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PART I

MULTISTATE COHERENT STRUCTURE FUNCTION THEORY

In military systems, power plants, and many other areas of modern

society, the consequences of failure can be catastrophic. The study of

reliability has evolved from the desire to prevent failure, or at least

mitigate the consequences thereof. Reliability is usually defined as

the probability that a component or system is able to perform its

specified function. A reliability analysis is performed to determine

that probability. This analysis consists of mathematically modelling

the system, assessing failure probabilities, and generating a numerical

result. This thesis deals with aspects of the theory underlying the

mathematical model.

Most reliability calculations are performed assuming that components

and systems are either functioning or failed. This dichotomy is often a

reasonable assumption, but the assumption is sometimes made simply

because there are no applicable results dealing with more complicated

state spaces. There are many situations in which the ability to

consider multiple states would be useful in a reliability context. A

component or system may have a useful partially operating mode. For

example, if one of two turbines in a power plant is undergoing repair,

the plant may be able to generate NX of its rated electric capacity

which is significantly better than being completely shut down. It may

also be useful to differentiate among different modes of failure. A

valve may fail to open, fail closed, or fail ruptured, and these failure

modes may have very different effects on system operation. The enlarged



state space can be used for actual quantities rather than just

qualitative measures.For example, states 0, 1, ... , 100 might be water

temperature in degrees centigrade.

This thesis considers reliability in a general multistate setting.

The number of states used in describing the status of each component and

the operation of the system is allowed to vary, and the dependence of

the system state on the component states can be very general. The first

part of the thesis deals with the extension of binary coherent struc-

ture function theory to the multistate case. Some results in this area

have previously been obtained. The existing results are generalized,

and several new results are derived. The first part of the thesis could

be applied to maintenance policies by letting the component states rep-

resent the total available number of a certain binary component and let-

ting the system state represent the total number of operating machines.

However, the second part of the thesis is more useful for determining

optimal maintenance policies for multistate components. Most previous

maintenance models deal with discrete time replacement policies. Compo-

nents which may be repaired or replaced at any time are considered in

this thesis.
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1. INTRODUCTION AND HISTORY

Coherent structure theory is an attempt to treat reliability theory

in an axiomatic way. Since reliability is an engineering discipline,

the axioms and definitions are intended to reasonably portray the opera-

tion of systems and components in the "real world". The first systems

to be considered from a reliability viewpoint consisted of binary compo-

nents, components for which one state represents operational status and

the other state indicates failure. The structure function, which repre-

sents the state of the system given the states of the components, was

, sually assumed to be binary and, in addition, was usually assumed to be

coherent. Binary coherence means that each component of the system is

relevant, i.e., important in determining the value of the system struc-

ture function, and that the system state cannot decrease when the state

of one of its components increases. It seems reasonable to expect most

real systems to operate in this fashion.

Because many components may partially function or have several modes

of operation, there have been attempts to generalize the theory to in-

clude components or systems with several states. However, there are

many gaps in the theory of multistate coherent structures which need to

be filled, and the theory is not as general as is desirable for engi-

neering purposes. In particular the concepts of relevance and coherence

for components with several states need to be broadened to represent

useful ideas in the operation of multistate systems. The first part of

this thesis is an attempt to remedy the situation. After a review of

the binary case and recent generalizations in this chapter, definitions
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are given in Chapter 2 which are meant to reconcile coherent structure

function theory with the "real world" operation of multistate compo-

nents. The rest of Chapter 2 and all of Chapter 3 show that most of the

results in the binary case have analogues in the multistate case. Block

diagrams and fault trees and their extension to multistate components

are the subject of Chapter 4. Chapter 5 pertains to components which

have a continuum of states rather than multiple discrete states.

1.1. Binary Coherence and Notation

Reliability is a relatively new field and is primarily the

outgrowth of the concern about military hardware reliability following

World War II. The reliability literature of the 1940's and 1950's is

primarily devoted to quality control, renewal theory, and properties of

various life distributions. The first paper to treat reliability from a

functional point-of-view seems to be Birnbaum, Esary, and Saunders

[19611. That paper defined a binary coherent system and its dual and

developed many of their properties including minimum paths and cuts.

The first reliability bounds for a coherent system with independent

components were developed by Esary and Proschan [19631. A paper by

Birnbaum and Esary (19651 introduced the concept of modules and

developed some of their basic properties. Bodin 11970) then used

modules to obtain better bounds on system reliability. The idea of

associated random variables was introduced by Esary, Proschan, and

Walkup (1967], and Esary and Proschan [1970J used that concept to obtain

reliability bounds for systems with dependent components. The concept

of reliability importance is due to Birnbaum [19691. A complete

-4-



treatment of binary coherent structure functions and their properties

may be found in Barlow and Proschan [1975a]. The notation of that book

is used throughout this section.

In binary coherent structure function theory, the components and

system can be in one of two states represented by the numbers 0

(failed) and I (functioning). Let X be the state of the ith

component in a system composed of n components.

Notation: Xi I (component i is function)

I if component I is functioning

0 if component i is failed

1 is called the indicator function

S (X 1, X2 ' ". . Xn)

0(X) - zhe state of the system 1 I
{system functioning)

* : {,0 4 n _ {O,1}

(JI'-!) =_ (XI, X 2 ..... Xi_ 1 ,j ,Xi+I ' .. . n)

Definition: Component i is relevant if there exists X such that

*(iPX) - 1 and *(O,X) - 0.

It will be assumed that all components are relevant since irrelevant

components have no bearing on the system state.

Definition: A system represented by 0(X) is coherent if

(1) 0(0) - 0, 0(1) 1 1, and

(2) (X) is increasing in X.

-5-



Note: Increasing is used to mean X > X -+ #(X > *(X while
-1 -=2 1(~ 1-12

strictly increasing will mean X > X + X (X ) > X2). The same
-I -2 -1 K 2)

applies to decreasing and strictly decreasing. X > Y means

X,-- Y, v i and Xi > Y, for some i.

Definition: A path vector is a vector X such that 0(X) - 1. The

corresponding path set is {i : X, W 1). A path vector X such that

Y < X -+ #(Y) - 0 is called a minimal path vector and the associated

path set is called a minimal path set. The jth minimal path set is

denoted P .

Definition: A cut vector is a vector X such that O(X) = The

corresponding cut set is (i : Xi = 0). A cut vector X st that

Y > X - $(Y) - I is called a minimal cut vector and the a: J ted cut

set is called a minimal cut set. The Jth minimum cut set i.-.enoted

K .

Minimal path sets and minimal cut sets are sometimes called min

paths and min cuts, respectively.

Definition: The dual of 0 is denoted by 0D and is defined by

D*D(X) - - (I_-X).

It is easy to show that (D ) D 0. Minimal path sets for

are minimal cut sets for #D and vice versa. The following are

classic examples of coherent systems.

Example 1. 1: A series system is one in which every component mst func-

tion in order for the system to function.

-6-



n
1(x) - , x min (X) .

Each component represents a minimum cut set, and the only path vector

is 1.

Example 1.2: A parallel system is one in which the system will function

if any component functions.

n n
(x) - I Xi-= I - nI (1-X ) max (Xi)

i- I i mI i

Each component is a minimum path set, and the only cut vector is 0.

The dual of a parallel system is a series system and vice versa. 0

Example 1.3: A k-out-of-n system is an n-component system that will

function if k or more of its components function.

*(X) = I
"i- I i-

The dual of a k-out-of-n system is an (n-k+l)-out-of-n system. A

series system is an n-out-of-n systew and a parallel system is a

1-out-of-n system. 0

Let (C, ) denote a set of components C and a coherent structure

function 0.

Definition: (A,x) is a module of kC,*) if A c C and 0(X) -

AC
4(X(X A),X ) where 4- is also a coherent structure function.

-7-



The notation XA means the vector with elements Xi, i C A, and AC

means the set complementary to A.

Definition: A modular decomposition of a coherent system (C,O) is a

set of disjoint modules (AI OX), ..., (ArXr)} together with an

organizing structure 4, such that

r
(1) C - i, A, and A, n A = {*} i # J, and

A1  A2  A

(2) 4(X) - (X 1 ) X2(X
2 ) ... Xr(Xr)) .

Example 1.4: A trivial modular decomposition is O(X)

(X1 (X I)..... (X r)) where X(X ) - X, -i. As a more

useful example, consider a system composed of two elements in series

followed by two elements in parallel as in Figure 1.1.

O(X) - 4.x1 (XI,X 2 ), X2(X 3 ,X4))

where

X1(X1,X2) X1X2

X2(X3,X4) X 3 + X 4 - X3X4

4<X 1 ,X 2 ) = X1 X2 - XIX 2(X3 + X - X3X4) 
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Figure 1.1 System Diagram

The preceeding discussion and definitions have dealt with the

deterministic aspects of coherent systems. The following discussion

relates to probabilistic evaluation of system operation with the

component and system states considered as random variables. Reliability

is defined as the probability of successful operation.

Notation: P- component reliability - P(Xi  1 L) = EXi

h system reliability = P(O(X) 1) = E*(X)

h = h(P) where P - (P1  .... Pn) if it is assumed

that all components are independent.

h(P) = h(P) when P - P, M P2 ..... Pn "

Components are often subject to the same loads and a common

environment so that component failures may be highly correlated rather

than independent. The following definition is a type of correlation

useful in reliability theory.

Definition: Random variables Tit .... T are associated ifn

COVIF(T), G(T)) > 0 for all pairs of increasing binary functions F

and G (when the covariance exists).

-9-



Many reliability bounds have been developed for systems composed of

associated components. These bounds can usually be improved through

modular decomposition.

An implicit assumption in the preceeding discussion is that time is

not considered or is fixed. In practice each component will have a

random life length Ti governed by a life distribution Fi(t).

Notation: FCt) =  -F (t) - P(XlM)- 1) - P(T i  t)

F(s It) -(t+s)/F(t) if F(t) > 0

conditional reliability for a component of age t

h(F) P(*(X(t) - 1)) where F = (F 1 (t) , ... , Fn(t))

r(t) - failure rate =l F(t+s)-F(t)
s+O F(t)

= f(t)/F(r) when f(t) exists and F(t) > 0

t
F(t) = exp (- f r(s)ds)

0

Components are sometimes classified according to their life distri-

butions. Several categories of life distributions are defined below.

Useful reliability bounds have been developed for each category.

Definition: A distribution F(t) or a random variable (component) with

that life distribution is said to be

-Increasing Failure Rate (IFR) if F(sit) is decreasing in

t V a > 0.
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-Decreasing Failure Rate (DFR) if F(slt) is increasing in

t Vs > 0.

-Increasing Failure Rate Average (IFRA) if -(l/t) log[F(t)J is in-

creasing in t.

-Decreasing Failure Rate Average (DFRA) if -(l/t) log[F(t)] is de-

creasing in t.

-New Better than Used (NBU) if F(s+r) < F(s)F(t) v s > 0, t > 0.

-New Worse than Used (NWU) if F(s+t) > F(s)F(t) v s > 0, t > 0.

-New Better than Used in Expectation (NBUE) if ft F(X)dX < iF(t)
t-

where i - ET <.

-New Worse than Used in Expectation (NWUE) if f' F(X)dX > ;X(t).

If F(t) has a density f(t), then IFR(DFR) means that the failure rate

is increasing (decreasing) in t, and IFRA(DFRA) means that ft r(s)ds

is increasing (decreasing) in t. It can be shown that IFR -+ IFRA -:0

NBU and that DFR -0 DFRA -> NWU. It can also be shown that IFRA and NBU

distributions are closed under the formation of coherent systems, that

IFR, IFRA, and NBU distributions are closed under convolutions, and that

DFR, DFRA, and NWU distributions are closed under mixtures.

1.2 Previous Generalizations

The first attempts to treat multistate reliability from a

functional viewpoint were entitled cannibalization. Cannibalization is

tie use of parts from several failed units to form operational equip-

ment. If one aircraft has a damaged tire and one has an inoperative

-11-



radio, a simple transfer allows the fleet to have an operational air-

craft. The first article on this subject was Hirsch, Meisner, and Boll

[1968]. This paper treated binary components and a multistate structure

function with restrictions similar to coherence. Each component is

allowed to be used in several locations. A cannibalization operation is

the transfer of some or all components to different positions within the

system, providing an increase in the system state. Conditions are

derived under which the state of the system can be determined from the

number of each type of component available. Although different

terminology is used, ideas such as cut sets and k-out-of-n structures

are described. Hochberg [1973] extended these results from systems with

binary components to systems with multistate components. Simon [1972]

obtains bounds on P(O(X(t)) > J) in cannibalized systems. This is

accomplished by placing restrictions on the cannibalization operations.

The first extension of coherent structure function theory to

continuous components is contained in Postelnicu [1970]. In this paper

the component and system states are any values in the unit interval.

The structure function used is closely related to coherent structure

functions. Two reliability bounds were obtained in the paper. A second

paper dealing with a continuous state space was Ross [1979]. He defines

an IFR.A process and an NBU process. These definitions are used to

generalize the IFRA and NBU closure theorems (closure under the

formation of coherent systems).

The first paper intended primarily to generalize coherent structure

function theory was Barlow and Wu [19781. In this paper a system is

modelled as though it were binary, and the minimum path sets and minimum

-12-



cut sets are determined. The components and structure function are then

allowed to be any integer among (0,1,...,M). The system state is

defined as the state of the worst component in the best min path which

is the same as the state of the best component in the worst min cut,

i.e.

*(X) - Max Min (Xi) Min Max (Xi)
j iCP j iKj

where P is the jth min path and K is the jth min cut. This is

very restrictive since the relationship between the system and

components is not allowed to vary as the system level varies.

Reliability and stochastic system performance are considered, and a

variant of the IFRA closure theorem is proved.

Another article containing a restrictive generalization of coherence

is El-Neweihi, Proschan, and Sethuraman (1978]. The system and

components may be any integer in (O,1....M), and 0 is coherent if

(1) 0(X) is increasing in X,

(2) there exists X such that *(jiX) - j while 0(ti,X) # j

V component i and system level J, and

(3) O(J) - j where j - (JlJ 2 " n ) .

Minimum path sets, minimum cut sets, and utility functions are discussed

in the paper. It is shown that EU(O(X)) is stochastically increasing

in X where U(') is a utility function. Some reliability bounds are

given, and the NBU closure theorem is generalized using a different

definition for NBU process than the one in Ross [1979).

-13-



A less restrictive generalization of coherence may be found in a

discussion of ternary (3-state) systems by Butler [19791. Component i

is defined to be relevant if there exists X such that

*(2i,X) *(OiX). Component i is fully relevant if there exists

X such that *(2 i,X) 0 *(Ii,X) and there exists Y such that

(liY) 0 *(OiY). Fully relevant means that every state of every

component is relevant. It is assumed that all components are relevant.

* is coherent if

(1) (0) = 0, 0(2) - 2, and

(2) 0(X) is increasing in X.

Using this definition of coherence, Butler extends the ideas of

reliability importance and structural importance, including new

importance measures introduced in the paper, to multistate systems. In

a second paper, Butler (19821 extended several bounds on system

reliability to the multistate case. Another paper using this definition

of coherence in a ternary system is Hatoyama [19791, although it is not

explicitly stated that 0(0) - 0 and 0(1) - 1. Duals, path sets, and

cut sets are defined in this paper, and some bounds on system

reliability are derived. Most of the paper deals with a specialized

type of system composed of modules of series or parallel elements with a

series organizing structure.

A discussion of several possible generalizations of coherent

structure functions may be found in Griffith [19801. A function

# {0,1,...,M}n + {O,1,..M) is called a multistate monotone system

if

-14-



(1) #(X) is increasing in X, and

(2) min (X < (x) < max (X).

If *(X) is a 14S, it is called

(A) Strongly coherent if there exists X such that (ji,.X) - j

and *(.,,X) 0 j -v 1 0 J, v component i, and -v state J.

(B) Coherent if there exists X such that ((J-I)iX) < #(J,X)

v component i and v state j > 1.

(C) Weakly coherent if there is X such that *(0 1 ,X) < *(HIX)

v component i.

Note that conditions (1), (2), and (A) correspond to coherence in

EI-Neweihi, Proschan, and Sethuraman [1978]. If condition (2) is

weakened to $(0) - 0 and t(2) - 2, then conditions (1), (2), and (C)

correspond to coherence in Butler (19791. The difference between

relevant and fully relevant in that article is the same as the

difference between conditions (B) and (C). Griffith defines the dual of

D
a 11S, 0 , and shows that it possesses the same type of coherence as

. He also discusses modules and utility functions in the multistate

setting. Reliability importance is defined, and it is shown that system

utility can be expressed as the product of the reliability importance of

a component and the probability vector of the component.

The analysis of specialized muiltistate systems may be found in

Fardis and Cornell (1981]. This paper considers systems for which there

are modules of completely interchtigable components in series or

parallel. Truth tables for these types of systems are analyzed.
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2. THE MULTISTATE MODEL

In binary coherent structure function theory and in previous exten-

sions to the multistate case, each component and the system structure

function were all assumed to have the same number of states, labelled

0, 1, ... , M. When a component or the structure function had only

J < M + 1 natural distinct states, more states were added by making the

last states J + 1, J + 2, ..., M identical to state J. This could

significantly enlarge the state space which is computationally ineffi-

cient. In addition, some theoretical results are unnecessarily weakened

as discussed later. This enlargement of the state space is herein elim-

inated by allowing every component and the system structure function to

have a different number of states. This means that every state of every

component will be relevant for determination of the system state since

component states that are not relevant are eliminated.

In Section 2.2.1 it is shown that previous definitions of coherence

lead to a situation in which every system can be modelled as a coherent

system, rendering the concept meaningless. This problem arises because

the states of the structure function do not have to be monotonically or-

dered by increasing utility. A new definition of coherence incorpora-

ting a utility function is proposed, and various types of coherence are

discussed. This definition requires that every state of every component

be relevant. Previously, it was only possible to require that every

component be relevant (called weak coherence) because of the aforemen-

tioned enlargement of the state space. Using coherence rather than weak

coherence strengthens some of the results in Chapters 2 and 3. The con-

cepts of minimum path sets, minimum cut sets, series, parallel, and

-16-



k-out-of-n have been redefined in terms of the value of the structure

function. Section 2.2 presents definitions for terms such as minimum

cut set at level J and series system at level k.

The dual of a structure function is defined in Section 2.2.4, and it

is shown that the dual possesses the same type of coherence as the ori-

ginal structure function. Rather than dealing separately with each com-

ponent in a coherent system, it is often easier to consider subsets of

components called modules together with an organizing structure for the

modules. The main result of Section 2.2.5 is the relationships that

exist between the type of coherence possessed by the overall system and

the various types of coherence associated with the modules and their

organizing structure. The general model discussed herein has an advan-

tage in this modular decomposition since it turns out that coherence of

the modules and their organizing structure permits a stronger conclusion

than is possible with weak coherence assumptions.

2.1. Description of the Model

Consider a system composed of n components, and let

Xi c {0,1,... Ni )  be the state of the ith component. Let

*(X) C {0,1,...,M} be the state of the system.

0 : {O,1,...,N I} x {0,1 ... N 2) x ,-, x {0,1,... ,N} {0,.....M .

The total number of vectors X is (N1+1)(N 2+1) 190 (N +1). In

probabilistic evaluations, the component states and the system state

become random variables.

-17-



N
Notation: Pij M P(Xi j) qj P(Xi J ) = k-ji Pik

iPi - (Pi0' ) Ri I)(qi0' )

r'i
_ = i[= i

Note that qio= I v . P is not really a matrix since its ith row

has length Ni + I, and thus its row length may vary. However, it will

be called a probability matrix for lack of a better term. Reliability

can no longer be defined as the probability that the system functions

since the system may operate at one of several levels.

Definition: Reliability at level k is hk = P( (X) > k). When the

components are independent, this probability depends only on P and is

denoted h (p). When the system level is clear or when the discussion

applies to any level k, the superscript will sometimes be dropped, and

reliability at any level k will be denoted h or h(P).

When time is a variable in reliability calculations, it is assumed

that each component i begins in state Ni at t - 0 and has a

distribution FI(t) which represents the time until the component

state drops to or below a level J.

-18-



Notation: F ji(t) i-F i(t) - i(t) > j) = Xi(t) > J+1)

(F(t) .... F (t) F -

h k(F) B P(O(X(t)) > k) D
Again F is a matrix possibly with rows of unequal length. The

reliability at level k may be denoted h k(F(t)) when it is desirable

to explicitly show the time dependence, and the superscript may be

dropped when it is unnecessary.

2.2 Definitions

2.2.1 Coherence

The definition of binary coherent structure function includes two

main premises:

(1) All components must be relevant, and

(2) An increase in the state of a component cannot cause a decrease

in the state of the system.

These premises seem very reasonable, so reasonable, in fact, that it is

difficult to think of a situation in which they would not hold. The

first premise - all components relevant - will always hold since if it

did not, the irrelevant components could be disregarded and a new

structure formed with only the relevant components. However, the second

premise may fail to hold because of problems in defining success and

failure. If two incoming water lines feed a pipe in which the desired
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water temperature is 500 F., then success for each incoming water line

might be defined as being at 500 F. (with some tolerance). If the

water in one line is 600 F. and the water in the other line is 400 F.,

then the system might be considered a success even though both incoming

water lines are failed. Furthermore, if the first water line is

repaired, i.e., the water temperature is lowered from 600 F. to 500

F., then the system will fail. In fault trees there is a concept called

an "exclusive or gate" which mea:s that one of two inputs but not both

is necessary for success. In structure function notation, this means

that f(0,0) = 0(1,1) = 0 and f(1,0) = 1, which does not fit the

definition of coherence. These examples of non-coherent systems are

rather contrived, however, and an engineer would never expect to find a

non-coherent system in practice.

It seems a relatively easy matter to extend binary coherence to

multistate systems. The following definition is based on the second

premise of coherence discussed in the previous paragraph.

Definition: 0(X) is a Monotone Structure Function (MSF) if:

(1) 0(O) = 0, 0(N) = M where N = (NI,N 2 9.... Nn), and

(2) 0(X) is increasing in X.

The concept of relevance may be used in a multistate setting to mean

either that every component is relevant or that every state of every

component is relevant. Following Griffith 119801, the following

definition is presented.
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Definition: A component i is said to be

(A) Relevant if there exists X such that O(N IX) > 0(O X).

(B) Fully Relevant if v j - 1, 2, ... , Ni, there exists X such

that O(Ji,X) > 0((J-l)iX).

Clearly, a component which is fully relevant is also revelant but not

vice versa.

A reasonable definition of coherence would seem to be a MSF with all

components either relevant or fully relevant. There is a fly in the

ointment, however, as shown in the following proposition.

Proposition: All multistate systems may be modelled by a structure

function which has properties (1), (2), and (B).

Proof: The proof is constructive. Asstme that each of n components

has a natural state space {O,1,...,N i}. Arbitrarily assign

0(0) = 0, (1 ,0) = 1, (1 9 ,0) = 2 0(1 n 0) = n,

0(11,12,O) = n+l, ... , $(I) = 2-l, 0(21,0) = 2'.

n
O(N) = 7 (N +1) - 1 = M

i=1

By construction, (O) = 0, (N) - M, (X) is increasing in X, and

s(Ji,\) > O((-1) i I X) V j ,i, X.

Thus, using (1), (2), and (A) or (B) as a definition of coherence means

that every system is coherent. Some people might view this as

desirable, but it would be nice if there was a feature which separated

coherent and non-coherent systems.
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Implicit in the use of binary coherence is that state I is desirable

(success) while state 0 is undesirable (failure). This notion has not

yet been incorporated into multistate coherence. In the proof of the

previous proposition, *(21,O) = 2n > 0(l) = 2 n-, but it is very

possible that U(0(2 ,O)) < U(0(l)) where U(') is a utility

function. Normally, an engineer would specify system states in order of

increasing utility rather than constructing a structure function as in

the preceding proposition. The conditions (1), (2), and (B) would then

be tested in the framework of the specified structure function. Thus,

although a system can always be assigned a structure function which

makes the system coherent, a more natural structure function with states

monotonically ordered by increasing utility may be non-coherent. This

leads to the following definition of coherence.

Definition: Let O(X) be a MSF and let U(0(X)) be the corresponding

utility function that assigns utility a* to state j. O(X) is

coherent if

(1) every component is fully relevant, and

(2) a. > aj_ 1  4 j = 1, 2, ... , M.

The first part of the definition can always be satisfied by eliminating

irrelevant states. The second part of the definition means that the

operational value of the system increases as the system state

increases. Obviously, the utility function must reflect the true value

of each system state since otherwise setting U(O(X)) - O(X) would

return the problem to its original status. The definition also implies

that irrelevant system states will be eliminated. If a = a for

0, define *' and a' by

-22-



() (X) whenever 0(X) < j - I

, 0(X) - I whenever O(X) > j

ia1  whenever i < j -1
a a i-a whenever i > j

Thus, every state of the system, as well as every state of every compo-

nent, will be relevant.

If the components and system are required to have the same state

space, say {0,1,...,M}, it may not be possible for each component to be

fully relevant. This is the situation in the papers reviewed in Section

1.2. To allow the situation described herein to be compared with pre-

vious literature, the following two definitions are presented (using

terminology from Griffith [19801).

Definition: Let O(X) be a MSF, and let U(O(X)) be the corresponding

utility function that assigns utility a to state J.

0(X) is weakly coherent if

(1) every component is relevant, and

(2) a, _ a Y j M.

t(X) is strongly coherent if

(1) v component i and state j, there exists X such that

W(JiX) - j while O(Xi,X) # j for X 0 j, and

(2) aj > aj = 1, ... , M.

It is also assumed in Griffith [19801 and El-Neweihi, Proschan, and

Sethuraman [19781 that O(1) = J, but this restriction is not necessary

for any of the results in those papers or the results herein.
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It is clear that strong coherence - coherence - weak coherence.

Examples 2.1 and 2.2 are presented to show that the reverse

implications are not true.

Example 2.1: Consider two ternary components each with state space

'0,1,2}, and let a = j j. Let

,P(o,0) = 0,

i(1,0) = s(0,1) = h(l,l) = ,-(0,2) - N(2,0) = 1, and

S(l,2) = S(2,1) - (2,2) = 2.

Since (I,0) > 0(0,0) and 4(2,1) > (1,1), component I is fully

relevant. Since the system state is symmetric with respect to the

components, component 2 is also fully relevant, and the system is

coherent. To show that 0 is not strongly coherent, consider 0(1,X2).

X2  0 0(1 ,X2 ) = (2,X 2 ) = I

X = 1 - (OX 2) = '(1,X2) = 1

x = 2 ( I ,X2 ) = (2,x2) = 2

Thus, there is no X2 such that 0(I,X 2 ) = 1 and 0(J 1 ,X 2) # I for

j = 0, 2, so part (1) in the definition of strong coherence is not

satisfied. 0

Example 2.2: Again consider two ternary components with a = J.

Let 0(0,0) = (1,0) = 0,

0(0,I) - 0(I,1) = 1, and

0(0,2)- 0(2,0)= s(2,1) = 0(1,2)= (2,2) - 2.

Since 0(2,0) > 0(0,0) and 0(0,2) > 0(0,0), 0 is weakly coherent.
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However, O(O,X 2 ) = *(1,X 2 ) ' X2 , so X1 is not fully relevant, and

the system is not coherent. Note that we can combine states 0 and

of component I to get a coherent structure 0' which is equivalent to

as follows. let X' . max (X-IO) and define 0' by

0'(0',0) = 0 , 0'(0',1) = 1, and

0'(0',2) = 0'(1',0) - 0'(1')= *'(1',2) = 2

This is a special case of Theorem 2.1. D

Theorem 2.1: A relevant component can be made fully relevant.

Proof: Assume O(N1 ,K) > (O 1 ,X) for some X and O(j1 ,X)

f ((j-l), X) -v X. Define 0' and X' by

) (k l , _X) for k' < j - I

( ((k+I) 1 ,X) for k' > j

X, ~X IVXi < 
- I

The new structure function 0' is the same as * except states j and

j - I of component I have been combined. Repeat the process if any

components are still not fully relevant.

Theorem 2.1 shows that weak coherence is a useful concept only when it

is desirable to have the same state space for all components.

