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| PART 1

MULTISTATE COHERENT STRUCTURE FUNCTION THEORY

In military systems, power plants, and many other areas of modern
society, the consequences of failure can be catastrophic., The study of
reliability has evolved from the desire to prevent failure, or at least
mitigate the consequences thereof. Reliability is usually defined as
the probability that a component or system is able to perform its
specified function. A reliability analysis is performed to determine
that probability. This analysis consists of mathematically modelling
the system, assessing failure probabilities, and generating a numerical

result. This thesis deals with aspects of the theory underlying the

mathematical model.

| Most reliability calculations are performed assuming that components
and systems are either functioning or failed. This dichotomy is often a
reasonable assumption, but the assumption is sometimes made simply
because there are no applicable results dealing with more complicated
state spaces. There are many situations in which the ability to
congsider multiple states would be useful in a reliability context. A
component or system may have a useful partially operating mode. For
example, if one of two turbines in a power plant is undergoing repair,
the plant may be able to generate 5 of its rated electric capacity
which is significantly better than being completely shut down. It may
also be useful to differentiate among different modes of failure. A
valve may fail to open, fail closed, or fail ruptured, and these failure

modes may have very different effects on system operation. The enlarged




state space can be used for actual quantities rather than just
qualitative measures.For example, states 0, l, ..., 100 might be water
temperature in degrees centigrade.

This thesis considers reliability in a general multistate setting.
The number of states used in describing the status of each component and
the operation of the system is allowed to vary, and the dependence of
the system state on the component states can be very general. The first
part of the thesis deals with the extension of binary coherent struc-
ture function theory to the multistate case., Some results in this area
have previously been obtained. The existing results are generalized,
and several new results are derived. The first part of the thesis could
be applied to maintenance policies by letting the component states rep-
resent the total available number of a certain binary component and let-
ting the system state represent the total number of operating machines.
However, the second part of the thesis 18 more useful for determining
optimal maintenance policies for multistate components. Most previous
maintenance models deal with discrete time replacement policies., Compo-
nents which may be repaired or replaced at any time are considered in

this thesis.




1. INTRODUCTION AND HISTORY

Coherent structure theory is an attempt to treat reliability theory
in an axiomatic way. Since reliability is an engineering discipline,
the axioms and definitions are intended to reasonably portray the opera-
tion of systems and components in the "real world”. The first systems
to be considered from a reliability viewpoint consisted of binary compo-
nents, components for which one state represents operational status and
the other state indicates failure. The structure function, which repre-
sents the state of the system given the states of the components, was
xsually assumed to be binary and, in addition, was usually assumed to be
coherent. Binary coherence means that each component of the system is
relevant, i.e., important in determining the value of the system struc-
ture function, and that the system state cannot decrease when the state
of one of its components increases. It seems reasonable to expect most
real systems to operate in this fashion.

Because many components may partially function or have several modes
of operation, there have been attempts to generalize the theory to in-
clude components or systems with several states. However, there are
many gaps in the theory of multistate coherent structures which need to
be filled, and the theory is not as general as is desirable for engi-
neering purposes. In particular the concepts of relevance and coherence
for components with several states need to be broadened to represent
useful ideas in the operation of multistate systems. The first part of
this thesis is an attempt to remedy the situation. After a review of

the binary case and recent generalizations in this chapter, definitions




are given in Chapter 2 which are meant to reconcile coherent structure

function theory with the “"real world” operation of amultistate compo-
nents. The rest of Chapter 2 and all of Chapter 3 show that most of the
results in the binary case have analogues in the multistate case., Block
diagrams and fault trees and their extension to multistate components
are the subject of Chapter 4. Chapter 5 pertains to components which

have a continuum of states rather than multiple discrete states.

1.1. Binary Coherence and Notation

Reliability 18 a relatively new field and is primarily the
outgrowth of the concern about military hardware reliability following
World War II. The reliability literature of the 1940's and 1950's is
primarily devoted to quality control, renewal theory, and properties of
various life distributions. The first paper to treat reliability from a
functional point-of-view seems to be Birnbaum, Esary, and Saunders
{1961]. That paper defined a binary coherent system and its dual and
developed many of their properties including minimum paths and cuts,

The first reliability bounds for a coherent system with independent
components were developed by Esary and Proschan [1963]. A paper by
Birnbaum and Esary [1965] introduced the concept of modules and
developed some of their basic properties. Bodin [1970) then used
modules to obtain better bounds on system reliability. The idea of
associated random variables was introduced by Esary, Proschan, and
Walkup [1967]), and Esary and Proschan [1970] used that concept to obtain
reliability bounds for systems with dependent components. The concept

of reliability importance 1s due to Birnbaum [1969]. A complete




treatment of binary coherent structure functions and their properties

may be found in Barlow and Proschan [1975a). The notation of that book

is used throughout this section.

In binary coherent structure function theory, the components and
system can be in one of two states represented by the numbers 0
(failed) and 1 (functioning). Let xi be the state of the 1ith

component in a system composed of n components.

Lol
[

Notation: 1 - 1{<:om1:>onent i 1s function}

{1 if component 1 18 functioning
0 if component 1 is failed

l{.} {s called the indicator function
X = (X

XZ’ ceey Xn)

l’
¢(X) = the state of the system = l{system functioning}

¢ : {0,1}" » {0,1}

63 0X) 20X KXo een Xy 030K L e X )

Definition: Component 1 is relevant if there exists X such that

#(1,,X) = 1 and &0,,X) = 0.

It will be assumed that all components are relevant since irrelevant

components have no bearing on the system state,
Definition: A system represented by ¢(X) 1is coherent if

(1) ¢(0) =0, ¢(1) = 1, and

(2) &X) 1s increasing in X.




Note: Increasing is used to mean X

> X, = 0(2(_1) 2 #X,) while

1

12 %= X)) > ®X,). The same

applies to decreasing and strictly decreasing. X > Y means

strictly increasing will mean X

xizYivi and X1>Y1 for some 1.

Definition: A path vector is a vector X such that ¢(X) = 1. The
corresponding path set 1is {1: Xi = 1}. A path vector X such that

Y<X=> ¢(Y) = 0 1is called a minimal path vector and the associated

path set is called a minimal path set. The jth minimal path set is

denoted P,.

J
Definition: A cut vector is a vector X such that ¢(§) = The
corresponding cut set is {i : xi = 0}. A cut vector X s t hat

Y>X=> &Y) = 1 is called a minimal cut vector and the a: .<ated cut

set is called a minimal cut set. The jth minimum cut set i. uenoted

Kj.

Minimal path sets and minimal cut sets are sometimes called min

paths and min cuts, respectively.

Definition: The dual of ¢ 1is denoted by ¢D and is defined by

$°(X) =1 - o(1-X).

It 18 easy to show that (on)D = ¢, Minimal path sets for ¢
are minimal cut sets for OD and vice versa. The following are

classic examples of coherent systeams.

Example l.1: A series system is one in which every component must func-

tion in order for the system to function.




n
®X) = T X =min (X) .
1=1 1

Each component represents a minimum cut set, and the only path vector

1s 1. 0

Example 1.2: A parallel system is one in which the system will function

if any cowmponent functions,

n n
KX = L X, =1- I (1-X) = max (X,)
1=] 1=1 i

Each component is a minimum path set, and the only cut vector is 0.

The dual of a parallel system is a series system and vice versa. [

Example 1.3: A k-out-of-n system 1s an n-component system that will
function 1{f k or more of its components function.

n
{(Tia X 2K)

The dual of a k-out-of-n system is an {(n-k+l)-out-of-n system. A
series system is an n-out-of-n system and a parallel system is a

l-out-of-n system. [

let (C,¢) denote a set of components C and a coherent structure

function ¢.

Definition: (A,x) 1s a module of (C,¢) 1f A <C and ¢(X) =

c
¢(x(§A),§A ) where ¢ 1s also a coherent structure function,

|
|
|
|
J




The notation E} means the vector with elements Xi, i € A, and Ac

means the set complementary to A.

Definition: A modular decomposition of a coherent system (C,9) 1is a

set of disjoint modules {Al’xl)’ cous (Ar’xr)} together with an

organizing structure ¢ such that

r
(1) c= y A and A "NA = {o}¥vi4j, and

A A A
@« = oy (x 1), &2, o, X T)) .

Example l.4: A trivial modular decomposition is ¢(§) =
A A
1 r -
¢(xl(x ),...,xr(X )) where x(Xi) X1 v¥i., As a more
useful example, consider a system composed of two elements in series

followed by two elements in parallel as in Figure l.l.

o(X) = &(x (X ,X,), x,(X5,X,))
where

X (XX = XX

WX Xy) = XXy = X Xp(Xg + X, = X X)) . 0




Figure 1.1 System Diagram
The preceeding discussion and definitions have dealt with the
deterministic aspects of coherent systems., The following discussion
relates to probabilistic evaluation of system operation with the
component and system states considered as random variables. Reliability

is defined as the probability of successful operation.

Notation: P, = component reliability = P(X1 =1 =K .
h = system reliability = P(&(X) = 1) = E&X) .
h= h(g) where P = (Pl’ ey Pn) if it is assumed
that all components are independent.
h(P) = h(P) when P =P =P, = ceo=P .

Components are often subject to the same loads and a common
environment so that component failures may be highly correlated rather
than independent., The following definition is a type of correlation

useful in reliability theory.

Definition: Random variables Tl. esey Tn are associated 1if

COV{F(T), G(T)] > 0 for all pairs of increasing binary functions F

and G (when the covariance exists).




Many reliability bounds have been developed for systems composed of

associated components. These bounds can usually be improved through

modular decomposition,
An implicit assumption in the preceeding discussion is that time is

not considered or is fixed. In practice each component will have a

random life length Ti governed by a life distribution Fi(t)'

Notation: Fi(t) E 1-Fi(t) = P(Xi(t) = [) = P(Ti > t)

F(s|t) = F(t+s)/F(t) 1if F(t) > 0

conditional reliability for a component of age ¢t

h(E) = P(6(X(t) = 1)) where F = (F,(t), ..., F_(€))

1lim F(t+i)—F(t)
s+0 F(t)

11}

r(t) = failure rate

£(t)/F(t) when £(t) exists and F(t) >0
t

F(t) = exp (- [ r(s)ds)
0
Components are sometimes classified according to their life distri-

butions. Several categories of life distributions are defined below.

Useful reliability bounds have been developed for each category.

Definition: A distribution F(t) or a random variable (component) with

that life distribution is said to be

-Increasing Failure Rate (IFR) if f(slt) i8 decreasing in

tv¥vs >0,




-Decreasing Failure Rate (DFR) if f(s't) is increasing in

tvs > 0.

-Increasing Failure Rate Average (IFRA) if -(1/¢t) log[f(t)) is in-

creasing in ¢,

-Decreasing Failure Rate Average (DFRA) if ~(1/t) log(F(t)] is de-

creasing in t.

-New Better than Used (NBU) if F(s+t) < F(s)F(t) » s >0, t >0.

-New Worse than Used (NWU) if F(s+t) > F(s)F(t) ¥ s > 0, t > 0.

-New Better than Used in Expectation (NBUE) if [, F(X)dX < WF(t)
where p = ET { =,

-New Worse than Used in Expectation (NWUE) if f: F(i)dx_z uF(t).

If F(t) has a density f£(t), then IFR(DFR) means that the failure rate
is increasing (decreasing) in t, and IFRA(DFRA) means that f; r(s)ds
is increasing (decreasing) in t. It can be shown that IFR =3 IFRA =3
NBU and that DFR = DFRA =» NWU, It can also be shown that IFRA and NBU
distributions are closed under the formation of coherent systems, that
IFR, IFRA, and NBU distributions are closed under convolutions, and that

DFR, DFRA, and NWU distributions are closed under mixtures.

1.2 Previous Generalizations

The first attempts to treat multistate reliability from a
functional viewpoint were entitled cannibalization., Cannibalization is
tke use of parts from several failed units to form operational equip~

ment. If one aircraft has a damaged tire and one has an inoperative

-1~
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radio, a simple transfer allows the fleet to have an operational air-

craft. The first article on this subject was Hirsch, Meisner, and Boll
[1968]. This paper treated binary components and a multistate structure
function with restrictions similar to coherence. Each component is
allowed to be used in several locations. A cannibalization operation is
the transfer of some or all components to different positions within the
system, providing an increase in the system state. Conditions are
derived under which the state of the system can be determined from the
number of each type of component available. Although different
terminology is used, ideas such as cut sets and k-out-of-n structures
are described. Hochberg [1973] extended these results from systems with
binary components to systems with multistate components. Simon [1972]
obtains bounds on P(#(X(t)) > j) 1in cannibalized systems. This is
accomplished by placing restrictions on the cannibalization operations.

The first extension of coherent structure function theory to
continuous components is contained in Postelnicu ([1970]. 1In this paper
the component and system states are any values in the unit interval.
The structure function used is closely related to coherent structure
functions. Two reliability bounds were obtained in the paper. A second
paper dealing with a continuous state space was Ross [1979]. He defines
an IFRA process and an NBU process, These definitions are used to
generalize the IFRA and NBU closure theorems (closure under the
formation of coherent systems).

The first paper intended primarily to generalize coherent structure
function theory was Barlow and Wu {1978]., In this paper a system is

modelled as though it were binary, and the minimum path sets and minimum




cut sets are determined. The components and structure function are then

allowed to be any integer among (O0,l,...,M). The system state is
defined as the state of the worst component in the best min path which
is the same as the state of the best component in the worst min cut,

i.e.

¢(X) = Max Min (X,) = Min Max (X,)
- j 1ep i 3 1eKj i

where Pj is the jth min path and Kj is the jth min cut. This is
very restrictive since the relationship between the system and
components is not allowed to vary as the system level varies.
Reliability and stochastic system performance are considered, and a
variant of the IFRA closure theorem is proved.

Another article containing a restrictive generalization of coherence

is8 El-Neweihi, Proschan, and Sethuraman [1978). The system and

components may be any ianteger in (0,1,...,M), and ¢ 1is coherent if

(1 ¢(§_) is increasing in X,
(2) there exists X such that O(Jixﬁ) = j while 0(11[5) ¢
¥ component i and system level j, and

(3) Q(l) = j Where _J_ = (jl’jZ""'jn)'

Minimum path sets, minimum cut sets, and utility functions are discussed
in the paper. It is shown that EU(¢(X)) 1is stochastically increasing

in X where U(°) 1is a utility function. Some reliability bounds are

given, and the NBU closure theorem is generalized using a different

definition for NBU process than the one in Ross [1979].




A less restrictive generalization of coherence may be found in a
discussion of ternary (3-state) systems by Butler [1979]. Component 1
is defined to be relevant if there exists X such that
0(21,5) 0(01,5). Component 1 1is fully relevant 1f there exists
X such that 0(21,5) ¢ 0(11,5) and there exists Y such that
¢(11t1) ¢ 0(01,1). Fully relevant means that every state of every
component is relevant, It 1is assumed that all components are relevant.

¢ 1is coherent if

(1) ®0) = 0, 6(2) = 2, and

(2) &(X) 1s increasing in X.

Using this definition of coherence, Butler extends the ideas of
reliability importance and structural importance, including new
importance measures introduced in the paper, to multistate systems. In
a second paper, Butler {1982] extended several bounds on system
reliability to the multistate case. Another paper using this definition
of coherence in a ternary system is Hatoyama [1979]), although it is not

explicitly stated that ¢(0) = 0 and ¢(1) = 1. Duals, path sets, and

cut sets are defined in this paper, and some bounds on system
reliability are derived. Most of the paper deals with a specialized
type of system composed of modules of series or parallel elements with a
series organizing structure.

A discussion of several possible generalizations of coherent
structure functions may be found in Griffith [1980]. A function
¢: {0,1,...,M}" » {0,1,...,M} 1is called a multistate monotone system

if




(1) &X) 1is increasing in X, and

(2) win (X)) < &X) < max (X,).
i - - 1

If &(X) 1is a MMS, it is called
(A) Strongly coherent if there exists X such that °‘Jit§) = j
and @(11,5) # 3 ¥2¢ 3j, ¥ component i, and & state j.
(B) Coherent if there exists X such that &((j-1),.X) < (3 ,.X)
¥ component 1 and ~ state j > 1.
(C) Weakly coherent if there is X such that 0(01,5) < °(M1’5)

¥ component 1.

Note that conditions (1), (2), and (A) correspond to coherence in
El-Neweihi, Proschan, and Sethuraman [1978]). If condition (2) is
weakened to ¢(0) = 0 and ¢(2) = 2, then conditions (1), (2), and (C)
correspond to coherence in Butler ([979]. The difference between
relevant and fully relevant in that article is the same as the
difference between conditions (B) and (C). Griffith defines the dual of
a MMS, ¢D, and shows that it possesses the same type of coherence as
$. He also discusses modules and utility functions in the multistate
setting. Reliability importance is defined, and it is shown that system
utility can be expressed as the product of the reliability importance of
a component and the probability vector of the component.

The analysis of specialized multistate systems may be found in
Fardis and Cornell {1981). This paper considers systems for which there
are modules of completely interch&ugable components in series or

parallel, Truth tables for these types of systems are analyzed.

-15-




2, THE MULTISTATE MODEL

In binary coherent structure function theory and in previous exten-
sions to the multistate case, each component and the system structure
function were all assumed to have the same number of states, labelled
0,1, ..., M. When a component or the structure function had only
J {M+ 1 natural distinct states, more states were added by making the
last states J + 1, J+ 2, ..., M identical to state J. This could
significantly enlarge the state space which is computationally ineffi-
cient. In addition, some theoretical results are unnecessarily weakened
as discussed later. This enlargement of the state space is herein elim-
inated by allowing every component and the system structure function to
have a different number of states. This means that every state of every
component will be relevant for determination of the system state since
component states that are not relevant are eliminated.

In Section 2.2.1 it is shown that previous definitions of cohereunce
lead to a situation in which every system can be modelled as a coherent
system, rendering the councept meaningless. This problem arises because
the states of the structure function do not have to be monotonically or-
dered by increasing utility. A new definition of coherence incorpora-
ting a utility function is proposed, and various types of coherence are
discussed. This definition requires that every state of every component
be relevant. Previously, it was only possible to require that every
component be relevant (called weak coherence) because of the aforemen-
tioned enlargement of the state space. Using coherence rather than weak
coherence atrengthens some of the results in Chapters 2 and 3. The con-

cepts of minimum path sets, minimum cut sets, series, parallel, and

-16~
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k-out-of-n have been redefined in terms of the value of the structure
function, Section 2.2 presents definitions for terms such as minimum
cut set at level j and series system at level k.

The dual of a structure function is defined in Section 2.2.4, and it
is shown that the dual possesses the same type of coherence as the ori-
ginal structure function. Rather than dealing separately with each com-
ponent in a coherent system, it is often easier to consider subsets of
components called modules together with an organizing structure for the
modules, The main result of Section 2,2.5 is the relationships that
exist between the type of coherence possessed by the overall system and
the various types of coherence associated with the modules and their
organizing structure. The general model discussed herein has an advan-
tage in this modular decomposition since it turns out that coherence of
the modules and their organizing structure permits a stronger conclusion
than 1is possible with weak coherence assumptions.

2.1. Description of the Model

Consider a system composed of n components, and let
Xi € {0.1,...,Ni} be the state of the ith component. Let
¢(X) € {0,1,...,M} be the state of the system.
b : {0,1,...,N1} x {0,1,...,N2} X ess X {0,1....,Nn) » {0,1,...,M}
The total number of vectors X {s (Nl+l)(N2+1) soe (Nn+l). In

probabilistic evaluations, the component states and the system state

become random variables.

-17-




8
= P(X 23 = I py

Notation: Pyy = P(Xi = 3) 9y
k=j
o= (piO""’piNi) 9 = (qio’”"qiNi)
L 9y
E = . S_ = °
®a 4
Note that 90 = l ¥i., P 1is not really a matrix since its ith row

has length N, + 1, and thus its row length may vary. However, it will

i
be called a probability matrix for lack of a better term. Reliability
can no longer be defined as the probability that the system functions

since the system may operate at one of several levels.

Definition: Reliability at level k is hk

P(¢(§) > k). When the

components are independent, this probability depends only on P and is
denoted hk(g). When the system level is clear or when the discussion
applies to any level k, the superscript will sometimes be dropped, and

reliability at any level k will be denoted h or h(g).

When time is a variable in reliability calculations, it is assumed

that each component 1 begins in state Ni at t =0 and has a

distribution Fi(t) which represents the time until the component

state drops to or below a level J.

-18-




Notation: Fji(t) = l—Fi(t) = P(Xi(t) >3) = P(Xi(t) > j+l)

N
- (0 1
B2 (F(O), oon, F (D))

]
1

A'ﬂ e o ..I..',’

hCF) = PCOX(D)) > k) .

Again F is a matrix possibly with rows of unequal length. The
reliability at level k may be denoted hk(g(t)) when it is desirable
to explicitly show the time dependence, and the superscript may be

dropped when it is unnecessary.
2.2 Definitions

2.2.1 Coherence
The definition of binary coherent structure function includes two

main premises:

(1) All components must be relevant, and

(2) An increase in the state of a component cannot cause a decrease

in the state of the system.

These premises seem very reasonable, so reasonable, in fact, that it is
difficult to think of a situation in which they would not hold. The
first premise - all components relevant - will always hold since if it
did not, the irrelevant components could be disregarded and a new
structure formed with only the relevant components. However, the second
premise may fail to hold because of problems in defining success and

fajlure. If two incoming water lines feed a pipe in which the desired
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water temperature is 50 F., then success for each incoming water line

might be defined as being at 50° F. (with some tolerance). If the
water in one line is 600 F. and the water in the other line is 4Q° F.,
then the system might be considered a success even though both incoming
water lines are failed. Furthermore, if the first water line is
repaired, i{.e., the water temperature is lowered from 60° F. to 50°
F., then the system will fail. 1In fault trees there is a concept called
an “exclusive or gate” which mea-s that one of two inputs but not both
is necessary for success. In structure function notation, this means
that ¢(0,0) = ¢(1,1) = 0 and ¢(1,0) = 1, which does not fit the
definition of coherence. These examples of non-coherent systems are
rather contrived, however, and an engineer would never expect to find a
non~-coherent system in practice,

It seems a relatively easy matter to extend binary coherence to
multistate systems, The following definition is based on the second

premise of coherence discussed in the previous paragraph.

Definition: ¢(X) 1s a Monotone Structure Function (MSF) if:

(1) &0) = 0, ®N) =M where N = (NI‘N ""’Nn)’ and

2
(2) o(X) 1s increasing in X.

The concept of relevance may be used in a multistate setting to mean
either that every component is relevant or that every state of every
component is relevant. Following Griffith [1980], the following

definition is presented.
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Definition: A component 1 1s saild to be

(A) Relevant if there exists X such that ¢(Ni,§) > ¢(Oi,§).

(B) Fully Relevant if ¥ j =1, 2, ..., Ni’ there exists X such

Clearly, a component which is fully relevant is also revelant but not

vice versa.

A reasonable definition of coherence would seem to be a MSF with all
components either relevant or fully relevant., There is a fly in the

ointment, however, as shown in the following proposition.

Proposition: All multistate systems may be modelled by a structure

function which has properties (1), (2), and (B).

Proof: The proof is constructive. Assume that each of n components

has a natural state space {0.1,...,N1}. Arbitrarily assign

8(0) = 0, 61 ,0) = 1, 6(1,,0) = 2, ..., &1 ,0) = n,

01015000 = n+l, wouy (1) = 2°-1, &(2,,0) = 27, ...,

oN) = T (N, +1) -1 =M

b
#:33

By construction, 0(9) =0, ¢(N) = M, &(X) 1is increasing in X, and

83 %) > o=, X) ¥ §,1,X. ]

Thus, using (1), (2), and (A) or (B) as a definition of coherence means
that every system is coherent. Some people might view this as
desirable, but it would be nice if there was a feature which separated

coherent and non-coherent systems.
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Implicit in the use of binary coherence is that state 1 is desirable
(success) while state 0 is undesirable (failure)., This notion has not
yet been incorporated into multistate coherence. In the proof of the
previous proposition, Q(Zl,g) =2"> o(1) = Zn—l, but Lt is very
possible that U(¢(21.Q)) CU($(1)) where U(*) is a utility
function. Normally, an engineer would specify system states in order of
increasing utility rather than constructing a structure function as in
the preceding proposition. The conditions (1), (2), and (B) would then
be tested in the framework of the specified structure function. Thus,
although a system can always be assigned a structure function which
makes the system coherent, a more natural structure function with states
monotonically ordered by increasing utility may be non-coherent, This

leads to the following definition of coherence.

Definition: Let ¢(X) be a MSF and let U(4(X)) be the corresponding
utility function that assigns utility aj to state j. &X) 1is
coherent if

(1) every component is fully relevant, and

(2) ay > a_ ¥i= 1, 2, ..., M.
The first part of the definition can always be satisfied by eliminating
irrelevant states. The second part of the definition means that the
operational value of the system increases as the system state
increases. Obviously, the utility function must reflect the true value
of each system state since otherwise setting U(#(X)) = ¢(X) would
return the problem to its original status. The definition alsoc implies
that irrelevant system states will be eliminated. If a, = a for

J j-1
¢, define ¢' and a' by
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#(X) whenever X)) <3 -1 i
o' (X) = 1
- QO(_}E) - 1 whenever &(X) > j

a,_, whenever { > §

Thus, every state of the system, as well as every state of every compo-

nent, will be relevant,

If the components and system are required to have the same state
space, say {0,1,...,M}, it may not be possible for each component to be
fully relevant, This is the situation in the papers reviewed in Section
1.2, To allow the situation described herein to be compared with pre-
vious literature, the following two definitions are presented (using

terminology from Griffith [1980]).

Definition: Let ¢(X) be a MSF, and let U($(X)) be the corresponding
utility function that assigns utility 3 to state j. ?

&(X) 1is weakly coherent if

(1) every component is relevant, and

(2) a, > aj_1 ¥j =1, «u., M.

-

$(X) 1is strongly coherent if

(1) ¥ component i and state j, there exists X such that
$(3;,X) = j while &(%,X)#3 for L#j, and

(2) aj > aj—l yj=1, ..., M.

It is also assumed in Griffith [1980] and El-Neweihi, Proschan, and
Sethuraman [1978] that ¢(j) = j, but this restriction is not necessary

for any of the results in those papers or the results herein,
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It is clear that strong
Examples 2.1 and 2.2 are pre

implications are not true.

ExamEle 2.1: Consider two t

10,1,2}, and let éj = j ¥ j

$(0,0)

'\'( l » O)

Since ¢(1,0) > ¢(0,0) and
relevant. Since the system
components, component 2 is a

coherent. To show that ¢

<
(]

<
]

<
]

Thus, there is no X2 such
j =10, 2, so part (1) in the

satisfied. O

Example 2.2: Again consider

Let $(0,0) =
$(0,1) =
$(0,2) =

Since ¢(2,0) > ¢(0,0)

coherence = coherence =% weak coherence.

sented to show that the reverse

ernary components each with state space

. Llet

0,
MO,1) = M(1,1) = &(0,2) = ~(2,0) = 1, and

0(2,1) = A(2,2) = 2.

$(2,1) > 1,1), component 1 is fully
state is symmetric with respect to the
lso fully relevant, and the system is

is not strongly coherent, consider o(l,xz).

0= o(1,X,) = 8(2,X,) = 1
=% 6(0,X,) = o(1,X,) = I
2= o(1,%,) = 6(2,X) =2 .

that ¢(1,X2) =1 and O(jl.Xz) # 1 for

definition of strong coherence is not

two ternary components with aj = j.

¢(l|0) =0,
¢(1,1) = 1, and

$(2,0) = ¢(2,1) = &(1,2) = &(2,2) = 2.

and ¢(0,2) > ¢(0,0), ¢ 1is weakly coherent,
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However, o(O.Xz) = ¢(1,X2) ¥ Xz, so X is not fully relevant, and

1
the system 1is not coherent. Note that we can combine states 0 and |

of component 1 to get a coherent structure ¢' which is equivalent to

¢ as follows. Let xi = max (Xi-l,O), and define ¢' by

$'¢(0',00 =0 , ¢'C(0',1) =1, and

¢'(1',0) = ¢'(1',1) = &'(1',2) = 2 .

$'(0',2)

This is a special case of Theorem 2,1. 0
Theorem 2.1: A relevant component can be made fully relevant.

Proof: Assume o(Nl.i) > °(Ol‘§) for some X and ¢(jl-l)
= 0((3-1), X) ¥ X. Define ¢' and X' by
O(kl,ﬁ) for k' <j -1

o' (k7,X) = {
O((k+1),,X) for k' > j

¢ -
X' = {xl"xlﬁj !

- ’ 3
Xl 1 ¥ Xl 23 .

The new structure function ¢' 1s the same as ¢ except states j and
J -1 of component | have been combined. Repeat the process if any

components are still not fully relevant.

Theorem 2.1 shows that weak coherence is a useful concept only when it
is desirable to have the same state gpace for all components,

For simplicity, throughout the remainder of this thesis, it is
assumed that all components are relevant if all components are required

to have the same number of states and fully relevant otherwise. The
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results contained herein will often hold assuming just that ¢ 1is a MSF

which need not be coherent.

2.2.2. Series, Parallel, and k-out-of-n

The definitions of series, parallel, and k-out-of-n systems are

straightforward generalizations of their binary counterparts.

Definition: The system represented by a MSF ¢ is

(1) Series if ¢(X) = min (Xi)

(2) Parallel if ¢(X) = m?x (Xi), and

n
(3) k-out-of-n if &(X) = max {j : 71 >k} .
a1 K2

Clearly, a series system is an n-out-of-n system, and a parallel
system is a l-out-of-n system. Also, M = min (Ni) for a series
system, and M = m?x (Ni) for a parallel system. These types of
systems are useful since the position of the component within a system
is irrelevant; only the numerical value of the component state has an
impact. When this occurs, ¢ 1is said to have interchangeable compo-

neats.

Example 2.3: Let ¢ be a ternary MSF composed of 3 interchangeable

ternary components,

(A) ¢ is series if: $(0,0,0) = ¢(1,0,0) = (1,1,0) = ¢(2,0,0)
= 0(201’0) = ¢(2,2,0) = 0
¢(1,1,1) = 6(2,1,1) = ¢(2,2,1) = 1

2 .

