary measurement tool. This recommendation is consistent with selection of the <u>ALM</u> metric which does not require consideration of ground speed corrections.
- The transit method of position determination may be permitted, with certain cautions spelled out in regard to operator proficiency.
TABLE 18-1

......

F

MEASUREMENT SYSTE COMPARISON

	ADVANIAGES	DISADVANIAGES
TRANSIT	Inexpensive	Not capable of obtaining velocity and time data.
	Easily portable	Prone to large error in the hands of a novice
	Reasonable accuracy when used by a trained operator	
RADAR SYSTEM	Capable of obtaining ground speed and complete flight path characteristics. Capable of generating REAL TIME position feed back data	Expensive, complex, requires lengthy learning process, requires external power supply, involved data reduction process including software development.
PHOTOGRAPHIC SYSTEM	Inexpensive, easily portable, accurate	Not capable of obtaining velocity data.

12.17

References

- Ford, D. W. and E. J. Rickley, "Noise Levels and Dava Correction Analysis for Seven General Aviation Propeller Aircraft," Office of Environment and Energy, Federal Aviation Administration, Department of Transportation, Report No. FAA-EE-80-26, Washington, D.C. June 1980
- Newman, J. S., et al, "Helicopter Noise Definition Report UH-60A, S-76, A-109, 206-L," Office of Environment and Energy, Federal Aviation Administration, Department of Transportation, Report No. FAA-EE-81-16, Washington, D.C., December 1981
- Newman, J. S. and E. J. Rickley, "Noise Levels and Flight Profiles of Eight Helicopters Using Proposed International Certification Procedures," Office of Environment and Energy, Federal Aviation Administration, Department of Transportation, Report No. FAA-EE-79-03, Washington, D.C., March 1979
- 4. Anon, "Standard Values of Atmospheric Absorption As a Function of Temperature and Humidity, Proposed Reissue of SAE Aerospace Recommended Practice ARP 866," Prepared for the Society of Automotive Engineers Committee A-21, revised October 1973
- 5. Heller, H., et al, "Field Evaluation of the Newly Proposed ICAO Annex 16 Takeoff Noise Certification Procedure for Propeller-Driven Aeroplanes Not Exceeding 5700 KG," Report No. IB 128-82/9, DFVLR Technical Acoustics Division, Braunschweig, Germany, December 1982
- 6. Depitre, Alain (Redacteur), "Etude D'une Procedure de Mesure de Bruit Produit Par Les Avions Legers Au Decollage Niveaux Exprimes En Lax" (Measurement of Noise Produced by Light Aircraft on Takeoff), rapport d'etude No 293, Republique Franciase Ministre des Transports, Direction Generale de l'Aviation Civile, Service Technique de la Navigation, Paris, Francaise, December 1982
- 7. Hale, R. T. and K. C. Griffiths, "Propeller Aircraft Noise Trial, Results for the Jetstream Test," Acoustics Report 660, British Aerospace Aircraft Group, Weybridge-Bristol Division, Weybridge, Surrey, England, July 1982
- 8. Hale, R. T., "Propeller Aircraft Noise Trial, Results from Skyvan Test," Acoustics Report 634, British Aerospace Aircraft Group, Weybridge-Bristol Division, Weybridge, Surrey, England, July 1981
- 9. Hale, R. T., "Proller Aircraft Noise Trial, Results from Islander Test," Acoustics Report 635, British Aerospace Aircraft Group, Weybridge-Bristol Division, Weybridge, Surrey, England, January 1982
- 10. Hale, R.T., "Propeller Aircraft Noise Trial Results from Firecracker Test," Acoustics Report 633, British Aerospace Aircraft Group, Weybridge-Bristol Division, Weybridge, Surrey, England, April 1981

Appendix A: Takeoff Noise Data

This appendix contains as measured noise data along with other pertinent information used in arriving at fully corrected takeoff noise levels.

Abbreviations used in Appendix A

RPM:	Propeller RPM (revolutions per minute)
M _H :	Helical Tip Mach Number
GS:	Ground Speed expressed in knots
ALT _T :	Observed Test Altitude (Above Ground Level)
SEL :	As measured Sound Exposure Level
ALT _{corr} :	Correction to reference altitude
V _{corr} :	Correction to reference Velocity
M _{Hcorr} :	Correction to reference Mach Number
P _{corr} :	Correction to reference Power
SELfc:	Fully corrected Sound Exposure Level
AL :	As Measured A-weighted Sound Level
AL _{fo} :	Fully Corrected A-weighted Sound Level

APPENDIX A

TAKEOFF DATA

ANDLING

1.00

and the second se

TAKFOFF DATA

#1

SITE

AIRCRAFT C-180

TEST DATE 6-3-82

AL
SEL
A/C TEST DATA

	AL fc	78.6	77.6	78,9	79.4	78.9										
	P COLL	.3	.,3	.3	.3	.3									_	N dB
ЧЧ	M ^H COLL	6.	6.	6.	6,	6.										RESSED I
	ALTCOTT	4.9	2.7	4.2	4.9	3.5										UNITS EXP
	AL	72.5	73.7	73.5	73.3	74.2										*ALL
	SELfc	86.8	87.1	88.0	88.5	87.0										l dB
	PCOFT	.2	.2	.2	.2	.2										UESSED IN
	Macorr	.6	9.	9.	.6	.6										NITS EXPI
	Vcorr	3	- 8	6	5	4					·					*ALL U
	ALT C-JET	3.4	2.2	3.1	3.3	2.6										
	SEL _{an}	82.9	84.9	84.7	84.9	84.0										
	ALT (FT)	1680.2	1432.7	1617.0	1664.1	1519.2										
4	GS (KTS)	68.6	57.3	63.0	65.2	67.4										
1631 JA.	н	.813	.813	.813	.813	.813										
A/C	RPH	2550	2550	2550	2550	2550										
	EVENT	1	2	3	5	9										

• ••••

.

TABLE A-2

TAKEOPP DATA

			AL fc	77.8	9.17	76.5	76.7	71.8	77.0	76.8	<i>ī</i> 6.9	76.3	77.0							
			Pcort	0	٥	0	0	0	0	0	0	0	0							
	-13-82		Reorr	6	6	.6	.6	.6	.6	1.0	1.0	1.0	1.0							
	ATE		ALTCOLL	1.2	6.	.8	-1-1-	-1.5	5	-2.7	-2.3	-3.1	-2.3					-		
	TEST D		AL.am	76.0	77.0	75.1	77.2	72.7	76.9	78.5	78.2	78.4	78.3							
			SELfc	83.4	83.5	82.1	82.4	79.1	83.1	82	83.2	83.0	83.1							
			PCOFT	10.	-01	.01	-01	.01	.01	.02	.02	.02	.02			•				
ATA			HH COLL	٠5	-5	• 5	٠5	.5	.5	.8	.8	.8	.8							
INTERPER	5	SEL SEL	Vcorr	3	3	2	- 4	3	3	2	1	1	2		•					
•	ALIS		ALT	6.	.2	.6	1.8	3	5	-1.9	-1.6	-2.2	-1.6							
			SEL.am	82.2	83.0	81.1	83.0	79.9	83.1	84.4	84.0	84.3	84.0							
			ALT (FT	768.6	702.8	738.2	614.1	587.8	651.6	527.6	547.3	508.0	545							
	ALTOW IV		CS (KTS)	87.6	88,9	89.9	85.5	86.8	89.0	92.1	92.6	93.7	91.6							
	8 Turbo	TEST DA	F	.7714	.7714	.7714	.7714	.7714	.7714	.7661	.7661	.7661	.7661							
	LT PA-2		HAN	2575	2575	2575	2575	2450	2575	2575	2575	2575	2575							
	AIRCR		EVENT	-	2	3	4	5	7	14	15	16	17							

A-4	
TABLE	

TAKEOFF DATA

AIRCLAFT PA-38 TOMOHAWK

#2 ALIS

8-10-82 TEST DATE _

A/C TEST DATA	SEL	AL

		AL fc			6.9			ر <u>1</u>		<u>6</u>	21.3		RRA														ľ	•	
		PCOLL					0	0			0			T			T	Ť				ł					╏	+	
		HCOTT					ģ	y			6	Y		T			Ī	T				Ť				t	Ť	+	
		ALTCOTI			777			-0-4	,		2 0	0 0 1						T				T				T			
			7 09	с о <u>г</u>			70.4	70.0	0 07		d g	69.2						T	T			T	T				T	Ť	
	SPL-	-Ic		6 08				80. 4	70 5		B0 A	Z9.5		Ī	Ī			T	T	~			Ť				╞	╪	╡
	d	COLI	。	0	0	, , ,		•	0	e	,	0			T			Γ	T				Ť				Ť	Ť	Ť
	THE LEVE	-COIF	5	- 5			5	7	5			5			T				T					T	1		T	Ţ	Ť
S	N.	COLT		-03				-	3	ſ		2			T									Ť	1			t	╀
	PLT.	Hos	-	-0.6				E-0-	-0.7	20		-0-6							Ī					T	Ţ			ŀ	t
	SEL		29.3	80.4	80.6	0		BD-1	80.0	79.7		79-8							T	Ť				T	Ť				t
	ALT (TT		4	680.4	1			9-707	674.0	787.2		4-084				T				Ŧ	1				Ť	~			t
VIN	GS (KTS)		22-3	ZD. 8	6 99	67.1			64.0	63.0		4-00				Ţ	1			Ţ					Ť				╀─
C TEST DA	F.		- 5584	6584	.6584	.6584	2001	Ward	.6584	6584	1007	+aca -	T			T				Ť	1				† 				
V/V	RPM	0.00		2350	2350	2350	2250		2350	2350	2250					T	1			t	T	1			Ť	+			
	EVENT	-		2	-	4			4	-	α				_					Γ	T				T				

A-5	
IABLE	

• • • •

TAKEOFF DATA

AIRCRAFT KING AIR 200

5

SITE

TEST DATE 8-31-82

7	
3	
1	
1	
Ξ	
Ξ	
Ξ	
3	
3	
1	
3	
3	
Ξ	
Ł	
Ŧ	
3	
Ξ	
3	
3	
3	
3	
3	
9	
9	
8	

	AL fc	79.7	80.5	79.3	6.91	82.1	79.3	79.1								
	COTT	.1	.1	.1	.1	.1	.1	.1						 		
¥.	BCOFF	.1	.1	.1	.1	.1	.1	.1								
	ALTCOLL	-5.8	-5.7	-5.2	-4.2	-3.2	-2.6	-4.3						-		
	-TV	85.3	86.0	84.3	83.9	85.1	81.7	83.2				~				
	Skife	85.8	86.2	85.3	85.7	87.4	85.9	85.5								
	PCOFF	.1	.1	.1	.1	.1	.1	.1								
	"HCOFT	.1	.1	.1	.1	.1	.1	.1								
	V _{COFF}	0	0	0	0	0	0	Ó								
	ALT COLL	-4.2	-4.0	-3.7	-2.9	-2.2	-1.8	-3.1								
	SEL _{an}	8.68	90.06	88. 8	88.4	89.4	87.5	85.4								
	ALT (FT	656	665	693	766	847	893	762								
¥1	GS (KTS)	N/A	N/A	N/A	N/A	N/A	N/A	N/A								
TEST DA	F	4681.	: 7894	.7894	.7894	4287.	4687.	. 7894								
A/C	Ma	2000	2000	2000	2000	2000	2000	2000								ſ
	THENT	-	2	9	4	5	9	7								

					79.8	81.0	80.8	82.2	81.2	81.8			Į				1							1					
				COLT			.1			-	Ī	T				Ť	1				t	\uparrow	╏	╋				┢──	
	9-8-87		ŧ.	M ^H Corr	-4	-4	4.	-4	4.	4.		Ī	Ī			T	T				T	†- 		\dagger	1				
	DATE			ALTCOLY	6.	2.1	1.0	2.5	6	1.6							T	1					T	╋	1				
	TEST			ALes	78.4	78.4	79.3	79.2	81.3	79.7	_						T	T	1				ſ	T	+	1		1	1
				SELEC	86.6	87.4	87.0	88.5	86.0	87.2			Ī	Ι				T	T					T	╞	Ť	╡	=	=
			4	COTT	ŗ.	<u>.</u>]	e.	m.		~								T	T	T					Ť	\uparrow	1	+	1
PATA	#2			"COFF	<u>,</u>					?								T	T	T					T		Ť	Ť	1
TAXEOFI		38	A	corr						,					T			Ī	T	T	T	1				Ť	╀	╋	1
	ALIS			COLT	» •				: -						T				Ţ	Ť	\uparrow	1				t	╀	╋	1
			SEL	85.4	85.3	85.7	86.7	85.8	85.4						T				T		T					t	\uparrow	╋	1
			ALT- (ST	1140	1293	1154	1337	766	1232	T	T				T	T				T	T	Ť		╡			╞	╞	1
	CHEYENNE	AIN	CS (KTS)	115	115	115	115	115	ES T	T	T				<u></u> 	\dagger				T	t			+			<u>†</u>	╞	1
	PA-42	C TEST DA	F	.7545	:7546	.7546	.7546	.7546	.7546		T	T	1			Ť					\uparrow	Ť	\dagger	╉				┢	1
	L'AN	V.V	T RPH	2000	2000	2000	2000	5060	2000			Ţ	1				1					T	t	\dagger					
	AIRC		EVEN	22	23	24	25	26	27														T	T					

.

