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Abstract

The ability of an adaptive antenna to reject wide-band interference

sources is limited by the differences between the transfer functions of the

different channels. An examination of the quantitative relationship between

the rejection and the tracking errors shows that the multiple-beam antenna

(MBA) achieves greater rejection than an array antenna. This is because, in

forming a null in the direction of an interference source, the MBA can usually

simply turn off the antenna beam (or beams) principally affected by the

source. Further rejection is achieved by cancelling the residual interference

signal carried into the antenna on the sidelobes of other beams. Thus it is

only at the sidelobe level that the effects of channel tracking errors are

felt. The array, on the other hand, must depend upon cancellation to provide

its total rejection.

A simple formula exists, and is presented in the text, relating the

interference cancellation to the rms mismatch between the channel transfer

functions.
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ILLUSTRATIONS

1. Howells-Applebaum adaptive circuit showing the channel transfer 3
functions.

2. Cancellation versus source location for a 9-beam MBA. Solid 8
curves are the results of simulations, dot-dash curve is from
cancellation formula. Dotted curve is normalized quiescent gain
pattern. Dashed curve shows cancellation for a nine-element
array having the same tracking errors.

3. Gain variation of individual beams along the main diagonal of 12
the square beam pattern.

4. Cancellation versus source location for a 9-beam MBA using beams 13
with very low sidelobes. Solid curve is the result of simula-
tion, dot-dash curve is from cancellation formula. Dotted curve
is quiescent gain pattern.

5. Gain variation of individual beams along the main diagonal of 14
the square beam pattern formed from beams having very low side-
lobes.

6. Cancellation versus source location with only five terms in 16
channel-mismatch series.

7. Cancellation contours in dB for a 16-beam offset Cassegrain 20
MBA. The beam centers are indicated by asterisks. The rms
tracking errors are assumed to be 0.2 dB and 1.30.

8. Cancellation versus source location of the 4-beam MBA generated 23
by deleting all but beams 1, 2, 4, and 5 of the 9-beam MBA used
for Fig. 4. Solid curve is the result of simulations, the dot-
dash curve is from the cancellation formula. The dotted curve
is the quiescent gain pattern.
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1. INTRODUCTION

An adaptive antenna is, in practice, unable to attain perfect rejection

of an interference source. There are many hardware imperfections which

prevent it. One of the more serious of these is the unavoidable difference

between the transfer function of one signal channel and that of another. By

properly weighting and summing the outputs of the two channels, one can

achieve perfect cancellation of any particular single-frequency tone carried

on both channels. However, if the signal has a finite bandwidth, rather than

being a tone, perfect cancellation cannot be attained unless the channel

transfer functions are identical over the band -- that is, unless the channel

tracking errors are zero.

Attention has been given, in the case of array antennas, to establishing

the quantitative relationship between the interference rejection and the

channel tracking errors. A simple deterministic model shows that, in the case

of one interference source and two channels, the power rejection factor is

2proportional to the square of the amplitude and phase errors. For a

rejection of -25 dB, the errors must be held to about 0.5 dB in amplitude and

2.80 in phase. A more general, statistical, model shows that the rejection is

equal simply to the mean square variation of the uncorrelated channel tracking

errors. That is,

c = (1)
t

where C is the expected value of the cancellation or rejection of the

interference source and is defined as the ratio of the interference power



level at the output of the adaptive antenna after adaption to the power level

before adaption, and at is the rms value of the channel transfer function

variations that are uncorrelated from channel to channel. This formula is

independent of the number of channels and of the number of interference

sources (provided that there are fewer sources than channels).

One further necessary refinement in the definition of C is that it is the

limiting ratio of interference powers, after and before adaption, as the

intrinsic power of the source rises without limit. This refinement is

necessary because the cancellation of an adaptive nulling antenna is usually a

function of the power of the interfering source.

The results of numerical simulations show Eq. (1) to be accurate, pro-

vided certain assumptions are satisfied. The most straightforward set of

assumptions is that the adaptive antenna uses the classical Howells-Applebaum4

algorithm and that the tracking errors of concern are those occurring in the

signal channels between the points bridged by the two correlator connections.