#(2,2,2)




0

(B) ¢ 1is parallel if: ¢(0,0,0)

#(1,1,0) = &(1,1,1) = 1
#(2,1,0) = &(2,1,1) = 4(2,2,0)

#(1,0,0)
#(2,0,0)

¢(2,2,1) = 2,2,2) = 2

(C) ¢ 1is 2-out-of-3 if: §(0,0,0) = ¢(1,0,0) ¢(2,0,0) = 0

6(1,1,0) = &(1,1,1) $(2,1,0)

(2,1,1) = 1

$(2,2,0) = ¢(2,2,1) = (2,2,) =2 .1
Theorem 2.2: Let ¢ be a MSF,

(1) X VY) > &X) v &Y) where

X v Y= (max (XI'YI)’ cee, mMax (xn’Yn))’ and

(11) ®(X AY) < ®X) A (Y) where

A = . .
X AY (min (xl’Yl)’ cee, min (Xn,Yn))

If ¢ 18 a coherent MSF with M = Nl = see = Nn’ then equality in (i)
<=» ¢ 1is a parallel structure, and equality in (ii) <=3 ¢ 1is a series

structure.

Proof: (i) By definition X v Y > X and X vY > Y. Since &X) is
increasing in X, X v Y) > #(X) and &(X v Y) > &Y). Thus,

O(X vV Y) > oX) v &Y).

)

Assume that ¢&(X) = mgx (Xi) (parallel). Then &X v Y) = m?x ()(1 v Yi

- [m?x (x)1 v [mgx (Y)) = &X) v &(Y). Now assusme that ¢ is
coherent and that &X v Y) = &X) v &(Y). For each 1, there exists X

such that ¢((j-l)i._§) < o(ji._)g).
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03, .X) = 6((3,,0) v (0,X)) = 6(1,,0) v &0 ,X)

= 0(3,,0) v [6(0,,(X 4,0 v 6(0,,0,,0]

= tee = o(ji‘g) v [x[:g,i( °((xk)k'g)] .
Similarly, o((3-1);,X) = o((3=1),,0) v lmax o((X),,01 .

Since 0((j‘1)1a§) < ¢(ji,§), the above equations imply that
#((3-1),,0) < &(3,,0) ¥ 3§ or 0= 6(0) < &(1,,0) < *2+ < &(N,0) < M.
If M= N1 = ese = Nn’ this means that ¢(ji,9) =j¥1i and j or

¢(X) = max (X.,) .

The proof of (ii) is similar. {

Example 2.4: To show that M = Nl = see = Nn is a necessary part of

the proof, let X, be binary and X, be ternary. Let ¢(0,0) = 0,

1 2
#(0,1) = 1, and ¢(0,2) = ¢(1,0) = &(1,1) = ¢(1,2) = 2. 1t is easy to
show that ¢ 1is a coherent MSF and &(X v Y) = 4(X) v &Y), but
$(X) $ mgx (Xi)' To show that weak coherence does not suffice to

prove the theorem, make component | ternary with ¢(2,0) = ¢(2,1) =

¢(2,2) = 2. Then ¢ is weakly coherent, but ¢(1,0) = 2 # max (Xi) .0
i

These concepts may be applied to a single system state rather than

the entire system,

Definition: The system represented by a MSF ¢ {is

(1) Series at level j 1f ¢(X) = j <=> m%n (Xi) = 3.
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(2) Parallel at level j if &X) = j <=> mgx (Xi) =,

(3) k-out-of-n at level j if #(X) <= max {1:E:_ll(x121}gk} - §.

A series system is a series system at level j ¥ j. Note that if
¢ 1is k-out-of-n at level j, it must be at least k-out-of-n for all
system levels larger than . To see this, let ¢ be k-out-of-n at level

j and (k~l)-out-of-n at level j + 1. Then 0((j+1)1,...,(j+1) 0) <]

k-1’
by the first criterion, but 0((j+1)1""’(j+l)k-1’2)-Z j+1 by the

second criterion which is clearly impossible,

Example 2.5: Let ¢ be a MSF composed of 3 interchangeable components
with M = Nl = N2 = N3 = 3, We construct ¢ to be parallel at level

1, 2-out-of-3 at level 2, and series at level 3 as follows.

$(9,0,0) = 0 $(3,3,3) = 3
8(X) = 1 for X e {(1,0,0),(1,1,0),(1,1,1),
(2,0,0),(2,1,0),(2,1,1),
(3,0,0),(3,1,0),(3,1,1)}

X) = 2 for X e {(2,2,0),(2,2,1),(2,2,2),
3,2,0),(3,2,1),(3,2,2),

(3,3,0),(3,3,1),(3,3,2)} .10

2.2.%. Mir Paths and Min Cuts

I the binary case, a minimum path set is a list of components.
if every component in a minimum path set functions, then so does the
system. In the multistate case, however, path sets have to be
associated with the appropriate system state, and each component must

have a specified minimum state. Thus, in the multistate case, a minimum




m

path set 18 a list of minimum requirements for the state of each

component.

Definition: Let ¢&(X) be a MSF. X 1is a path vector at level m if

0(5) > m. It is a path vector at maximal level m if “.’9 = m, If,

in addition, ¢(Y) < m whenever Y < X, then X 1is called a minimum

path vector at maximal level m. Let m = (ml""’mn) be a vector such

that if X > m, then $(X) >m and if Y < m, then oY) < m. The
vector m will be called a min path (minimum path set at system
level m). The jth min path at system level m will be denoted
E_j = (m‘},...,mg). There are sm min paths for each system level

(s when the system level is clear). Also,

(X) = 1 = 1 1

P {X>m} 4=1 (X >md)
== 120

3

is the jth minimum path structure function at level m.

Definition: Let d)(ﬁ) be a MSF. X 1s a cut vector at level m if

#(X) < m. It is a cut vector at minimal level m if &X) = m~1. If,

in addition, ¢(Y) > m whenever Y > X, then X 1is called a minimum cut

vector at minimal level m. Let m = (El,...,ﬁn) be a vector such
that 1f X < m, then &(X) < m and if Y > m, then &Y) > m. The
vector m will be called a min cut (minimum cut set at system
level m). The jth min cut at system level m will be denoted

Ej - (E{,...,t‘ni). There are t_ min cuts for each system

level m (t when the system level is clear). Also,

=30~
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Kj(gt_) =1

=] - 1
x ¢ &) =1 X < @)

is the jth minimum cut structure function at level m.

Example 2.6: Let ¢(X1,X2,X3) be as in Example 2.5.

Min paths at level 1 {(1.0,0).(0,1,0).(0,0,1)}

Min cuts at level 1 {(0,0,0)}

Min paths at level 2 = {(2,2,0),(2,0,2),(0,2,2)}

{(3’1’1))(1’3'1)’(1'1'3)}

Min cuts at level 2
Min paths at level 3 = {(3,3,3)}

{(3,3,2),(3,2,3),(2,3,3)} .

Min cuts at level 3

Looking at the min paths and min cuts, it is easy to see that ¢ 1is

parallel at level 1, 2-out-of-3 at level 2, and series at level 3. []

Theorem 2.3:

s t
(1) o) >a = 1l o0 =1 < Lo = 1
== j=1 3= j=1

s t
(i1) ™ = p¢ Ll pj(X) = 1) = B( U % (X) = D)
j=1 - 31=1 -

Proof:
8

(1) 4

X) =1 h AX) =1 f .
i pj(___) means that pJ(__) or some j

Thus, X Z.!? for some j so ¢(X) > m by definitfon. Now assume
#(X) >m. X is then a path vector at level m, and a min path can be

constructed such that X > g_j This implies that .l;_l pj(_)g) - |
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since (pj,j = l,Z,...,sm} contains all min paths at system level m,

The proof is similar for min cuts.

L3

(i1) Part (ii) follows by taking expected values in (i).

For independent components, it is true that P(pj(i) = 1)

= : P(X > -~ ) However, it i{s not necessarily true that

P( ; 1 p (X) = 1) =J§=l P(pj(i) = ]1)., This situation arises because

independence among components does not imply independence among path
sets since two path sets can have a component in common., The same

remarks apply to cut sets, This problem is illustrated in Example 2.7.

Example 2.7: Consider a ternary system composed of two ternary

components with two path sets at level 2.

1 1 2 _ 2 _
(2 =2,2,=1 , @]=1,2,=2

= (1/4,1/4,1/2) , By = (1/3,1/3,1/3)

[}

1) = P(X1 =2 and X, >1 or X >1 and X, = 2)

B( jJ;Ll oy (X) 22 L2 2

= 5/12

P(X2 >0 Py + P(X2 = 2) P11 + 0 Plo

2
jJ;Ll P(p;(X) = 1) = I=[1-B(X) = 2,X, > D] * [1-P(X} > 1, X, = )]

1/2. 0

2,2.4. Duals
The dual of a binary coherent structure function is useful in

reliability modelling since the minimum path sets of ¢ are the minimum

cut sets of QD and vice versa. Thus, solving for the reliability of
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the dual system is equivalent to solving for the unreliability of the
original system. A similar relationship exists in the multistate case.

This is mathematical justification for computing system reliability
using block diagrams and fault trees which model either system success

or failure,

Definition: Let & be a MSF, Its dual, ¢D, is defined by
D
o (X) =M - &(N-X).

Theorem 2.4: (oD)D = ¢,

proof: (00)P(X) = M-e"(N-X) = M-[M-0(N-(N-X))] = &(X). O

Theorem 2.5: (Griffith [1980}): The dual of a MSF is a MSF and

possesses the same type of coherence as the original structure function.

Proof : OD(Q) M-¢(N-0) = M-M = 0.

$°(N) = M-8(N-N) = M,

If X>Y, 62(X) = M-6(N-X) > M-&N-Y) = ¢°(Y). This proves that if
¢ 1is a MSF, then 0D is a MSF. Now assume ¢ 1is coherent, Let Y

be such that o((Ni—j)i,X) < 0((Ni~j+1)i,x), and let X = N-Y.

(=D X) = M = 6N=((J=D), X)) = M - (N -5+D),,Y)
D
<M - ¢((Ni’j)i,l) = M‘¢(§f(j1.§)) = ¢ (ji,ﬁ)-
The previous inequality shows that ¢ 1is coherent. If ¢ 1is weak
coherent, let Y be such that ¢(01,1) < ¢(Ni.z). and use the same

argument, If ¢ 1s strong coherent, let Y be such that ¢((Ni-j)i,1)

- Ni_j and Q((Ni-l)i,x) ¢ Ni-j ¥ %3, and use the same argument. [}
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Theorem 2.6: Let X be a path (cut) vector at level m for a MSF ¢,

Then N-X 1s a cut (path) vector for QD at level M-m+l. Further~
more, if m is a min path (cut) at maximum (minimum) level m for ¢,

then N-w {s a min cut (path) at minimum (maximum) level M-m+! for

D
¢ .

Proof: 1If X 1is a path vector at level m for ¢, 0(5) > m. Thus,
0D(§j§) = M-@({) € M-m < M-w+l, and N-X 1is a cut vector for ®D at
level M-mt+l, Now let m be a min path for ¢. Then ¢(E) = m and

¥ Y <m, Y) {ml. Thus,

¢D(Ef§) M-¢(m) = M-m < M-m+l, and

" (N-Y)

M-¢(Y) > M+l ¥ Y {m or N-Y > N-m.

Thus, N-m 1is a min cut for ¢D. The results in parentheses hola by

D)D ~

considering oD as the original MSF and remembering that (¢ = ¢. dJ

Sprollarz 2,7: If ¢ 1is a k-out-of-n system at level n, ¢D is a

(M-k+1)~out-of-n system at level M-m+l.

Proof: Since a k-out—of-n system is uniquely determined by its min

paths or min cuts, this is immediate from Theorem 2.6. O

Ex~~ple 2.7: Let ¢ have 3 components with 4 states each as in Example
2.5 - parallel at level 1, 2-out-of-3 at level 2, and series at level

¥
3. Then ¢ (i) = 0(&), i.e., the system is self-dual. It 1is easy to

see that Theorem 2.5 and Corollary 7.7 are satisfied. 0O

Example 2.8: Let ¢ bpe a series ~vstem composed of 3 ternary

components.
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¢°(0,0,0) = 0
021, 1,1) = 6%0,1,1) = ¢°(0,0,1) = 1
0°(2,2,2) = 6°(1,2,2) = ¢%(1,1,2) = 6°(0,2,2)

= 6°(0,1,2) = ¢%0,0,2) = 2.
Thus, QD is a parallel MSF. [

2.2.5 Modules
A module is essentially an assembly of components which can
itself be treated as a component. Modules are useful for breaking up a

large system into several smaller ones which may be more readily

analyzed. They can also be used to determine bounds on system
reliability which are as good as or better than bounds obtained by
considering the original system. The concept of a module is easily
generalized to the multistate case. Let (C, ) denote a set of compo-

nents C and a MSF ¢.

Definitjon: (A,x) 1is called a module of (C,¢) if A <C and

AC C
6(X) = $(x(X" ), XA ) where ¢ 1s a MSF. Note that the

number of system states for X must be equal to the number of states

for the first component of ¢,

Definition: A modular decomposition of the system (C,¢) 1is a set of

disjoint modules ((Al’xl)""’(Ar’xr)} together with an vrganizing

structure ¢ such that

(1) C= v A, and A, NnA, = {¢$} 1 and j, and
=y 1 i 3
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Al Af
(1) oK) = 4O (X )y eeey 0 (X))

Parts (i), (ii), and (iii) of Theorem 2.8 are due to Griffith [1980].

Theorem 2.8: Let (A,Y) be a module of (C,9), i.e.,

C
8(x) = w(x(x™ ).

(i) 1f yx and ¢ are both coherent, ¢ 1is coherent.
(ii) If y and ¢ are both strong coherent, ¢ 1is strong coherent.
(iii) If x and ¢ are both weak coherent, ¢ is not necessarily
weak coherent.
(iv) If ¢ 1is coherent and ¥ 1is weak coherent, ¢ is weak

coherent,

Proof: Consider a component 1i. If i ¢ A, the theorem is obvious,
so assume 1 ¢ A,
(1) Since yx 1is coherent, there exists X such that

A
X((j'l)i,zé) < x(ji,é_). Since ¢ 1is coherent, there exists

C
55 such that

C
HG-D LB = W=D Lxh 1)

C
<o LX) = 0G0

(11) Since 1y 1s strong coherent, there exists ﬁA such that

X(ji.éé) = j and X(li’zé) #j ¥ L# j. Since ¢ is

C
coherent, there exists EA such that
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c c
803,50 = $(x3, XD X0 = wg ) = 5, and

c
ORI SR SRR I B

(1i1) The problem here is that there exists EA such that

A A AC
x(N ,X7) > x(0,X7), and there exists X such that

C C
W) LX) > 0 XN ), bue XN XY s no

necessarily equal to Mx. This problem exists even if x 1is
coherent or strong coherent. As an example, let X(XI’XZ)

= ¢(X1,X2) be ternary systems with ternary components.

¥€0,0) = ¢(1,0) = O
¢(0,1) = &(1,1) = &(0,2) = ¢(1,2) = 1
¥(2,0) = ¢(2,1) = &(2,2) = 2 .

Note that states O and 1 of component | are indistinguish-
able. let ¢(X1,X2,X3) = ¢(x(Xl,X2),X3). Enumeration shows
that ¢(Xl,02,X3) = Q(XI,ZZ,X3) ¥ X1 and X3. Thus, compo-

nent 2 is irrelevant, so ¢ 1is not weak coherent,

(iv) Since 1y 1is weak coherent, there exists EA such that

x(O,EA) < x(Ni 55). Since ¢ 1is coherent, there exists

AC
X such that

C C
80,,%) = 4(x(0,,x%, ¥*) < axv,xh x*)

= o(N,x) . O
Theorem 2.8 clearly applies to a modular decomposition by replacing ¥

with xl. ceny xr.
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Example 2.9: Consider ¢(X1.X2,X3,X4) where everything is ternary, X

and X2 are in parallel, X3 and X“ are in parallel, and Xl - xz

are in series with x3 - XA. This system is shown in Figure 2.1.

1

2 l—rlor_

Figure 2.1 Block Diagram

It is easy to see that

(X, Xy XX ) = min (X VXX, VX))

= min (Xx(xl’xz)' xz(x3’x4)) = ¢(x1(Xl,X2). x(X3,X4))

where 1y 1is a parallel structure function and ¢ is a series structure
function.

As a sample calculation,
#(2,0,1,1) = ¢(x(2,0), x(1,1)) = ¢(2,1) = 1. 0O

The next theorem shows that the dual of a module is a module in the

dual.

_38_




Theorem 2.9: If ¢ 1is a MSF and (A,x) 1is a module of (C,9), then

C
0" = PCxM M.

Proof:

C C
CoEh g = Pt 1)

c AC

= i - o(x(N=xty N )

= M- oK) = 60 .0
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3. STOCHASTIC RESULTS

Although the definition of coherence is important in engineering
considerations, most of the stochastic results for the binary case can
be extended to the multistate case assuming only that the structure
function is nondecreasing in each component. Many of the multistate
analogues to binary results exist in the literature although theorem
hypotheses are generally stronger than necessary. These theorems have
been extended to the general multistate model described in Chapter 2
with hypotheses weakened when appropriate. The proofs of these theorems
usually require only minor modifications to the proofs given for more
restrictive situations. Some results which had not previously been
extended to the multistate case also appear in this chapter.

Results pertaining to system utility are contained in Section 3.1.
These are important because reliability is thought of as the probability
that the system is operational. Since the system can be partially
operational in the multistate case, expected system utility is a better
measure of system performance than is reliability. In Section 3.2 the
relative importance of each component to the system is considered. Many
of the reliability importance measures in this section had not been
previously extended to the multistate case. It is known that certain
classes of life distributions are closed under convolutions, mixtures,
and the formation of coherent systems. By extending the idea of life
distribution classes to life distribution processes, these closure
theorems are shown to apply to the multistate case in Section 3.3. The

results for closure under the formation of coherent systems previously
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existed in the literature, but the results for closure under

convolutions and mixtures are new. Reliability bounds on both system
and component reliability are considered in Section 3.4. Butler [1978]
extended most of the bounds on system reliability to the multistate case
using the probability that the system is at a certain level or higher as
a measure of reliability. In Section 3.4.2 these bounds are shown to
apply to expected system utility. In addition, bounds on the expected
utility of non-coherent systems are obtained. Bounds on component
reliability are usually based on properties of the life distribution
class to which the component belongs, Using life distribution proces-

ses, these bounds are applied to multistate compoanents in Section 3.4.3.

3.1. System Utility

In Section 2.1, the reliability of the system at level k was
defined as hk = P(&(X) > k). Note that hk # EAX) as it was in the
binary case. In the multistate setting, E®(X) = L P(&(X) > k) =
z:=l hk. However, neither hk nor E®(X) 1s necessarily the best
measure of system performance. It is possible that system states j
and 3+l have nearly identical utility while there is a large
difference in the utility of states k and k+l. The measure of system
performance that will be used in this thesis is expected system utility.

Let U(e*) be a utility function which assigns value ak to system

state k, k=1, 2, ..., M where 80 = 0 without loss of generality.
M

M
V(X)) = kz 2 {o(x)=k) kzl bkl{o(pgk}

1

where bk =a -a_, -
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M M K
EU(KX)) = § a P(&(X) =k) = ] bh .
1

k= k=1

When a =k vk, EU(&X)) = E¢(X). When a, = 0+~j<k-l and

aj =1+~3j >k, EU(&X)) = hk. Thus, expected utility includes

expected value and reliability as special cases. If ¢&(X) is weak

coherent, 0 = a, < a, L o0 ay and bk 20 ¥k, If &X) is

coherent, 0 = a, < a,  ®900 ( ay and bk > 0 vk,

Theorem 3.1:
N,
EUCO(X)) = jg; Py EUCOG X))

Proof:

M N

EUCKX)) = ] by .Zi pijP(¢(§) > kix = 3)
k=1 j=0
N, M

Ni
- XO Pyj EUCO(3.X0) . D
js

Using Theorem 3.1, the following pivotal decomposition can be derived

where the first equality holds only for independent components.

P o )
EU($(X)) = see p see p b 1
- jl-o jn-o ljl njn j=0 k {°(jl'oo..jn)zk}

‘ M
= 1PMXx=x) ]
X j=0

Pie otx)k)




Theorem 3.2: If ¢ 1s a coherent MSF, then
(1) EUCKX v Y)) > [EUC&X))] v [EU(4(Y))] where equality holds
if and only if ¢ 1is a parallel structure function.

(11) EU(&X A Y)) < [EU(&(X))] A [EU(&(Y))] where equality holds

if and only if ¢ 1s a series structure function.

Proof: (i) From the pivotal decomposition,
P(O(X v Y) > k) = P(#(X) > k) v P(HY) > k)

-1

») P(X = x,Y = y)
xy

1 -1

{ {6(x vy) >k} {o(x) V¢(1)3k}]
From Theorem 2.2, the quantity in brackets is always nonnegative and is
0 1if and only if ¢ 1s a parallel structure function., The result
follows by multiplying by bk > 0 and summing over k.

(11) The proof is similar.

The next result shows that expected system utility is increasing in
qij (recall qij = P(Xiz j). If ¢ 1is coherent, then the expected ﬁ
system utility is strictly increasing in qij'

Theorem 3.3: Let X(X') have distribution 4q(q').
(1) If q<gq' and ¢ is weak coherent, EU(&X)) < EUCH(X')).
(11) 1f q < q' and ¢ 1is coherent, EU(H X)) < EU(HX')).

Note: q < q' 1s the same as saying X is stochastically smaller than

X' or

X',
X X< X

Proof: (i) Since q < q' and ¢(X) 1is increasing in X,

P(O(X) > k) < P(H(X') > k) + k.
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The result follows by multiplying by hk 2 0 and summing over k.

(11) Since g < q', P(&(X) » k) < P(HX') > k).
Inequality must hold for some k since ¢ 1is coherent, and the result
follows by multiplying by bk > 0 and summing over k. To see that
coherence implies inequality for some k, assume q and q' differ

only in the ith row.

N
P(OX) 2 k) = I p  PCO(i;,K) > k)
j=0
Ni
= I"ay (P0G LK) 2 k) = POA((3=1) %) > W)
j=0
where P(¢(—li,§) >k) 20

N
It ay; [PCOCI; LX) 2 ) = PCO((3=1)LX") 2 1))
] j=0

N,
i t s t - T (]
< jzo qj (PO 1K) > k) = PC((5=D);,X) 2 )]

by coherence

P(O(X') > k) . 0

Theorem 3.3 is a special case of the economic theory of stochastic
dominance and utility functions. See, for example, Hadar and Russell

(1969].

3.2. Reliability Importance

When deciding whether or how to improve a system, it is useful to

know where a given improvement would do the most good. Obviously a

budget constraint is necessary, but a good heuristic approach to
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improving system reliability is to start with the component that yields
the greatest increase in system reliability for a given improvement in
component reliability. Several measures of component importance have
been suggested. A measure for which component probablility distributions
are not necessary is called structural importance while reliability
importance is the term given to a measure which involves those
distributions, The first definitions of structural and reliability
importance were proposed by Birnbaum [1969]. These measures and their
attributes have been extended to the multistate case by Butler [1979]
and Griffith [1980] in different ways. The theorems and proofs in those
papers have been slightly modified to fit the more general multistate
case presented in this thesis, Other importance measures are due to
Barlow and Proschan [1975b] and Fussell [1976). These measures and
their attributes are herein extended to the multistate case. For a
complete discussion of binary reliability importance, see Lambert
{1975). Throughout this section, it is assumed that the components are
independent so that hk = hk(g) and upgrading one component will not

affect other components.

Definition: The Birnbaum Reliability Importance of component 1 in a

binary system, denoted Ih(itg)' is defined by

dh(P)

aPi

Ih(i,g) S = h(li’g") = h(oisg)
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Definition: (Butler {1979]). The r,s reliability importance of compo-

nent 1 at level m 1is defined by
o (1,B) = h(r ,P) - h™(s,P) = P(&X) > m[X = r)

where 0 <{s <r < Ni.

Theorem 3.4: (Butler [1979]). Let 60 + 61 + eee + § =0, and

N

let 0 S-pkj +6, <1 ~¥k,j. Define E by

]

A

;pij if 14k

kaj+6j if i =k

Then,
,0
h(P) = h(P) + &, INk (k) + eoe+ 8 10°0(k,p)
Proof:
N0 1,0
h(P) + 6Nk I~ (k,B) + oo+ 8T " (k,P)
Ne
-ZN"( + 8,)h(j, ,P) + 0, ,P) - h(0 ZN“a
N {
= Ljag (Pyy *+ 8003, ,P) - h(O, ,B) Ej -0 5

Ne N

= Ljmo Piy 3B = Lilo pyhCd, 0B) = B(R)
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where the last line follows since E and P differ only in the
kth row. 0O

C
Theorem 3.5: Llet &(X) = ¢(X(§A)._§ ), let 1 ¢ A, and let 1y be

a binary MSF. Then

15°° (1) = 1:"0 W @ .
P " X

Proof:

o C
A
hy(r B = b (1 X b (o XY + 00 X5 ) -h (e X))

C C
A A A
hy(s,2) = by (1, X O (s, XY + B0 X" )l1-h (s, X))

f=2
o~
-
~
1]

= h¢(ri'g) - h¢(si’£)

c c
A A A
[y (1,x" ) =m0 X1 (e XD - b (s XD

E)

- 1:1'0(1) ity .o
@

Definition: X 1is a critical vector for binary component i {if

°(11’§) - 0(01,5) = 1. Let no(i) be the number of critical vectors

for component 1. The Birnbaum Structural Importance of compouent i

is

1 1
I,(1) = < (1) = ?lg (&L, ,X) - &0, ,X)]

2
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Definition: (Butler [1979}). X 1is an r,s critical vector at level m

for component { {if o(ri,i) > m and o(si,ﬁ) <m, or
1 -1 =1 .
(O(ri,ﬁ)Zm} {¢(si.§)zm}

Let n;’s(i) be the number of r,s «critical vectors at level m

for component i, The r,s structural importance at level u for

component 1 is

_ -1 r,s
i) = [(N1+1)(N2+1) . (Nn+1)] N (1) .

Theorem 3.6: (Butler [1979]).

N.,O0 N, ,N -1
S iti ve 1,0
(i) Ih (i) = Ih (i) + » + Ih (1)
N.,O N, ,N -1
i’ I vee 4 TheU/ s
(ii) I¢ (i) = I¢ (i) + + I® (1)

(111) I;‘s(i,[l/N]) = 1;’5(1) where [L/N] means

Pyy = 1/(Ni+l) ¥ i, .
Proof:

N.,O
(EOI SN ED

[h(N,,B) = h((N,=1) ,B)] + =+ + [B(1 ,P)-h(0 ,P)]

N, N, -1
11 vee o 11,0
I, (1) + +1,0(1)
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i
(D mgt (D =] [I{ocni.z) >wi " Moo, 0> a )
=1 {[1 -1 } )
% (6N, X) > mb T {e((N -1 LX) > m)
et [l{o(li,p >mb ” e, 0 > w
N ,N -1
- n; L) # eee 4 n;’o(i)
Multiplying by [(Nl+1) oo (Nn"'l)]_1 yields the result,
(i11) (G, [1/8) = ] P(6(j; %) > m)P(X = x)
ies,xi=j

-1

[(N1+1)'“(Ni_l+1)(Ni+l+1) ~--(Nn+1)]

) e
xes,x =] {6Gi %) > m)

= [(N+1) = (Nn+l)]—1 igsl{‘b(ji‘i) > m
IS (4, [1/N]) = [(N[+1) =ee (Nn+1>1“ I Uitr, xd > w
XE€S i'— -
" ots 0 > w!
= [N 1) eee (Nn+1)]—l ny' S (i) = SAME I

A different extension of the Birnbaum reliability importance is due
to Grif{ith [1980]. In the binary case, h(P) = h(Oi,B) + p“Ih(i,g).
Thus, kncwing Ih(i.g). it is easy to determine the increase in system

rellability caused by upgrading a component. There is a vector in the

multistate case which is analogous to Ih(i.g).
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Notation:

113(1) = P(&(L,X) > 3) - P(A((2-1) ,X) > 3)
M
H b.1 i
1(1) y 3,{1( )
I(1) = (I,(1), +=o, I (1))

i

Theorem 3.7: (Criffirh [1980]). EU(&(X)) = z?=lbjP(0(Oi,§) > 1)

t
+ . = e ey Y, t notes
I(i) SI where SI (qll'qIZ’ q[Ni, ( deno

transpose).

Proof:

N
PCO(X) > ) = I' PCO(2,%) > Dby,
2=0

N
- ,FE; PCOR,0 > )(ayyay gep)

1]
o]

where in = ] and 9 N 1
Uit

N
= P(6(0,X) > 1) ‘}Ej [BCO(2,, %) > 3)

PCO((1) %) > Dlagy
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EUCH(X)) = § b, P(&X) > )

3=1
M M Ni

= [ b PCe0,X) > 3) + I LT b [PCO(2,X) > §)
j=1 j=1 =1 J

- POO((2-1) LX) 2 ) lag,

M Ni

= jzl by P(60,.X) > ) + lgl I(Da,,

M
= T b R0 %) 23) + 1D +gf .3

Corollary 3.8: If component 1 1is stochastically improved from

distribution 4y to 3{ Z.gi, the change in expected utility is

AEUC (X)) = I(i) + &' where A,

= q!, - v i3 >l
5 7 915 T 94y 4

Theorem 3.9: (Griffith [1980])). If aj = j, so that EU(HX)) = E&(X),

then

I(1) = (E6(1,X) = E6(0,X), «.ey EO(N,,X) = EO((N;=1), X))

Several other importance measures are due to Barlow and Proschan

[1975b]. Their multistate extensions are defined herein.

Definition: The B-P (binary) reliability importance of component 1 is

(D) = é [h(1,,E()) = h(0,,E(1))]dF (t)

= probability that component {1 causes system failure.
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A time dependent version of this measure is

-1 (t
Igp(1,8) = [1-h(E(t))] g[h(11,F(r))-h(oi,g(m)dvi(r)

t
({ (b1 ,F(t)) = h(0_,F(t))]dF (1)

n t
L [ (6(1 F(6))~n(0 ,E(0))]dF (¢)
i=1 0

P (component 1 causes system fallure | system is

failed by time t) .

The second equality above follows from the fact that if the system is
failed by time t, one of its components must have been the source of

that failure.