TABLE A-6

		AL fc	84.0	82.5	79.8	82.5	83.0	82.4														
		P COFT	.2	.2	.2		2.	-2					T					T	T			
79-47-	VT	HCOLF	4.	4.	e.	4	1	4.					T				T	T				Ī
		NLT COFF	. ۲	s.		8.	1.2	1.6			† 		T			T	Ī	T				
NG 1521	•	. . .	82.7	81.4	79.4	81.1	81.2	80.2				T	-f-									
		SELEC	90.5	88.5	86.4	88.5	88.7	89.2														
I		COTT R	.3	е.	с ,	9	с. 	.3										T				
		HCOLL	.4	.4	.3	4.	Е.	.4														
11	SEL	VCOLL	10.	1	02	0	09	1		T						T						
SITE		LTCOTT	2	.4	1	.6	.3	1.2														
		SELas	89.3	87.5	85.9	87.2	87.4	87.4														
		ALT _T (FT	833.2	876.2	825.2	902.4	938.7	975.1														
NOR I	5	CS (KTS)	108.3	104.2	107.1	108.0	104.9	164.2														
CHANCEI	TEST DAT	-	8179	, 1179 , 8179	8195	.8179	8185	8170														
77-5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -	A/C	Maa	0.70	2700	2700	2700	2700	002.0	3	Ţ												
AIRCRA		EVENT		3	75	2 %	2	į	9 7				. 									

TATEOFT DATA

11.7

182

				AL fc	84.0	84.7	83.7	85.3	85.8	85.1	85.1							Í	
				PCOLL	0	0	0	0	c	0	0								
		9-28-82	z	HCOLF	-	ŗ				-1	.1								
		EN	••	ALTCOTE	-4.5	-3.0	-5.8	-5.3	-4.0	-2.1	-3.1		 						
		1221		VL.	88.4	87.6	89.4	90.5	89.7	87.1	88.1								
				str.fc	90.4	91.2	90.1	91.5	91.5	91.4	90.8								
		ł		COLL	0	0	0	0	0	0	0								
50	VIV			HCOFF	0	0	-1	0	0	0	0					}			
V TIEVI	d TTOUNA	2	2 E E	V _{COFF}	с. <u>-</u>	3	03	1	1	4	2								
	F	2118		ALT COLL	-3.2	-2.1	-4.1	-3.8	-2.8	-1.5	-2.2								
				SEL.	93.9	93.6	94.1	95.4	94.4	93.3	93.2								
				ALT _T (PT	496.2	566.8	435.8	456.3	513.2	620.1	561.8								
			Į	GS (JCTS)	105.2	106.1	113.4	109.1	112.2	100.0	107.2								
		EP BARON	TEST DA	II.	.8404	.8398	.8404	.8404	.8404	. 2404	.8404								
		म् म	A/C	MAN	2700	2700	2700	2700	2700	2700	2700								
		AIRCRA		EVENT	2	3	4	5	9	-	80								

VALUE
INDICATED
BULUS
182
Ű.
SPEED
PROPELLER
ACTUAL
HOTE:

B

TAKEOPP DATA

Ţ,

SITE

AIRCRAFT C-210 CENTURION

TEST DATE 10-5-62

Ę

	л Т	9.68	92.5	9.06	92.8	94.1	93.1	91.5								
	COLT	.1	.1	.1	.1	.1	.1	.1								
ł	M ^B COTT	.2	.3	.3	.2	.2	.2	.2								
	ALTCOFF	2.4	3.8	2.1	2.4	4.5	4.4	4.3								
	ML an	86.9	88.3	88.2	90.1	89.3	88.4	86.9								
	SELEC	6.46	1	92.6	97.1	97.8	97.4	96.3					- 2			
	PCOFT	.1	.1	.1	.1	.1	.1	.1								
	PH COFF	.1	.2	.2	.2	.1	. 2	.2								
SEL	VCOLL	3	0	3	3	2	2	3								
	ALT COFF	1.9	2.5	1.3	1.7	3.2	3.1	3.1								
	SEL	93.1	94.5	94.3	95.4	94.6	94.2	93.2								
	ALT (FT	814.7	١	789.3	812	993.8	983.2	978.2								
2	CS (KTS)	89.9	1	87.3	87.3	92.4	91.4	87.9								
AU TEST DA	Η	.8538	.8530	.8530	.8536	.8538	.8536	.8536								
A/C	RPH	2700	2700	2700	2700	2700	2700	2700								
	INEVE	1	2	3	4	5	9	7								

			AL fc	72.4	72.7	72.5	72.2	72.7	72.0									
			P COLT						-									
	-5-82	AL	H <mark>B</mark> COLL	4.	4.	4.	ŝ	5.										
	MTZ 10		ALTCOFF	-1.7	s.	<i>L</i> .	.2	<u>,</u>						_				
	1 12311		N	73.6	11.7	5.17	71.4	71.8	70.9									
			SELEC	77.6	81.2	81.0	80.9	80.8	81.0				-					
	ł		COTT		-	-	-	-										
ATA		•	Harr 1		 -		.3		.3									
AKEOPP D.	17	Tas	Vcorr	.5	-05	.12	.16	- 03	.2									
H		·	LT corr	-1.2	4.	•5	. ا	.2	.4									
			SELau	77.9	80.4	80,0	80.2	80.2	80,0									
			ALT (FT	735	928	953	895	873	883									
		×	CS (KTS)	94.3	80.4	82.2	83.2	78.1	85.5									
	SKYLANE	TEST DAT	HI I	.7476	.7476	.7472	.7470	.7467	.7476									
	rT <u>C-182</u>	A/C	RPM	2400	2400	2400	2400	2400	2400					†)	
	ALRCRAI		EVENT	14	15	15	17	15	19									

DATA

			AL fc	73.7	24.5	75.0	24.3	13.2	74.0													
			P corr	0	0	0	9	9	9													
-82		AL AL	Hcorr	.5	.5	2	5	5	3													
TE 10-5-			MLTCOLL	-!	7	2	8 -	e.	 9													
TEST DA			AL am	73.1	13 6	5.47	74.6	72.5	72.9													
			ELF,	82.6			0.8	87.6	1 1 1													
ł			S								T	Ţ							ו 			
				"corr							T								-			
11		SEL		COLL	-+- -!	80	70			50										! ↓-		
SITE				LICOLL	à.	+																
				El an	82.0	82.5	82.7	82.9	81-9	82.4												
				LT (FT)S	677	724	700	635	745	724												
				3S (KTS) /	78.5	78.0	8-77	81.4	78.8	74.7												
	SKYHAWK		TUN 1031	Har (6728	6728	6728	.6728	.6728	6728	2472.		T	Į								
,	T C-172		A/C	RPM	2300	2300	2300	2300	2300	0000	7700					Ţ					 	
	AIRCRAF			EVENT	26	1	28 80	92	ų.		31											

TAKEOFF DATA

TAKEOFF DATA

14 ILIS

AIRCRAFT MERLIN 227-AT

TEST DATE 10-19-82

						-		~	4.	s.		1	ļ				ł	1	1	1				}	}	J		}	
			F			≝ 	8	8	81	6/	┞	╀	+	+				+	╀	\downarrow					┦	4			
					ľ		7	7	7	1																			
			,		: -	-				1		Γ	T	T				T		Ť	1				t	┦		-	
			COLL	 					2	8		┞	╀	╉	┦	_		┢	╀	$\frac{1}{1}$	┦	-		-	╀	┦	-	-	_
			ITV	Ľ	Ļ	4		* -		4				1	\downarrow				Ĺ	╞	1		_						
			AL an	77.0	76.7					74.9																			
			^L fc	15.9	15.4			+		, , , ,			F	t	Ť	1				┢	╡	╪				╞	╡	╡	=
		Ē	2	1							-			╀	╀	+	4			╞	╀	+	-	_		╞	╀	4	
		4	^r con	i						7																			
			COFF	1	1	-	-	: - ;		;					T	T	1			ſ	T	T	Ť	1		T	T	Ť	1
			COLL	4		- -					1				ſ	╋	╉	┥			┢	┢	$\frac{1}{1}$	┨		╞	╞	╉	1
		f	Li Li	<u>.</u>	0	8	†-			+	╉	+	~		┝	╀	╉	╉			┢	-	╀	+			╀	╀	-
		ALL A		~	С	2.	m		Ľ	\$ -		\downarrow																	
		SEL	ą	83.6	82.9	82.7	82.8	82.8	81.8														T	Ī			Γ	T	
		TT / TH		13.6	24.3	98.9	27.9	58.2	98.7	T	Ť	Ť					╡	╈				╞	╞	╪	-	_	╞	╞	+
		IS) A			티	2 10	4 11	8 11	8 11	┞	╀	╀	+	-		-	╀	╀	\downarrow	_			┞	╀	\downarrow			╞	
	1 A	CS (X			ž.	134.	136.	126.	132.																		}		
	ITEST D	F	0000	3660	8669.	.6998	.6998	.6998	.6998		Γ	T	T				T	T	Ť				T	Ť	1			$\left \right $	1
	A/C	Ma	102		1591	1591	1651	591	591		t	+	\dagger	1	 ,	╞╴	\uparrow	\dagger	╁			<u> </u>	┞	┢	┦			┢	1
		LUEAN	Ţ,		m		2		7 1		f	\dagger	\dagger	\dagger			┢	+	+	╉	\neg		┝	-	╉	+		┝	{
			1	1					1			1	1	1			1	{									!		

				AL fc	1.17	1.0/	· · · ·	7 77		N.T.													
				PCOLL	0	0	-	-	-	0											┟		
		-19-82	Ψ	100	- 1	1	1	1															
		-01 - 10-		ALTCORT	1.0	6.	.6	1.0	0	.3													
		TEST D		N.	70.2	6.93	70.8	70.5	69.5	70.8										╞		=	
					-1c 78.5	79.2	79.7	80.0	78.7	9.67													
		1			COFF	0	0	0	0	0													
13	YI				Hcorr		- 1	-			:												
TABLE A-	KEOFF DA	17		f	COFT	+ · -			; [(7.7	1.1												
-	AT.	SITE			LT _{COFF}		•	; ^r	-	-													
						78.3	79.1	8.67	F.9.	79.0	79.9										│ ╪═		
		006 (ALT (FT)	9.1651	1581.9	1539.1	1593.1	1455.4	1502.1							 				+	
		CHMANDER		•	GS (KTS)	116.1	117.7	118.4	113.6	125.0	0.911										 -		_
		ETREAM (C		TEST DAT	H	.6920	.6920	.6920	.6920	.6920	.6920												
		amp T		A/C	MAN	1651	1621	1591	1591	1591	1591					 			+		-+	_	
		AIRCRAF			INENT	ង	16	11	18	61	20												

TAKEOFF DATA

AIRCRAFT DUCHESS

SITE #1

TEST DATE 10-19-82

	AL fc	84.3	85.3	84.6	84.8	85.1	83.8	83 . 6								
	P.	,		.1	.1	.1	.1	.1								
AL	1105H	~	.5	ċ.	.5	•5	. ح	•5								
••	ALTCOFF	6 7	5.3	4.3	5.8	5.8	5.9	5.8								
•	AL am	77 D	79.4	79.7	78.4	78.7	77.3	77.2								
	SELfc	91 R	91.8	91.1	92.2	92.2	91.0	91.1								
	PCOFF		.3	• 3	•3	.3	.3	.3								
	^M Hcorr	Δ.	.4	.4	.4	.4	.4	-4								
SEL	Vcorr	0	0	0	0	0	0	0						2		
	ALT corr	4.8	3.7	3.0	4.1	4.1	٤.2	4.1								
	SEL _{am}	86.3	87.4	87.4	87.4	87.4	86.1	86.3								
	ALT _T (FT	1575	1372	1245	1432	1432	1454	1435								
LA LA	GS (KTS)	•	•	1	,	1	1	1								
TEST DA	H	.8091	1608.	.8091	.309i	.8091	1608.	1608.								
V/C	RPM	2700	2700	2700	2700	2700	2700	2700								
	EVENT	29	30	31	32	33	34	35								

• • • • • • • • • •

يتريب ومرجع بالتقويم

				AL fc		87.0	88.4 22 7	81.5	88.6	67.8	87.4	88.6										
				F COLT	,	0	0	0	•	0	0	0										•
)-20-92	AL	^H Lorr	,	8,	6.	6.	6.	6.	6.	6. 										1
)T TTA	 . 1	ALTCOLF	-	6.7	3.8	5.0	4.8	4.7	5.0	5.1										
		TEST D		AL.sa	80.8	79.5	83.7	81.6	82.9	82.2	81.5	82.6										
				SELfc		94.7	93.9	93.7	94.3	94.1	93.7	94.2										
		1		PCOTT		- 1	- 1	1	1	1	1	1										
-15	ATA			Hucorr		.6	.6	•6	.6	.7	.6	9.										
TABLE A-	AKEOFF D.	#1	SEL	Vcorr		0	0	0	0	0	0	0										
	F	SITE		ALT COFF	ł	4.7	2.7	3.5	3.4	3.3	3.5	3.6										
				SELan	88.6	89.5	90.7	7.68	90.4	90.2	89.7	90.1										
				ALT _T (FT		1574	1200	1336	1311	1299	1336	1349										
				GS (KTS)	106	101	101	101	100	103	101	101							.			
		JO 350	TEST DAT	H _H	.8095	8080	8080	8080	.8077	8086	8080	.8080										
		PT NAVA		Maa	2525	2525	2525	2525	2525	25.25	2525	2525	Ţ	Ţ	Ţ	Ţ	Ţ				 _	
		ATRCRA		TNAVA	-				r lu	, , ,		8										

