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A gsequential design for estimating the percentiles of a quantal response
curve is proposed. Its updating rule is based on an efficient summary of all
the data available via a parametric model. 1Its efficiency in terms of saving
the number of runs and its robustness against the distributional assumption
are demonstrated heuristically and in a simulation study. A linear
approximation to the "logit-~MLE" version of the proposed sequential design is
shown to be equivalent to an asymptotically optimal stochastic approximation
method, thereby providing a large sample justification. For sample size
between 12 and 35, the simulation study shows that the "logit~MLE" version of

> the general sequential procedure substantially outperforms an adaptive (and
asymptotically optimal) version of the Robbins=Monro method, which in turn
outperforms the nonadaptive Robbins-Monro and Up-and-Down methods. A
nonparametric sequential design, via the Spearman-Karber estimator, for
estimating the median is also proposed.f:\

AMS (MOS) Subject Classifications: 62K05, 62L05

Key Words: Logit, Optimal design, Quantal response curve, Robbins-Monro
stochastic approximation, Sensitivity experiments,
Spearman-Karber estimator, Up-and-Down method
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SIGNIFICANCE AND EXPLANATION

In many physical or biological experiments with binary response a quantal
response curve is assumed to relate the probability of response to the
corresponding level of the stimulus variable. To estimate the percentiles of
the quantal response curve efficiently, a sequential design is often uged in
practice. We propose a new class of sequential designs with updating rules
based on an efficient summary of all data available via a parametric model.
This method is shown to be asymptotically as good as the optimal stochastic
approximation method. More importantly, its finite sample performance in a
simulation study is better than the latter method. Specifically, the

percentage of runs saved by using our method ranges from 25% to 60%.
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EFFICIENT MODEL~BASED SEQUENTIAL DESIGNS
FOR SENSITIVITY EXPERIMENTS

C. F. Jeff Wu*

1. Jntrodyction

A sensitivity experiment is characterized by a response curve that
relates the stimulus level applied to an experimental subject to the
probability of response. The outcome of the experiment is assumed
dichotomous, response or nonresponse. This situation arises in many fielas
of research. .ln testing the strength of materials, the stimulus level may be
the level of impact energy applied to a piece of material, and the response
is either "f2il® or "not fail® (Wetherill, 1963). In testing explosives, the
stinulus level may be the bheight from which a weight is dropped or the
pressure directly applied to the explosive, and the response is "explode® or
*not explode® (Dixon and Mood, 1948). In biological assays a test animal
survives or not at a given dose level (Finney, 1978). 1In psycho-physica}
research the probability of detecting a stimulus is related to its intensity
level (Rose et al., 1970). In educational testing, one may want to study the
*jtem characteristic curve®" that relates the difficulty level of the test
item to the probadbility of "right® or "wrong® answer (Lord, 1971).

Our main interest is in estimating the percentiles of the response curve
Fi(x), which is the probability of response for a given stimulus level x. The
100p percentile Lp is defined as

() F(Ly) = p.

For simplicity we assume F is monotone increasing and continuous. The median
of F, L°.5, is the most commonly used measure of a characteristic of the

response curve. In some situations estimating Ly ¢ is of intrinsic interest,

*Work completed while visiting the MSRI, Berkeley.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041 and
ARO Grant No. DAAG29-82-X0154.
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but more often it is because LO.S is easy to estimate. In quality assurance
it may be more interesting to study the extreme percentiles, e.g., to find
the impact energy level that results in the failure of material for at most
10% of the time. On the other hand L0.9 may be more relevant in explosive
research.

In this paper we will present some new sequential designs for the
efficient estimation of Lp for small or moderate sized experiments. As will
be explained later, our method is more appropriate for 0.2 {( p ¢ 0.8. We
consider sequential designs in such a way that all the information in the
previous experimentation can be utilized in a most efficient manner for
suggesting how the next experiment should be performed. When the
experimental runs are very expensive, the saving of a few runs by an
efficient design outweighs the extra pains taken in designing a sequential
experiment. The sequential nature of the design requires quick responses so
that the experiment will not be unduly prolonged. It is suitable, for
example, when the experimental facility is limited so that experimental runs
must be performed one after another. Many biological experiments that
involve inexpensive animals and slow responses have to be ruled out, A Key
element of our sequential scheme is the efficient summary of all available
information for suggesting the next design. This requires a certain degree
of computing. As computing becomes cheaper and more personalized, the cost
of avtomating an experimental design will be less. By taking all the factors
into account, our method is more appropriate for expensive experiments with
short response time, which are more often encountered in engineering
research. In educational or psychological testings, if a test has to be
repeated routinely on many subjects, it pays off to automate the design and
to 1ook for the most efficient ones (in terms of reducing the number of test
items).

In the next section we shall review two nonparametric sequential designs
and point out their inappropriateness for the scenarios described above. Our
approach is to assume a parametric model for the response curve and estimate

efficiently the relevant parameters in the mode! based on all the data




available. An estimated guantal response cyrve C(EGRC) is constructed through

the current estimate of the parameters and the next design point is
determined from the EQRC. Some heuristic and theoretical justifications are
provided for the methodology. In particular, a linear approximation to the

*logit-MLE® version of the EGRC approach is shown to be equivalent to an

asymptotically optimal stochastic approximation method. The Monte Carlo
results of the last section indicate that the EQGRC approach is not sensitive
to distributional assunptions for estimating LO.S and L0.75 and substantially
outperforms the Robbins-Monro stochastic approximation method and the
Up-and-Down method, including an adaptive <(and asymptotically optimald
Robbins-Monro method. For the particular simulation experiment, our method
results in saving 25/ to é&0% bf the total number of runs required by its
nearest competitors. The empirical study also reveals that a mild degree of
truncation is needed for both our method and the adaptive Robbins-Monro
method to perform stably. A good guess of the initial design and the step
size is more critical to the performance of the Robbins-Monro and Up-and-Down
methods than the parametric assumption is to our method. For details see
Section é. A nonparametric sequential design for estimating the median Ly ¢
is proposed via the Spoarman-K:rber estimator. Its limitations are

discussed.