For simplicity, throughout the remainder of this thesis, it is

assumed that all components are relevant if all components are required

to have the same number of states and fully relevant otherwise. The
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results contained herein will often hold assuming just that * is a MSF

which need not be coherent.

2.2.2. Series, Parallel, and k-out-of-n

The definitions of series, parallel, and k-out-of-n systems are

straightforward generalizations of their binary counterparts.

Definition: The system represented by a MSF 4 is

(1) Series if (X) - min (X )
-i

(2) Parallel if O(X) - max (X ) and
_ - i

n
(3) k-out-of-n if O(X) - max I : 1 {X>j } >k}

Clearly, a series system is an n-out-of-n system, and a parallel

system is a 1-out-of-n system. Also, M min (N ) for a series
i i

system, and M = max (N ) for a parallel system. These types of
i

systems are useful since the position of the component within a system

is irrelevant; only the numerical value of the component state has an

impact. When this occurs, 0 is said to have interchangeable compo-

nents.

Example 2.3: Let 0 be a ternary MSF composed of 3 interchangeable

ternary components.

(A) 4 is series if: 0(0,0,0) 0 (1,0,0) - (1,1,0) - 0(2,0,0)

0 0(2,1,0) - 0(2,2,0) - 0

0(1,1,1) 0(2,1,1) - 0(2,2,1) - 1

0(2,2,2) , 2
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(B) 0is parallel if: t(0,0,0) -0

#01,0,0) - 0(11,0) 0(,11 - 1

0(2,0,0) - 0(2,1,0) - 0(2,1,1) - *(2,2,0)

- *(2,2,1) -0(2,2,2) - 2

(C) 0is 2-out-of-3 if: 0(0,0,0) = 01,0,0) t(02,0,0) - 0

0(1,10)- (1,1,1)- 0(2,1,0)

0(2,2,0) -0(2,2,1) - (2,2,2) -2 3

Theorem 2.2: Let 0 be a MSF.

(i) OCX v Y) > X(X) v 0(Y) where

X v Y - (max (X, ,...9 max (X n'Y)n and

(ii) O(X A Y) < O(X) A 0(Y) where

X A Y -(min (X19 , .. min (X ,tY n)

If 0 is a coherent MSF with M - N, = fee - N n then equality in (i)

<-O 0 Is a parallel structure, and equality in (ii) <-* 0 is a series

structure.

Proof: Ci) By definition X v Y > X and X v Y > Y. Since t(X) is

increasing in X, 0(X v Y) > OCX and t(X v Y) > 0(Y). Thus,

W( v Y) > 0(X v 0(Y)

Assume that O(X) - max (X I) (parallel). Then $CX v Y) - max (X v Y)I
- i ~i i

-[max (X )JV [max (Y )J-O(X) V 0(Y). Now assusme that 0 is
I i i i_

coherent and that *CX v Y) - OCX) v 0(Y). For each I, there exists X

such that 0(Cj-1) 1,X) < w~)
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00 0 1-2) v f O(oi,(Xk)k,2) V _~io')

O (Ji.0) v [max 0((Xk~ 0)]

Similarly, *((J-1) ,!) so 40((j-1) , 0) v [max 0((X k) k901

Since 0((J-1),,) < *0(i1.X) the above equations imply that

<((j-j)0) <)*( v j or 0 = 0(0) < 0(1,,0) < o-- < O(N 0O) < M.

If M -N, *seo = N n' this means that 0(ji,0) = * -Y i and j or

OMX - max (X.)
i 3

The proof of (ii) is similar.0

Example 2.4: To show that M =N, N nis a necessary part of

the proof, let X 1be binary and X 2be ternary. Let 0(0,0) - 0,

0(0,1) -1, and 0(0,2) -0(1,0) = .0(1,1) or 0(1,2) - 2. It is easy to

show that 0 is a coherent MSF and O(x v Y) - O(X) v O<Y), but

O(X) 0 max (X i). To show that weak coherence does not suffice to

prove the theorem, make component I ternary with 0(2,0) -0(2,1)=

0(2,2) - 2. Then 0 is weakly coherent, bt~t 0(1,0) -2 #max (X)

These concepts may be applied to a single system state rather than

the entire system.

Definition: The system represented by a MSF 0 is

(1) Series at level j if O(X) -j <-+ min (X) J.
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(2) Parallel at level j if #(X) - J <- max (X i ) J.
ii

(3) k-out-of-n at level iJ if #(X) <-# max {(:iy {Xi k} - J.

A series system is a series system at level j V J. Note that if

* is k-out-of-n at level J, it must be at least k-out-of-n for all

system levels larger than J. To see this, let * be k-out-of-n at level

j and (k-l)-out-of-n at level j + 1. Then ((J+1) l .... (J+1)k-,O) < j

by the first criterion, but 0((J+I)1,...,(J+I)k-1'2) > j + 1 by the

second criterion which is clearly impossible.

Example 2.5: Let * be a MSF composed of 3 interchangeable components

with M - N, W N-2 N3 = 3. We construct * to be parallel at level

1, 2-out-of-3 at level 2, and series at level 3 as follows.

(0,0,0) = 0 *(3,3,3) - 3

0(X) - I for X o {(,0,0),(i,I,0),(1,i,1),

(2,o,o),(2,1 ,o),(2,1,1),

(3,0,0),(3,1,0),(3,1,1)}

4(X) - 2 for X c {(2,2,0),(2,2,1),(2,2,2),

(3,2,0),(3,2,1),(3,2,2),

(3,3,0),(3,3,1),(3,3,2)} .

2.2.3. lHir Paths ad Min Cuts

Ir the binary case, a minimum path set is a list of components.

If every component in a minimum path set functions, then so does the

system. In the multistate case, however, path sets have to be

associated with the appropriate system state, and each component must

have a specified minimum state. Thus, in the multistate case, a minimum
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path set is a list of minimum requirements for the state of each

component.

Definition: Let *(X) be a MSF. X is a path vector at level m if

#(X) > m. It is a path vector at maximal level m if O(X) = m. If,

in addition, O(Y) < m whenever Y < X, then X is called a minimum

path vector at maximal level m. Let m = (mi ... m n) be a vector such

that if X > m, then O(X) > m and if Y < m, then 0(Y) < m. The

vector m will be called a min path (minimum path set at system

level m). The jth min path at system level m will be denoted

a - (m .... mj). There are s min paths for each system levelI nm

(s when the system level is clear). Also,

np () - > , n I II{X >nm} i=j {Xi >m

I- I

is the jth minimum path structure function at level m.

Definition: Let O(X) be a MSF. X is a cut vector at level m if

O(X) < m. It is a cut vector at minimal level m if O(X) = m-1. If,

in addition, 0(Y) > m whenever Y > X, then X is called a minimum cut

vector at minimal level m. Let_ = . be a vector such

that if X < m, then O(X) < m and if Y >m, then O(Y) > m. The

vector m will be called a min cut (minimum cut set at system

level m). The jth min cut at system level m will be denoted

_70 , .... n). There are t min cuts for each system
I nin

level m (t when the system level is clear). Also,
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n
,(X) =1 1~ J

_i {xi I ( }

is the jth minimum cut structure function at level m.

Example 2.6: Let *(XlX2,X3) be as in Example 2.5.

Min paths at level I = {(1,O,O),(O,1,O),(0,O,1)}

Min cuts at level I - {(0,0,0))

Min paths at level 2 -{(2,2,0),(2.0,2),(0,2,2))

Min cuts at level 2 - {(3,I,1),(1,3,1),(1,1.3)}

Min paths at level 3 - ((3,3,3))

Min cuts at level 3 = ((3,3,2),(3,2,3),(2,3,3)}

Looking at the min paths and min cuts, it is easy to see that 0 is

parallel at level I, 2-out-of-3 at level 2, and series at level 3.

Theorem 2.3:

5 t

(i) O(X) > m <+ Pj(x) i <-- iL j(X) - 1.
J=l - j1 -

s t

(ii) h m - P( I Pj(X) - 1) = P( IL <j(X) = 1)
Ji1 - j=l

Proof:

s

(i) JL M -(X) I means that pj(X) = I for some J.

Thus, X > mj for some j so O(X) > m by definition. Now assume

O(X) > m. X is then a path vector at level m, and a min path can be

constructed such that X > Mi. This implies that -s p CX) - IJ-1
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since {p j = 1,2,...,s mI contains all min paths at system level m.

The proof is similar for min cuts.

(ii) Part (ii) follows by taking expected values in (i). 3

For independent components, it is true that P(p.(X) 1)

L i5  P(X, > mb. However, it is not necessarily true that
i-I I

PUi p C-x) = 1) =J~~P(p.(X) = 1). This situation arises because

independence among components does not imply independence among path

sets since two path sets can have a component in common. The same

remarks apply to cut sets. This problem is illustrated in Example 2.7.

Example 2.7: Consider a ternary system composed of two ternary

components with two path sets at level 2.

(2[ = 2, 22 = 1), (21 = 1, 22 = 2)

P = (1/4,1/4,1/2) P2 
= (1/3,1/3,1/3)

2

P(U P(X)= I) P(X1 =2 and X2 > I or X > I and X. = 2)j.1 ---

= P(X2 > I) p1 2 + P(X2 
= 2) p1 1 + 0 * p10 = 5/12

2
IL P(P (x) = 1) i-1i-P(x1 = 2,X2 > 1)] * [1-P(X1 > 1, 2)]J-1 J-2 - 1 -( X

= 1/2. 5

2.2.4. Duals

The dual of a binary coherent structure function is useful in

reliability modelling since the minimum path sets of * are the minimum

cut sets of *D and vice versa. Thus, solving for the reliability of
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the dual system is equivalent to solving for the unreliability of the

original system. A similar relationship exists in the multistate case.

This is mathematical justification for computing system reliability

using block diagrams and fault trees which model either system success

or failure.

D
Definition: Let * be a MSF. Its dual, D is defined by

*D(X) D - O(N-X).

Theorem 2.4: (DD . $.

Proof: (D ) D(X) _ M- D(N-X) - M-[M- (N-(N-X))] = *(X).

Theorem 2.5: (Griffith 11980)): The dual of a MSF is a MSF and

possesses the same type of coherence as the original structure function.

Proof: D(0) = M-0(N-O) = M-M = 0.

D (N) = M-O(N-N) = M.

If X > y, OD(x) = M-(N-X) > M-O<NY) = OD(Y). This proves that if

is a MSF, then 0D is a MSF. Now assume 0 is coherent. Let Y

be such that ((Ni-J)i,Y) < 0((Ni-j+l)iY), and let X - N-Y.

D( (J-) i ,X) = M- O(N-((J-l)iX)) = M - $((Ni-j+l)iY)

< M - ((Ni-J)i,Y) = M-O(N-(Ji,X)) = D(jix).

The previous inequality shows that 0 is coherent. If 0 is weak

coherent, let Y be such that 0(OiY) < @(NiY). and use the same

argument. If 0 is strong coherent, let Y be such that 0((Ni-)i,Y)

- Ni-j and 0((NI-t)iY) # Ni- j v A#j, and use the same argument. 0
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Theorem 2.6: Let X be a path (cut) vector at level m for a MSF *.

Then N-X is a cut (path) vector for 0D at level M-m+l. Further-

more, if m is a min path (cut) at maximum (minimum) level m for },

then N-m is a min cut (path) at minimum (maximum) level M-m+L for

D

Proof: If X is a path vector at level m for 0, O(X) > m. Thus,

SD(N-X) - M-0(X) < M-m < M-rm+l, and N-X is a cut vector for 0 D at

level M-m+l. Now let m be a min path for 0. Then 0(m) = m and

v Y < m, O(Y) < m-1. Thus,

D (N-m) = M-O(m) = M-m < M-re+l, and

D (N-Y) = M-0(Y) > M-m+l v Y < m or N-Y > N-r.

D
Thus, N-m is a min cut for *D. The results in parentheses hola by

D D D = .-
considering 0 as the original MSF and remembering that (0 ) = .

cD
Corollary 2.7: If 0 is a k-out-of-n system at level m, 0 is a

(M-k+l)-out-of-n system at level M-m+l.

Proof: Since a k-out-of-n system is uniquely determined by its min

paths or min cuts, this is immediate from Theorem 2.6. D

Exp-ple 2.7: Let 0 have 3 components with 4 states each as in Example

2.5 - parallel at level I, 2-out-of-3 at level 2, and series at level

3. Then 0 (X) (X), i.e., the system is self-dual. It is easy to

see that Theorem 2.5 and Corollary 7 are satisfied. 0

Example 2.8: Let 0 De a series '-vstem composed of 3 ternary

components.
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D (0,0,0) 
- 0

D (1,1,1) 0 4D(oII) = OD(0,0,1) _ I

D (2,2,2) =D 0D(1,2,2) = D (1,1,2) = OD(0,2,2)

0 D (0,1,2) = D (0,0,2) = 2.

Thus, 4D is a parallel MSF. 5

2.2.5 Modules

A module is essentially an assembly of components which can

itself be treated as a component. Modules are useful for breaking up a

large system into several smaller ones which may be more readily

analyzed. They can also be used to determine bounds on system

reliability which are as good as or better than bounds obtained by

considering the original system. The concept of a module is easily

generalized to the multistate case. Let (C,,,) denote a set of compo-

nents C and a MSF 4.

Definition: (A,X) is called a module of (C,O) if A c C and

AG C

O(X) = 4 (X(X ), XA ) where '4 is a MSF. Note that the

number of system states for X must be equal to the number of states

for the first component of 4'.

Definition: A modular decomposition of the system (C,4) is a set of

disjoint modules ((AI,Xi),...,(A ,xr) together with ar. organizing

structure 4, such that

r
(1) C Ai and Ai n A ={ } Y i and j, and
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A A
(2) OMK (xX Xr))

Parts (1), (ii), and (iii) of Theorem 2.8 are due to Griffith [1980].

Theorem 2.8: Let (A,X) be a module of (C,O), i.e.,

V = (x(X A),-A ).

(i) If X and are both coherent, 0 is coherent.

(ii) I~f X and are both strong coherent, 0 is strong coherent.

(iii) If X and 4.are both weak coherent, is not necessarily

weak coherent.

(iv) If is coherent and X is weak coherent, 0 is weak

coherent.

Proof: Consider a component i. If i 4 A, the theorem is obvious,

so asstue i E N.

(i) Since X is coherent, there exists X such that

X(0j- 1) 1 V A) < x(ji1 ,A ). Since 4, is coherent, there exists

X A such that

,A AC

(ii) Since X is strong coherent, there exists XA such that

X( i 2xA j and x(I eX) # j - I -j. since is j

C
coherent, there exists such that
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Wj,x29 - q'(X(JiIXA),X'C)_ (JiiPX A¢> C j and
+( i~x} (x(i 'A) xAc

_ = , _ )¢J = 4'(iX t 0 j a

(iii) The problem here is that there exists XA  buch that

X(Ni,X A) > X(O IXA ), and there exists XA  such that
AC AC  A uhta

4((Mx) ,X ) > 4,(O ,X ), but x(NiX A) is not

necessarily equal to M X . This problem exists even if X is

coherent or strong coherent. As an example, let X(XX2)

= 4'(X , 2 ) be ternary systems with ternary components.

4,(0,O) 4 (I,0) = 0

4,(O,1) 4(1, 1) = 4(0,2)= ( ,2) = 1

4(2,0) = K2,I) = 4(2,2) = 2

Note that states 0 and I of component 1 are indistinguish-

able. Let O(X1 ,X 2 ,X 3 ) = 4(x(XI,X 2 ),X 3 ). Enumeration shows

that 4(X 1,0 2 ,X 3 ) = O(Xl,22,X3) V X1 and X3 . Thus, compo-

nent 2 is irrelevant, so 0 is not weak coherent.

(iv) Since X is weak coherent, there exists _ such that

x(O,X A ) < X(Ni XA). Since 41 is coherent, there exists

X A  such that

O(oi,x ) = 4(CxCOV A) XA ) < ( ×{Ni I A C

= O(Ni ,X) . 0

Theorem 2.8 clearly applies to a modular decomposition by replacing X

with X 9 ... Xr.
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Example 2.9: Consider *(X,,X2X 3 ,X4 ) where everything is ternary, X

and X2 are in parallel, X3 and X4  are in parallel, and X I - X2

are in series with X3 - X4 . This system is shown in Figure 2.1.

1 3

2 4

Figure 2.1 Block Diagram

It is easy to see that

O(X1,X 2X ,X min (XI v X2 X3 v X )

= min (XI(XIX2) , X 2(X3 ,X4)) =( 1 (X1 ,X2), X(X3 X4))

where X is a parallel structure function and + is a series structure

function.

As a sample calculation,

0(2,0,1,1) - ((x(2,0), X(l,1)) = c (2,1) - 1. 0

The next theorem shows that the dual of a module is a module in the

dual.
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Theorem 2.9: If 0 is a MSF and (Ax) is a module of (C,), then

t D X M 4, Cx (X X ).X A .

Proof:

Da (x DCXA),XA ) 41 M _X(NAXA),X )
x

C C

-M -4,( -X(M ) )N A -X )

= M -(N-X) D 0MDx) .0
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3. STOCHASTIC RESULTS

Although the definition of coherence is important in engineering

considerations, most of the stochastic results for the binary case can

be extended to the multistate case assuming only that the structure

function is nondecreasing in each component. Many of the multistate

analogues to binary results exist in the literature although theorem

hypotheses are generally stronger than necessary. These theorems have

been extended to the general multistate model described in Chapter 2

with hypotheses weakened when appropriate. The proofs of these theorems

usually require only minor modifications to the proofs given for more

restrictive situations. Some results which had not previously been

extended to the multistate case also appear in this chapter.

Results pertaining to system utility are contained in Section 3.1.

These are important because reliability is thought of as the probability

that the system is operational. Since the system can be partially

operational in the multistate case, expected system utility is a better

measure of system performance than is reliability. In Section 3.2 the

relative importance of each component to the system is considered. Many

of the reliability importance measures in this section had not been

previously extended to the multistate case. It is known that certain

classes of life distributions are closed under convolutions, mixtures,

and the formation of coherent systems. By extending the idea of life

distribution classes to life distribution processes, these closure

theorems are shown to apply to the multistate case in Section 3.3. The

results for closure under the formation of coherent systems previously
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existed in the literature, but the results for closure under

convolutions and mixtures are new. Reliability bounds on both system

and component reliability are considered in Section 3.4. Butler 11978]

extended most of the bounds on system reliability to the multistate case

using the probability that the system is at a certain level or higher as

a measure of reliability. In Section 3.4.2 these bounds are shown to

apply to expected system utility. In addition, bounds on the expected

utility of non-coherent systems are obtained. Bounds on component

reliability are usually based on properties of the life distribution

class to which the component belongs. Using life distribution proces-

ses, these bounds are applied to multistate components in Section 3.4.3.

3.1. System Utility

In Section 2.1, the reliability ot the system at level k was

defined as hk = P(0(X) > k). Note that hk # E (X) as it was in the

binary case. In the multistate setting, E$(X) = IM P(0(X) > k) =
M- k k

k h . However, neither h nor E$(X) is necessarily the best

measure of system performance. It is possible that system states j

and J+1 have nearly identical utility while there is a large

difference in the utility of states k and k+1. The measure of system

performance that will be used in this thesis is expected system utility.

Let U(.) be a utility function which assigns value ak  to system

state k, k - 1, 2, ..., M where a0 = 0 without loss of generality.

M M
U($(X)) = - akl{(X),k} = bkl{(X)>

k-I - k-I---

where bk ak- -"
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M M k
EU(4<X)) = X akP(O(X) - k) - I bkh

k=1 k-i

When ak = k v k, EU(O(X)) = E(X). When a. = 0 - j < k-I and

k
aj I j > k, EU((X)) - h . Thus, expected utility includes

expected value and reliability as special cases. If *(K) is weak

coherent, 0 = a 0 < a, < e* *< aM and bk > 0 - k. If OM0 is

coherent, 0 = a0 < a I < - < am  and bk > 0 v k.

Theorem 3.1:

N.
EU(O(X)) I' piJEU((j i,X))

j=O

Proof:

EIJ(O(X)) I b i p pjP(O(X) > kjX i  j)
k=l j=0

N. M
SPijk' bkP(O(Ji9X) > k)

Ji=O k=

I' P1 j EU((JiX)) . 0
J-0

Using Theorem 3.1, the following pivotal decomposition can be derived

where the first equality holds only for independent components.

M

- P(X - x) I bk I(O(x)>k}

x 0 (_
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Theorem 3.2: If * is a coherent MSF, then

(i) EU($(X v Y)) > [EU(,(X))I v [EU(¢(Y))] where equality holds

if and only if 0 is a parallel structure function.

(ii) EU(#(X A Y)) < IEU(O(X))I A [EU(O(Y))] where equality holds

if and only if 0 is a series structure function.

Proof: (i) From the pivotal decomposition,

P(0(X v Y) > k) - P(O(X) > k) v P((Y) > k)

i X I[ ({(xvy)>k ) (O(x)vO(y)>k}] P(X = x,Y = y)

From Theorem 2.2, the quantity in brackets is always nonnegative and is

0 if and only if 0 is a parallel structure function. The result

follows by multiplying by bk > 0 and summing over k.

(ii) The proof is similar. 0

The next result shows that expected system utility is increasing in

qiJ (recall qi = P(Xi> j). If * is coherent, then the expected

system utility is strictly increasing in qij"

Theorem 3.3: Let X(X') have distribution q(q').

(i) If _q<' and * is weak coherent, EU(0(X)) < EU((X')).

(ii) If _ < q' and * is coherent, EU(O(X)) < EU(O(X')).

Note: q < q' is the same as saying X is stochastically smaller than

X' or X < X'.-- - -St -

Proof: (i) Since <' and O(X) is increasing in X,

P(O(X) > k) < P(0(X') > k) - k.
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The result follows by multiplying by bk _ 0 and summing over k.

(ii) Since q < _', P( (X) > k) < P( (X') > k).

Inequality must hold for some k since * is coherent, and the result

follows by multiplying by bk > 0 and summing over k. To see that

coherence implies inequality for some k, assume _ and q' differ

only in the ith row.

N
P((X) > k) = i P 0((JICiX) > k)

j=0

Ii q[P(Ji,X) > k) - P(O((j-1)i,X) > k)]

j=0

where P(O(-liX) > k) S 0

SqijP (iX') > k) -P(O((J-l)i,X') > k)]

j=o

N.

< 1 q' i[P(0(ji,X') > k) - P(O((j-1)i,X') > k)]
j=o 

1-

by coherence

= P(O(x,) > k) . D

Theorem 3.3 is a special case of the economic theory of stochastic

dominance and utility functions. See, for example, Hadar and Russell

[1969).

3.2. Reliability Importance

When deciding whether or how to improve a system, it is useful to

know where a given improvement would do the most good. Obviously a

budget constraint is necessary, but a good heuristic approach to
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improving system reliability is to start with the component that yields

the greatest increase in system reliability for a given improvement in

component reliability. Several measures of component importance have

been suggested. A measure for which component probability distributions

are not necessary is called structural importance while reliability

importance is the term given to a measure which involves those

distributions. The first definitions of structural and reliability

importance were proposed by Birnbaum [1969). These measures and their

attributes have been extended to the multistate case by Butler [19791

and Griffith [1980] in different ways. The theorems and proofs in those

papers have been slightly modified to fit the more general multistate

case presented in this thesis. Other importance measures are due to

Barlow and Proschan [t975b] and Fussell [19761. These measures and

their attributes are herein extended to the multistate case. For a

complete discussion of binary reliability importance, see Lambert

[1975]. Throughout this section, it is assumed that the components are

independent so that hk = hk (P) and upgrading one component will not

affect other components.

Definition: The Birnbaum Reliability Importance of component i in a

binary system, denoted I h(i,P), is defined by

Ih(i,P ) = 6h(P) = h(li,P) _ h(Oi,P)

5Pi-
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Definition: (Butler [19791). The r,s reliability importance of compo-

nent i at level m is defined by

ir,s (iPri=p)

h (i,P) - _ hm(si,P) - P(O(X) > mfA . r)

where 0 < s < r < N.

Theorem 3.4: (Butler (1979J). Let 60 + 61 + "o" + 5 N 0, and

let 0 < pkj + 6j < I - kj. Define P by

SPi if i# k

(Pkj + 6j if i k

Then,

h(P) h(P) + 6Nkh (kP) + ' + 6 11 'O(kP)

Proof:

h(P) + 6 INk  (k,P) + *9 + 6 1 1'0 (k,P)

N 
k[J_0 Pkjh(J k9 P )  +  6 N k[h(Nk'Pt)-h(Ok,-P)] +  ° "+  61 [h(lk'-P)-h (0k'P)]

k 'J=1 (Pkj + 6j)h(ikP) + Pk0h(0kP - h(Ok,P) kjl 6j

N k  N K
kj-o (Pkj + 6j)h(k'P) - h(O ,P) NK 6

J-0 k+- k05-
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where the last line follows since P and P differ only in the

kth row. 0

A A

Theorem 3.5: Let X(X) - (X(X),X ), let i c A, and let X be

a binary MSF. Then

ir,s (I) I,0 rs (I) .
h h h x

Proof:

h (ri P) = h( 1, C)hx(riXA) + h (01,e )[1-h x(rixA)]

h (siP) = h (01 XAC)hx(sI,xA) + h (01
X )[-hx(siXA)]

Irs (i) = h (ri,P) - h (si,P)

ACC

= [h (jiX ) - h (,0 xA )][h (riX ) - h x(s ix )]

h# lh 1" '

h h

Definition: X is a critical vector for binary component i if

(1i,X) - 0(0iX) 1. Let n,(i) be the number of critical vectors

for component i. The Birnbaum Structural Importance of compoi.ent i

is

_1 n (i) , -l l~)-*o~)

2n  2nx
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Definition: (Butler [1979]). X is an r,s critical vector at level m

for component i if O(riX) > m and (sX) < m, or

I{O(ri,X)>m} -1 {O(si,X)>m} , 1 .

Let n'si) be the number of r,s critical vectors at level m
0

for component i. The r,s structural importance at level m for

component i is

Irs (i) E [(N +1)(N2+1) ... (N +I)] - I n rs i

Theorem 3.6: (Butler [1979]).

Ni ,0 N ,i-
(i) h N = 1  1i) + ... + IO (i)

N , N. ,N -I
(ii) I i

, (i) = I 
i  (i) + *,, + I 'O(i)

00 (P

(iI) ,(l i[/N]) = Ir s(i) where [I/N] means
h0

Pjj = 1/(Ni-.+l) ' i,j

Proof:

Ni .0

(i) LI (i) = h(Ni,P) - h(Oi,P)

= [h(NiP) - h((Ni-l) iP)] + -.. + [h(li,P)-h(OiP)j

N i N i- I +lO M

h h  i) + + I
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N ,0

(ii) n l{(NitX) > m)) {€(0 , X) > m> ]

x i
I 11 { (N ,X) > m) I {0((N -1),,x) >

{@(i x) > m) {40 > m)

Ni Ni-I ( ,0

iin (i) +.-"+n n' (i)

Multiplying by [(N1+1) -.. (N +I)]- yields the result.n

(iii) h(ji,[1/NJ) = . P(0(jilx) > m)P(X = x)
_Es ,xi=j

[(N 1+l)0.*(Ni-I+l) (N i+l+1) ... (Nn+l)]-

.{O(ji'x) > m)xEs ,xi~j

[ [(N 1+1) "'" (Nn +)]- s I{ (jllx) > m)

Ir [s (i , !1/N]) = [(N +i) 00- (Nn+1)]-1  s [1{,(rx} > m}

- {4(s ,x) > m)
]

[(N +1) " (N+I)]- I r s ( i) = r,s()I- n

A different extension of the Birnbaum reliability importance is due

to Griffith [1980]. In the binary case, h(P) = h(0i,P) + p il h(i,P).

Thus. kncwing I h(iP), it is easy to determine the increase in system

reliabilty caused by upgrading a component. There is a vector in the

multistate case which is analogous to I h(i,P).
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Notration:

Mi 1.'-,%X > J)-P W 0 _>J

I it(1) b. I (M
3-V

_M (I ' , NW

Theorem 3.7: (Griffith [1980]). EU(O(X)) = 1b.iP(V(oisx) > j)

+- I(i) * whee =q,, **. ) (t denotes
_j, whe 12' i

transpose).