This case is sketched in Fig. 1, in which all imperfections are lumped mathe-

matically in the transfer functions Hn(f) (I < n < M) and the weighting and

summing circuits are assumed to be perfect. Since the Hn(f) are bypassed in

forming successive estimates of performance, the adaptive algorithm is unable

to compensate even partially for their tracking errors, apart from a simple

adjustment of average gain. In this case, Eq. (1) is accurate.

In contrast, mismatch between the channels due to aperture dispersion,

for example, which occurs outside the adaptive loops, can be partially or even

2
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wholly compensated for by the adaptive algorithm. In this case, Eq. (1) is to

be interpreted as an upper bound. The exact value of the cancellation will

depend upon the number of interference sources and the complexity of the

mismatch.

In the cases of the direct matrix inversion algorithm5 and the

differential steepest descent (weight-dither) algorithm, 2 these remarks apply

to every contributor to the channel mismatch. That is because, in these

cases, no part of each signal channel is omitted in deriving successive

performance estimates. The algorithm is able, therefore, to compensate to

some degree for the channel mismatch.

It is clear that Eq. (1) does not apply to another class of antennas

important in adaptive nulling, namely, the multiple-beam antenna (MBA). For

example, it is possible in principle to construct a seven-beam MBA in which

six beams are arranged uniformly in a circle around the central beam, and in

which each of the peripheral beams has a gain of zero in the direction of the

beam peak of the central beam. An interference source lying in this same

direction can be perfectly cancelled by simply turning off the central beam.

Channel tracking errors have no effect in this case.

In the next section, the formula for an MBA corresponding to the array

formula, Eq. (1), is presented (it is derived in the Appendix). As expected,

it turns out to be more complicated. Numerical simulations show that it is

accurate, however, subject to the same conditions of interpretation discussed

above for the array formula. One additional restriction is that,

analytically, it is valid for only one interference source. To what extent it

can be useful for more than one has yet to be investigated.

4



As might be expected, the granular nature of the gain coverage provided

by an MBA is reflected in the depth formula. That is, the attainable

cancellation depends on the source location. Other significant variables are

the sidelobe structure of the individual beams and the number of beams. The

effect of these variables is discussed in Section III.

5



11. MR.& ANCELLATION FORMULA

If the MBA has M beams and the interference voltage v m appearing at

beam port m is given by wl/2gm, where W is the interference power flux

density incident upon the adaptive array and gm is the voltage gain of beam

m, then the cancellation of thE jammer power is given by

s2 3  2 RefsI S + 112S4 2
S X 2 pS 2 - I S11/MJ 't

where the Sk are the sums

gm 9 k= 1
m

Sk I 1g 1 k , k = 2 and 4 (3)

m

I IgmVSin' k = 3,
m

(the summation index runs from I to M), and o t is the rms variation of the

channel tracking errors. This relationship is derived in the Appendix under

the assumptions that the tracking errors in any one channel are uncorrelated

with those in any other channel, that their rms variation is the same in all

channels, that there is a single interference 3ource, and that the quiescent

weight vector (or steering vector) has all its components equal. This last

assumption is equivalent to assuming that the adaptive antenna is operating in

the area-coverage mode, since in the absence of an interfering source, all

beams would then be equally weighted.

6



Since both numerator and denominator of (2) are of degree six in the

gm, the cancellation is independent of the normalization adopted in their

definition. It depends only on their relative values.

In the ideal case, the gm of an MBA could all be purely real. Then (2)

reduces to

$23  1 2S1S2S3 + S12S4 2C 2 2 at  (4)
S IS2 - S 1/M

where Sk = 
k

m

The results of a numerical check on the accuracy of this cancellation

formula is shown in Fig. 2. A nine-beam MBA was simulated in which the

channel transfer function mismatch was statistically identical but independent

in each channel. The beams, of shape 2J,(x)/x, were arranged in a

three-by-three square array with the four corner beams pointing in all

combinations of the azimuth/elevation coordinates (±1.2', ±1.20). The channel

mismatch was simulated by defining the channel transfer function Hm(f) as a

finite Fourier series over the bandwidth of interest and then selecting the

complex coefficients hmg using a zero-mean gaussian random-number

generator. That is,

Q
H (f) = I + h exp[i2qiT(f - f 0 )/B] , (5)in q=_*Q mqo

where fo is the center frequency and B the bandwidth. The rms variation

at of the transfer function is given, therefore, by

7 k
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Fig. 2. Cancellation versus source location for a 9-beam MBA. Solid curves