2. Review and criticism of the Stochastic Approximation method and the

Up-and-Down method.
The Stochastic Approximation method and the Up-and-Down method are two

most commonly used nonparametric sequential designs for quantal response

problems.

Stochastic Approximation Method (Robbins and Monro, 1951):
th

Let v, = 1 or 0 as the n experiment results in a response or
nonresponse. For estimting L’, the stimulus level Xneg of the cnesdt? pun s

chosen according to

(2) 4 = x - % (yn-p).

............
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According to the results of Chung (1954), Hodges and Lehmann (1955) and Sacks

(1958), the optimal choice of ¢ in (1) is (F'(Lp))-i. Procedure (2) with

this choice of ¢ is asymptotically consistent and fully efficient, i.e., Xn

-—t Lp 8.8, and its asymptotic variance is minimized. The small sample

behavior of (2) depends very much on a good starting value Xy (Wetherill,

1963). ldeally x, should be close to Lp. A good gquess of the optimal

constant ¢ may also be hard to come by since in most practical situations the
experimenters have little idea about the slope of F at Lp. Poor choice of ¢
and Xq will make (2) an inefficient procedure for small and even moderate
samples. The Stochastic Approximation method has been used more effectively
in on-line estimation wherein a large number of data have to be processed
quickly.

To achieve minimal asrmpgotic variance, it is necessary to estimate the

slope F’(L_). One such estimator-is the regression slope of y; over x;,

P !

n
- 3 yi(x.-xn) n
(3 Pn ™ 5 5 ' X, = n%x'.
pX (x;-x)

The procedure (2) with ¢ = ;;‘ is aptly called a gtochastic Newton-Raphson
method by Anbar (1978), since it can be viewed as a method of solving the

equation F(x) = p by the tangential approximation to F at x_ with F(xn)

replaced by Ya and F'(xn) by 3n' Under various regularity conditions, Anbar
(1978) and Lai and Robbins (1981) proved that ;n - F‘(Lp) a.s. and that the
procedure (2a) is asymptotically optimal,

el ™ Xp = == (ry = p), B, in (D).

(2a) x
n ng,

When n is small or the current guess x_ is on the tails of the response

n
curve, 3;’ may behave erratically. Since the tails of the response curve are

flat, ;n wi th (xi)? located on either tail tends to be closer to zero, thus

.......
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making the adjustment from Xn to L

happens when the initial guess is poor for estimating the median or when the

in (2a) unreasonably large. This

initial design takes too few points from the middle part of the response
curve for estimating the extreme percentiles. To remedy this, we propose to
truncate 3;', that is, to use nax(min(s;l,c),-c) instead of 3;’ for some
positive constant c. The simulation study of Section 6 shows that there is
considerable improvement in using this truncated version of (2a). Anbar
(1978) and Lai and Robbins (1981) considered truncating Sn instead of 3;’

mainly for technical reasons.

Up-and-Down method (Dixon and Mood, 1948):

(4 ‘ “n* 8 if {o
. 4 = it y, =
ntl x, - 8 n 1

The method works only for LO.S' It is very simple to implement but, ¢or
small or moderate samples, its performance depends very much on a good guess
of Xg and A. Unless the step size A is made adaptive, the large sample
property of x, can not be studied., Its empirical performance is usually not
as good as the Stochastic Approximation method. See Wetherill (1963) and
Section 4 of the present paper. Some modifications of the two methods can be
found in Wetherill (1963, 1946).

Both methods are "Markovian® in that the choice of the next run depends
sensibly on the cutcome of the current one. Their simplicity was a positive
factor when inexpensive computing was not accessible. Their main
disadvantages ;rez (a) The updating rules (2) and (4) do not make use of all
the data available in an efficient way, and thus making the choice of step
size less flexible. (b) Their small sample behavior depends on a good choice
of the relevant constants in (2) and (4), which in turn depends on the

experimenter’s Kknowledge of the unknown response curve F, For small or

moderate sized experiments with expensive runs, inefficiency and lack of

L
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robustness can be quite serious. Large sample properties seem quite

irrelevant in this context.

The sequential design method proposed in the following section is quite

different from (2) and (4) with respect to the shortcomings (a) and (b).

‘i 3.
Q

>

class of sequential designs based on the estimated quantal response
gurve. '

Ideally we would like to have a good estimate ?n of the whole curve F,

h‘: from which the next design point Xn41 is chosen to be its 100p percentile,
3 i.e., ?n(xn+l) = p. A (smooth) nonparametric estimate ?n of F is not
N feasible since it requires a large number of observations for ﬁn to be a good

estimate. A natura) approach for small sample problems is to assume a

parametric model
F(x) = F(x|), F is continvous in x,

lim Fex|o =0, 1im Fex|o) = 1,
A= = X4

The general recipe of our sequential design procedure for estimating Lp ise

(i) 4ind an efficient estimate 8, = 8¢y, ,x;)D) of @,

(3

Cii) define the estimated guantal response curve (EQRC) en(x) = F(x 30),

and choose the next design Xael s.t. ?n(x ) =p.

nt}

Recall that ", " f or 0 is the response cr nonresponse at level X,
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In general the choice of the parametric model F(:[@) should reflect the
experimenter’s Knowledge of the problem, if there is any. Given this model,
were there a reliable prior on 8, a Bayesian approach for estimating ¢ would
be appropriate. In the absence of such information (a more typical situation

in practice), we suggest to use the logit model

(6 Fixlor) = 1‘ Sy 20 00 ¢ = ey
. ‘0

and the maximum !ikelihood estimator (MLE) (&,i) of (a,)). For (&),
Lo=adindd - 1) andits el =& -1 incd - 1), Note L, « = &.
p p 0.5