			ļ	AL fc	C.//		7.00		6.01	1.11													
				P COLL	0	» (•	,	-	•													
		-20-82		COLL		, , ,	- -																
		T		ALTCOLL	6.5	9.9		0.9	6.8	6.5													
		TEST D		AL.a.	70.9	72.6	73.0	71.6	72.0	1.17				_									
				iel fc	86.8	87.4	88.5	86.5	87.9	86.5				-									ļ
		ł		COLL	0	0	0	0	0	0													
-16	V I			^H COLL	-1	2				.1					T								
TABLE A-	NCEOFF DA	Ŧ	SEL	VCOFF	0	0	0	0	0	0				T	T	T							
	7	SITE		LTCOLL	4.6	4.7	5.0	4.2	4.8	4.6				T	T								
				ELam A	82.1	82.9	83.1	82.2	83.0	81.8				T	T								
				LTT (TT	1233	1245	1298	1173	1271	1253				T	T								
		8 181	-	cs (KTS)	0	0	0	0	0	0	Ī	T	T	T									
		R 11 PA-2	TEST DAT	I III	.7054	7127	.7054	.7059	7056	7054		T	Ţ	T			T						
		T ARCHE	A/C	RPM	2350	2350	2350	2350	2350	2350		Ţ						Ţ	Ţ		\prod		
		ALECEAL		TNEWS	16	11	18	61	e e	212											ł		

			fc	87.9	86.9	87.3	86.7	1 70		1.88								Ì								
		ļ	r corr	0	0	c	,	, ,	2	•																
	N N		BCOTT	4.	"				r.	.4																
			LTCOTT P	4.1				2,7	4.9	5.5																
				1.6		2.00	9.18	80.4	81.5	82.2						I										
			EL 6.	, to	t	93.2	92.6	93.1	93.1	93.6						Ī			T							
1			S	1101	+ -	-+	-+	.1							T											
				, COLL	-+		.2	.3	.2	۱ ۲					T											
=		SEL		COLL	-	-	0	0	0	ſ	╸										Ţ					
SITE				COLL	2.9	4.0	3.7	4.2	3.5		<u>ب</u> ب															
					90.2	88.9	88.6	88.5	600		89.4															
			-	LT (FT S	1062	1243	1192	1270			1217		T	Ì			T									
				S(KTS)	0	0	c			-	0		Ť											 		
IZA A-36		TEST DATA			8511	8519	0511	11/0.	fuca.	.8514	.8511	t	T			T										
T BONAN			•	RPM	2700	2700	0017	00/7	2700	2700	2700								Ţ							
ATRCRAF				EVENT		2	75	2	34	35	36															

TABLE A-17

TAKEOFF DATA

TEST DATE

10-20-82

			AL fc	0.67	73.4	73.8	72.5	72.4	71.8	72.3										
			P COLT	2	2	2	2	2	2	2										
-26-82		TA I	BCOLF	- · -	<u>+</u>															
ATZ 10			ALTCOLL	1.4	1.5	2.2	2.8	1.9	3.1	3.1										
TEST D			Alea	71.9	72.2	71.9	71.5	71.5	70.7	71.3				T						
			ELEC	79.6	80.4	80.9	82.0	80.4	80.5	81.2				T						
ł			COTT	1	1		T	1					T	T						
			Hucorr I	1	1	1				1										
2		IIIS	VCOLL		6	7	7	7	7	6										
			ALT COFT	6.	1.1	1.6	2.0	1.3	2.2	2.2										
	Ш Ш		SEL	79.6	80.1	80.2	80.9	80.0	79.2	79.8										
			ALT (TT	1240	1260	1349	1424	1303	1464	1464										
1-1		×	CS(KTS)	Ş	24	8	16	8	92	93		T								
CONQUES		TEST DAT	The second secon	7220	7236	7220	.7224	.7236	.7228	.7231		T								
T C-42		S N N	Mda			1900	0061	1900	1900	006	T									
AIRCRAI						•	4	2	•				•							

TAKEOPP DATA

•

TABLE A-18

APPENDIX B

4

500 FT. LEVEL FLYOVER DATA

ų

Appendix B: Level Flyover Noise Data

This appendix contains as measured noise data along with other pertinent information used in arriving at fully corrected level flyover noise levels.

Abbreviations used in Appendix B

RPM:	Propeller RPM (revolutions per minute)
GS:	Ground Speed expressed in knots
IAS:	Indicated Air Speed expressed in knots
м _н :	Helical Tip Mach Number
ALT _T :	Test Altitude (AGL)
AL .:	As Measured A-weighted Sound Level
AL _{fc} :	Fully corrected A-weighted Sound Level
SEL :	As measured Sound Exposure Level
SEL _{fc} :	Fully corrected A-weighted Sound Level

500 PT. LEVEL PLYOVER DATA

TABLE B-1

TEST. DATE 6-23-82

********* "

AIRCRAFT C-170

	LIC	01.0	0.10	80.8	80.4		Ligh		78.6		76.6		75.8	2	74.8	76.8			80.0	2.61	79.4	78.8		9-9/	9.77				
	8		84.1	83.3	81.5		78.7		79.3		77.1		2 55		75.9	78.6			80.0	78.9	79.0	70.7		78.8	78.0			 	
ISE DATA	AL fe		75.9	75.0	74.8	T	16.11		72.8		70.4			7.60	67.6	7 69			77.1	76.1	76.7			71.1	70.2			-	
	L L		79.2	78.4	76.1				72.8		70.2			70.2	67.9	5 05			73.0	C 11			71.2	71.1	с 97				
	ALT.	tec)	210	216	264		100	IN	292		306			272	292	2.0	<i>c17</i>		445	5	707		609	599		019			
		tc	81.5	81.7	87 6	2.30		81.2	81 A					79.2	'		2.67		R4 7		82.0	, , ,-+	۱	1		2 79.8			•
	SEL. 15		85.5	85.1	2 70	<u>, 1</u>		80.8	2 10	2440		ı		79.0	70.07		79.2		4 60	7.70	82.0	'	1			80.			-
SE DATA		fc	76.6	77 A		0.67		72.7	,	1.5		-		6.84		0.40	69.7			1.0/	78.0	1	1		· 	70.9			-
104	- °	1	80.9		7.10	79.0		72.9		74.4		ļ		6 04	7.70	69.9	70.4			74.7	73.8	1			' 	71.4			-
		LTT	100		017	264		294		281		279			<i>c12</i>	292	280			415	449	1 454		000	632	570			
		×	196	.127	. 724	.724		.657		.657		.620			-261	.561	. 560			.720	.724	724		<u> (7/.</u>	.724	701-			
	Ī	IVS	CLLS)	109	109	109		Ŀ	;	91		85			74	78	74			104	104			707	102				
	ľ	(SI)	SITE 2					T																					
ATAG TSI		S	SITE 1	88	88	88		ľ	. /0	69		66			57	1		52		81.1	70		8	79	7.	- - 	62	 	
			RPM	2450	2450	2450	T		2225	2225		2175			1900	1000		1900		2450	02.70		2450	2450		2420	2450		
			Z PWB	65	65	65			55	55					45	1	₽	45		54			65	1			1	 	
			TNAUS	6		2			12	12		;			15		91	17			9	19	21			23	24		

1

DATA
FLYOVER
LEVEL
E.
ŝ

TABLE B-2

AIRCRAFT PA-28 Turbo Arrow IV

7-13-82 and TEST DATE 7-20-82

	sti.	80.9	80.9	76.8	76.7	76.7	79.5	78.2	76.1	76.1	78.1	78.3						
<	ser.	80.9	80.9	76.3	76.1	75.6	79.4	78.1	75.5	75.5	78.2	78.3						
DISE DAT SITE 2	ALfc	74.7	7.47	70.0	70.4	8.69	72.1	72.5	68.4	68.3	70.8	70.5						
X	۲ ۲	74.1	0.47	6-69	70.1	0.69	71.5	71.8	68.2	68.2	70.4	6.9						
	ALT ALT (fe)	532	534	503	513	145	532	536	508	506	521	183						
	sel _{fc}	80.4	80.8	76.1	76.5	76.5	79.3	78.5	76.7	77.0	78.2	78.7						
_	are Tas	80.9	80.8	76.3	76.1	75.6	79.6	78.7	76.2	76.6	78.6	78.7						
ISE DATI SITE 1	AL fc	74.4	74.7	71.0	71.3	71.8	72.8	72.4	69.4	69.7	70.6	71.0						
ON	AL.	74.2	74.1	71.7	71.7	-71.2	72.7	72.1	69.4	69.8	70.6	70.3						
:	ALT	510	532	467	482	531	504	516	498	498	498	535						
	M _H	.7449	.7458	.7272	.7272	.7281	.7176	.7176	.6997	.6997	.6893	.6893						
	IAS (KTS)	95	96	120	119	121	98	97	120	120	100	98						
, e	(ETS) SITE 2	86	86	119	117	121	88	90	120	120	90	90						
test dat	I JIIS SITE I	83	86	119	119	121	88	88	120	120	91	87						
RCRAFT 1	MAN	2500	2500	2400	2400	2400	2400	2400	2300	2300	2300	2300						
IV	Z PWR	55	55	55	55	55	55	5.5	55	55	55	55	_					
	INENT	5.8	5.9	6.13	6.14	6.15	5.10	5.11	6.16	6.17	5.12	5.13						

		SEL.	2	80.5	1	80.9	U-61	79.	78.9	78.3			77.6		81.7	RI F		81./							-
	_	521	8	80.6	١	81.1	2.97	79.2	78.6	7 87		1.8.	78.0		82.6	87 1	1-70	82.3		 	 -				-
	ISE DATA BITE 2	VT.	2	76.4		76.5	74.4	74.0	73.9		/2.0	1.21	71.8		77.5			77.4							-
			8	76.4	•	76.8	74.8	74.2	7 2 7		4.61	72.5	72.3		78.9	;	/8.1	78.3							_
			(10) (10)	105	516	486	481	10,		900	4/1	482	475		644		465	458					 		
		1	orrfc	80.4		1 18	70.3	0 02	6.01	0.0/	78.6	77.6	77.4		10		81.6	81.5							
				80.6		1 10	6 02	2.02	7.6/	18.6	78.7	78.0	78.0			0.70	82.1	82.3							
	ISE DATA Site 1		ALfe			0 11	0.11	0.0/	0.0/	74.4	74.0	73.2	72.9			<u>, ', '</u>	5.17	78.4							
			Vr			, <u>'</u>		6.61	75.4	74.3	74.2	73.8	73.7			80.8	78.7	79.5							
			ALT_ Teol	107		97	467	504	481	507	490	472	467			432	465	448							
		Ī	x	0001	·/0/·	.7839	.7848	.7644	.7635	.7511	.7502	.7360	1361	7771.		.7945	.7936	7936							
(INO:			IA6 (Tre)	iery)	8 1	138	140	142	141	142	140	142		140		162	160	160							
			L STA	2115 2	133	133	135	142	136	142	136	127		130		149	148	271			 -				
rbo Arro	EST DATA		5	T JUIS	133	133	133	136	136	140	134			136		149	147								
A-28 Tui	ICRAFT T		•	H	2575	2575	2575	2500	2500	2450	2450	00.0	2400	2400		2575	7575	(/07	2/2		 				
CRAFT F	IIV			Z PUR	75	75	75	75	75	2	75		2	75		100		100	100		 			 	
AIR				TIGVE	6.1	6.2	6.3	6.4	6.5	44			6.8	6.9		01 9		6.11	6.12						

500 FT. LEVEL VLYOVER DATA

TABLE B-2 (CONT)

TEST. DATE 7-338289nd

		sti _{fc}	•	88.5	88.3	88.9		1	87.3	87.2	85.1	85.1	85.0		82.4	82.8	82.0	80.7	80.2	79.3			
		sz.	•	87.9	87.8	88.2		87.1	86.8	86.8	84.4	84.3	84.4		82.2	82.7	81.7	80.8	80.1	0.97			
M TEST	ISE DAT SITE 2	AL fc	•	83.3	83.3	83.8		1	82.4	82.2	79.4	79.5	79.3		76.9	77.5	ı	74.6	73.8	72.6			
-		7		83.2	83.2	83.5		82.4	82.0	81.9	78.9	78.6	78.8		75.8	76.6	75.3	74.2	73.3	71.8			
		ALT	477	506	504	516		-	519	514	524	547	527		553	547	550	520	525	539			
		in fc	86.2	87.4	87.4	87.8	-	1	85.8	85.8	84.4	١	84.1		80.9	82.0	١	79.8	79.7	78.4			
			86.9	87.6	87.6	87.9		86.7	85.9	86.2	84.2	1	83.9		81.4	82.2	81.3	80.5	80.0	78.5			
	SE DATA	AL fc	80.6	81.9	82.1	82.9		1	80.7	80.8	78.4	1	9.77		74.8	76.5	1	73.9	73.6	7.17			
		1	82.1	82.7	83.0	83.5		82.2	81.1	81.4	78.3	1	77.8		74.7	75.9	6.47	74.4	73.4	71.4			
		LTT.	432	461	459	471			479	471	503	506	505		508	530	•	477	509	513			
			85	.85	-8 ⁻	.85		.82	.84	.84	- 79	.80	.80		.78	11.	. 77	.76	.74	.71			
		IAS	101	163	160	163		148	145	148	151	151	153		120	119	125	130	131	124			
			3 761	3 201	9 72 1	3 77 1			123.9	122.2	125.2	122.1	124.8		95.6	92.6	100	103	105.4	104.9			
	ST DATA	S.							123.6	118.1	120	116.1	121		93.6	93.6	1	103.3	101.3	104.8			
c-180	CRAFT TI							1550	2,600	2600	2425	2450	2450		2450	2425	2400	2350	2300	2200			
TAAT	AIR							Ĭ	ž	ž	52	2 52	75		ç	ŝ	05	05	50	205			
ALR				1	22	5	1		2 2	5] [17	20	207	3		1 6		1	r :"	2 2	2.		