are the results of simulations, dot-dash curve is from cancellation formula.
Dotted curve is normalized quiescent gain pattern. Dashed curve shows cancel-

lation for a nine-element array having the same tracking errors.
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aYt <IH1(f) - 1 2>

t Im

q=-Q

where the angle brackets <-> denote expected value. This result depends on

the assumption that hmo = 0 for 1 < m < M, which implies that the average

gains of the channels over the operating bandwidth have been equalized.

The real and imaginary parts of each coefficient hmg, for jqj > 0, are

2independent samples having zero mean and variance Oh . Thus

2 2
at = 4 Q oh  (6)

That all the samples are independent also ensures that the simulated tracking

errors are statistically uncorrelated from channel to channel.

If at is small compared with unity, then the rms variation OdB in dB

of the channel transfer-function amplitude is given by

adB = 6.14 at  , (7)

and the corresponding phase variation adeg in degrees is given by

adeg = 40.51 at . (8)

Thus, for example, if an adaptive array antenna had uncompensated channel

tracking errors of 0.2 dB and 1.320 rms, then from (7) and (8), these numbers

imply a value of at of 3.26 x 10 - 2• The achievable cancellation is,

therefore, from (1), 1.06 x 10 - 3 or -29.7 dB.

9



In Fig. 2, there are five cancellation curves plotted. Three are the

results of MBA simulations with the same set of channel mismatch coefficients,

the three differing only in the power level of the interference source. (P/N

is the ratio of the interference to system noise power ratio at the antenna

output when the antenna is in its quiescent state.) There were 40 terms in

the series for the transfer function of each channel, having a total variance

2of 3.26 x 10- , implying rms channel tracking errors of 0.2 dB in amplitude

and 1.320 in phase. The fourth cancellation curve is plotted from the MBA

cancellation formula, Eq. (4), and the fifth is the cancellation obtained by

simulating an array antenna having nine omnidirectional elements and with

tracking errors identical to those of the MBA. The sixth curve, not a

cancellation curve, is the quiescent gain pattern of the MBA with arbitrary

normalization.

All the curves show the variation of cancellation or gain as a function

of the displacement of the source from boresight along a main diagonal :f the

square beam pattern. The abscissa is calibrated in degrees azimath or

elevation. (For movement along the diagonal, the two are equivalent.)

The four notable features of Fig. 2 are

- the agreement between the cancellation calculated from the MBA

cancellation formnula and the cancellation measured by the simulation

steadily improves as the source power increases, showing, as expected,

that the formula is a large-power approximation.

* when the source power is large, the agreement is excellent, showing that

the formula is accurate.

10



* the cancellation of the MBA shows significant dependence on source

location.

* the cancellation for the MBA is about 10 dB better, in this case, than

that for the array, when both antennas have the same tracking errors.

The gain patterns along the main diagonal of the individual beams are

shown in Fig. 3. These show, characteristically for an MBA, that at any

source position there are a small number of dominant beams with the remainder

involved at their sidelobe levels. Of particular interest, however, is the

situation existing near an azimuth (or elevation) of 1.50 .  There, only one

beam (beam 5), is dominant, and the sidelobe levels of five of the other beams

(beams 2, 4, 6, 8, and 9) are more than 30 dB below the level of the dominant

beam. It is at this location that, in Fig. 2, the cancellation shows a

shallow minimum. This is consistent with the intuitive assessment that

tracking errors will be less significant when the adaptive suppression can

operate largely by simply turning off one beam.

As a check on this explanation, a second set of simulations was run using

again a nine-beam MBA, but this time, the individual beams had unrealistically

low sidelobes. Specifically, each beam had the exponential shape

exp{-(x/2 )4}. The same channel transfer functions were used as for Fig. 2.

The resulting cancellation curves are shown in Fig. 4, and the gain patterns

of the individual beams in Fig. 5.