P P )
The main reason for preferring logit to its competitor, the probit

model,
2
(2-5)
1 x 20
(7 Gexfo) = . dz, ¢ = (u,0), 6 > 0,

-

Y21 6

is computational ease. Jt is well Known that the logit, the probit and other
parametric models like the angular and the linear curves agree very closely
in the range 0.2 to 0.8 (Cox, 1970, Table 2.1). We do not see any advantage
in using the probit over the logit, although it is a legitimate choice. It
is rarely the case that a parametric quantal response model be justifiable on
biological or physical grounds. The successful use in practice of the
E! parametric approach for quantal response problems is mainly due to this Kkey
-
{ fact that the parametric curves (after adjusted for location and scale) agree
E3 very closely in a wide range of p values., For p outsidg [0.1,0.9] the
!! percentiles for different parametric models vary greatly. Therefore we can
L not recommend our procedure (5) for extreme p values unless there is a good
reason to believe in the particular model. One may argue that the Stochastic
Approximation method, being nonparametric, stiil works for the extreme tails.

This is only so for very larqe samples. For instance, the method makes on
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the average nine negative moves for each positive move in the neighbarhood of
L°.9. Instead of "straddling® L°.9. the sequence makes far too many moves in
one direction. This explains the much poorer empirical performance of the
Stochastic Approximation method (2) even for moderately extreme tails like

Ly.75 (Wetherill, 1943, §6).

The next issue is the choice of efficient estimator Sn in (3) Ci). The
minimum logit chi-square method (Berkson, 1955) is not suitable for the Kkind
of data generated by a sequential procedure like (5), especially for small or
moderate samples. This is because there are few, and typically only one =
two, observations at a given x level to make the minimum logit chi-squ
work. Unless we restrict the search of design levels to a small number o
levels, the situation will nat be much changed. The same remark applies
the minimum modified chi-square method, and to a lesser extent, to ..
minimum chi-square method. The maximum likelihood estimate of (x,)) in (&)

is obtained by iteratively solving the equations

n n
b Fex |y = Dis

(8)
n

; xiF(xilu,l) = %’ixi'

where Fix|e,2) = ¢1 ¢ ¢ 2X"0)=1 " qp MIE is a function of the sufficient
statistics <z>i. %) It is asymptotically {ully efficient given the
right model and is an efficient summary of all the information available in
small samples. 'nless there is a reliable prior on & so that a Bayesian
approach (Freeman, 1970; TsutaKkawa, 1972; Owen, 1975; Leonard, 1982) becomes
effective, 1t might be hard to beat the MLE for smal) samples.

Given an efficient estimate 3n, the sequential design (35) makes full use

of all the information available and the step size x is more flexible,

n+1 %p
i.e., it is capable of making large or small adjustment as the situation

calls for. Its only ®ad hockery® is in the logit assumption. As argued

before, the assumption is quite robust for 0.2 { p ( 0.8. It will be further
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suppurted in the empirical study of §46.

For the implementation of procedure (5), it is important to Know when
the MLE exists. To avoid trivialities, assume there are at least two
distinct xi's. It is Known (Silvapulle, 1981) that the MLE of the "linear"®

parameters (X,la) in the logit model <6) exists uniquely iff

+ 4+ - - .

(9.1) (xmin’ xmax) N Xnin? Xmax) 1% non-empty
or
(9.2) xtooooxT =yt ¢xt

min min max max
or

- 4 + -
(9.3 Xain < Xmin = *max < Xmax
where x;ax(min) = max(min) (x;: y; = 1}, x;ax(min) = max(min) (x;: y; = 0).

The same result holds for more general distributions F including the probit
model (7). See Silvapulle (1981, Theorem (iii)). It is easy to see that
(9), once satisfied, is always satisfied by the addition of more

obversations. The change from x_ to X,+1 Via the logi t-ML™ method may be

n
unduly large when the problem is *ill-posed.” It happens when the data

configuration (xi,ri)? is such that the first time the condition (9) is

satisfied is n or n-kK with very small Kk, that is, the existence and
uniqueness of MLE has only been guaranteed in the current or last few runs.

We propose a truncated version as follows. Define dn as the solution of

Qo

[1] [od o | -1 A A .
Xoel = X0 "7 el = &y < An In(p "-1) and (un,)n> is the

solution of (8)., The (nOI)th design level is chosen to .e

(y_. - p), where x

Q.

%*
%
<10) X, = 7> (y, = p), d

A n = max(-d, min(dn,d)),

where d is a given positive constant, The procedure (§10) is shown in Section
4 to perform extremely well over a broad range of the truncation constant d.

For very large d, like 400, which is equivalent to almost no truncation, (10)

-9-
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does not perform very stably.
The question of how to choose, say, the first ten runs is very difficult
unless some prior Knowledge is available, It may be done in an ad hoc manner

aided with experience, or by the Stochastic Approximation procedure (2) with

AT TRy T

a reasonable guess of Xy and a slightly larger ¢ than the experimenter’s
guess. Uethergll (1963) showed that the procedure (2) with larger ¢ is less
susceptible to a poor choice of Xy especially for small samplies.

Since the logit (and any other parametric) assumption is vulnerable on
the extreme tails, it may be desirable to use an estimation method that
places less weights on the observations with more extreme xi's. For data
generated by sequential procedures like (2), (4) and (3), the xi's in the
initial runs tend to be more extreme. A simple way to achieve this is to

insert weight w. = w(|x;~x,|> on both sides of ¢8> and solve iteratively the

weighted version of the likelihood equation (8), where w(z) is decreasing in

p* 1f we choose W, to

g be 0 or 1, it is equivalent to performing the unweighted MLE based on a

2 3 0, and X, is considered to be a good estimate of L

subset of data with moderate x,’s. The general question of robust estimation

for quantal response data was addressed in Miller and Halpern (1980),

Let C‘"’ be the MLE of L_ from n observations. Jts variance var(i("))

P p P
can also be estimated via the same parametric model by a standard method. A

ldar &

stopping rule may be devised based on this variance estimate. This provides

another advantage of the parametric approach over the nonparametric one.