T-20-82

SOO FT. LEVEL VLYOVER DATA

TABLE B-3

TO-OT-O ALVO LEAL	NOISE DATA NOISE DATA SITE 2 SITE 1	T T Tepr Epr ALT AL AL SEL SEL	Alen Alfc Stuan Just c fift) an ic an ic	70.4 70.9 78.0 78.7 551 70.0 71.0 71.0	70.3 71.7 77.9 79.1 569 69.7 71.0 78.2 79.4		69.2 70.0 77.5 78.2 551 69.3 70.3 77.3 78.1	<u>67 8 68.9 76.1 77.1 533 69.5 70.2 77.1 77.7</u>		67.3 67.8 75.5 75.8 233 00.0 07.1 10.1 10.1 10.1 10.1 10.1 10.1	68.2 69.3 /6.2 /0.0 200 000 000 000	65.9 67.0 74.6 75.0 565 66.7 68.0 74.6 75.4	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2									
			fe te	78.7 551	79.1 569		78.2 551	77.1 533		75.8 253	0.01	 75.0 565	75 A 571									
		143		78.0	9.77		77.5	76.1		75.5	7.0/	74.6	7. 1				_				_	
	I ALIS		ALfc	70.9	71.7		70.0	68.9		67.8	69.3	67.0		7.70								
		!	N	70.4	70.3		69.2	67 R	5	67.3	68.2	65.9		2.00		_						
			ALT (ft)	526	572		541	254		525	558	 555		564			 					╞
			z [#]	.678	679		199		200-	 .647	.647	 610		.610								
			IAS (KTS)	86		P	20		2	6	60	 8	6	85					-+			
			(ETS) STTE 2	102		"	ð	*	96 96	16	87	5	ò	87			 					
mahavk	EST DAT		1 2412	1 100		85	22	Å	8 <u>1</u>	88	86		₽	83								
<u>A-38 To</u>	ICRAFT T		Ì	H.Y.	Z410	2410		2350	2350	2300	2300		2170	2170						 		
CRAFT	Î		1	Z PWK	2	75		70	70	5	5 59		55	55								
AIR				LIGA.	12	11		18	19		2		22	23					•			

500 FT. LEVEL FLYOVER DATA

TABLE B-4

10-82 ¢

UV	RCRAFT _	King Ai	r 200											TEST. DA	TE 8-3	-82
							THE									
	IA	IRCRAFT	TEST DAT	Ŋ				N	ISE DAT SITE 1	× I			NO	ISE DAT SITE 2	4	
INENI	Z PWR	RPM	I ALIS	(KTS) SITE 2	IAS (KTS)	н <mark>н</mark>	ALT (ft)	AL. am	AL fc	SEL	SEL _{fc}	ALT (ft)	AL an	ALfc	SEL.am	SEL _{fc}
8	85	1700			235	.740	552	81.4	82.4	84.5	85.3	582	80.7	82.3	84.7	85.8
6	85	1750			235	.757	488	82.ī	81.8	86.0	85.8	564	81.4	82.7	85.5	86.4
10	85	1800			230	.770	490	82.9	82.7	86.0	85.9	524	83.2	83.7	86.9	87.2
11	85	1850			232	.789	557	81.5	82.6	84.7	85.5	578	83.2	84.7	86.8	87.9
12	85	1900			232	.806	572	82.6	84.0	85.6	86.6	597	82.5	84.3	86.0	87.3
13	65	1950			231	.823	455	86.0	85.0	88.4	87.7	504	84.1	84.2	87.5	87.6
14	85	2000			234	.842	453	86.4	85.4	88.7	88.0	506	86.0	86.1	89.1	89.2
15	85	1900			233	.807	466	83.4	82.7	86.6	86.1	554	82.2	83.3	86.2	87.0
16	85 -	1950			232	.823	510	82.6	82.8	84.7	82.9	506	83.8	83.9	87.3	87.4
17	85	2000			233	.841	519	85.2	85.6	87.1	87.4	578	83.9	85.4	87.3	88.4
_																
18	95	1900			238	.810	490	85.6	85.4	87.9	87.8	617	81.9	84.1	86.1	87.7
19	95	1900			240	.811	488	83.5	83.2	86.4	86.2	552	83.4	84.4	85.9	86 6
20	95	1900			239	.810	530	83.0	83.6	86.1	86.5	550	83.1	84.1	87.0	87.7
21.	95	1900			239	.810	496	84.4	84.3	87.2	87.1	509	82.8	83.0	86.7	86.8
		•														
								•								

500 FT. LEVEL PLYOVER DATA

TABLE B-5

AL	KCRAFT _	King Ai	r 200 ((CUNT)		· · .								TEST. DA	TE 8-31	-82
							TIM									
	IA	RCRAFT	TEST DAT	ĽA	•			N	ISE DAT SITE 1	×			N	DISE DAT SITE 2	¥	
INEAS	Z PWR	MAN	CS SITE 1	(KTS) SITE 2	IAS (KTS)	M _H	ALT	ALes	ALfc	SEL	sel _{fc}	ALT Tft)	AL an	ALfc	SEL	stlfc
22	11	1900			214	. 795	525	80.7	81.2	83.5	83.9	543	80.7	81.6	86.5	37.1
23	11	1900			214	. 795	525	81.2	81.7	84.2	84.6	492	81.1	80.9	85.6	85.5
24	71	1900			215	. 795	493	81.3	81.2	83.6	83.5	520	80.3	80.7	84.3	84.3
25	11	1900			214	. 795	482	80.9	80.5	84.2	83.9	528	81.9	82.5	85.9	86.3
26	47	1900			195	.783	496	81.0	80.9	83.8	83.7	537	80.1	80.8	84.7	85.2
27	47	1900			194	.783	505	80.3	80.4	83.8	83.9	556	79.8	80.9	84.7	85.5
28	47	1900			19.4	.783	523	79.1	9.9%	82.9	83.2	560	79.4	80.6	84.0	84.8
29	47	1900			195	.783	519	78.3	78.7	81.3	81.6	522	80.9	81.3	85.3	85.6
	-															
						-										
																i
		_						 -								

500 FT. LEVEL FLYOVER DATA

TABLE B-6

8-31-82

T I	CRAFT													TEST. DI	9-6 III	-82
ſ	IN	RCRAFT	TEST DA	Y.				N	ISE DAT	~			Ĭ	DISE DAT SITE 2	5	
TENT	Z PUR	RPM	I TIS	(KTS) SITE 2	LAS (KTS)	ж	ALT (ft)	AL	ALfc	SEL	SEL _{fc}	ALT Ter	AL	ALfc	SEL	SEL _{fc}
	100	2000	248.3	247.1	240	. 821	548	83.7	84.7	86.6	87.3	555	85 A	5 70 57	- 00	0
2	001	1950	252.8	248.3	236	. 802	551	83.4	84.4	86.9	87.7	551	83.6	84.6	86. 8	00.2 87 6
E	00T	0061	236.2	240.3	236	.785	593	82.2	84.0	85.2	86.4	553	82.4	83 S	85.6	7 78
4	100	<u>1850</u>	241.4	239.9	236	-769	561	82.2	83.4.	85.3	86.2	592	81.2	83.0	85.0	5 7 7 7
5	100	1800	. 1	'	236	. 769	1	81.3	1	84.6		,	80.7		81. 6	1
J	81	1800	238.2	240.2	230 -	د17.	564		1	1	,	580	2 08	1 (,0	7 70	
7	00T	1750	242.1	242.5	230	.732	548	80.9	81.8	84.5	85.2	550	S O	7 10	04 • D	
8	100	1700	234.9	241.8	231	717.	573	-	,	1	'	556	2 - V8	1 0	0440	87.17
6	00T	1850	238	244.3	231	.766	528	81.3	81.9	85.1	85.5	246	8 18	1 2 7	04.0	4.00 . 20
							 								* •70	C.00
01	100	1900	212	219.1	210	.769	522	80.1	80.5	84.8	84.6	580	70.8	10	1 70	
п П	100	1900	217.3	217.3	210	. 769	587	80.6	82.3	85.1	86.2	588	80 G	87 6	85 7	6 70
	100	0061	214.9	227.5	210	.769	555	80.6	81.7	84.9	85.4	583	80.6	82.2	2.20	00-00 9 28
E1	100	1900	221.1	223.6	210	.769	478	81.3	80.8	85.4	85.2	573	80.8	82.2	9,48	95.0
4	100	1900	230.2	238		 	572	80.9	82.3	85.1	86.9	567	81.2	87 5	85 A	2 Y
																2 22
														T		
						† 			†	T			T	T		
	р	ŀ					+				1	T	Ť	Ť		
					†-	T					T	T	+			
							†	†	†	Ť		T	+-	T	Ť	
							ſ		T	T	T	T	Ť	T		

TABLE B-7

500 FT. LEVEL FLYOVER DATA

PA-42 Chevenne

....

2			stir fc	E4.2	84.2	84.3		84.1		82.5	82.3												
те 9-8-8;				83.6	83.6	83.1	83.3	83.4		82.2	5 (8	C- 70											
TRCT DAT		ISE DATA Site 2	ALfc 3	80.1	80.6	80.9	ı	80.1		9.77	7 55	0.11				 							
•		ON	AL	79.3	79.7	79.1	1.9.1	1.97		77.5		0.//									4		
			ALT Tec)	541	543	592		552		521		502									 	 	
			SEL _{fc}	84.7	81.5	85.8	,	9 2 8		82.6	2	81.3											
			SEL	83.9	81.5	83.8	0 78	7 E 8	t.00	87 7	7.70	81.0							 				
		ISE DATA SITE 1	ALfc	0.18	80. 7	81.6		0 05	17.0	0 15	, , ,	76.5											
		NON	AL.	0.08			0.00	0.00	1.6/	ŗ		76.0							.				
			ALT,	111		703	100	•	537		531	523			-								
			× ^H		80/.	./04	(0)	.764	.765		. 753	.753	L										
			IAS	Terry	209	210	205	203	205		183	183											
	(LIN		LTS)	SITE 2	218	- 201	204		210		185	187								 		}	
	enne (CC	EST DATA	SE	SITE 1	212	200	201	"	208		190	187								 			
	42 Chey	CRAFT II		Ma	0061	1900	1900	1900	1900		1900	1900					 			 • .			
	CRAFT P-	AIA		Z PWR	75	75	75	75	75		50	2											
	AIR			VENT	15	16	17	18	19		20												

500 FT. LEVEL FLYOVER DATA

TABLE B-7 (CONT)

DATA	
FLYOVER	
TEVEL	
Ę	
500	

TABLE B-8

AIRCRAFT C-414 Chancellor

TEST. DATE 9-14-82

	IV	RCRAFT	TEST DAT	V				ON	ISE DAT	~			ON	ISE DAT SITE 2	<	
TNENT	Z PWR	RPM	I ALIS	(FTS) SITE 2	LAS (KTS)	щH	ALT (fe)	ALan	AL fc	SEL	SEL _{fc}	ALT (ft)	AL B	ΔIfc	SEL	SEL
-	89	2700	166	1/1	170	.840	522	1	1	1	1	498.4	84.1	84.1	88.1	88.0
2	89	2650	175	170	176	.829	491.3	83.7	83.5	87.6	87.6	498.3	84.3	84.3	87.9	87.8
6	89	2600	1/1	188	176	.815	500.5	80.6	80.6	85.5	85.5	564	83.2	84.5	87.5	88.6
4	89	2550	174	175	176	.801	488.8	80.1	79.9	85.1	85.0	498.2	82.0	82.0	86.2	86.2
18	89	2700	168	170	175	.842	482.4	83.5	83.1	87.7	87.3	461.9	86.1	85.3	90.4	89.7
9	.75	2600	152	151	154	.805	505.9	78.9	79.0	83.5	83.5	475.4	81.9	81.4	85.9	85.5
7	75	2500	159	152	160	.779	518.7	79.7	80.1	84.5	84 . 8	485.4	79.7	79.4	84.5	84.3
8	75	2450	159	155	160	. 765	490.5	77.4	77.2	83.5	83.4	430.7	81.8	81.4	86.1	85.9
10	75	2300	161	173	162	.724	493	76.5	76.4	83.0	83.0	579.0	78.7	80.2	83.8	85.3
11	75	2250	162	159	163	.710	504.4	75.0	75.1	82.0	82.2	469	77.2	76.5	83.0	82.7
19	75	2700	145	144	147	.830	525.1	83.1	83.6	86.9	87.1	479.4	83.2.	82.8	86.8	86.4
20	75	2500	156	119	162	.780	495	78.4	78.3	83.7	83.6	519.4	79.8	80.2	84.8	84.4
		•														
								·								
														ſ		

82		stl _{fc}	80.9	79.8	80.7		90.4	81.2	79.8														
TE <u>9-14-</u>	×	SEL.	81.0	79.7	40 0	, , , ,	1.2.1	80.6	79.4														
AG. TSTT	ISE DAT SITE 2	AL _ř c																					
-		1	75.0	2.7	· · · ·	1.51	72.0	74.8	71.8							·						_	
		ALTT.	1 005			504.0	519.2	544.0	532.3														
		ELfe		2.10	7.18	79.4	78.6	79.7	80.0		T												
		S TAS		+	<u>+ 5.13</u>	79.5	78.7	79.4	7 0 7					T									
	SE DATA ITE 1	ALfe !		73.4	75.3	72.3	70.4	72.4						T			T						
	10M S	AL.		75.5+	25.3 +	72.6	70.8	72.1						T		Ţ	Ī						
			Ē	519.5	499.8	486.3	482.5	1.412		1-175				Ť		Ī	T			T			
		≻≮ ≖		- 134	.718	.690	.681	122		- 704						T	T						
		IVS	(KTS)	120	118	118	130	021		118			T		 Ī	T							
(CONT)		T SE	SITE 2	717	116	121	129			116						T							
rellor	ST DATA	U SO	1 311	115	115	123	128		121	116			T										
nan") álá	RAFT TE		RPM	2400	2350	2250	0000	2007	2350	2300			T		T				T				
	VIR		Z PuR	52	52	53			52	52		t			T			T					
			THENT	13	14	1			21	22								T					

15

127

500 PT. LEVEL FLYOVER DATA

TABLE B45 (CONT)

. .

