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ABSTRACT

-A sequential design for estimating the percentiles of a quantal response
curve is proposed. Its updating rule is based on an efficient summary of all
the data available via a parametric model. Its efficiency in terms of saving
the number of runs and its robustness against the distributional assumption
are demonstrated heuristically and in a simulation study. A linear
approximation to the "logit-MLE" version of the proposed sequential design is
shown to be equivalent to an asymptotically optimal stochastic approximation
method, thereby providing a large sample justification. For sample size
between 12 and 35, the simulation study shows that the "logit-MLE" version of
the general sequential procedure substantially outperforms an adaptive (and
asymptotically optimal) version of the Robbins-Monro method, which in turn
outperforms the nonadaptive Robbins-Monro and Up-and-Down methods. A
nonparametric sequential design, via the Spearman-Karber estimator, for
estimating the median is also proposed.-
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SIGNIFICANCE AND EXPLANATION

In many physical or biological experiments with binary response a quantal

response curve is assumed to relate the probability of response to the

corresponding level of the stimulus variable. To estimate the percentiles of

4 the quantal response curve efficiently, a sequential design is often used in

practice. We propose a new class of sequential designs with updating rules

based on an efficient summary of all data available via a parametric model.

This method is shown to be asymptotically as good as the optimal stochastic

approximation method. More importantly, its finite sample performance in a

simulation study is better than the latter method. Specifically, the

percentage of runs saved by using our method ranges from 25% to 60%.

I

p.

The responsibility for the wording and views expressed in this, descriptive
summary lies with MRC, and not with the author of this report.
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EFFICIENT MODEL-BASED SEQUENTIAL DESIGNS

FOR SENSITIVITY EXPERIMENTS

C. F. Jeff Wu*

1. Introduction

A sensitivity experiment is characterized by a response curve that

relates the stimulus level applied to an experimental subject to the

probability of response. The outcome of the experiment is assumed

dichotomous, response or nonresponse. This situation arises in many fielos

of research. In testing the strength of materials, the stimulus level may be

the level of impact energy applied to a piece of material, and the response

is either "fail' or *not fail" (Wetherill, 1963). In testing explosives, the

stimulus level may be the height from which a weight is dropped or the

pressure directly applied to the explosive, and the response is *explode* or

Anot explode' (Dixon and Mood, 1948). In biological assays a test animal

survives or not at a given dose level (Finney, 1978). In psycho-physical

research the probability of detecting a stimulus is related to its intensity

level (Rose et al., 1970). In educational testing, one may want to study the

8item characteristic curve' that relates the difficulty level of the test

Item to the probability of 'right' or 'wrong' answer (Lord, 1971).

Our main interest is in estimating the percentiles of the response curve

F(x), which is the probability of response for a given stimulus level x. The

lOOp percentile Lp is defined as

(1) F(Lp) * p.

For simplicity we assume F is monotone increasing and continuous. The median

of F, L,.5, is the most commonly used measure of a characteristic of the

response curve. In some situations estimating LO. 5 is of intrinsic interest,

*Work completed while visiting the MSRI, Berkeley.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041 and
ARO Grant No. DAAG29-82-K0154.



but more often It is because L. 5 is easy to estimate. In quality assurance

It may be more interesting to study the extreme percentiles, e.g., to find

the impact energy level that results in the failure of material for at must

1O of the time. On the other hand Lo.? may be more relevant in explosive

research.