R T

E 4. A sequential desiqn for estimating LO.S based on

F 3he Spqug;g-K;rber estimator

; 14 the unknown response curve F(x) = H(x-«,¢) is skew-symmetric about «,

3 i.e. H(z,§) + H(-2,4) = 2H(0,4) for any 2,4, & is both the median Ly 5 and 3

v the mean of F. The Spearman-Karber estimator (Finney, 1978, p. 394) is a }

A nonparametric estimator of the (discretized) mean of F, ;
-10- '
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(p_i pj_!)z(xj_]oxj),

J
gk = El

J
where Xy C eae <'xJ, n'i observations are taken at Yj with rJ responses, BJ =
rJ/nJ, n = zgnj. Under conditions that ensure that &SK is an efficient i
estimator of «, an alternative sequential design for estimating the median

L0.5 = is the following:

A e e A A . -

(i) compute &SR’ = &g (v, ,xOD,

(11

aln)
Cii)d set Xney = Qg+

A.A A A & .

The two distinct advantages of the procedure (11) are: 1) computational
ease, 2) weak assumption on F, i.e.,, the functional form of H is not assumed
Known , But the price to pay for these is quite doar.. The conditions
required to ensure & proper performance of (11) are quite restrictive.

First, F should be skew-symmetric so that its mean and median are equal.

Since &SK is an unbiased estimator of the discretized mean, not the

population mean, their difference becomes negligible only when the spacing

{xi}? is reasonably dense. A proper use of &SK requires that Xy and X; are

; chosen such that F(x,) = 0, F(x;) = 1, which may be hard to achieve in the g
% initial stage of the type of sequential designs considered in the paper. If ]
i the experimenter has to pray for the validity of these assumptions, the i
EZ procedure (§1) can not be truly termed °nonparametric.® Therefore it wil) :
; not be included in the empirical study of %6.

E 5. Some theoretical results relating the sequential designs ¢(5)

5 %o the Stochastic Approximation method. 5
E: Our efficiency claim in §3 for the "logit-MLE® version of (35) is based 3
g on the good faith in MLE for the logit model. This loose claim will be i

reinforced in this section by showing that, for the estimation of any
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e percentile Lp, a linear approxihation to the "logit-MLE* version of (5) is
equivalent to the asymptotically fully efficient wversion (2a) of the
Stochastic Approximation scheme. It is interesting to note that, while the
former is a seemingly parametric procedure, the latter is nonparametric.
This lends further support to our previous argument that the "logic-MLE®
version is not sensitive to distributional assumption, at least for the
middle percentiles.

The following simple approximation

1
(12) ‘—_-f'_«24g-t

has a maximum error of 0.07 in the range |t] { 3 (Cox, 1970, p. 9?0). Assume
that IA(xiﬂx)l § 3 for all i in the likelihood equation ¢8). <(This may be
achieved by applying the MLE to the data satisfying the constraint.) By
applying the approximation (12) to (8), we have

lﬂ n
g ?()xi-p) = §yi, k=

-3
o

(13)

n n n
%:21 + %?(lx? - wxp) = g

Let i and ; be the solutions to (13). The estimator &n of the median LO.S =

a is obtained as follows:

n n N A0
x5y -bx; - ¥z -b
nn 1 n n 1
D1x¢y-bx, - TP

r
14) & = k=
)

. proportional

which is the weighted average of X i = 1,.00yn wWith weight w,

to Ty brx . - x.5ty.-by = & (x:-x;) - 1 (x ;=x ;)
oY i 2 F x,Z Yi~3 3 , 21 X=X 3 §0 X=X
J,B -

More generally for any p, we can consider the approximation

-12-
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1 -1 -1 -1 1
(1% J(t) = X pelt=d “(p)IJCJ “(p)), J C(p) = ~ln(Z - 1)
T:::f P P ] P P ’
which is approximately valid for x; close to LP' By applying (15) to (8) we
obtain
FOx, 3L —l 2y p)
X.*- ‘- p— y.-p
L A T RT3 ) '
(16)

1] n
2 1
(AxT=AL x.) = — S(y.-pix.
ZOx=apxi) = 570 Tepyy & 71 P77

where the 100p percentile L’ = - %In(% -1) =g ¢+ }J"(p). The estimator

atn) . N a .
Lp y C172), is obtained from M’P and 2 by solving (14),
L B Sr-prx; - BxTy -p)
Y. =pix. - (Y. =p
€17) t;"’ - P Zi&’i i i27 .

a nn n n
A TIZCy;=pIx; = X, Iy, -p)
which is the weighted average of X; with weight w, proportional to

n - -
?(yj-p)(xj-xi). Since i;"’ is independent of J/CI 1(p)) of (16), 37 <" pN)
in the approximation (135) can be replaced by any other constant without
affecting the subsequent results (17) and ¢(18). Formula (17) extends (14),

Note that some w; may be negative. The denominators of (14) and (17)

n
are both equal ¢to n Ix; - leti, which is nonzero ‘unless
Yi.i Y'.i

- - n
( p)) l) ! 3 X, = n 'Dzi. From €(17) and after some algebras, it is easy to
yi-] y.=§

show that the (nﬂ)"' run, according to the procedure (3),




n
2
. . w L0 L fen=ty | OpTROESX X))
ntt = Cp P

n
nEy, ¢x; =% )

(18)

h 2
Cn z(xi-xn)
X TR YpP)y € =g '
Zyi(xi-in)

)
where ;n = n lzki. Therefore the )linear approximation (18) to our procedure
(3) is asymptotically fully efficient if € in (18) converges almost surely
to [F'(Lp)]". To this end, note that the regression slope estimate an in

(3) converges to F/(L ) a.s. By comparing (18) and (3), €p " 3;1 = n(xn -

[

n
in)2/275<*i'§n)- Since both procedures converge to L_ for large n, x_ x X

p n n
n p) )] q. Therefore the

asymptotic full efficiency of (18) follows from similar results of Anbar

and ¢, - 3;1 — 0 follows from the assumption F’(L
(1978) and Lai and Robbins (1981). (Their regularity conditions do not apply
directly to the quantal response problem but their technique can be modified

to suit our purpose.)