TVD
FLYOVER
LEVEL
È
500

TABLE 3-9

AIRCRAFT Baron 58P

TEST. DATE 9-28-82

	AI	RCRAFT	TEST DAT	X				0	ISE DATA SITE 1	_				ISE DATA SITE 2		
			53	(cTS)	IAS	ž	ALT,	N.	ML fe	SEL.	SELfc	ALT	N.	AL fc	SEL.	stl.fc
TKENS	Z PWR	HAN	SITE	SITE 2	(KTS)		EE.									
		2200	971	153	158	.857	9.7	84.6	85.7	89.9	90.3	564.6	85.4	86.7	90.7	5.16
5					9	946	530	84.7	85.3	89.0	89.4	597.1	82.5	84.3	85.9	87.1
4	62	2650					2 072	81 0	87.9	85.2	86.0	579.2	82.9	84.4	86.7	87.8
=	67	2600	163	160	160	778-1			2 CO	85 5	86.2	585-4	79.0	80.6	84.8	86.2
1	67	2550	- - 	89	221	- 820	24242	8.4		95 J	85 D	553.5	79.3	80.4	85.3	86.1
13	67	9	164	191	591	- <u>804</u>	238-4	1.67	C-V0	7 10	× • • •	2 072	70 7	0.08	85.1	85.7
14	67	2450	153	151	163	-787-	21212	78.2	79-7	C1	F -C0	2-040				05.1
÷	47	2400	176	164	166	.774	527.4	78.8	79.4	84.5	85.2	558.4	77.6	/8.8	2.40	1.00
		0020	168	160	164	.744	540.1	76.6	4.77	83.7	84.4	542.7	76.1	77.0	83.3	83.9
9			51	161	164	.715	501.1	76.2	76.2	83.5	83.5	523.4	75.0	75.5	83.3	83.6
				158	160	858	525.6	88.1	88.6	91.2	91.5	570.2	86.2	87.6	90.1	91.1
81		3/7														
									0 70	87 B	88.6	546.4	85.5	86.4	88.9	89.6
19	97	2600	180	190	194	-846	1.02	5.58	04.0	0.10				2	00 1	1,00
22	197	2600	186	185	194	.846	513.3	84.5	84.8	89.5	89.8	590.3	84.8	0.00	1.20	
		 				1										
	+	1														
	+		$\frac{1}{1}$			 		 								

العبار الاعتبار المالية المالية المن من المعلمين من المعالية ومن عن المعالية المعلمين من المعارية المعلمين الم الجيرية المريسية (مريسية) من المعادية المعلمين من المعالية المعالية المعادية) والمعادية المعادية المعادية المعاد
-82			SEL _{fc}	90.4	88.9	80.6	88.8	87.7	88.2								
UTE 9-28		Ą	SELam	62.8	88.0	79.6	86.5	86.6	87.5								
TEST. DA	11111	DISE DAT SITE 2	ALEC	86.9	84.7	86.3	84.8	83.4	83.5								
		Ň	ALam	86.3	83.6	84.9	81.3	٥1.9	82.5								
		-	ALT (fet)	531.9	557.2	574.6	698.9	577.3	550								
			SEL fc	91.3	89.2	87.9	90.1	86.2	85.5								
			SEL.	90.5	89.1	87.1	89.0	85.5	85.1								
		ISE D at i SITE 1	ALfc	88.3	84.3	83.0	85.0	80.8	81.6								
		ON	ALan	87.3	84.2	81.7	83.3	79.8	81.0							 •	
			ALT (ft)	547.9	503	565.3	591.1	551.2	529.4								
			H ^H	.836	.836	.836	.836	.823	.823								
			IAS (KTS)	176	176	176	176	145	145								
		-	(KTS) SITE 2	174	171	168	157	138	138								
BP (CONT		EST DAT	CS SITE 1	170	172	163	161	139	141								
Baron 5		RCRAFT 1	RPM	2600	2600	2600	2600	2600	2600						-		
CRAFT _		IV	Z PWR	75	75	75	75	50	50								
AI1			THENT	20	23	25	26	21	24								

500 FT. LEVEL FLYOVER DATA

TABLE B-10 (CONT)

DATA
FLYOVER
LEVEL
Ч.
80

*Indicates Estimate

TABLE B-11

AIRCRAFT C- 425 Conquest-I

TEST. DATE 10-26-82

8
B
Ħ
H
Ħ
Ħ
H
Ħ
B
В
Ħ
Ħ
Ħ
B
Ħ
Н
目
Ħ
Ħ
E
Ħ
Ħ
Ħ
目
日
Ħ
目
目
E
E
目
目
E
B
日
日
Ħ
日
目

·	sel. _{fc}	84.3	83.5	83.1	82.4	82.9	84.7	84.6	83.5	84.1	86.0	85.9	81.7	83.2				
×.	SELan	83.5	83.9	83.7	83.1	84.3	85.7	85.0	84.2	84.2	86.1	85.9	82.7	83.6				
DISE DAT SITE 2	ALfc	80.1	79.3	78.7	77.7	78.7	61.0	80.9	79.0	79.9	82.7	83.4	81.7	83.2				
N	AL am	79.1	79.7	79.5	78.5	80,5	82.4	81.5	80.0	80.0	82.9	82.4	78.4	79.6				
	ALT [ft]	548	481	462	462	421	436	471	453	496	491	501	436	471				
!	SEL _{fc}	82.7	81.8	82.4	82.8	82.2	82.8	83.0	82.8	83.6	84.0	84.3	83.9	83.2				
~	SEL am	84.9	84.4	84.4	84.6	84.2	84.4	85.5	84.7	84.6	85.8	85.8	85.8	84.9				
ISE DAT SITE 1	ALfc	78.5	77.8	78.8	79.5	78.5	79.0	79.6	78.9	80.0	80.1	82.3	80.8	79.6				
ON	AL am	80.8	80.3	80.8	81.2	80.4	80.6	82.1	80,8	81.0	<u>81.9</u>	83.8	82.7	81.3				
	ALT _T ft)	402	395	4 <u>1</u> 4	424	417	428	393	418	454	421	434	418	425				ſ
	м _н	.6849	.7109	.7143	.7443	.7443	.7655	.7655	.7588	.7588	.7705	.7705	 .7552	.7552				
	IAS (KTS)	210	200	205	200	200	207	207	205	205	215	215	190	190				
×	(KTS) SITE 2	185*	175*	180*	175*	175*	182*	182*	180*	180*	190*	190*	165*	165*				
EST DAT	L SITE 1	85	175	<u>180</u>	175	175	182	182	180	180	190	190	165	165				
RCRAFT 1	MAR	1650	1750	1750	1850	1850	1900	1900	1875	1875	1900	1900	1900	1900		•		
AI	Z PWR	90	90	90	90	90	90	90	90	90	100	100	75	75				
	VENT	σ.	10	11	12	13	14	15	22	23	20	21.	16	17				

	6-82			sel _{fc}	80 5		010																		
	Z <u>10-2</u>	11111			6 18		9.28	T	T																
	TST. DAT		SE DATA SITE 2	AL fc S	25 5		1 2.9	Ť	┦	_			T				T								
			ION S			10.0/	4 9-12						T				Ţ						T		
				ULT Ter		<u>+ cc</u> +	446	1	1			ſ	T			T							T		
				ELfc /			81.5	1								T									
				SEL.		53.4	82.7					T				T									
•			SE DATA ITE 1	AL fc		1 8-77	72-4-4		-																
			10M S	AL		1.67	78.6		-		ļ	T			T										
				LT	11	415	444				T														
				چر ا		- 7440 +	.7440					T													
				I SAI	(KTS)	170	170			† -					T							T			T
	CONT)			ISI	SITE 2	145*	145*				Ť														
	uest-I (ST DATA	C C	I III	145	145			ſ	Ť														
	425 Conq		RAFT TE		RPM S	1900	1900			$\frac{1}{1}$	Ť									T	T			T	T
	PART C		AIRC		Z PUR	50	50			\uparrow								T	\uparrow	T			•		
	AIRC				EVENT	18	19														T				

THE TAKE CALL THE CAL

500 FT. LEVEL FLYOVER DATA

TABLE B11 (CONT)

APPENDIX C

COCKPIT DATA

ኡ

Appendix C: Cockpit Data

This appendix contains various cockpit instrumentation readings logged by a cockpit observer. The readings were logged when the aircraft was approximately over the prime site. Due to the difficulty in seeing the ground from the cockpit during the takeoff operation, it was hard to determine when the aircraft was in fact directly over the site. This will account for the difference between test altitude (ALT_T) listed in Appendices A and B and the altitude listed in Appendix C.

COCKPIT DATA

AIRCRAFT C-180

TEST DATE 6-3-82

EVENT NO.	EVENT TYPE	MANIPOLD PRESS.	TORQUE	PROP RPM	IAS (KTS)	HEADING (DEGREES)	ALTITUDE
		5	N/N	2550	78.3	180	ł
1	Takenfi		0/4	JEEO	1. 87	1.80	•
2	Takeoff	27.5	N/N	NCC7		007	1
5	Takeoff	27.5	N/A	2550	78.3	787	
7	Takeoff	27.5	N/A	2550	78.3	180	•
	Takeoff	27.5	N/A	2550	78.3	180	1
	Takeoff	27.5	N/A	2550	78.3	180	8
2	Takenff	27.5	N/A	2550	78.3	180	-
	THEFT						

and the second

1

C-2	
TABLE	

فأفتحن والمراقع والكافتين وحميدهم مراد والمكافية

ł

COCKPIT DATA

C-170 AIRCRAFT

TEST DATE 6-23-82

ALTITUDE	1		•	-	-	•	1	1	-	1		•	1	1	•	1	8	-	-	•	-	8	1
HEADING (DEGREES)	360	360	360	360	360	360	360	360	360	360	360	360	360	360	360	360	360	360	360	360	360	360	360
IAS (KTS)	85	85	06	85	85	85	85	06	125	125	125	105	105	98	85	06	85	120	120	120	120	117	120
PROP RPM	2375	2375	2375	2375	2375	2375	2375	2375	2450	2450	2450	2225	2225	2175	1900	1900	00/1	2450	2450	2450	2450	2450	2450
TORQUE	N/A	N/A .	N/A																				
MANIFOLD PRESS.	-	1	1	1	1	1	1	-	1	1	4	1	l	1	•	-	1	1		1		1	•••••
EVENT TYPE	Takeoff	Flyover																					
EVENT NO.	1	2	3	4	5	9	7	8	6	10	11	12	13	14	- 15	16	17	18	19	21	22	23	24

and the second of the second second

......

Atoma and

7-13-82	ALTITUDE		-	1	I	•	•	1	,			-	-	-	1	I	•			-				
TEST DATE	HEADING (DEGREES)	010	010	011	010	008	600	010		0.0	010	010	008	906	004	010	700	010	ΛΤΛ	008				
	IAS (KTS)	97	97	97	57	96	96	95	95	2	96	98	97	100	80	96	, oo	67	98	66				
	PROP RPM	2600	2600	2600	2600	2450	2600	2600	2500	0007	2500	2400	2400	2300	0000	7600	0070	.2000	2600	2600				
	TORQUE		N/A	N/A	N/A	A/N	e /n	A /M	A/N	N/A	N/A	N/A	N/A	N/A		N/A	N/A	N/A	N/A	N/A				
AFFOW IV	MANIFOLD PRESS.		0 19	0 17	0.17	0 17	0.17	0.17	n•T#	26.0	26.0	26.8	26.8	27.7		27.7	41.0	40.0	40.0	41.0				
A-28RT-201T Turbo	EVENT TYPE		Takeoff	Lakeoli	Lakeol I	Takeoff	Takeott	Takeoff	Takeoff	Fiyover	Flyover	Flyover	Flvover	Flvover		Flyover	Takeoff	Takeoff	Takeoff	Takeoff				
ATECEAPT P.	EVENT NO.			7	Ω.	4	2	σ	2	8	6	10			+	13	14	15	16		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			

COCKPIT DATA

C-4	
TABLE	

COCKPIT DATA

AIRCRAFT C-180

TEST DATE 7-20-82

EVENT NO.	EVENT TYPE	MANIFOLD PRESS.	TORQUE	PROP RPM	IAS (KTS)	HEADING (DEGREES)	ALTITUDE
	Flvover	31.5	N/A	2575	138	005	ł
2	Flvover	31.5	N/A	2575	138	185	I
e e e e e e e e e e e e e e e e e e e	Flyover	32.0	N/A	2575	140	005	ŀ
4	Flyover	33.0	N/A	2500	142	185	1
5	Flyover	32.8	N/A	2500	140	005	T
	Flyover	33.3	N/A	2450	142	185	1
	F1 vover	33.3	N/A	2450	140	005	1
.α	F1 vover	33.8	N/A	2400	142	185	
σ	Flvover	33.8	N/A	2400	140	005	I
01	Flyover	41.0	N/A	2575	162	185	I
11	Flyover	41.0	N/A	2575	160	005	1
12	Flyover	40.5	N/A	2575	160	005	1
13	Flyover	26.8	N/A	2400	120	906	1
14	Flyover	26.8	N/A	2400	119	008	1
15	Flyover	26.8	N/A	2400	121	008	1
16	Flyover	27.7	N/A	2300	120	008	1
17 511	Flyover	27.5	N/A	2300	120	005	1
21	Flyover	27.0	N/A	2600	165	1	1
22	Flyover	27.0	N/A	2600	162	I	8
23	Flyover	27.0	N/A	2600	160	L	1
24	Flyover	27.0	N/A	2550	163	1	ı
25	Flyover	22.0	N/A	2600	148	355	1
26	Flyover	22.0	N/A	2600	145 1	355	1