A comparison of Figs. 2 and 4 shows the sidelobe structure of the beams

to have a potentially major influence on the achievable cancellation.

However, this influence exists strongly for some source locations and is

11
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is from cancellation formula. Dotted curve is quiescent gain pattern.
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essentially absent at others. Such locations are at azimuths of 0 and 0.45',

respectively, for example. This behavior is discussed in the next section.

The two cancellation curves in Fig. 4 demonstrate again the accuracy of

the MBA cancellation formula. However, in this case, as for the one

illustrated in Fig. 2, the channel tracking errors are described by a 40-term

Fourier series for each channel. In the simulations, therefore, there is

present a higher degree of statistical smoothing than would obtain were the

series to have fewer terms.

To assess the role played in cancellation by the complexity of the mis-

match, the simulation was repeated using a four-term series for the mismatch

in each channel. The result is shown in Fig. 6. The antenna is the original

9-beam MBA used for the simulation results plotted in Fig. 2 and having the

beam shapes of Fig. 3. The variance of the coefficients in the mismatched

series was increased by the factor 40/4 to keep the same total rms variation

of the transfer function.

There is no essential change in these four-term results from the 40-term

results shown in Fig. 2. The discrepancy between the cancellation formula and

the actual simulations is larger now, but the formula remains a useful guide

to performance.

15
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III. DISCUSSION

The MBA cancellation formula shows, as might be expected, that when the

interference source lies at or near the peak of one beam, the achievable

cancellation is very good provided the sidelobe levels of the other beams, in

the source direction, are low. The very pronounced null at 0 displacement in

the cancellation curves in Fig. 4 illustrates this. There is also another

null in these curves located at the point of symmetry between four beams.

(The coordinates are 0.6' azimuth and 0.6* elevation.) The existence of this

null is less to be expected. However, a moment's reflection makes it clear

that this between-beam null arises in the same way as the beam-maximum null.

The only difference is that for the between-beam null, the algorithm must turn

off more than one beam.

It may be recalled that, in forming a null on an interference source, the

algorithm subtracts, from the quiescent antenna pattern, the maximum-gain beam

the antenna is capable of pointing at the source. By proper weighting of this

cancelling beam, the interference is suppressed. Thus, if the source lies at

the peak of a single elemental beam, that beam itself constitutes essentially

the maximum-gain cancelling beam. At the point of symmetry between beams, the

maximum-gain beam is formed by weighting equally the dominant beams having

equal gain the direction of the source. Thus for the beam-maximum source

location, one beam is turned off, and for the symmetrical between-beam

location, the complete set of two, three, or four beams is turned off.

These considerations lead to the conclusion that, provided the sidelobes

of the elemental beams are low, the achievable cancellation is least good when

17



the source is located between these points of symmetry. In such a location,

the cancellation is determined by a small number of dominant beams having

unequal gains in the direction of the source. This suggests that Eqs. (2) and

(4) for the cancellation of an MBA can be simplified. The simpler expression

would apply to an MBA having elemental beams with low sidelobes, and it would

give the cancellation to be expected at the source location of poorest

cancellation. Thus we are led to examine the cancellation formula subject to

the simplifications that there are only m non-zero values of gm,

corresponding to the m dominant beams, and that M >> m.

The result is that, under these conditions, the cancellation is least

good when one of the m non-zero gm is larger than the others, and all the

others are equal. Table I presents the magnitude of the smaller beam gains,

relative to the largest, which give the poorest cancellation, together with

the evaluated cancellation, for different values of m.

TABLE I

WORST-CASE LESSER-BEAM GAINS AND THE RESULTING CANCELLATION
VERSUS NUMBER OF DOMINANT BEAMS

Relative gain of
No. of dominant beams lesser beams (dB) C/o2 (dB)

2 -9.4 -13.5

3 -11.1 -11.3
4 -12.8 -10.1

The numbers in the table show that an MBA with low-sidelobe elemental

beams can achieve, at worst, a cancellation 11.3 or 10.1 dB better than an

18



array, depending on whether the beams are arranged in a hexagonal or square

configuration.