Definition: The B-P multistate reliability importance at level m of

component i 1is

N -1 =

a0 = I () L ECO)-R" e FCO) IFSC(e)
! F

Lop(

Recall that Fi(t) = B(X (1) < k) .

Each term in the above sum is the probability that a transition of
component 1 from state k+l to k caused the system state to drop
below u. I:P(i) is the probability that some transition of compo-
nent 1 caused the system state to drop below m. Letting P = F(t),
we can relate the two multistate reliability importance measures via
k+1,k

m Ni_l *
Igp(D) = I (I, o

(1, F() MF(D) .
k=0
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The time dependent multistate version of this measure is

™ (1 = m -1 Ni-l t o m k
pp(irt) = (1=0(ECe I % [ (WD) F(0))-0"(k | F(€)) 1dF ()
k=0 0
Ni-l t K
I ] (0%Get1) [, F(6))=h"(k; ,F(E)) JAF (1)
k=0 0
- Ni-l t K
I T ] [a™CGkt1)  F(6))=h"(k ,F(€)) 1dF (£)
i=1 k=0 O

P (component 1 caused the system state to be

<m | system state at time t is < m) .

m
e .

. m
Note that IBP(i,m)

C
sxH X ), 1 e A, and y isa

Theorem 3.10: If &(X)
binary MSF, then
1

N - ®
W 1 @= 3 [ %
B k=0 0 D

k+1,k

k
hx (i)dFi(t)

(11) I;P(M) = z I?P(i) where M 1is the module % of ¢ .
iecA

Proof:

(i) Letting P = F(t), this is an immediate corollary to Theorem

3.5.
(11) Since failure of the module at time t mst be caused by a

transition of one of its components at time t,
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o i

dF(t) = ] 21 [h (OO 2 - b kX 1arE (o
ieA k=0 X

where M means module

N, -1
Nl ik
= . ) L (1)dF (t)
€A k=0 X
® o) = [ 1O%myar, (o)
BP o by M
- -1
= [ % 1 T R@erio
0 B iea k=0 Dy

) I:P(i) using part (i) . U
iecA

The same idea can be applied to determine the reliability importance

of a cut set instead of a single component.

Definition: The B-P (binary) cut set importance of cut set Kj is

. 1( -{1}
) j h(L , F(t)) 1 F (t)dF (1)
1.¢:KJ Q .Qe:l(j-{i}

Hi

IBP(Kj)

P (failure of cut set l<.j causes system failure),

Definition: The B-P multistate cut set importance of cut set j?

(level m) is

1% (@) = Z f ho((ad) .F (O T Ee) 1P c)
BP i=1 0 i 21 2 {

where F:(t) - P(xl(t) < Ei) and

(N FE)) = POOK(D) > mlX,(6) = @+L,X () Ca) v L4 1)
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Note that component £ may be unimportant in a particular cut set in

which case

= N

2 g and f:(t) =] ¥t .

Definition: The B-P (binary) structural importance of component 1 1is

I.(D) s({ [h(1,,F(t))-h(0,F(t))]dt
- é [h(1;,B) - h(0,,P)]dP
where Fj(t) = Fk(t) =P ¥ j,k .

The B-P structural importance of component i 1is derived by letting
all components have the same life distribution and averaging over that
distribution., This importance measure is more difficult to extend to
the multistate case since the 1life of a component is not well defined.

One possible extension is contained in the following definition.

Definition: Let all components and the system have state space

{0,1,...,M}. The B-P multistate structural importance at level m of

component i is

-1 M @
1 e ERe)-nR0c B 1ar (e

12(1)
k=0 =0 0

where FN(r) = B(X,(t) < 2) = B(X,() < 1) ¥ 3,k .

3

An importance measure which is used in fault tree analysis because

it 18 easy to calculate is described in Fussell [1976].




Definition: Let l-hi(g) s P(@i(&(t)) = 0) = P (all components in a

cut set containing 1 are failed at time t)

1
N

«i(g(t)) = U X £¢t)
j=1 leKj

i
where Nk is the number of cut sets containing component {i.

The V-F (binary) reliability importance of component 1 is

Ip($) = [1-h (F)}/[1-h(F)]

vE ¢

P (component i 1is contributing to system

failure | system failure by time t) .

Definition: Let

1-hTP(E) = B(op™(E) = 1)

P(xk(t) S_ﬁi ¥ k in a cut set at system

level m for which Ei = 1)

N
AT )
j=1 k=l {xk(r) < mkj}

L,m
O

where N:’m the number of cut sets at system level m

for which ;i = %
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The V-F multistate reliability importance at system level m of compo-

nent 1 at level 2R 1is

2 L,m _,.m
Le() = (=0T (1-0%E)) .

Definition: The V-F (binary) reliability importance of cut set l<.j is

I (X))

I F (0)/[1-KE)]

iekK
3

P (cut set Kj is contributing to
system failure at time t | system

failure by time t)

Definition: The V-F multistate reliability importance ot cut set é?
is
m =} n ai
Lp(@) = T F(O/[1-0"(E)] .
i=1

The V-F importance measures are all concerned with the probability
that a component is contributing to system failure. Another considera-
tion is the probability that a component is critical to system failure,

i.e., that repairing that component will allow the system to function.

Definition: The criticality importance of component i f{is

31]

I (1) = (h(1 ,F) = h(0 ,F)IF (€)/(i1~h(F)]

P (component { 1is failed at time t
and repairing it will restore the

system | system failure by time t)
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Definition: The r,s criticality importance at system level m of

component 1 is

in

1% = (0"(e  P)-h(s D) IF(£)/ [1-n"(F) ]

P(Xi(t) < s, and Xi(t) > r would make

HX(t)) >m | &X(t) <m) .

3.3. Closure Theorems

Several categories of life distributions were defined in Section
1.1. An obvious way to extend these categories to the multistate case
is to replace the component life distribution Fi(t) by F?(t)

= P(Xi(t) £ k). The following definition is slightly more general.

Definition: Let (Xi(t), t > 0} be a real valued stochastic process,

and let T{ = inf {t : X,(t) < a} be the hitting time of a. X (t)

is said to be an IFRA (IFR, DFRA, DFR, NBU, NWU, NBUE, NWUE) stochastic

a

i is an IFRA (IFR, etc.) random variable ¥ a. The

process if T
process Xi(t) will usually represent the state of the ith component.

This definition allows Xi(t) to be a continuous random variable.

There are several reliability operations for which closure theorems
have been developed in the binary case., One type of reliability
operation which has been previously discussed is the formation of a
coherent system from several components. A second is convolution which
yields the distribution for a sum of random variables. This is used to

get the distribution for the sum of the life lengths of a component and
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several spares. Another reliability operation is mixture of distribu-

tions which is useful when a component may have one of several life
distributions. This could occur if several manufacturers produce the
same type of component, and it is not known which manufacturer produced
the operating component. A closure theorem for one of these reliability
operations states that if the input distributions all belong to a
certain category, then the output distribution also belongs to that
category. The following table shows which categories are preserved

under each of the three aforementioned reliability operations.

Reliability Operation

——
Life Dis- Formation Convolution Arbitrary Mixtures of Dis-
tribution | of Coherent of Mixtures o€ |tributions that
Class Systems Distributions| Distributions do not cross
IFR NP P NP NP
IFRA P P NP NP
DFR NP NP P p
DFRA NP NP |4 P
NBU P P NP NP
NBUE NP P NP NP
NWU NP NP NP P
NWUE NP NP ? p
P = preserved NP = not preserved ? = unknown

TABLE 3.1 Closure Theorems

The proofs of the results in Table 3.1 may be found in Barlow and
Proschan [1975a]. The binary counter-examples to preservation of life
distribution classes presented therein obviously apply to the multi-
state case, It will be shown that all of the closure theorems which
hold in the binary case have analogues in the multistate case. Not

surprisingly, the main technique used to prove the multistate closure
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theorems 1is the reduction of the multistate case to the binary case.

The following theorem is due to Ross [1979].

Theorem 3.11 (IFRA Closure): Let {X‘(t).t > 0} be independent IFRA
stochastic processes, and let ¢ be a MSF. Then (O(E(t)), t >0} 1is

an IFRA stochastic process.

In this theorem, ¢ does not need to be a multistate function. 1t
could be continuous, negative, etc., - just as long as it is increasing
in its arguments. This is true for all the theorems in this section.

The next theorem is due to El-Neweihi, Proschan, and Sethuraman [1978].

Theorem 3.12 (NBU Closure): Let {Xi(t). t > 0} be independent NBU
stochastic processes, and let ¢ be a MSF. Then {Q(i(t)), t > 0} is

a NBU stochastic process.

Definition: Let Tl and T2 be random variables with distributions

. N Y S
Fl and FZ. TL + T2 has distribution F(t) IO bl(t x)sz(x)

which is called the convolution of Fx and F2 and is denoted Fl * FZ'

In reliability '1‘l and T2 are usually the life lengths of components.

Theorem 3.13: Let {Xl(t), t >0} and {Xz(t), t > 0} be independent
IFR (IFRA, NBU, NBUE) stochastic processes corresponding to two

components. Let k and & be the respective states for which

components 1 and 2 are considered failed. Then T = TT + T; is an

IFR (IFRA, NBU, NBUE) random variable.

Proof: Since Xl(t) and Xz(t) are IFR stochastic processes, TT and

T; are IFR random variables. The result is then immediate from the

binary case (see Theorem 4.2 of Barlow and Proschan [1975a]). J ﬂ
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Theorem 3.13 could be considered as the multistate extension of the
closure theorem for convolutions, but it is really the same theorem with
state 0 = {0,1,...,k} and state 1 = {k+l,...,M} for component | and
a similar equivalence for component 2. Theorem 3.15 contains more of
the flavor of an operating component and spares. First, the following

lemma is needed.

Lemma 32££: let {Xi(t),t 2 0} be a stochastic process corresponding
to the state of the 1ith component for which the only allowable state
transitions are from a state to the next lower state. Denote the

h kth t T , .
sojourn time in the th state by k-1 If the Tk,k—l are
independent IFR (IFRA, NBU, NBUE) random variables ¥# k =1, ..., N

then Xi(t) is an IFR (IFRA, NBU, NBUE) stochastic process.

Proof: Tk z inf {t : Xi(t) <k}=T

1 eee + T

+
Ny N -1 k+1,k

is an IFR random variable since it is a sum of IFR random variables.

Thus, Xi(t) is on IFR stochastic process.

Now consider a process X(t) as the maximum of several processes
Xl' coey Xn which represent components, Only one component, the one
which is currently in the largest state, is in operation., Thus,
transitions between the states of components not currently in service
cannot occur, and the only allowable transition is to the next lower

state of the operating component.

Theorem 3.15: If transitions Tk k-1 are independent IFR (IFRA, NBU,
’
NBUE) random variables, then the X(t) process described above 1is an

IFR (IFRA, NBU, NBUE) stochastic process.

-61-




k

Proof: T = inf {t : X(t) <k} = T} + oo + 1%,

By Lemma 3.14, TE are all independent IFR random variables. Since
Tk is the sum of independent IFR random variables, it 1s an IFR random

variable. [

Definition: Let (Xa} be a set of random variables whose index a 1is
a random variable with distribution G. The mixture of Xa is a random
variable with distribution

F(x) = [ F (x)d6(a) .

-

The Fa will usually represent component life distributions, and «

will usually have a finite range so that

n
F(x) = ) F (OP(a = 1)
i=1
Theorem 3.16: Let {Xa(t), t > 0} be independent DFR (DFRA)
stochastic processes indexed by a random variable a with distribution
G. Let X(t) be the mixture of Xa(t). Then X(t) 1is a DFR (DFRA)

stochastic process.

Proof: Llet Ti = inf {t : Xa(t) < a}, and let Fi be the distri-

bution of TZ. The distribution of T2 = inf {t : X(t) < a}l is

a ® a a

F(t) = f_wFa(t)dG(a). Since each Ta is a DFR random variable,
Ta is a DFR random variable from the binary DFR closure theorem for

mixtures (see Theorem 4.3 of Barlow and Proschan [1975a}). O
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Theorem 3.17: Llet (Xa(t),t > 0} be independent NWU (NWUE) stochastic

a
processes such that there 1s no crossing of Fa and Fi, on (0,=)

¥ a, a, a'. Let a be a random variable with distribution G, and
let X(t) be the mixture of Xa(t). Then X(t) 1is a NWL (NWUE)

stochastic process.

Proof: Same as the preceding theorem using the binary NWU closure
theorem for mixtures of distributions that do not cross (see Theorem 5.7

of Barlow and Proschan [1975a]). 2

3.4, Bounds

It may often be difficult or time-consuming to compute exact
system reliability, especially for large systems. Thus, it can be
useful to have upper and lower reliability bounds. If the lower bound
is sufficiently large, no further calculations will be necessary to
satisfy reliability requirements., If the upper bound is too low, this
may be an indication of problems in the system design. In the
multistate case, system reliability is the probability that the systen
structure function meets or exceeds a certain level. Several upper and
lower bounds on system reliability are given in Section 3.4.1, These
include the use of modular decomposition which helps make the
computations feasible for large systems and often leads to improved
bounds. Bounds on expected system utility are discussed in Section
3.4.2. These are simple extensions of the bounds in Section 3.4.l and
are useful since expected system utility is a better measure of

performance than reliability for multistate systems. Bounds exploiting
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the properties of various life distributions are contained in Section
3.4.3. Some of these bounds are formulated specifically for multistate

components, and some are for multistate systems.

3.4.1. System Reliability Bounds

The bounds in this section pertain to hk = P(¢(§) > k). The
first paper to consider multistate reliability bounds was Postelnicu
{1970]. The results from this paper have been slightly modified and are

contained in Theorem 3.18.

Theorem 3.18: Let ui(é) = ¢(Xi,9), and let vi(ﬁ) = O(Xi,l). let

=M Vi
F Lt = B(u(X) > k), and ler F (k) = B(v(X) 2 k). If

é 1is a MSF with independent components, then

(1) P(u (X) > k) < hE(B) < PV(X) 2 k) v i and k

i}

- b ® v v
(11) F = *F 2 L

* ees x F M(nk) < hk(g) CF D% seex F "(ak)

n
(111) AL P ) > 1) <hSP) < T P(v.(X) > k) .
T

Proof:

(1) B (K) = 6(X,,0) < &(X) < (X 1) = v (X) ¥ i.
The result follows immediately.
(11) Summing on 1 and dividing by n in the equation from
part (1) yields

X+ e shp (X) Vv (X)teesty (X)

<O < - :

n

The result follows from properties of convolutions.
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(111) Since max[p (X),...,u (X)] < &(X) < min[v (X),...,v (X)],

P(max( 1 (X),+.0 i ()] > kI < B(B) < P(atn[v/(X), .00,V ()] 3 ).

The result follows from the independence of the Xi' B

Bounds on multistate system reliability were also obtained by Barlow
and Wu [1978], El-Neweihi, Proschan, and Sethuraman [1978), and Hatoyama
(1978]. These bounds and many others are contained in Butler [1982].
The rest of the theorems in this section, except Theorem 3.19, come from
Butler's paper, and any proofs which are omitted may be found therein.
The following definition may also be found in Section 1.l and describes
components which have similar rather than independent behavior. This

might be useful to describe components in a common environment.

Definition: Random variables Xl' eeey Xn are associated if
COV(I(X), A(X)) > 0 ¥ pairs of increasing binary functions
" and A (assuming the covariance exists).

Associated random variables have the following properties. Proofs may
be found in Esary, Proschan, and Walkup [1967] or Barlow and Proschan
[1975a].

(1) Subsets of associated random variables are associated.

(2) Independent random variables are associated.

(3) Increasing functions of associa.ed random variables are

associated.

(4) If X oo Xn are associated random variables, then
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n

P(Xl > xl,...,Xn > xn) > n P(Xi > xi), and
1=1
n

POX, CxppeeenX Cx ) 2 T P(X, Cx )

i=1

Theorem 3.19 (Series - Parallel Bounds): Let ¢ be a MSF for which
min (Xi) < #(X) < m?x (Xi)’ and let Xi, i=1, ..., n be associated.
i L NA) S

Then

1 il
T P(X, >m) < B < P(X; > m) .

i=1 i=1

Proof: Since the Xi are associated, are associated by

Lix om)
i

property (3). Since min (Xi) < o(X) < m?x (Xi),
i

n il
1 <1 < 1 .
j=p Xpm} = {eX)m} = I {X Om)

Taking expectations and using property (4) yields
n
I p(X, >m £ P(Xl >m, ..., Xn > m)

n
= E[ I
i=1

n" < E[ il

L ]
=1 Xpm)

1 ] <
{xom}" =

=1 - P(X1 < m,...,Xn < m)

n
C1- T px, <m= 1l P(X, > m).0
i=1 i=1




Theorem 3.20 (Path-Cut Bounds): Let ¢ be a MSF with associated

components Xl, oy xn. Then

t s
ek, (X) =D <h®< L pp@=1 .
=13 1

Proof: K1(§), e, Kt(l) and pl(z), see, ps(é) are increasing func-
tions of X and thus associated by property (3). Using Theorem 2.3,
the fact that K and A are binary, and property (4) of association
yields

W =p(0 c(X)=1)= (< (X) > 0, ..uy x (X) > 0)

> I P (X)=1 .
j=t

n

= p( L o (X) = 1) = 1~ P(p (X)<0,. .., (X)<0)
i=1 - - s
s 8
¢t=- 1 rp = U re@=-1n .0

i=1 i=1

Corollary 3.21 (Path-cut bounds for independent components): If the

x1 in the preceding theorem are independent, then
t n 5 n
mooex >ab @< U onex >aeb .
=1 1i=1 j=1 =1
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Proof: From independence

u

= - ]
P( pj(ﬁ) = 1) 131 P(X, > my), and
n . n .
= =1- 1 o) = @) .
POy = D = 1= T P(X, < @) IEE P(x, > @) . O

Note that equality does not necessarily hold in Corollary 3.21 as shown

by Example 2.7.

Theorem 3.22 (Max-min bounds): let ¢ be a MSF. Then

max P(p,(X) = 1) < h® < min P(x (X) = 1)
i AT S N e

Proof: From Theorem 2.3, pj(ﬁ) < H{p(X)om} < Ki(i) v i,j.
The result follows by taking expectations, wmaximizing over j, and

minimizing over 1. O

Corollary 3.23 (Max-min bounds for assoclated components): If ¢ is a

MSF and Xl, ey Xn are associated, then

n n
max T P(X, iji) <H <min U p(x

>x;ji) .
3 i=1 j o i=1

i
Lemma 3.24 (Bonferroni Inequalities): The following equations are true
for arbitrary events E eeey E o

1’ n

n
(1) B(EVE)U +=2 VE) < jgl PCES
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rfl nil E
: (11) P(E VE, U ee¢e UE ) > P(E,) - P(E N E)
‘ 12 T S T g PO

Theorem 3.25 (Bonferroni Bounds): Let ¢ be a MSF.
() B I, Pex) = 1)

m 8
CEORNL NP 3 il PPy (X) = 1)

s-1 ¢s
j=1 Xk=j+1 P(pj(_)_() = Dk(}s) = 1),

o t
(1i1) n" > 1 - Zj=1 B(k,(X) = 0).
m t
(v) " <1 - XJ.,_I B(x (X) = 0)
+J57L gt P(x (X) =  (X) = 0)
j=1 Lk=j+1 " T3'2 k= )
Proof: Apply the Bonferroni inequalities to
h™ = P({p (X) = 1} v *ee v o (X) = 1H = 1 - P(&X) < m)

=1 - P (X) = 0} v oo v {k (x) = 0h) .0

Note that the idea in Theorem 3.25 could be extended by adding more

terms in the Bonferroni inequalities, e.g.,

) T3
P(E U «+= UE ) < } P(E ) - P(E, 0E, )
! L = (T rS I L

niz nil %
+ P(E VE UE))
j=1 kej+l f=k+l 3 S
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Corollary 3.26 (Bonferroni bounds for independent components): If ¢

is a MSF and Xl, cen Xn are independent, then

S n :
W wE < ] om o 2 .
j=1 i=1
s n . s~1 8 n R
() W@ > ] 0 P&y>apd - 7 0B, > max (n),m)).
T T 3=1 i=1 j=1 k=j+1 i=1 L
t n
(1if) W@y > 1 - [ B oP(x gﬁg ).
j=1 i=1
t n :
(iv) WP <1 - ¥ o P(X, <))
— — . — 1
j=1 1=l

t-1 t n - -k
+ X X I P(Xi < min (mi, mi)).
j=1 k=j+1 1i=1

Example 3.1: Let o(Xl,X ,X.) be parallel at level 1, 2-out-of-3 at

2’73

level 2, and series at level 3. Let El = (J1,.1,.4,.4),

EQ = (.2,.2,.2,.4), and P, = (.l,.2,.2,.5). Calculations of exact

3

system reliability are shown below.

3
p(ocx) > 1) = 1L px, > 1) = .998
1=1

P(&(X) > 2) = P(X >2, X, >2,0r X >2, X >2,0r

X, >2, X, >2) = .788

2 3
3
P(KX) = )= 1T p = .08 .
1=1
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Table 3.2 contains several upper and lower bounds for this system,

Notice that several of the bounds are exact at level 1 and level 3.

This is reasonable since series and parallel systems are very simple
systems., The best bounds at level 2 are the path-cut lower bound (.761)
and Bonferroni upper bound (.812). Bonferroni bounds may be outside the

unit interval and may not be monotonic in the system level. [

Upper JTheorem| Series—-| Path-| Max-|Bonferroni| Bonferroni [Actual
Bounds at| 3.19C |Parallel Cut | Min [(i)and(ii)|(iii)and(iv) |Value
Level 1 1 .998 .998 .998 2.6 .998 .998
Level 2 1 .976 .867 .88 1.46 .812 .788
Level 3 .08 .82 .08 .4 .08 .26 .08
Lower
Bounds at
Level 1 .998 .576 .998 .9 .35 .998 .998
Level 2 0 .336 .761 .56 452 .74 .788
Level 3 0 .08 .08 .08 .08 -.7 .08

Table 3.2 Bounds

For large systems, exact reliability calculations or even
computation of the bounds in this section may be difficult. By
exploiting modular decomposition, this computational effort can be
greatly decreased. A second benefit of modular decompositions is that
the resulting reliability bounds are at least as good as the bounds
obtained by considering the whole system. The o“vious way to precede is
to establish upper and lower bounds on the reliability of a module at

each level and then use those bounds as if they were the actual

probabilities in the organizing structure.




i

e

Notation: Let ¢ be a MSF composed of independent components with
modular decomposition ¢(X) = ¢(xl(A1), ey xr(Ar))°
t n . S n .
D”(S) = n 4l P(xi > 'iJi) Ei(g) = 1l n P(Xi > 11))
¢ j=1 i=1 j=1 i=1
m - 2 m _ 2
LO(i) 2 max (D°(g)) U¢(3) = min (E¢(g))
m< A<M 0<2m
- 0 M - 0 M
Lyg = (L) «vey Lolq)) Upla) = (Ua),y -eny UW(q))
- ,,0 M
Hy(@) = (hy(B), +eey By(RD)
Hl(g) E Hxl(g) L_’E(i) E Lxl(g_) Ul(&) s le(g)
H, (@) Ly (@ Uy @
T T T

It can be shown that D:(ﬂ) # L:(g) and that E:(g) #U:(g)
in general. Di(&) and Ei(i) are the path-cut lower and upper

bounds at level 1L for independent components. Note that HX’ Lx,

and Ux are matrices with r rows and M+l columns.

Theorem 3.27: Let ¢ be a MSF composed of independent components with
modular decomposition ¢(X) = ¢(xl(A1), eves Xr(Ar))'
Ly (B ()
(1) Hy(@) = H(H,(@)) > H¢(L§(a>>} 2 Ly (L (@) 2 Ly(g)
Ud,(Hx(g))
(11) H (@) = H(H (9)) < 27}« U UL < V(@)
X H,(U (@) X
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Note that the equations in Theorem 3.27 show that the exact system
reliability calculated by using modular decomposition is the same as
that obtained by considering the whole ;ystem. This must be true from
the definition of a module. Also note that the path-cut bounds obtained
by modular decomposition are better than the original path-cut bounds,
LQ(E) and U¢(g). Butler (1982] has an example of the calculations

involved for each of the quantities in Theorem 3.27.

3.4.2. System Utility Bounds

The bounds in Section 3.4,1 were bounds on the probability that
the system meets or exceeds a certain level. A useful facet of
multistate systems is the allowance for partial operation. For example
the system states might be the percent of rated power generated at a
coal plant. In this case there is no minimum level which the system
must meet or exceed, but there are often requirements on the long run

average capacity. Letting states O, 1, ..., 100 be the percent of

100
)

rated power generated, a lower bound on ). _,

kP(&X)=k) 1is
desired. More generally, bounds on Z:—O akP(a(l) = k), where ak

is the utility of state k, would be useful.

Theorem 3.28: Let ¢ be a coherent MSF. Let ak be the utility of
state k with aO = 0, and let bk =a - ak-l for k=1, ..., M.

Let Lk < P(o(X) > k) S_Uk ¥ k. Then,

M M
I bL <ENKX) < ] bu .
o) Kk o] Kk

Proof: Multiplying Lk < P(#(X) > k)

I~

Uk by bk > 0, summing over k,

and using EUCO(X)) = I | b P(&X) > k) ylelds the result. O
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The best way to use Theorem 3.28 is to set Lk = max(L&,.,.,L:)

1
k

and Uk = min(U ,...,UE) where Li and U& are the lower and

upper bounds obtained in Section 3.4.1.

Example 3.2: Consider the system from Example 3.1 with a = k

(or b = 1),

k

EU(#(X)) = .998 + .788 + .08 = 1.866 .

The best upper and lower bounds in Table 3.2 are:

U =L, = .998
U, = .812, L, = .76l
Uy =L,= .08
3 3
k§1 b Ly, = 1.829 and kgl b U, = 1.88 .

Theorem 3.28 becomes 1.829 < 1.866 < 1.88. Both upper and lower bounds

are with 2% of the actual value. [J

It is possible for a multistate system to be non-coherent. For
example, if the state of the system is temperature, there may be a range
of temperature which is acceptable while both high and low temperatures
are unacceptable. In this case system reliability might be defined as
P(&(X) > k) - P(X) > &) where £ - 1 1is the upper temperature limit
and k 18 the lower temperature limit. This could be accomplished by
setting aj =0 for <k or j > 2 and aj =1 for j =%k, k+1,

esey ¥ -~ 1, Theorem 3.29 provides for bounds on non-coherent systems.
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Theorem 3.29: Let ¢ be a MSF, and let L < P(KX) > k) < U ¥ k.

k
+ -
let K = {k:b >0} and K = {k: b <0} where b =a - a_,.

Then
)j+bknk+ I by <EWKX)) < ] bU + I bL .

keK keK ™ kekt kekK™

. +
Proof: For k €K', bkLk S_bk P(&(X) > k) < b U .

kk

For k € K, bL >b P(&(X)>K) >bU .

Summing on k yields the result., 0

Theorem 3.28 is obviously a special case of Theorem 3.29 with K being

the null set for a coherent system.

3.4.3. Bounds from Life Distribution Processes

In this section properties of life distribution processes are
used to determine reliability bounds. In the first part of this
section, it is assumed that the underlying distribution is known to be
IFR, IFRA, DFR, or DFRA and that one parameter of the distribution,
e.g., a moment or a quantile, is known. This kind of analysis is useful
in determining bounds on the reliability of binary components. 1f a
component is known to have an IFR distribution due to wear-out or a DFR
distribution due to burn~in, it may be possible to estimate the mean
component lifetime and then use these bounds. This analysis can also be
applied to the multistate case, but {t may not be as useful because of a
lack of data for a parameter of the distribution Ft(t). The upper
and lower bounds on component reliability can be used to determine upper

and lower bounds on system rel‘ibility. In the second part of this
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section, bounds for mean system lifetime are obtained. If it was known

that hk had an appropriate distribution with a known parameter, then
the bounds from the first part of this section could be directly applied
to system reliability. This is unlikely, however.

Theorems 3.30, 3.31, 3.32, and 3.33 appear in Barlow and Proschan
[1975a] and are intended only as a representative sample of the many

bounds contained in reliability literature.

Theorem 3.30: Let F be IFRA (DFRA) with pth quantile §p, i.e.,

F(Ep = p).

1A
(ad
I~
i

F(t)
<{(>)e for t

v
v

‘ > (L) e for 0

where a = -(1/§P) In(l-p) .

Theorem 3.31: Let F be DFR with mean y.

Theorem 3.32: Let F be IFRA with mean u.

‘ 1 for t <y
F(t) <
l e—Wt for t >y
-wt
where w > 0 satisfies 1 - wy = e .
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Theorem 3.33: Let F be a continuous IFR distribution with rth moment

ut. r> 1,
exp (-t/kl/r) for t < “l/r
r r
F(t) >
( 0 for ¢t > ui/r

where Kr = ur/IKr+1).

1f (Xi(t), t > 0} is an IFR (IFRA, etc.) stochastic process, then
the distribution F:(t) is IFR (IFRA, etc.) for any k. If we know
the appropriate parameter of the distribution F?(r) for any level
k, then the appropriate bound may be applied. The bounds may also be
useful if F?(t) is IFR (IFRA, etc.) for a particular k even though
Xi(t) is not an IFR (IFRA, etc.) stochastic process.

In the binary case it is easy to obtain a bound on system
reliability from the bounds on component reliability. For example if
component ! has an IFR distribution with known mean and component 2
has an IFRA distribution with a known quantile, and the components are
independent, applying Theorems 3.30 and 3.33 yields

-t/xl -at .
h(FI‘FZ) > h(e ,e ) for 0 < t < min ({p,ul) .
To generalize this to multistate systems, a lower bound would have to be
specified for several states of each component. Also, the bounds on
F:(t) and Fi(t) would probably be correlated so that the

calculation of hk might not be straightforward. A way to avoid this
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problem is to use the compunent bounds together with the bounds on

system reliability from Section 3.4.! as illustrated in Example 3.3.

Example 3.3: Consider ¢(X1‘X2) where X1 and XZ are independent
ternary components. Let ¢ be parallel at level 1| and series at level i

2.

$(0,0) = 0 (2,2) = 2

$(0,1) = o(1,0) = ¢(1,1) = ¢(2,0) = 5(0,2) = &(1,2) = ¢(2,1) =1 .

At level 1, the min paths are (0,1) and (1,U), and the only min cut
is (0,90).