Proof:

N

P(O(X > D) 2 P(4O(I ,X) > j)pl

N

I' P(O(I.,X) > j)(qiX-qi ~ )

where q~ 0  I and q-0

N

-PO(C0,X) >J) + [p(t(.t X > D)
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M
EU(O(X)) = ) b. P( (X) > j)

M M N
= . b. P($(0 1 ,X) > j) + I I b [P( 0( YX) > j)

j=1 1 jl 1=1

- P(O((i-1)VX) > j)lqit

I bj P(0(0iX) > j) + I (i)q

j=1

M
Sb. P( (OIX) > j) + q(i) • -

j=l 

_

Corollary 3.8: If component i is stochastically improved from

distribution q to q! > , the change in expected utility is

AEU( O(X)) = I(i) * At where A= q !. - qij i,j > 1

Theorem 3.9: (Griffith [19801). If a = J, so that EU(O(X)) -E(X),

then

I(i) = (EO(I1,X) - EO(0,X), .... EO(N 1,X) - Eo((N -1)i.X))

Several other importance measures are due to Barlow and Proschan

[1975b]. Their multistate extensions are defined herein.

Definition: The B-P (binary) reliability importance of component i is

IBP(i) S h(l ,F(t)) - h(0iF(t))ldF (t)
0

probability that component i causes system failure.
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No

A time dependent version of this measure is

I BP(i,t) E 11-h(F(t))l- i ft [h(IiF(t))_h(0i,FE(t))]dFi(t )

0

t
f [h(l ,F(t)) - h(0 ,F(t))ldF (t)
0 _

n t

I ft h(1iF(t))-h(0 iF(t))]dF i(t)
i=1 0

P (component i causes system failure system is

failed by time t)

The second equality above follows from the fact that if the system is

failed by time t, one of its components mst have been the source of

that failure.

Definition: The B-P multistate reliability importance at level m of

component i is

m ~N -1klBP (i)- yI' f [ hm((k+l) i,F (t) )-hm(k,,F(t) )]dFi( t )

k=0 0

Recall that F (t) = P(Xi(t) k)

Each term in the above sum is the probability that a transition of

component i from state k+I to k caused the system state to drop
m

below w. Ip(i) is the probability that some transition of compo-
BP

nent i caused the system state to drop below m. Letting P - F(t),

we can relate the two multistate reliability importance measures via

1m - 1~ f lk+ltkeiF ~ k(t)
IBP (i) " iI' f" ik F(t))dF(t i

k0 0
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The time dependent multistate version of this measure is

m~(It I [lh(Nt)_ i- I tk

I'BPCimt) _[1-h(F(tyfl- I f [hm((k+) iF(t))-hm(k1 ,F(t))]dFki(t)
k=0 0

N-I t 
kf [hC((k+l)i, F(t))-hm(ki,F(t))dFi(t)

n Ni - I t
I I f [hm((k+l) i 9,F(t) )-hm(ki ,F(t) ) dFk W)

i=1 k=O 0

= P (component i caused the system state to be

< m system state at time t is < m)

m m()

Note that I p(i,) = I M
BP BP

(A ) AC

Theorem 3.10: If O(X) = C(X -),X ), i e A, and X is a

binary MSF, then

(i) I' (i) _10(1) Ik+1k (i)dFk (t)BP k=O 0 h ) hx

(ii) I (M) = I iM where M is the module X of
BP icA B

Proof:

(i) Letting P = F(t), this is an immediate corollary to Theorem

3.5.

(ii) Since failure of the module at time t must be caused by a

transition of one of its components at time t,
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dF M(t) - , [h ((+I) _ -A h x(k ,XA)]dFk t
iCA k=O

where M means module

N 1k+I,k k
I  h (i)dF (t)

icA k-O x

- N-IM f 1 0 (M) Wk+,k dk

P iAk=0 h h

I IMp(i) using part (i) .
i cA

The same idea can be applied to determine the reliability importance

of a cut set instead of a single component.

Definition: The B-P (binary) cut set importance of cut set K is

W K.-{i}
I (K ) I f h(1,9 0 , F(t)) n F (t)dFit)
BP icK. 0 cK -(i

3 j

= P (failure of cut set K, causes system failure).

Definition: The B-P multistate cut set importance of cut set j

(level m) is

J f hm(CrniJ) 1,m(t))[ UI F'(t)JdF' Wti- oi 0

where F-(t) - P(X ) < 14) and

hU((i+1) F"'(t)) - P(*(X(t)) > mIX( ) - ,l+,.xj t) < iI i)
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Note that component I may be unimportant in a particular cut set in

which case

;= N and I V t

Definition: The B-P (binary) structural importance of component i is

I s(i) -f [h(li,F(t))-h(Oi,F(t))]dt
0

= f[h(li,P) - h(Oi,P)IdP
0

where F (t) Fk(t) = P q j,k

The B-P structural importance of component i is derived by letting

all components have the same life distribution and averaging over that

distribution. This importance measure is more difficult to extend to

the multistate case since zhe life of a component is not well defined.

One possible extension is contained in the following definition.

Definition: Let all components and the system have state space

{0,1,...,M}. The B-P multistate structural importance at level m of

component i is

m ( i) N,- mMm
I Ci) - M f® [hm(k+l) i,F(t))-hm(ki,F (t) ]dF (t)

k=O 1-0 0

where F ) P(X (t) < 1) - P(Xk(t) < 1) - j,k

An importance measure which is used in fault tree analysis because

it is easy to calculate is described in Fussell [19761.
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Definition: Let I-hi(F) E P(tt(X(t)) - 0) - P (all components in a

cut set containing i are failed at time t)

N
MOt) R II Xjt)

j=I K

iJ

where N. is the number of cut sets containing component i.

The V-F (binary) reliability importance of component i is

I VF (i) 11[-h i(F))/[I-h(F) ]

= P (component i is contributing to system

failure system failure by time t)

Definition: Let

I-h I'm(F) = P(b 'mt) 1)

S-i
f P(Xk(t) < m x k in a cut set at system

level m for which M3 i)
1

' mX~m in

q'iW i- 1
J-1 k-1 {Xk(t) <

where ,m the number of cut sets at system level m

for which mrn - A.
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The V-F multistate reliability importance at system level m of compo-

nent i at level X is

Ii) -1-hI' (F)1/[1-hm(F)i

Definition: The V-F (binary) reliability importance of cut set K. is
3

I (K) ; II F i(t)/L-h(F)]
VFj i K iiKj

= P (cut set K* is contributing toJ

system failure at time t I system

failure by time t)

Definition: The V-F multistate reliability importance of cut set

is

n m
ImVFi) T= F Fi(t)/jI1hm(F)I

i= 1

The V-F importance measures are all concerned with the probability

that a component is contributing to system failure. Another considera-

tion is the probability that a component is critical to system failure,

i.e., that repairing that component will allow the system to function.

Definition: The criticality importance of component i is

I C(i) E (h(IiF) - h(OiF)JF i(t)/(I-h(F)

- P (component i is failed at time t

and repairing it will restore the

system I system failure by time t)
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Definition: The r,s criticality importance at system level m of

component i is

| r's (i) ( h'(ri,F.)-h'(s,,.E)]F'(t)/[I-hm(F)]

= P(Xi(t) < s, and X i(t) > r would make

*(X(t)) > m I (X(t) < M)

3.3. Closure Theorems

Several categories of life distributions were defined in Section

I.I. An obvious way to extend these categories to the multistate case

kis to replace the component life distribution F.(t) by F. (t)

- P(Xi(t) < k). The following definition is slightly more general.

Definition: Let {X i(t), t > 0) be a real valued stochastic process,
a

and let Ti = inf {t : X i(t) < a} be the hitting time of a. X i(t)

is said to be an IFRA (IFR, DFRA, DFR, NBU, NWU, NBUE, NWUE) stochastic

process if Tia is an IFRA (IFR, etc.) random variable Iv a. The

process X (t) will usually represent the state of the ith component.

This definition allows X it) to be a continuous random variable.

There are several reliability operations for which closure theorems

have been developed in the binary case. One type of reliability

operation which has been previously discussed is the formation of a

coherent system from several components. A second is convolution which

yields the distribution for a sum of random variables. This is used to

get the distribution for the sum of the life lengths of a component and
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several spares. Another reliability operation is mixture of distribu-

tions which is useful when a component may have one of several life

distributions. This could occur if several manufacturers produce the

same type of component, and it is not known which manufacturer produced

the operating component. A closure theorem for one of these reliability

operations states that if the input distributions all belong to a

certain category, then the output distribution also belongs to that

category. The following table shows which categories are preserved

under each of the three aforementioned reliability operations.

Reliability Operation

Life Dis- Formation Convolution Arbitrary Mixtures of Dis-
tribution of Coherent of Mixtures o' tributions that

Class Systems Distributions Distributions do not cross

IFR NP P NP NP
IFRA P P NP NP
DFR NP NP P P
DFRA NP NP P P
NBU P P NP NP
NBUE NP P NP NP
NWU NP NP NP P
NWUE NP NP ? P

P = preserved NP - not preserved ?= unknown

TABLE 3.1 Closure Theorems

The proofs of the results in Table 3.1 may be found in Barlow and

Proschan 11975a]. The binary counter-examples to preservation of life

distribution classes presented therein obviously apply to the multi-

state case. It will be shown that all of the closure theorems which

hold in the binary case have analogues in the multistate case. Not

surprisingly, the main technique used to prove the multistate closure
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theorems is the reduction of the multistate case to the binary case.

The following theorem is due to Ross [19791.

Theorem 3.11 (IFRA Closure): Let {X,(t),t > 01 be independent IFRA

stochastic processes, and let 0 be a MSF. Then {0(X(t)), t > 01 is

an IFRA stochastic process.

In this theorem, 0 does not need to be a multistate function. It

could be continuous, negative, etc.. - just as long as it is increasing

in its arguments. This is true for all the theorems in this section.

The next theorem is due-to El-Ne-eihi, Proschan, and Sethuraman [1978].

Theorem 3.12 (NBU Closure): Let {Xi(t), t > 0) be independent NBU

stochastic processes, and let 0 be a MSF. Then {O(X(t)), t > 01 is

a NBU stochastic process.

Definition: Let T and T2  be random variables with distributions

and F2 . T1 + T has distribution F(t) = ft F (t-x)dF (x)

which is called the convolution of F and F2  and is denoted F * F2 .

In reliability T 1 and T2  are usually the life lengths of components.

Theorem 3.13: Let {X (t), t > 0} and {X 2(t), t > 01 be independent

IFR (IFRA, NBU, NBUE) stochastic processes corresponding to two

components. Let k and I be the respective states for which

k + T is an
components I and 2 are considered failed. Then T 2 T i

IFR (IFRA, NBU, NBUE) random variable.

kan
Proof: Since X t) and X2(t) are IFR stochastic processes, T and

1 2 1

T2 are IFR random variables. The result is then immediate from the

binary case (see Theorem 4.2 of Barlow and Proschan (1975a]). j
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Theorem 3.13 could be considered as the multistate extension of the

closure theorem for convolutions, but it is really the same theorem with

state 0 E (0,1,...,k} and state I E {k+l,...,M} for component I and

a similar equivalence for component 2. Theorem 3.15 contains more of

the flavor of an operating component and spares. First, the following

lemma is needed.

Lemma 3.14: Let {Xi(t),t > 0} be a stochastic process corresponding

to the state of the ith component for which the only allowable state

transitions are from a state to the next lower state. Denote the

sojourn time in the kth state by Tkkl. If the T k,k_ are

independent IFR (IFRA, NBU, NBUE) random variables V k = i, ... , Ni ,

then X i(t) is an IFR (IFRA, NBU, NBUE) stochastic process.

Proof: TI = inf {t : X i(t) < k} = T NIN -I + ... + Tk+l, k

is an IFR random variable since it is a sum of IFR random variables.

Thus, X (t) is on IFR stochastic process.

Now consider a process X(t) as the maximum of several processes

X11 ... ' Xn which represent components. Only one component, the one

which is currently in the largest state, is in operation. Thus,

transitions between the states of components not currently in service

cannot occur, and the only allowable transition is to the next lower

state of the operating component.

Theorem 3.15: If transitions T k,k_ are independent IFR (IFRA, NBU,

NBUE) random variables, then the X(t) process described above is an

IFR (IFRA, NBU, NBUE) stochastic process.

-61-



Proof: Tk F inf (t X(t) < k) - '1 + +T k .
I n

kk
By Lemma 3.14, Tik are all independent IFR random variables. Since

Tk  is the sum of independent IFR random variables, it is an IFR random

variable. 0

Definition: Let (X } be a set of random variables whose index a is
a

a random variable with distribution G. The mixture of X is a random

variable with distribution

F(x) f F a(x)dG(a)

The F will usually represent component life distributions, and aa

will usually have a finite range so that

n
F(x) ) Fi(x)P( = i)

Theorem 3.16: Let {X a(t), t > O} be independent DFR (DFRA)

stochastic processes indexed by a random variable a with distribution

G. Let X(t) be the mixture of Xa(t). Then X(t) is a DFR (DFRA)

stochastic process.

Proof: Let Ta inf (t : X (t) < a}, and let F a be the distri-

a a - a

bution of To. The distribution of Ta R inf (t : X(t) < a} is

aF a t d~) Since each T aisaDRrno
,.aa ia Frndmvariable,

Ta is a DFR random variable from the binary DFR closure theorem for

mixtures (see Theorem 4.3 of Barlow and Proschan (1975a]). 0
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Theorem 3.17: Let {X a(t),t > 0) be independent NWU (NWUE) stochastic

processes such that there is no crossing of Fa  and Fa, on (0,-)
a a

v a, a, a'. Let a be a random variable with distribution G, and

let X(t) be the mixture of X (t). Then X(t) is a NWU (NWUE)

stochastic process.

Proof: Same as the preceding theorem using the binary NWU closure

theorem for mixtures of distributions that do not cross (see Theorem 5.7

of Barlow and Proschan [1975a]).

3.4. Bounds

It may often be difficult or time-consuming to compute exact

system reliability, especially for large systems. Thus, it can be

useful to have upper and lower reliability bounds. If the lower bound

is sufficiently large, no further calculations will be necessary to

satisfy reliability requirements. If the upper bound is too low, this

may be an indication of problems in the system design. In the

multistate case, system reliability is the probability that the system

structure function meets or exceeds a certain level. Several upper and

lower bounds on system reliability are given in Section 3.4.1. These

include the use of modular decomposition which helps make the

computations feasible for large systems and often leads to improved

bounds. Bounds on expected system utility are discussed in Section

3.4.2. These are simple extensions of the bounds in Section 3.4.1 and

are useful since expected system utility is a better measure of

performance than reliability for multistate systems. Bounds exploiting
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the properties of various life distributions are contained in Section

3.4.3. Some of these bounds are formulated specifically for multistate

components, and some are for multistate systems.

3.4.1. System Reliability Bounds

The bounds in this section pertain to hk = P($(X) > k). The

first paper to consider multistate reliability bounds was Postelnicu

119701. The results from this paper have been slightly modified and are

contained in Theorem 3.18.

Theorem 3.18: Let 4i(X) = (X.iO), and let v i(X) = *(X.,l). Let

Fi(k) =P(pi X) > k), and let Fvi(k) = P(vi(X) > k). If

$ is a MSF with independent components, then

Ci) P(Pi(X) > k) < hk (P) < P(vi(X) > k) - i and k

- _gi 1- (k -_v

(ii) F * .. * Fnk) < h k(p) < F * n..* F (nk)

n n

( L P( i(X) > k) _< hk(P) < fl P(v.(X) > k)
i=l i=1

Proof:

(i) i(C) = *(Xi,0) < *(X) < (Xil) = v.(X) - i.

The result follows immediately.

(ii) Summing on i and dividing by n in the equation from

part (i) yields

. X v (X)+•+v X)
< OMx < In

n n

The result follows from properties of convolutions.
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(iii) Since max[ l(X) ... (X)] < < miv (X)...v n(X),

P(max[ I (X),..... n(X)J > ki < hk (P) < P(min[v (X),...,v n(X)] > k).

The result follows from the independence of the Xi.

Bounds on multistate system reliability were also obtained by Barlow

and Wu [1978], EI-Neweihi, Proschan, and Sethuraman 11978], and Hatoyama

(19781. These bounds and many others are contained in Butler [1982].

The rest of the theorems in this section, except Theorem 3.19, come from

Butler's paper, and any proofs which are omitted may be found therein.

The following definition may also be found in Section 1.1 and describes

components which have similar rather than independent behavior. This

might be useful to describe components in a common environment.

Definition: Random variables X X are associated if
In

COV(F(X), AX)) > 0 -v pairs of increasing binary functions

7 and A (assuming the covariance exists).

Associated random variables have the following properties. Proofs may

be found in Esary, Proschan, and Walkup [19671 or Barlow and P-oschan

[1975a].

(1) Subsets of associated random variables are associated.

(2) Independent random variables are associated.

(3) Increasing functions of associa.ed random variables are

associated.

(4) If X1, ..., Xn are associated random variables, then

X ... Xn

-65-



n
P(X > x Xn > xn ) >  TI P(X > x), and

t=1

n
P(X < x .... Xn < Xn ) > II P(X < x).

i-l

Theorem 3.19 (Series - Parallel Bounds): Let ¢ be a MSF for which

min (Xt) < (X) < max (X ) and let X., i = 1, ..., n be associated.
- j 1 1

Then

n
"I P(Xi > in) < < I< P(X 1 > in)

i=1

Proof: Since the Xi  are associated, I(X.>m} are associated by
1-

property (3). Since min (X.) < 4(X) < max (X

n
fTi IL 1 O~ )({X~m}- { (x)>m} {Xlm-

Taking expectations and using property (4) yields

n
P(X i > M) < P(XI > M, .... X > m)i=1 - - -n-

n n
[i xi i< I-

= I- P(XI < M....X < M)

n

<(I- a1 P(X < M)-- A_( >M.
l-l i-I
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Theorem 3.20 (Path-Cut Bounds): Let * be a MSF with associated

components X1, ..., X n . Then

t

ri P(,c (X) < hm < L P(P (x)- 1)

Proof: K1(X )  ... , Kt(X) and p I M, *' Ps(M)are increasing func-

tions of X and thus associated by property (3). Using Theorem 2.3,

the fact that i and p are binary, and property (4) of association

yields

t
h m - P( IC.(X) = )P((X) > 0t(X) > 0)

_> I P(Kj fi )

j=1

n

hm = P( iL pi(X) . I) 1 1 - P(PW(X)<O, .. Ps(X)<0)
i= 1

s s

< 1 - II P(Pi(X)<O) - II P(Pi(X) 1) .0
i=1l

Corollary 3.21 (Path-cut bounds for independent components): If the

xi In the preceding theorem are independent, then

t n 5 n
ii iL P(XK > m;) < hm(P) < I i P(X 1  ml )

i-I i-I i- i-I
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Proof: From independence

n

P(Px) = 1) - T1 P(X i  and
i.1

n n

P( J W)- 1) - 1- I P(X < mi) - P(x 1 >wm) . 0

Note that equality does not necessarily hold in Corollary 3.21 as shown

by Example 2.7.

Theorem 3.22 (Max-min bounds): Let 4 be a MSF. Then

max P(p.(X) = 1) < hm < rain P(K.(X) = i)
j -j -

Proof: From Theorem 2.3, p.(X) < _(X)>M} < i (X) V ij.
3 1- 1---

The result follows by taking expectations, maximizing over j, and

minimizing over i. 0

Corollary 3.23 (Max-min bounds for associated components): If 4 is a

MSF and X1 , ..., Xn are associated, then

n n

max 1 P(Xi > m) < hm < min IL P(Xi > i)
j i11 j i-i

Lemma 3.24 (Bonferroni Inequalities): The following equations are true

for arbitrary events E l, ..., En
n

(i) P(E1 UE2 U -. ,En) < I P(E )
J--
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n n-I n
(ii) P(E UE2U se UEn)n > I P(Ej) - I P(E jn Ek)

(ii) P(E 2J-1 i-I k-j+1

Theorem 3.25 (Bonferroni Bounds): Let 0 be a MSF.

(i) hm < IS  P(p(X) = 1).

(ii) hm > j P(Pj(X)= I)

I s-1 16 P(P.(X) Pk(X) - I).J=1 =j+1 i - k

(iii) hm > I - Itl P(Kj (X) . 0).

(iv) h" <I- It P( j(x) - 0)

I- tkfj+1 (I (X) - K - 0).

Proof: Apply the Bonferroni inequalities to

hb P({OP I(X) - 0 U ... U (p s(X) = I) - I - P(O(X) < m)

= I - P(, (X) = 01 U ... U {1t (X) = 01) . 0

Note that the idea in Theorem 3.25 could be extended by adding more

terms in the Bonferroni inequalities, e.g.,

n n-1 nP(E IU *.° UE ) < P(E - I n P(Ek

n I- J- 1-I k-j+1

n-2 n-I n
+ I I I P(E UkUEkE)

J-I k-j+1 1-k+1

-69-



Corollary 3.26 (Bonferroni bounds for independent components): If 0

is a MSF and X,, .... X are independent, then

S n

(i) h(P) < R P(Xi > m )
J-1 i=-

s n s-I s n
(i1) hm(P) > . n P(X > mj ) - R ) f P(X > max (mm))

j-1 i=l j=1 k=j+l i=l --
t n(iii) hm(P) > I - t n P(X i < m)

J=1 i=1

t n
(iv) hm(P) < I - 1 1 P(X i <

j=1 i=1

t-I t n k
+ n II P(Xi < min (mn, kmi)).

j= k=j+l i=l

Example 3.1: Let O(X1 ,X2 ,X3 ) be parallel at level I, 2-out-of-3 at

level 2, and series at level 3. Let P = (., .4,.4),

.t2 - (.2,.2,.2,.4), and P3 = (.1,.2,.2,.5). Calculations of exact

system reliability are shown below.

3
P((X) > I) = i P(X i > 1) = .998

i

P(O(X) > 2) = P(X I > 2, X2 2 2, or .X > 2, X3 > 2, or

X> 2, X3> 2) - .788

3
P(X) , 3)i - r i3 = .08

71
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Table 3.2 contains several upper and lower bounds for this system.

Notice that several of the bounds are exact at level I and level 3.

This is reasonable since series and parallel systems are very simple

systems. The best bounds at level 2 are the path-cut lower bound (.761)

and Bonferroni upper bound (.812). Bonferroni bounds may be outside the

unit interval and may not be monotonic in the system level. 3

Upper Theorem Series- Path- Max- Bonferroni Bonferroni "Actual
Bounds at 3.19C Parallel Cut Mi (i)and(ii) (iii)and(iv) Value

Level 1 1 .998 .998 .998 2.6 .998 .998
Level 2 1 .976 .867 .88 1.46 .812 .788
Level 3 .08 .82 .08 .4 .08 .26 .08

Lower
Bounds at

Level 1 .998 .576 .998 .9 .35 .998
Level 2 0 .336 .761 .56 .452 .74
Level 3 0 .08 0 .08 .08 -.7

Table 3.2 Bounds

For large systems, exact reliability calculations or even

computation of the bounds in this section may be difficult. By

exploiting modular decomposition, this computational effort can be

greatly decreased. A second benefit of modular decompositions is that

the resulting reliability bounds are at least as good as the bounds

obtained by considering the whole system. The obvious way to precede is

to establish upper and lower bounds on the reliability of a module at

each level and then use those bounds as if they were the actual

probabilities in the organizing structure.
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Notation: Let 0 be a MSF composed of independent components with

modular decomposition *(X) -f x I(A ) ... X (A )).
_ 1 r r

t n s n

D i i . P(X > X.E (q) IL 1f P(X >
j=l i-I Jl i-= I

L (a) max (D (q)) U (Q) min (E (q))
m<I<M 0< U<m

L ( )  L ; (q) L (q) L (q) U (q) U (q)

H 0 _

H x H x(q) L (qE L (q (q E Ux()

HXr L Xr (q) U xr (q)

It can be shown that D m (q) 0 L m(q) and that Enm(q #Um(q)

in general. D and E (q) are the path-cut lower and upper

bounds at level I for independent components. Note that HX, LX,

and U are matrices with r rows and M+1 columns.
x

Theorem 3.27: Let 0 be a MSF composed of independent components with

modular decomposition O(X) V (I (A .... Xr(A r)).

U (HxQ) )I

(Ci) H,(j) - H4,Cxx(q)) > { ,-~ } ! Lu(uLx()) _ L( )
SH(x() -

(Hi) H()- H 40(H x(I) < f 4' - 4 (U x(_q) < (1
H 41(U
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Note that the equations in Theorem 3.27 show that the exact system

reliability calculated by using modular decomposition is the same as

that obtained by considering the whole ;ystem. This must be true from

the definition of a module. Also note that the path-cut bounds obtained

by modular decomposition are better than the original path-cut bounds,

L (q) and U (q). Butler (19821 has an example of the calculations

involved for each of the quantities in Theorem 3.27.

3.4.2. System Utility Bounds

The bounds in Section 3.4.1 were bounds on the probability that

the system meets or exceeds a certain level. A useful facet of

multistate systems is the allowance for partial operation. For example

the system states might be the percent of rated power generated at a

coal plant. In this case there is no minimum level which the system

must meet or exceed, but there are often requirements on the long run

average capacity. Letting states 0, 1, ... , 100 be the percent of

rated power generated, a lower bound on 100 kP((X)-k) is~k=0

desired. More generally, bounds on I= a P($(X) = k), where a
k=0 k - k

is the utility of state k, would be useful.

Theorem 3.28: Let * be a coherent MSF. Let ak be the utility of

state k with a0  0, and let bk -ak - akl for k = 1, ... , M.

Let Lk < P($(X) > k) < Uk Y k. Then,

M M
bkLk < EU(t(X)) < I bkU k

k-I kl

Proof: Multiplying Lk < P( (X) > k) < Uk  by bk _> 0, summing over k,

and using EU( (X)) - - bk P( (X) > k) yields the result. D
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The best way to use Theorem 3.28 is to set Lk = max(q,... n)

and Uk = min(U',..... n where L and U are the lower and

upper bounds obtained in Section 3.4.1.

Example 3.2: Consider the system from Example 3.1 with ak = k

(or bk = 1).

EU( (X)) = .998 + .788 + .08 = 1.866

The best upper and lower bounds in Table 3.2 are:

U = L = .9981 1

U2 = .812, L= .761

U3 = L f .08

3 3

1 bkLk = 1.829 and X bkU k = 1.88
k=1 k=1

Theorem 3.28 becomes 1.829 < 1.866 < 1.88. Both upper and lower bounds

are with 2% of the actual value. 0

It is possible for a multistate system to be non-coherent. For

example, if the state of the system is temperature, there may be a range

of temperature which is acceptable while both high and low temperatures

are unacceptable. In this case system reliability might be defined as

P($(X) > k) - P(4(X) > i) where 1 - I is the upper temperature limit

and k is the lower temperature limit. This could be accomplished by

setting a = 0 for j < k or j > I and a = I for j - k, k + 1,

X - 1. Theorem 3.29 provides for bounds on non-coherent systems.
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Theorem 3.29: Let * be a MSF, and let Lk < P(O(X) > k) < Uk v k.

Let K - {k bk > 0), and K {k : bk < 0) where b = ak  k I .

Then

SbkL k + X bkUk _< EU(O(X)) < k bkUk + b kLk

k CK+  kK- kcK+ k cK-

Proof: Fork K, bkL k < bk P((X) > k)bkUk

For k c K-, bkLk > bk P(O(X) > k) > b kUk

Summing on k yields the result. 0

Theorem 3.28 is obviously a special case of Theorem 3.29 with K being

the null set for a coherent system.