In this paper we will present some new sequential designs for the

efficient estimation of L for small or moderate sized experiments. As will

be explained later, our method is more appropriate for 0.2 4 p 4 0.8. We

consider sequential designs in such a way that all the information in the

previous experimentation car be utilized in a most efficient manner for

suggesting how the next experiment should be performed. When the

experimental runs are very expensive, the saving of a few runs by an

efficient design outweighs the extra pains taken in designing a sequential

experiment. The sequential nature of the design requires quick responses so

that the experiment will not be unduly prolonged. It Is suitable, for

example, when the experimental facility is limited so that experimental runs

v must be performed one after another. Many biological experiments that

involve inexpensive animals and slew responses have to be ruled out. A key

- element of our sequential scheme is the efficient summary of all available

- information for suggesting the next design. This requires a certain degree

of computing. As computing becomes cheaper and more personalized, the cost

of automating an experimental design will be less. By taking all the factors

Into account, our method is more appropriate for expensive experiments with

* short response time, which are more often encountered in engineering

research. In educational or psychological testings, if a test has to be

repeated routinely on many subjects, it pays off to automate the design and

to look for the most efficient ones (in terms of reducing the number of test

Items).

In the next section we shall review two nonparametric sequential designs

and point out their inappropriateness for the scenarios described above. Our

approach is to assume a parametric model for the response curve and estimate

efficiently the relevant parameters in the model based on all the data

-2-
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available. An estimated ouantal response curve (EGRC) is constructed through

the current estimate of the parameters and the next design point is

determined from the EQRC. Some heuristic and theoretical justifications are

provided for the methodology. In particular, a linear approximation to the

"logit-MILE" version of the EGRC approach is shown to be equivalent to an

asymptotically optimal stochastic approximation method. The Monte Carlo

results of the last section indicate that the EORC approach is not sensitive

to distributional assumptions for estimating L0 .5 and L0. 75 and substantially

outperforms the Robbins-Monro stochastic approximation method and the

Up-and-Down method, including an adaptive (and asymptotically optimal)

Robbins-Monro method. For the particular simulation experiment, our method

results in saving 25.. to 60% of the total number of runs required by its

nearest competitors. The empirical study also reveals that a mild degree of

* truncation is needed for both our method and the adaptive Robbins-Monro

method to perform stably. A good guess of the Initial design and the step

" size is more critical to the performance of the Robbins-Monro and Up-and-Down

- methods than the parametric assumption is to our method. For details see

Section 6. A nonparametric sequential design for estimating the median L0 .5

is proposed via the Spearman-Karber estimator. Its limitations are

discussed.

2. Review and criticism of the Stochastic Aporoximation method and the

U-jn-Down method.

The Stochastic Approximation method and the Up-and-Down method are two

*.l most commonly used nonparametric sequential designs for quantal response

- problems.

Stochastic Aporoximation Method (Robbins and Monro, 1951):

Let Yn or0as the th experiment results *in a response or

nonresponse. For estimting L., the stimulus level Xnt | of the (nv;) th run is

chosen according to

* (2) xn, 1 * xn - (Yn-p).

- 2-3-



According to the results of Chung (1954), Hodges and Lehmann (1955) and Sacks

(1958), the optimal choice of c in (1) is (F'(L )) Procedure (2) with
p

this choice of c is asymptotically consistent and fully efficient, i.e., xn

-4 L a.s. and its asymptotic variance is minimized. The small sample

behavior of (2) depends very much on a good starting value x, (Wetherill,

1963). Ideally x1 should be close to L A good guess of the optimal
p

constant c may also be hard to come by since in most practical situations the

experimenters have little idea about the slope of F at Lp Poor choice of c

* and x I will make (2) an inefficient procedure for small and even moderate

*. samples. The Stochastic Approximation method has been used more effectively

in on-line estimation wherein a large number of data have to be processed

quickly.

To achieve minimal asymptotic variance, it is necessary to estimate the

" slope F'(L p). One such estimator-is the regression slope of yi over xi,

pn%A

I Yi(x ii -n) n

On n n n, X 1 .:. T (xiin2n

The procedure (2) with c - O is aptly called a stochastic Newton-Raphson

method by Anbar (1978), since it can be viewed as a method of solving the

equation F(x) - p by the tangential approximation to F at x. with F(xn)