4. A simulation study

Under comparison are (i) the logit-MLE version of the sequential designn
(5) with truncation as defined in (10) (abbreviated as MLE in the Tables),
(ii) the following adaptive Robbins-Monro (ARM) design with truncation,

Cc Ao
(19) Xneg ™ X ~ 35(7n—p), C, = max{-c, min(c,pn1)),
where a is defined in (3), (iii) the Robbins-Monro (RM) design ¢(2), and (iv)

n
the Up-and-Down (UD) design (4).

Since the MLE of the logit model does not often exist for very small

sample size, we fix an initial design of size 10 and a parametric

~14~
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distribution H for the quantal response curve. For each stimulus level X i
= ],..0910, in the initial design, Y, = 0 or i is generated according as v, }
or ( H(xi). where v, is the i'h uniform random number in [0,1]. Let
(Gygsdyg ) be the MLE of (x,)) in the logit model based on (x,,,)i%. The
gcommon starting value for all designs under comparison is chosen to be Xqy =
&,o - 3;3 In¢p~3-1) according to ¢5)Cii). Once Xyy i chosen, the subsequent
design levels XygreeesXgy Are generated according to different design
schemes, but with the same random numbers u;. 1¢ the MLE (&10'310) does not
exist the simulation sample is discarded. On the other hand, if (&10’310)
exists and is unique, the subsequent MLE always exists as is obvious from
condition (9). This is repeated for 300 times, including those discarded due
to the nonexistence of MLE. (The total number of discarded samples is
denoted by M in Tables 1 and {I. The actual number of simulation samples in
our study varies from 384 to 484.) For sampie size n, the Monte Carlo mean
square error (MSE) of a sequential design is calculated as the average of
(xn - Lp)2 over the simulation samples. In Table I, 4§§E are given for the
desings (i) - (iv) for estimating LO.S' In Table 11, ‘EEE are given for the
designs (i) - (iii) for estimating L°.75.

For the study of robustness to distributional assumption and to the
choice of starting value and other constants, we choose a variety of initial
designs and response curves to reflect the degrees of the experimenter‘s
knowledge of the response curve. (But note that for design (i) the MLE is
always computed on the assumption of the logit model no matter what the true
response curve is.) In Tables I<a)(c) and II(a)(c)(e), the standard logit
model is used for the true response curve. In other tables, the probit
models with different locations and scales are used for the true response
curve. In each table Lp denotes the design level that is the 100p percentile
of the corresponding response curve. Therefore, for example, the two initial
designs in Tables 1(a) and 1<(b) are identical, but correspond to different

percentiles under different response curves.

«]l5=~
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Table I. Moate Carlo ‘ﬁ:‘-E (Root Mean Square Error) of Sequential Designs for
Estimating the 50 Percentile of the True Quantal Response Curve
stinulus leve) L L L L L
Initial design: 8.1 0.3 0.5 0.7 o9
80, Of odbservations | 2 4 2 |

True respoase curve: logit model (6) withe =0, 1= |

Chanc il -‘_- .‘r._. 0 71

where

)

design 12 16 20 r&] N K -] no. truncations
H-E'a 1. “ 1.02 o2 K- A3 13‘ 197
ME-S0 1.40 78 33 A7 A0 36 102
MLE-100 1.40 40 A9 Aé A0 o34 46
M'n. 1.34 ) o A8 N | 035 15
MLE-400 1.48 78 038 A5 ) 36 0
ARN-16 1,35 1.29 1.09 52 78 .47 321
ARY-30 1.52 1.16 .88 49 ) 45 97
ARY-30 1.94 1.16 91 9 95 Aé 2
ARY-100 1.59 1.24 59 80 02 31 12
ARM-600 1.63 2.02 1.46 1.8 1.3 1.12 4
=32 1.4 1.41 1.21 94 81 o4
=14 1.58 1.31 1.14 824 .83 13
-4 1.% 1.46 1.3 1.29 1.23 1.19
w-2 2.18 1.94 1.86 1.60 1.82 1.51
w-1 1.65 1.4 1.29 . 1.17 1.14 1.10
0-8.25 1. 1.40 1.26 1.15 1.05 B L]

M= 14

= 180p percentile of the true response curve,

E-d = procedure (J0) with truncation constant d
ARd-c = procudure (19) with truncation constant ¢
M-c = procedure (2) with constant ¢
UD-8 = procedure (4) with constant 4
n0. truncations = total nunber of truncations of the kind (10) or (I9)
M = total nmber of simylation samples for which no MLE exists

Initial design (same as 1€2)):
a0, of observations I 2 L 2

True respoase curve: probit model (7) with g = -0.5, ¢ = 3.1915

stinolus level b b tess Y. Lo

design 12 14 2 -] k H n0. truncations
MLE-3) 1.87 1.4 1.07 83 82 o7 859
MLE-S0 1.84 1.10 .88 .83 77 3 4
H.E'l“ ’ .95 0,3 .35 07‘ 003 .‘2 21‘
".E'”' l l” l” 07, 07’ 1“ 5‘3 . ‘2
MLE-400 1.90 1.13 .87 79 76 63 4
ARN-16 2.01 1.70 1.4 1,36 1.21 1.08 1411
ARN-30 2.00 1.58 1.42 1.23 1.08 96 623
ARM-50 2.06 1.62 1.39 1.2 1.07 92 251
ARM-100 2.13 1.80 1.9 1.32 1.19 1.02 90
ARM-400 2.21 3.32 2,90 2,37 1.86 1,54 9
me-32 2,16 1.77 1.3 1.35 1.17 1.05

Ri-14 2.0] 1.49 1.4 1.28 1.10 93

-4 2.07 1.92 1.681 1.2 1.8 1,54

w-2 2.4] 2.22 2.2 2.0 2,18 2.5

w-4 2.04 1.73 1,58 1.8 1.48 1.48

D-0.25 2.04 .83 1.64 1.44 1.3 1.13

M= 5




--------

stinulus leve) l0.3 "0.5 l.'.7 L.J LO.’