At level 2, the only min path is (2,2), and the min cuts are (1,2)

and (2,01).
Applying the max-min bounds for associated components (Corollary 3.23)

yields

2 .
max [ T P(X, > 1) h! <

|~

P(X, >1.) or

2
I
=1 t

tx] .2 i=1 i

J ’

max (P(X,21), B(X,21)) < h'< P(X>0) + P(X,50) ~ P(X,>0)2(X,>0)

. 2 .
P(X, > 231) < h? < min (L P(X; > ZJi)) or

1 j=1;2 i=1

e

i
P(X =2)P(X,=2) < b® < min (R(X=2), P(X,=2)) .

Now assume that xl(t) and Xz(t) are IFR stochastic processes and

that F: has mean u:. From Theorem 3.33,
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k
-t/p

fi(t) > e 1 ofor t< u: .

Using this result and the max-min bounds yields

0 0
st/ -t/ 1 00
max (e , € ) <h (F(t)) for t < min (ul,uz)

1 1
-t/ul -t/ By
e

e S.hz(fﬂt)) for t < min (pi,pé) .

Since F?(t) is IFR, it is also IFRA, and Theorem 3.32 applies to

give

?ﬁ(t) e 1 for t > p: where w? > 0 satisfies

Using these inequalities in the max-min upper bounds yields

0 0 0,
-wlt -w,t —wlt Wzg

hl(Eﬁt)) <e + e -e e for t > max (u?,ug)

2 e ";‘ 11
h“(F(t)) < min (e , e ) for t > max (ul,pz) . 0
The technique in Example 3.3 can be used to combine the bounds in
this section and Section 3.4.1 to derive bounds on system reliability.
The results in Section 3.4.2 could then be applied to get bounds on

expected system utility. There are also some bounds which apply
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directly to mean system lifetime in the binary case. 1In the multistate

case these bounds apply to the mean time that the system spends above a

certain level. The following definition will be useful in this

development,

Definition: Let F and & be continuous distributions, let G be
strictly increasing on its support, and let F(0) = G(0) = 0. F 1is

-1
star~shaped with respect to G, written F i G, if (I/x) G "(F(x)) is

increasing in x > 0. Some properties of this ordering are:
(1) F f G 1is scale invariant but not translation invariant.
(2) Let G(x) =1~ e_kx. Then F i G 1is equivalent to F
being IFRA.
(3) If F i G, then E(x) crosses é(ex) at most once as X
increases from 0 to <« for each 6 > 0. 1f a crossing

occurs, it occurs from above, If F and G have the same

mean, the crossing must occur.

Theorems 3.34, 3.35, and 3.36 apply to binary systems of binary

components and may be found in Barlow and Proschan [1975a].

Theorem 3.34: Let xi(Yi) have distribution Fi(Gi) with mean Bys
and let F_ < G,, i=1, 2, «o., n. Let X,, ..., X be associated,
i« 1 n

let Y cees Yn be associated, and let X1 be independent of

Y, ¥ i,j. Then the mean life of a series system using components with
lifetimes Xl, evey Xn is greater than the mean life of a series system
using components with lifetdmes Yl' ceey Yn while the opposite is true

for a parallel system. More precisely:
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E(min (X ,...,X )) > E(min (Y ,,...,Y )) and
1 n — 1 n

E(max (Xl,...,Xn)) < E(max (Yl,...,Yn)) .

Theorem 3.35 is derived using Theorem 3.34 and property (2) of

star-shaped ordering.

Theorem 3.35: Let us be the mean life of a series system, and let
up be the mean life of a parallel system composed of n assoclated
components, Let the 1th component have an IFRA (DFRA) marginal

distribution with mean ui.

© n -t/ui n .
1) w2 [ T e dt = ( ] 1/w)
s . 1
0 i=1 i=1
® -t/
(i) < Q) [ Do e
p 0 i=1

Theorem 3.36: Let $ be a binary coherent system with min cut sets

Kl’ cees Kt and min path sets Pl' ceny PS. Let component lifetimes

be associated, and let the ith component have an IFRA marginal
distribution with mean My Let T be the system lifetime.
® -t/ CH

max [ J l/:.).i]—1 < ET £ min / 1l e dtr .
3 ier i O ieKj

To apply these results to the multistate case, let X? be the
time that component 1 spends at or above state k, and let the system
be series (parallel) at level k., Assuming that the hypotheses of

and Yk

Theorem 3.34 hold for Xk 1 the mean time spent at or above

i

-81~-




system level k by
k k

a serles system at level k wusing component

lifetimes Xl’ «++s X 1is greater than that obtained by using
Y&, ceos Ym. The opposite is true for a parallel system at level
k.

Theorem 3.35 (Multistate Version): Let u:(pi) be the mean life of
a series (parallel) systew at level k, and let the ith component have

an IFRA (DFRA) marginal distribution at level k with mean p?.

® n -t/u¥

¢}
W W@ [ T e tar=(] wdH
0 i=1 i=1
@ -t/uk
G <o) S i P S
P 0 =1

Theorem 3.36 (Multistate version): Let ¢ be a MSF with minimum cut
structure functions «;, ..., k. at level m and wminimum path
structure functions pl, ey p8 at level m. Let the time that
comporent 1 spends at or above level j be IFRA with mean p{, and
let all such times be associated. Let T" be the time that the system

spends at or above level m, Then

3 J
n _ « -t/ 2
max [ ] 1/M] Y<e < amin A e g
1Kis  i=1 Ki<t 0 =1
j mi = Ei+l
where ki =y and xi N .

By convention “2 = o, 80 l/pg = 0,

SR




Proof: E(time pi(ﬁ(t)) = 1) £ ET" < E(time Kj(gﬂt)) = 1) ¥1,j so

max E (time p,(X(£)) = 1) < ET" < min E(time (X(D) = D
] ]

The result follows from the multistate version of Theorem 3.35 since

E(time p,(X(t)) = 1) = E(time X, > md ¥ 1) > ( X 1/7@) , and
1= 1= T

E(time Kj(E(t) = 1) = E(time Xy > ai for any 1)
= E(time xi 2_51+1 for any 1) < f
0

Theorem 3.36 obviously applies when each component is an independent
IFRA stochastic process. In that case a bound on expected total system
utility can be derived assuming that the system runs without repair for

0 <t <= Multiplying the inequalities in Theorem 3.36 by bm and J

summing on m yields

M n s --t/)\J
):bmax[}:l/k]i]l<}:bET<2bminf_.‘1 dt
=1 ™ i =1 =1 3 0 i=1

Note that the middle term is total expected system utility,

A different idea for applying Theorem 3.36 is contained in Theorem 3.38.

Lemma 3.%1: 1f Xl, cee, Xn are assoclated, then so are Lielcixi

and J d,X, where I and J are any subsets of the indices

jed 33

1, ..., n, and Ci and d are nonnegative constants.

3




Proof:

cov{ | C,X,, J ax.}= 1 I cd

COV(X X1 > 0
1el jeg 337 qer jey 13 J

since the Xi's are associated,

Theorem 3.38: Let transitions between the states of a component be

independent IFRA random variables Tij for 0<j < i< M. Then
) K

¥ k, there exists an IFRA random variable T° such that P(T > t)

ZP(Tk >t) ¥ t.

Proof: Let wk, k=1, ..., R, be the distinct paths which can be ¢
to reach or drop below state k when the state is always larger tha
before the last transition.
wk = T + T + ese + T where k, > k, k < k
M,kl kl’kZ kX'kR+l L A+l =
Tk = min (wk) .
k=1,...,R
Since sums of independent IFRA random variables are IFRA, the wk ar

k

IFRA. From Lemma 3.37, the W  are associated. Thus,

R

P(TC > 1) = P(min WS > £) > T PWE > t)
k k=1
R
S AR R R I
k=1

where ﬁl. cens W are independent random variables with the same

distribution as Wl, ceny Wn. The distribution of fk is the same

aken
n k
e

as




the distribution of a series system of independent IFKA random variables

(ﬁl, oo, ﬁn) and is thus IFRA by the multistate IFRA closure

theorem, (1

The proof of Theorem 3.38 is constructive in that the distribution
of fk may be constructed from
R ruk

P >t) = T P(W >t) .
k=l

From Theorem 3.38, “1.2 E;, SO we can use Ei in place of
ui to obtain the lower bound in Theorem 3.36. A special case of
Theorem 3.38 occurs when a component can be represented by a Markov
process with transition rates Xij' 0<j<1<M, and an absorbing
state 0O, This is important since exponential failure rates are often

assumed, especially when the data is scarce.
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4., BLOCK DIAGRAMS AND FAULT TREES

The main deterministic tools used by reliability engineers are block

diagrams and fault trees. It is assumed that the probability
distribution for the state of each component at a certain point in time
is known and that the problem is to find the probability distribution
for the state of the system. Block diagrams and fault trees are used to
find that distribution. There are many computer codes with block
diagrams or fault rrees as input and system reliability as output in the
binary case, and some work has be n done on algorithms in the ternary
case. In this chapter it is shown that multistate components may be
analyzed using existing binary algorithms. Define new binary variables
xij which are 1 if component i 1is in state j or higher and O
otherwise. Block diagrams and fault trees may be formulated in terms of
these binary variables to calculate the probability that the system is
at a certain level or higher. From these calculations, the expected
system utility can be determined. Unfortunately, the binary variables
are highly correlated since Xij = 1 implies xik =1 for k< j, and
this correlation decreases computational efficiency. This chapter

presents the new formulation, problems associated with it, and a special

case in which computational efficiency may be greatly increased.

Notation:
— ;i
X,, 21 . X, = X
ij {xigg } i =1 ij
M
Kk - I A
¢ (X) = 1(0@ > k) o(X) kz)l ¢ (X) 1
%) =

k
¢ (xll,xlz,....xl’Nl,le,....xz’Nz,....xn'Nn) .




Each ¢k(£) is a binary structure function that depends only on binary
components. Note that E¢k(§) = hk and that the minimum cuts for ok
are the minimum cuts for ¢ at level k.

A disadvantage of this formulation is that there are many more com-

ponents, (Nl+l)°--(Nn+l) as opposed to the original n, Many of the

binary variables may also be irrelevant. If ¢ 1is series at level Kk,

£

then the only relevant components for ¢ are Xlk’ X2k' evey X We

nk’
could, in theory, eliminate these irrelevant components to get M
binary coherent structure functions of n components each, but this may
be more work than solving the original problem. Another disadvantage of
this formulation is that independence among the components is lost.
Even i{f the original multistate components are independent, the binary
components Xij will be associated in general since Xij = | 1implies
xik = } ¥ k < j. The binary structure functions are also assoclated
since ¢3(X) = 1 implies &°(X) = 1 ¥k < j. An advantage of this
formulation is that results which require only that ¢(X) be increasing
in X follow immediately from the results in the binary case. For
example, some reliability bounds for associated components follow from
the corresponding binary results. However, the major advantage of this
formulation is that computer codes for the blnary case can be applied to
the multistate case with adjustments in the model rather than the code.
A block diagram is a system schematic composed of series and

parallel (minimum and maximum) operators. Each block in a block diagram

represents a binary random variable. The output of n blocks in series

;=1x1 while the output of n blocks in parallel is

n
max(Xi) = L. X

is min(xi) = ]

i




Example 4.,1: Consider the block diagram in Figure 4.1. The system will
function if coamponent | functions, component 2 functions, and one ot

components 3, 4, and 5 functions,

M2 = XX

2 max(X3,X4,X5)

Computer codes generally perform these calculations in stages, e.g.,

5
X, = XX, X = 1l=l3 X;, and &(X) = XX, .0

1 2 4 —_———

Figure 4.1 Block Diagram

If the components in a block diagram are independent, the
calculation of system reliability is simple - just replace Xi by
Pi = P(Xi‘= 1) and be sure to use J:=l Pl rather than max(xi). In

Example 4.1, h(P) = PIPZ lg=3 Pi’ If the components are dependent,

then conditional probability expansions are used, e.g.,
h(P) = PECO(X) [X; = 1) + (1-PDECKX X, = 0) .

A block diagram is not limited to systems which have only series and




parallel combinations of components since a system can be represented in

terms of its min paths or min cuts (Theorem 2.3). However, if a
component appears in more than one min cut or min path, conditional
probabilities must be used to correctly compute system reliability. The
output of a block diagram is usually the probability of system success,
but the output can be the probability of system failure if the dual

structure function is used.

Example 4.2: Consider the system shown in Figure 4.2, [f component 1
functions, then the system functions. If not, then one of components 2
and 3 must function, and 2-out-of-3 of components 4, 5, and 6 must
function in order for the system to function. Since components 4, 5,
and 6 appear in more than one place in the block diagram, a conditional
probability expansion must be used to calculate system reliability.

Conditioning on XA'

= 1l - . - -p
h(e) = LL (P (P +P =P P ] © [(BoHP ~P_P )P, + PP (1-¢ )]} .

6

Kl
i

b

Figure 4.2 Success Block Diagram




The dual of this system is shown in Figure 4.3 with the boxes aow
representing component failures rather than component success. Notc
that the dual of a 2-out-of-3 system is a 2-out-of-3 system which can be
represented in the two different ways shown in Figure 4.2 and Figure

4.3. 03

e 1 S 1] S

Figure 4.3 Failure Block Diagram

To performw reliability calculations for multistate systems, design
block diagrams corresponding to ¢k for each system level k, and
caleculate b = E0“(X). Then EUC#(X)) = Z:=1 bkwkq) is the
expected sv '-n utility. 1If the components are independent and if at
most one level of each component appears at most once in the block
diagram, then the reliability calculation may be performed as though the

binary components were independent. Otherwise conditional probability

expansions are necessary.

Example 4.3: Consider a twin engine jet which can land normally if one
engine is at full power and the other engine is at half power. It can

land on a foamed runway if one engine is at full power or if both
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engines are at half power. It will crash if one engine is at half power
and the other engine is inoperable. Let the component state space be
{0 = failed, | = half power, 2 = full power)}, and let the system state

space be {0 = crash, | = land on foamed runway, 2 = land normally},

0(2,2) = &2,1) = &(1,2) = 2
$(0,2) = $(2,0) = §(1,1) = 1
¢(Oyl) = @(lyo) = 0(090) = O
l -

OB = max (X)X X1 %00)

2
¢ LX) = max (X)) Kpge Xpp%p)

1 2
¢ and ¢ are shown in Figure 4.4. Note that both the coamponent
number and the minimum required component state appear inside the blocks

in the block diagram, O

— 2

o L t2,2

ot 2,2 — 1 o8 | o
- I

A Y S YY) o o

Figure 4.4 Multistate Block Diagrams

There are some cases in which the calculations are much easier.
Consider a MSF which is k-out-of-n at each system level m where k
k
is allowed to depend on m. Then, for each level k, ¢ (X)

= 0%(x

lk,XZk....,Xnk). Component states other than k are unimportant
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in determining the value of ¢k. This means that if the original

multistate components were independent, then the binary variables xik
will be independent in each ¢k. No conditional probability expansions

will be necessary since the Xik's are independent for fixed k, and for

every 1, only one X1k appears in the block diagram for ¢k. This

situation occurs in Example 4.4.

Example 4.4: Let o(xl,x X.) be parallel ar level |, 2-cvut-of-3 at

2’73
level 2, and series at level 3, and let Xl’ X2, and X3 be independent.

- L :
¢ (X) = X, $°(X) = 1,3

o il {511 X 522}
3 3
() = T Xy,

i=1

The block diagram for each ¢k is shown in Figure 4.5. Reliability

calculations may be performed using independence for ol and 03, but

conditional probabilities are necessary to correctly calculate

P(o3(X) = ). O
1,1] 1,2 2,2
01 2,1 ¢2: 12— 3,2
3,1 12,2 3,2
63 1,3 23— 3.3}

Figure 4,5 Multistate Block Diagrams




e R R ey mu At n < Ut

An even more specialized case occurs when all of the ok

have
identical block diagrams. In this case a system analysis would require
only a single block diagram with different input probabilities for

different system levels. This would occur for a system which is series,

parallel, or k-out-of-n at all levels. It also occurs in Example 4.5.

Example 4.5: A power plant can generate 0%, 25%, 50%, 75%, or 100%
(corresponding to states 0, 1, 2, 3, and 4) of rated electric capacity
depending on the condition of the turbine and the amount of steam flow
reaching the turbine. Three turbines are available, and the one which
can maximize power output is always used. Components 1, 2, and 3 are
the turbines and component 4 represents the rate of flow at the
turbine. The block diagram for all levels of this system is shown in

Figure 4.6. 0

1,k

3,k

Figure 4.6 Multilevel Block Diagram

Fault trees and event trees are system models consisting of a top
event and a structure delineating the ways in which the top event can
occur. The term fault tree is used when the top event is system failure

while the term event tree is used for system success. The tree
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structure consists of "and gates” and "or gates” which respectively
perform the same function in the fault tree as the series and parallel
operators in the block diagram. The inputs to these gates are generally

component successes or failures.

Example 4.6: The fault tree and event tree for the system in Example
4.2 are shown in Figure 4.7. The squares with numbers inside represent
an occurrence of component failure in the fault tree and component
success in the event tree. The dual of a fault tree is an event tree
and vice versa., It is very easy to draw the dual since the only changes
are that "and gates™ become “or gates” and "or gates” become "and

gates”. [

Fault Tree

Systen Failure’

Event Tree

’System Success

Y

TN

[

J =
DN
Py

.\
Ly o~
H L u.——‘

A A iﬂj L}J-‘—:I] /; 3
R hRa

= "and gate” = Minimum of its binary inputs.

' ]- ‘or gate” = Maximum of its binary inputs.

Pigure 4.7 Fault Tree and Event Tree

-94-




Computer algorithms based on fault trees generally procede by
finding the min cut sets of a system. This is a minimal group of
elements whose failure to function causes the system to fail
to function. In a fault tree the min cut sets for the system are the
minimal sets of basic events which cause the top event to occur, i.e.,
the min path sets in the dual structure. Min cut sets are useful to

reliability engineers since they provide a qualitative measure of the

most important components in the system. The relationship

t
ox)= n I x

=1 Lek i

is then used to determine the value of ¢. 1If the components are

independent and each component appears in at most one min cut set, then

t
E6x) = m 1L
=1 teK

.
Conditional probabilities must be used if a component appears in more
than one min cut set just as in block diagrams. Calculations of system
reliability using fault tree computer codes generally take longer than
the same calculation with a computer code based on block diagrams, but
the output from the fault tree evaluation includes the min cut sets
while the block diagram output does not.

The extension of fault tree analysis to the multistate case is very
similar to the extension of block diagrams. A fault tree or event tree

is constructed for each system level. Basic events are xik for event
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trees and l-xik for fault trees. A binary fault tree code is used to

determine Eok(g) for each system level k, and expected system utility

is calculated from EU(&X)) = 2:-1 bkEQk(E).

Example 4.7: The event trees for the structure function contained in

Example 4.4 are shown in Figure 4.8, [

Z
¢ : Success

[‘QT: Success

|

ot g

1

A

¢3: Success

S
FANANAN

Figure 4.8 Multistate Event Trees

1

e

s

2

The special cases pertaining to multistate block diagrams have

straightforward analogies to fault trees and event trees.

In particular

if the Qk have identical block diagrams, the fault trees or event

trees for each QF are also identical. This is very useful

computationally since the min cut sets need to be found only once.

-96-

i




Example 4.8: The fault tree for the system contained in Example 4.5

shown in Figure 4.9. The min cut sets for J‘ are {(4,k)} and

{(1,k),(2,k),(3,k)}. Thus,

k
o (X) = X, 1-“11 X -

Assuming independent components,

3
k
B0 = p,, 1L by . O
i=1
&k: Failure

T

A
TT
/&i fg

Figure 4.9 Multilevel Fault Tree
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5. THE CONTINUOUS MODEL

In this chapter the state of each component and the system is al-~
lowed to be any real number in the unit interval, The restriction to
the unit interval is used only for discussion purposes, and the results
are valid for any finite segment (possibly different segments for each
component) of the real line. The multistate model can be considered as
a special case of the continuous model by restricting a component with
N + 1 states to values (0, 1l/N, ..., (N={)/N, 1) in the unit
interval. This approach has not been taken since it is felt that the
multistate model will be of more practical importance than the
continuous model. Since any process requiring measurement has a number
of states limited by the precision of the measurement device, there are
no truly continuous processes in reliability engineering. For example,
temperature can be measured only to the nearest degree or fraction of a
degree. In current practice a continuous process is usually broken up
into a finite number of qualitative states, e.g., low, normal, and high
pressure,

All of the results previously presented for the multistate case
have analogues in the continuous case, Coherence means that the struc-
ture function is increasing in the states of its components, that an in-
finitesimal change in any component state may cause an infinitesimal
change in the system state, and that an increasing utility function is
associated with the states of the system. Some concepts such as cut
sets do not seem as relevant since there could be an uncountably

infinite number of them, but the results presented in Chapters 2 and 3
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are still valid. Block diagrams and fault trees can still be used to
determine the probability that the process exceeds a certain level.
Unfortunately, however, they cannot be used to determine expected system
utility unless the utility function is piecewise constant since that

would involve an infinite number of calculations.

5.1. Definitions

The definitions in this chapter are straightforward extensions of
the definitions in Chapter 2. Let Xie[O,l] be the state of the ith
component ([0,1] is the unit interval), and let ¢ : [0,1]n + [0,1] be

the state of the system,

Definition: ¢(§) is a Continuous Structure Function (CSF) if

(1) #0) =0, &1) = 1, and

(2) &X) 1is increasing in X.

Definition: Component 1 1is said to be
(A) Relevant if there exists X such that ¢(1i,§) > O(Oi,x),

(8) Fully Relevant if ¥ 0 (Y < Z < 1, there exists X such

that (2 ,X) > &Y, .X).

Definition: Let ¢X) be a CSF, and let U(H X)) be the
corresponding utility function which assigns utility a(Y) to state Y.
Let a(0) = O.

$(X) 1is called

(A) weakly coherent 1f

(1) every component is relevant, and

(2) a(z) > a(Y) ¥0<Y<Z(I.
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(B) coherent if

(1) every component is fully relevant, and
(2) a(2) > a(Y) v0<Y<CZ<L L,

(C) strongly coherent if

(1) ¥ component 1 and state y, there exists X such that
o(Y,.,X) =y but &2 ,X)#y~¥Z#y,and

(2) a(z2) >a(Y) »0<Y<KZK 1,

Example 5.1: Let a(X) = X. Then ¢(X) 1is coherent if it is any con-

tinuous monotonic mapping from [0,1}n onto [0,1]. For example,

exp(xf X;/z) -1
o(X X)) = e - 1
If Xl > Yl’ then 0(X1,1) > ¢(Y1,1). If X2 > YZ’ then ¢(1,X2) >

o(l,Yz). Thus, both components are fully relevant, and the system is

coherent.[]

To show that a CSF is coherent or strongly coherent could be very
difficult since the entire unit interval must be considered. A situa-

tion such as the one in the previous example must exist.

Definition: A system represented by CSF ¢ 1is called
(1) Series if ¢(X) = min (Xi).
(2) Parallel {f ¢(X) = mgx (Xi).

(3) k-out-of-n 1if 0(5) = max {y : X:=1 1-
y i

The extensions to serie. (parallel, k-out-of-n) at level y are similar.
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_'[.lleorem_S_LL: Llet ¢ be a CSF.

(1) X vY)> &X) v oY) and if ¢ 1s parallel, equality holds.

(i) (X AY) < &X) A &Y) and if ¢ 1is series, equality holds.

Notice that Theorem 5.1 is slightly different than Theorem 2.2, the
multistate version. It is no longer true that &(X v _Y_) = 0(5) v 0(!)

implies that ¢ 1is a parallel structure as shown by Example 5.2.

Example 5.2: Let &(X ,X,) = max (xf,xz).

_ 2 2 ) 2 2
(X v Y) = max (.‘(],XZ,Yl,Yz) = max ()(l v XZ‘ Yl v YZ)
= ¢(X) v &(Y)

However, ¢ 1is not a parallel structure function. O

Definition: Let ¢ be a CSF., X 1is a path vector at level =z if

cb(:‘g) > 2. 1t is a path vector at maximal level =z if ¢(§) =z, If, in

addition, cb(i) <z whenever Y < X, X 1is called a minimum path vector

at maximum level z. Let z = (z

l""'zn) be a vector such that Lf

X >z, then &X) >z and if Y <z, then #(Y) < z. The vector z

will be called a min path. The jth min path at system level =z will be

denoted zj = (le,....zgl). Also,

pj(z(_) = 1{5 Zij} = nli‘sl l{xi > zji} is the jth minimum path

structure function at level z.

1f min cuts are defined as they were for MSFs, they do not exist in
general since there is no X such that (X)) <z and &Y) > z when-

ever Y > X 1if ¢ 1is continuous in one of its components. In the
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following definition, inequalities which occur in the multistate

definition are changed to equalities so that min cuts will always exist.

Definition: Let ¢ be a CSF. X 1is a cut vector at level z if &X) < z.

It is a cut vector at minimal level 2z if ¢(X) = z. 1If, in addition,

¢(X) >z whenever Y > X, X 1s a minimum cut vector at minimal level =z.

let Z = (il,...,in) be a vector such that if X <z, &X) <z
and if Y > z, ¢(Y) > z. The vector z is called a min cut. The

th min cut at system level 2z will be denoted Ej = (;i‘...‘;j).
i y - i 1

Also, « (X} = 1 = =1~ T 1 .
’ = i-1 -
3 X< 2) x; < zJi)

is the jth minimpum cut structure function at level z.

Example 5.3: Let Q(XI.X?) = .5(X1+X2). Then, (Xl.l—xl) i+ - . a

min cut and a min path at system level 1/2 ¥+ 0 < X, < l. Note that

1
there are an uncountably infinite number of min cuts and min paths at an

uncountably infinite number of system levels. There is no vector =z

such that ¢(z) < 1/2 and &Y) > /2 ¥Y > z. _

The change in the definition of min cuts, although necessary for
their existence as shown by Exampie 5.3, may create difficulties with
respect to bounding system reliability. Bounds based on min paths will

be bounds on h% = P(Q(E) > z) while bounds based on min cuts will be

1]}

bounds on EO P(&X) > z). However, if EO is continuous in a

neighborhood of =z, then h? = §¢, and this problem will not exist,

Also, since P(#(X) > z)_s P(&(X) > z), lower bounds based on cuts still

apply.
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Theorem 5.2: Llet ¢ be a CSF.

s
(1) #X) >z <= jlll O =1 .

t
(i1) &X) > z <=3 jlllx(§)= |

3
If the X1 are independent, then P(pj(é) = 1) = n:=1 P(Xi P zi)

- o T 73
and Pk (X) = 0) = R P(X, < 3.

Definition: Let ¢ be a CSF. Its dual, ¢°, is defined by

$P(x) = 1 - 6(1-X).

Theorems 2.4 and 2.5 which state that the dual of a MSF is a MSF

with the same type of coherence and that (¢D)D = ¢ are identical when
CSF replaces MSF. Theorem 5.3 is the continuous analogue of Theorem

2.6.

Theorem 5.3: Let X be a path (cut) vector at level z for a CSF 4.
Then 1 - X 1s a cut (path) vector for ¢D at level | - z. Further-

more, if z 1s a min path (cut) at maximum (minimum) level 2z for ¢4,

then 1 - is a min cut (path) at minimum (maximum) level 1 -z for

B

6.

Proof: 1If X 1is a path vector at level z for ¢, &X) > z. Thus,

OD(l ~X)=1-&X)<1-2z. If z is a min path for ¢, &z) = z

and ¥ Y <z, ¢(Y) < z. Thus,
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OD(L ~z)=1-%z)=1-2 and ¥Y<z,

Q- > 1 -z,

The results in parentheses hold by replacing ¢ with QD and X with

1-x0
Let (C,¢) denote a set of components C and a CSF ¢.

Definition: (A,x) 1is called a module of (C,¢) if A < C and

C
$(X) = ¢(x(§5)t§5 ) where ¢ is a CSF. A modular decomposition

is a set of modules ((xl’Al)”"(xr’Ar)} such that
(X)) = ¢(X1(§§1),...,xr(§ér)) where the sets A, partition C

and ¢ 1is the organizing structure,

Theorem 2.8 - which shows that if the modules and the organizing
structure possess certain types of coherence, then so does the original
MSF - is still valid with CSF replacing MSF, In particular, Example 5.4
shows that if Y and ¢ are both weak coherent, ¢ is not necessarily
weak coherent. The technique used in this example transforms a multi-
state system into a continuous system. This technique can be used to
extend all multistate examples and counter-examples to the continuous

case,

Example 5.4: The counter-example from Theorem 2.8 (iii) is extended to
the continous case. That example contained ternary components and a

ternary system.
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Let state O * states [0,1/3]), 1 + (1/3,2/3}, 2 +» (2/3,1].

X(X X)) = (X X,) =0  for 0<X <2/3,0<X, < 1/3

1

x(xl,xz) = ¢(X1.X2) =1/2 for 0¢X xl <2/3, 1/3 <X

"(xl'xz) = ¢(xl,x2) = 1 for 2/3 < X

<1

~

<1,0<X, <1 .

I

1 2

let ¢(X1.x2.x3) = ¢(X(X1.X2).x3)~

2,X3) so component 2 is not relevant, and

¢ 1is not weakly coherent, [

Then  #(X,.,0,,X3) = o(X,,1

Theorem S.4: The dual of a module is a module in the dual, i.e.,

D D A AC

8’0 = PPt .

Proof:
D, D, A, A D A A, AC
OO XMy = a1 txby )
c ¢
= 1-4(x(1A-xPy 1A x )

= 1-6(1-X) = 0°(X) . O

5.2. Extension of Stochastic Results

Throughout this section, it will be assumed that E¢(y) =
P(4(X) > y) 1s continuous in y. This implies that P(&X) > y) =
P(4(X) > y), and the problem associated with the definition of min cuts
does not exist. This could be generalized to handle random variables
which have both discrete and continuous parts, but it does not seem
worthwhile in a reliability context.

In the continuous case a utility function has a continuous domain,
{a(X),0 < X < 1}, rather than a discrete domain, f{a ,,j=1,...,M}. To

3

get a continuous analogue of b, = a , set a(0) = 0, assume

- a
] ] 3-1
a(X) 1is continuously differentiable, and integrate by parts.
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EU( (X))

1
fo a(Y)dF¢(Y)

a(VIF (D] - g &' (DF (1)dY

a(1) - fé a'(Y)dY + Ié a' (1) [1-F ((¥) ]dY

a(l) - a(l) + jé a’ (DF (V)Y

fb ar(npCox) > vay

Thus, a'(Y) 1is the desired analogue to bj' Proper definition
of a'(Y) at discontinuities of a(Y) would allow this situation to be
slightly generalized, but for applications it seems easier to “"smooth”

a(Y) than to be mathematically precise.