3.4.3. Bounds from Life Distribution Processes

In this section properties of life distribution processes are

used to determine reliability bounds. In the first part of this

section, it is assumed that the underlying distribution is known to be

IFR, IFRA, DFR, or DFRA and that one parameter of the distribution,

e.g., a moment or a quantile, is known. This kind of analysis is useful

in determining bounds on the reliability of binary components. If a

component is known to have an IFR distribution due to wear-out or a DFR

distribution due to burn-in, it may be possible to estimate the mean

component lifetime and then use these bounds. This analysis can also be

applied to the multistate case, but it may not be as useful because of a

lack of data for a parameter of the distribution Fk(t). The upper

and lower bounds on component reliability can be used to determine upper

and lower bounds on system re:'ibility. In the second part of this
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section, bounds for mean system lifetime are obtained. If it was known

that hk  had an appropriate distribution with a known parameter, then

the bounds from the first part of this section could be directly applied

to system reliability. This is unlikely, however.

Theorems 3.30, 3.31, 3.32, and 3.33 appear in Barlow and Proschan

[1975a] and are intended only as a representative sample of the many

bounds contained in reliability literature.

Theorem 3.30: Let F be IFRA (DFRA) with pth quantile p, i.e.,

F(tp . p).

-aIt

i >(<) e for 0 < t < p

F(t)

< (>) e for t > p

where a = -(1/ ) ln(i-p)

Theorem 3.31: Let F be DFR with mean 1p.

i e for t < p
F(t) <

p pe-1 /t for t > •

Theorem 3.32: Let F be IFRA with mean p.

1 1 for t <

F(t) <

- e - w t  for t >

-wt

where w > 0 satisfies I - wp - e .
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Theorem 3.33: Let F be a continuous IFR distribution with rth moment

1 r' r> 1.
r -

exp (-t/krr for t< 1r

v(t) > r r

> 0 for t > r

r

where k /l'(r+l).

If (X i(t), t > 0 is an IFR (IFRA, etc.) stochastic process, then

the distribution F k(t) is 1FR (1FRA, etc.) for any k. If we know

i

k, then the appropriate bound may be applied. The bounds may also be

useful if F kt is IFR (IFRA, etc.) for a particular k even though
I

X i(t) is not an IFR (1FRA, etc.) stochastic process.

In Lthe binary case it is easy to obtain a bound on system

reliability from the bounds on component reliability. For example if

component I has an IFR distribution with known mean and component 2

has an pFRA distributinle, and the components are

independent, applying Theorems 3.30 and 3.33 yields

- t/X I -atc

h(F1 %F" ) > h(e ,e )for U < t <rin(F, ,i )

To generalize this to multstate systems. a lower bound would have to be

specified for several states of each component. Also, the bounds on

Fk( i nt an IFR probably be corelated icthat the

i-ci

calculation of h might not be straightforward. A way to avoid this
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problem is to use the component bounds together with the bounds on

system reliability from Section 3.4.1 as illustrated in Example 3.3.

Example 3.3: Consider *(XIX ) where X and X2  are independent

ternary components. Let be parallel at level I and series at level

2.

00) = 0 0(2,2) = 2

*(0,1) = $(1,0) = 1(,) = 0(2 0) = (0,2) = 0(1,2) = 0(2,1) 1

At level 1, the min paths are (0,I) and (1,u), and the only mia cut

is (0,0).

At level 2, the only min path is (2,2), and the min cuts are (1,2)

and (2,1).

Applying the max-min bounds for associated components (Corollary 3.23)

yields

2 2
Max ( F P(X > .)i < h < li P(X > 1) or
j,2 i=[ i=1

max (P(XI >1), P(X >1)) < hI< P(X I>0) + P( 2>0) - P(X I>0)P(X2>0)

22 2
SP(X > 2') < h 2 < min (Ii (x > 2J)) or1=1 ~ j=1,2 i=

P(XI=2)P(X 22) < h2 < min (P(X,=2), P(X 2=2))

Now assune that X (t) and X 2(t) are IFR stochastic processes and

k k
that F has mean pi From Theorem 3.33,
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kk

-kt II k
F (t) > e for t < t,

Using this result and the max-min bounds yields

-t/P -t/1' 0 0

max (e , e < h (F(t)) for t < min (ip 2

-t I I t
/*1  t/p2  211

e e < h (F(t)) for t < min (i )

Since Fk(t) is IFR, it is also IFRA, and Theorem 3.32 applies toSic

give

k
-wk t k k

Pi(t) for t > where w> 0 satisfies

k
-w. t

kk 1w - wigi 
= e

Using these inequalities in the max-mmn upper bounds yields

0 0 0 0
-w t -t -w 00
1 2 1 200

h (F(t)) < e + e - e e for t > max (i,1 2 )

I I

2 112
h (F(t)) < min (e-  e for t > max

The technique in Example 3.3 can be used to combine the bounds in

this section and Section 3.4.1 to derive bounds on system reliability.

The results in Section 3.4.2 could then be applied to get bounds on

expected system utility. There are also some boinds which apply
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directly to mean system lifetime in the binary case. In the multistate

case these bounds apply to the mean time that the system spends above a

certain level. The following definition will be useful in this

developmen r.

Definition: Let F and G be continuous distributions, let G be

strictly increasing on its support, and let F(O) = G(O) = 0. F is

star-shaped with respect to G, written F < G, if (i/x) G- I(F(x)) is

increasing in x > 0. Some properties of this ordering are:

(1) F < G is scale invariant but not translation invariant.

-Xx
(2) Let G(x) = I - e . Then F < G is equivalent to F

being IFRA.

(3) If F < G, then F(x) crosses G(Ox) at most once as x

increases from 0 to - for each 0 > 0. If a crossing

occurs, it occurs from above. If F and G have the same

mean, the crossing must occur.

Theorems 3.34, 3.35, and 3.36 apply to binary systems of binary

components and may be found in Barlow and Proschan [1975a).

Theorem 3.34: Let X i(Y i ) have distribution F i(Gi) with mean

and let F < Gi , i = 1, 2, ... , n. Let XP ... , X be associated,
i * i n

let Y1, "''9 Yn be associated, and let Xi be independent of

Y. v ij. Then the mean life of a series system using components with

lifetimes X1, ... , X is greater than the mean life of a series systemSn

using components with lifetlmes Y[ ...,' ¥n while the opposite is true

for a parallel system. More precisely:
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E(min (Xi .... IX )) > E(min (Y ... ,Y)) and

E(max (XI , ....X )) < E(max (Y I Y.... n )) "

Theorem 3.35 is derived using Theorem 3.34 and property (2) of

star-shaped ordering.

Theorem 3.35: Let ± be the mean life of a series system, and lets

Pp be the mean life of a parallel system composed of n associated

components. Let the ith component have an IFRA (DFRA) marginal

distribution with mean i"

co n -t/ Ii n
(i) %s > (m) f I e dt = ( I

0 i=1 i=I

(i 0 -<m e dt

P < 6 i=i

Theorem 3.36: Let t be a binary coherent system with min cut sets

KI, ..., Kt  and min path sets Pi. ...' Ps . Let component lifetimes

be associated, and let the ith component have an IFRA marginal

distribution with mean Li Let T be the system lifetime.

=' - t/ i

max [ X I/ - ET min f iL e dt

j iP. j 0 icK.

k
To apply these results to the multistate case, let Xi be the

time that component i spends at or above state k, and let the system

be series (parallel) at level k. Assuming that the hypotheses of

Theorem 3.34 hold for Xi  and Yi, the mean time spent at or above

-81-



system level k by a series system at level k using component

lifetimes xP .. Xk is greater than that obtained by using
k k

YI' ... , Ym" The opposite is true for a parallel system at level

k.

k k
Theorem 3.35 (Multistate Version): Let k (jI ) be the mean life of

Sp

a series (parallel) systerd at level k, and let the ith component have

k
an IFRA (DFRA) marginal distribution at level k with mean i"

k
c n /nM l P k >  ( ) f  ri e t I, 1/ 4. k/ )- t

0 i=l i=[

CO-f -t/4 k

(ii) tk < m> r - e dr

0 i= I

Theorem 3.36 (Multistate version): Let be a MSF with minimum cut

structure functions KcI, ..., Kt at level m and minimum path

structure functions pi ... Ps at level m. Let the time that

compor~ent i spends at or above level j be IFRA with mean ,and

let all such times be associated. Let Tm be the time that the system

spends at or above level m. Then

n J
max El I /X1-1 < ETM < min f e i dtI<J<s 1-, 1t<__t 0 i=1

j -jm m +1
where 1- 1 and j =

I i i~

0 0
By convention pi so L 0.
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Proof: E(tlzme p i(X(t)) = 1) < ETm < E(time s.CX(t)) 1) V i,j so

max E (time pj(X(t)) 1 1) < ETm < min E(time iY(X(t)) - 1)

J J

The result follows from the multistate version of Theorem 3.35 since

n 
I

E(t ime P"(X(t)) ) = ECt ie Xi > m V i) > ( 1/0. ) - . and
i=L

E(time K.(X(t) = 1) = E(time Xi > mj  for any i)

= ECtiue X > +l for any i) < f Ii e dt-m X 0 i=1

Theorem 3.36 obviously applies when each component is an independent

IFRA stochastic process. In that case a bound on expected total system

utility can be derived assuming that the system runs without repair for

0 < t < -. Multiplying the inequalities in Theorem 3.36 by b and

summing on m yields

Mn M M O

b max [ X I/ ] < Z b ETm < b min f e i dt

m=I j i=I -I m=l m j 0 i= I

Note that the middle term is total expected system utility.

A different idea for applying Theorem 3.36 is contained in Theorem 3.38.

Lemma 3.37: If X19 ..., Xn are associated, then so are XiClCiYi

and .J,, d X where I and J are any subsets of the indices

1, ... , n, and Ci  and d are nonnegative constants.
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Proof:

cov[ I ci i ,  d djX] Cidj COV[X i X > 0
icl jJ icl jeJ ,j

since the Xi's are associated.

Theorem 3.38: Let transitions between the states of a component be

independent IFRA random variables Tij for 0 < j < i < M. Then

-k k
v k, there exists an IFRA random variable T such that P(T > t)

-k> p(Tk > t) Y t.

k
Proof: Let W , k = 1, ... , R, be the distinct paths which can he taken

to reach or drop below state k when the state is always larger than k

before the last transition.

Wk f TMkI + Tk ~k2 +.- + Tkk 1+1 where kI > k, k+ 1  _k

T
k . min (W

k)

k=l,...R

Since sums of independent IFRA random variables are IFRA, the W k  are

IFRA. From Lemma 3.37, the Wk are associated. Thus,

R
P(T > T) - P(min W > t) > fl P(W > t)

k k=1

R -k -k
f fi P(w > t) E P(T > t)

k-i

where W[ .... are independent random variables with the same

I n -distribution as W , ... , Wn
. The distribution of T is the same as
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the distribution of a series system of independent IFKA random variables

-1 -n
(W, ... , W ) and is thus IFRA by the multistate IFRA closure

theorem. 0

The proof of Theorem 3.38 is constructive in that the distribution

-kof T may be constructed from

R k
P(T > t) = 11 P(W > t)

k=l

From Theorem 3.38, > , so we can use in place of

J to obtain the lower bound in Theorem 3.36. A special case of

Theorem 3.38 occurs when a component can be represented by a Markov

process with transition rates Xij, 0 < j < i < M, and an absorbing

state 0. This is important since exponential failure rates are often

assumed, especially when the data is scarce.
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4. BLOCK DIAGRAMS AND FAULT TREES

The main deterministic tools used by reliability engineers are block

diagrams and fault trees. It is assumed that the probability

distribution for the state of each component at a certain point in time

is known and that the problem is to find the probability distribution

for the state of the system. Block diagrams and fault trees are used to

find that distribution. There are many computer codes with block

diagrams or fault trees as input and system reliability as output in the

binary case, and some work has be n done on algorithms in the ternary

case. In this chapter it is shown that multistate components may be

analyzed using existing binary algorithms. Define new binary variables

X i which are I if component i is in state j or higher and 0

otherwise. Block diagrams and fault trees may be formulated in terms of

these binary variables to calculate the probability that the system is

at a certain level or higher. From these calculations, the expected

system utility can be determined. Unfortunately, the binary variables

are highly correlated since Xij = 1 implies X I for k < j, and

this correlation decreases computational efficiency. This chapter

presents the new formulation, problems associated with it, and a special

case in which computational efficiency may be greatly increased.

Notation: N

Xij --I {Xi> J- X, = JI X ij

J=1

M
_ k() (X IV ) k(X)((X) > k1 k=1

kk k

0k (X ) - (* X 2 . . .X 'N I 'X 2 1 .. .. N 2 ' ...'' X n N n
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Each 4k(x) is a binary structure function that depends only on binary

components. Note that EOk(x) - hk and that the minimum cuts for 0k

are the minimum cuts for 0 at level k.

A disadvantage of this formulation is that there are many more com-

ponents, (NI+1)--'(Nn+I) as opposed to the original n. Many of the

binary variables may also be irrelevant. If is series at level k,

then the only relevant components for 0k are Xlk , X2k .... Xnk. we

could, in theory, eliminate these irrelevant components to get M

binary coherent structure functions of n components each, but this may

be more work than solving the original problem. Another disadvantage of

this formulation is that independence among the components is lost.

Even if the original multistate components are independent, the binary

components Xij wilL be associated in general since Xi = I implies

Xik = I v k < j. The binary structure functions are also associated

since J(X) - I implies (x) = I -v k < j. An advantage of this

formulation is that results which require only that 4(X) be increasing

in X follow immediately from the results in the binary case. For

example, some reliability bounds for associated components follow from

the corresponding binary results. However, the major advantage of this

formulation is that computer codes for the binary case can be applied to

the multistate case with adjustments in the model rather than the code.

A block diagram is a system schematic composed of series and

parallel (minimum and maximum) operators. Each block in a block diagram

represents a binary random variable. The output of n blocks in series

is min(Xi 'i=X while the output of n blocks in parallel is

max(Xi I _n  X
i-I Xi'
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Example 4.1: Consider the block diagram in Figure 4.1. The system will

function if component I functions, component 2 functions, and one ot

components 3, 4, and 5 functions.

(X) = I X2 max(X 3,X4 ,X 5)

Computer codes generally perform these calculations in stages, e.g.,

5X 6  Xi2 $ X 7 -- 1 Xi., and O(X) = X6X 7  .0

i=3

3

5 J

Figure 4.1 Block Diagram

If the components in a block diagram are independent, the

calculation of system reliability is simple - just replace X. by
1

Pin
P= (i M 1) and be sure to use J~i=n P1  rather than max(X 1). In

Exaple 4.1, h(P) - PP1 5=3 Pi" If the components are dependent,

then conditional probability expansions are used, e.g.,

h(P) - P IE(4(X)1X 1 = 1) + (I-PI)E(O(X)1X 1  0)

A block diagram is not limited to systems which have only series and
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parallel combinations of components since a system can be represented in

terms of its ain paths or ain cuts (Theorem 2.3). However, if a

component appears in more Zhan one min cut or min path, conditional

probabilities must be used to correctly compute system reliability. The

output of a block diagram is usually the probability of system success,

but the output can be the probability of system failure if the dual

structure function is used.

Example 4.2: Consider the system shown in Figure 4.2. If component I

functions, then the system functions. If not, then one of components 2

and 3 must function, and 2-out-of-3 of components 4, 5, and 6 must

function in order for the system to function. Since components 4, 5,

and 6 appear in more than one place in the block diagram, a conditional

probability expansion must be used to calculate system reliability.

Conditioning on X

h(P) i P P 2+P -P2P31 • [(P +P -P P )P + P P(I-L'4)1}

4 5

2

5-Eli-- -11
Figure 4.2 Success Block Diagram
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The dual of this system is shown in Figure 4.3 with the boxes now

representing component failures rather than component success. Note

that the dual of a 2-out-of-3 system is a 2-out-of-3 system which can be

represented in the two different ways shown in Figure 4.2 and Figure

4.3. J

Figure 4.3 Failure Block Diagram

To perform reliability calculations for multistate systems, design,

block diagrams corresponding to k for each syster. level k, and
k k M bkk

calculate hk E Mk() Then EU(O(X)) = 1 b _E (X) is the

expected s- ' i utility. If the components are independent and if aV

most one level of each component appears at most once in the block

diagram, then the reliability calculation may be performed as though the

binary components were independent. Otherwise conditional probability

expansions are necessary.

Example 4.3: Consider a twin engine jet which can land normally if one

engine is at full power and the other engine is at half power. It can

land on a foamed runway if one engine is at full power or if both
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engines are at half power. It will crash if one engine is at half power

and the other engine is inoperable. Let the component state space be

(0 = failed, I = half power, 2 - full power), and let the system state

space be (0 = crash, I = land on foamed runway, 2 = land normally).

0(2,2) 0(2,1) = 0(1,2) 2

0(0,2) 0(2,0)= 0(1,1) I

(0,1) 0 0(1,0) (0,0) 0

(X) max (X12' X22' 11 X21)

0(X) max (X1 1 X2 2, X 12X 21 )

I and )2 are shown in Figure 4.4. Note that both the component

number and the minimum required component state appear inside the blocks

i'i the block diagram. E

4). -,22,2

1:j P2,2 22

Figure 4.4 Multistate Block Diagrams

There are some cases in which the calculations are much easier.

Consider a MSF which is k-out-of-n at each system level m where k

is allowed to depend on m. Then, for each level k, 0 k(X)

k (Xk X 2k' X nk). Component states other than k are unimportant
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in determining the value of *k This means that if the original

multistate components were independent, then the binary variables Xik

k
will be independent in each * . No conditional probability expansions

will be necessary since the X ik's are independent for fixed k, and for
ikk

every i, only one Xik appears in the block diagram for *k. This

situation occurs in Example 4.4.

Example 4.4: Let *(XI,X 2 ,X 3 ) be parallel at level 1, 2-out-of-3 ar

level 2, and series at level 3, and let X I, X 2, and X3 be independent.
33

M1X Xi 2(X) 1 I{3~i>2 }

(I= IX1

3

I3x- *2(x =1
xi) IT {~ >2

i=l

The block diagram for each *k is shown in Figure 4.5. Reliability

1 3
calculations may be performed using independence for * and $ , but

conditional probabilities are necessary to correctly calculate

P((X) 1). []

4 1,1 1,2 - 2,2

1 H 2

,3.

Figure 4.5 Multistate Block Diagrams
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An even more specialized case occurs when all of the * have

identical block diagrams. In this case a system analysis would require

only a single block diagram with different input probabilities for

different system levels. This would occur for a system which is series,

parallel, or k-out-of-n at all levels. It also occurs in Example 4.5.

Example 4.5: A power plant can generate 0%, 25%, 50%, 75%, or 100%

(corresponding to states 0, 1, 2, 3, and 4) of rated electric capacity

depending on the condition of the turbine and the amount of steam flow

reaching the turbine. Three turbines are available, and the one which

can maximize power output is always used. Components 1, 2, and 3 are

the turbines and component 4 represents the rate of flow at the

turbine. The block diagram for all levels of this system is shown in

Figure 4.6. 0

Figure 4.6 Multilevel Block Diagram

Fault trees and event trees are system models consisting of a top

event and a structure delineating the ways in which the top event can

occur. The term fault tree is used when the top event is system failure

while the term event tree is used for system success. The tree
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structure consists of "and gates" and "or gates" which respectively

perform the same function In the fault tree as the series and parallel

operators in the block diagram. The inputs to these gates are generally

component successes or failures.

Example 4.6: The fault tree and event tree for the system in Example

4.2 are shown in Figure 4.7. The squares with numbers inside represent

an occurrence of component failure in the fault tree and component

success in the event tree. The dual of a fault tree is an event tree

and vice versa. It is very easy to draw the dual since the only changes

are that "and gates" become "or gates" and "or gates" become "and

gates". 0

Fault Tree Event Tree

{yseFaiiJrj L Sstern ucce5

oi

/2\

O" and gate" - Minimum of its binary inputs.

"or gate" - Maximum of its binary inputs.

Figure 4.7 Fault Tree and Event Tree
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Computer algorithms based on fault: trees generally procede by

finding the min cut sets of a system. This is a minimal group of

elements whose failure to function causes the system to fail

to function. In a fault tree the min cut sets for the system are the

minimal sets of basic events which cause the top event to occur, i.e.,

the min path sets in the dual structure. Kin cut sets are useful to

reliability engineers since they provide a qualitative measure of the

most important components in the system. The relationship

t

0(X)- ii IL xi

J-1 icK

is then used to determine the value of . If the components are

independent and each component appears in at most one min cut set, then

t
EO(X)- I Ji Pi

J-I icK

Conditional probabilities must be used if a component appears in more

than one min cut set just as in block diagrams. Calculations of system

reliability using fault tree computer codes generally take longer than

the same calculation with a computer code based on block diagrams, but

the output from the fault tree evaluation includes the min cut sets

while the block diagram output does not.

The extension of fault tree analysis to the multistate case is very

similar to the extension of block diagrams. A fault tree or event tree

is constructed for each system level. Basic events are Xik for event
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trees and L-X ikfor fault trees. A binary fault tree code is used to

determine E#k(x) for each system level k, and expected system utility
is calculated from EU(#(X)) - Lk-I b E*k (X) "

Example 4.7: The event trees for the structure function contained in

Example 4.4 are shown in Figure 4.8. 0

3.: Success

15,3 2 3,3

Figure 4.8 Multistate Event Trees

The special cases pertaining to multistate block diagrams have

straightforward analogies to fault trees and event trees. In particular

if the * have identical block diagrams, the fault trees or event

ktrees for each 0 are also identical. This is very useful

computationally since the min cut sets need to be found only once.
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Example 4.8: The fault tree for the system contained in Example 4.5 is

k
shown in Figure 4.9. The min cut sets for * are ((4,k)) and

{(Ik),(2,k),(3,k)). Thus,

*kX)X- II Xik i-I

Assuming independent components,

3

E(X) P4 k iL Pik "
it 1

Li: Failure

Z1, 2,k Z3k

Figure 4.9 Multilevel Fault Tree

-97-



5. THE CONTINUOUS MODEL

In this chapter the state of each component and the system is al-

lowed to be any real number in the unit interval. The restriction to

the unit interval is used only for discussion purposes, and the results

are valid for any finite segment (possibly different segments for each

component) of the real line. The multistate model can be considered as

a special case of the continuous model by restricting a component with

N + I states to values (0, I/N, ... , (N-i)/N, 1) in the unit

interval. This approach has not been taken since it is felt that the

multistate model will be of more practical importance than the

continuous model. Since any process requiring measurement has a ntunber

of states limited by the precision of the measurement device, there are

no truly continuous processes in reliability engineering. For example,

temperature can be measured only to the nearest degree or fraction of a

degree. In current practice a continuous process is usually broken up

into a finite number of qualitative states, e.g., low, normal, and high

pressure.

All of the results previously presented for the multistate case

have analogues in the continuous case. Coherence means that the struc-

ture function is increasing in the states of its components, that an in-

finitesimal change in any component state may cause an infinitesimal

change in the system state, and that an increasing utility function is

associated with the states of the system. Some concepts such as cut

sets do not seem as relevant since there could be an uncountably

infinite number of them, but the results presented in Chapters 2 and 3
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are still valid. Block diagrams and fault trees can still be used to

determine the probability that the process exceeds a certain level.

Unfortunately, however, they cannot be used to determine expected system

utility unless the utility function is piecewise constant since that

would involve an infinite number of calculations.

5.1. Definitions

The definitions in this chapter are straightforward extensions of

the definitions in Chapter 2. Let Xc[0,11 be the state of the ith

component ([0,11 is the unit interval), and let 0 : [0 ,In _ 10,I1 be

the state of the system.

Definition: OX) is a Continuous Structure Function (CSF) if

(1) t(O) 0 0, 0(l) = t, and

(2) O(M) is increasing in X.

Definition: Component i is said to be

(A) Relevant if there exists X such that 0(1ix) > Oi,I ) .

(B) Fully Relevant if 4 0 < Y < Z < 1, there exists X such

that *(Zix) > O(Y ,X).

Definition: Let *(X) be a CSF, and let U(4(X)) be the

corresponding utility function which assigns utility a(Y) to state Y.

Let a(O) - 0.

*(X) is called

(A) weakly coherent if

(1) every component is relevant, and

(2) a(Z) > a(Y) v 0 < Y < Z < 1.
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(B) coherent if

(1) every component is fully relevant, and

(2) a(Z) > a(Y) v' 0 < Y < Z < 1.

(C) strongly coherent if

(1) v' component i and state y, there exists X such that

$CYi.,X) - Y but O(Z1 ,X) ,' y -V Z # y, and

(2) a(Z) > a(Y) Y0 < Y < z < 1.

Example 5.1: Let a(X) - X. Then $(X) is coherent if it is any con-

n
tinuous monotonic mapping from J0,11 onto [0,11. For example,

expCX 2 X 1 2 )-

$(XIO 2) 1e 2 1

if X >Y, then $(X1 .1) > *(Y1 91). if X2> Y., then *(I,X 2) >

$(1,Y 2). Thus, both components are fully relevant, and the system is

coherent. U

To show, that a CSF is coherent or strongly coherent could be very

difficult since the entire unit interval must be considered. A situa-

tion such as the one in the previous example must exist.

Definition: A system represented by CSF $ is called

(1) Series if $(X) - mini (xid.

(2) Parallel if OMX - max (X )
i i

(3) k-out-of-n if $(X) wmax (y: In ItX > k).

The extensions to series, (parallel, k-out-of-n) at level y are similar.
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Theorem 5.1: Let t be a CSF.

(i) *(X V Y) > t(X) v t(Y) and if t is parallel, equality holds.

(ii) t(X A Y) < t(X) A t(Y) and if t is series, equality holds.

Notice that Theorem 5.1 is slightly different than Theorem 2.2, the

multistate version. It is no longer true that (X v Y) - (X) v 0(Y)

implies that t is a parallel structure as shown by Example 5.2.

2
Example 5.2: Let 0(XI,X 2) = max (XI,X 2 ).

(X V Y)= max (K ,X2Y2,Y = max (X v K2 Y 2 v y)
- (X 2 ' 1' 2 1 2'

W o(x) v 0(y)

However, $ is not a parallel structure function. 2

Definition: Let 0 be a CSF. X is a path vector at level z if

0(X) > z. It is a path vector at maximal level z if O(X) z. If, in

addition, 0(Y) < z whenever Y < X, X is called a minimum path vector

at maximum level z. Let z = (z I ...,z) be a vector such that if

X > z, then (X) > z and if Y < z, then X(Y) < z. The vector z

will be called a min path. The jth min path at system level z will be

denoted zJ- (z .. ,zj). Also,

P = X _ zi } = =i oi e I zJ  is the jth minimum pathi X zI(X)(

structure function at level z.

If min cuts are defined as they were for MSFs, they do not exist in

general since there is no X such that 0(X) < z and 0(Y) > z when-

ever Y > X if 0 is continuous in one of its components. In the
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following definition, inequalities which occur in the multistate

definition are changed to equalities so that min cuts will always exist.

Definition: Let 0 be a CSF. X is a cut vector at level z if O(X) < z.

It is a cut vector at minimal level z if O(X) = z. If, in addition,

0(Y) > z whenever Y > X, X is a minimum cut vector at minimal level z.

Let T l .... n ) be a vector such that if X < Z, -(X) < z

and if Y > z, (Y) > z. The vector z is called a min cut. The

jth min cut at system level z will be denoted = (j

Also, K (X'= I- iI0 I<

(X. <z 

is the jth minimum cut structure function at level z.

Example 5.3: Let O(X ,X ) - .5(X I+X 2). Then, (X i'-X ) it , a

min cut and a min path at system level 1/2 - 0 < X <( I. ,otf, that

there are an uncountably infinite number of mrin cuts and min paths at an

uncountably infinite number of system levels. There is no vector z

such that O(z) < 1/2 and 0(Y) > 1/2 - Y > z.

The change in the definition of min cuts, although necessary for

their existence as shown by ExampLe 5.3, may create difficulties with

respect to bounding system reliability. Bounds based on min paths will

be bounds on hZ R P(0(X) > z) while bounds based on min cuts will be

bounds on F. = P(0(X) > z). However, if F is continuous in a

neighborhood of z, then hz - F, and this problem will not exist.

Also, since P(O(X) > z) < P((X) > z), lower bounds based on cuts still

apply.
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r

Theorem 5.2: Let 0 be a CSF.

s

(1) oCx) > z <-+ L pjx 1
j=1 -

t

(ii) OCW) > z <=4 _a c Cx)= I
j= 1

If the X are independent, then P(p.(X) = 1) = Ifi P(X > zi)
S- i=1 i- i

and P(<.(X) = 0) = P(X<i j
J - i=i -- ")

Definition: Let 0 be a CSF. Its dual, 0D, is defined by

0D(x) = I - (1-X).