(c) Initial design:
20. of observations | 2 3 3 1
True response curve: logit model (4) witha=0, ) = §
]
desigas 12 16 2 o] » k] no. truncations
MLE-30 2.00 1.26 93 o7 57 X ] 637
ME-50 1.92 1.06 /| 56 A7 Al e
MLE-100 1.89 84 41 53 Ad A2 182
MLE-200 2.2 89 .67 34 | A 6
M'“. 20“ ‘ 0‘7 -“ o“ o” 0‘3 l.
AR-14 2.4} 1.2 1.4 1.18 .58 84 M
ARM-30 2.09 1.40 1.2 89 ", | 32 M
AR-50 2.09 1.4 1.04 .82 ] 33 163
AR{-100 2.06 1.38 1.13 83 71 .39 43
ARN-4600 2.2 1.8 1.3 1.0% 1.01 82 2
R-32 2.14 1.46 1.22 1.02 84 /]
=16 2.06 1.5 1.30 1.1 5 .83
R4 2.16 1.97 1.83 1.2 .81 1.4
-2 2.3 1.92 1.88 1.6} L. 1,53
10-1 2,06 1.5 1.4 1.18 1.11 1.08
D-0.2% 2.54 1.85 1.2 1.40 1.2 1.7
N=9
stinvlus level L
(d Initial Design (same as 1(c)): ’.2 L.'u L"“ L"" L"“
20, of observations | 2 3 3 |
True respoase cerves probit model (7) with p = 0.5, ¢ = 1.3957
]
design 12 14 2 -] » k-] 20. trencations
MLE-20 1.10 40 32 N7 42 37 325
H.E'ﬂ ' 0'2 057 05’ .45 .42 a“ 152
MLE-100 1.04 38 A7 A3 K 9 n
MLE-200 1.41 Y, A9 .43 43 x| 2
MLE-600 1.94 R /] 0 A3 K )| 34 4
ARY-16 1.2¢ 98 .80 7 37 30 mn
ARN-30 1.26 ) .80 43 o34 48 106
ARN-50 1.29 1.82 84 49 .38 0 %
AR-100 1.3 1.1 52 /] 82 R 1"
ARY-400 1.43 1.19 K/ B ] 73 57 i
1.97 .16 1.02 8 ) 8 73
1.28 90 oM o 1 Y
1.3 1.14 1.02 8} .83 oJé
1.93 1.84 1.90 1,59 1.83 1.4
1.3% 1.08 1.09 1,13 1.17 1.08
1.9 1.09 87 o1 S 31
N= 724
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Table 1], Noate Carlo "is? (Root Mean Square Error) of Sequential Designs for
Estimating the 75 Percentile of the True Quantal Response Curve

(a) Initial design and true response curve: sane as ia Id)
]
design 12 14 2 5 3 3B no. truncations .
ME-30 1.43 .87 2 4 56 48 561 1
MLE-30 1.34 .80 A .34 .53 A7 22
MLE-100 1.38 77 o0 .38 39 .30 S0
MLE-200 1.43 77 65 59 36 0 a3
MLE-600 1.49 76 45 o3 1) o3 3
ARM-14 §.54 1.19 1.02 .87 .78 .70 228
m‘m l .55 ’ 12‘ l 1“5 l” 079 .72 “
ARN-50 1.60 1.26 1.09 .93 .83 79 Y+
AR{-100 1.69 1.37 1.19 1.01 .90 .81 7
ARM-400 1.2 1.4] .73 1.39 1.16 .98 1
¥-32 1.69 1.3 1.3 .93 87 78
Re-16 1.51 1.13 J3 73 .48 41
Ri-4 1.5 .41 1.8 1.17 1.8 1.01
8 H= 114
. For explanation of smbols, see the bottom of Table 1¢a)
3
! () Initial design and true response curve: sane as in I(b)
g »
design 12 16 2 <] k.1 3 ao. truncations
MLE-30 1.97 1.7 1.2 1.18 §.04 .98 1817
MLE-50 1.9% 1.58 .18 1.12 1.08 1.01 796
MLE-100 2.09 1.38 1.22 1.15 1.11 1.03 205
ME-200 2.33 1.43 1.27 1.14 1.1 1.06 é
ME-400 2.3 1.41 1.5 1.16 1.12 1.04 i
ARY-30 1.98 1.4 1.54 1.32 1.0 1.16 380
ARM-30 1.9¢ 1.80 1.69 1.4 1.28 1.23 308
ARM-100 2.07 2,08 1.92 1.63 1.45 1.40 108
ARN-400 2,08 3.85 3.3 2.98 241 2.19 12
M-32 2.01 1.52 1.45 1.29 1.19 1.07
Ri-16 1.93 1.46 1.2 1.03 51 .82
R4 2.08 1.86 1.1 1.56 1.4 1.36
N= 34
-]8~ L
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stinulus lever" L L L L L
% (b1) Initial design: .03 T0d6 Te.36 To.68 C0.80
ey 00, of observations | 3 é 3 !