Theorem 5.5:

EUCKX)) = [§ EUCK(Y, ,X)dF (¥)

Proof:
EU(H(X)) = Ié E[UCO(X)) X =Y]dF (¥)

1
= [y ELUCH(Y, X)) F (¥) . O

Theorem 5.6: Llet ¢ be a coherent CSF.
(1) EU(XX v ¥)) > [EUKX))] v [EU(KY))] and if ¢ is a
parallel CSF, equality holds.
(11) EUCKX A ¥)) < [EVCKX))] A [ED(KY))] and if ¢ is a

series CSF, equality holds.
Proof:
(1) P(O(X v Y) > z) - P(&X) > z) v P(KY) > 2)

';{ ){ [ otz ™ Moty va(yye PIFXIRIEF(D) 2.0
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where equality holds if ¢ 1s a parallel CSF from Theorem 5.1. Multi-
plying by a'(Y) > 0 and integrating from O to 1l finishes the proof.

Part (ii) is similar. O

Theorem 5.7: Let X(Y) have distribution gq(q'). If q <q' and ¢

is a weakly coherent CSF, then EU(¢(X)) < EU(HY)).

Proof: Since ¢(X) 1is increasing in X, P(O(X) > z) < P(NY) > z) ¥z,

Multiplying by a'(z) > 0 and integrating yields the result. 0

Definition: The X,Y reliabjlity importance of cowmponent i at level

z 1is
IX'Y (1) 2 P(o(X, ,X) > 2) = P(&(Y,,X) >z) for 0K Y <X <1
h - ¢ i*= 22 =/ 2 o - i i = "°

However, this measure of reliability importance is not as appealing
as the multistate r,s reliability importance since there are an
infirite number of X,Y, and z to choose from. Also, it is not so easy
to change the distribution of some Xi and derive a nice expression for
the change in reliability in terms of Iﬁ’Y(i). There is a stronger
objection tn extending the r,s criticality importance to the
continuous case. The denominator of this measure is (Nl+1) see (Nn+1)
representing the total number of component states. This denominator
will be infinite in the continuous case, There are also problems with
most of the other importance measures since they contain expressions
such as hm((k+l)i,g) - hm(ki,g). It might be possible to consider
derivatives and then integrate over the unit interval, but this does not

seem very useful., However, the multistate extension of reliability
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importance due to Griffith [1980] seems to generalize nicely to the

continuous case.

Theorem 5.8:

1 1 _
EU(&(X)) = J a'(y)P(¢(0i,2(_) > y)dy + J I(i)Fi(z)dz
0 0
where
: d
1) = [ a' ([ Pe(z,X) > y)dy .
0
Proof:
1
P(O(X) > y) = | P(&(z,X) > y)dF (2)

0

L

l 1t d e s
P(0(z,.X) > IF (2], - : (L PCo(z . X) > y) 17, {z)dz

]

1
d .
PCO(1,,X) > y) - (J; [ PC8(z %) > yidz

1
* I [éip(O(zili) 2 y}(l-Fi(z))dZ
0

1
P(OO,X) 2 9) + [ [SP(&z,.X) > p)IF (2)dz .
V]

Multiplying both sides of the above equation by a'(y) and integrating:
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1
EUCO(X)) = [ a'(y)P(&0,,X) > y)dy
0 1

1 1

$aw (£ P(8z,00 > 9 IF (2)dzdy .

The result follows by interchanging the order of integration in the

second term. [

Corollary 5.9: If component 1 1is stochastically improved to a new

distribution F; with f;(z) Z.EI(Z) ¥ z, the change in

expected utility is

BEU(K(X)) = gl I(1) [F4(z) - F(2)]dz .

The definitions of IFRA (IFR, etc.) stochastic processes apply to
the continuous case as written., In fact the IFRA and NBU closure
theorems (closure under formation of coherent systems) from Section
3.4.3 may be found in the literature for the continuous case rather than
the multistate case. The other closure theorems and proofs apply
immediately to the continuous case.

The bounds in Section 3.4.1 are upper and lower bounds on

P(#(X) > k). These bounds apply immediately to the continuous case with
k restricted to the unit interval. In some of the bounds there are
products of min paths or min cuts. Since this number may now be
uncountably infinite, these bounds may be difficult to compute. If this

occurs, other bounds can be used or approximations can be made. The




Bonferroni bounds contain sums of a number of min paths or min cuts.

Depending on the problem, it may be possible to transform these sums
into integrals or to approximate the CSF. Example 5.6 shows how a CSF

might be approximated by a MSF.

Example 5.6: Consider o(xl,xz) = .S(X1 + xz). There are several ways

to approximate this CSF by a MSF. As an example,
L ' =
X: [ 10X, ] X [1ox2 ]

o' (X X)) = ['S(xi + x'z)]

where (x] is the largest integer less than or equal to X. Multistate

techniques can then be applied to ¢. On the other hand, if Xl and X2
are associated random variables with densities f1 and f2, a direct

calculation is possible.

1
P(KX) > 5) = B(X, + X, > 1)

1 1
=[ f £, (x,y)dxdy
0 1-y
1 1
> [ £0f, (y)dxdy
0 l-y

1
[ £,(nF,(1-y)dy . O
0

Bounds on expected system utility can be obtained easily from the

bounds on h% = P(&(X) > z). Let

L(z) < P(&(X) > 2) < V(z) .

-110-




Multiplying by a'(z) > 0 (cohereat systems) and integrating yields
1 1
f a'(z)L(z)dz < EU(&X)) < f a'(z)v(z)dz .
0 0

This equation is the analogue of Theorem 3.28. To get an analogue of

Theorem 3.29, let zt e (z : a'(z) >0} and let z = {z : a'(z) < 0}

Then
[, a'(2)L(z)dz + [_ a'(2)V(z)dz < EU(KX) < [_ a'(z)L(z)dz
YA YA Z
+ j+ a'(z)v(z)dz .
Z

Analogous results for the remainder of the results in Section 3.4 follow

immediately by restricting the component and system states to the unit

interval.
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PART II1

OPTIMAL MAINTENANCE OF MULTISTATE COMPONENTS

The theory presented in the first part of this thesis is mainly de-
terministic, meaning that time is either fixed or is not considered as a
parameter in the reliability calculations and that no optimization is
performed. This part of the thesis is stochastic in that it deals with
selecting the best strategy for the maintenance of a system over an in-
finite time horizon. Determining the optimal maintenance policy for a
system with failure and repair characterisitcs that vary in time could
be a difficult task. Thus, the usual assumptions are that system opera-
tion is a Markov or semi-Markov process and that regeneration points
exist. These assumptions allow Markovian decision processes to be

utilized.




6. INTRODUCTION AND HISTORY

Most of the literature on optimal maintenance of multistate systems
pertains to inspection models in which the state of the component is
discovered at the end of each time period, and a decision must be made
to replace the component or leave it in operation. The objective is to
minimize costs which consist of a constant replacement fee and a penalty
cost if the component enters its worst state. Since the transition laws
are Markovian, the system is analyzed using discrete time Markov deci-
sion processes. The main results are control limit rules which call for
replacement of the component when it reaches or drops below a certain
state (called the control limit). This model and several variations of
it are discussed in Section 6.2 after an introduction to Markov decision
processes in Section 6.1. These models regard state 0 as the best
state, and states 1, 2, ..., M as increasingly degraded. The opposite
convention is used herein so that the notation in Parts I and Il of this
thesis is consistent.

The models in this thesis differ from previous models in that the
components are assumed to be constantly monitored rather than periodi-
cally inspected. Thus, the decision to retain or replace a component
may be made at any time instead of immediately following an inspection.
In Chapter 7 the repair or replacement process occurs with the system
inoperable. 1t is shown that an equivalence exists between the contin-
uous time model and the discrete time models previously considered in
the literature. Thus, the major results are control limit rules. Shock

models are those models in which damage to a component accumulates via a
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Poisson process, and a decision is made after a shock occurs to retain

or replace the component. In Section 7.4 it is shown that an
equivalence exists between shock models and the continuous time model
presented herein, Thus, control limit rules which apply to shock models
also apply to the continuous time model, 1In Chapter 8 it is assumed
that the component or system continues to operate while the repair
process is taking place. The problem is to decide from which states and
to which states the process should be repaired. Theorems, including
control limit rules, are presented to help resolve that issue. Choosing
between repair and replacement of a component with the system inoperable
is the subject of Chapter 9. The component may be repaired, replaced,
or left alone, and it is shown that a type of control limit rule is

optimal.

6.l. Markov Decision Processes

The main ingredients of discrete dynamic programming are a state
space S, a set of actions A, rewards ti(a)' and transition probabili-
ties pij(a). The process begins a period in a state 1 € S, and an
action a € A 1is chosen. A reward ri(a) is received, and the process
jumps to state j to start the next period with probability pij(a)
(where jJ = 1 18 allowed). This series of events is repeated indefi-
nitely. The process is a discrete time Markov decision process (DTMDP)
if the rewards and transition probabilities depend only on the current
state and chosen action. Thus, pij(a) are Markov, 1i.e., pij(a)

= P(Xn+l = l Xn = {, action a 1s chosen) is independent of n and

the past history of the process, 1t is assumed throughout this thesis
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that S and A are finite. Rewards are also finite, and they will
generally be considered costs rather than rewards since the optimization
criterion used herein is minimizing cost rather than maximizing profit.
A policy R 1s a rule for selecting a decision in each state at
each point in time. let C be the set of all policiles., By the Mar-
kovian assumption, it is sufficient to consider the subclass of policies
that depend only on the current state and period., For an infinite hori-
zon problem, the policies will depend only on the current state, 1i.e.,
they will be stationary. It can also be shown (see Derman [1962]) that
it is sufficient to consider the class CD of non-randomized policies,
i.e., policies which assign only one action to each state in each
period. Let {Xn.n=0,l,...} be the sequence of observed states, let
{An.nﬂo.l,...} be the sequence of observed actions, and let

{wn.n=0,1....} be a sequence of random variables such that Wn = ri(a)

if Xn = { and An = a, The problem is to minimize discounted or un-
discounted costs over an infinite time horizon. When discounted costs

are considered, a discount factor a will be used. Expected costs in a

single period when policy R 1is used are

EW = ) ) P(X =1, A = a)r (a) .
RN jes aea B OO n i

The undiscounted costs for a finite horizon N using policy R and 7

starting in state i |is

N N
S(1) =E(CY w)= J ¥ )} P(X=},A=a| X=1)r (a) .
R R e n=0 jeS aeA * " ° 0 "3
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The expected average cost is OR(i) = #im SR(i)/(N+l) when the limit
o

exists. The expected discounted cost for a finite time horizon using

policy R with initial state 1 |is

N
beltia, M) 2 EC ] a™ ),
n=0

and the total expected discounted cost is

¢R(1.a) E éiﬁ ¢R(i,a,N) .

It can be shown that

¢R(i) = tiT (1-a) ¢R(i,a)

when the limit exists. Define

¢(1i,a,N) = min ¢ (i,a,N), $(i,a) T min ¢ (i,a) ,
ReCy) R ReC, R

and

o(1) = min (1) .
ReCD

Continuous time Markov decision processes (CTMDP) are similar to
DTMDP. Upon arriving in state 1 € S, an action a € A 1is chosen, and
a reward ri(a) is earned. The holding time in state i is exponen—
tially distributed with parameter Ai(a), and the process then jumps to
state } with probability Py (a) (pii > 0 1is permitted). The re-

3
wards, holding times, and transition probabilities depend only on the

-116-




current state and chosen action. S and A are assumed to be finite,

and the objective is to minimize cost. In the discounted case, a

B

discount rate B (a=e ") will be used. Let (Y(t),tZQ} be the state

of the process at time ¢t, let Y(t) = Y if T <t<T where T
n n— — nt+l n

is the time of the nth jump, let An be the action chosen in state Yn,

and let Nt = max (":Tnﬁt}’ The total expected discounted cost using

(stationary) policy R with initial state 1 |is

@
= v -BTTI | =
WR(i.B) = ER ( ) e rYn(An) YO i)y .
n=0
The expected average cost is
N
lim 1 \
i) = — Y =1
R F e By nEO o) Yo T Y

when the limit exists.

The Markov decision processes in this thesis are usually derived
from discrete time Markov chains (DTMC) and continuous time Markov
chains (CTMC). Some results and notation from the theory of Markov
chains will be useful. The Markov chains in this thesis will be
irreducible and positive recurrent on a finite state space.

Let {Xn,n=0,l,...} be a DIMC.

Notation:

Pyy ¥ P ™ | X=0) = PO = (X=X =k ene Xg=t)
P = (pij) is the matrix of transition probabilities .
(n) . - (n-1)

1 keS




x, = lim pi;) are called the steady state probabilities.
L ol

%= %, % >0vi, and vomo =1 .

Let {X(t),t>0) be a CTMC.

Notation: xij is the transition rate from state 1 to state j.

Q = (Xij) is the matrix of transition rates with diagonal
elements Xi = - ngs Aij .
Ki. = Ejes kij is the parameter of exponential holding

time in state i .

m(i) = 1/xi. is the mean holding time in state i .

pij = kij/Ki' is the transition probability from state i to
state j .

uij is thc mean time from arrival in state i wuntil the next
arrival is state j, sometimes called a first passage time .

nj = m(j)/ujj are the steady state probabilities .

6.2, Derman's Model and Extensions

The use of discrete dynamic programming to determine optimal
maintenance policies for multistate systems was pioneered by Derman in
the 1960's. Derman [1962] showed that only non-randomized decision
rules need be considered, and in Derman [1963) it was shown that control
limit rules are optimal for certain types of systems. The discussion
herein follows Derman {1970].

Consider a component or system which is inspected at equally spaced

points in time and classified into state 0,1,...,M with state M
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being the best state. At the beginning of each period, an operator may
choose between two actions - to replace (which takes one period) or to
retain the component. The component must be replaced when it reaches
state 0. A control limit rule is a policy which replaces the component
when the observed state is 0, 1, ..., i* and retains the component
when the observed state is i*+1,...,M where state i* is called the

control limit. Replacing the component costs C > 0 units of money and

there is an additional penalty cost K > 0O 1if the component is replaced
from state 0. The states may be considered as the remaining capability
of the component, and a peralty is assessed 1f the component ever
becomes completely inoperative., Markovian transition probabilities pij
are used, It is also assumed that pig) >0 for some n > 1 so that

a component which is not replaced will eventually fail.

In the notation of dynamic programming, the problem becomes

$ = {0,1,...M}, A = {0 = do nothing, 1 = replace},

0 if a=0
ri(a) = C if a=1, 21
l C+K if =1,1=0

‘ pij if a=9
pij(a) = 1 if a=1,3=M
lo if a=1,3¢M

The standard dynamic programming recursion for the discounted cost case
is

M
¢(i,a,N+1) = min (@ ) op, (j,a,N); C + ad(M,a,N)} for i # 0
j=0

1}

| = C+ K + adp(M,a,N) for {1 =0 .
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This is slightly different from Derman's construction since he assumes

that replacement is instantaneous. In that case ¥(M,a,N) 1is replaced
by Z?SO pMj &(j,a,N) 1in the above equation. This might also be use-
ful if the new component could be in any state due tv damage ia fabrica-
tion or shipping.

The main result in Derman [1970] is that if Z¥=O Pij is noain-
creasing in i ¥ k, then a control limit rule is optimal for both the
expected average cost criterion and the total expected discounted cost
criterion. This means that there exist control limit policies R* and
R** such that

R* = arﬁegén [¢R(i,a)] and R** = arﬁegén [OR(i)].
The policies R* and R** may be determined by solving linear pro-
grams, and they will generally be identical for small interest rates.
The restriction that 2?=0 pij be nonincreasing in 1 ¥ k seems
very reasonable since it means that if no replacement occurs and one
component begins a period in a better state than another component, the
first component will, on the average, also begin the next period in a
better state.

There have been several extensions of the basic model. In Kolesar
[1966] a state occupancy cost was added to the model so that cost A,
was charged each time the component was observed in state 1. Derman's

congtruction is a special case of this with A0 = K when replacenment is

the chosen action in state O and Ai = 0 otherwise. A control limit




rule is shown to be optimal under the additional assumption that Ai is

nonincreasing in 1. The costs Ai are not restricted to be nonnega-
tive, and Ui = -A1 may be thought of ac a utility rather than a cost.
The problem is then to maximize utility, and a control limit rule is

optimal when U is nondecreasing in 1i. Thus, the analysis applies to

i
coherent systems.

A generalization of Kolesar's model is contained in Ross [1969].
This model permits a continuous state space which is useful in fanventory
applications. A control limit rule is again shown to be optimal. The
model also applies to the case in which several components may be or-
dered at once. The state of the system is (n,x) where n represents
the unumber of spare components, and x represents the state of the com-
ponent currently in operation., When the system is in state (0,0), any
number of components may be ordered. It is showu that a control limit
rule applied to the component curreatly in operation is optimal.

The basic model has been extended to include more general cost
structures and state transitions. In Kalymon [1972], the replacement
cost is random, and there is a salvage value which depends on the
replaced component's state and on the replacement cost. The total cost
of replacement is then C + r(C) + s(i) where C 1is a random variable
and the salvage value is -(r(C) + s(1)). This leads to the following
recursion.

M
¢(1,a,M1) = min {A, +a yop, (3 ,a,N);
3=0

13

A1 + C+ r(C) + s(1) + ap(M,a,N)} .
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The following monotonicity assumptions are made.

(1) Ai and 8(i) are anonincreasing in 1.

(2) C+ r(C) 1is nondecreasing in C.

M M .
(3) @ Jig pryy [A8(D) = @ L by 1A -s(i)]

> s(itl) - s(i) ¥ 1 <M - 2,

The third condition seems rather strange, and no heuristic reason for
its necessity is provided in the paper., If these monotonicity assump-
tions are added to the assumptions in the basic model, a control limit
rule is optimal for both the discounted and average cost cases.

In Kao [1972] the transitions are semi-Markov rather than Markov.
The holding time in a state can then depend on the current state and the

target state, but only transitions to smaller states are allowed., Al-

though the possibilities of variable replacement cost and variable re-
placement time are discussed, they are held constant, It is also
assumed that the expected cost per occupancy in state i is
nonincreasing in 1. Under these conditions, a control limit rule is
optimal.

In all the aforementioned models, it is assumed that inspections
occur in every time period and that replacement provides a new unit.
Adding inspection scheduling and repair/replacement considerations into
the decision process further complicates the basic model. In Klein
[1962] the decision space is enlarged to allow repair to any state and

scheduling of the next inspection some number of periods later. Costs
of repair, replacement, inspection, and penalty costs for failure are

included in the model. It is shown that the problem may be formulated
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as a linear program, but no discussion of control limit policies or the
form of the optimal solution is included. Another model of this type {is
due to Luss {1976]). 1In this paper it 18 assumed that a control limit
rule is optimal, and an algorithm is presented to find the optimal con-
trol limit. State transitions are governed by a continuous pure death
process., This 1s converted to a discrete model in which opportunities

for inspection occur at regular points in time. State occupancy costs

as well as maintenance, inspection, and penalty costs are included in
the model.

An interesting type of control limit rule is contained in Rosen-
field [1976A). Let Cj be the cost of repair from the jth state (in-
cludes penalty cost), let I be the constant inspection cost, and let
Aj be the state occupancy cost. In each time period, the operator may
choose to inspect the component, replace the component, or do nothing.
The system state is (i,k) which means that the system was in state i

at its last inspection, k periods ago. This leads to the following re-

cursion,
o(1,k,x, 1) = min {inspect; replace; do nothing}
{ pil;)cj + ab(M,0,a,N);
) p(j)j+a¢(i j+1,a,N)} for 1 >0 .
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The following assumptions are made:

(1) cj, A

5 and C

are nonincreasing in j.

374

K . (n)
(2) Zj-o pij is nonincreasing in i ¥ k, and Pio > O for

some n > 1.
(3) P 1is upper triangle, i.e., pij =0¥v j<i.

(4) P {is totally positive of order 2 (TPZ), i.e., pikpjx 2 pixpjk

vi>3, k>1.

If these assumptions hold, Rosenfield shows that a 4-region policy is
optimal. A 4-region policy is one in which for fixed i and increasing
k, it is optimal to first do nothing, then to inspect, then to again do
nothing, and finally to replace; Figure 6.1 is an illustration of this

type of policy.

Replace Number
of
Periods
Do Nothing Since
I Last
Inspec-
r; Inspect r_______.___ tion
1
Do Nothing
T I J |
TrrrerT [
0 State of System at Last Inspection M

Figure 6.1. 4&4-Region Policy

In Rosenfield [1976B] it is shown that if assumptions (1), (2), and a

slightly weaker version of (3) hold, then a type of control limit rule

is optimal. There is a state i*(k) for which it is optimal to replace




1f 1 < 1*(k) and to either inspect or do nothing if 1 > i*(k). With

the weaker assumptions, it is not possible to decide whether to inspect
or to do nothing for 1 > i*(k).

The previous models generally assume that restoration returns the
system to its best state., A model constructed by Eppen [1965] allows
the system to return to any higher state at a cost C(k) where k = new
state - old state, i.e., k 1is the number of states by which the system

is improved. The following assumptions are made:

(1) C(k) =Ck, C> 0, k> 0.

(2) A,, the one period operating cost in state j, is convex and

j!
positive with Al - A0 < -C => some kind of mainte-
nance will occur in state O,
= - d = L'l -1.
(&) Piyg >0, Py q-1 1 Py aN pij 0~3#1, 1-1
Also, p is concave in 1 ¥ 1 > 1.

it

The only optimality criterion considered is minimized discounted cost

for a finite time horizon. The standard recursion becomes:

¢(1,a,0+1) = min {C(J-1) + A_ + a

p, . ¥(j,a,N)} .
i h] j i

o U

e

The optimal policy is similar to a control limit rule, If 1{i < 1§ at
[\

the beginning of the first time period, then the system should be re-

paired to state iﬁ. If 1> 1&, do nothing., It is also shown that

* %* *
11 21! and { > iN.

N1 =




It must be noted that even if a control limit rule is the optimal
way to operate a multistate component, that may not be the best way to

run a gystem composed of multistate components, This is shown In

Example 4 of Denardo [1967].




7. RESTORATION WITH THE SYSTEM INOPERABLE

This chapter pertains to the optimal restoration of constantly
monitored equipment with the system inoperable, In Section 6.2 the
components were periodically inspected which allowed the system to be
treated as a discrete time Markov decision process. In this chapter
assumptions are made which allow the optimal operation of a multistate
system to be treated as a continuous time Markov decision process. A
decision is made in each state to either continue operation or to
perform a restoration activity. It is shown that, when restoration
costs are constant, the restoration process should always return the
system to its best state. Control limit rules are optimal in most
cases.

Section 7.1 extends the discrete inspection model by permitting the
restoration activity to fail. Thus, it may require more than one time
period t» perform the intended restoration, 1If the state occupation
costs are not paid while the system is being restored, a control limit
rule is shown to be optimal. However, i{if the state occupation costs are
paid while the system is being restored, then the restoration epoch must
he shorter than the exponential holding time in any state for a contvol
limit rule to be optimal. 1In Section 7.2 the continuous time model for
constantly monitored components 1s described. Using a known equivalence
between discrete and continuous time Markov decision processes, it is
shown that this problem is equivalent either to the discrete time model
contained in Section 7.1 or, with different assumptions, to the basic

model discussed in Section 6.2. This equivalence establishes the
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optimality of a countrol limit rule in the continuous time case. Some
examples are presented in Section 7.3. The last section of Chapter 7 is
devoted to showing that the continuous time model can be considered as a
special case of a shock model. The shock model has some generality not
contained in the continuous model, and its optimal operation is
described by a control limit rule. However, the shock model does not
incorporate a utility function into its cost structure nor is it obvious
how that would be accomplished. Thus, Section 7.2 is necessary to show

control limit rule optimality for more complicated cost functions.

7.1 Failure to Replace Model

In this section a model similar to the one in Kolesar [1966] is
analyzed. The difference between this model and previous models of this
type is that restoration is allowed to fail, i.e., there is a certain
probability that the attempted system restoration will not be completed
in a single period. This model is interesting by itself, and it will
turn out to be the appropriate generalization when a continuous model is
analyzed using discrete methods. The main result is that a control
limit rule with return state M is optimal when the state occupation
costs are not paid during the restoration process. The return state is
defined as the state in which the process will be immediately following
a successful repair or replacement. An example is given to show that a
control limit rule is not necessarily optimal when state occupation

costs must be paid during restoration.

Note: The words repair, replace, and restore are used interchangeably

throughout Part II of this thesis. An effort has been made to use the
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word restoration when talking in general terms, to use the word repair
when the system is not returned to its best state or continues to
operate during restoration, and to use the word replace when the system
is returned to its best state and is rendered inoperable by
restoration. The words system and component are also used
interchangeably. The results herein apply to any process with state
space {0,1,...,M}, which could be either a single multistate component
or a system. They do not necessarily apply to a system consisting of
multistate components.

Let C > 0 be the cost of replacing a component with a penalty cost
of X > 0 for replacement from state O, and let Ai be the one-period

state occupancy costs in state 1 (Ui = -A is interpreted as the

i
utility in state 1i). Transitions among states are Markovian, and «a

is the discount factor. Replacement must always be attempted from state
0. let p be the probability that a planned replacement succeeds.
It is assumed that if a failure to replace occurs in any period, the
probability that a planned replacement succeeds in the next period is
still ;. This may not be entirely realistic, but it is necessary for
a simple model. First assume rhat state occupancy costs are not paid
during replacement. The standard dynamic programming recursion is:

a
(Ll,a,N+1) = min{A1 + a jzo p1j¢(j,a,N);

C + aPb(M,a,N) + a(l-p)d1,a,N)} for i > 0

= C + K+ apd(M,a,N) + a(l-p)0,a,N) for i = 0. (7.1)
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Equation (7.1) is valid when replacement cost is paid even though the

attempted replacement fails. If replacement cost is paid only when the
replacement is successful, the second term in the aminimization would
become pC + agw(M,a,N) + a(l-5)¢(i,a,N). The analysis will be
identical regardless of what option is selected.

The following assumptions are necessary.

(1) A, 1is nonincreasing in 1.
(2) Lj=g Py; 1is nonincreasing in i ¥ K.
(3) Pip 0 for some n > 1.

From condition (2) it can be shown (see Derman [1970], page 123) that
X?=O pijf(j) is nonincreasing in 1 for every nonincreasing function
f(*). It can also be shown that a random variable with density

P(Xi = j) = pij has an IFR distribution. The third assumption ensures
that replacement will eventually occur; thus, system operation is a
regenerative process. As discussed in Section 6.1, only poiicies which
are deterministic and which do not depend on the past history of the
process (class CD) need be considered. The inductive argument
contained in Theorem 7.1 will often be used to prove theorems concerning

control limit rules and restoration to state M.

Theorem 7.1: If conditions (1), (2), and (3) hold and total discounted

cost is the optimality criterion, then state M is the optimal return

state.

Proof: Since restoration to any state ! ‘. rllowed, Equation (7.1)

becones
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3=0 Pij

c+ aﬁgig[w(l,a,N)] + a(1-p)¢(i,a,N)} for 1 > 0
€

¢(i,a,M1) = min{A, +a ) G(,a,N);

= C+ K+ a'ii;tin[w(l,a,N)] + a(1-p)4(0,a,N) for 1 > 0 .
€S -

¢(i,a,0) = min{Ai,C} is clearly nonincreasing in i, and it will be
shown that is true for every N. Assume inductively that ¢(i,a,n) 1is
nonincreasing in i v n =0, 1, ..., N. Then 2?=0 pij¢(j,a,N) is
nonincreasing in i from assumption (2) and Ai is nonincreasing in i
from assumption (1l). Thus, every term ia the above minimizatio is
nonincreasing in i, so ¢(i,a,N+1) 1is nonincreasing in i. By
induction, ¢(i,a,N) 1is nonincreasing in 1 # N. Then

$(i,a) = éiz ¢(i,a,N) 1is nonincreasing in 1 (see Derman (1970), page
37, for a proof). Thus, the optimal return state is given by

$M,a) = min(¢(R,a)]. O
eS

The proof of Theorem 7.! applies anytime ¢(i,a,N) 1is nonincreasing
in i1 Ffor every N. This will be the case in all the theorems pertain-
ing to control limit rule optimality. To avoid unnecessary repetition,
whenever a theorem states that state !1 is the optimal return state
using the discounted cost criterion, Theorem 7.! will be referenced.

For simplicity, ¢(M,a) will replace ?ig[¢(1,a)] in the proofs .i these
€
theorems. The same remarks apply to Theorem 7.3 when the average cost

criterion is being used in place of the discounted cost criterion,

Lemma 7,7 is a well known Abelian theorem (see Derman [1970], page 144).

-131-




lemma 7.2: Llet (an,n=0,l....} be a sequence of real numbers, and let

e n . .\ 7N . ©
£(X) = [ ax’, 0<Xx<l. I Lin (LN )og 8, = A < =, then

1im(1-X)f(X) = A.
X»>1

Let Wn be the (finite) expected reward earned in period n when
using policy R with initial state i, Then
oo(1) = Lim /(1) I W and e (1,0 = 1T @V . Letting
R Now =0 'n R n=0 n

X=a and a =W in Lemma 7.2, ¢ (i) = lim(l-a)¢_(i,a).
n n R a+] R

Theorem 7.3: If conditions (1), (2), and (3) hold, and expected average
cost is the optimality criterion, then state M 1is the optimal return

state,

Proof: From Theorem 7.1 the policy R(a) which minimizes ¢(i,a) mst
have return state M, Since S and A are finite and only
non-randomized policles need be considered, there are a finite number of
policies. Thus, there must be a policy R* which has return state M
and a sequence of discount factors {an,n=1,2,...} such that l1lim a = 1

hd

and R(al) = R(az) = ese = R* {5 the optimal policy for each a . For

1 ~ i - .
any other policy R and any an, (1 an)dk(l’ah) 2 (1 an)Qk*(i,an)

From Lemma 7.2,

0(1) = Lim(1=a ) 4p(1,a) > Lm(1-a) dp, (1,0) = by, (1).

no o

Thus, R* is optimal. [

Normally, R* will be optimal for all sufficiently small interest

rates as well as being optimal in the average cost case.

|
x
|
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Theorem 7.4: 1f conditions (1), (2), and (3) hold, there is a control

limit policy which minimizes ¢(1i,a).