The results plotted in Figs. 4 and 5 are consistent with this

conclusion. For the displacement at which the cancellation is least good

(about 0.440), the cancellation is about 10 dB better than that (-29.7 dB) of

an array, and the two less dominant beams are smaller than the dominant one by

about 11 dB.

The simple result stated above, that the MBA can achieve, at worst, a

cancellation some 10 dB better than an array, depends upon the elemental beams

having low sidelobes. What "low" means, quantitatively, requires more

examination. However, the cancellation results obtained in simulating a

nine-beam MBA with 2Jl(x)/x-shaped beams, shown in Fig. 2, suggest that the

low-sidelobe requirement is not too stringent in practice. These results show

the 10 dB improvement of the MBA with respect to the array, and yet the gain

pattern of each elemental beam does not exhibit especially low sidelobes.

Another, more realistic, example is shown in Fig. 7. This is the

two-dimensional contour plot of the cancellation of a 16-beam offset

Cassegrain MBA, assuming the rms tracking errors are 0.2 dB in amplitude and

1.32 ° in phase. The contours were determined by the MBA cancellation formula,

Eq. (2), in which the complex gain parameters gm were evaluated using

physical optics to model mathematically the reflection from the two reflectors

of the antenna. The 16 beams lay in a 4-by-4 square pattern approximately 20

square.

19
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The cancellation contour plot shows that within the 20 -square footprint

of the antenna, the cancellation is, almost everywhere, better than -38 dB.

This is close to the figure of -39.7 dB given by the rule "10 dB better than

an array". So here, too, the sidelobes are essentially low enough for the

rule to be valid.

The simple "10 dB better" rule was derived by assuming that the total

number of beams is large compared to the number of dominant beams in the

source direction. If this assumption is not true, then the simple rule may

not be true. The difficulty arises at the between-beam point of symmetry,

where the cancellation can be very good if the sidelobes of the other beams

are low. That is because the interfering source can be rejected by simply

turning off the dominant beams. But in the circumstance, for example, that

there are only three beams in total, the algorithm would not turn off those

three beams to reject an interfering source placed at the central point of

symmetry between them. For then, the antenna would reject every source,

including the desired ones. Rather, the algorithm sets the weights to give a

non-zero sum of their squared magnitudes, but zero for the algebraic sum of

the weights. Then the interference source is cancelled, but the antenna

maintains some sensitivity in directions away from the source. (The precise

values of the weights are determined by the differences, however small,

between the transfer functions of the separate channels.)

When the number of beams is small, therefore, the adaptive MBA must

depend upon cancellation between the beams as its principal method for

rejecting an inteference source. Because of this, channel tracking errors

constrain more markedly the null depth achievable by MBA's with a small number

21
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of beams. In fact, the between-beam point of symmetry for the location of an

interference source represents a worst case for the cancellation for this type

of MBA. This is in contrast to the MBA with many beams, for which the same

location is potentially one of the best cases, as Fig. 4 shows.

A demonstration of this behavior is presented in Fig. 8, which shows the

cancellation as a function of source location for a four-beam MBA. The

antenna is the nine-beam MBA used to produce the results in Fig. 4, but five

of the beams have been deleted. Only the beams at the azimuth/elevation

coordinates (0,0), (0, 1.2), (1.2, 0), and (1.2, 1.2) remain. (The units are

degrees.) These are the beams numbered 1, 2, 4, and 5 in the sketch in

Fig. 3. The individual beam shapes, along the line of equal azimuth and

elevation, are shown in Fig. 5. The source was moved along this same line to

obtain the cancellation curves of Figs. 4 and 8. A comparison of these two

sets of cancellation curves at 0.60, the point of symmetry, clearly shows the

conversion from a best case to worst case when the number of beams is reduced

from 9 to 4.

This profound difference in cancellation would not be apparent in

practice, because real MBA beams do not have the low sidelobes of the special

beam shapes used to generate the data in Figs. 4 and 8. Figure 2 shows that,

with a more realistic beam shape, there is no deep cancellation minimum at

0.6'. The special beams were chosen to emphasize the particular phenomenon

being demonstrated.