Theorems 2.4 and 2.5 which state that the dual of a MSF is a MSF

D D
with the same type of coherence and that (0 ) = 0 are identical when

CSF replaces MSF. Theorem 5.3 is the continuous analogue of Theorem

2.6.

Theorem 5.3: Let X be a path (cut) vector at level z for a CSF 0.

Then I - X is a cut (path) vector for 0D at level I - z. Further-

more, if z is a min path (cut) at maximum (minimum) level z for 0,

then I - z is a min cut (path) at minimum (maximum) level I - z for

T)

Proof: If X is a path vector at level z for 0, OX) > z. Thus,

D - X) = 1 - 0(X) < I - z. If z is a min path for 0, O(z) = z

and v Y < z, 0(Y) < z. Thus,
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* (I- z) - I- 0(z) I - z and 4 Y < z,

D - Y) > I- z.

The results in parentheses hold by replacing 0 with 4D and X with

I - x.o0

Let (C,O) denote a set of components C and a CSF 0.

Definition: (A,X) is called a module of (C,O) if A c C and

AAC

(X) - 4(X(X ),X ) where 4. is a CSF. A modular decomposition

is a set of modules {(XIAI)C.... ( ,Adr)} such that

(X) = ((X A ,),...,Xr(XA r)) where the sets A. partition C
1 1

and 4 is the organizing structure.

Theorem 2.8 - which shows that if the modules and the organizing

structure possess certain types of coherence, then so does the original

MSF - is still valid with CSF replacing MSF. In particular, Example 5.4

shows that if X and (, are both weak coherent, is not necessarily

weak coherent. The technique used in this example transforms a multi-

state system into a continuous system. This technique can be used to

extend all multistate examples and counter-examples to the continuous

case.

Example 5.4: The counter-example from Theorem 2.8 (l1) is extended to

the continous case. That example contained ternary components and a

ternary system.
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Let state 0 + states 10,1/31, 1 * (1/3,2/3], 2 + (2/3,1].

X(XI X 2 ) = (XIX 2 ) - 0 for 0 < Xl < 2/3, 0 < X2 < 1/3

X(XIX 2 ) - 4(XIX 2 ) = 1/2 for 0 < XI ( 2/3, 1/3 < X2  1 1
X(XI X 2) - 1(XX2 ) = 1 for 2/3 < X < 1, 0 < X2 < I

Let O(XI,X 2,X 3 ) - (x(XX2),X 3).

Then 4(X,02$X3 ) = (XI,1X 3 ) so component 2 is not relevant, and

0 is not weakly coherent. 0

Theorem 5.4: The dual of a module is a module in the dual, i.e.,

€ (X) = D(x(xA ,X ).

Proof:
ACA

D(xD(x A ),X ) D(I-X(1A-x
A ),X )

= 1- (X(1 A-x A),I A
C- X A )

= l-W(1-X)= D(x)

5.2. Extension of Stochastic Results

Throughout this section, it will be assumed that F () =

P(0(X) > y) is continuous in y. This implies that P(0(X) > y) =

P(O(X) > y). and the problem associated with the definition of min cuts

does not exist. This could be generalized to handle random variables

which have both discrete and continuous parts, but it does not seem

worthwhile in a reliability context.

In the continuous case a utility function has a continuous domain,

{a(X),O < X < 1}, rather than a discrete domain, {aj,j-! .... M}. To

get a continuous analogue of bj . a - aJ- l, set a(0) - 0, assume

a(X) is continuously differentiable, and integrate by parts.
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EU(O(X)) = a(Y)dF (Y)
0

- a(Y)F (Y)I' f a'(Y)F (Y)dY

-a(l) - fla'(Y)dY + I~ a'(Y)[1-F (Y)]dY

= a(1) - a(l) + fl a'(Y)F (Y)dY0

= f' a'(Y)P(O(X) > Y)dY

Thus, a'(Y) is the desired analogue to b.. Proper definitionJ

of a'(Y) at discontinuities of a(Y) would allow this situation to be

slightly generalized, but for applications it seems easier to "smooth"

a(Y) than to be mathematically precise.

Theorem 5.5:

EU(O(X)) = fl EU(O(Yi,X)dF.(Y)

Proof:

EU(O(X)) - fl E[U((X))IX.=Y]dF.(Y)0 1 1

= fl EIU(O(Yi,X))]dFi(Y)

Theorem 5.6: Let 0 be a coherent CSF.

(i) EU(4(X v Y)) > [EU( X))] v [EU(O(Y))] and if 0 is a

parallel CSF, equality holds.

(ii) EU(O(X A Y)) < [EU(O(X))] A [EU(O(Y))] and if 0 is a

series CSF, equality holds.

Proof:

(i) P($(x v Y) > z) - P(*(X) > z) v P( 4(y) > z)

f f i (1(xv_)>z}  1 (x ) v( I)>z) dFx(x dFy(y)> 0

x Y 1.x)z 0xvQ>} X
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where equality holds if 0 is a parallel CSF from Theorem 5.1. Multi-

plying by a'(Y) > 0 and integrating from 0 to I finishes the proof.

Part (ii) is similar. 0

Theorem 5.7: Let X(Y) have distribution q(q'). If &<q' and

is a weakly coherent CSF, then EU(O(X)) < EU(O(Y)).

Proof: Since O(X) is increasing in X, P(O(X) > z) < P(*(Y) > z) V z.

MuLtiplying by a'(z) > 0 and integrating yields the result. 0

Definition: The X,Y reliability importance of component i at level

z is

I h  () P(O(XX) > z) - P(O(YiX) > z) for 0 < Y. < X. < 1.

However, this measure of reliability importance is not as appealing

as the multistate r,s reliability importance since there are an

infinite number of X,Y, and z to choose from. Also, it is not so easy

to change the distribution of some X and derive a nice expression for

the change in reliability in terms of I 'Y (i). There is a stronger

objection to extending the r,s criticality importance to the

continuous case. The denominator of this measure is (N1+1) ... (N +1)

cepresenting the total number of component states. This denominator

will he infinite In the continuous case. There are also problems with

most of the other importance measures since they contain expressions

such as hn((k+l) ,P) - hm(k ,P). It might be possible to consider

derivatives and then integrate over the unit interval, but this does not

seem very useful. However, the multistate extension of reliability
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importance due to Griffith [19801 seems to generalize nicely to the

continuous case.

Theorem 5.8:

I I

EU(4<X)) = f a'(y)P(O(OiX) > y)dy + f I(i)Fi(z)dz
0 0

where

d
I(i) = f a'(y)[dEP((zi,X) > y)dy

0

Proof:

1

P(O(X) > y) = f P(O(zi,X) > y)dF.(z)
0

1 d
= P( (z.,X) > -Y)Fi z)P =Oz0d

_1 _ -- )jz) 7 [P(*(zi,X(( ) >y.izd~

i
P(O(1iX) > y) - f [ zP( (zi,X) > yidz00

+f [ P( (ziX) > y](liz )d

0

dP((ol, x) > Y) + i [dP(O(ziX) > y)1Fi(z)dz

0

Multiplying both sides of the above equation by a'(y) and integrating:
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I

EU($(X)) f f a'(y)P(t(Oi,X) > y)dy
0

+ f a'(y) f [ d P(t(zi,X) > y)] i(z)dzdy
0 0

The result follows by interchanging the order of integration in the

second term. 0

Corollary 5.9: If component i is stochastically improved to a new

distribution F* with F*(z) > F (z) V z, the change in

expected utility is

I

lEUo() - f I(i)(Ft(z) - i(z)ldz
0

The definitions of IFRA (IFR, etc.) stochastic processes apply to

the continuous case as written. In fact the IFRA and NBU closure

theorems (closure under formation of coherent systems) from Section

3.4.3 may be found in the literature for the continuous case rather than

the multistate case. The other closure theorems and proofs apply

immediately to the continuous case.

The bounds in Section 3.4.1 are upper and lower bounds on

P(W(X) > k). These bounds apply immediately to the continuous case with

k restricted to the unit interval. In some of the bounds there are

products of min paths or min cuts. Since this number may now be

uncountably infinite, these bounds may be difficult to compute. If this

occurs, other bounds can be used or approximations can be made. The
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Bonferroni bounds contain sums of a number of min paths or min cuts.

Depending on the problem, it may be possible to transform these sums

into integrals or to approximate the CSF. Example 5.6 shows how a CSF

might be approximated by a MSF.

Example 5.6: Consider (XVX 2 ) - .5(X + X 2). There are several ways

to approximate this CSF by a MSF. As an example,

x i - [lox] X = [lox

*'(X1 ,x 2 ) = [.5(X1 + X2)]

where [X] is the largest integer less than or equal to X. Multistate

techniques can then be applied to 0. On the other hand, if X1 and X2

are associated random variables with densities f and f a direct

calculation is possible.

P((x) > - ) P(x 1 + x> )

I i
"f f f 12 (xy)dxdy
0 1-y

1 1
> f f f (x)f 2(Y)dxdy
O l-y 2

I
f fI(Y)F 2 (1-y)dy 0 0

0

Bounds on expected system utility can be obtained easily from the

bounds on bz - P(#(X) > z). Let

L(z) < P(-(X) > z) < V(z)
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Multiplying by a'(z) > 0 (coherent systems) and integrating yields

I I
f a'(z)L(z)dz < EU(#(X)) < f a'(z)V(z)dz
0 0

This equation is the analogue of Theorem 3.28. To get an analogue of

Theorem 3.29, let Z +  (z : a'(z) > 0) and let Z- - (z : a'(z) ( 0).

Then

f+ a'(z)L(z)dz + f a'(z)V(z)dz < EU((X) < L a'(z)L(z)dz
zz z

+ f + a'(z)V(z)dz
z

Analogous results for the remainder of the results in Section 3.4 follow

immediately by restricting the component and system states to the unit

interval.
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PART II

OPTIMAL MAINTENANCE OF MULTISTATE COMPONENTS

The theory presented in the first part of this thesis is mainly de-

terministic, meaning that time is either fixed or is not considered as a

parameter in the reliability calculations and that no optimization is

performed. This part of the thesis is stochastic in that it deals with

selecting the best strategy for the maintenance of a system over an in-

finite time horizon. Determining the optimal maintenance policy for a

system with failure and repair characterisitcs that vary in time could

be a difficult task. Thus, the usual assumptions are that system opera-

tion is a Markov or semi-Markov process and that regeneration points

exist. These assumptions allow Markovian decision processes to be

utilized.
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6. INTRODUCTION AND HISTORY

Most of the literature on optimal maintenance of multistate systems

pertains to inspection models in which the state of the component is

discovered at the end of each time period, and a decision must be made

to replace the component or leave it in operation. The objective is to

minimize costs which consist of a constant replacement fee and a penalty

cost if the component enters its worst state. Since the transition laws

are Markovian, the system is analyzed using discrete time Markov deci-

sion processes. The main results are control limit rules which call for

replacement of the component when it reaches or drops below a certain

state (called the control limit). This model and several variations of

it are discussed in Section 6.2 after an introduction to Markov decision

processes in Section 6.1. These models regard state 0 as the best

state, and states 1, 2, ..., M as increasingly degraded. The opposite

convention is used herein so that the notation in Parts I and II of this

thesis is consistent.

The models in this thesis differ from previous models in that the

components are assumed to be constantly monitored rather than periodi-

cally inspected. Thus, the decision to retain or replace a component

may be made at any time instead of immediately following an inspection.

In Chapter 7 the repair or replacement process occurs with the system

inoperable. It is shown that an equivalence exists between the contin-

uous time model and the discrete time models previously considered in

the literature. Thus, the major results are control limit rules. Shock

models are those models in which damage to a component accumulates via a
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Poisson process, and a decision is made after a shock occurs to retain

or replace the component. In Section 7.4 it is shown that an

equivalence exists between shock models and the continuous time model

presented herein. Thus, control limit rules which apply to shock models

also apply to the continuous time model. In Chapter 8 it is assumed

that the component or system continues to operate while the repair

process is taking place. The problem is to decide from which states aiid

to which states the process should be repaired. Theorems, including

control limit rules, are presented to help resolve that issue. Choosing

between repair and replacement of a component with the system inoperable

is the subject of Chapter 9. The component may be repaired, replaced,

or left alone, and it is shown that a type of control limit rule is

optimal.

6.1. Markov Decision Processes

The main ingredients of discrete dynamic programming are a stare

space S, a set of actions A, rewards ri(a), and transition probabili-

ties p j(a). The process begins a period in a state i c S, and an

action a c A is chosen. A reward r i(a) is received, and the process

jumps to state j to start the next period with probability p ij(a)

(where j - i is allowed). This series of events is repeated indefi-

nitely. The process is a discrete time Markov decision process (DTMDP)

If the rewards and transition probabilities depend only on the current

state and chosen action. Thus, p i(a) are Markov, i.e., p i(a)

- P(Xn+I a J I gn = i, action a is chosen) is independent of n and

the past history of the process. It is assumed throughout this thesis
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that S and A are finite. Rewards are also finite, and they will

generally be considered costs rather than rewards since the optimization

criterion used herein is minimizing cost rather than maximizing profit.

A policy R is a rule for selecting a decision in each state at

each point in time. Let C be the set of all policies. By the Mar-

kovian assumption, it is sufficient to consider the subclass of policies

that depend only on the current state and period. For an infinite hori-

zon problem, the policies will depend only on the current state, i.e.,

they will be stationary. It can also be shown (see Derman 11962]) that

it is sufficient to consider the class C of non-randomized policies,
D

i.e., policies which assign only one action to each state in each

period. Let {X ,nO,l .... } be the sequence of observed states, let
n

{A ,n-O,l....} be the sequence of observed actions, and let

(W n=O,....} be a sequence of random variables such that W = r i(a)n n i

if X - i and A = a. The problem is to minimize discounted or un-n n

discounted costs over an infinite time horizon. When discounted costs

are considered, a discount factor a will be used. Expected costs in a

single period when policy R is used are

ERWn - I I PR(Xn - i, An - a)ri(a).
icS acA

The undiscounted costs for a finite horizon N using policy R and

starting in state i is

N N
S (i) aE R X X PR(X -J,An-a Xo i)r (a)
SR R En'o n=O JS aA
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The expected average cost is * CRi) - li.m S R(i)/(N+-) when the limit
N+ R

exists. The expected discounted cost for a finite time horizon using

policy R with initial state i is

N
4R (i,a,N) - E R(n I nWn )

and the total expected discounted cost is

R(i,a) - li. R (i,a,N)

N+R

It can be shown that

Ci) = lim (1-a) r, (ia)

R cz*1 R

when the limit exists. Define

41(i,a,N) - min 4R (i,,N), 4,(i,a) min R(ia)
ReC DR R4EC DRRD R D

and

(i) ' min M
RcC DR~iR D

Continuous time Markov decision processes (CTMDP) are similar to

DTMDP. Upon arriving in state i c S, an action a c A is chosen, and

a reward r i(a) is earned. The holding time in state i is exponen-

tially distributed with parameter X i(a), and the process then jumps to

state j with probability p i(a) (pii > 0 is permitted). The re-

wards, holding times, and transition probabilities depend only on the
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current state and chosen action. S and A are assumed to be finite,

and the objective is to minimize cost. In the discounted case, a

discount rate P (O-e - ) will be used. Let (Y(t),t>O} be the state

of the process at time t, let Y(t) = Y if T < t < T where TSn n - - n+1 n

is the time of the nth jump, let A be the action chosen in state Y nn n

and let N = max (n:T <t}. The total expected discounted cost usingt --

(stationary) policy R with initial state i is

WR (i.6) -ER ( e-STn r( Y i)
n=O

The expected average cost is

N
VR W = lim ER (I I=Ot ryn(A n  YO = i)

R t-W R t n=0 d

when the limit exists.

The Markov decision processes in this thesis are usually derived

from discrete time Markov chains (DTMC) and continuous time Markov

chains (CTMC). Some results and notation from the theory of Markov

chains will be useful. The Markov chains in this thesis will be

irreducible and positive recurrent on a finite state space.

Let {X ,n0,1,... } be a DTMC.
n

Notation:

Pii -P(X n+1'j x =i) , P(Xn+l=j IXn=i,Xn- =k ....Xo71)

P (p ) is the matrix of transition probabilities

Cu)....(n-i)

PjW= P(Xn"i j X0=i) I Pik Pkj "
k1S
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in . m n are called the steady state probabilities.

nP= , n > 0 Y i, and n i = I
keS

Let (X(t),t>0) be a CTMC.

Notation: .. is the transition rate from state i to state j.
_j

= (Xi.) is the matrix of transition rates with diagonal
1j

elements X. -- jS X.

Xi.= Ij CS Xij is the parameter of exponential holding

time in state i .

M(i) = 1/X. is the mean holding time in state i1*

Pi = ij /X. is the transition probability from state i to

s tate j

ij is the mean time from arrival in state i until the next

arrival is state j, sometimes called a first passage time

nt = m(j)/P ij are the steady state probabilities

6.2. Derman's Model and Extensions

The use of discrete dynamic programming to determine optimal

maintenance policies for multistate systems was pioneered by Derman in

the 1960's. Derman [1962] showed that only non-randomized decision

rules need be considered, and in Derman 119631 it was shown that control

limit rules are optimal for certain types of systems. The discussion

herein follows Derman (1970).

Consider a component or system which is inspected at equally spaced

points in time and classified into state 0,1,...,M with state M
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being the best state. At the beginning of each period, an operator may

choose between two actions - to replace (which takes one period) or to

retain the component. The component must be replaced when it reaches

state 0. A control limit rule is a policy which replaces the component

when the observed state is 0, 1, ..., i* and retains the component

when the observed state is i*+1,...,M where state i* is called the

control limit. Replacing the component costs C > 0 units of money and

there is an additional penalty cost K > 0 if the component is replaced

from state 0. The states may be considered as the remaining capability

of the component, and a penalty is assessed if the component ever

becomes completely inoperative. Markovian transition probabilities pij

(in)
are used. It is also assumed that pi0 > 0 for some n > 1 so that

a component which is not replaced will eventually fail.

In the notation of dynamic programming, the problem becomes

S {0,1....M}, A =0 = do nothing, I = replace},

0 if a = 0
r.(a) = C if a = 1, i > 1

C+K if a = 1, i = 0

j if a = 0

pi (a) = if a= 1, j = M

0 if a =1 , j A M

The standard dynamic programming recursion for the discounted cost case

is

M
4 (i,a,N+l) = min {( x Pij( Q,(,N); C + a4(M,a,N)} for i A 0

= C + K + aq$(Ma,N) for i - 0
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This is slightly different from Derman's construction since he assumes

that replacement is instantaneous. In that case 4,(Ma,N) is replaced

by IM-0 PMj 4<j,a,N) in the above equation. This might also be use-

ful if the new component could be in any state due to damage in fabrica-

tion or shipping.

The main result in Derman [1970] is that if k is nonin-j=0 Pij s o in

creasing in i Y k, then a control limit rule is optinal for both the

expected average cost criterion and the total expected discounted cost

criterion. This means that there exist control limit policies R* and

R** such that

R* = ara min [( R(i,a)] and R** = ar in to R(M)I.
cD D

The policies R* and R** may be determined by solving linear pro-

grams, and they will generally be identical for small interest rates.

The restriction that ik0 p. be nonicreasing in i V k seems

very reasonable since it means that if no replacement occurs and one

component begins a period in a better state than another component, the

first component will, on the average, also begin the next period in a

better state.

There have been several extensions of the basic model. In Kolesar

[1966) a state occupancy cost was added to the model so that cost Ai

was charged each time the component was observed in state i. Derman's

construction is a special case of this with A0 = K when replacement is

the chosen action in state 0 and Ai = 0 otherwise. A control limit
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rule is shown to be optimal under the additional assumption that AI  is

nonincreasing in i. The costs Ai are not restricted to be nonnega-

tive, and Ui = -Ai may be thought of as a utility rather than a cost.

The problem is then to maximize utility, and a control limit rule is

optimal when Ui  is nondecreasing in i. Thus, the analysis applies to

coherent systems.

A generalization of Kolesar's model is contained in Ross [1969].

This model permits a continuous state space which is useful in inventory

applications. A control limit rule is again shown to be optimal. The

model also applies to the case in which several components may be or-

dered at once. The state of the system is (n,x) where n represents

the number of spare components, and x represents the state of the com-

ponent currently in operation. When the system is in state (0,0), any

number of components may be ordered. It is shown that a control limit

rule applied to the component currently in operation is optimal.

The basic model has been extended to include more general cost

structures and state transitions. In Kalymon [19721, the replacement

cost is random, and there is a salvage value which depends on the

replaced component's state and on the replacement cost. The total cost

of replacement is then C + r(C) + s(i) where C is a random variable

and the salvage value is -(r(C) + s(i)). This leads to the following

recursion.

M
4(i,a,N+1) = mn {A I + a j Pij (ja,N);

j =0

A + C + r(C) + s(i) + ax4(M,a,N)}
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The following monotonicity assumptions are made.

(1) A and s(i) are nonincreasing in i.

(2) C + r(C) is nondecreasing in C.

(3) a - p + .IA.-s( ji) - a ;M 0 PijL j-s()]

> s(i+l) - s(i) - i < M - 2.

The third condition seems rather strange, and no heuristic reason for

its necessity is provided in the paper. If these monotonicity assump-

tions are added to the assumptions in the basic model, a control limit

rule is optimal for both the discounted and average cost cases.

In Kao (19721 the transitions are semi-Markov rather than Markov.

The holding time in a state can then depend on the current state and the

target state, but only transitions to smaller states are allowed. Al-

though the possibilities of variable replacement cost and variable re-

placement time are discussed, they are held constant. It is also

assumed that the expected cost per occupancy in state i is

nonincreasing in i. Under these conditions, a control limit rule is

optimal.

In all the aforementioned models, it is assned that inspections

occur in every time period and that replacement provides a new unit.

Adding inspection scheduling and repair/replacement considerations into

the decision process further complicates the basic model. In Klein

[19621 the decision space is enlarged to allow repair to any state and

scheduling of the next inspection some number of periods later. Costs

of repair, replacement, inspection, and penalty costs for failure are

included in the model. It is shown that the problem may be formulated
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as a linear program, but no discussion of control limit policies or the

form of the optimal solution is included. Another model of this type is

due to Luss [1976]. In this paper it is assumed that a control limit

rule is optimal, and an algorithm is presented to find the optimal con-

trol limit. State transitions are governed by a continuous pure death

process. This is converted to a discrete model in which opportunities

for inspection occur at regular points in time. State occupancy costs

as well as maintenance, inspection, and penalty costs are included in

the model.

An interesting type of control limit rule is contained in Rosen-

field 11976A]. Let C. be the cost of repair from the jth state (in-

cludes penalty cost), let I be the constant inspection cost, and let

A. be the state occupancy cost. In each time period, the operator may

choose to inspect the component, replace the component, or do nothing.

The system state is (i,k) which means that the system was in state i

at its last inspection, k periods ago. This leads to the following re-

curstion.

4(t,k,a,N+l) = min (inspect; replace; do nothing)

C k) M (k+1)

=rin m I + p Pi A + a Pij )(J,0,a,N)j-o j=o

S(k) + a((M,O,a,N);

(k) A + a(i,j+l,a,N)} for i > 0
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The following assumptions are made:

(1) Ci, Aj, and C -A are nonincreasing in J.

k (in)>0 o
(2) j-0 Pij is nonincreasing in i Y k, and > 0 fori Pi0

some n > 1.

(3) P is upper triangle, i.e., p j = 0 V j < i.

(4) P is totally positive of order 2 (TP2 ), i.e., PikPj.? pijPjk

Vi > is k > 1.

If these assumptions hold, Rosenfield shows that a 4-region policy is

optimal. A 4-region policy is one in which for fixed i and increasing

k, it is optimal to first do nothing, then to inspect, then to again do

nothing, and finally to replace. Figure 6.1 is an illustration of this

type of policy.

Replace Number
of

Periods
Do Nothing Since

Last
Inspec-

[ Inspect ition

Do Nothing

tio

0 State of System at Last Inspection M

Figure 6.1. 4-Region Policy

In Rosenfield [1976B] it is shown that if assumptions (1), (2), and a

slightly weaker version of (3) hold, then a type of control limit rule

is optimal. There is a state i*(k) for which it is optimal to replace
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if i < j*(k) and to either inspect or do nothing if i > i*(k). With

the weaker assumptions, it is not possible to decide whether to inspect

or to do nothing for i > i*(k).

The previous models generally assume that restoration returns the

system to its best state. A model constructed by Eppen [19651 allows

the system to return to any higher state at a cost C(k) where k = new

state - old state, i.e., k is the number of states by which the system

is improved. The following assumptions are made:

(1) C(k) - Ck, C > 0, k > 0.

(2) Aj, the one period operating cost in state J, is convex and

positive with A - A0 < -C > some kind of mainte-

nance will occur in state 0.

(3) pli > 0, P ij-1 = t - P ii and PiJ = 0 V j # t, i-l.

Also, pii is concave in i v i > 1.

The only optimality criterion considered is minimized discounted cost

for a finite time horizon. The standard recursion becomes:

M
(i,a,N+I) = min {C(J-i) + A + a 7 pij+(J,c,N).

j.i J=o i

The optimal policy is similar to a control limit rule. If i < i* at

N

the beginning of the first time period, then the system should be re-

paired to state *. If i > i*, do nothing. It is also shown that
N- N

i* > I and i* > i*.
1- N+-- N

-125-



It must be noted that even if a control limit rule is the optimal

way to operate a multistate component, that may not be the best way to

run a system composed of multistate components. This is shown in

Example 4 of Denardo [19671.
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7. RESTORATION WITH THE SYSTEM INOPERABLE

This chapter pertains to the optimal restoration of constantly

monitored equipment with the system inoperable. In Section 6.2 the

components were periodically inspected which allowed the system to be

treated as a discrete time Markov decision process. In this chapter

assumptions are made which allow the optimal operation of a multistate

system to be treated as a continuous time Markov decision process. A

decision is made in each state to either continue operation or to

pe-form a restoration activity. It is shown that, when restoration

costs are constant, the restoration process should always return the

system to its best state. Control limit rules are optimal in most

cases.

Section 7.1 extends the discrete inspection model by permitting the

restoration activity to fail. Thus, it may require more than one time

period t,' perform the intended restoration. If the state occupation

costs are not paid while the system is being restored, a control limit

rule is shown to be optimal. However, if the state occupation costs are

paid while the system is being restored, then the restoration epoch must

be shorter than the exponential holding time in any state for a control

limit rule to be optimal. In Section 7.2 the continuous time model for

constantly monitored components is described. Using a known equivalence

between discrete and continuous time Markov decision processes, it is

shown that this problem is equivalent either to the discrete time model

contained in Section 7.1 or, with different assumptions, to the basic

model discussed in Section 6.2. This equivalence establishes the
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optimality of a control limit rule in the continuous time case. Some

examples are presented in Section 7.3. The last section of Chapter 7 is

devoted to showing that the continuous time model can be considered as a

special case of a shock model. The shock model has some generality not

contained in the continuous model, and its optimal operation is

described by a control limit rule. However, the shock model does not

incorporate a utility function into its cost structure nor is iL obvious

how that would be accomplished. Thus, Section 7.2 is necessary to show

control limit rule optimality for more complicated cost functions.

7.1 Failure to Replace Model

In this section a model similar to the one in Kolesar [19661 is

analyzed. The difference between this model and previous models of this

type is that restoration is allowed to fail, i.e., there is a certain

probability that the attempted system restoration will not be completed

in a single period. This model is interesting by itself, and it will

turn out to be the appropriate generalization when a continuous model is

analyzed using discrete methods. The main result is that a control

limit rule with return state M is optimal when the state occupation

costs are not paid during the restoration process. The return state is

defined as the state in which the process will be immediately following

a successful repair or replacement. An example is given to show that a

control limit rule is not necessarily optimal when state occupation

cJsts must be paid during restoration.