190 (CONT) 1.11111111111111111111111111111111111				COCKETT	DATA		7147 TATE	7-20-82
International Heading Heading Heading KURH TFFR MAILTOLD PRESS. TORQUE PROP HEADING 355 - Flyover 22.0 N/A 2425 148 355 - Flyover 23.0 N/A 2450 151 355 - Flyover 23.0 N/A 2450 151 355 - Flyover 23.0 N/A 2450 151 355 - - Flyover 23.0 N/A 2450 121 355 - - Flyover 16.8 N/A 2450 129 355 - - Flyover 10.1 N/A 2450 131 355 - - Flyover 17.1 N/A 2350 131 355 - - Flyover 17.9 N/A 2300 124 355 - - Flyover 18.9 N/A	18	0 (CONT)					TITITITITI	
Internation Torone Production Altificular VERNT TFPE MAILFOLD PRESS. Torone 24.5 146 355 - Flyover 22.0 N/A 2450 151 355 - Flyover 23.0 N/A 2450 151 355 - Flyover 23.0 N/A 2450 153 355 - Flyover 23.0 N/A 2450 153 355 - - Flyover 16.8 N/A 2450 120 355 - - Flyover 16.8 N/A 2450 129 355 - - Flyover 17.1 N/A 2430 129 355 - - Flyover 17.1 N/A 2430 129 355 - - Flyover 18.9 N/A 2300 124 355 - - Flyover 18.9 N/A								
WIME 24.50 14.8 355 - Flyover 22.0 N/A 2450 151 355 - Flyover 23.0 N/A 2450 151 355 - Flyover 23.0 N/A 2450 151 355 - Flyover 23.0 N/A 2450 153 355 - Flyover 16.8 N/A 2450 120 355 - Flyover 10.1 N/A 2450 120 355 - Flyover 17.5 N/A 2450 120 355 - Flyover 17.1 N/A 2400 121 355 - Flyover 17.9 N/A 2300 131 355 - Flyover 13.9 355 14 355 - - Flyover 13.9 355 12 355 - - Flyover 13.9	R		SSada dibation	TORQUE	PROP RPM	IAS (KTS)	HEAD ING (DECREES)	ALTITUDE
Flyver 22.0 NA 2450 151 355 - Flyver 23.0 N/A 2450 151 355 - Flyver 23.0 N/A 2450 151 355 - Flyver 16.8 N/A 2450 120 355 - Flyver 16.8 N/A 2450 120 355 - Flyver 16.8 N/A 2450 120 355 - Flyver 17.1 N/A 2450 121 355 - Flyver 17.1 N/A 2400 124 355 - Flyver 17.9 N/A 2300 124 355 - Flyver 18.9 N/A 2200 124 355 - <td>_</td> <td>EVENT TYPE</td> <td>TWAT THE THE</td> <td></td> <td>26.95</td> <td>148</td> <td>355</td> <td>•</td>	_	EVENT TYPE	TWAT THE THE		26.95	148	355	•
Flyover 23.0 N/A 2-00 151 355 7 Flyover 23.0 N/A 2450 120 355 7 Flyover 16.8 N/A 2450 120 355 7 Flyover 16.8 N/A 2450 120 355 7 Flyover 16.8 N/A 2425 119 355 7 Flyover 17.1 N/A 2400 130 355 7 Flyover 17.1 N/A 2400 131 355 7 Flyover 17.3 N/A 2300 131 355 7 Flyover 17.9 N/A 2300 131 355 7 Flyover 17.9 N/A 2300 124 355 7 Flyover 18.9 N/A 2200 124 355 <td>1-</td> <td>lyover</td> <td>22.0</td> <td>N/A</td> <td>0542</td> <td>151</td> <td>355</td> <td>1</td>	1-	lyover	22.0	N/A	0542	151	355	1
Flyover 23.0 N/A Z450 153 5 Flyover 16.8 N/A Z450 120 355 5 Flyover 16.8 N/A Z450 120 355 5 Flyover 16.8 N/A Z420 120 355 5 Flyover 17.1 N/A Z400 125 355 5 Flyover 17.3 N/A Z350 131 355 5 Flyover 17.9 N/A Z300 131 355 5 Flyover 18.9 N/A Z300 124 355 5 Flyover 18.9 N/A Z200 124 355 5 Flyover 18.9 N/A Z200 124 355 5 Payover 18.9 N/A Z200 124 355 5 Payover 18.9 N/A Z200 124 355 5 Payover 18.9 N/A Z200 124 355 Payover	F	Flyover	23.0	N/A	2450	151	355	-
Flyover Z3.0 WA Z450 120 355 - Rlyover 16.8 N/A 2425 119 355 - Rlyover 17.1 N/A 2400 125 355 - Rlyover 17.1 N/A 2300 131 355 - Rlyover 17.9 N/A 2300 131 355 - Rlyover 17.9 N/A 2300 124 355 - Flyover 18.9 N/A 2200 124 355 - Plyover 18.9 N - - - Plyover	├	Flyover	23.0	N/A	2450	153	355	,
Flyover 10.8 MAL 2425 119 355 $^{-}$ Flyover 17.1 N/A 2400 125 355 $^{-}$ Flyover 17.1 N/A 2300 131 355 $^{-}$ Flyover 17.9 N/A 2300 131 355 $^{-}$ Flyover 18.9 N/A 2200 124 355 $^{-}$ Flyover 18.9 N/A 2200 124 355 $^{-}$ Plyover 18.9 N/A 200 124 355 $^{-}$ Plyover 18.9 N/A 100 10		Flyover	23.0	A/A	2450	120	355	-
Flyover 16.8 N/A 2400 125 355 - Flyover 17.1 N/A 2350 131 355 - Flyover 17.9 N/A 2300 131 355 - Flyover 18.9 N/A 2200 124 355 - Flyover 18.9 N/A 2200 124 355 - Plyover 18.9 N/A 2200 124 355 - Plyover 18.9 N/A 2200 124 355 -		Flyover	16.8	6/6 8/4	2425	119	355	-
Flyover 17.1 N/A 2300 130 355 - Flyover 17.9 N/A 2300 131 355 - Flyover 17.9 N/A 2200 124 355 - Flyover 18.9 N/A 2200 124 355 - Flyover 18.9 N/A 2200 124 355 - Plyover 18.9 10 10 10 10 Plyover 18.9 10 10 10 10 Plyover 18.9 10 10 10 10 Plyover 10 10	┣	Flyover	16.8	A/N	00%	125	355	-
Flyover 17.5 N/A 2300 131 355 - Flyover 17.9 N/A 2200 124 355 - Flyover 18.9 N/A 2200 124 355 - Flyover 18.9 N/A 2200 124 355 -	╋╴	Flyover	17.1	N/A	2400	130	355	1
Flyover 17.9 N/A 2300 234 355 - Flyover 18.9 N/A 2200 124 355 -	+	Flvover	17.5	N/A	0007	121	355	1
Filower 18.9 N/A 2200 And Pilower 18.9 N/A 2200 And	+	Flyover	17.9	N/A	2300	761	355	
	1	Flover	18.9	N/A	2200	677		
	1							
	T							
	Т							
	1							
	1							

In case of the second

TABLE C-4 (CONT)

CKPIT DATA

S	
TABLE	

COCKPIT DATA

AIRCRAFT PA-38-112 Tomahavik

TEST DATE 8-10-82

EVENT 30.	INDU TIPE	MANIFOLD PRESS.	TORQUE	PROP RPM	IAS (KTS)	ELADING (DEGREZS)	ALTITUDE
1	Takeoff	1	N/A	2350	70	360	
2	Takeoff	1	N/A	2350	20	350	•
3	Takeoff	1	N/A	2350	70	350	
4	Takeoff	1	N/A	2350	70	350	
5	Takeoff	1	N/A	2350	20	352	-
9	Takeoff		V/N	2350	69	340	
7	Takeoff	ı	N/N	2350	70	κ, Έ	-
80	Takeoff	1	N/A	2350	72	345	
6	Takeoff	-	N/A	2500	95	345	
10	Takeoff	•	N/A	2500	55	340	
11	Takeoff	•	N/A	2500	06	340	b
12	Takeoff	l	N/A	2550	98	-	
ĴĴ.	Takeoff	1	N/A	2600	110	345	
14	Takeoff		N/A	2600	105	345	
15	Takeoff	1	N/A	2600	105	345	I
16	Flyover	1	N/A	2410	98	360	-
17	Flyover	1	N/A	2410	001	355	•
18	Flyover	•	N/A	2350	95	360	ľ
19	Flyover	1	N/A	2350	97	355	
20	F lyover	ł	N/A	2300	90	350	
21	PLYOVEL	3	N/A	2300	06	355	
22	Flyover	•	N/A	2170	85	355	
23	Flyover	•	N/A	2170	85	350	

ւ։ Հանձենում անգետաներություն աներություններությունը է առումը երապաների երանուներին, երեցներն առաջություններիններ

	ine Air 200					TEST DATE	8-31-82
ALKCKAFT	0						
					(ame)	HEADING	(1SM)
EVENT NO.	EVENT TYPE	MANIFOLD PRESS.	TORQUE	PROP RPM	Teta) SVI	(DECREES)	ALTITUDE (1001)
		4/4	2230	2000	126	010	1500
1	Takeoff	N/N	0000	2000	126	010	1000
2	Takeoff	N/A	0622	0000	126	010	1100
9	Takeoff	N/A	2230	0007	747	010	1200
4	Takeoff	N/A	2230	2000	071	010	126.0
5	Takeoff	N/A	2230	2000	126	010	81
	Takeoff	N/A	2230	2000	126	010	00TT
, ,	Tekenff	N/A	2230	2000	126	010	MTT
- IC	TTOSTEL	N/A	2230	1700	235	010	
α	riyovei Fluover	N/A	2165	1750	235	010	800
7 4	FLYOVEL Plummer	N/A	2105	1800	230	010	800
01	FLYWEL		2050	1850	252	010	800
11	Flyover	N/A	7002		232	010	800
12	Flyover	N/A	2991	0067	231	010	800
13	Flyover	N/A	1945	DCAT	102	010	800
71	Flyover	N/A	1895	2000	962	010	G
1	Flyover	N/A	1995.	1900	233	OTO	3
			1945	1950	232	010	800
16	Flyover	V/N	1895	2000	233	010	ß
11	KIYOVEI	V/M	2230	1900	238	010	800
18	Flyover	N/N	0000	1000	240	010	800
19	Flyover	N/A	2230	0001	939	010	800
20	F lyover	N/A	2230	0001	210	010	800
21	Flyover	N/A	2230	0051	217	010	800
22	Flyover	N/A	1672	1900	210	010	800
23	Flyover	N/N	1672	TYUN			

1

TABLE C-6

COCKPIT DATA

TABLE C-6 (CONT)

COCKPIT DATA

AIRCRAFT King Air 200 (CONT)

0 ŝ 0

Aryver N/A 1572 1900 214 0.0 800 Flyover N/A 1115 1900 194 010 800 Propertion Propering Propering Propering Propering Propering Propering Propering	11 NO.	TITITITITITI	MANIFOLD PRESS.	<u>Т 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</u>	PROP RPM 1900	111111111111 IAS (KTS) 215	IEST UATI HEADING (DECREES) 010	ALTITUDE (MSL) 800
Flyover N(A 115 1900 194 010 800 Plyover N/A 1115 1900 194 1910 1910 Plyover Plyover Plyover Plyover Plyover Plyover Plyover Plyover Plyover Plyover Plyover Plyover Plyover Plyover Plyover Plyover Plyover Plyover Plyover Plyover Plyover Plyover Plyover Plyover		rlyover Flyover	N/A N/A	1672 1115	1900 1900	214 195	010	800 800
Flywer M/A 1115 1900 194 010 800 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Flyover Flyover	N/A N/A	1115 1115	1900 1900	194 194	010	800 800
		Flyover	V/N	1115	1900	194	010	800
	T							
	†							
	+							
	1							
	┥						r	
	+							

M.L

Contraction of the second se

						TEST DATE	9-8-82
AIRCRAFT	A-42 Uneyenne						
						HEADING	
	EVENT TYPE	MANIFOLD PRESS.	TORQUE	PROP RPM	IAS (KTS)	(DECREES)	ALTITUDE
EVENT NU.			1005	2000	240	010	-
I	Flyover	N/A	C601	1050	236	010	-
2	Flyover	N/A	1945	ACET	126	010	ŀ
	Flvover	N/A	1995	1900	062	010	
		N/A	2050	1850	236	ATA	
4	TRADAT	V/N	2105	1800	236	010	
Ŀ	Flyover	8/8	2105	1750	230	010	
9	Flyover	N/A	3710	1700	230	010	-
7	Flyover	N/A	C012	1950	231	010	ł
8	Flycver	N/A	0622	OCOT	231	010	1
5	Flyover	N/A	0502	1200	010	010	•
01	Flyover	N/A	1995	1900	017	010	
	Flyover	N/A	1995	1900	017	010	
12	Flyover	N/A	1995	1900	017		
		A/W	1995	1900	210		
13	Flyover		1005	0061	210	010	
14	Flyover	N/A	1403	0061	209	010	
15	Flyover	N/A	- C24T	0001	210	010	-
16	Flyover	N/A	c6+1	0001	205	010	1
17	Flyover	N/A	1493	1000	203	010	1
18	Flyover	N/A	1493	1900	205	010	-
19	Flyover	N/A	1493	T200	183	010	•
20	Flyover	N/A	995	0001	183	010	1
21	Flyover	N/A	995	0055	115	010	l
	Takeoff	N/A	1895	0002	115	010	1
23	Takeoff	N/A	1895	0007			

COCKPIT DATA

(CONF)
<u>c-</u> 7
TABLE

COCKPIT DATA

AIRCEAFT PA-42 Cheyenne (CONT)

TEST DATE 9-8-82

-

ALTITUDE	1	I	I	ł	1	1									
HEADING (DEGREES)	010	010	010	010	010	010									
IAS (KTS)	115	115	115	115	170	171									
PROP RPM	2000	2000	2000	2000	1900	1900									
TORQUE	1895	1895	1895	1895	995	395					•				
MANIFOLD PRESS.	N/A	N/A	N/A	N/A	N/A	N/A									
EVENT TYPE	Takeoff	Takeoff	Takeoff	Takeofí	Takeoff	Takeoff									
EVENT NO.	24	25	26	27	28	29									

.....

ł

.