replaced by yn and F'(xn) by On" Under various regularity conditions, Anbar

(1978) and Lai and Robbins (1981) proved that O n F'(Lp) a.s. and that the

procedure (2a) is asymptotically optimal,

(2a) Xn* " Xn - -- (Yn " P) n n in (3).
n~n

When n Is small or the current guess xn is on the tails of the response

curve, On may behave erratically. Since the tails of the response curve are

flat, On with (x,) located on either tail tends to be closer to zero, thus

-4-
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making the adjustment from xn to xn l in (2a) unreasonably large. This

happens when the initial guess is poor for estimating the median or when the

Initial design takes too few points from the middle part of the response

curve for estimating the extreme percentiles. To remedy this, we propose to

truncate p t  that is, to use max(min(pn ,c),-c) instead of p 1 for some

positive constant c. The simulation study of Section 6 shows that there is

considerable improvement in using this truncated version of (2a). Anbar

(1978) and Lai and Robbins (1981) considered truncating instead of p
ns

mainly for technical reasons.

IU-jnc-Down method (Dixon and Mood, 1948):

(4) x~* [n x A i 0
m if yn

":41X~ n - A I

The method works only for LO. 56 It Is very simple to implement but, for

small or moderate samples, its performance depends very much on a good guess

of x, and A. Unless the step size A is made adaptive, the large sample

property of xn can not be studied. Its empirical performance is usually not

as good as the Stochastic Approximation method. See Wetherill (1963) and

*: Section 6 of the present paper. Some modifications of the two methods can be

found in Wetherill (1963, 1966).

Both methods are "Markovian" in that the choice of the next run depends

. sensibly on the outcome of the current one. Their simplicity was a positive

* factor when inexpensive computing was not accessible. Their main

disadvantages are: (a) The updating rules (2) and (4) do not'make use of all

the data available in an efficient way, and thus making the choice of step

•- size less flexible. (b) Their small sample behavior depends on a good choice

* of the relevant constants in (2) and (4), which in turn depends on the

experimenter's knowledge of the unknown response curve F. For small or

moderate sized experiments with expensive runs, inefficiency and lack of

m-5
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robustness can be quite serious. Large sample properties seem quite

Irrelevant in this context.

The sequential design method proposed in the following section is quite

different from (2) and (4) with respect to the shortcomings (a) and (b).

3. A class of sequential desions based n the estimated quantal response

curve.
Ideally we would like to have a good estimate Fn of the whole curve F,

from which the next design point Xn.1 is chosen to be its 100p percentile,

i.e., Fn(Xnei) = p. A (smooth) nonparametric estimate Fn of F is not

feasible since it requires a large number of observations for Fn to be a good

estimate. A natural approach for small sample problems is to assume a

parametric model

F(x) F(xlO), F is continuous in x,

Irn F(xI ) - 0, Ilm , xIs) - 1.
X.--"0 X4

The general recipe of our sequential design procedure for estimating Lp is:

np

(i) 4ind an efficient estimate On - ((yi(,xi) ) of #,

(5)

(ii) define the estimated auantal response curve (EQRC) F W F(xIen),
A

and choose the next design xn0 4  s.t. F(Xn) = p.

Recall that yi I I or 0 is the response or nonresponse at level xi .

I.'

I.

r
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In general the choice of the parametric model F(.IO) should reflect the

* experimenter's knowledge of the problem, if there is any. Given this model,

were there a reliable prior on 0, a Bayesian approach for estimating 0 would

be appropriate. In the absence of such information (a more typical situation

In practice), we suggest to use the logit model

(6) F(x I) 1 a

and the maximum likelihood estimator (MLE) (u,X) of (a,). For (6),

L = In(d - 1) and its MLE L a - n(' - 1). Note ^ -
p=p p p0.
The main reason for preferring logit to its competitor, the probit

model,

x4
(7) G(x 10) -2- e 2- (i',a), a ) 0,

-12 1 a

is computational ease. It is well known that the logit, the probit and other

parametric models like the angular and the linear curves agree very closely

in the range 0.2 to 0.8 (Cox, 1970, Table 2.1). Ie do not see any advantage

In using the probit over the logit, although it is a legitimate choice. It

Is rarely the case that a parametric quantal response model be justifiable on

biological or physical grounds. The successful use in practice of the

parametric approach for quantal response problems is mainly due to this key

fact that the parametric curves (after adjusted for location and scale) agree

very closely in a wide range of p values. For p outside (0.1,0.93 the

percentiles for different parametric models vary greatly. Therefore we can

not recommend our procedure (5) for extreme p values unless there is a good

reason to believe in the particular model. One may argue that the Stochastic

Approximation method, being nonparametric, still works for the extreme tails.