Note: The words repair, replace, and restore are used interchangeably

throughout Part 11 of this thesis. An effort has been made to use the
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word restoration when talking in general terms, to use the word repair

when the system is not returned to its best state or continues to

operate during restoration, and to use the word replace when the system

is returned to its best state and is rendered inoperable by

restoration. The words system and component are also used

interchangeably. The results herein apply to any process with state

space {O,1,...,MI, which could be either a single multistate component

or a system. They do not necessarily apply to a system consisting of

multistate components.

Let C > 0 be the cost of replacing a component with a penalty cost

of K > 0 for replacement from state 0, and let kI be the one-period

state occupancy costs in state i (Ui = -Ai is interpreted as the

utility in state i). Transitions among states are Markovian, and a

is the discount factor. Replacement must always be attempted from state

0. Let 5 be the probability that a planned replacement succeeds.

It is assumed that if a failure to replace occurs in any period, the

probability that a planned replacement succeeds in the next period is

still p. This may not be entirely realistic, but it is necessary for

a simple model. First assume that state occupancy costs are not paid

during replacement. The standard dynamic programming recursion is:

n
4(i, ,N+1) - min{A + aj p ij(j,,N)

C + a (M,a,N) + a(1-p )l,ia,N)} for i > 0

- C + K + a,(M,a,N) + a(1-p )4(0,a,N) for i 0. (7.1)
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Equation (7.1) is valid when replacement cost is paid even though the

attempted replacement fails. If replacement cost is paid only when the

replacement is successful, the second term in the minimization would

become pC + a p(M,a,N) + a(l-p)p(i,a,N). The analysis will be

identical regardless of what option is selected.

The following assumptions are necessary.

(1) A. is nonincreasing in i.

(2) j=O Pij is nonincreasing in i , k.

( p( > 0 for some n > 1.

From condition (2) it can be shown (see Derman [1970], page 123) that

Yo Pi.f( j ) is nonincreasing in i for every nonincreasing function

f(.). it can also be shown that a random variable with density

P(X, = J) = Pij has an IFK distribution. The third assumption ensuces

that replacement will eventually occur; thus, system operation is a

regenerative process. As discussed in Section 6.1, only policies which

are deterministic and which do not depend on the past history of the

process (class C D) need be considered. The inductive argument

contained in Theorem 7.1 will often be used to prove theorems concerning

control limit rules and restoration to state M.

Theorem 7.1: If conditions (1), (2), and (3) hold and total discounted

cost is the optimality criterion, then state M is the optimal return

state.

Proof: Since restoration to any state -! llowed, Equation (7.1)

becomes
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4(i,a,N+l) - min{A i + a Cj=0 Pij ( j ' a N ) ;

C + a min[4(I,a,N)] + a(l-p)( (i,a,N)} for i > 0
ICS

- C + K + a min[4(X,a,N)] + a(I-)4(O,a,N) for i > 0

((i,a,0) = min{Ai,C} is clearly nonincreasing in i, and it will be

shown that is true for every N. Assume inductively that ((i,a,n) is

nonincreasing in i v n = 0, 1, ... , N. Then j=0 pij ( j ' a N ) is

nonincreasing in i from assumption (2) and A. is nonincreasing in i

from assumption (I). Thus, every term ia the above minimizati)n is

nonincreasing in i, so ( (i,a,N+l) is nonincreasing in i. By

induction, 4(i,a,N) is nonincreasing in i Y N. Then

(i,a) = lim 4(i,a,N) is nonincreasing in i (see Derman [19701, page
N--

37, for a proof). Thus, the optimal return state is given by

,(M,cz) = min[(t ,a)].
tE S

The proof of Theorem 7.1 applies anytime O(i,a,N) is nonincreasing

in i For every N. This will be the case in all the theorems pertain-

ing to control limit rule optimality. To avoid unnecessary repetition,

whenever a theorem states that state 'I is the optimal return state

using the discounted cost criterion, Theorem 7.1 will be referenced.

For simplicity, q4(M,a) will replace min[(I,a)[ in the proofs -L these

theorems. The same remarks apply to Theorem 7.3 when the average cost

criterion is being used in place of the discounted cost criterion.

Lemma 7.2 is a well known Abelian theorem (see Derman [1970], page 144).
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Lemma 7.2: Le t (a n,9n-0,I....} be a sequence of real numbers, and let

fCX) 1' 0 a X"' 0 < X < 1. If lim (1/N)"~ a A < -, then

lim(I-X)f(X) - A.
X+ 1

Let W be the (finite) expected reward earned in period n when
n

using policy R with initial state i. Then

0(i) =r lI1( N-II) N W and 1 (1i a) I An . Letting
R N-n0= n R ' n-0 n

X-aand a = W in Lemma 7.2, W~ (i l im(1-a>, (i,a).
n n R a+ I

Theorem 7.3: If conditions (1), (2), and (3) hold, and expected avecage

cost is the optimality criterion, then state M is the optimal return

state.

Proof: From Theorem 7.1 the policy R(a) which minimizes y)(i,a) must

have return state M4. Since S and A are finite and only

non-randomized policies need be considered, there are a finite number of

policies. Thus, there must be a policy R* which has return state M

and a sequence of discount factors (a , n=1,2 .... I such that lim an =I
n n+

and R(a I R~a 2 . R* is the optimal policy for each a n For

any other policy R and any a n, (1-a n)k (i,a n) > (1-cx n4 ( R(ila )

From Lemma 7.2,

(i) = lim(1-a )4i. (i,ax ) > lim(1-a )4, *(i a ) =(i).R n+D n R n n-+ n R* n R

Thus, R* is optimal.0

Normally, R* will be optimal for all sufficiently small interest

rates as well as being optimal in the average cost case.
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Theorem 7.4: if conditions (1), (2), and (3) hold, there is a control

limit policy which minimizes c,(i,a).

Proof: From Theorem 7.1, 4 (i,a) is nonincreasing in i and can be

written

4,(i,a) - mln{Ai + a I'= M j (

C + d'p4(M,a) + a( 1-- )F(i,tz) for i > 0

= C + K + &ad,(Wicz) + (1~4(,)for i = 0

Assume there exists an i* > 0 such that replacement is better than

inaction (if not, replacing only in state 0 is trivially a control

limit rule). Then:

M
4,i*a)=C + dp'((M,a) + a(1~4(*a < Ai* + mj0oP~(ia

Solving for (i*,a) yields:

~(i*,a) = JC+a3((M,a)]/[1-a(l- )]

Since W (i*,a) is independent of i*, set q,(i,a) - ,(i*,a) v i < i*.

Since ( ia is nonincreasing in i, this must be the optimal policy.

Thus, it is optimal to replace v i < i* which is a control limit

rule. U3

Theorem 7.5: If conditions (1), (2), and (3) hold, there is a control

limit rule which minimizes 0(i).
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Proof: From Theorem 7.4 there is a control limit policy R(a) which

minimizes 4(i,a). Since there are a finite number of control limit

policies, there must be a control limit policy R* and a sequence of

discount factors (a ,n=0,1,... } such that lim a = I and
n n+w, n

R(a ) = R(a ) .... R* is the optimal policy for each a . For any

other policy R and any a , (1-a ) (i, a ) > (1-an) R,(i,a)" Fromn n R n n nR* n

Lemma 7.2,

SR(i) = lim(1-a n)( R(i, n) > lim(1-a n),(i,a) = R,(i)

Thus, R* is optimal. 0

The preceding theorems have shown that a control limit policy is

optimal when state occupancy costs are not paid during replacement. If

those costs are paid during replacement, the standard recursion becomes

V (i,a) = minfAi + a Lj 0  P i< (,M);

C + A. + a54,(M,a) + a(1-p )4,(i,a) } for i > 0
1

= C + K + A0 + a4(M,a) + a(1-p )4(0,a) for i = 0

If 4(i*.a) is determined as in Theorem 7.4, then

ci(i*,a) = [C+Ai,+a(M,)1/[l-a(1-)I

This is no longer independent of i* because of the Ai, term on the

right hand side, and the analysis used in Theorem 7.4 fails. The

following example shows that a control limit rule may not be optimal in

this case.
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Example 7.1: Consider the 4-state DTMC shown in Figure 7.1.

--. P3 2 =-Ki) 1 '0

Figure 7.1. 4-state DTMC

Let:

a .5, C = 5, K = 0, A3 - A2  -10, A, Ao  0, p - .5,

P31 = p5 P3 2 = p 21 = 1, P = I

(3, a) A3 + ap3 2 (2,a) + ap3 14( ,a)

(X2, a) = min{A + a4(I,a); C + A + aF,(3,a) + a(I-p)dV2,a)}2 2

4(I,a) = min{A1 + a4'O,a); C + A + ap,(3,a) + a(I-p)4(I,)}

4(0,a) = C + A0 + p,(3,a) + a(l-p) (0,a)

4,(3,o a)= -12.38

4V(2,a) = min{-9.37; -10.79) - -10.79 (replace)

(b(1,a) - min{1.27; 2.22) = 1.27 (do nothing)

4)(0, a) - 2.54.

Thus, it is optimal to do nothing in states 1 and 3 and to replace from

states 0 and 2 which is not a control limit rule. 0

In Example 7.1 it is the high discount rate (1-a = .5) which

causes the non-optimality of control limit rules. It can be shown, for

a = .9, that it is optimal to replace in states 0,1, and 2 which is a

control limit rule. Thus, there is still hope that a control limit rule

is optimal in the average cost case. Unfortunately, that is not true

either as shown by Example 7.2 in Section 7.3.
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7.2. Equivalence of the Continuous and Discrete Models

The subject of this section is the equivalence between a

continuous time Markov decision process (CTMDP) and a discrete time

Markov decision process (DTMDP). By equivalence it is meant that the

two processes have identical optimal policies and identical minimum

cost. This equivalence is due to Serfozo [1979]. It is useful since it

allows a constantly monitored system to be treated as a periodically

inspected system.

Let X = (S,A,r,p,a) be a DTMDP, and let Y = (S,A, r,x, pP) be

a CTMDP. The notation presented in Section 6.1 is used throughout this

Chapter. Let y - sup Xi(a). An equivalence between X and Y isi,a

given by Theorem 7.6.

Theorem 7.6 (Serfozo 1979]): Let Y = (S,A, r,X, P,O) be a CTMDP

with y < - and countable S and A. Let X = (S,A,r,p,a) be a DTMDP

with

a = y/(Y-If)

i ri(a)[+h+i(a)]/(O+y) for discounted rewards
i i (a)k i(a)/y for average rewards

h(xi(a) ij(a)/Y if j # i

a U - x i(a)[1- pi(a)]/y if j - i

If Y and X are both controlled by stationary policy R, then

WR(i,P) R (i,a) and VR(M) = yoR(i).
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Remarks:

(1) The requirement that S and A be countable is necessary only

to avoid technical details. They are finite for the cases considered

herein.

(2) The condition y < - means that the exponential holding time

parameters must be uniformly bounded which is equivalent to saying that

the Markov process is regular. This is trivially satisfied in this

thesis since S is finite.

(3) For 0 = 0 (a=1), the rewards in the discounted case become the

rewards in the average value case. Because of this, only the discounted

rewards will be expressly written when applying Theorem 7.6.

(4) Since both Y and X have the same state and action spaces,

the same policies apply to both. Only statiorcry policies need be

considered, and there are a finite number of those. Theorem 7.6 says

that if a stationary policy is optimal for one system, then the same

stationary policy is optimal in the other system. Thus, if a CTMDP is

converted to a DTMDP and something is proven regarding the optimal

policy for the DTMDP, then that is also true of the optimal policy for

the CTMDP.

(5) The rewards for the CTMDP in Theorem 7.6 are lump rewards

rather than reward rates. If r(a) are reward rates, the appropriate

DTMDP rewards are ri(a) = ri(a)/(P+y).

Consider a constantly monitored system with S - {0,1,...,M} and

A - (0 - do nothing, 1 = repair}. Let C > 0 be the replacement cost

rate with a penalty cost rate K > 0 for replacement from state 0, and
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let A be the state occupancy cost rate. Let XiM = X be the

replacement rate from all states. Normally replacement takes a

specified time T in which case X E I/T. This won't affect the

results since they are in terms of expected values. Let Xj, j < i, be

the transition rates when replacement is not transpiring. Now consider

a DTMDP with S and A as above, and

( Xij/Y if j # i
pl (0) =

1 - KieI Y  if j i

0 if j # i,M
Pij(1) = X/y if j M

I- X/y if j i

r i(O) A +y)

C/(O+y) for i > 0

i (C+K)/(O+y) for i = 0

The rewards r (1) were calculated assuming that state occupancy costs

are not collected during replacement. If those costs are collected

during replacement,

rC/y + Ai/Y for i > 0

(C + K)/y + Ai/y for i = 0

k

It is always true that 0 p (1) is nonincreasing in i since

transitions occur only when j = i and j = M. Obviously, one

condition which ensures that p (0) is nonincreasing in i M k

is X nonincreasing in i V k. This is very restrictive,
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however. One of the implications of this condition is that, with

k - M, X10 > -0 M . A more natural condition which ensures that

kj= PiJ(0 )  is nonincreasing in i -V k is given in Lemma 7.7.

Lemma 7.7: If Xij > Xj - J < i < 1, then k 0 pij(0) is

nonincreasing in i -Y k.

Proof: Consider any Io pj(O) and k-0 Pi(0) with I > i.

If k > i, then k-O P (0) - 1, and the result holds trivially. If

k < I, then

j- 0 t j-0i j

The following assumptions, which are the continuous equivalents of

the assumptions in Section 7.1, are necessary.

(1) Ai is nonincreasing in I.

(2) k xk is nonincreasing in i - k, or

xij - xki j I i < t.
(3) X ..- X

( i,i1 ili 2  in,0 > 0 for some sequence

i ..... i . This assumption simply assures that state 0 will

eventually be reached if no replacement is performed.

Theorem 7.8: If (1), (2), and (3) hold and costs Ai are not paid

during replacement, then a control limit rule with return state M is

optimal for both the discounted and average cost criteria.

Proof: In the discounted case, the recursion is
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i

4#(i,a,N+1) - min{Ai/( +y) + a p Pj(040 I, M)

C/(P-) + aX4(M,a,N)/y + cx(1-X/y)4,(i,a,N)) for i > 0

= (C+K)/(P+y) + aM,(M,a,N)/y + a(1-XVy) <0,a,N) for i = 0.

With p - X/y, Theorems 7.1, 7.3, 7.4, and 7.5 of Section 7.1 are

applicable. The limiting argument is still valid since the average

rewards are the limit as a + I (0+0) of the discounted rewards. 0

Theorem 7.9: If (1), (2), and (3) hold, if costs Ai are paid during

replacement, and if X > Xkq - i, then a control limit rule with

return state M is optimal for both the discounted and average cost

criteria.

Proof: If X > Xi* Y i, then y - sup ki(a) = X, and PiM(I) = 1
i- i,a

V i. The recursion in the discounted case then becomes

i
4 (i,a,N+1) - min{Ai/(O+y) + a 0 pij(0)(a, M);j=0

C/(O+y) + A i/(O+y) + a4(M,a,N)) for i > 0

- (C+K)/(O+y) + A0 /(P+y) + a4(M,a,N) for i = 0

Since there is no possibility of replacement failure, this recursion has

the same form as the recursion in Kolesar [1966]. The result follows

from Theorem I of that paper and Theorem 7.1 of Section 7.1. 0
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7.3. Examples

In Theorem 7.9 it was necessary to assume X ) ki. Y i, i.e.,

the replacement rate is larger than the sum of the failure rates from

any state. This is a reasonable assumption since most components will

be quickly replaced; otherwise, their availability could be very poor.

However, if % < Xis for some i and state occupancy costs are paid

during replacement, then a control limit rule is not necessarily optimal

as shown by Example 7.2.

Example 7.2: Consider the 4-state CTMC shown in Figure 7.2.

X20

2 10 d
(3> 3 2- 21

31.

Figure 7.2. CTMC

Let X32 1, X31 9, X21 m 4.5, X 20 5, 0 5,

X = 2 (or T - .5), C = 1.5, K - 0, A0 - 0, A1 = -1, A2 =-2, and

A 3 -2.01. Average expected cost is the optimality criterion. From

the theory of regenerative processes, average expected cost can be

calculated from

E(average cost) = E(cost per cycle)/E(cycle length).

State 3 is considered as the return state. Replacement may occur from

the following groups of states:

(3,2,1,0), (2,1,0), (2,0), (1,01, and (0).
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Calculations are shown below. The results appear in Table 7.1. Let

E(cost) HE E(cost per cycle), and E(cycle) B E(cycle length).

(1) (3,2,1,0) E(cost) - C + A3T - .495

E(cycle) - T = .5

A3 32
(2) (2,1,0) E(cost) = C + 3 + -2 A T

32 +x31 x32 +X312

+ 3 2+ x 31 A T - -1.06

E(cycle) -T + 1/(X 32+' 31) m 1.5

A3 k32
(3) (2,0) E(cost) = C + + ---- A2 T32+k31 x32 +31

X3 AI

+ x3+X - x A' + A0T) = -2.41
31 31 10

E(cycle) - T + I + x3+31 (-) = 3.3
x32 +K31 32 +x31 10

A3  X3 A2

(4) (1,0) E(cost) C + A+3 x32 [ 2

32311 " 320

x
21 AT + A0 T]

21 +X20 1 21 +X20

x31
+ x32+31 A IT - -1.045
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E(cycle) - T + I + 32~ 1.52
X32 +X31 X32 +X31 X21 +X20

A X A
(5) {0} E(cost) - C + 3 + 32 2

X32 +X31 X32+"31 "21+"20

+ X 2~1 (A,]
21 +X20 X10

X 1 A
+ ( 10 +A T =-2.53

E~cycle) =T + 1 + 32 r___

+ X 21 (1 v
21 +X20 (X10'

+ 31 (1 ) = 3.5
X32 + 31 X 10 '

Set of States (3,2,1,0} {2,1,0) (2,0) {1,O} {0)

E(cost)/E~cycle) .99 -.71 -.73 -69 -.72

Table 7.1 Cost Comparison

The minimum expected average cost is achieved by inaction in states

and 3 and replacement in states 0 and 2. This is clearly not a

control limit rule. It can be shown that, for \ > 5- max X.,a

control limit rule is optimal. The results of this example are also

valid for the discounted case with a small discount rate.
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It may seem unreasonable that the cost of replacing a component is

constant except for a penalty cost when replacing from state 0. The

component might have a salvage value so that replacement cost C isi

nonincreasing in i. Unfortunately, this does not necessarily lead to a

control limit rule as shown in Example 7.3.

Example 7.3: Consider the DTMC shown in Figure 7.3.

p32p 2 1  02

p3 1

Figure 7.3 DTMC

Let C = C = C, and let C = C = C + K with C = I and K = 10.

This might occur if states I and 0 were very undesirable. Let

A = 0 V i, p33 = .9, P32 .09, P31 .01, P = .5, p = .5, and

P10 = 1. Compute E(average cost) = E(cost)/E(cycle) as in Example 7.2

with state 3 as the return state. Possible groups of states to

replace from are {3,2,1,0}, {2,1,0}, (2,0), {1,01, and 01. Calcula-

tions are shown below, and the results are contained in Table 7.2.

(I) (3,2,1,0) E(cost) = C = I

E(cycle) = 1

(2) {2,1,0) E(cost) = C + p3 1K= 1.1

E(cycle) = I + p3 1 + p3 2 = 1.1

(3) {2,0) E(cost) = C + p3 1K - 1.1

E(cycle) = I + 2p3 1 + P3 2 = 1.11
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(4) {1,0} E(cost) = C + (p3 1 + P32 )K = 2

E(cycle) = 1 + p3 1 + 
2 p3 2 = 1.19

(5) {0} E(cost) = C + (p 3 1 + p3 2 )K = 2

E(cycle) = 1 + 2p31 + P3 2(
2p 20 + 3p 2 1) = 1.245

Set of States (3,2,1,0} {2,1,0} ( 2,0) {1,0} {0)

E(cost)/E(cycle) I 1 .99 1.68 1.6

Table 7.2 Cost Comparison

The only policy which yields an average cost less than one is

inaction in states 1 and 3 and replacement in states 0 and 2.

Thus, a control limit rule is not optimal. I

The main reason a control limit rule is not optimal in Example 7.3

is that once the system is in a state in which it will have to pay the

penalty cost, it must be optimal to try and stretch out the cycle

length. Average cost is minimized by allowing the system to operate as

long as possible before replacement. In Example 7.4 the system is

profitable to run. The objective is to maximize utility instead of

minimizing cost. The replacement cost is constant, but the replacement

rate, XiM , is increasing in i. This might transpire if a repairman

was always at the site to fix the system. Then there would be no

additional cost involved in restoring the system, but there might be

additional time involved for an increasingly degraded system. A control

limit rule is not necessarily optimal in this case either.
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Example 7.4: Consider the 4-state CTMC in Figure 7.4 which is identical

to the system in Example 7.1.

2\- X2 0 "  _ -

Figure 7.4 CTMC

Let C - 2, K = 0, Ui = i v i (linear utility function), X32 .1,

X31 .9, X .5, X .5, X = .5, X33 X = I (T = 1),

X .02 (T = 50), and X03 .01 (To3 1 100). The optimality

criterion is again expected average value, but this time the objective

is to maximize utility. It is assumed that utility is not collected

during restoration. Possible groups of states to replace from are

(3,2,1,0), (2,1,0), t2,0), UI,O), and 0). E(average utility)

= E(util)/E(cycle) where E(util) !- E(utility per cycle) and

E(cycle) - E(cycle length).

Calculations are shown below, and the results are in Table 7.3.

(1) [3,2,1,0} E(util) = - C = -2

E(cycle) I/k 3 3 - 1

(2) (2,1,0) E(util) U3 /(X 3 2 +X3 1) - C = I

I k32 T

E(cycle) = 1 + X 3 23

32 +X31 X32 +X312

[3 - 46.1
X 32 +31 13
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U3 31 UI

(3) (2,0) E(utll) - + x 31 I C 3.8
32+'31 "3 2 + 31 10

E(cycle) - I + 32 T

3 T31 32+ 31

+ -31 + TO ) = 92.9k32+ 31 10

+ 3 K2 U2 )

(4) {,0} E(util) = u3 + x32 (2 C - 1.2
x 3 2 +"3 1  X3 2 +x31  x 2 1 +X20 )

E(cycle) - + 32 K21 TK +27K20+ [ 21+X 13k32+X31 +31 +32 21 20 23 20

K20  + 31 = 98.6
T0 3 ] + 13

X2 2 32 31

(5) {0) E(util) = U3  + K 32 2 + uI

32+ 31 32 +31 21 +20 21 +20 10

+ 31 (l) - C = 4.1
S327 31 10

E(cycle) = 1 + + % 32 r 1
x32 +31 32 31 21 + 20

21 (1)]+ x2 1+'20" 0

+ 31 (-L ) + T0 3 = 103

1432+"31 "
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Set of States {3,2,1,0} {2,1,0} {2,0) {1,0) {O

E(util)/E(cycle) -2 .0217 .0409 .0122 .0398

Table 7.3 Cost Comparison

Maximum expected utility is achieved by inaction in states I and 3

and replacement in states 0 and 2. Again, a control limit rulo is

not optimal. 0

7.4. Equivalence of the Continuous and Shock Models

Shock models are models in which a random amount of damage occurs at

a random point in time. The times when damage occurs are called shocks.

The damage to the component is cumulative and eventually causes compo-

nent failure. Shock models are of interest in reliability since the

lifetime of a component in such a model is governed by one of the

distributions discussed in Section 1.1. The appropriate life distri-

bution naturally depends upon assumptions about shock interarrival times

and the damage accumulation process. Optimal maintenance policies for

shock models can also be considered. Shock models mimic Derman's model

in that the component can be replaced at a cost C > 0 and a penalty

K > 0 is levied if failure occurs. They have not been extended to

include state occupation costs or variable maintenance costs. Since it

is assumed that the state of the system is always known, these models

apply to constantly monitored systems. A control limit rule in this

setting means that the component will be replaced either upon failure or

after accumulating a certain amount of damage.
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The first shock model which will be useful in this thesis is Bergman

[1978]. Let {X(t), t > 0) be a decreasing stochastic process with

state space {0,1,...,M}. There is also a nonincreasing failure rate

function v(X(t)) for which P(T > t]X(s), s > 0)

- exp (- f0 v(X(s))ds where T is the component lifetime. The

failure rate function is the rate at which the process goes from a

positive state to state 0. Bergman shows that if this rate is

nonincreasing in X(t), then a control limit rule is optimal. Another

model of this type is Gottlieb 11982). In this paper failure can only

occur when a shock arrives. The probability that a component in state

j will survive the next shock is denoted R(j) and is assumed to be

nonincreasing in j. If the sojourn time (time before the next shock)

in state j is nonincreasing in J, then a control limit rule is

optimal. A later paper will show that this result remains valid when

partial repair of the component between shocks is permitted.

A CT?4DP can be considered as a special case of a shock model when

shock interarrival times are exponential with parameter Xi., and the

damage distribution is pfj X . Decisions are made after a

shock occurs. From Bergman (1978], if X j is increasing in J, a

control limit rule is optimal. This result weakens the hypothesis that

k 0 Xij be nonincreasing in i - k, and it also weakens the

discrete hypothesis that k p be nonincreasing in i w k.J-0 PiJ ennnrasn nii

This change makes sense because the objective is to minimize restoration

cost, and the only additional cost is incurred when the process is in

state 0. The result from an extension of Gottlieb [19821 is that

control limit rules are still optimal when transition rates Xij with
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j > i are permitted. Unfortunately, the shock models do not

incorporate utility functions nor is it obvious how that would be

accomplished. Thus, Section 7.2 is necessary to establish the

optimality of control limit rules in the CTMDP with state occupancy

costs.
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8. REPAIR DURING SYSTEM OPERATION

The cost and risk associated with system failure makes highly

reliable systems very desirable. One way to achieve high reliability

without sacrificing availability is to allow multistate components or

systems to continue operation during repair. Only one model addressing

this issue has been found in the literature (Smith [1978]). It is

assumed throughout this chapter that the failure and repair rates of a

component are constant in time. This assumption allows the use of

continuous time Markov chains in modeling the system.

In Section 8.1 a model identical to the model in Section 7.2, except

that repair occurs during system operation, is considered. It is shown

that a control limit rule is optimal. The remainder of the chapter is

devoted to the following problem. Assume that a component is in state

J and a decision must be made to repair either to state J + I or to

state J + H where H > I. This is similar to determining whether it

is better to repair all at once or in stages when failures may occur

during the repair process. When certain assumptions are valid, it is

optimal to repair to state J + H, the better state. These assumptions

are (1) an increasing utility function, (2) the failure or repair rate

into a state increases as the distance to the current state decreases,

and (3) the repair rate from J to J + H- must be at least as large as

the repair rate from J to J + I. Examples are given to show that it

is not necessarily optimal to repair to the better state when any of

these assumptions fail to hold. Surprisingly, it is not necessarily

optimal to repair in stages even if the mean repair time when
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repairing in stages is shorter than the mean repair time when repairing

all at once. However, it may be better to repair in stages even if the

mean repair time is longer than when repairing alL at once because of

the increased utility associated with higher states.

8.1. Description of the Model

The model considered in this section is identical to the model

considered in the previous chapter except that repair occurs during

system operation. This means that failures may occur during the repair

process. Let C > 0 be the repair cost rate with a penalty of K > 0

assessed for repair from state 0, and let Ai be the occupancy cost

rate of state i. The failure process is a CTMC with transitions .,
ij

j < i, and repair rate X = X v i. If the chosen action in state
iM

i is to repair, then the transition from state i to state M is added

while if the chosen action is inaction, the transition from i to M

does not exist. In this section, it is shown that the optimal policy i

a control limit rule with return state M.

Let S = (0,1,...,M}, let A = (0 = do nothing, I = repair}, and lot

y - sup Xi(a). The rewards and transitions for the equivalent DTMDP are
i,a

calculated according to Theorem 7.6.

PiJ ( 0 ) = X ij /Y for j # i

I - /X for j i

Xij/ for j # i,M

Pij(1) = X/y for j = M

I - (Xi.+)/Y for j , i
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r (0) Ai/(P+-Y)

C/(+y) + A /(+Y) for i > 0
ri(1) -

(C+K)/(P+y) + AO/(3+Y) for i - 0

The following assunptions were made in Section 7.2 and are also

necessary here.