Proof: From Theorem 7.1, &(i,a) 1is nonincreasing in 1 and can be

written

. M
¢(i,0) = min{A; +a [/, Py;¢(3,0);

C + aPep(M,a) + a(1-p)d(i,a) for 1 >0

= C+ K + app(M,a) + (1-P)¢(0,a) for 1 =0 .

Assume there exists an 1i* > 0 such that replacement is better than
inaction (if not, replacing only in state O 1is trivially a control

limit rule). Then:

M
(i*,a) = C + apy(M,a) + a(1-p)d(1*,a) SALt ajzo Pi*j¢(j,a) .

Solving for ¢(i*,a) yields:
b(i*,a) = [CHaPd(M,a))/[1-a(1-P)] .

Since ¢(i*,a) 1is independent of i*, set ¢(i,a) = ¢(i*,a) » 1 < ix,
Since ¢(i,x) 1s nonincreasing in 1, this must be the optimal policy.
Thus, it is optimal to replace ¥ i £ i* which is a control limit

rule. (1

Theorem 7.5: If conditions (1), (2), and (3) hold, there is a control

limit rule which minimizes &6(i).
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Proof: From Theorem 7.4 there is a control limit policy R(a) which

minimizes ¢(i,a). Since there are a finite number of control limit
policies, there must be a control limit policy R* and a sequence of
discount factors {a ,n=0,l,...} such that lim a@ =1 and
n n»o 0N
R(al) = R(az) = ese = R* g the optimal policy for each an. For any
i ' 1- i, - ) .
other policy R and any a ( an)¢k(1 ah) > (1 an)¢k*(i ah) From

Lemma 7.2,
@R(i) = %ig(l-an)¢h(i'an) 2_%32(1-0h)dh*(i,ﬂh) = ¢R*(i) .
Thus, R* is optimal. O

The preceding theorems have shown that a control limit policy is
optimal when state occupancy costs are not naid during replacement. If

those costs are paid during replacement, the standard recursion becomes

. — . M s .
Wi,a) = mln{Ai + a Zj=0 pijQKJ.d),

C + Ai + apd(M,a) + a(l-pP)i,a)} for i >0

C+K+ A0 + apd(M,a) + a(l-P)K0,a) for i=0 .

If ¢(i*,a) 1is determined as in Theorem 7.4, then

$(i%,@) = [C+A  +aPU(M,0) ]/ [1-a(1-P)] .

This 1is no longer independent of i* because of the Ai* term on the
right hand side, and the analysis used in Theorem 7.4 fails. The
following example shows that a control limit rule may not be optimal in

this case.

~134-




[T

« ————y 4 o S~ = e

Example 7.1: Consider the 4-state DTMC shown in Figure 7.1.

=T Py
O (D)

A\

Figure 7.1, 4-state DTMC

Let:

@ = .5 C=5 K=0, Ay =4 =~ LA

Py =+ P3; = 25, Py = Lp g =1

>
]
—
(=]
>
[}
>
L}
o
©
[}
«

¢¥(3,a) = A3 + ap32¢(2,a) + ap31¢(1,a)

¥2,0) = nin{A) + ad(l,@); C+ A, + ap4(3,0) + a(l-P)K2,a)}

W(l,a) = min{Al + ag(0,a); C+ A + apd(3,a) + a(l-P)l,a))

1
$(0,a@) = C+ Ay + apy(3,0) + a(1-P) K0, a)
$(3,a) = -12.38

$(2,0) = min{-9.37; -10.79} = -10.79 (replace)
$(l,a) = min{l.27; 2.22} = 1,27 (do nothing)

$(0,a) = 2.54.

Thus, it 1s optimal to do nothing in states 1 and 3 and to replace from

states 0 and 2 which is not a control limit rule, [

In Example 7.1 it is the high discount rate (l-a = .5) which
causes the non-optimality of control limit rules. It can be shown, for
a = ,9, that it is optimal to replace in states O0,l, and 2 which is a
control ltimit rule. Thus, there is still hope that a control limit rule
is optimal in the average cost case. Unfortunately, that is not true

either as shown by Example 7.2 in Section 7.3.
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7.2. Equivalence of the Continuous and Discrete Models

The subject of this section is the equivalence between a
continuous time Markov decision process (CTMDP) and a discrete time
Markov decision process (DTMDP). By equivalence it is meant that the

two processes have identical optimal policies and identical minimum

cost. This equivalence is due to Serfozo [1979]. It is useful since it
allows a constantly monitored system to be treated as a periodically
inspected system,

Let X = (S,A,r,p,a) be a DTMDP, and let Y = (S,A, T,A, p,B) be
a CTMDP. The notation presented in Section 6.1 is used throughout this
Chapter., Let vy = i?g xi(a). An equivalence between X and Y is
given by Theorem 7.6,
Theorem 7.6 (Serfozo 1979]): Let Y = (S,A, T,A, ﬁ,B) be a CTMDP

with y < » and countable S and A. Let X = (S,A,r,p,a) be a DTMDP

with
a = yv/(y+8)
{ ;i(a)[6+ki(a)]/(s+y) for discounted rewards
r,(a) =
1 %i(a)ki(a)/y for average rewards
A (a) Sij(a)/y if § 41
Pij(a) = .
1- ki(a)ll- Pii(a)]/y if =1 .,

If Y and X are both controlled by stationary policy R, then

W(1,B) = ¢p(i,a) and V(i) = vép(1).




Remarks:

(1) The requirement that S and A be countable is necessary only

to avold technical details. They are finite for the cases considered
herein.

(2) The condition y <{ » means that the exponential holding time
parameters must be uniformly bounded which is equivalent to saying that
the Markov process is regular. This is trivially satisfied in this
thesis since S 1s finite,

(3) For B = 0 (a=1), the rewards in the discounted case become the
rewards in the average value case. Because of this, only the discounted
rewards will be expressly written when applying Theorem 7.6.

(4) Since both Y and X have the same state and action spaces,
the same policies apply to both., Only stationery policies need be
considered, and there are a finite number of those. Theorem 7.6 says
that if a stationary policy is optimal for one system, then the same
stationary policy is optimal in the other system, Thus, if a CTMDP is
converted to a DTMDP and something is proven regarding the optimal
policy for the DTMDP, then that is also true of the optimal policy for
the CTMDP.

(5) The rewards for the CTMDP in Theorem 7.6 are lump rewards
rather than reward rates. 1If ;(a) are reward rates, the appropriate
DTMDP rewards are ri(a) = Ei(a)/(8+y).

Consider a constantly monitored system with S = {0,1,...,M} and
A = {0 = do nothing, 1 = repair}. Let C > O be the replacement cost

rate with a penalty cost rate K > 0 for replacement from state O, and
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let A1 be the state occupancy cost rate. Let AtM = A be the

replacement rate from all states, Normally replacement takes a
specified time T in which case A = 1/T. This won't affect the
results since they are in terms of expected values. Let xij, j < 1i, be

the transition rates when replacement is not transpiring. Now consider

a DTMDP with § and A as above, and

ALy if j#1i
p,(0) = { H
J 1=\, /Jy if j =1
ie
0 if j# i,M
P (1) = My if j=M
3 1- My if j =i
r(0) = A/ (BHY)
C/ (B+yY) for 1> 0
ri(l) = {
(C+X)/(B+y) for 1 =0 .

The rewards ri(l) were calculated assuming that state occupancy costs
are not collected during replacement. If those costs are collected

during replacement,

c/y + Ai/y for 1> 0
ri(l) =

(C+K)/y+A/y for 1=0 .

It is always true that E?—O pij(l) is nonincreasing in i since
transitions occur only when j = i and j = M, Obviously, one
condition which ensures that E}-O pij(o) is nonincreasing in 1 ¥ k

is 2;_0 Kij nonincreasing in i ¥ k. This is very restrictive,
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however. One of the implications of this condition is that, with

k = M, hlo-l Z;_O Aﬁj' A more natural condition which ensures that

2;30 pij(O) is nonincreasing in 1 ¥ k 18 given in Lemma 7.7.

Lemma 7.7: If A, > j ¥j <1< %, then Xj-O pij(O) is

iy =

nonincreasing in i ¥ k.

Proof: Consider any E;;O pxj(O) and Ek_o pij(o) with 2> i,

If k> {1, then 2 (0) = 1, and the result holds trivially. If

j=0 Pij
k ¢ 1, then

k k
Ti=0 Pyy(® = Jog Ag/T < T Mg/ = Jug 2y (0. O

The following assumptions, which are the continuous equivalents of
the assumptions in Section 7.1, are necessary.

1) Ai is nonincreasing in {.

(2) E;-O xij is nonincreasing in i ¥ k, or

M2 My VISt
(3) A, A ces A

i,il 1,1, tn,O > 0 for some sequence

i ceey in. This assumption simply assures that state 0 will

l,

eventually be reached if no replacement is performed.

Theorem 7.8: If (1), (2), and (3) hold and costs A1 are not paid

during replacement, then a control limit rule with return state M 1is

optimal for both the discounted and average cost criteria,

Proof: 1In the discounted case, the recursfon is
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o(1,a,M1) = min{A /(B+y) + « ] p, . (0)¢(5,a,M);

C/(B+Y) + an¢(M,a,N)/y + a(l-Ny)¢(i,a,N)} for 1 > 0O
= (CHK)/(Bty) + ahd(M,a,N)/y + a(l-NY)¥0,a,N) for i = 0.

With E = Ay, Theorems 7.1, 7.3, 7.4, and 7.5 of Section 7.1 are
applicable. The limiting argument is still valid since the average

rewards are the limit as a + 1 (B+0) of the discounted rewards. 0

Theorem 7.9: If (1), (2), and (3) hold, if costs Ai are paid during
replacement, and if K‘Z Xi. ¥ i, then a control limit rule with
return state M is optimal for both the discounted and average cost

criteria.

Proof: If A > ki- ¥ i, then vy = i?g Xi(a) = A, and py(l) =1

¥ 1, The recursion in the discounted case then becones

1
¢(1,a,M1) = min{A /(B+y) + « )) Pys (O3 a,M);
=0 ¥
C/(B+y) + A/ (Bty) + ad(M,a,N)} for i> 0
= (C+K)/(Bt+y) + AOI(B+Y) + a¢(M,a,N) for i=0.

Since there is no possibility of replacement failure, this recursion has

the same form as the recursion in Kolesar [1966]). The result follows

from Theorem 1 of that paper and Theorem 7.1 of Section 7.1. 0




7.3, Examples

In Theorem 7.9 it was necessary to assume A > ki- ¥1i, {.e.,
the replacement rate is larger than the sum of the failure rates from
any state. This is a reasonable assumption since most components will
be quickly replaced; otherwise, their availability could be very poor.
However, 1if A < Ai‘ for some 1 and state occupancy costs are paid
during replacement, then a control limit rule 1s not necessarily optimal

as shown by Example 7.2.

Example 7.2: Consider the 4-state CTMC shown in Figure 7.2.

Mo
\\‘ / »// . ;
/\\ X /\ .

Figure 7.2. CTMMC

let A32 = .1, A31 = 21 4.5, XZO = .5, KIO = .5,

A=2(r T=.5,C=1.5, K=0, Ay =0, A1=-1,A2=—2,and

9, A

A3 = -2.01. Average expected cost is the optimality criterion. From

the theory of regenerative processes, average expected cost can be

calculated from

E(average cost) = E(cost per cycle)/E(cycle length).

State 3 1is considered as the return state. Replacement may occur from

the following groups of states:

{3,2,1,0}, {2,1,0}, {2,0}, (1,0}, and {O}.
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Calculations are shown below.

(1)

(2)

(3)

(4)

The results appear in Table 7.1.

let

E(cost) = E(cost per cycle), and E(cycle) = E(cycle length).

{3,2,1,0) E(cost)

E(cycle)
{2,1,0} E(cost)

E(cycle)
{2,0} E(cost)

E(cycle)
{1,0} E(cost)

+ a
c A3T 495

T = .5
A A
3 32
C+ + AT
Math o Mpthyy 2
A
31
+—3L AT a=-1.06
Mpthgp 1
T+ 1/ (g = LS
A A
3 32
C+ + AT
Aygthyy T Agpthy) 2
A A
31 I
+ - (5— + A.T) =
Mptryp M O
A
1 31 1
T + + (=)= 3.3
MathL o MM A
S S o A,
Y S T TR T T
A A
21 20
+—l AT +——2
+
Mithe T MMy
A
31
+ 3l AT e -1.045
Xt 1
~142-
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A
1 32 1
)

E(cyele) = T + 5—x— + 5—5— [

32 731 32 731 21 720

= 1,52

A A A
3 32 2
(5) {0} E(cost) = C + +

Motha o At Aty

A
+ 2l _i_)]

Mitrao Mo

A A
31 M1
+—= (=) + AT = -2.53
M32*R31 Mo 0

A
1 32 1
E(cycle) = T + + r
Magthar o Agpthgy Ao thyg

\
3Ly gs

+ Ay tA A

1
32 731 10

Set of States {3,2,1,0} | {2,1,0} | {2,0)}

l

.99 l -.71 ‘ -.73

{1,0} I {0}

E(cost)/E(cycle) -.69 -.72

Table 7.1 Cost Comparison

The minimum expected average cost is achieved by inaction in states 1
and 3 and replacement in states 0 and 2. This is clearly not a
g0 @

control limit rule is optimal. The results of this example are also

control limit rule. It can be shown that, for X > 5 = m?x A

valid for the discounted case with a small discount rate. [
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It may seem unreasonable that the cost of replacing a component is
congtant except for a penalty cost when replacing from state 0. The
component might have a salvage value so that replacement cost Ci is
nonincreasing in 1. Unfortunately, this does not necessarily lead to a

control limit rule as shown in Example 7.3.

Example 7.3: Consider the DTMC shown in Figure 7.3.

(;i:L “EZQAw\‘

33 — o~

v, Y Pao N P Ty

>——————-e{:}—-—————— jo— TR0

\\,}\\\ = N -7
-~ Pun___—

— 2

Figure 7.3 DTMC

Let C3 = C2 = C, and let C1 = C0 =C+ K with C=1 and K = 10.

This might occur if states 1 and 0 were very undesirable. Let

= s ='9 001 "'='! =" ety i
A1 O~i, p 9, p 9 p31 01 5 5, and

33 32 Pay Pag ©

Plo~ l. Compute E(average cost) = E(cost)/E(cycle) as in Example 7.2

with state 3 as the return state, Possible groups of states to

replace from are {3,2,1,0}, {2,1,0}, {2,0}, (1,0}, and {0}. Calcula~

tions are shown below, and the results are contained in Table 7.2.

(1) {3,2,1,0} E(cost) c=1

E(cycle) 1

(2) {2,1,0} E(cost)

C+py K= 1.1

E(cycle) = 1 + Py + Py, = 1.1
(3) (2,0} E(cost) = C+py K= L.l !
E(cycle) = 1 + 2p31 + Py, = La11
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(4) (1,0} E(cost) = C + (P31 + py,)K

E(cycle) = 1 + Py, + 2p32 = 1.19

(5) {0} E(cost) = C + (p31 + p32)K 2

[

E(cycle) 1 + 2p31 + p32(2p20 + 3p21) = 1,245

Set of States ‘ {3,2,1,0}J {2,1,0} 1 {2,0) | (1,0} {0}

|

E(cost)/E(cycle) 1.68 1.6

T T
Table 7.2 Cost Comparison

The only policy which yields an average cost less than one is
inaction in states 1 and 3 and replacement in states 0 and 2.

Thus, a control limit rule is not optimal.

The main reason a control limit rule is not optimal in Example 7.3
i1s that once the system Is in a state in which it will have to pay the
penalty cost, it must be optimal to try and stretch out the cycle
length. Average cost is minimized by allowing the system to operate as
long as possible before replacement, In Example 7.4 the system is
profitable to run. The objective is to maximize utility instead of
minimizing cost. The replacement cost is constant, but the replacement
rate, KiM’ is increasing in i, This might transpire if a repairman
was always at the site to fix the system. Then there would be no
additional cost involved in restoring the system, but there might be

additional time involved for an increasingly degraded system. A control

limit rule is not necessarily optimal in this case either.
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Example 7.4: Consider the 4-state CTMC in Figure 7.4 which is identical

to the system in Example 7.1,

~rwr

N ) v N S N A
()
N / // 7 )

l20.~// »

Figure 7.4 CTMC

Let C= 2, K= 0, Ui = 1 # 1 (linear utility function), x32 = .1,
= . x Ll B e B = e J, )\ = = = N
A31 % 21 > K10 > XZO > 33 k23 ! (T23 b
A= .02 (T _ = ‘ A= .01 (T = .
13 02 ( 15 50), and 03 01 ( 03 100). The optimality

criterion is again expected average value, but this time the objective
is to maximize utility. It is assumed that utility is not collected
during restoration. Possible groups of states to replace from are
{3,2,1,0}, {2,1,0), {2,0), {1,0}, and {0}. Elaverage utility)

= E(util)/E(cycle) where E(util) 2 E(utility per cycle) and

E(cycle) = E(cycle length).

Calculations are shown below, and the regults are in Table 7.3.

(1) {3,2,1,0} ECutil) = - C = -2

E(cycle) = 1/)\33 = ]
(2) {2,1,0} E(util) = UB/(k32+x3l) -C=1
A
1 32
E(cycle) = + T
Rathgr  Rypthyy 23
A
31
+ T 46.1
Ay thy, 13
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(3)

(4)

(5

{2,0} E(util)
E(cycle)
{1,0} E(util)
E(cycle)
{0} E(util) =
E(cycle) =

- + — ) -C= 3.8
Mathar o Aoty A
U SRRt S
Mathy  Agpthy 23
A
31 1
+ +T..)=92.9
Mathyyp A o 03
=x33 +>\>‘3§ (xuix J-c= L2
3278 Mgty Aty
IS SN Y ol M1 .
Moty MRy Ththg  Mthye 13
A A
20 31
+ T..] + T, . = 98.6
Mithae 037 T R¥Ry 13
Uy N Y Yy N M (Ul )]
Mot Mot Mg Mthag Mo
\ U
L TR S
Aot R
1 + )‘32 r 1
+ I+
Mathr Aty At
A
21 1
+ e ()]
Mitrho Mo
A
31,1
4 e (=—) + T,, = 103
WES Wl 03
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Set of States {3,2,1,0} {2,1,0} {2,0} | (1,0} {0}

E(util)/E(cycle) -2 0217 .0409 .0122 .0398

Table 7.3 Cost Comparison

Maximum expected utility is achieved by inaction in states 1 and 3
and replacement in states 0 and 2. Again, a control limit rule is

aot optimal. 0

7.4, Equivalence of the Continuous and Shock Models

Shock models are models in which a random amount of damage occurs at
a random point in time. The times when damage occurs are called shocks.
The damage to the component is cumulative and eventually causes compo-
nent failure. Shock models are of interest in reliability since the
lifetime of a component in such a model is governed by one of the
distributions discussed in Section 1.1. The appropriate life distri-
bution naturally depends upon assumptions about shock interarrival times
and the damage accumulation process. Optimal maintenance policies for
shock models can also be considered. Shock models mimic Derman's model
in that the component can be replaced at a cost C > 0 and a penalty
K > 0 1is levied if failure occurs. They have not been extended to
include state occupation costs or varilable maintenance costs. Since it
is assumed that the state of the system is always known, these models
apply to constantly monitored systems. A control limit rule in this
getting means that the component will be replaced either upon failure or

after accumulating a certain amount of damage.
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The first shock model which will be useful in this thesis 1s Bergman
[1978). Let {X(t), t > 0} be a decreasing stochastic process with
state space {0,1,...,M}). There is also a noﬁincreasing failure rate
function Ww(X(t)) for which P(T > t|X(s), s > 0)
= exp (- fg v(X(8))ds where T {8 the component lifetime. The
failure rate function is the rate at which the process goes from a
positive state to state 0. Bergman shows that if this rate is
nonincreasing in X(t), then a control limit rule is optimal. Another
model of this type is Gottlieb [1982). 1In this paper failure can only
occur when a shock arrives. The probability that a component in state
j will survive the next shock is denoted R(j) and is assumed to be
nonincreasing in j. If the sojourn time (time before the next shock)
in state j 1is nonincreasing in j, then a control limit rule is
optimal, A later paper will show that this result remains valid when
partial repair of the component between shocks is permitted.

A CTMDP can be considered as a special case of a shock model when
shock interarrival times are exponential with parameter ki-' and the

damage distribution is = Ki /ki.. Decisions are made after a

Piy T My

shock occurs. From Bergman [1978], if ij is increasing in j, a
control limit rule is optimal., This result weakens the hypothesis that
X:-O kij be nonincreasing in 1 ¥ k, and it also weakens the

discrete hypothesis that Z;-O pij be nonincreasing in 1 ¥ k.

This change makes sense because the objective is to minimize restoration
cogt, and the only additional cost is incurred when the process is in

state 0., The result from an extension of Gottlieb [1982] is that

control limit rules are still optimal when transition rates A with

1)
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j > 1 are permitted. Unfortunately, the shock models do not
incorporate utility functions nor is it obvious how that would be
accomplished. Thus, Section 7.2 is necessary to establish the
optimality of control limit rules in the CTMDP with state occupancy

costs,
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8. REPAIR DURING SYSTEM OPERATION

The cost and risk associated with system failure makes highly
reliable systems very desirable. One way to achieve high reliability
without sacrificing availability is to allow multistate components or
systems to continue operation during repair. Only one model addressing
this issue has been found in the literature (Smith [1978]). 1t is
assumed throughout this chapter that the failure and repair rates of a
component are constant in time. This assumption allows the use of
continuous time Markov chains in modeling the system.

In Section 8.1 a model identical to the model in Section 7.2, except
that repair occurs during system operation, is considered. It is shown
that a control limit rule is optimal. The remainder of the chapter is
devoted to the following problem. Assume that a component is in state
J and a decision must he made to repair either to state J + I or to
state J + H where H > I. This is similar to determining whether it
is better to repair all at once or in stages when failures may occur
during the repair process., When certain assumptions are valid, it is
optimal to repair to state J + H, the better state. These assumptions
are (1) an increasing utility function, (2) the failure or repair rate
into a state increases as the distance to the current state decreases,
and (3) the repair rate from J to J+ H must be at least as large as
the repair rate from J to J + I. Examples are given to show that it
is not necessarily optimal to repair to the better state when any of
these assumptions fail to hold. Surprisingly, it 1s not necessarily

optimal to repair in stages even if the mean repair time when
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repairing in stages is shorter than the mean repair time when repairing
all at once. However, it may be better to repair in stages even Lf the
mean repair time is longer than when repairing all at once because of

the increased utility associated with higher states,

8.1. Description of the Model

The model considered in this section is identical to the model
considered in the previous chapter except that repair occurs during
system operation., This means that failures may occur during the repair
process. let C > 0O be the repair cost rate with a penalty of X > 0
assessed for repair from state 0, and let Ai be the occupancy cost
rate of state 1i. The failure process is a CTMC with transitions A\ _,

i
j < 1, and repair rate A\ = A ¥ i, 1If the chosen action in state

iM
i i{s to repair, then the transition from state i to state M 1is added
while if the chosen action is inaction, the transition from i to M
does not exist. In this section, it is shown that the optimal policy is
a control limit rule with return state M.
Let S = {0,1,...,M}, let A= {0 = do nothing, | = repair}, and let

Y = sup Ai(a). The rewards and transitions for the equivalent DTMDP are
a
*

calculated according to Theorem 7.6.

LAY for j# i
1j
pyy(0) =
1 - Xi./k for j =1
Kij/y for j # i,M
pij(l) = ¢ Ay for j =M
1 - (ki.+k)/Y for j =1
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r,(0) = A /(B
{C/(B'H) + Ai/(ﬂ+y) for 1> 0

r (1) =

1 (CHO/ (BHy) + A/ (BHy) for 1=0 .

The following assumptions were wade in Section 7.2 and are also

necessary here,

(1 Ai is nonincreasing in 1.

k .
(2) zj=0 Aij is noniacreasing in 1 ¥ k,

or ¥j<ig A

)\ij Z )\lj -

(3) A4 ... A
1 in,O > 0 for some sequence il’ any 1n.

Lemma 8.1: 1If condition (2) holds, then 2320 pyy(0) and

k
i ~
Xj=0 pij(l) are nonincreasing in 1 ¥ k.,

Proof: Let & > i and consider X§=O pij(l) and Z§=0 p!j(l)

for any k. If k = M, both sums are 1. If 1 <k <M, then

; -
p, (1) =1--2> P (1) .
j=0 Y=y M
1f k < i, then
k k A k A k
Loego= 3 Ay 1 e § o,
=0 j=0 j=0 Y j=0
In all cases
i i
P, (1) > p,. (1) .
0 M T g M

The result for E:_O pij(O) follows by setting A= 0. 0
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Theorem 8.2: If conditions (1), (2), and (3) hold, then a control limit

rule with return state M 1is optimal in both the discounted and average

cost cases.

Proof: 1In the discounted case, the standard dynamic programming

recursion is

Ay M c Ay
¢(1,a,N+1) = min L(EI;Y +a jzo pij(0)¢(3,a,N); TR
M
+a Y p. (D, a,N)} for i > 0
j=0 M
(C+K+A0) M
= -—————-——-—( B+Y) + a jzo pOJ(l)d’(j’asN) for i=0

Since Ai is nonincreasing in 1, ¢(i,a,0) is nonincreasing in 1.

Assume inductively that ¢(i,a,N) 1is nonincreasing in i. Then by the
hypotheses and Lemma 8.1, ¢(i,a,N+l1) is nonincreasing in 1i, and

$(i,a) = éﬁg ¢(i,a,N) 1is nonincreasing in i. Theorem 7.1 then applies
to show that state M 1is the optimal return state. The recursion for

¢(i,a) for 1 > 0 is

A

4 i-1 1-x
o(1,0) = min { o= + 25 A6, + o
1=0

e
Y

$(i,a)

A i-1 I-A, -A
C i a ie
+ — A ————
Y o ij¢(j.a) +a Y ¢(1,a)

By T By

+ a<% ¢(M,a)}
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;
|
i
|
!
?
!
t

A i-1
+2 7 Ay 030+ all-h /WL, @)

BRI

N A
ﬁ"’Y) + a ; ¢(M,a) - « 7 4)(1,0)} .

Since ¢(i,a) 1s nonincreasing in 1, if the minimum is obtained by
repair in state 1* > O, then it will also be obtained by repair in all
states k < i*, Thus, a control limit rule is optimal in the discounted

case, The result follows for the average cost case from

$(1) = 1lim (l-a)¢(i,a). [J
a»l

8.2. Theorem on Optimal Repair Policies

This section differs frcm the preceding sections in that no cost
structure is assumed. System operation is modeled by a positive
recurrent CTMC with state space {0,1,...,M}. The system operates
during repair, and the decision of interest is the designation of a
target state for the repaicr process. There is a choice of repairing
from state J to state J+ H or from J to J+ I with I < H.
This may be thought of as repairing a system all at once (J+J+H) or in
stages (J+J+I+J+H). 1t is necessary to assume Ay ji1 < Ay g4y
which seems counterintuitive since a repair process which returns the
system to a higher state would be expected to take longer. Unfor-
tunately, an assumption such as /Ay g4r + M Aysr, g4n 2 1/ A5 J4n,
which says that mean repair time is shorter when repairing in stages
than when repairing all at once, is8 not sufficient., Examples are given

in section 8.3 to {llustrate the problem.
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Lemma 8.3: Assume XA, < A . and )\j‘ <A

Throughout this section, system (1) will refer to repair from J to
J+I while system (2) will refer to repair from J to J+H.

Superscripts (1) and (2) will be used in this capacity, e.g.,

(1) (1)
)‘J.J+I )‘J,J+H

Lemmas 8.3, 8.9, and 8.11 are results from CTMC theory. Their proofs

= 0, K(z) = 0, K(z) > 0.

> 0, 7, J+1 7, J+H

are contained in the Appendix since they are lengthy and do not add to

the results of this section.

¥j < A< 1., Let set

1j = "4 21

A= {k,k+l,...,M}., Then ujA Big ¥ < 1 < k where equality

holds if and only if (i) Kj =X, _¥2=0, ..., j=-1 and

(8%

2 iR

L= i+, ..., k-1, and (ii) KjA = A, . If (i) and (ii1) hold,

ia

then cee = Also, if set B = {0,1,...,k},

Ac
¥k < j <1 where equality holds if and only if

Hia = My+10a T
then p,_ < pu

jB — "iB
(") \jl Bxil ¥ L= k+l, ..., j-1 and 2= i+1, ..., M, and
(11') ij = KiB' If (i') and (ii') hold, then
g T Mg+, T CTT T Bype

Notation: uppjc = E(time from arrival in state or set of states A

until the next arrival in state or ==t of states B, given that

condition C holds).

Theorem 8.4: If A . < A and A { < Kli ¥j < L<1i, then

iy — &3 ]
M M
¥ uil) < ) ﬂiz) ¥k=0,1, ..., M .
{=k 1’k

(The superscripts (1) and (2) refer to systems (1) and (2) as discussed

above).
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Proof: Let set A = {(k,k+l,...,M}, and consider the case J < k.