This is only so for very large samples. For instance, the method makes on

-7-
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the average nine negative moves for each positive move in the neighborhood of

LO 9. Instead of "straddlincg LO.,, the sequence makes far too many moves in

one direction. This explains the much poorer empirical performance of the

Stochastic Approximation method (2) even for moderately extreme tails like

L. 7 5 (Wetherill, 1963, J6).
A

The next issue is the choice of efficient estimator On in (5) i). The

minimum logit chi-square method (Berkson, 1955) is not suitable for the kind

of data generated by a sequential procedure like (5), especially for small or

moderate samples. This is because there are few, and typically only one -

two, observations at a given x level to make the minimum logit chi-squ

work. Unless we restrict the search of design levels to a small number o.

* levels, the situation will not be much changed. The same remark applies

*the minimum modified chi-square method, and to a lesser extent, to t...

minimum chi-square method. The maximum likelihood estimate of (€,),) in (6)

,' is obtained by iteratively solving the equations

n h
ilF(x ilcas) P, it

n n

T xiF(x il€O, ) ,, n ixis

where F(xc,) , (1 e-'(x-))-1 .  Th HLE is a function of the sufficient

statistics (Deis 3>ixi). It is asymptotically fully efficient given the

right model and is an efficient summary of all the information available in

small samples. Unless there is a reliable prior on 0 so that a Bayesian

approach (Freeman, 1970; Tsutakawa, 1972; Owen, 19751 Leonard, 1982) becomes

effective, it might be hard to beat the MLE for small samples&

Given an efficient estimate *n' the sequential design (5) makes full use

of all the information available and the step size xnl-xn is more flexible,

i.e., it is capable of making large or small adjustment as the situation

calls for. Its only 'ad hockery" is in the logit assumption. As argued

before, the assumption is quite robust for 0.2 ,( p ( 0.8. It will be further

-8-



supported in the empirical study of J6.

For the implementation of procedure (5), it is important to know when

the MLE exists. To avoid trivialities, assume there are at least two
-3

. distinct xi's. It is known (Silvapulle, 1981) that the MLE of the 'linear"

parameters (Xla) in the logit model (6) exists uniquely iff

(9.1) (Xmin, Xmax) A (X ) is non-empty

*" or
4 - - 4

- (9.2) xMin (xmin Xmax Xmax

or
4 4 -(93)x x x X

min min Xmax max

where Xmax(min) * max(min) (xi: yi a 1), Xmax(min) m max(min) (xi: Y. = 0).

The same result holds for more general distributions F including the probit

model (7). Ste Silvapulle (1981, Theorem (iii)). It is easy to see that

(9), once satisfied, is always satisfied by the addition of more

obversations. The change from xn to Xn+1 via the logit-ML, method may be

unduly large when the problem is "ill-posed." It happens when the data

configuration (xi,Yi)n is such that the first time the condition (9) is

satisfied is n or n-k with very small k, that is, the existence and

uniqueness of MLE has only been guaranteed in the current or last few runs.

" We propose a truncated version as follows. Define dn as the solution of

dnl'xy pweex o A A.. --A- dn - - - n(P-I) and (cnXn) is theXn41 Xn - . n -p), where Xn,1 %

solution of (8). The (nl)th design level is chosen to ;e

dn *
(0) X Wn - p), dn - max(-d, min(dnd)),

where d is a given positive constant. The procedure (10) is shown in Section

6 to perform extremely well over a broad range of the truncation constant d.