AIRCRAFT C-	414 Chancellor					TEST DAT	E <u>9-14-82</u>
EVENT NO.	EVENT TYPE	MANIFOLD PRESS.	TORQUE	PROP RPM	IAS (KTS)	HEADING (DEGREES)	ALTITUDE
1	Flyover	33.8	N/A	2700	170	180	8
2	Flyover	34.3	N/A	2650	170	175	
3	Flyover	34.8	N/A	2600	176	180	-
4	Flyover	35.5	N/A	2550	176	185	-
5	Flyover	27.0	N/A.	2700	145	179	-
ع	Flynver	28.5	N/A	2600	154	178	-
7	Flyover	30.0	N/A	2500	160	180	
∞	Flyover	30.8	N/A	2450	160	187	-
σι	Flyover	31.5	N/A	2400	162	185	I
10	Flyover	32.9	N/A	2300	162	185	ł
11	Flyover	33.7	N/A	2250	163	185	1
12	Flyover	21.7	N/A	2450	120	185	
13	Flyover	22.2	N/A	2400	120	190	
14	Flyover	22.6	N/A	2350	118	190	l
15	Flyover	23.1	N/A ·	2300	120	181	1
16	Flyover	23.5	N/A	2250	118	181	
17	Flyover	24.3	N/A	2200	130	182	1
18	Flyover	33.8	N/A	2700	175	185	-
19	Flyover	27.0	N/A	2700	I.	1	I
20	Flyover	30.0	N/A	2500	162	185	-
21	Flyover	22.6	N/A	2350	130	185	I
22	Flyover	23.1	N/A	2300	118	187	
23	Takeoff	-	N/A	. 1	110	187	1

COCKPIT DATA

7

8 (CONT)
5
E
3

COCKPIT DATA

AIRCRAFT C-414 Chancellor (CONT)

TEST DATE 9-14-82

HEADING	IAS (KTS)	PROP RPM	TORQUE	MANIFOLD PRESS.	EVENT TYPE	EVENT NO.

-														
ALTITUDE	1	•	•	-	1									
HEADING (DEGREES)	187	187	187	187	187									
IAS (KTS)	110	115	110	112	110									
PROP RPM	1	1	1	1	1									
TORQUE	N/A	N/A	N/A	N/A	N/A									
MANIFOLD PRESS.	-	-	-	-	•									
EVENT TYPE	Takeoff	Takeoff	Takeoff	Takeoff	Takeoff									
EVENT NO.	24	25	26	27	28									

AIRCRAFT	B58-P Baron	-				TEST DAT	g 9-28-82
EVENT NO.	EVENT TYPE	MANIFOLD PRESS.	TORQUE	MAN GONA	las (kts).	HEADTINC (DECRERS)	ALTITUDE (AGL)
1	Takeoff	39.5	N/A	2700	115	005	1
2	Takeoff	39.5	N/A	2700	115	005	1100
÷	Takeoff	39.5	N/A	2700	113	005	1100
4	Takeoff	39.5	N/A	2700	115	010	1000
2	Takeoff	39.5	N/A	2700	115	010	1200
6	Takeoff	39.5	N/A	2700	115	010	1000
7	Takeoff	39.5	N/A	2700	115	010	1100
8	Takeoff	39.5	N/A	2700	115	010	0011
6	Flyover	27.2	N/A	2700	158	010	500
10	Flyover	27.5	N/A	2700	160	010	500
11	Flyover	27.9	N/A	2650	166	010	500
12	Flyover	28.3	N/A	2600	172	010	500
13	Flyover	28.7	N/A	2550	169	010	500
14	Flyover	29.2	N/A	2500	163	010	500
15	Flyover	29.7	N/A ·	2450	166	010	500
16	Flyover	31.0	N/A	2400	164	010	500
17	Flyover	33.0	N/A	2300	164	010	500
18	Flyover	27.2	N/A	2200	160	010	500
19	Flyover	29.5	N/A	2700	194	010	500
20	Flyover	31.8	N/A	2600	176	010	500
21	Flyover	23.5	N/A	2600	145	010	500
22	Flyover	39.5	N/A	2600	194	010	500
23	Flyover	31.8	N/A	2600	176	010	200

COCKPIT DATA

TABLE C-9 (CONT)

COCKPIT DATA

AIRCRAFT B58-P Baron (CONT)

TEST DATE 9-28-82

ALTITUDE (AGL)	500	500	500													
HEADINC (DECREES)	010	010	010	0T0												
IAS (KTS)	145	176	A/T	1/6												
PROP RPM	2600	0070	7007	2600												
TORQUE	N/N	4/m	N/A	N/A												
 WANTPOLD PRESS.	2.55	C.62	31.8	31.8												
EVENT TYPE		Flyover	Flyover	Flyover												
EVENT NO.		24	25	26												

dente de la competition de la

*NOTE: ACTUAL PROPELLER SPEED = 182 PLUS INDICATED VALUE

TABLE C-10

COCKPIT DATA

ALTITUDE (MSL) TEST DATE 10-5-82 1300 1100 1200 1200 1350 HEADTHC (DECREES) 180 190 180 180 185 175 185 IAS (KTS) 95 <u> 26</u> 29 8 6 5 98 MAX JORI 2700 2700 2700 2700 2700 2700 2700 TORQUE 2700 2700 2700 2700 2700 2700 ł MANIFOLD PRESS. N/N N/N N/A N/A N/A N/A AIRCRAFT C-210 Centurion EVEN TYPE Takeoff Takeoff Takeoff Takeoff Takeoff Takeoff Takeoff EVENT NO. 4 و н 2 m ŝ

COCKPIT DATA

recreater C-182 Skylane

TEST DATE 10-5-82

•••

.....

ана 1999 година и на 1999 година. Сема 1999 година и на 1999

5

のなどの言葉

- 中国には、「「「小川」」は東京に新聞に、「「「「」」」、「」、「「」」では、新聞などので、「「」」をいいますなり、「「」」をいいますない。

EVENT NO.	EVENT TYPE	MANIFOLD PRESS.	TORQUE	PROP RPM	IAS (KTS)	HEADING (DEGREES)	ALTITUDE (MSL)
14	Takeoff	30.0	N/A	2400	92	180	1250
15	Takeoff	31.0	N/A	2400	92	182	1200
16	Takeoff	31.0	N/A	2400	16	182	1200
	Takeoff	31.0	N/A	2400	90	182	1100
18	Takeoff	31.0	N/A	2400	89	182	1100
19	Takeoff	31.0	N/A	2400	06	182	1150

1

B. C. S. Martin Stratter Stratter Stratter

COCKPIT DATA

AIRCRAFT C-172 Skyhawk

TEST DATE 10-5-82

ALKUKAFT							
LILITITITI	EVENT TYPE	MANIFOLD PRESS.	TORQUE	PROP RPM	IAS (KTS)	HEADING (DEGREES)	ALTITUDE (MSL)
			N/A	2300	75	180	006
26	Takeoff		N/A	2300	75	180	006
21	Takeorr		K/A	2300	75	180	006
28	Takeott		ela				000
29	Takeoff	-	N/A	2300		081	
30	Takeoff	1	N/A	2300	75	180	006
2	Takeoff		N/A	2300	75	180	00ú
						3	
	~						

Carl Date in

-
m -
-
Υ.
Ċ.
-
<u>د</u>

- موجوعة

TABLE C-13 COCKPIT DATA

Marlin 227-AT

						TILLI TILLI	10-19-82
EVENT NO.	EVENT TYPE	MANIFOLD PRESS.	TORQUE	PROP RPM	IAS (KTS)	HEADINC (DECREES)	ALTITUDE (AGL)
2	Takeoff	N/A	1002	100 Z	147	180	1300
r,	Takeoff	N/A	1002	1002	147	180	1200
4	Takeoff	N/A	1002	1002	147	180	1200
5	Takeoff	N/A	1002	1002	147	180	1300
Q	Takeoff	N/A	1002	1002	147	180	1300
7	Takeoff	N/A	1002	1002	147	180	1300

an and the subscript lands and the set in the subscript first of the set of the light of the set of the se

THE MER LOAD LOAD PREASE STRATE STRATE

Street on the state of the stat

COCKPIT DATA

AIRCRAFT Gulfstream Commander 900

.

anthar 1997 (n. 1997), and an India and Charles, New York, The Cold Martins and a state

TEST DATE 10-19-82

.

ALTITUDE (MSL)	1	1500	1700	1900	2000	2200									
HEADING (DECREES)	180	185	185	185	185	185									
IAS (KTS)	135	135	135	135	135	135									
PROP RPM	1002	1002	1062	100%	1002	1002									
TORQUE	97.5%	97.5%	22.52	37.55	97.5%	97.5 X									
MANIFOLD PRESS.	N/A	N/A	N/A	N/A	N/A	N/A									
EVENT TYFE	Takeoff	Trizeoff	Takeoff	Takeoff	Takeoff	Takeoff									
EVENT NO.	15	16	17	18	19	20									

1

AIRCRAFT Ben	ech Ducliess					TEST DATE	10-19-82
EVENT NO.	EVENT TYPE	MANIFOLD PRESS.	TORQUE	PROP RPM	IAS (KTS)	HEADING (DEGREES)	ALTITUDE (MSL)
		20.0	N/A	2700	57	185	1
29	TakeoII	22.02	N/A	2700	57	185	1500
30	Takeorr m 1 - 66	24.0	N/A	2700	98	180	1600
31	Takeorr	20.02	N/A	2700	97	180	1500
32	TakeoII	20.0	N/A	2700	16	180	1600
33	Takeoff	0.52		0020	96	180	1800
34	Takeoff	29.0	N/A	0017	07	179	1700
35	Takeoff	29.0	N/A	2/00	15		

WARK SATENAL DOCTORS

TABLE C-15

COCYPIT DATA

COCKPIT DATA

RAFT Piper Navajo 350

TEST DATE 10-20-82

AIRCRAFT F.	ATT ALANA TAL						
					Į	HEADING	
EVENT NO.	EVENT TYPE	MANIFOLD PRESS.	TORQUE	PROP RPM	IAS (KT5)	(DECREES)	ALTITUDE
			N/N	2525	106	1	•
1	Takeoff	0.14	A/N	2525	101	١	ι
2	Takeoff	41.0	N/A	2525	101	1	l
3	Takeoff	41.0	N/N	1695	101	1	1
4	Takeoff	41.0	N/A	(7(7	001		1
	Takeoff	41.0	N/A	2525	TO		
	Takenff	41.0	N/A	2525	103	;	
	m-165	41.0	N/A	2525	101	-	
	Takoell	0 17	N/A	2525	101	-	-
8	Takeoff						

COCKPIT DATA

AIRCRAFT PA28-181 Archer II

TEST DATE 10-20-82

.

mannatititititi

EVENT NO.	EVENT TYPE	MANIFOLD PRESS.	TORQUE	PROP RPM	IAS (KTS)	HEADING (DEGREES)	ALTITUDE
16	Takeoff	1	N/A	2350	76	I	1
17	Takeoff	1	N/A	2375	76	1	I
18	Takeoff	1	N/A	2350	76	L	1
19	Takeoff	1	N/A	2350	80	•	
20	Takeoff		N/A	2350	77	1	t
21	Takeoff	-	N/A	2350	76	-	1

AIRCRAFT	eech Bonanza-36	ł				TEST DATE	10-20-82
PULLIN NO.	EVEAT TYPE	MANIFOLD PRESS.	TORQUE	PROP RPM	IAS (KTS)	HEADTING (DEGREES)	ALTITUDE (AGL)
		0.00	N/A	2700	97	185	1300
30	Takeoff	23.0	N/A	2700	98	180	1300
31	TakeoII	28.0	N/A	2700	100	180	1300
32	Takeott	0.02	N/A	2700	97	180	1300
33	Takeoff	0.02	a la Ma	0026	96	180	1400
34	Takeoff	28.0	N/A	00/7	98	182	1400
35	Takeoff	28.0	N/A	00/7	2	183	1400
36	Takeoff	28.5	N/A	2700	17		

COCKPIT DATA

AIRCRAFT C-	-425 Conquest-I	ł				TEST DATE	10-26-82
EVENT NO.	EVENT TYPE	NANTPOLD PRESS.	TORQUE	PROP RPM	IAS (KTS)	HEADING (DEGREES)	ALTITUDE (MSL)
-	Takeoff	N/A	1244	1900	115	360	1500
	Takeoff	N/	1244	1900	119	005	1800
9	Takeoff	N/A	1244	1900	115	010	1600
4	Takeoff	N/A	1244	1900	116	010	1800
2	Takeoff	N/A	1244	1900	115	010	1500
9	Takeoff	N/A	1244	1900	117	012	1600
<u> </u>	Takeoff	N/A	1244	1900	118	010	1650
							2

10 M

.....

TABLE C-19 COCKPIT DATA APPENDIX D

METEOROLOGICAL DATA

Appendix D: Meteorological Data

Surface

Surface temperature, relative humidity, and wind data were acquired in the vicinity of the noise measurement array during each test.

Upper Air

On certain test days upper air meteorological data were reported as available from the National Weather Service Radiosonde Launch facility at nearby Sterling Park, Virginia (approx 3 miles away).