M
= Zi-k T o= m(A)/uAA. The two systems are identical except for

n

A

transitions from state J. Thus, m(l)(A) = m(z)(A).
Paa = Maaf (nogyFlmod) # [“AJI(J)+“ A P

where (J) = hitting state J before returning to set A, and

(noJ) = not hitting state J before returning to set A. The only

difference between u&) and u(2) is uﬁ;) and
2
p.ﬁA). It will be shown that uﬁA) > '}A) which implies
(1) (2) . 1) (2)
p‘AA 2 AA which implies nA _<_1tA .
Conditioning on the first jump from state J yields r
(1 _ (D gD (1)
(1w, CORR A A O
i<k
(1)
- 1 + >‘J J+1 u.(1) + )‘Ji
1) (1 J+1,A (1)
)\ +>\( +A i<k x +A
J,J+1 J,J+1 1#J+1 Jx T J,J+1
(l)
u1A|(n Nk (o) * Ceispey * ()]
where \_, = ): X
*
Y e,
J+H
Rewriting the equation:
N (1) _ 1y (1) n
Qyathy e’ = 1 2 e1buer,a ¥ A 1§k AP (D)
1#J+1
y P + P, (J
(S P Bial (ody 1700 * My g1y Py )]
i<k
1$J+1
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(. (D) (1 (D ~
Ogathy e 0% = L Jerfera b 1%k kJi[uLAl(noJ)Pi(nOJ)
1#J+1
+ piJ’(J)Pi(J)] (8.1)
where
€y = ) NTEAR
i<k
1#J+1,J+H
(2) Performing a similar calculation for pji) yields
(2) . ,.(2) _ (2)  (2) : r
A P I PO A T SR P B 1%k *31tHia ) (nogy P (0F)
i#J+H
+ piJ‘(I)Pi(J)] (8.2)
Subtracting Equation (8.2) from (8.1):
(n (n _ (1) (n  _ (2) _ (2)
Aty 5o OO N g ra = Py T 0 Mg
(2) (2)
)‘J,J+HV‘J+H,A (8.3)
Now 1y @ .
assume < Bip e This will lead to a contradiction.
With
(1, (2) - )
Wja < By, and A - Cy 1§k A (1mP(D)) > 0
i#J+1,J+H

(since otherwise the process never returns to A), Equation (8.3)

becomes
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(1) ) _ (1) (2) 2) _ ,(2) (2)
LR S LT B FE 4.} FESUNR AR I OIS N U PETL AR
(2) (2) .
From Lemma 8.3, uJ+H,A < uJ+I,A’ s0:
() (1) (D (2) 2 _ (2
XJ.J+I(“JA “J+1,A) > Ay J+n (“JA - “J+1.A) . (8.4)

From Lemma 8.3, both quantities in parentheses in Equation (8.4) are
nonnegative. Conditioning on the first jump from state J+1 in either

system yields:

(1,2)

(1,2) _
Pirl, A T Poel Al (no)Paser (709 F (“J+I,J1(J) R (D
- (1,2
=Dy gt P gD
where
Dy = By Al(non)Prr (™) * By g1 (B
Usin (1,2) i i :
g Myel A in Equation (8.4) yields:
(D) (1) (2) (2) ¢, _ _
”J.J+1[“JA (1-p 5, (1))-D, 1> AJ.J+H[HJA (1B, (1))-0,]

WD @

However, this is impossible since 70+ SN e

the quantities in the brackets are nonnegative, and uﬁi) < uéi)
was assumed, This 1is the desired contradiction.
Now consider the case for which k < J. Let B = {0,l,...,k-1}.

n(l)_s n(z) is equivalent to n(l) > n(z). As before,

A A B B
ﬂB = m(B)/uBB, and the only difference between systems (1) and (2) is
(1) ] ()
Hyg~ and .
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(1) 1y _ (l)(J) + Z P (1)

B W
JB i3k Ji%iB
() (D ¢ LD
4 e ¥ R (b8 ] (nou) PO+ (b 5y py*upp P (D 1}
- 1#J+L I
(1)
A ¥ A gar
where
A, = ) A, o, C, = ) A P ()
J* 1441, Ji A iZk Ji i
J+H i#J+1,J+H
1) (1) (1) (1)
g ¥ Ay Jap ~ OB = 1+ Ay Jug s
y A P.(noJ . (8.
1£J+I
(2) A similar calculation for ujg) yields
(2) (2) (2) (2)
gty 3 05" = 1+ Ay Jan Mpvw s
+ izk J [“131( J)P (noJ) + u, J'(J)p n] . (8.6)
i J+H

Subtracting Equation (8.6) from (8.5) yields:

LD LD D () (2)

(1)
(A juthy 3, 3+ O\ My

,J+1 X) J,J+1 J+I B

(2) (2)
J,J+0"J+H,B

A

(8.7




Now assume ugé) > ggg). This will lead to a contradiction,
(1 (2)

With Kig” > Wig and XJ* - Cy > 0, Equation (8.7) becomes
K.(lgﬂ“fnls) - K\(I{.)J+Iu\(1ii,8 < Kfl??ﬂﬂ“fﬂ? - Kfl?ﬂm“fri&,ﬁ .
From Lemma 8.3, u}i&,B > “§ii,8’ so
X§13+1(“§;)‘ “gi;,s) < K3%3+H(“S§) B “gi},s) ot
K§}3+1(“§i;,3 - “S;)) > Kﬁ?}+ﬂ(“§f;,3 - “gé)) (8.8)

where both quantities in parentheses in Equation (8.8) are nonnegative

by Lemma 8.3. Conditioning on the first jump from state J+1 1in either

system:
(1,2) _ (1,2)
BIbLB = Mrer (aody Paer (O + (hpr g1y Tt By )
B (1,2)
= Dy * gyt TP (D)
where:
Dy = Pyt g) (nod) Tu+r oD+ Bpy g1 Fan Y -
Ustng wulle2) 4 tion 8.8 yields:
sing uJ+1.B n Equa n 8.8 yields:
(1) () 2) @),
My ogertDy 7 gy (IR (D] > A g (D TR O]
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(1) (2)
However, this equation cannot hold since AJ,J+I < AJ,J+H’
1) (2)

the quantities in the brackets are nonnegative, and Bip > Big

was assumed. This contradiction means

(1) (2) 1, ,(2) (1) (2) ‘
R S g O T P AL |

The following corollaries help relate Theorem 8.4 to the optimal

operation of a system.

Corollary 8.5: 1If there is a nondecreasing utility function

corresponding to the states of the CTMC, then under the conditions of

Theorem 8.4, system (2) has higher expected long-run utility.

Proof: Let the utility of state j be aj with a, > a,_,-

J J
M M M M M M
1 1 2 )
z aiﬂi ) = 2 bi( z “g )) < Z bi( 2 “g )) = Z aini )
1=0 =0 =i i=0 " j=1 J i=0
where
b Za, —-a for i > 1 and b = a . U

Corollary 8.6: 1If there is a nondecreasing utility function

corresponding to the states of the CTMC, if the hypotheses of Theorem

8.4 hold, and if KJi = XJX i >J, > J, then it is optimal to

repair to state M,
Proof: In System (2) set H = M-J, and in System (1) set

I=0,1, ..., M=-J-1, From Theorem 8.4,

M M
izk nil) 5‘1Zk niZ) vk,
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and from Corollary 8.5, this is optimal. [

Corollary 8.7: Under the conditions of Theorem 8.4, increasing a repair

M
rate increases Xi=k T v k.
Proof: This is the case I = H in Theorem 8.4, [

It can also be shown that decreasing a failure rate increases
Vo ™
i=k 1"

Corollary 8.8: If Theorem 8.4 describes the steady-state operation of

one component in a coherent MSF, System (2) has higher expected utility

then System (1).

Proof: All min paths at all levels contain the component at a certain

level or higher. Since

M M
) n§1)4§ y n§2) vk,
i=k i=k
hk(g) is larger in System (2) ¥ k., U

. » hypotheses of Theorem 8.4 can be changed to other hypotheses which

were used in the previous section.

lemma 8.9: Assune 7% A is nonincreasing in 1 ¥ £ < i and

e =0 "3
X?=1 kij is nondecreasing in i ¥ 2> 1. Let A = {k,k+l,...,M}.
Then ujA > HiA ¥ j < i< k where equality holds 1if and only if
(1) 2 A ¥y2=90,1, ..., j~1 and

327 Mar, e T Nt Ay

L= 1+1, ..., k-1, and (ii) A

= = ese = . If
1A kj+l,A xiA (1) and
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(i1) hold, p.jA= e By, Also, if B = {0,1,...,k}, then

u’jB < Wip ¥k ¢ j i where equality holds if and only 1if
(i') kj1=7\j+l ' oo = 7\11 ¥ R =k+l, ..., § and 1= i+],

] = = oee = ' ]
eee, M, and (ii') KjB xj+l,B xiB' If (1') and (1i')
hOld, ujB = eoe8 = “iB'

Theorem 8.10: 1If Z;O )‘ij is nonincreasing in i ¥ £ < 1 and

M

L i h
Zj=l Aij is nondecreasing in i ¥ £ > i, then
Mo (1) M () .,
Xi=k L < li=k w o vk 0, 1, ..., M.

Proof: The proof is identical to Theorem 8.4 with Lemma 8.9 replacing

Lemma 8.3. [

In Theorem 8.4 several types of restoration may occur simul taneously

from a single state, In fact it was not necessary to have

(n  _ 2y _
AJ,J+H = 0 and AJ,J+I = 0. The weaker hypotheses
(D () (2) (2) () (2)
LIPS S U PR LA I 76 R N PV R L R I FE UL SR g PO

would have sufficed, but this lengthens the proof. In Theorem 8.12 only
one restoration activity from each state is permitted. The hypotheses

are slightly different from Theorem 8.4, but the result is the same.

Lemma 8.11: Assume Kij < le ¥ j< <1 and &ji > 0 for a single
i >3j for each j. Assume in.i kRm and i <m when j < 2. Let
A= {k,...,M}, Then N S-HjA ¥ j €1 <k where equality holds 1if
and only 1if (1) le = kil ¥ 2=0,l,...,j-1 and 22 = i+l, ..., k-1,
= . I =
and (11) XjA KLA f (1) and (i1) hold, then ;BA uj+l,A
= eee = B, Also, 1f B = {0,1,....k}, then wp > p ¥k <<
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where equality holds if and only if (i') A , = Ai ¥ L= k+l, ..., §-1

f 1207 Ma
f and £ = i+l,.. M, and (i1') ij = Xy U (') and (i1') hold,
then ujB = eee = uiB.
Theorem 8.12: Assume kij < klj ¥3j C1<1i and §ji >0 for a
single 1 > j for each j, Assume xji < me and { <m when j < .
M (1) , oM (2)
Then zisk n < zi=k LR

Proof: Let A = {k,k+l,...,M} and consider the case J < k. As in

Theorem 8.4, the only diftference between Systems (1) and (2) is 7
(1) (2)
It will be shown that Hia 2 Hia which implies

1 2
“zA) 2 “:A) which implies

nil) < nﬁz). Conditioning on

the first jump from state J vyields:

m P B
J L
A & Pat M
x(l)
1 b LI (D)
b N @) J+1,A
MAy e At o
+ 3 Mo (u P, (noJ) + (u e 3y
A malD 1Al (noJ) i 1J)(J3) " Faa Ty

i< J* 0 J,J+1

where KJ and (J) = hitting state J before returning

* = Z1<J AJi
to set A (as in Theorem 8.4).

(M (D (1 (D
g+ 25 31 ™ CSO¥) L4+ A se1Met,a
+ in xuiluiA'(noJ)pi(noJ) + uiJ‘(J)Pi(J)] (8.9)

where Cy = X1<J kJiPi(J).
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(2) A similar calculation for g}i) yields:

Ope + N = O™ 1 A
+ 1§J KJi[uiAI(“OJ)Pi(noJ) + “iJl(J)Pi(J)' . (8.10)
Subtracting Equation (8.9) from (8.10):
Mg + k§13+1 - Cx)“gi)‘ K§f3+1“§ii,A = g t h§?3+u - Ck)“gi)

_ 4 (2) (2)
M JenMaen,a - 81D

Now assume uﬁi) < uéi). This will lead to a contradiction.

Since KJ* - C, > 0, Equation (8.11) becomes

) n _ . (1) (2) 2y _ ,() (2)
AT TS L2 PR T PR L PEURAIRR I FETL2 PR U POV YR

SRR ¢D

From Lemma 8.11, Hr+41,a 2 Mi4m, A S©

(L) (1) (1)

(2) (2) (2)
M1 T Pa,aA ( - (8.12)

) > A JA T Prem,a)

J,J+H

where the quantities in parentheses in Equation (8.12) are nonnegative

by Lemma 8.11, Conditioning on the first jump from state J+H:

(1,2) _ (1,2)
i, a = Pre,a] (od) Paw (0Nt iy g1t M ) Baw D)
= “ﬁi’Z) Prn(d) + Dy

where

A T Hge,a] (nod) Paen (™0 By g1y Pad) -




Using (1,2) in Equation (8.12):

M1+l ,A
(l) (l) (2) (2)
Ay erlPaa (1P g () = Do) > AVt (1R (D)) -

(1) (2)
However, kJ J+I < AJ 3R the quantities in the brackets

are nonnegative, and u}i) < Q}i)

was assumed, so this is the

desired contradiction, and u§i) > p(z).

Now let B = {0,1,...,k-1} and consider the case k < J. As in

Theorem 8.4, the only difference between ngl) and ﬂéz) is
(1) (2)
JB and HJB .
(l) (1) (1) (l)
(1 =m (D + P
)] 15k Pr1 Pis
(1)
- 1 A LJe NSO ) Mt
() (1) J+I,B  k<i<J (1)
Mathy ger Mt Mg ARTALR N 381
1
e, (1))

* [Big) (oayPe(mod) + (g yycgytigg

where A =} A

ax T licy Mot
() (W, |, (D)
Ogatry ger ~ 0P ™ 1 Ay Serfier,s

+ 3 A lw
k<i<d Ji" 1B |(n J) i

where G, = Zk51<J APy

(noJ) + uiJl J)P () (8.13)




e

(2) A similar calculation for System (2) yields:

(2) (2) (2)  (2)

Oge A S - O = L+ A biin,s
+ Y A [p P, (noJ) + u P.(J)] . (8.14)
ki< Ji""1B|(noJd) {1 13](I) 1
Subtracting Equation (8.14) from (8.13):
(1 (1_, () (1) (2) _ (2)
A R R 70 S VL St R TS Lt 0 S S0 PO R SET R PO
(2) (2)
- Ay oseuboen,s (8.15)
N (1, (2)
ow assume Wip > HJB . This will lead to a coantradiction.
Since KJ* - CX > 0, Equation (8.15) becomes:
(1) (1) Q)] (1) (2) (2) _ ,(2) (2)
Ny, J+1%B LI TS L2 YO S SR G Pt Ny, J+nPaed, B
(2) (2)
From Lemma 8.11, “J+I,B < HJ+H,B’ 80
(L) (y _ (1 (2) 2y _ (2)
IR TO LI I N AR ST LA VeSS A P B (8.16)

where both quantities in brackets in Equation (8.16) are nonnegative by

Lemma 8.11. Conditioning on the first jump from state J+I:

(1,2) (1,2)y,

Prel.B = Prer,B] (o) Pa+1 ™00 * (hpy G Yus ()

J+I

. LD

B P (J) + D

J+1 A

where

D @ .

AT P, (nod) Pur (MO * Bppr 51 (yFan
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Using (1,2) in Equation (8.16) yilelds:

bg’
(D (1) (2) (@,
Ay, arPa Ry (1P gy (D)5 > Ay gDy mugy (1R D)
However, this is a contradiction since (l) < A(z) the
’ J J+I = "J,J+H’
quantities in brackets are nonnegative, and uél) > ugg) was
1) (2) ¢)) (2)
assumed. Thus, g < Hyp = 1 > Ry . 0

Theorem 8.13 differs from the preceding theorems in that any repair
from a state smaller than state J+HH must reach J+H before proceding
to any state larger than J+H. This provides a slightly different

; result without assumptions on the failure rates.

Theorem 8.13: Let Kij = 0 whenever 1 < J+H, j > JHH or 1 > J+H,

i<onn Then =) < wP) v > e

Proof: Conditioning on the first jump from state k > J+H:

Mok = Mo (nos+r) PO * Do i Gaany F Faam i BT
(1,2)
The only difference between Systems (1) and (2) is “J+H ke 1t
neY (2)
J will be shown that JJ+H k2 > J4H, K which implies

uﬁi) éZ) which implies N§l) S_ﬂéz).

+
(mod) + Loy 51ty sw sk P

)P

= Bre k| (nod) Fush

Bi+H K

(noJ) + (n N1

= [y 31, 3] (3) TP, o4t

J+H,k | (noJ) e J+d

/[I—PJ+H(J)] . (8.17)




\ (1

and

The only difference between L

(1) (2)
Wy g+n 304 My g

HivH,k

Conditioning on the first jump from state J:
(1) QY] (1) (b
(1) ¢ =m () + ] P "
J,J+H i U1 i,J+H
QY
R XJ,J+I u(l) + Ni
(D0 (D THLI g A
i#J+1
* IB) 14m] (nog) P mod) + (4,
(n _ (n (D (D
By gen = A Gapbper, g T R/OG G
where
cy= 1 ATLPARE
i<J+H
i#J+1
L = X A [p P (noJ) + u.
1<+ Ji'Ti,J+H| (noJ) i i
i#J+1
(2) A similar calculation for u(z) yields:
J,J+H '
(2) 2) _
By, gen = (/g7 =€)
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131 T Hy, 04

P (D]

(8.18)
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Since

KD LAD p D D)

Je J,J+1 4341, Ji — J,JHd AT+, Ji
J+H J+H
and
O INO N

J,J+41% 041,040 2

comparing Equations (8.18) and (8.19) shows that

(N (2)
by Jem > by Temt Then, from Equation (8.17),
¢)) S (2) as required. U

Pr+n,k 2 Yo+, k

8.3. Examples

The first two examples in this section are complementary. Example
8.1 contains a system with mean repair time that is shorter when
repairing all at once than when repairing in stages. However, the

optimal repair strategy is repairing in stages. This means that the

i (1) (2)
assump t ion KJ,J+I < KJ,J+H cannot be replaced by
(2) (1) (2) .
l/’\J'J+H < 1/xJ.J+I + I/AJ+I,J+H‘ In Example 8.2 it

is optimal to repair all at once even though mean repair time when

repairing in stages is shorter than when repairing all at once.

Example 8.1: Consider the 4-state CTMC shown in Figure 8.1.

A

B
— TN N A
D O D
A € A /\\,4\‘ N L
33 B \_\_1_2/ . \\017‘_ -

Figure 8.1. CTMC

kot
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In state 1 there is a choice between repairing all at once: Kl3 > 0,
X., = 0, or repairing in stages: )\13 = 0, }\12 > 0. Let k32 = KZI = A
= .1, = . = , A = 5, A = = .

1 )\10 1 )\01 1 12 13 )\23 2 To find the
steady-state probabilities, the following equations are solved.

(1) )\ﬂ=)\1n+>\n

3 371 232
(2) (7\+k23)n2 = \12"1 + kn3
(3) ()‘10”‘12”‘13) o= )‘Olno + MZ
(4) A% = Mo™
(5) ".+ % + %, + 7, =1

0 1 2 3

Case l: repair in stages, )\13 = 0

'Y 2 2
= + A + AN + A A A _ = 10.5-
M= AR ARG MG A R Mgty T 1032

2 -
b N )\10/)\ = ,0010

2 -
L A )\01/)\ = ,0010
m. = AN A /A= 0474

2 "To1"12

3 AlelZXZB/X = .9506

A
[}

Case 2: repair all at once, )\12 =0

= 2 2
A= A AlO + A )\01 + 2)0\017\13 + A01k13)\23 = 4,42

2 -
LN A )\10/)\ = ,0023

2 3 =
™ o= N )\01/)\ = ,0023
™, = M\Ol)\”/)\ = ,0452

n, = ()\)\01)\13+)\01)\13k23)/>s= .9502

Ei-k n, is larger in case 1 ¥ k 80 it is optimal to repair in

stages. This is true even though expected repair time when repairing

all at once, 1/A . = .5, is shorter than expected repair time when

13
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repairing in stages, 1/A

+ l/)\23 = ,7. The reason for this is that

12
1/7\13 = ,5> 1/)\12 = ,25, s0 the system exits from state 1 more

quickly when repairing in stages. This means that the transition from
state 1 to state 0O will occur less frequently in case 1. The
evample may seem somewhat contrived since AIO = 10%21. However, it is
still optimal to repair in stages with KIO = KZl = K32 =1 when a
linear utility function is used as shown in Table 8.1. Repairing in
stages is not uniformly superior for all nondecreasing utility functions

IO

in this case because

N 3

IN no nl nz n3 U= Li=0 ix,
Case |1 17 .059 .059 .294 |.588 2.41
Case 2 10 .l .l .2 .6 2.3

Table 8.1. Repair Comparison

Example 8,2: Consider the 5-state CTMC shown in Figure 8.2.

?3.‘*:“ “ﬂ‘—"—k 0
Qv / 7

Figure 8.2, CTMC

In state 1 there is a choice between repairing to state 3 or state

4, let XA3 = .1, k32 = 1, K34 = .2, 124 = 1, K23 = .25, kZl =1,
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A, = b Ay = e25, A

be solved to determine the steady--state probabilities.

A, A

1 o1 -

43% T ME™ T AT T A

(2) ()\32+)\3A)n3 = >\13n1 + K23n2 + )\431t

(3) (K“+7\23+K2A)1:2 = A

(4) (K10+)\l

(1) A

4
32™

+)\M)n=k n.+ A,, T

3 1 010 2172

() Xy = Mo™
(6) n0+n1+n2+n3+114=1
Case 1: repair in stages, )\l& =0

M= M oMi MM T Ror MM T rorMiaMa M

+ +
MR R R T M N T T BN A P L P VAL L VAL YRSV

T = MoM MM/t

T Mot MM/

= A /2
%= Aotz

T3 = MorMatat PRt A

= ( A
T = oM MMt R Mt s ) A

Case 2: repair all at once, 0

M=

= + +
A k10)\21)\32}\43 K01A21)\32}\43 KOlkl-"}\Mi( K21+K23+)\24+)\32)

T A M Mg R F R M T Ak, AN
T = Mol MM/

™= MM MM/

T = AorMaMa M/t

T3 = Ao Mataa(hg ity athy ) /A

% = Mo Ma M2 M M M MM e M)

The results of the calculations are shown in Table 8.2.

=174~
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Table 8.2. Steady-state Probabilities

From Table 8.2 Efsk n

1 is larger in Case 2 ¥ k, so repairing all at
once is optimal even though expected repair time when repairing all at

once, 1/A , = 10, is larger than expected repair time when repairing in

14
stages, l/)\13 + l/k3a = 9. The reason for this is that the transition
from state 3 to state 2 may occur when repairing in stages., It can

be shown that uii) = 11 < piz) = 22,6. 0

The next example is a system for which it is optimal to repair from

state J to state J+H and from state J+l1 to state J+I even though

I < H,

Example 8.3: Consider the 4-state CTMC shown in Figure 8.3.

Figure 8.3.
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In state 1 there is a choice between repairing all at once: A, > 0,

13
k12 = 0, or repairing in stages: k13 = 0, k12 > 0. Let A32 = AZl = A
= .1, XIO = 1, X03 = 1, k23 = 2, Klz = 4, and le = 2. The following

equations are solved to determine the steady-state probabilities.

(1) Au3 = x03“b + Kl3nl + x23n2

(2) (k+\23)n2 = klZ“l + Xu3

3 (K10+k12+)\l3)1t1 = AT

(&) X3% = Mo%

(5) LA + 2 + nz + Ty = 1

2

Case 1: repair in stages, l13 = 0
2

M2 MR M Rg3 T 2MGR o MRy Aggh gl g+ Rgah N,
my = SOWVAS
" = A4/
= (Agah o+ nmxw)/i
3 (Mogadg * Roadohos + Roahyphyy) /A
Case 2: repair all at once, klZ =0
R o= afag By 2Mg3hig + 2MG3h 3+ AgghioNg + Roghy i,
To = "2"10/7‘
n = x2>\03/7\
my = (Mgghig * Mgahy /A
T3 = (Mo3hy gt Mg3h 3t 3h o2 3t 3R 3 ) /A

The results of the calculations are shown in Table 8.3.
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Case 1 10.62 | .00l 001 .047 .951

Case 2 6.62 | .0015| .0015] .0755{ .9215

Table 8.3. Steady-state Probabilities

From Table 8.3, Zfsk n, 1is larger in Case 1 ¥k, so it is optimal

to repair in stages. This is true even though expected repair time when
repairing all at oace, I/K13 = .5, is less than expected repair time
when repairing in stages, l/)\12 + I/A23 = ,75. The reason for this is
that 1/A13 = .5 >71/k12 = .25, so the system exists from state 1 more
quickly when repairing in stages, and the transition from state 1 to
state 0 will not occur as frequently. Note, however, this example
does not satisfy the hypotheses of Theorem 8.4 since ko3 > k13 when

repairing in stages. [

The result of Example 8.3 18 that it is optimal to repair from state
0 to state 3 and from state 1 to state 2, even though it is
possible to repair from state 1 to state 3, A simple replacement
model is considered in Example 8.4, and it i{s shown that an increase in

a failure rate could actually increase expected system utility,

Example 8.4: Consider the CTMC shown in Figure 8.4.

6{%4@.__&‘_1_@ e oo (1 M .
= __ v =

Figure 8.4. CTMC




The system modeled by the CTMC shown in Figure 8.4 is a system which is
run until complete failure and then replaced. By a standard renewal

= - M
arguement with )\0 S (I/Xk)/}:i=0(l/)si). If )‘1 increases, w

i
M
decreases, and N increases ¥ k # i. Consider stk nj
=1~ k=1 w If A, increases, then ZM n. increases for
3=0 7y i ' 3=k "
k > i but decreases for k < i (since X;—(l) 'uj increases).
Assume the usual nondecreasing utility function. If )“ increases,
then X;Lk nj decreases ¥ k > 1, and the expected utility of the :

system decreases. If )\O = u increases, then 2;1_1( nj increases
¥ k > 1, and the expected system utility increases, However, a change
in any other )‘i may increase or decrease expected system utility
depending upon the utility function and the other transition rates. U




9. REPAIR VS. REPLACEMENT

A discrete time model is considered in this chapter. In each state
the operator has a choice to repair the multistate component, replace
the component, or do nothing. It is shown that the optimal policy is to
either repair or do nothing until the component reaches a certain state,
and to replace whenever the comp.nent drops below that state. This is a
type of control limit rvle., The control limit may be O in which case
it is optimal to never replace. It was hoped that a 4-region policy - a
policy for which the optimal actions are inaction, repair, inaction, and
replacement as the system state decreases - would be optimal as it is in
a similar model. However, an example is presented in which a 5-region
policy is optimal, and it is conjectured that no limit on the number of

possible regions exists.

9.1. Control Limit Rule Optimality

Consider a general discrete model in which the operator has a
choice of inaction or returning the system to any state, This model
differs from previous ones in that a decision must be made not only
whether to restore the system, but also how much to restore the system.
Replacement returns the system to its best state while repair improves
the system but does not necessarily return it to its best state. Let
A be the l-period operating cost in state i, let C be the constant

i

l1-period cost of replacement, and let C be the l-period cost of

1)
repair from state 1 to state j (j > i). The following assumptions

are made relative to the cost structure.




(1) Ai is nonincreasing in 1.

2) C1 itk is nondecreasing in k and nonincreasing in 1i.

The second assumption means that it costs more to do more total repair

(C nondecreasing in k), and it costs more to do the same amount

i,1+k
of repair starting in a worse state (C1 i+k nonincreasing in 1i). It
»
is also expected that Ci,i+l < C for some 1 and Cio > C for

some 1 8o that there is a nontrivial choice between repair and

replacement. If Ci i+1 > C ¥ i, replacement is always better than

repair., If Ci £ C v 1i, repair is always better than replacement.

0

As in previous chapters, is the l-period transition probability

from state i to state j given that no restoration takes place during
the period. The usual assumptions pertaining to transition probabilities

are made, namely

k
3) Zj=0 Py is nonincreasing in i ¥ k.
(4) pig) > 0 for some k.

Assume that state occupancy costs are not paid during restoration and
that doing nothing is not a possible action in state 0. Optimal system
operation in the discounted case is described by the following recur-
sion.

M
¢(1,a,M1) = min (Ai +a § pi.‘b(j,a,N) ; C+ ad(M,a,N) ;
=0

Ci,i+l + ad(i+l,a,N) ; oee ; CiM + ai(M,a,N)} for i>0

= min {C + ad(M,a,N) ; + ad(l,a,N) ;

o1

cee COM + a¢{M,a,N)} for 1 =0 . 9.1)
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Theorem 9.1 shows that a special type of control limit rule is optimal

for this system.

Theorem 9.1. If assumptions (1)-(4) hold, then there exists an i* for
which it is optimal to replace whenever 1 < i*, and to either repair or
do nothing whenever 1 > i* for both the discounted and average cost

optimality criteria.

Proof: Since Ai and Ci f1+k are nonincreasing in i, it is clear that

¢(i,a,0) 1is nonincreasing in i from Equation 9.1. Assume, inductive-

ly, that ¢(i,a,N) is nonincreasing in 1. Then, since

E?=O pijd(i,a,N) is nonincreasing in i by assumption (3), d&(i,a,N)

is nonincreasing in i ¥ N, Thus, i,a) = ;E: (L, a,N) is

nonincreasing in 1i.

M
$(i,a) = win {A, + a } p, Wi,a) ; C + ay(M,a) ;
170 5P
cee Cj_M + (Z(JI(M,G,N)} for 1> 0

= min {C + ag({M,a) ; ** ; + ap(M,a)} for i =20

Com

Note that, in the above recursion, C + ad{M,a) 1is constant in i
while all other terms are nonincreasing in 1i. Thus, 1if

y(i,a) = C + af{M,a) for some i = i*, then (i,a) = C + ad¢{M,a)
¥1<ix, If C+ a¢{M,a) never minimizes ¢(i,a), set i* = -],
This completes the proof in the discounted case. In the average cost

case, take §(1) = 11? (1-a)(1,a), and apply the usual limiting
a>

argument.[)
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The ideas contained in Chapter 7 can be used to extend this result

as shown by the following corollaries.

Corollary 9.2.: If costs Ai are paid during repair and replacement,

the control rule described in Theorem 9.1 is still optimal.
Proof: The recursion for i > 0 becomes

M
$(i,a,N+1) = A, + min {a ] pij¢(j,a,N) ; C + ai{M,a,N) ;
j=0

eee CiM + a¢(M,a,N)}

Since the minimization term is Equation (9.1) with Ai =0+~ i, the

result follows from Theorem 9.1.0

Corollary 9.3: Let Ek be the probability that repair C . . = suc-
ceeds, and let p be the probability that replacement succeeds. If
costs Ai are not paid during replacement, then the control limit rule

described in Theorem 9.1 is still optimal for both ¢(i,a) and &(i).
Proof: The standard recursion becomes:

M
W(i,a,N+1) = win (A +a [ p 4(i,a,N) ; C+ opw(M,a,N)
j=0 M

+ a(l-p)¢(i,a,N) ; C1,1+1 + apl¢(1+l,a.N)

+ a(l-p DU, @,N) 5 *oe 5 Cpp + ap, WM, a,N)

+ a(l-p,_ ) 4(1,a,N)) i>0
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= min {C + ap &(M,a,N) + a(l-p)d(0,a,N) ;

"‘; COM + ®M+l¢(M’a’N) + a(l'PMI)‘b(O’a.N)) 1 = O.