(l) Ai is nonincreasing in i.

(2) JO 0iX ib nonincreasing in i - k,

or X >X 'j<i< .

(3) k~l..k( I n,o > 0 for some sequence i' .... in.

Lemma 8.1: If condition (2) holds, then k o ) and

k 0 =O P (1) are nonincreasing in i -v k.

Proof: Let I > i and consider k 0 Pjj(1) and k plj(1)

for any k. If k = M, both sums are 1. If i < k < M, then

k k
()p - 1) 

.1=0

If k < i, then

k k X k Xa k
p La>( _ a)

j-o jo 0j=o j-o

In all cases

k k
0PIj (1) .> 0 Pj ( 1 )

1-0 j=o

k

The result for ik=0 P (0) follows by setting X- 0. 0
J1 tj
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Theorem 8.2: If conditions (1), (2), and (3) hold, then a control limit

rule with return state M is optimal in both the discounted and average

cost cases.

Proof: In the discounted case, the standard dynamic programming

recursion is

A i  M C A.
4,(i,a,N+l) = mi + a I pi()(J, )  ) + ( Y

j=0

( C+K+A 0 ) M

(i+y) + a I p 0j(t)4(j,a,N) for i = 0(P+Y) j=0

Since Ai  is nonincreasing in i, C(i,a,O) is nonincreasing in i.

Assume inductively that *(i,a,N) is nonincreasing in i. Then by the

hypotheses and Lemma 8.1, @(i,a,N+1) is nonincreasing in I, and

d (i,a) = lim 4(i,a,N) is nonincreasing in i. Theorem 7.1 then applies
N--

to show that state M is the optimal return state. The recursion for

V(i,a) for i > 0 is

A i-I 1-x
i +a JO1 4iia)i*(i,a) = min { - + Y J. xij 4(ja ) + a (i,a);

Ai  i-I 1-X .-X
_+ - + - X 4(j,a) + a - _ (i,a)
-+Y- +y YJ.0 ii

+ a A - m a)
Y
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A i-I
= -- X i a) + a(l-Xi/Y)c(ia)

+ mn to; + a V(M,a) - a - a)( +y) Y Y

Since 4(i,a) is nonincreasing in i, if the minimum is obtained by

repair in state i* > 0, then it will also be obtained by repair in all

states k < i*. Thus, a control limit rule is optimal in the discounted

case. The result follows for the average cost case from

*(i) = lir (1-a)(i,a).

8.2. Theorem on Optimal Repair Policies

This section differs frcm the preceding sections in that no cost

structure is assumed. System operation is modeled by a positive

recurrent CTMC with state space (0,1,... ,M}. The system operates

during repair, and the decision of interest is the designation of a

target state for the repair process. There is a choice of repairing

from state J to state J + H or from J to J + I with I < H.

This may be thought of as repairing a system all at once (J+J+H) or in

stages (J+J+I.J+H). It is necessary to assume XJ,J+l < XJ,J+H

which seems counterintuitive since a repair process which returns the

system to a higher state would be expected to take longer. Unfor-

tunately, an assumption such as I/Xjj+I + I/j+iJ+H > I/Xjj+H,

which says that mean repair time is shorter when repairing in stages

than when repairing all at once, is not sufficient. Examples are given

in section 8.3 to illustrate the problem.
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Throughout this section, system (1) will refer to repair from J to

J+1 while system (2) will refer to repair from J to J+H.

Superscripts (1) and (2) will be used in this capacity, e.g.,

X (1) > 0 %(t) - X(2) . X(2) >0

JJ+I J,J+H J,J+l J,J+H

Lemmas 8.3, 8.9, and 8.11 are results from CTMC theory. Their proofs

are contained in the Appendix since they are lengthy and do not add to

the results of this section.

Lemma 8.3: Assume X < X and X, < X j < I < i. Let set
ij 1 ii - 1i

A F {k,k+1,...,M}. Then p JA > p iA j < i < k where equality

holds if and only if (i) X = X it I = 0, .... j-1 and

I= i+1, ..... k-I, and (ii) X jA = XiA" If i) and (ii) hold,

then JA = J0 A = = PiA. Also, if set B = {0,1,. .. ,k},

then ±B ( -v k < j < i where equality holds if and only if

(i') jl Xl V 9- = k+1, ... , j-i and X = i+1, ... , M, and

(ii') X jB X iB. If (i') and (ii') hold, then

P JB = lj+I,B =.... 4iB"

Notation: 4AB C = E(time from arrival in state or set of states A

until the next arrival in state or '-it of states B, given that

condition C holds).

Theorem 8.4: If Xkj < ).j and Xji < X ji (j< 9<i, then

M M

i <1) I i_ ) V = 0 1, ... , M .

(The superscripts (1) and (2) refer to systems (1) and (2) as discussed

above).
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Proof: Let set A - (k,k+l,...,M), and consider the case J < k.

irA = Mi-k ni - m(A)/ ±AA. The two systems are identical except for

transitions from state J. Thus, m ()(A) m (2)(A).

"AA = "AAI(noJ)P(noJ) + [IAJI(JI+JA] P ( J )

where (J) = hitting state J before returning to set A, and

(noJ) , not hitting state J before returning to set A. The only

(1) .(2) .(1)
difference between 1) and " is LJA and
(2) (1) i(2)
2jA . It will be shown that JA - 2JA which implies

(1) (2) (1) (2)
iAA -- pAA which implies tA < nA

Conditioning on the first jump from state J yields

() (1) MM m(1j) + P (1) P(1)

JA i Ji iAi<k

I J'J+I (1) + xJi

+() +X (I - IJ+j A i~k X X)
3* JJ+I * JJ+I iJ+I 3* JJ+

+ (1)
'[iAi(noJ)Pi(noJ) (PiJI(J) + "JA )pi(J)]

where X = J* X ji
i#J+l,

J+H

Rewriting the equation:

(1) (1) 1 ( )  (1 1 X3 1 Pi(j)

( kj, ++ j = J+ J+),A +JA i<k

i+J+l

+ [ n P(noJ ) +  JI(J)P(J)]
i4k J iAJ(noJ) i i~iii<k

i#J+l
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(X*+XJ(O+C (1) 1 +(1) (1) (noJ)

(kk~+-k A= I + ~J~+ JjL[ jIA )

J*JJI AX, J+I4J+T ,A + ii iI (noJ)Pi n J

i<k

ioJ+l

+ P iij e(J)P ] (8.1)

where

Cx = y X ie(J)

i<k

i#J+I,J+H

(2) Performing a similar calculation for j(2A)  yields

( +X(2) _C)p (2 ) = I (2 (~2) + x [r (noJ)
~J* JJ+HC X JA JJ+H J+HA i~k J AIA(noJ) i

i#J+H

+ Pii (,i)Pi(J)l (8.2)

Subtracting Equation (8.2) from (8.1):

(X + X( 1) + -C ) ( 1 )  _k( l) I( 1), = k' + k (2) C .4 (2)

J* J,J+l t A J,J+I J+IA J* J,J+H X JA

.(2) (2) (8.3)
-j,J+H1J+H,A

(1) .(2)
Now assume (A < JA This will lead to a contradiction.

With

(1) (2) ad X -C= ~(-()>
i<k

ioJ+t ,J+H

(since otherwise the process never returns to A), Equation (8.3)

becomes
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JA 1 > x (2) (2) _ 2  (2)
J,J+ I JA J, J+I J+IA .JJ+1 JA J, J+H J+H,A

(2) (2)
From Lemma 8.3, iJ+HA <- "J+I,A'

(1) () -PO) (2) ((2) _(2) (8.4)((,J+I )JA - J+IA) > XJ,J+H IJA - "J+l,A J  (

From Lemma 8.3, both quantities in parentheses in Equation (8.4) are

nonnegative. Conditioning on the first jump from state J+l in either

system yields:

(1,2) P (noJ)+(4 + (1,2)Jp (j)J +!,A =  J+l,A!(noJ)PJ+l~n J + (J+lJI(J) +  JAI2) J+I(J

(1,2)
- x +JA P J+1 (J )

where

Dx = PJ+l,AI(noJ) F J+l (noJ) + LJ+I'JI(j)Pj+I (J )

Using (1+I, in Equation (8.4) yields:

x (1) 1r4((1-P (J)D . (2) (2) D ]

,J IJA ,I-j+I()-] >  ' Jj+[JA (1-5+1 ( J )  X

However, this is impossible since X( 1)  < k(2)
J,J+l - J,J+H'

the quantities in the brackets are nonnegative, and J) < (2)

was assumed. This is the desired contradiction.

Now consider the case for which k < J. Let B = (0,1,..., k-1).

(1) (2) ~ u l (1) (2) A eo
n is equvalenton B >-rB .A eoe

1% = m(B)/ BB, and the only difference between systems (1) and (2) is

(1) (2)
pJB and JB
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() () m0(1 ) + P 1 1

Ji~) (J)(J
>k i

J+ #+,+

+~j + x = ,+ 1) (1

Y* i P C x) x i (J) ] 85

J+ii iBJ(noJ) i

-c JJ+ ) X +B jJ+H KJ+,B

+ P X0j +~ p.nJ)~ P (J)] ] (8.6)
i i jni)In J 1 i j I

Su2trActiilar Eqaionl(8.6) for (.) yields:

(X3 +X2) C )(2) (2) ( )
J*JJH )JB + J,J+ J,B J,+

Subtracting~ (2)tio (8.7)om(85yels

J,J+H 'J+H,B
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Now assume g.(1) > ,(2) This will lead to a contradiction.
JB JB

(1) .(2)
With () 2JB and j - C% > 0, Equation (8.7) becomes

k(1) (1) x (1) (1) < x (2) L(2) k(2) .L(2)
J,J+IJB - J,J+I"J+I,B J,J+H JB J,J+H J+H,B

From Lemma 8.3, p(2) > P(2), so
J+H,B- J+I

JJ+I JB J+I,B ) < jJ+H(2 JB - j+I,B) or

(1l) ((1) (1) k(2) ((2) (2). (8.8)

J,J+l "J+I, B -JB ) > J,J+H "J+1,B JB )

where both quantities in parentheses in Equation (8.8) are nonnegative

by Lemma 8.3. Conditioning on the first jump from state J+l in either

sys tern:

(1,2) pl(noJ) + ( + (1,2))Pj(j)
J+I,B = J+lI(noJ) JJ+,J(m "JB +

+ (1,2) P (J)
JB J+I

whe re :

Dw = J+I,JI(noJ) Pj+(noJ) + j+I,j,(j)Pj+I(J)

.(1.2)

Ustlig 4J+,B in Equation 8.8 yields:

(1) (1) (2) (2)
x JJ+ID- JB (1-P j+I(OM > x J,J+H [D-pj (I-Pj+I(3))]
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However, this equation cannot hold since X(lI < X (2)
J,J+I - J,J+H'

the quantities in the brackets are nonnegative, and ( >- J)

was assumed. This contradiction means

(1) < .L(2) =0 (1 ( ) -) (2
"JB - J NB - NB >*N

The following corollaries help relate Theorem 8.4 to the optimal

operation of a system.

Corollary 8.5: If there is a nondecreasing utility function

corresponding to the states of the CTMC, then under the conditions of

Theorem 8.4, system (2) has higher expected long-run utility.

Proof: Let the utility of state j be a. with a > aj_ 1 ,

M M M M M (2

i=0 i= j=i i=0 j=i i=0

where

b i = a - a_ for i> I and b -a 0i _ 0 0

Corollary 8.6: If there is a nondecreasing utility function

corresponding to the states of the CTMC, if the hypotheses of Theorem

8.4 hold, and if X X X v i > J, I > J, then it is optimal to

repair to state M.

Proof: In System (2) set H = M-J, and in System (1) set

I= 0, 1, ... , M-J-l. From Theorem 8.4,

M M

i Ik iIk
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and from Corollary 8.5, this is optimal. U

Corollary 8.7: Under the conditions of Theorem 8.4, increasing a repair
M

rate increases 'i 7E v k.

Proof: This is the case I = H in Theorem 8.4. 0

It can also be shown that decreasing a failure rate increases

M
li=k 7i*

Corollary 8.8: If Theorem 8.4 describes the steady-state operation of

one component in a coherent MSF, System (2) has higher expected utility

then System (1).

Proof: All min paths at all levels cont3in the component at a certain

level or higher. Since

M M n(2 v k

i=k i=k

h k(P) is larger in System (2) v k. ,

hypotheses of Theorem 8.4 can be changed to other hypotheses which

were used in the previous section.

lemma 8.9: Assme 7 1 k is nonincreasing in i -v I < i and
j=O0 ij

X Xj is nondecreasing in i - I > i. Let A H{k,k+l,...,M}.

Then p. > iA _v j < i < k where equality holds if and only if

(i) % X = see = X i v 1 0, 1, ... , J-I and

I =1+1, , k-I, and (ii) X JA X - X iA. If (i) andjA ... k ad(i kj+I,A I
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(ii) hold, ijA . . . A Also, if B {0,I ... ,k}, then

4jB <- - iB -Y k < j < i where equality holds if and only if

(.)j .=i0 = X = *Y I k+l, ... , j and Z = i+1,

... M, and (ii') X B X = X If (1') and (ii')

hold, JB = ... = iB

Theorem 8.10: If I=t0 xij is nonincreasing in i -Y I < i and

M , Xj is nondecreasing in i I 9 > i, then

i=k =I -- i=k ) < k = 0, 1 ... , M.

Proof: The proof is identical to Theorem 8.4 with Lemma 8.9 replacing

Lemma 8.3. D

In Theorem 8.4 several types of restoration may occur simultaneously

from a single state. In fact it was not necessary to have

A(1) = 0 and X(2) 0. The weaker hypotheses
J,J+H J,J+I

x (1) + x(l)+ < x.(2) + x (2 )  and X.(I) < x.(2)

JJ+l JJ+H - 'J+l JJ+H n J,J+H - J,J+H

would have sufficed, but this lengthens the proof. In Theorem 8.12 only

one restoration activity from each state is permitted. The hypotheses

are slightly different from Theorem 8.4, but the result is the same.

Lemma 8.11: Assume X j_ 1  xj V J< I < i and X ji > 0 for a single

i > j for each j. Assume X. < Xm and i < m when j i. Let

A - {k,...,M). Then LA <- PjA M j < i < k where equality holds if

and only if (i) X it - 'itv 9. = 0, 1,.... J-1 and I = i+l, ... , k-1,

and (ii) XJA = X iA. If (i) and (ii) hold, then JA J+I,A

..... iA" Also, if B = {0, I ,..... k}, then p -> i JB k < j < i
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where equality holds if and only if (i') X = X - k+L, .... J-1

and I- i+l,.. M, and (ii') XJB = X iB. f (i') and (ii') hold,

then pjB =

Theorem 8.12: Assume Xij ( X J < X < i and X i > 0 for a

single I > j for each J. Assume Xji < xAm and i < m when j < X.

Then Iitk (1) < YM (2) k.i- - i=k i

Proof: Let A (k,k+l,...,M) and consider the case J < k. As in

Theorem 8.4, the only difference between Systems (1) and (2) is .J

(1) (2)whcimleIt will be shown that P'JA 2 4JA whc imle

P > 2) which implies ()< Conditioning on
AA -'AA 1 A -A Codtnign

the first jump from state J yields:

(1) m (J) + Cl)
JA ) PJi PiA

i<k

J,J+l (1)
+ J () J+I,A

XJ*+ JJ+I xJ*+ J,J+i

, Ji

+ - (l) iAI(noJ) P i (noJ) + (4'J(J)P JA )P1(J)]

i< J* J,J+I

where Xj, = Zi<J XJi and (J) hitting state J before returning

to set A (as in Theorem 8.4).

(, + X 11) C)P (1)(,J J -CX)JA = + ,j+IJ+I,A

+ I xji[PiAl(noJ)Pi(noJ) + KiJ)(j)Pi(J)] (8.9)
i<J

where C -i<J "Ji(J)
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(2) A similar calculation for a( 2 ) yields:

(Xj, + C)(2) .(2)= 1 + x(2) (2)
J,J+H X JA J,J+H J+H,

+ I xJiiAI(noJ)Pj(noJ) + p ij(j)Pi(J)] . (8.10)
iWJ

Subtracting Equation (8.9) from (8.10):

.(I) ( ) .(1 (I) (2) _C ) (2)

(Xj* + "J,J+l - CX) JA - xJ,J+I"J+I,A = (Xj, + XJ,J+H - xJA

x (2) P.(2) (8.11)

J,J+H J+H,A

Now assurze (1) < V(2 " This will lead to a contradiction.
"'JA JA

Since Xj* - Cx > 0, Equation (8.11) becomes

A) ( -) () P (I) > (2) P(2) (2) (2)
jj+I.A -J,J+I J+I,A J,J+H JA J,J+H J+H,A

From Lemma 8.11, ,(l) > ,(1)"J+I,A - J+H ,A' so

jl) . () _ (t) > (2) , (2) (2) (8 12J,J+l t JA -J+H,A
) >J,J+H( JA - j+H(8.12)

where the quantities in parentheses in Equation (8.12) are nonnegative

by Lemma 8.11. Conditioning on the first jump from state J+H:

(1,2) .P (noJ) 1 2 + C W)

"J+H,A = J+H,AI(noJ) J+H + [4J+H,JI(J) + 'JA ' P J-

(1,2) p J) + D
= JA J+H +

where

DX -J+H,Ai(noJ) PJ+H(noJ)+ LJ+H,JI(J)Pj+H
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Using i in Equation (8.12):

(1) .- D > x(2) , (2) . J)) D
J,J+l[ JA Pj+H(J) x- J,J+H' JA '-J+H

However, X(1) < X (2 ) , the quantities in the bracketsHoweer, JJ I - JJ H

• (l) L(2)
are nonnegative, and JA )JA was asstned, so this is the

desired contridiction, and (JA > A (2)

"A- JA
Now let B - (0,1,... ,k-1} and consider the case k < J. As in

Theorem 8.4, the only difference between t(1) and (2) is

(I) (2)
,jB and JB

() PJB m (J)(+ _i) (i
iOk

1 + JJ+I (1) + ji

x x lPIJnjP) nJ
*+() xj,+ x (1) J+I,B k<i<J X,+X

( l)

JJ+I J, J+I JJJ+I

x [k iEIJL P (noJ) + ((j(j)+ (8.13)

where j, 4 xji<J *i

J)*J J' + X , J+ I "J+ I, B

+ x ji[I' I(noJ)pi (noJ) + Ii j[(j)Pi (J)] (8.13)
k<i<J

where Cx - lk<i<J X~iPi(J).
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(2) A similar calculation for System (2) yields:

( (2) (2). 1 (2) (2)
(XJ, + J,J+H - Cx) ~JB J + jj+H"J+H,B

+ x Xil iB (nolPi (noJ) + 4i j(j)Pi(J) . (8.14)
k<i<J

Subtracting Equation (8.14) from (8.13):

_(1) (1) .(1) (1) = ( + (2) _ )(2)()Ij, + J,J+l C .B j,j+IJ+I, 8  Xj, + "J,J+H X)I B

-(2) (2)
J,J+H4J+H,B (8.15)

Now assume (. This will lead to a contradiction.

Since Xj. - C > 0, Equation (8.15) becomes:

x (1) () .(1) (1) < x (2) L(2) _ (2) L(2)

J,J+I"JB - J,J+IJ+I,B J,J+H jB J,J+H J+H,B

From Lemma 8.11, (2) < (2)

x) J (I _ .jB1 > x(2) ,(2) (2) (8.16)J,J+l' J+l ,B B J,J+H[ J+I ,B - IIJB "

where both quantities in brackets in Equation (8.16) are nonnegative by

Lemma 8.11. Conditioning on the first jump from state J+I:

(1,2)(1 2J+I,B '"J+I,BI(noJ) P J+I(n J) + ( J+lal(J)+ (i 2 )PJ+I(J)

(1,2) p +

- jB j+ +D

where

Dx X ' J+I,BI(noJ) Pj+ (n °J) + Iij+I,jJ(j)Pj+I(J)
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Using (1 in Equation (8.16) yields:

(1),J~,J+

( ) .(2)J J+I[DXP1JB (1-P J (JM > JJH(2) B(- JIJ)

However, this is a contradiction since XJJ) < xJJ)H, the
JJ+I - JJ+H

quantities in brackets are nonnegative, and 3B 2JB was

assumed. Thus, (1) < g(2) =+ (1) (2)
I'jB - JR n

Theorem 8.13 differs from the preceding theorems in that any repair

from a state smaller than state J+H must reach J+H before proceding

to any state larger than J+H. This provides a slightly different

result without assumptions on the failure rates.

Theorem 8.13: Let Xij - 0 whenever i < J+H, j > J+H or i > J+H,

(1) (2)j < J+H. Then % _l < --2 k >J+H.

Proof: Conditioning on the first jump from state k > J+H:

"kk = "kkI(noJ+H) Pk(noJ+H) + [ k,J+H(J+H) +  J+H,kI P k(J+H)

(1 ,2)
The only difference between Systems (1) and (2) is J+),k" It

will be shown that (2) hich implieswJ+H,k - "J+H,k

(1 2 which implies 1') (2

P'J+H,k f gJ+H,kl(noJ) P J+H(noJ) + [ (J+H,J3)(J)+"JJ'Hi+"J+H,kJPJ+ H( J )

J [Lj+H,kI(noJ)PJ+H( n ° J ) + (PJ+H,jI(J)+JjI )Pj+H( J ) ]

/[I-P J+H (J) ] . (8.17)
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The only difference between (1) and (2) i
4J+H,k 4J+H,k

() and (2)
j, J+H J , J+H

Conditioning on the first jumip from state J:

(1) J' + (1 (1)(J) + I PJi 1) J+( H
JJ+H m ~ i(J+H i ,+

x (1)~ (1xJ

1 + J,+ (1)+IJ+ + xJ*
X~l) X) J~l J+H J+I X

Sij,J+HI(noJ)Pi~nJ + ii~JK) + (1)+H

(I1+ X((1 (1) L)/( M1 - C) (8.18)
"JJ+H (1)"JlJ+

where

Cx ~ x P (J),
i(J+H
iOJ+l

L I x Jit~i,J+HlcnoJ) P (noi) +~ Ii jP (3)1
i<J+H J )I
iAJ+l

(2) A similar calculation for 4JJ+ yieds

(2) (1+)( (2) _- (8.19)
"J,J+H JO)(Xx
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Since

= J+I +- J,J+H JO
i J+I, i J+I,
J+H J+H

and

(1l) (1) >o
X > 0,
J,J+I J+I,J+H -

comparing Equations (8.18) and (8.19) shows that
(1) > (2)J,J+ > "J,J+H" Then, from Equation (8.17),

(1) > (2)
"J+H,k - + as required. _

8.3. Examples

The first two examples in this section are complementary. Example

8.1 contains a system with mean repair time that is shorter when

repairing all at once than when repairing in stages. However, the

optimal repair strategy is repairing in stages. This means that the

assumption (1)  < X(2) cannot be replaced byJ,J+I J,J+H
,/),(2) <1/X.(l) + I/X,(2)InEape82i

J,J+H- i'J+l J+I,J+H* In Example 8.2 it

is optimal to repair all at once even though mean repair time when

repairing in stages is shorter than when repairing all at once.

Example 8.1: Consider the 4-state CTMC shown in Figure 8.1.

3 ---- 42 ---- I/

23

Figure 8.1. CTMC
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In state 1 there is a choice between repairing all at once: X 3 > 0,

X12 - 0, or repairing in stages: X 3 - 0, X12 > 0. Let X32= 21= X

- .1, X = 1, X01 = 1, X12 - 5, X 1 3 = 2. To find the

steady-state probabilities, the following equations are solved.

(1) Xn 3 = X 1 3 n I + X23 2

(2) (X+X2 3 )n2 = \ 1 2 n1 + Xn3

(3) ( X10 + X12 + X13 ) n =  X 0 1 0  + "n2

(4) X OitO 0 = '10

(5) nO + nl + n2 + n 3 = 1

Case 1: repair in stages, X13 =0

X +XX +XX 0112 +  X011223 10.52

no  10 01X0101 = .102 2

ni = X2 XO . = .0010

n 2 = x01X1 2/ = .0474

3 = X01 12 k23/ .9506

Case 2: repair all at once, X12 =0

X 10 + k2X01 + 2XX01X13 + X01 13'23 = 4.42

2
n O0  X I /X =.0023

xL= 2 41. = .0023

i 2 = XX0 1X13/X - .0452

n 3 - (XX 01X 3+X 0 X 1323)/X= .9502

13 n is larger in case I v k so it is optimal to repair in

stages. This is true even though expected repair time when repairing

all at once, 1/X13 5, is shorter than expected repair time when
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repairing in stages, 1/k12 + 1/X23 7. The reason for this is that

1/x 13= .5 > 1/X 1 2 = .25, so the system exits from state 1 more

quickly when repairing in stages. This means that the transition from

state 1 to state 0 will occur less frequently in case 1. The

e-imple may seem somewhat contrived since Xlo = lox21. However, it is

still optimal to repair in stages with X 2 = -3x = 1 when a

linear utility function is used as shown in Table 8.1. Repairing in

stages is not uniformly superior for all nondecreasing utility functions

(1) (2in this case because n3  < n 32)
3

- r3
S it0  iTI iR 2  i 3  U=i=O in

Case 1 17 .059 .059 .294 .588 2.41

Case 2 10 .1 .1 .2 .6 2.3

Table 8.1. Repair Comparison

Example 8.2: Consider the 5-state CTMC shown in Figure 8.2.

Figure 8.2. CTMC

In state I there is a choice between repairing to state 3 or state

4. let 4 3  1 . , 32 - 1, X 34 = 2, 24 = 1, 23 = 25, 2 1  = 1
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x = .1, 3 = .25, = 1 0 = 1. The following equations need to
14 1 '10 '01

be solved to determine the steady--state probabilities.

(1) X4 3 74  ' 1 4 "1 + X2 4 "2 + X3 4 73

(2) (X32 +X34 )3 13 n 1 + %23 2 + N43 4

(3) (X2+X 2 3+' 2 4 ) 2  = '3 2 3

(4) (X 0 + 1 3 +k 1 4 ) % = xO1l'o + '21' 2

(5) X 010 = 'it,

(6) it0  + it1  + it 2  + it3 + i 4  I

Case 1: repair in stages, % 4 = 0

= 0l"21)32"43 + "Ol21'32"43 + "01'13"k3243

+ x 1x13 43 ( 21 + 23 + 24) + x 1x13 ( 24 32 + 21 34 + 23 K34 + 24 34

no 1 x O21 k32 43/

= 01x 21 x32 43/l

2- x01 x 1 3 x3 2 43

n 3  = xOl x3 43 12t 2 3 +' 2 4 )/5

E 4 x 01 x13 24 32 + 21 34+)23 34+"24"34) /

Case 2: repair all at once, X = 0

10 x 21 x32 x43 x01 k21 k32 x43 x01 x14 x43 (k21 +x23 +x24 +X32

+ x 01x1 4 (X2 1 32 + 2432 + 2134 + 23 34 + 24 34)

n1 = xOl 21 32 43/ 1

*3 =' xx 1 4 "4 3(" 2 1+" 2 3+" 2 4 )/x

* 4  x 1x 14 (X 21 "3 2 + 2 4 "32 "21 34 23 '34"24 "34 /X

The results of the calculations are shown in Table 8.2.
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i 0  1 '1 i 2  ' 3  4

Case 1 .2612 .038 .383 .096 .129 .354

Case 2 .2705 1 .037 .370 .037 .050 .506

Table 8.2. Steady-state Probabilities

From Table 8.2 i3 n is larger in Case 2 v k, so repairing all at

once is optimal even though expected repair time when repairing all at

once, 1/k = 10, is larger than expected repair time when repairing in

stages, 1/X13 + I/X34 = 9. The reason for this is that the transition

from state 3 to state 2 may occur when repairing in stages. It can(2) (1) - 22.6 0

be shown that 414 . 11 < 14

The next example is a system for which it is optimal to repair from

state J to state J+H and from state J+1 to state J+I oven though

I < H.