* For very large d, like 600, which is equivalent to almost no truncation, (10)

-9-
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does not perform very stably.

The question of how to choose, say, the first ten runs is very difficult

unless some prior knowledge is available. It may be done in an ad hoc manner

aided with experience, or by the Stochastic Approximation procedure (2) with

a reasonable guess of x1 and a slightly larger c than the experimenter's

guess. Wetherill (1963) showed that the procedure (2) with larger c is less

susceptible to a poor choice of xI especially for small samples.

Since the logit (and any other parametric) assumption is vulnerable on

the extreme tails, it may be desirable to use an estimation method that

places less weights on the observations with more extreme x i S. For data

generated by sequential procedures like (2), (4) and (5), the xi's in the

initial runs tend to be more extreme. A simple way to achieve this is to

insert weight wi = w(ixi-xnl) on both sides of (8) and solve iteratively the

weighted version of the likelihood equation (8), where w(z) is decreasing in

z ) 0, and xn is considered to be a good estimate of Lp. If we choose w i to

be 0 or 1, it is equivalent to performing the unweighted MLE based on a

subset of data with moderate xi's. The general question of robust estimation

for quantal response data was addressed in Miller and Halpern (1980).

Let L(n) be the MLE of Lp from n observations. Its variance var(Lp )

can also be estimated via the same parametric model by a standard method. A

stopping rule may be devised based on this variance estimate. This provides

another advantage of the parametric approach over the nonparametric one.

4. L sequential desiQn for estimating Lo. 5 based on

he Spearman-Karber estimator

If the unknown response curve F(x) = H(x-u,#) is skew-symmetric about c,

i.e. I(z,f) * H(-z,+) = 2H(0,#) for any z,4, c is both the median L and

the mean of F. The Spearman-Karber estimator (Finney, 1978, p. 394) is a

nonparametric estimator of the (discretized) mean of F,

-Io



SK -j Pj- 2 -lj'

where x1 ( ... (xj, nj observations are taken at Y with r responses, =
n * In,. Under conditions that ensure that aSK is an efficient

estimator of (, an alternative sequential design for estimating the median

L0. 5 = a is the following:

--(n) A n

Ci) compute aSK aSK((Yixi)i ,

((n)
(ii) set x AS

The two distinct advantages of the procedure (11) ares 1) computational

ease, 2) weak assumption on F, i.e., the functional form of H is not assumed

known. But the price to pay for these is quite dear. The conditions

required to ensure a proper performance of (11) are quite restrictive.

First, F should be skew-symmetric so that its mean and median are equal.
A

Since CSK is an unbiased estimator of the discretized means not the

population mean, their difference becomes negligible only when the spacing
A

{xi} ,is reasonably dense. A proper use of wSK requires that x, and xj are

chosen such that F(x,) - 0, F(xj) - 1, which may be hard to achieve in the

Initial stage of the type of sequential designs considered in the paper. If

the experimenter has to pray for the validity of these assumptions, the

procedure (11) can not be truly termed "nonparametric." Therefore it will

not be included in the empirical study of i6.

5. Some theoretical results relating the sequential designs (5)
to the Stochastic Approximation method.

Our efficiency claim In J3 for the "logit-MLE" version of (5) is based

on the good faith in MLE for the logit model. This loose claim will be

reinforced in this section by showing that, for the estimation of any

-. ..



percentile L a linear approximation to the 'logit-tILEI version of (5) is

equivalent to the asymptotically fully efficient version (2a) of the

Stochastic Approximation scheme. It is interesting to note that, while the

former is a seemingly parametric procedure, the latter is nonparametric.

This ]ends further support to our previous argument that the "logic-tILE,

version is not sensitive to distributional assumption, at least for the

middle percentiles.