- Initial sanple size: 14

True response curve: same as in 1J(b)

]
design 16 20 H 30 k- no. truncations
MLE-30 2.23 1.43 1.3 1.13 .99 2694
MLE-30 2.23 1.42 1.20 1.06 .57 1387
MLE-180 .27 1.31 1.16 1.07 1.0 483
MLE-200 2,26 1.40 1.18 1.1 1.03 160
MLE-600 2.9 1.48 1.17 1.25 1.07 k74
ARN-16 2.26 1.97 1.67 1.48 1.31 2116
ARY-30 2,24 1.9 1.40 1.4 1.3 855
AR-30 2,26 1.97 1.1 1.52 1.38 388
ARMN-100 2.3 2,10 1.82 1.62 1.4 13
ARN-400 2,94 3.3 3.12 2,72 2,38 1
R{-32 2.13 1.47 1.3 1.20 1.04
R-14 2.2 1.7 1.44 1.28 1.13
R¢-4 2.3 2.13 2.01 1.9 1.81

N= 14
&t swme s in 1ICD)
(c) Jnitial design and true response curve: same as in J(c)

»
design 12 16 2 o] 3 k-3 ao. truncations
MLE-30 2,38 1.96 1.7 1.28 1.08 .93 808
ME-50 2.4 1.5 1.13 .83 .58 N1l 496
MLE-108 2.2 1.02 oM M A A3 184
ME-200 1.89 .83 61 32 N H R} 82
MLE-408 1.44 8 37 34 M A2 19
ARY-30 2.6 2,12 1.75 1.47 1.26 1.1 330
ARN-30 2.61 1.93 1.53 1.18 94 .82 204
ARN-100 2.8 1.4 1.34 1.09 .93 87 82
ARN-200 .1 1.81 1.54 1.23 1.03 o 13
ARY-400 2.1 i.68 1.86 1.49 1.17 1.03 1
n-32 2.n 2.13 1.79 1.42 1.4 1.07
14 N 2. 2,08 1.04 1.66 .33
-4 2.7 2,63 2.36 2.4 2,40 2.35

L 4
-]19=
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N {(d) Initial design and true response curve: sane as in 1(d)
~e ]
- design 12 16 2 <] 30 k] no. truncations
- NLE-30 2,59 1.22 1.16 .81 49 60 762
{ MLE-50 2.46 1.19 .82 .80 48 A 420
: MLE-100 2.16 91 5?7 A9 A4 Al 153
v ﬂlf'zoﬂ 1 062 .“ .“ o‘, .45 0‘2 5‘
;-\ N-E-‘oo 1 12‘ :77 .60 .50 n“ 0‘3 7
. “’30 20‘6 ’ 093 ' |‘2 l 008 093 181 233
. ARN-30 2.40 1.78 1.29 .98 .82 0 83
ARN-100 2.6 1.78 1.3 1.0} .88 27 44
AR-200 2.83 2.03 1.49 1.19 1.00 84 b}
ARM-400 2.83 2.48 1.92 1.3 1.30 1.2 |
M-32 2.4 1.89 1.39 1.03 94 .84
N Re-16 2.72 2.23 1.87 1.95 1.3 1.11
-4 2.82 2.485 2.53 2.42 2.33 2.26
o N=24
e stinulus level L L L L L
3 20. of observations | 3 3 2 i
o True response curve: logit model (6) witha=0,1=1
design 12 16 2 25 k1 3 no. truncations
5 MLE-30 4.64 3.35 2.98 2.44 2.01 1.68 1940
. MLE-50 4.53 2.98 2.1 1.36 94 87 1178
N MLE-160 4. 1.1 .87 o 64 57 417
%J ".E'no 4.14 1.88 .90 73 .70 +63 143
- . M“W 3.‘5 1.92 -,2 178 o.o c“ "
= ARN-30 84 3.84 3.38 2.97 2.6 2.41 244
. AR-30 89 3.85 3.3 2.95 2.83 38 125
ARM-100 4.48 3.92 .83 3.01 2,68 2.42 3
. ARN-200 4.81 4.08 3.5 3.12 2.78 2.50 3
- ARN-400 4.8§ 4.31 3.6 3.18 .79 2.51 1
R-32 4.51 3.55 2.97 2,38 1.97 1.4
-'_. m’“ ‘a“ ‘..' 30‘5 3033 3.08 203’
" -4 4.83 4.62 4.47 4.33 4.2 4.14
7. LER ] ,
- stinvlus level L L L
> ) Initial design (same as 11(e))s 05 bz B ha e
j'_a a0, of observations 3 3 2 |
! Teue response curve: probit model (7) with p = -0.5, ¢ = {,59%7
(]
design 12 14 20 ] 30 35 no. 'truncations
n"m 3-70 2-” 205‘ 2.‘3 ll” 1.5‘ 133‘
. ME-30 3.6 2.54 1.86 1.28 .83 97 839
MLE-100 3.4 1.596 J4 .38 ] Aé mn
ME-200 3.0 1.02 .78 62 98 9 89
L ME-400 2.44 1.08 /4 44 99 .53 19
) ARM-30 3.82 3.18 2.81 2.48 2.22 2.01. 142
@ ARS-30 3.82 3.19 2.80 2.4 2.2 2.00 40
) ARt-100 3.8? .27 2.85 2.5 2.4 2.02 19
. ARN-200 3.9 3.51 3.00 2.40 2.32 2.09 é
" ARY-400 3.9 4.6 3.35 2.80 2.42 2.15 2
. Ne-32 3.78 3.04 2.61 2.14 1.79 1.2
‘: ) m"‘ 3!“ 3-3‘ 3.7 2.82 2'“ 2.‘.
- -4 3.9 .79 .48 3.5% .49 .42
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The results in Tables 1 and 1] are summarized in the following.

(A) QGeneral comparison of designs.