The peak of the cancellation curves in Fig. 8 for the four-beam MBA is

greater than that of the curves in Fig. 4 for the nine-beam MBA. Thus the

22
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simple rule "10 dB better than an array" no longer applies when the number of

beams of the MBA is small enough for there to be a between-beam point of

symmetry involving all beams of the MBA at equal amplitude.

An analysis of this situation in the Appendix concludes that at this

point of symmetry, the cancellation is given-by

2

C t 
(9)

As before, at is the rms variation of the uncompensated channel tracking

errors and M is the total number of beams. The curves in Fig. 8 agree with

this formula, since their peak is about -36 dB, which is about 6 dB less than

the -29.7 dB value for an array. (Constant in all these comparisons is the

assumption that o t is 3.26 x 10 - , implying rms channel tracking errors of

0.2 dB and 1.320.) Since M = 4 in this case, Eq. (9) accounts properly for

the 6 dB difference.

24



IV. CONCLUSIONS

Analysis and computer simulations confirm the intuitive Judgment that an

adaptive MBA can achieve greater rejection of a wide-band interference source

than an array when both have the same channel tracking errors. The reason for

its better performance is that the MBA can effect substantial rejection of the

source by simply turning off the beam or beams principally affected by the

source. Thus the need to cancel the interference signal in one channel with

that in another is felt only at the sidelobe level of the remaining beams.

The array, on the other hand, depends totally on cancellation to provide its

rejection. The channel tracking errors, which prevent perfect cancellation,

therefore, allow less interference power to leak through the MBA.

In the case of a single interference source together with antenna

operation in the area-coverage mode, the cancellation of the source (that is,

the ratio of the interference power at the antenna output after adaption to

its value before adaption) is given, in the limit of large source power, by

at2 for an array and has an upper bound of about ot2/10 for an MBA.

Here at is the rms channel tracking error of each channel. The cancellation

is independent of source location for an array, but not for an MBA.

The MBA formula depends on the sidelobes of the elemental beams being

"low" and the total number of beams being "not small", in the sense defined in

the previous sections. Neither of these restrictions should present any

difficulties in practice. The sidelobe levels of the elemental beams of an

MBA are expected normally to be low enough, in this sense, without any special

design care. And for conventional beam arrangements, the "not small"
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restriction boils down to there being more than four beams, for a square

arrangement, or three beams, for a triangular arrangement.

If the number of beams is "small", in the sense used here, the

cancellation has an upper bound of at2 /M, where M is the number of beams.

The difference between the "small" and "not small" cases could be of

importance in interpreting null depth measurements made using only two, three,

or four of the total number of beams. This situation could occur during early

testing in the design evaluation of an antenna ultimately intended to have

many beams. If only two beams were used as part of a test of principle, for

example, the resulting measurements would show the cancellation to be

ot2/2, if the interference source were at the between-beam point of

symmetry. However, the achievable cancellation of a many-beam system using

these components wuld be ot 2 /10. A correction factor of 7 dB would have

to be applied, therefore, to the two-beam results to predict the performance

of the many-beam system.
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VI. APPENDIX

In this Appendix, the MBA cancellation formula is derived. The

assumptions are that there is one interference source, and that the channel

tracking errors can be lumped in the transfer functions Hn(f) shown in

Fig. 1. Thus aperture dispersion, and tracking errors in the feed lines

external to the adaptive loops, are assumed to be negligible.

Figure I would also seem to imply that tracking errors in the sampling

lines and feedback line are also assumed to be negligible. The implication is

valid, but for these tracking errors, no approximation is involved in the

assumption. This is because the attainable null depth depends only on

tracking errors in the signal lines. The feedback and sampling lines can

include arbitrary linear filters without affecting the achievable null depth.

Thus any tracking "errors" in these lines, however large, are negligible.

The Howells-Applebaum adaptive algorithm, when fully adapted, generates

the adapted weights wn as the solutions of the equation

* (0)
<v v> + N w N w (10)m m m

Here, N is the rms system noise voltage, the wn(O) are the components of

the steering vector, the vm are the interference voltages at the output

ports of the antenna elements or feeds, and v is the output voltage from the

summing port of the antenna. Thus

M
V = I w m m

The angle brackets denote time average.
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If W is the interference power flux density incident on the antenna and

the set gn, for n - 1, 2, ... , M, are the voltage gains of the individual

elements or beams, then (10) can be rewritten as

* (0)
Wgn  g H >wm +Nw Nw n ( °  , (12)

m

where the summation index runs from 1 to M, M being the number of channels.