As in Theorem 9.1, everything is nonincreasing in i so, ¢(i,a) is
nonincreasing in 1i. As in Theorem 7.4, if the replacement action is
optimal for state 1i*, ¢(i*,a) = {C + aE¢(M,a,N)]/[l-a(l-5)]. Since
¢(i,a) 1is nonincreasing in 1 and d¢(i*,a) is independent of i,
G(i,a) = P(i*,a) ~ 1 £ i*, 1If replacement is never optimal, set i* =
~l. The usual limiting argument yields the result for ¢(i). If
restoration costs are not paid when restoration fails, replace C by

PC  and replace Ciy by ;j—icij’ and the analysis is unchanged. (]

With C © ¥ i .k, the model in this section is the same as

1,14k
those in Chapter 7. Thus, from Example 7.2, a control limit rule is not

necessarily optimal in the failure to replace case when state occupancy

cost A1 are pald during replacement,

The repair/replace model can also be extended to the continuous
case. The problem is considered as a CTMDP. Costs C’Cij’ and A1 be~
come cost rates. It is assumed that the system does not operate during
restoration and that state occupancy costs are not paid during restora-
tion. The action set is {0 = do nothing, | = replace, 2 = repair i »

{+1, *ee+ M-{+] = repair { » M}, Transitions from state 1 to state ]

occur at rate (j < 1) when no restoration occurs, The replacement

xij
rate s A\, and the repalr rate from state 1 to state j 1is ki (3> 1.

J

Some kind of restoration must be performed in state O, Let¢

sup

Y= {a 1(a). The rewards and transition probabilities for an
1]

equivalent DIMDP are as follows (from Theorem 7.6).




ri(O) = Ai/(ﬁ+Y)
ti(l) = C/(B+y)
= 1 1
ri(j) Ci,i+j-1/(B+Y) for j >
X . i
‘ xij/y for j <
pij(o) = l - Ki_/Y for j = 1
0 for j§ > 1
s My for j =M
pij(l) = l 1 = My for j =1
0 for j # i,M
s ki,i+k—1/Y for j = i+l;k > 1
pij(k) = l 1 - Ki,i+k—1/Y for j =1k > 1
0 for j # i,i+l;k > 1

Corollary 9.4: Let assumptions (1) and (2) remain valid, and let as-

sumptions (3) and (4) be replaced by

k .
L R. K <
(3") Kij-z le ¥j<iK or 2j=0 13 is nonincreasing in
ivk,

(4') A A see Ki 0 > 0 for some sequence
n’

Then the control limit rule described in Theorem 9.1 is optimal in both

the discounted and average cost cases.

Proof: The recursion for the DTMDP with {1 > Q0 1is
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M
$(1,a,81) = min {a /(B+Y) + a 3 P (004G, a,N) 5 C/(B+y)
j=0

+ ahd(M,a,N)/y + a(l-N/Y)Wi,a,N) ; C1,1+1/(ﬁ+”

$(i+l,a,N)/y + a(l-A /)i, aN) ;

LTI 1,141

see Cm/(ﬁ"‘Y) + aKmMM,a,N)/Y
+ a(l—KiM/Y)¢(i,a‘N)}

From Lemma 7.7, Z?’O pij(0)¢(j,a,N) is nonincreasing in 1, and as-

sumption (4') means that pgg)(O) > 0 for some k. Thus, with

P = Xi,i+k/Y and p = Ay, this recursion is the same as that in

Corollary 9.3.0
9.2. Examples

The control limit rule in Section 9.1 differentiates only between
replacement and the other alternatives. It would be nice to show that
there is a region of the state soace for which repair is optimal and a
region for which inaction is optimal. In state M it must be correct
to do noching since otherwise the system would be in a constant state of
repair. From the previous section, it is optimal to replace in states
0,l,...,i*, Thus, in states {*+},.,.,.,M-1, the optimal action will al-
ternate between repair and inaction. A "nice” policy is one in which
the optimal action alternates infrequently such as the 3-region and 4-

region policies shown in Figure 9.1.
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States 0,.0.,1i* i*+1,...,i'-1 i',...,M
Optimal Action for Replace Repair Inaction
3-Region Policy

— - -
Optimal Action for Replace Inaction for ;ﬁio Inaction
4-Region Policy Repair for i>i

i* < 10 < i-1

Figure 9.1.

3-Region and 4-Region Policies

Example 9.1 is a 4-region policy.

Policies of this type were found

to be optimal in Rosenfield [{1976A] when the possible actions were re-

placenent, inspection, and inaction.

Unfortunately, as shown in Example

9.2, a 4-region policy is not necessarily optimal for the repair/replace

model.

Since Example 9.2 contains a linear utility function, a totally

positive transition matrix, and repair only from state

i

to state

i+,

it is difficult to think of hypotheses which would make a 4-region poli-

cy optimal.

for any n-region policy where n

Example 9.1:

P3j
P32
\\‘

is a

P
P21 .
///>

P3p

Figure 9.2.

finite number.
20
1 )—

|
/
’
\

DTMC
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It is hypothesized that a counter-example can be devised

Congider the 4-state DIMC shown in Figure 9.2.

~ o we
L)——=




Repair is restricted to repalr from state 1 to state 1+ 1. Let

A3 = -3, A,=A = -2, A =0,C=6,C 4 v i, .8

2 = M 0 P33 = % Pyy =
.1, Pyy = .1, p21 = .1, p20 = .9, plO = 1, and a = .9. The recursions

1,141

in the discounted case are shown below.

$(3,a) = Ay + a[P33¢(l.a) + P32¢(2,a) + p3l¢(1,a)]

(2, a)

]

min {A2 + a[pud»(l.a) + 9204:(0,0:)] ; 023 + ad(3,a) ;
C+ ad(3,a)}

¢¥(l,a) = min (Al‘+ ap10¢(0,a) ; C12 + ad(2,a) ; C + a¢(3,a)}

¢(0, x) min{cOI + ad(l,a) ; C+ ai3,a))

Solving the recursions yields:

2 2 3 B
¥(3,a) (A3+°‘p3zcz3+“p31A1+“ p3lC)/(l—0.p33 a’py,-a p31) = ~18.51

¢(2,a) = min {-11.68; ~12.66; ~10.66} = ~12.66 (repair)

~11.6 (do nothing)

W(l,a) = min {~11.63; ~7.4; -10.66}

min {~6.44; -10.66} -10.66 (replace)

4(0, @)

Thus the optimal actions are inaction in states 1 and 3, repair in

state 2, and replacement in state 0 as shown in Table 9.1. This is a

4-region policy. T

e -

State 3 2 1 0

_——— e

Optimal Action Inaction | Repair Inaction | Replace

- _———te - el -

Table 9.1. 4-Region Policy
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Example 9.2: Consider the 5-state DTMC shown in Figure 9.2.

Figure 9.3, DIMC

The only allowable repair is from state i to state 1 + l. Let

Ay =iy, C=7,C =195V,
and
0 .01 .89 .1 0|
0 0 .01 99 O
P = 0 0 0 .99 .1
0 0 0 0 1
0 0 0 0 0

The transition matrix is obviously upper triangular and can be shown to
be totally positive. The optimality criterion is expected average cost
which 1s computed from the equation E(average cost) = E(cost per cycle)/
E(cycle length).

The return state is the largest state that the process will return
to infinitely often (normally state 4). In Table 9.2 all permissable

policies are considered. The table has been abbreviated by using the

-188-

T AT i TR, i DT T B o "’_',T,-.‘::?Y!'—:."r*"'.;J




control limit rule in Section 9.1, always doing nothing in state 4, and
choosing only between repair and replacement in state O. Dashes appear
in the table whenever the chosen action is immaterial to the calculation
of expected average cost. It can be seen from Table 9.2 that the policy
yielding the lowest expected average cost is inaction in states 2 and
4, repair in states 1 and 3, and replacement in state 0. This might

be called a 5-region policy.D

State 4 ' 3 J 2 ' 1 ’ 0 E(Average Cost)

N RR RR RR - .03

N RR RR RL - .072

N N RR RR - .294

N N RR RL - 54

N RL RL RL - 1.75

N N RL RL - 1,498
Actions | N RR RL RL - 1,497

N N N RL RL 413

N RR N RL RL 413

N N N N RL .053

N N N RR RL -,018677

N N RR N RL 413

N RR N RR RL -.018681

N RR N N RL .053

- - - N RR 475

- - N RR RR -.015

N RR RR N RL .031

N = Do Nothing
RR = Repair
RL = Replace

Table 9.2. Policy Comparison
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APPENDIX

Proof of Lemma 8.3:

First it is shown that 1f (i) and (i1i) hold, then

-...S“

7 1A

A =) A = eee m )

From the inequalities for ij, 7 = }‘11 32 = Aj_ﬂ,! if

and )'jA = )‘iA = )‘jA = }‘j+l,A = ece = xiA' For each state r

where j <{r < i,

Ba =5+ L Mgkl
rA Ar. <k ri AT

i i
(A, + I A Ju, =1+ § Aop. + ] A p
r* f=§ rl’rA o< 1< rl A 2= rl 2A

1<k
where

A, = Z A .
T* 0< <3 rf

K2

One solution to these equations is

p, o= (1+ ) ST T2
rA ® i< Tl A T*
1<a<k

This solution is constant in r ¥ j < r <1 and must be unique
since the system is a positive recurrent irreducible CTMC. Thus,
ujA = eoe = u_u.

Now assume that at least one of (1) and (11) does not hold. It

will be shown by induction on the size of the state space that
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B “GA > ulA D eee ) "k-l.A ¥ A, For M= ], the lemma is
obvious. Assume pOA > see ) uk-l,A ¥ A andv M=1, 2, ..., N.
Consider a set A = {k, ..., M1} with k < N as a single state by

N+-1
setting kiA Iz-k 111 for all 1 £ A. The state space then

has fewer than N states, so the induction hypothesis implies f
that pOA D> eee “k-l,A' Thus, it suffices to show that

Each i8 a continuous function of llm

R TS AR RS Yy,
v 2m when me > 0. From the inequalities on the transition rates,

AN,N+1 >0, Let A= (N, M1}, and let AN.N+1 + o, Then ij = uj,N+l

v oJhoand pp > et > by 4 OF Ky ner 2 Tt My ey fTOR

the induction hypothesis. Also, PN N1 +0 as XN N1 + ® 80
» ’

By o € a1, N4

By continuity, since the 8 are strictly ordered for

L

By 81
k“ N+1 + o, they must also be strictly ordered for some large finite

Ny
value of AN,N+1' Start with AN,N+1 at that large value and decrease
it toward its original value. If it reaches its original value with the
uj N+l's still strictly ordered, the proof is finished. 1If not, let

L]
KN,N+1 be the largest value of XN,N+1 for which an equality occurs.
Let € be a small positive number. By continuity, for some j and )

1i>]3: ﬂ

- ! XX
Mo T NNl T ST R e 2 e T T P e P, el

- 1 - 00 m
Mo " N, M => w7 By e By el 7 el nl

- ¢ - see
Aot = NN TS B e < By e € Cgowen S Wapm ;
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Conditioning on the first jump from state j yields: ‘

(1B gy = B + &XN Pig Me
= {1+ hj‘j+luj+l'm1 + xgu "jx“x,ML )/("jt+"3,3+1*"3,u+1)
243,3+1
where
LRV Ea
Pyn ¥ X a0 T4 w1 7% w1
=N M T l<2N Mo P c (4.1)
%3,3+1
(2) A similar calculation for state j+l yields:
Oy, n * Moy ¥ M1, me 0 B v :
=t Mty T xgu Mol g R (4.2)
#5,3+1
where ]
TSI uj§m1 M1, e

Subtracting Equation (A.2) from (A.l):
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Oya M g1 * Y T My e ;

B (kjﬂ.* * )‘j+l.j M kj+l.N+1 + 7\j ,j+1)“j+1,u+1

+ I (n,-A u .
1N 2 1,00 T N

85,3+

= 1]
with Ay gy T Auwer %0 680 Byne T Beoner this

equation becomes

Oy t Mol Py N

= Ovppe t Name Mge e © 1§N g = My, 2Paner

#3,3+1

Stnee Ay wuy £ Marnel

)‘j* By vl 2 )‘j+l'* M1, M1 + DEN ()‘jx - Kj+1,9.)“1,N+1 (.3)

25,3+

where equality holds if and only if xj,N+1 = Aj+1,N+l‘

Rewriting Equation (A.3) using the definitions of kj* and

Mipr, o
) Ao (e My ner) 2 L Mg al® ~By ppy)  OF:
RO LB 2, M1 e 31 541,01 P
3,31 #5,3+1

T oA pe -u Y+ 1 Mye -p )
A Tl L N RS 2 STALR LSS 8

> L A (v -y Y+ L A (» -u )
143 J41, 24§41, N+ L,H6+1 1CEKN 41, 4T3+, N+ A N+1

(A.4)
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R ' M—,—‘

where 91,N+l = ese a ul,N+l was used to derive Equatfion (A.4). For
1< by e 7 Bkl T e e T Peneg €O and Ay 0 A,
For 2> 4, By iy = Banel ™ Piernel T Pagner 2 0 and Mg AL .

Thus, each term on the left hand side of Equation (8.4) is smaller than
or equal to the corresponding term on the right hand side. The only way
that Equation (A.4) can be valid is if kjl - )3+l,1
i+l < 2 { N, in which case it holds at equality. From Equation (A.3),

¥ 0< 2< 351,

- . = {4 N
xj,N+l Aj+l,N+l Thus, conditions (1) and (ii) hold with 1 = j+1

A= {(N+l}.

Now repeat the above calculations for pairs of states
(j+1, 3+2); e+ ; (i+l,i). For Equations (A.3) and (A.4) (appropriately
modified) to remain valid, it must be that Ajl = eoo = hil v ‘
0<2t<j-1 and i+l < 2 < M1. However, this is equivalent to (i) and

(11) with A = (M1} which is a contradiction since it was assumed that
at least one of (i) and (ii) did not hold. Thus, there does not exist
k& N+1 such that u.j ML ST B N and continuity implies

» ? »

that By ne1 > °°° 2 My onere

To prove the result for set B= {0, 1, ..,, k}, let state {
¢

correspond to state M-i 1in the previous argument. Then get B

becomes set A, and the result follows, [J

Lemma A.l: Assume 2;_0 k“

and ;—1 lij is nondecreasing {tn 1 ¥ R > i, Let

is nonincreasing in i ¥ L < {

0<ay< *ee<a and by<b < *** < b < 0. Then

0 =2 My

and ) are nondecreasing in 1 ¥ > 1 and ¥ 2< {,

) ]

A,LDb
=0 133
respectively. If ('1} is a strictly increasing sequence, then
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M
):j-l 141,5% ° beg Mgty P Ay gt My

vi=2Q, ..., M, If {b } 1is a strictly increasing sequence, then

¥ 2> 4,

3 ]
Ljmo Mgty = XJ 0 1,30 > Ay T Ay

Vj-o, eesy 1'

v 1<,

Proof: let A

1 a

-a 20 ¥ 4> 2, and let A 53120'

i "i-1 2

M M M M M

DG ~\Ja, = ¥ Y (A N A, = Y (A “A) .
=1 i+l,3 131’73 k=1 =k i+1,]j :lek k’l%j_k i+1,) 13

(A.5)

By hypothesis, E;Lk(xiﬂ,j -\ j) > 0, so since Ak > 0, Z;Ll kijaj

is nondecreasing in 1i. 1If Ak > 0, equality in Equation (A.5) can hold

M
if and only if Xj'-k 1+1,1 )\j) =0 ¥ k=2, ..., M or )‘i+1,j = Kij
¥ j = 1, s 0y Mo
let Biébi-biﬂ_(_ovi(l‘andlet Bxibxﬁ_o,
] ;3 In
(A -\, )b, = (A -\, )B = B Y (A -\, .
=0 4,3 178 2 120 1+, 17k 0k 520 i+l,j 13
(A.6)
k ) 8
By hypothesis Xj-o(ki-t-l,j—}‘ij) < 0, so since Bk Lo, Z-O kijbj

is nondecreasing in 1, If Bk < 0, equality in Equatfon (A.6) can hold
if and only if zj-O 14+1,3 Kij) =0 «« k=20, ..., L or Ki‘H.j = hij

¥vj=0, ..., 2. 0

Proof of Lemma 8.9: The proof of Lemma 8.9 is identical to the proof of

Lemma 8.3 except at the places where hypotheses on the kij's are

invoked. The necessary changes are shown herein, but the entire proof

is not repeated.
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Since ij = Ay for j < i does not necessarily imply

)‘jl = ee¢= Ay in Lemma 8.9, it is assumed that )‘jl- see = Ny in

condition (1) and Aj A" oo = xiA in condition (i1). Note that
;]

Moawl S pg VI <L

Consider Equation (A.4). For & < j, pj Nl e Nl

uj+l,N+l - “1,N+l < 0, and by Lemma (A.l)

A (u

341, 2P v P )

TN By ) <D
gy I e 2 L

where equality holds if and only if Kjl = Aj+l,l

> 0, and by Lemma

‘Vl’o, oo.,j-l-

For X > ds by el 7 Puner T Men,ne T Pune

(A.1)
LA e TH )< Y A (n, - Y,
seten T THMITELNT 2 g0 T e TR e
where equality holds if and only if Ajl = Aj+1,1 ¥ R = i+l,....N.

Thus, Equation (A.4) is not valid unless conditions (i) and (ii) hold,
and the same contradiction exists that exists in the proof of Lemma

8.3. 01

Proof of Lemma 8.11. The proof of this lemma is identical to the proof

of Lemma 8,3 to the point at which the calculations of uj N+1 and
’
pj+l N+1 begin (Equations (A.1) and (A.2)). This proof begins at that
point with xjr >0 and A]+l,s >0 for j<r<s.
(1) » =a(j)+ J A w
'3, N+ 25 It M
O R L WD S WL

243
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where

= ] A .
™

(A y+h ) =1+

Sl e B (a-7)

S + X A LM .
Jrir, N+ 245 3 AT, N+

(2) A similar calculation for j+1 yields:

( +\

TSEL IR e

j+1 N+

= ¥
DA A i®omr Y Nerefs e * 23 Mo, 2Me, e (A.8)

where

)‘j+1,* = 123' )‘j+1,1 *

Subtracting Equation (A.8) from (A.7):

Ogatd e A 78 w1 ™ NePew

* 3

= ( )

Ml N s TN Y T N, st

+ 7w (N, .=\ ) . (4.9)
PRI R P R

= \ =
Let Ay, n+l = My,ne1 SO that By o) = By Ner

Rewriting Equation (A.9) using the definitions of kj* and xj+l .

yields:

&j TR R RS LTI Wl SRRy

zgj Mt 2O m P ) T N ,s e e

1} Y . (A.V0)

s, N+l
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A

For 1< j‘ uj’N-Q-l = uj+l,N+l < “I,N+l’ and jl _>_ Xj"’l,x’ 80

! N e P e S N 2B e P ) <0

<3

where equality holds if and only if A for 2 < j. Since

L )‘j+1,x

A

jr-<-)‘j+l,s and p'r,

N+l 2 Pg Ne1®

L

TRl TSR TR R

M By v Vs e

and

"
«
-

where equality holds if and only if s < i or Ajr = }‘j+1,s

Thus, Equation (A.10) can hold if and only if )‘jl = )‘j+1,1
=0, ..., j-1 and & = i+l, ..., M1, Repeating the argument
pairs of states (j+1,j+2); ...; (i-1,i), the appropriate modifica ..ns

of Equations (A.9) and (A.10) hold if and only if }‘jl = Ail v

=0, ..., j-1 and R = i+l, ..., u+l. Thus, >

boone1 > °T0 7 By N

when conditions (i) and (ii) do not simultaneously hold.
To prove the result for set B= {0, 1, ..., k}, let state i

correspond to gstate M-i in the previous argument. (J




BIBLIOGRAPHY

Barlow, R. E. and F. Proschan [1975A], Statistical Theory of Reliability
and Life Testing, Holt, Rinehart, & Winston, Inc., New York.

Barlow, R. E. and F. Proschan [1975B], "Importance of System Components
and Fault Tree Events,” Stochastic Processes and their Applica-
tions, Vol. 3, pp. 153-173,

Barlow, R. E. and A. S. Wu [1978], "Coherent Systems with Multistate
Components,” Math., Oper. Res., Vol 3, pp. 275-281,

Bergman, B. [1978], "Optimal Replacement under a General Failure Model,”
Adv. Appl. Prob., Vol. 10, pp. 431-451.

Birnbaum, Z. W. [1969], "On the Importance of Different Components in a
Multicomponent System,” Multivariate Analysis-I1, ed. by P. R.
Krishnaiah, Academic Press, New York, pp. 581-592,

Birnbaum, Z. W. and J. D. Esary [1965], "Modules of Coherent Binary Sys-
tems,” SIAM J. Appl. Math, Vol. 13, pp. 444-462,

Birnbaum, Z. W., J. D. Esary, and S. C. Saunders [1961], “Multicomponent
Systems and Structures, and their Reliability,” Technometrics,
Vol. 3, pp. 55-57.

Bodin, L. D, [1970], "Approximations to System Reliability using a Modu-
lar Decomposition,” Technometrics, Vol. 12, pp. 335-344.

Butler, D. A. [1979], "A Complete Importarce Ranking for Compounents of
Binary Coherent Systems, with Extensions to Multistate Systems,”
Nav. Res. Log. Quart., Vol. 26, pp. 565-578.

Butler, D. A. [1982], "Bounding the Reliability of Multistate Systems,”
Oper. Res., Vol. 30, pp. 530-544.

Denardo, E. V, [1967], "Contraction Mappings in the Theory Underlying
Dynamic Programming,” SIAM Review, Vol. 9, No. 2, pp. 165-177,

Derman, C. [1962], "On Sequential Decisi:-ns and Markov Chains,” Man.
Sci., Vol. 9, No. 1, pp. 16-24.

Derman, C., [1963], "On Optimal Replacement Rules when Changes of State
are Markovian," Mathematical Optimization Techniques, ed. by R.
Bellman, Chapter 9, University of California Press, Berkeley.

Derman, C. [1970]), Finite State Markovian Decision Processes, Academic
Press, New York.

El-Neweihi, E., F. Proschan, and J. Sethuraman {1978}, "Multistate
Coherent Systems,” J. Appl. Prob., Vol. 15, pp. 675-688.

-199-




Eppen, G. [1965], “A Dynamic Analysis of a Class of Deteriorating
Systems,” Man. Sci., Vol. 12, No. 3, pp. 223-240.

Esary, J. D. and F. Proschan [1963], "Relationship between System
Failure Rate and Component Failure Rate,” Technometrics, Vol. 5,
pp. 183-189,

Esary, J. D. and F. Proschan [1970], "A Reliability Bound for Systems of
Maintained, Interdependent Components,” J. Amer. Stat, Assoc.,
Vol. 65, pp. 329-338.

Esary, J. D., F. Proschan, and D. W, Walkup [1967], "Association of
Random Variables, with Applications,” Ann. Math Statist., Vol. 38,
pp. 1466-1474,

Fardis, M. N. and C. A. Cornell [1981], "Analysis of Coherent Multistate
Systems,"” IEEE Transactions on Reliability, Vol. R~30, No. 2, pp.
117-122.

Fussell, J. B. [1975], "How to Hand-Calculate System Reliability Charac-
teristics,” IEEE Transactions on Reliability, Vol. R-24, No. 3,
pp. 169-174,

Gottlieb, G. [1982], "Optimal Replacement for Shock Models with General
Failure Rate,” Oper. Res., Vol. 30, No. 1, pp. 82-93.

Griffith, W. S. [1980], "Multistate Reliability Models,” J. Applied
Prob., Vol. 15, pp. 735-744,

Hadar, J. and W. R. Russell [1969]), "Rules for Ordering Uncertain Pros-
pects,” American Econ. Rev., Vol, 59, No. 1, pp. 25-34,

Hatoyama, Y. [1979], "Reliability Analysis of 3~-state Systems,” IEEE
Transactions on Reliability, Vol. R-28, No. 5, pp. 386-393.

Hirsch, W. M., M. Meisner, and C. Boll [1968], "Cannibalization in Mul-
ticomponent Systems and the Theory of Reliability,"” Nav. Res. g.

Quart., Vol. 15, pp. 331-359.

Hochberg, M. [1973], "Generalized Multicomponent Systems uader Canni-
balization,”™ Nav, Log., Res. Quart., Vol. 20, pp. 585-605.

Kalymon, B. [1972], "Machine Replacement with Stochastic Costs,” Man.
Sci.: Theory, Vol. 18, No. 5, pp. 288-298.

Kao, E. [1973], "Optimal Replacement Rules,” Oper. Res., Vol. 21, No. 6,
pp. 1231-1249,

Klein, M. [1962], "Inspection-Maintenance-Replacement Schedules under
Markovian Deterioration,” Man. Sci., Vol. 9, No. 1, pp. 25-32.

Kolesar, P. [1966], "Minimum Cost Replacement under Markovian Deteriora-
tion,” Man. Sci., Vol. 12, No. 9, pp. 694-706.

-200~




Lambert, H. E. [1975]), “Measures of Events and Cut Sets in Fault Trees,"
Reliability and Fault Tree Analysis, SIAM, Philadelphia, pp.
77-100.

Luss, H, [1976], "Maintenance Policies when Deterioration can be Ob-
served by Inspections,” Oper. Res., Vol. 24, No. 2, pp. 359-366.

Postelnicu, V. [1970], "Nondichotomic Multicomponent Structures,” Bull.
Math. de 1la Soc. Sci., Math, de la R. S. de Roumanie, Vol. 14, No.
2, pp. 209-217.

Rosenfield, D. [1976A], "Markovian Deterioration with Uncertain Informa-
tion,” Oper. Res., Vol. 24, No. 1, pp. l41-155,

Rosenfield, D. [1976B], "Markovian Deterioration with Uncertain Informa-
tion - a More General Model,” Nav. Res. Log. Quart., Vol., 23, pp.
389-405.

Ross, S. [1969], "A Markovian Replacement Model with a Generalization to
Include Stocking,” Man. Sci: Theory, Vol. 15, No., 11, pp. 702-715.

Ross, S. [1979], "Multivalued State Component Systems,” Ann. Prob., Vol.
7, pp. 379-383.

Serfozo, R. [1979], "An Equivalence between Continuous and Discrete Time
Markov Decision Processes,” Oper. Res., Vol. 27, No. 3, pp. 616-
620.

Simon, R. M. [1972], "The Reliability of Multicomponent Systems Subject
to Cannibalization,” Nav., Res. Log. Quart., Vol. 19, No. 1, pp. 1-
14.

Smith, D. R. [1978], "Optimal Repair of a Series System,” Oper. Res.,
Vol. 26, No. 4, pp. 653-662.

-201-




UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE

READ INSTRUCTIONS
BEFORE COMPLETING FORM

1 REPORYT NUMBER 2. GOVY ACCESSION Nq

4

3 RECIPIENT'S CATALOG NUMBER

210 o A3y S
& TITLE (and Subtitie)

MULTISTATE RELIABILITY

S. TYFE OF REPORT & PERIOD COVERED

Technical Report

§. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s)

ALAN P. WOOD

8. CONTRACT OR GRANT NUMBER(s)

N00Q14-75-C-0561

S. PERFORMING ORGANIZATION NAME AND ADDRESS
Department of Operations Research and Department
of Statistics - Stanford University
Stanford, California 94305

10. PROGRAM ELEMENT,
AREA & WORK UNIT NUMBERS

(NR-047-200)

1. CONTROLLING OFFICE NAME AND ADDRESS
Operations Research, Code 434

Office of Naval Research
Arlington, Virginia 22217

12. REPORT DATE
June 1983

13. NUMBER OF PAGES

201

4. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Ollice)

18. SECURITY CLASS. (of this report)

Unclassified

18a, DECLASSIFICATION/DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION IS UNLIMITED

7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if diiterent froor Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse alde if necessary and ldentity by block number)

RELIABILITY MULTISTATE COMPONENTS

COHERENCE MARKOV DECISION PROCESSES

20. ABSTRACYT (Continue on reverse side If nececoary and identify by block mumber)

(SEE NEXT PAGE)

DD , 5%y 1473 eoition or 1 wov 68 15 ossoLETE
$/N 0102-014- 6601 -

UNCLASSIFIED

e e e e g
SECURITY CLASSIPICATION OF THIS PAGE (When Dete Bniereo)




UNCLASSIFIED

SECUNRITY CLASIFICATION OF THIS PAG™ (When Date Eniered)

. e A A A vy

v s S e s =

Do e A e wy

ABSTRACT: MULTISTATE RELIABILITY

by Alan P. Wood

In modern society the consequences of system failure can be '
catastrophic., The study of reliability has evolved from the desire to '
prevent, or at least mitigate the consequences of, failure. A reliability
analysis is performed to determine the probability that a component or system
is able to perform its specified function. Two major topics useful in that
endeavor are considered herein. The first topic is the extension of coherent
structure function theory to components and systems with several states. The
second topic is the optimal maintenance of multistate components.

Coherent structure function theory is an axiomatic approach to
reliability in which the components and systems are binary, i.e., they have
two states - operational and failed. The first part of the thesis extends
the theory to components and systems with multiple states. This is useful
for modeling systems in which partial failure may occur. Multistate coherent
structure functions are defined, and it is shown that most of the binary
results have multistate analogs. These results deal with duals, modules,
minimum cut and path sets, reliability importance, reliability bounds,
closure theorems, fault trees, and block diagrams. The theory is further
extended to allow each component and the system to have a continuum of
states.

Optimal maintenance policies for periodically inspected multistate
components have previously appeared in the literature. The second part of
the thesis extends those policies to continuously monitored equipment by
using Markov decision processes and continuous time Markov chains. The main
theorems are in the form of control limit rules which state that it is
optimal to repair or replace a component whenever it has degraded to a
certain level. 1Tt is shown that under certain assumptions the optimal policy
is to repair the component as much as possible. Equivalences between shock
models, continuous time models, and discrete time models are discussed.

-

FIED
SPCURITY CLASSIFICATION OF THIS PAGC(When Dote Entered)

® .