Example 8.3: Consider the 4-state CTMC shown in Figure 8.3.

X 13

_ 23 X12( - . . . .- x - - x l

0Q 3
_

Figure 8.3. CTMC
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In state 1 there is a choice between repairing all at once: X13 > 0,

x12 , 0, or repairing in stages: X13 0 0, x12 > 0. Let X32 ' x21 = x

S.1, = 1 , x03 1 1, x23 = 2, X12 - 4, and X13 = 2. The following

equations are solved to determine the steady-state probabilities.

(1) Xn3  = x0 3 0  + '13'l + "23 2

(2) (X+k2 3)n2 = X12nl + Xn3

(3) (Xo10+ 2+ X 3) 1  = X 2

(4) X0 3 n0  Xo10in

(5) 10  + nt1  + nt2  + n3  = 1

Case 1: repair in stages, X13 0

x 2x10 + x2X03 + 2XX03 10 + 1xO3x13 + X03 10 23 + x03 12 23
2n 0 x 120O/

ni 2I = 3/
cxx = xko~ + xxO x )/x

it2 (X03 x10 + x03 x13

it3 = (XX03x10 + o03x10 2 3 + X0 3X 12x 2 3)/X

Case 2: repair all at once, X12 = 0

= 1 0  + X2 '03 + 2 0 3 1 0  + 2"" 0 3 13 + 03"023 + "313'3

o= x2xio/1
it," 2 'o3/'"

n 2 (XX0 3 X10 + ")o03"3)/1

it3 = (XX03 x10+XX03 x 13+x03 X10 X23+X03X 3x 3)/x

The results of the calculations are shown in Table 8.3.

-176-



n 0  I it 2  4.. 3

Case 1 10.62 .001 .001 .047 .951

Case 2 6.62 .0015 .0015 .0755 .9215

Table 8.3. Steady-state Probabilities

From Table 8.3, 3  n is larger in Case I -v k, so it is optimalJ i

to repair in stages. This is true even though expected repair time when

repairing all at once, I/X13 .5, is less than expected repair time

when repairing in stages, 1/X12 + 1/X .75. The reason for this is

that I/A = .5 > 1/k12 = .25, so the system exists from state 1 more

quickly when repairing in stages, and the transition from state 1 to

state 0 will not occur as frequently. Note, however, this example

does not satisfy the hypotheses of Theorem 8.4 since X > X when
03 13

repairing in stages. 0

The result of Example 8.3 is that it is optimal to repair from state

0 to state 3 and from state I to state 2, even though it is

possible to repair from state I to state 3. A simple replacement

model is considered in Example 8.4, and it is shown that an increase in

a failure rate could actually increase expected system utility.

Example 8.4: Consider the CTMC shown in Figure 8.4.

' -M -1)- M -- M-2) X*

Figure 8.4. CTMC
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The system modeled by the CTMC shown in Figure 8.4 is a system which is

run until complete failure and then replaced. By a standard renewal

arguement with Xo  (1/ )/J.O(I/Xi). If X increases, n,

decreases, and nk increases V k 0 i. Consider jtk n
k-1I

- E-O " If Xi  increases, then k t increases for

k > i but decreases for k < i (since k- increases).
J=O " inrae)

Assume the usual nondecreasing utility function. If Im  increases,

M
then .i decreases v k > 1, and the expected utility of the

ystmdecreases. If i increases, then n. increasess y s t e m d e r a e . I Xk
j

v k > 1, and the expected system utility increases. However, a change

in any other Xi may increase or decrease expected system utility

depending upon the utility function and the other transition rates.
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9. REPAIR VS. REPLACEMENT

A discrete time model is considered in this chapter. In each state

the operator has a choice to repair the multistate component, replace

the component, or do nothing. It is shown that the optimal policy is to

either repair or do nothing until the component reaches a certain state,

and to replace whenever the comp-,nent drops below that state. This is a

type of control limit rtle. The control limit may be 0 in which case

it is optimal to never replace. It was hoped that a 4-region policy - a

policy for which the optimal actions are inaction, repair, inaction, and

replacement as the system state decreases - would be optimal as it is in

a similar model. However, an example is presented in which a 5-region

policy is optimal, and it is conjectured that no limit on the number of

possible regions exists.

9.1. Control Limit Rule Optimality

Consider a general discrete model in which the operator has a

choice of inaction or returning the system to any state. This model

differs from previous ones in that a decision must be made not only

whether to restore the system, but also how much to restore the system.

Replacement returns the system to its best state while repair improves

the system but does not necessarily return it to its best state. Let

Ai be the 1-period operating cost in state i, let C be the constant

1-period cost of replacement, and let Cij be the 1-period cost of

repair from state i to state j (j > i). The following assumptions

are made relative to the cost structure.
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(1) Ai  is nonincreasing in i.

(2) Ci,i+ k  is nondecreasing in k and nonincreasing in i.

The second assumption means that it costs more to do more total repair

(C i,i+k nondecreasing in k), and it costs more to do the same amount

of repair starting in a worse state (Ci,i+k  nonincreasing in i). It

is also expected that Ci'i+ 1 < C for some i and C > C for

some i so that there is a nontrivial choice between repair and

replacement. If C,,+, > C Y i, replacement is always better than

repair. If C < C -Y i, repair is always better than replacement.

As in previous chapters, p i is the 1-period transition probability

from state i to state j given that no restoration takes place during

the period. The usual assumptions pertaining to transition probabilities

are made, namely

(3) j=0 P is nonincreasing in i V k.
(4) p(k)

() 0 > 0 for some k.

Assume that state occupancy costs are not paid during restoration and

that doing nothing is not a possible action in state 0. Optimal system

operation in the discounted case is described by the following recur-

s ion.

M
4(i,a,N+I) = min {Ai + a 0 Pij (Ja,N) ; C + aX (M,a,N)

Ci'i+1 + 0di+l,a,N) ; "'" ; Cim + aczM,a,N)} for i>0

- min (C + a(c(Ma,N) ; C01 + az(1,a,N)

C + a4<M,a,N)) for i 0 . (9.1)
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Theorem 9.1 shows that a special type of control limit rule is optimal

for this system.

Theorem 9.1. If assumptions (1)-(4) hold, then there exists an i* for

which it is optimal to replace whenever i < i*, and to either repair or

do nothing whenever i > i* for both the discounted and average cost

optimality criteria.

Proof: Since Ai  and Ci,i+k  are nonincreasing in i, it is clear that

4t(i,a,O) is nonincreasing in i from Equation 9.1. Assume, inductive-

ly, that 4,(i,a,N) is nonincreasing in i. Then, since

TM
_ Pij1(i,,N) is nonincreasing in i by assumption (3), ,(i,a,N)

is nonincreasing in i v N. Thus, 4(ic) N. . (iaN) isS N+w (,=,)i

nonincreasing in i.

M
4(i,a) = min (A + a I=p (ia) ; C + a4<M,a)

i j=o i

s C iM + a4(M,a,N)} for i > 0

= min {C + CL(M,a) ; .* ; M + a (M,a)} for i = 0

Note that, in the above recursion, C + a4(M,a) is constant in i

while all other terms are nonincreasing in i. Thus, if

,(i,a) = C + a4<M,a) for some i - i*, then 9(i,a) = C + a4(M,a)

v i < i*. If C + a4<M,a) never minimizes 4<i, a), set i* - -1.

This completes the proof in the discounted case. In the average cost

case, take 0(i) - lim (1-a)4(i,a), and apply the usual limiting

argument. [
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The ideas contained in Chapter 7 can be used to extend this result

as shown by the following corollaries.

Corollary 9.2.: If costs Ai  are paid during repair and replacement,

the control rule described in Theorem 9.1 is still optimal.

Proof: The recursion for i > 0 becomes

M
4o(i,a,N+l) = Ai + min (a I p 1j (j,a,N) ; C + adKM,a,N)

j=O

; C + agdM,a,N)}

Since the minimization term is Equation (9.1) with A, = 0 v i, the

result follows from Theorem 9.1.0

Corollary 9.3: Let k be the probability that repair Ci,i+k suc-

ceeds, and let F be the probability that replacement succeeds. If

costs Ai  are not paid during replacement, then the control limit rule

described in Theorem 9.1 is still optimal for both 4$(i,a) and 4(i).

Proof: The standard recursion becomes:

M
4,(i,a,N+1) min {Ai + a I Pi;(J,a,N); C + a54,(M,a,N)

J-0

+ E(l-p)4i(i,a,N) ; Cii+i + ap,(l(i+IaN)

+ a(1-p 1 )C(i.a.N) ; o ; C ,N)

+ a(I-PM_i)((i,a,N) i > 0
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- min {C + a p (M,a,N) + cx(1-)(4(O,a,N)

COM+ + A M O.

As in Theorem 9.1, everything is nonincreasing in i so, 4P(i,cX) is

nonincreasing in i. As in Theorem 7.4, if the replacement action is

optimal for state i*, $(i*,a) - [C + a5p(M,a,N)]/[1-a(l-p)]. Since

4(i,a) is nonincreasing in i and <i*,a) is independent of i,

,(1, a) = 0(i*,a) -v i < i*. If replacement is never optimal, set i*

-1. The usual limiting argument yields the result for *(i). If

restoration costs are not paid when restoration fails, replace C by

pC and replace Cij by pj iCij, and the analysis is unchanged.0

With Ci,i+ k = - -v ik, the model in this section is the sane as

those in Chapter 7. Thus, from Example 7.2, a control limit rule is not

necessarily optimal in the failure to replace case when state occupancy

cost Ai are paid during replacement.

The repair/replace model can also be extended to the continuous

case. The problem is considered as a CTMDP. Costs C,Cii. and Ai  be-

come cost rates. It is assumed that the system does not operate during

restoration and that state occupancy costs are not paid during restora-

tioq. The action set is (0 = do nothing, I = replace, 2 = repair i +

i+1, ... , M-i+l - repair i + M}. Transitions from state i to state j

occur at rate Xij( < i) when no restoration occurs. The replacement

rate is X, and the repair rate from state i to state j is X (j > i).ii

Some kind of restoration must be performed in state 0. Let

sup Xi(a). The rewards and transition probabilities for an
Y i,a

equivalent DTMDP are as follows (from Theorem 7.6).
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r (0) = A /(+y)

r (1) - C/(+y)

r 1i) = Ci,i+j I/P+ Y )  for j > I

i Xij/Y for j < i

p 1(0) = I - xi./y for j = i

0 for j > i

( X/y for j = M

P = I - X/y for j = i

0 for j # i,M

ki,i+k-i/Y for j = i+l;k > I

p j (k) I - x ,i+k_1/y for j = i;k > 1

0 for j # i,i+l;k > I

Corollary 9.4: Let assumptions (1) and (2) remain valid, and let as-

sumptions (3) and (4) be replaced by

(3W) X x I J < <I o r =ki is nonincreasing in

i Yk,

(4') X x ilXi x in%0 > 0 for some sequence

i1' 1 n"

Then the control limit rule described in Theorem 9.1 is optimal in both

the discounted and average cost cases.

Proof: The recursion for the DTMDP with i > 0 is
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M

d(i,a,N+l) min (Ai /(P+y) + a Pj(O)4,(j,aN) ; C/(P+y)
J =0

+ akM(M,a,N)/y + a(1-X/y)4<i,a,N) ; C i, /(+ y)

+ aii+l (i+1,a,N)/y + a(-kii/y)(i,,N);

I... ; CiM/(+Y) + aXiM4<M,a,N)/y

+ X(1-XiM /y)c(i,a,N)}

From Lemma 7.7, 0 p (0)(j,a,N) is nonincreasing in i, and as-
ii

suption (4') means that P(k) (0 ) > 0 for some k. Thus, withjo
= i,i+k/y and p = X/y, this recursion is the same as that in

Corollary 9.3.0

9.2. Examples

The control limit rule in Section 9.1 differentiates only between

replacement and the other alternatives. It would he nice to show that

there is a region of the state snace for which repair is optimal and a

region for which inaction is optimal. In state M it must be correct

to do no.hing since otherwise the system would be in a constant state of

repair. From the previous section, it is optimal to replace in states

0,1,...,i*. Thus, ia states i*+l ..... M-1, the optimal action will al-

ternate between repair and inaction. A "nice" policy is one in which

the optimal action alternates infrequently such as the 3-region and 4-

region policies shown in Figure 9.1.
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States O,...,i* i*+1,...,i'-I i',....M

Optimal Action for Replace Repair Inaction
3-Region Policy

Optimal Action for Replace Inaction for i<i 0  Inaction
4-Region Policy Repair for i>1 0

i* < i0 < i-i

Figure 9.1. 3-Region and 4-Region Policies

Example 9.1 is a 4-region policy. Policies of this type were found

to be optimal in Rosenfield [1976A] when the possible actions were re-

placement, inspection, and inaction. Unfortunately, as shown in Example

9.2, a 4-region policy is not necessarily optimal for the repair/replace

model. Since Example 9.2 contains a linear utility function, a totally

positive transition matrix, and repair only from state i to state i+l,

it is difficult to think of hypotheses which would make a 4-region poli-

cy optimal. It is hypothesized that a counter-example can be devised

for any n-region policy where n is a finite number.

Example 9.1: Consider the 4-state DTMC shown in Figure 9.2.

p3 3  

2

P32 2 p2 1  P :- 10 ' 0

-- ._ P3 1 _-J

Figure 9.2. DThC
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Repair is restricted to repair from state i to state i + 1. Let

A = -3, A2  = At . -2, A0  = 0, C = 6, C 4 -v i, p33 8, p32

.1, P3 1 = . P2 1 = .1, P2 0 = .9, p 1 0  1 1, and a = .9. The recursions

in the discounted case are shown below.

({(3,a) - A3 + a[p 3 3 (a) + P 3 2 (2, a) + p 3 1 (l ,a)]

,) = rain (A2 + alp21 (1,a) + p 2 0 4(0, a)I ; C2 3 + ac(3,a)

C + a(3, a))

4K(1,a) = min (A1 + ap1 04(O,a) ; C12 + a4(2,a) ; C + ac(3,a)}

(0,a) = min{C0 1 + a(cl,a) ; C + aV(3,a)}

Solving the recursions yields:
A+2p3C 2 3

(3,a) = (A3+ap 3 2C2 3+ap 3 1AI+a P3 1C)/(1-p 3 3-a2 p 32-a P3 ) = -18.51

P (2,a) = min {-11.68; -12.66; -10.66) = -12.66 (repair)

4 (,a) = min {-11.6; -7.4; -10.66) = -11.6 (do nothing)

4(0,a) = min {-6.44; -10.66) = -10.66 (replace)

Thus the optimal actions are inaction in states I and 3, repair ii

state 2, and replacement in state 0 as shown in Table 9.1. This is a

4-region policy.

State 3 2 1 0

Optimal Action Inaction Repair lnaction Replace

Lii

Table 9.1. 4-Region Policy
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Example 9.2: Consider the 5-state DTKC shown in Figure 9.2.

P31 P20

4 P43 3 P32 2 P2OI)I

Figure 9.3. DmKC

The only allowable repair is from state i to state i + 1. Let

A, -i V i, C = 7, C ii+ - 1.95 -v i,

and

0 .O .899 .1 0

0 0 .01 .99 0

PF 0 0 0 .99 .1

0 0 0 0 1

0 0 0 0 0

The transition matrix is obviously upper triangular and can be shown to

be totally positive. The optimality criterion is expected average cost

which is computed from the equation E(average cost) - E(cost per cycle)/

E(cycle length).

The return state is the largest state that the process will return

to infinitely often (normally state 4). In Table 9.2 all permissable

policies are considered. The table has been abbreviated by using the
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control limit rule in Section 9.1, always doing nothing in state 4, and

choosing only between repair and replacement in state 0. Dashes appear

in the table whenever the chosen action is immaterial to the calculation

of expected average cost. It can be seen from Table 9.2 that the policy

yielding the lowest expected average cost is inaction in states 2 and

4, repair in states I and 3, and replacement in state 0. This might

be called a 5-region policy.0

State 4 3 1 2 1 0 E(Average Cost)

N RR RR RR - .03
N RR RR RL - .072

N N RR RR - .294

N N RR RL - .54
N RL RL RL - 1.75

N N RL RL - 1.498
Actions N RR RL RL - 1.497

N N N RL RL .413
N RR N RL RL .413
N N N N RL .053
N N N RR RL -.018677
N N RR N RL .413
N RR N RR RL -.018681
N RR N N RL .053
- - - N RR .475
- - N RR RR -.015
N RR RR N RL .031

N - Do Nothing

RR - Repair
RL - Replace

Table 9.2. Policy Comparison
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APPENDIX

Proof of Lemma 8.3:

First it is shown that if (i) and (ii) hold, then "JA =

From the inequalities for X J, X~ - X aix ) -+X1 X + AMse X *O ix

and X J - X -k XJ - X J*.* X:,. For each state r

where j < r < i,

rrA X +tIk x A r*

i i

+ * . rlt rA ~ riOYA + " rt~tA

i<1<k

where

0<1<j

One solution to these equations is

PrA " I+ 1" XrIP)/Xr*"
q< <<j

< k

This solution is constant in r v j < r < i and must be unique

since the system is a positive recurrent irreducible CTNC. Thus,

PJA - "." - giA"

Now assume that at least one of (i) and (ii) does not hold. It

will be shown by induction on the size of the state space that
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0A > A > "'" > k-1,A v A. For M- 1, the lemma is

obvious. Assume 'LA **> lxk-1,A Iv A and V M- 1, 2 ... , N.

Consider a set A - {k, ..., N+1) with k < N as a single state by

setting X N- for all I A A. The state space thensettingkA =1 -k il

has fewer than N states, so the induction hypothesis implies

that g OA > ". > llk-1,A . Thus, it suffices to show that

l 0,1T+l > "" > 'LN,N+I" Each 4 J,N+1 is a continuous function of Im

v Jt,m when X m > 0. From the inequalities on the transition rates,

XN,N+I > 0. Let A = (N, N+I), and let ,N+ " Then t JA = j,N+ 1

v J, and POA > "'" > 4N-1,A or 10,N+I > "'" > P*-I,N+I from

the induction hypothesis. Also, g N,N+ 1 + 0 as XN,N+I so

N,N?+1 < N-1I,N+I"

By continuity, since the J,N+l's are strictly ordered for

xN,N+ I + -, they must also be strictly ordered for some large finite

value of XN,N+I. Start with X,N+l at that large value and decrease

it toward its original value. If it reaches its original value with the

gj,N+l s still strictly ordered, the proof is finished. If not, let

kN,N+I be the largest value of , for which an equality occurs.

Let e be a small positive number. By continuity, for some j and

i> J:

N, N "1 N+1.1 + £ I- j .- N+1 > j N+1 > " > i.N+1 > i+1,N+1

-'+ i',N+l LJ-I,~i~,N+ I ~ iN+I "i4I,N+I

X,. - .,+I -I - gi+I, N+1 < 'jN+ I iN+I< j-1,N+•
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Conditioning on the first jump from state j yields:

(IP -N~ 20) +. 1 pJ ~11

- ( ~Jj+I j+I,N-1 + i<N " LNj / x+~l ' ,N4

where

tOJ+1 ,N+l

+ x xi (AI'I".i)

(2) A similar calculation for state J+1 yields:

(kJ1*+ XJ1 + x JINI"+.

+ 1x j+1jLjN+l + .I( Xj+1,1 LX,N+I (A.2)

where

x xj 1 .t
A~~j,N+I

Subtracting Equation (A.2) from (A.1):
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O -*+" +I+ ' 41+' +I A j l)Ixj1,N+

+ (I -

,tj-,j+I

With 50NlI' Njs that -JN~ "J+1,N+1 this

equation becoms

("j* +XjN+ljN+ I

(+1, + "J+1,N+1 )Pj+1,N+I + x -
t'j~j+1

Since XII~ J+,~

"j* Pj,N-i4 J+l,* "'j4-,N+l + -X+)IiN 
(A.3)

JA<N

where equality holds if and only if XJNl lj-i-,N+1'

Rewriting Equation (A.3) using the definitions 
of X and

"JIC"J, + -'I, + )> 'j+N jt 4j +1, N+I "Ii, N+1 or:

I_' 1X J+1 "IJ~, N~l+1 + + IX'~

(A.4)
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where - -.. - was used to derive Equation (A.4). For

1< j , +l - " -.+l ' j+l,+l - " (,0+l < 0 and Xj > Xj+I. .

ru s > i. JN+l - ".,+l "J+I.N+l - X.N+l > 0 a:d : +J1 <I :j+P.I
.

Thus, each term on the left hand side of Equation (8.4) is smaller than

or equal to the corresponding term on the right hand side. The only way

that Equation (A.4) can be valid is if X) - X vj+lI - 0 < I < J-I,

i+l < I < N, in which case it holds at equality. From Equation (A.3),

kjN+1 M XJ+l,N+ I . Thus, conditions (i) and (ii) hold with i - J+1,

A - (N-).

Now repeat the above calculations for pairs of states

(J+l, J+2); -o, ; (i+l,i). For Equations (A.3) and (A.4) (appropriately

modified) to remain valid, it must be that Xi - 0 X '.'

0 < I < J-I and i+1 < I < N*I. However, this is equivalent to (i) and

(i) with A - (N+0 which is a contradiction since it was assuned that

at least one of (I) and (ii) did not hold. Thus, there does not exist

";,NX lsuch hat VJ,N+1 = a& + . . i,N+I' and continuity implies

that p0,N+lI '' > PN,N+I"

To prove the result for set B - (0, 1, ... , k), let state i

correspond to state M-i in the previous argument. Then set B

becomes set A, and the result follows. U

Lemma A.1: Assume X X is nonincreasing in i v A < i

and M X is nondecreasing in i - I > i. Let
4-I iti

0 < a <a. and bo< bi _ ... o bM< O. Then X-A ia
Iii 1

and XJ- b are nondecreasing in i v I > I and v I < i,j-o 0 1
respectively. If (a i  is a strictly increasing sequence, then
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J-1 ~l~ j 41 'ai i+1,j 'ii

v J - 1, ..., M. If (b ) is a strictly increasing sequence, then

,~ ~ i 0 11 J, 'L ib J-0 Xi+|,jb i= Xii "i+l,j

vJ - 0, ..... 1.

Proof: Let Ai E ai-ai_1 > 0 4 i > 1, and let A,, a,, 0,

M MM M M
CX +, -,-k )a I I (Xi+ J -X )Ak I Ak  I (X "ji k-i J-k k. j-k (jik-'i-

(A.5)

By hypothesis, Ik +,X ) > 0, so since Ak > 0, Xijaj

is nondecreasing in i. If Ak > 0, equality in Equation (A.5) can hold

if and only if '(X -X) m 0 V k J , .... M or X i
J-k i+1,j ij i4-1,j ij

v j , . . M.

Let Ri = bi - bi+I < 0 V i < 1, and let B - bt 0,

. 2 k I k
j )( + l J -X )bj 0 1 (X i+l 1i -Xij )B k kCO -. "

(A.6)

kX

By hypothesis Xk=0( I I,j-ij) < 0, so since Bk  0, J O jjbJ

is nondecreasing in i. If Bk < 0, equality in Equation (A.6) can hold

If and only if 1=( i.0 -A)-0 's k-0......2 or l -i

V j - 0, .... Ii. 0

Proof of Lemma 8.9: The proof of Lemma 8.9 is identical to the proof of

Lemma 8.3 except at the places where hypotheses on the ij's are

invoked. The necessary changes are shown herein, but the entire proof

is not repeated.
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Since 1-i= it for j < i does not necessarily imply

-J *. ki in Lemma 8.9, it is assumed that Ii *.* X i in

condition (i) and X ..... X in condition (ii). Note that
J,A iA

j,N+l -< Xi,N+l j j < i.

Consider Equation (A.4). For I < J, "j,N+l - "I,N+I =

lj+l,N+l - 9X,N+L < 0, and by Lemma (A.l)

<JA <jJ1,1 J+,N+1,N+

where equality holds if and only if X. = X -, I = 0, .... i-I.

For A > i, J,N+l - "X,N+l =  
-J+I,N+l - .,N+l > 0, and by Lemma

(A.1)

i<t< i<jt<NJ+ 1

where equality holds if and only if X. i ,  -k i+l ...,. N.

Thus, Equation (A.4) is not valid unless conditions i) and (ii) hold,

and the same contradiction exists that exists in the proof of Lemma

8.3. 0

Proof of Lemma 8.11. The proof of this lemma is identical to the proof

of Lemma 8.3 to the point at which the calculations of p j,N+I and

PJ+,N+I begin (Equations (A.1) and (A.2)). This proof begins at that

point with Xjr > 0 and X J+ s  0 for j<r .

J',N+ <k

(I + Xjrr,N+l + I. X r 1AN+l)/(Xj*+Xjr)
19j
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where

It~ +x +jj , Nt(A

(J* jr ,jN+I ~ jr r,N+l N jtI1,+ A7

(2) A similar calculation for J+I yields:

(XJ+1,* +xj+1 j + +,s )IJ+1 ,N+l

+ + ' ++X.+s"Vl + +1 ",,~ (A.8)

where

xj+1 ,*=~~
4 l

Subtracting 'Equation (A.8) from (A.7):

(X (J+ 1 ,* +X J+I,s+X i+1 j )g X+,l %j+1,s ~s,N+l

+ I PR,N+(Xj jIt (A.9)

Let "N,N+1 - ',N+I so that "j,N+l = "j+1,N+l1

Rewriting Equation (A.9) using the definitions of X * and Xj~,

yields:

Ix (p p ) + X (
Ijt J1,JN+1 tI,N+l jr J,N+1 r ,N+1

.- ~ j+ ,Ij+t,N+ -. t,N+I) + "J+ 1 ,9("J+1 ,1 N+1 -,N4-1 (lO

197



For I < j' , j,N+I - "J+1,N+i < ti , N+ 1 and X~ 1>xJ+, so

where equality holds if and only if X X for I < J. Since
jit J+1, it

xjr j+I,s and "r,N+l - s,N+I'

X (.)<X 0jr j,N+ r,N4-1 - j+ j+l-,N+ls,N+1

where equality holds if and only if s < i or Xjr = J+l's and = s.

Thus, Equation (A.10) can hold if and only if X = j j+l,. -

I - 0, ..., J-I and I = i+l, ..., N+I. Repeating the argument

pairs of states (j+l,J+2); ...; (i-I,i), the appropriate modifici. -ins

of Equations (A.9) and (A.10) hold if and only if X . = x l

It = 0, ... , J-I and I. = i+l ..., n+l. Thus, ", N+I > "** >  N,N+l

when conditions (i) and (ii) do not simultaneously hold.

To prove the result for set B - (0, 1, ..., k), let state i

correspond to state M-i in the previous argument. 0
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ABSTRACT: MULTISTATE RELIABILITY

by Alan P. Wood

In modern society the consequences of system failure can be
Icatastrophic. The study of reliability has evolved from the desire to
prevent, or at least mitigate the consequences of, failure. A reliability
analysis is performed to determine the probability that a component or system

i is able to perform its specified function. Two major topics useful in that
endeavor are considered herein. The first topic is the extension of coherent
structure function theory to components and systems with several states. The
second topic is the optimal maintenance of multistate components.

7Coherent structure function theory is an axiomatic approach to
reliability in which the components and systems are binary, i.e., they have
two states - operational and failed. The first part of the thesis extends
the theory to components and systems with multiple states. This is useful
for modeling systems in which partial failure may occur. Multistate coherent
structure functlons are defined, and it is shown that most of the binary
results have multistate analogs. These results deal with duals, modules,
minimum cut and path sets, reliability importance, reliability bounds,
closure theorems, fault trees, and block diagrams. The theory is further
extended to allow each component and the system to have a continuum of
states.

Optimal maintenance policies for periodically inspected multistate
components have previously appeared in the literature. The second part of
the thesis extends those policies to continuously monitored equipment by
using Markov decision processes and continuous time Markov chains. The main
theorems are in the form of control limit rules which state that it is
optimal to repair or replace a component whenever it has degraded to a
ce rtain level. It is shown that under certain assumptions the optimal policy
ito repair the component as much as possible. Equivalences between shock

models, continuous time models, and discrete time models are discussed.
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