The interference power is assumed to be spectrally flat over the operating

bandwidth of the antenna. This assumption, together with the assumption of

negligible aperture dispersion, allows the time average in (10) to be replaced

by the frequency average <Hm> in (12). Further, since for simplicity we

assume that the average amplitude and phase responses of the channels have

already been matched, then adopting (5) as the definition of Hm, we find

<Hm> = 1. Thus (12) becomes

n 1 gm w + w = wn( 0  . (13)
IDl

To solve this for wn, first we evaluate IgmWm by multiplying

through by gn, summing over n and rearranging. Substituting the resul.ing

expression for gmwm back in (13), we find

w n wn (0) _Bgn (14)

where

I w (O)g ma m. (15)

m
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The interference power output P from the antenna is given by <vi 2>.

Thus, from (11),

Sn wm n g <H n Hm >

P n,m (16)
W

for a unity-magnitude weight vector. (Normalizing the weight vector in this

way makes valid the use of a constant value of N to denote the system noise

level.) From (5), the frequency average <Hn*Hm> can be expressed as

<H H > - I + h h
n m nq mq

But since the tracking errors are uncorrelated from channel to channel, the

summation will be close to zero unless n - m. Thus we make the approximation

*2
<Hn H + 6 2 , (17)

where 6 nm is the Kronecker delta and ot is the rms variation of the

tracking errors.

Before adaption, the power output Po from the antenna is given by (16)

but with the wn replaced by wn(O). Thus

__ m w( ° )f 2 • (18)
W ijw moj)2

The fact that the tracking errors have negligible effect on the power output

before adaption simplifies (18) by allowing the substitution Hn = 1.
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Finally, the cancellation C, defined as P/Po, is given from (16), (17),

and (18) by

(0) I 2w n wngn gm (I + 6ri°at 2) w 0

2 1 m
m

where the wn are given by the limiting case as W/N approaches infinity of

(14) and (15). But in this limiting case, the wn satisfy

I wg = 0 ,
m

as can be verified by multiplying (14) by gn and summing over n, and so (19)

simplifies to

I jwgJ I Jw m()1 2

m w mg-2- 1v2 0 t 1 (20)C= F - 2 2wI-O

with

I w(°g m

w W (0) - m g (21)nm 1-1 gn "(1

For the MBA in the area coverage mode, win(O) = 1 for all m.

Substituting these values in (20) and (21), we obtain, after some

manipulation, the MBA cancellation formula (2) in Section 111.
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Similarly, for the array in the area coverage mode, w,(O) = 6m and

gm is independent of m. Substituting these values in (20) and (21)

eventually leads to the known result 3

C 2 o . (22)t

The general cancellation formula, Eq. (20), can be rewritten in an

illuminating form. Since I gm 2 is proportional to the element (or beam)

gain Gm and )Wm()g m  is proportional to the quiescent gain Go, (20)

can be expressed

C =-- G t 2 (23)
0

where wm is the m'th component of the normalized weight vector. This

expression shows that each channel contributes, in effect, independently to

the residual interference power emerging from the adaptive antenna. The total

residual interference power is expressed as the weighted sum of the

interference power carried in each channel separately. Moreover, the weights

of this weighted sum are precisely the adapted weights of the variable

2
combiner multiplied by the constant at . Thus, when the algorithm turns

down the dominant beams of an MBA, the interference power is carried through

the sidelobe level of the remaining beams. For the array, on the other hand,

Gm is independent of m, which converts (23) to C = (Gm/Go)ot 2, since

wm is normalized. The interference is carried at the level of the element

gain, therefore.
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Formula (23) is also convenient for evaluating the cancellation at the

between-beam point of symmetry for an MBA with only a small number of

symmetrically placed beams. At this point, the Gm are all equal to one

another, and Go = M Gm .  Hence C = t2 /M, the formula given as Eq. (9)

in Section III.
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