In ogeneral, the performance of the designs is in the following

descending order,
MLE > ARM > RM > UD

B Only in Table II1(b) does RM-16 (the Robbins-Monro method (2) with c = 14)
outperform the others. But when we increase the size of the initial design

from 10 to 14 as in Table 11<(b1), MLE has again the best performance,

-

Within RM we observe the descending order of performance

; RM-32 and RM-16 > RM-4 ) RM-1 ) RM-0.25.

Ff

-

k- For Tables 1(a)(b)(d) and 11¢a)(b), RM-16 > RM-32; for other tables, RM-32 >

RM-14. Note that RM-4 is asymptotically fully efficient if the response

curve is the standard logit (as assumed in Tables ICa)(c), IIcCai(c)<e))

because F’(0) = ;. RM-4 certainly fails to deliver this asymptotic promise

.ﬁ of optimality for n as large as 35. Asymptotic results seem quite irrelevant

in this context. Within UD, we observe the descending order of performance
UD-0.25 > UD-1 > UD-2 > UD-4,

where UD-A means the Up-and-Down method (4) with step size 4. To save space,

:; RM-1, RM-0.25 and UD-4 are not included in the tables.
Since our interest is in finding superior designs, we will confine the
remaining discussion to MLE, ARM, RM-32 and RM-16. A very complete
comparison of the empirical performance of RM-c and UD-A for different c and

4
M 4 was done in Wetherill (1963).
°J

(B) Syperiority of the loqit-MLE design.
The superiority of the logit-MLE design (10) with truncation constant d,

-]~
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hereafter denoted as MLE-d, is broad-based. In the eleven tables, MLE-50,
MLE-100, MLE-200 consistentliy outperform the best ARM.  Except in Table
I11¢{c), MLE-30 outperforms the best ARM. The efficiency gain of MLE over ARM
is more conspicuous for larger n.

What truncation constant d should be chosen? The MLE designs with 50 ¢
d { 200 all perform well. Within this range th:ir difference of performance
is probably negligible. MLE-30 does not perform as well, because a forceful
truncation like d = 30 limits the potential of the MLE design in making more
flexible and justifiably large moves when the design levels are not yet close
enough to the target value. On the other hand, the performance of MLE-600,
which involves very weak truncations, is more fluctuating. For n ) 20,
MLE-400 is comparable to the best MLE design. For small n, MLE-600 is
comparable to the best MLE design in Tables I<a)(b) and lICa)(b), but worse
than MLE-50, MLE-100, and MLE-200 in Tables I(c){(d) and II(bl). In Tables
11¢e)(d)(e)($), MLE-600 is much better than the other MLE designs for n = 12
(an uninteresting case), and is comparable to MLE-200 for n } 16. For n }
20, the effect of truncation is negligible over 100 { d ( 400.

Since a major purpose for finding better designs is to reduce the number
of runs required for satisfring an error bound, we shall measure the
efficiency gain of the MLE-design over the ARM design by such numbers. In
each case, we find the smallest ‘GEE achieved by the best ARM design at n =
35. We then find m to be the smallest sample size at which an MLE desian

gchieves the same VMSE. In Table 111, the values of m are obtained by linear

interpolation for the eleven tables in Tables I and II.
Table I11. Values of m for Tables 1¢a)-(d), 11C¢a)-(§)

1(a) 1(d) 1) 1<d) 11€3) 11(b) 1o 1o 11(d) 11(e) 11¢4)

2 16 26 20 18 2 ] 17 18 19 14

The percentage of runs saved by using the best MLE design instead of the best

=22~
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ARM design ranges from 25/ to 60/%. This surprising difference of performance
can be explained by the different natures of the two approximation schemes.
The adaptive Robbins-Monro design is a stochastic Newton-Raphson method which
uses linear approximation to nonlinear equation for the iterative solution of
nonlinear equation. It is known to be unstable unless the starting value is
close to the target value. Only under this premise does the large sample
results like asymptotic norma\ity and efficiency make sense for small or
moderate samples. On the other hand our logit-MLE method seems to be free
from this problem since a signoid curve is used in the iterative solution of

nonlinear equation.

C. Improvement of ARM over RM.
There is a slight but definite improvement of ARM-c (procedure (19) with

truncation constant c) with ¢ = 50, 100 over the best RM in Tables I(a)(c)
11¢c)(d). The best RM design (RM-16 or RM-32) is usually quite comparable to
the best ARM design. In Tables I[I(a)(bX(bl)(e)(f) it even beats the best
ARM. (But RM-4 is definitely inferior to the best ARM))

The best performance of ARM occurs with ARM-c with 16 { ¢ { 100 with the
majority of them in the narrower range 30 ( ¢ { 50. The ARM-600 design,
which involves very weak truncation, is a real disappoirntment. Except for
Table [I¢c), it is worse than the best (nonadaptive) RM design. It is
consistently worse than the best ARM design, and for Tables I1(b)(bi)(e)(f)
much worse., Asymptotic full efficiency is a quite irrevelant concept here.
Moreover the MSE of ARM-600 exhibits an erratic pattern, e.g, it sometimes
increases as n increases. Generally the ARM requires more severe truncation
than the MLE. This is because the ARM can make an unduly large move from X
to Xoey 38 explained in Section 2.

D. In Tables ] and 11 we have counted the total number of times the
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truncation (definzd in (10) and (19)) is invoked. For the same truncation
constant, the MLE design always requires more trunctations than the ARM
Design. 1t suggests that the MLE design makes large moves more frequently
than the ARM design. Since MLE-100, MLE-200 and MLE-400 do very well in the
study, such large moves are probably justified.

We have also examined the empirical behavior of the same set of designs
for initial designs of size 25. The results are very similar. As the size
of the initial design increases, the number of simulation samples for which
no MLE exists quickly drops.

Since the MLE-d designs with S0 ( d { 600 perform extremely well in a
variety of situations considered in this paper, we suggest that they may be

considered seriously in practical work.
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