6-3-82		QNIM	EED (KTS) DIRECTION																					-
TEST DATE	PPER AIR		HUMIDITY (%) SF																					_
	n		TEMP (oF)															-						
			HT. ABOVE GND (FT.)																					
			DIRECTION	150		150	180	160	16 Ū	170	150	140	071	071	140	170	170	140	2					
			NIM (KTS)		2	13	12	13	12	12	11	12		71	13	14	16	76	14					
	SURFACE		(%) vmrunum	· /·/ ITTATUNH	64	60	56	58	60	62	58	ςρ		58	54	54	54	÷.	52					
c-180				TEMP (OF)	77		78	11	77	76	78			76	80	80	01	8/	61					
AIRCRAFT				TIME	9:56		10:30	10:45	10:57	11.17	12-11	TC:TT	11:40	11:55	12:14	12:31		12:46	12:54					

TABLE D-1

METEOROLOGICAL DATA

TABLE D-2 METEOROLOGICAL DATA

AIRCRAFT C-170

TEST DATE 6-23-82

UPPER AIR	
SURFACE	

	00	DIRECTION																
	IA	SPEED (KTS)																
		HUMIDITY (2)					,											
>		TEMP (oF)																
	HT. ABOVE	CND (PT.)																
	D	DIRECTION	340	360	300	300	310	310	330	1								
	NIW	SPEED (KTS)	3	8	7	6	8	8	5	1								
SUMPACE		(Z) ALICIMON	84	78	70	61	57	52	48	60		_						
		TEMP (OF)	61	65	68	71	73	75	76	77								
		TIME	5:53	6:53	7:54	8:51	9:52	10:53	11:53	12:15								

TABLE U-3 METEOROLOGICAL DATA

TABLE D-4 METEOROLOGICAL DATA

AIRCEAPT C-J.86

TEST DATE 7-20-82

111

	e	DIRECTION	230	1	L	367	-																
	ITM	LFEED (KTS)	0	T T T	1	01	1									·-							-
		2				T	·	T															
PPER AIR		ALICTWOH	94	93	86		83																
5		FEMP (oF)	70	, 1 2	73	I	70																
	HT. ABOVE	GND (FT.)	0	269	620	1075	<u>1874</u>																
		DIRECTION	100	000	000	230	000	000	000	310	300	280	270	280	300	310	310	290	360	310			
	UTNI VTNI	SPEED (KTS)	2	0	0	2	0	0	0	4	4	4	4	4	9	5	6	7	. α) 6			
SURFACE		HUMIDITY (Z)	97	97	97	100	100	97	57	100	97	97	97	46	94	06	06	88	83	22 85			
		TEMP (oF)	11	71	11	71	11	72	72	73	74	74	75	2.	77	77	77	78	82	87	4		
		TIME	5:30	5:44	5:55	6:13	6:27	6:45	6:54	7:15	7:30	7:46	7.55	8-19	8:32	8.45	8-57	0.15	0.25	0-59			

AIRCRAFT	PA-38-112 1	Tomahawk -					AG TEST DA		
						5	PPER AIR		
		SURFACE							
					HT ABOVE		į		DITECTION
		í.	NTA (AAU)	DIRECTION	CND (FT.)	TEMP (oF)	HUMIDITY (2)	SPEED (KIS)	
TDE	TEMP (oF)	RUMIDITY (2)	SPEED UNIO			68	98	0	200
5:39	11	06	0	-		QF	100	1	•
5:53	11	06	0	0	104	2	.0		I
10.3		 	0	0	499	1	t s		
10:0	ļ	07		120	761	- 74	82		
6:22	7/		6	210	939	1		13	289
6:41	I	'							
6:55	72	97	0	5					
7:10	74	06	3	250					
70.F		87	9	290					
17:1		g	9	290					
7:50	5/	3		979					
8:06	30	85	~						
8.77	81	62	8	030					
77.0		62	8	030					
8:37	70	: !!: -+		029					
8:52	83	3	0 	1.62					
9:10	83	63	51	170					
9:25	84	59.	80	028					
9:53	84	57	6	031					
10:53	86	48	10	03ī				-	
								-	

TABLE D-5

METEOROLOGICAL DATA

10-82 c
-82			DIRECTION	170		2.78														
ATE 8-31-			SPEED (KTS)	3	1	11								•	· · ·					
LILLIIII	JPPER AIR		HUMIDITY (2)	97	97	97														
	1		TEMP (OF)	62.1	62.9	-														
		HT AROVE	CND (FT.)	0	345	1060														
		e	DIRECTION	160	190	180	180	180	170	150	170	180								
		NIM	SPEED (KTS)	4	S.	4	4	2	9	7	7	œ								
00 01 01 01 01 01 01 01 01 01 01 01 01 0	SURFACE		HUMIDITY (2)	06	06	06	16	Ċvi	8	87		87								
r King Air 2			TEMP (of)	64	64	65	66	67	68	69	70	11								
AIRCRAFT			THE	6:45	6:53	7:15	7:30	7:53	8:15	8:30	8:43	8:53	T							

METEOROLOGICAL DATA TABLE D-6

÷

TEST DATE <u>9-8-82</u>	UPPER AIR	ONIM	of) HUMIDITY (2) SPEED (KTS) DIRECTION	0/1		87	- 142																	
			TEMP (C		65	63	1	5			┦	-									+	4		
			HT. ABOVE	LALL UND	0	407	çuo	CD/	C001															
			NOTHORS	DIRECTION	0	270		>	270	260	260	0	0	180		140	140	150	L					
			ONIM	SPEED (KTS)	0			0	3	3	4	0	0	4		9	4	4						
e 71111111111	SURFACE			HUMIDITY (2)	84	5	40	84	24	84	84	84	78	78	0,	78	78	78						
PA-42 Cheyenn				(Ito) dical		B	66	66	66	66	99	ó6	02	2 f	0/	70	70	70						
AIRCRAFT _				TIME		6:40	6:54	7:05	7:20	7:47	7.57	8-20		60:0	12:53	1:53	2:53	3:53						

TABLE D-7

METEOROLOGICAL DATA

TABLE D-8

. .

METEOROLOGICAL DATA

TEST DATE <u>9-14-82</u>

AIRCRAFT C-414 Chancellor

I		i		1	ł	ł	l	l	1	ļ	ĺ				[[
	QN	DIRECTION																	
	ΪM	SPEED (KTS)																	
PER AIR		HUMIDITY (Z)																	
5		TEMP (oF)																	
	HT AROVE	GND (FT.)																	
		DIRECTION	160	120	130	130	110												
	NLA	SPEED (KTS)	5	4	5	5	œ												
SURFACE		HUMIDITY (Z)	19		59	57	57												
		(40) ANAL	64	84	84	84	84												
		TDE	12:53	1:31	1:54	2:54	3:51												

	2		D DISECTION	360	1	1	1	140									
	VTE 10-5-8		WI SPEED (KTS)	2	-	ł	1	7									
	TTTTTTTT	PPER AIR	HUMIDITY (2)	97	78	75	90	1									
		D	TEAP (OF)	61	63	63	65	1									
E D-9 ICAL DATA			HT. ABOVE GND (FT.)	0	282	535	820	606									
TABL			DIRECTION	0	010	310	0	340	340								
			NIM (SLA) (EARS)	0	9	4	0	£	9								
	, c-172	SURFACE		87	1	90	84	76	71								
	c-210, c-182			63		63	66	70	74								
	AIRCRAFT		- Da Fa	6:53	7:05	7:53	8:53	9:53	10:53								

IJ

24	
BLE	
2	

,

METEOROLOGICAL DATA

32 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		TND	DIRECTION	250	215	205												
-01-01 JU-19-6		M	SPEED (KTS)	3	17	22												
TEST D	PPER AIR		HUMIDITY (2)	85	40	41												
	Ð		TEMP (OF)	37	51	48												
		HT. ABOVE	GND (FT.)	a	1000	2000												
		e	DIRECTION	190	170	210	170	150										
buchess TTTTTTTTTTTT		ATN .	SPEED (KTS)	4	6	5	9	10										
fstream 900, 1	SURFACE		HUMIDITY (2)	86	74	60	46	39										
Merlin, Gul			TEM (oF)	- 49	55	59	63	67						•				
AIRCRAFT			TIME	7:54	8:53	9:53	10:51	11:51							,			

	0-20-82		VID DIRECTION	170			46								 			
) OIIIS	7			7											-
	N 1811	PPER AIR	HUMIDITY (Z)	86	86	8		8										_
		P	112967 (of)	67	7	۶۶ ۲		45										_
E D-11 ICAL DATA			HT. ABOVE GND (FT.)	a	230	523	946	1268										-
TABLI			DIRECTION	130	160	190	170											~
	anza 777111111111111111111111111		(STX) GAIAR	L L	80	12	6											
	PA-21-181, Bon	SURFACE		3	93	8	75											
	Navajo 350,		(40) 474 -	57	62	57	67											
	AIRCRAFT		B.L.s	3.5.5	8:52	9:51	10.50	22.01	T									

•

TABLE D-12

NETEONOLOGICAL DATA

		DIRECTION	335	,	354	1									
		SPIED (KTS)	6	I	25	-									
PPER AIR		(X) ALIQUMN	\$ţ	04	I	30									
P		(10) JEI	46	9†	1	47									
	ET. ABOVE	GID (FT.)	0	276	<u>948</u>	1241									
	6	DIRECTION	320	320	3:.0	350									
	14.5	SPEED (KTS)	9	13	12	15									
SURFACE			60	52	45	39									
		(10) (11)	44	49	55	56									
		TDC	7:52	8:52	9:52	20:50									

-

the state

APPENDIX E

ang ang at a Tha ang at ang

a a construction of the second se

IN 2 March 20

CESSNA 210 SUPPLEMENTAL NOISE MEASUREMENTS

Holes -----

Appendix E

CESSNA 210 Supplemental Noise Measurements

<u>Introduction</u> - In order to obtain additional data on the relationship between level flyover and takeoff noise levels, additional noise measurements were conducted with a Cessna Model 210 at Dulles International Airport on June 28, 1983.

A specific objective was to obtain data on the effect of angle of attach on noise levels. The same Cessna 210, N6333C, that was used in FAA takeoff measurements during 1982, was flown to provide a direct comparison with the earlier measurements. (see Table 1.1 and Table 1.2).

The noise measurements were conducted over a two-position array separated by 492 feet under the flight path.

The noise measurement systems were identical to the systems used in the test of June 1982.

Following the noise measurement flights, the tachometer was removed from the airplane for calibration. It was determined that the tachometer readings are approximately 180 RPM less than the true RPM's and the data were corrected accordingly.

<u>Summary</u> - The following comments summarize analysis of the data for the Cessna Model 210:

- a. takeoff noise level at maximum continuous power 85.6dBA max
- b. change in noise level with helical tip Mach Number (N_{H}) over a M_{H} range of 0.77 to 0.91; dBA = 98.7 + 226 log (M_{H})
- c. there was no statistically significant change in noise level with engine power over a power range of 68% to 98%

d. the noise level at 98% engine power varied linearly with airspeed from 84.4 dBA in level flight at 150 kts true airspeed to 85.6 dBA in climbing flight at 100 kts TAS, normalised to the reference altitude of 640 feet.

Test Operations

Thirty-one flights were conducted over the measurement sites on a magnetic heading of approximately 300°. Seven different takeoff power-airspeed combinations were flown and flight path intercepts were used on these flights. Seven different power RPM combinations were flown in level flight. All flights were targeted for an altitude of 640 feet AGL over the primary site. All but two flights were within 20% of the target altitude and the average of all of the flights was 23 feet above the target altitude.

Weather conditions during the test period were close to a standard acoustic day. The wind was less than 2 knots; the temperature 82°F to 84°F; and the relative humidity 75% to 80%.

<u>Tachometer Calibration</u> - Following the noise measurement flights, the tachometer was removed from the airplane and calibrated. It was determined that the Cachometer readings are approximatel 180 RPM less than the actual RPM's over the test range.

<u>Results</u> - Corrected data for the 31 events are listed in the Table. The noise level data are corrected to a reference altitude of 640 feet using the expression 22 log (Altitude/640). The true airspeed listed for the level flyover is the true airspeed over the primery Site 1. Due to flight pattern constraints, the aircraft was accelerating over the sites during the level flyovers. Speeds over Site 2 were not recorded but are estimated to be on the order of 10 knots faster for the level flyovers. Speed was stabilized for the takeoff tests.

Linear regressions of the data were calculated with the following results: Takeoff using 98% power: dBA = 92.67 - 0.02399 (TAS in knots) Takeoff using 87% power: dBA = 90.03 - 0.04481 (TAS in knots) For the level flyover data:

 $dBA = 15.97 + 115.9 M_{H}$

 $dBA = 98.70 + 225.9 \log M_{H}$

Quadratic regressions were evaluated and provided very similar correlations. There was no significant change in noise level with engine power over the range measured.

Using the linear regressions, the data was corrected to the reference takeoff conditions, resulting in:

Takeoff noise level at maximum continuous power 85.6 dBA max

TAI	BL	5 1	E-1	

TAKEOFT

			TRUE		LAM (CORREC	CTED TO 640 ft)
EVENT	RPM	2 PWR	AIRSPHED KTS	N _H	PRIMARY SITE 1	SITE 2
A1	2880	98 X	103	. 896	90.1	86.4
A2	2880	98 X	103	. 896	90.2	89.4
A3	2880	982	103	. 896	91.7	89.5
Λ4	2880	982	103	. 896	92.6	88.4
C5	2880	95%	84	. 892	93.0	90.3
Có	2880	98%	82	.891	90.8	90.3
D7	2880	987	92	. 894	93.6	89.1
D8	2880	982	92	. 894	91.9	89.1
E9	2880	98%	113	.899	91.6	88.0
E10	2880	98%	'13	.899	91.2	88.4
F11	2880	982	133	. 905	89.6	88.4
F12	2880	982	133	.905	88.2	89.3
B13	2770	87%	82	.858	86.9	85.4
B14	2770	87%	82	.858	87.0	84.8
B15	2770	87%	103	.863	87.3	83.6
B16	2770	87%	103	.863	87.5	85.2

and the second second

·. . .:...

1.1

TABLE E-2

LEVEL FLYOVER

			TRUE		LAM (CORREC	TED TO 640 ft)
EVENT	RPM	% PWR	AIRSPEED	M _H	PRIMARY SITE 1	SITE 2
G17	2880	98%	149	.910	88.1	89.5
G18	2880	98%	149	.910	90.2	88.0
G19	2880	98%	149	.910	88.7	90.1
G20	2880	98 X	149	.910	89.0	89.7
G21	2880	98 %	151	.911	89.8	90.3
G22	2880	98 %	154	.912	88.7	89.4
H23	2710	85 %	146	.859	84.4	82.3
H24	2710	85 %	146	.859	84.7	81.9
125	2830	84%	133	.890	90.2	86.5
126	2830	84 X	135	.891	88.5	88.0
127	2830	84 2	140	.893	89.3	96.6
K28	2420	62%	131	. 768	74.0	73.4
L29	2550	63 X	133	.807	77.2	76.2
м30	2670	64%	131	.842		79.9
N31	2770	63 X	123	.869	87.1	84.6

Propriet of the second strain and the second activity of the second second second second second second second s