The following simple approximation

(12) 4~ 6t
14t

has a maximum error of 0.07 in the range ItI 3 (Cox, 1970, p. 90). Assume

that I)Wx -1-) 3 for all i in the likelihood equation (8). (This may be

achieved by applying the MLE to the data satisfying the constraint.) By

applying the approximation (12) to (8), we have

(13)

4 - px? ) F

Let A and p be the solutions to (13). The estimator &~ of the median L 0.5

a is obtained as follows:

A n n n n

(14) =xzyn n n n n

2i E xiz(yi

which is the weighted average of xit i 1, I...,9n with weight wi proportional

to X(yj 4 )xi xixCyj-2) - X i E 0 (xj-xi)9

More generally for any p, we can consider the approximation



n -

")-". " p.(t-J(pll(J 1(p)) , Jp)

*i which is approximately valid for x1 close to I , By applying (15) to (8) we

* obtain

n n
, -- (i n - (y.li-pl

J'(J- p))i:". ( 16)

n 2 ___ n

!-:;- -;where the 1O0p percentile Lp ,, - Iln(' - 1) ,, m * J-1 p). The estimator

p X p

l) 17), is obtained from XL and X by solving (16),

A n n n
()n ExiE(y, p)x -x 1Z(yi-P)

p n n n ft
I 1(y 1-POx1  im,(yrP)

which Is the weighted average of x, with weight wi proportional to

nA
5Ny.-p)(x-xi). Since L n) is independent of J'(J1 (p)) of (1006),Ip)

in the approximation (15) can be replaced by any other constant without

affecting the subsequent results (17) and (18). Formula (17) extends (14).

Note that some wi may be negative.. The denominators of (14) and (17)

n
are both equal to n xi -xi S x, which is nonzero -unless: ""Yi IYi =

I X1 nn
(yl: ~ jyi lxi - n D€i . From (17) and after some algebras, it is easy to

show that the 1 run, according to the procedure (5),

i?-ii:.-13-
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n

2

- x - (x - -(in)

nin

where n1D 1  Therefore the linear approximation (18) to our procedure

(5) is asymptotically fully efficient if c nin (18) converges almost surely

to F*L]-.To this end, note that the regression slope estimate in

(3) converges to F'(L ) a.s. By comparing (18) and (3), c~ - n(x~

in) yj~x-id.Since both procedures converge to L pfor large n, x. Ze in

and ~ -A..-1 0 follows from the assumption F'(L) 0. Therefore the

asymptotic full efficiency of (18) follows from similar results of Anbar

(1978) and Lai and Robbins (1981). (Their regularity conditions do not apply

directly to the quantal response problem but their technique can be modified

to suit our purpose.)

6. If simulation study

Under comparison are MI the logit-MLE version of the sequential designn

(5) with truncation as defined in (10) (abbreviated as MLE in the Tables),

(ID) the following adaptive Robbins-IMonro (ARMI) design with truncation,

M1) XnvJ *Xn - n0 cn -max(-c, incPn1 )

* where ~nis defined in (3), (iii) the Robbins-Monro (RM) design (2), and (iv)

the Up-and-Down (UD) design (4).

Since the MLE of the logit model does not often exist for very small

sample size, we fix an initial design of size 10 and a parametric

- 14-



" distribution H for the quantal response curve. For each stimulus level xi, i

* 11...,10, in the initial design, y1 - 0 or I is generated according as u i

or I H(xi) where u, is the ith uniform random number in E0,1]. Lot

(109 I to-) be the MLE of (t,)) in the logit model based on (x,Yi) 0.T he

common starting value for all designs under comparison is chosen to be x,,

'W 1 "o ln(p 1 -1) according to (5)(ii). Once x,, is chosen, the subsequent

design levels x1 2 ,...,x 3 5  are generated according to different design

schemes, but with the same random numbers u i. If the MLE (a1OXlO) does not

exist the simulation sample is discarded. On the other hand, if (al0,Xio)

exists and is unique, the subsequent MLE always exists as is obvious from

condition (9). This is repeated for 500 times, including those discarded due

to the nonexistence of MLE. (The total number of discarded samples is

*denoted by H in Tables I and 1I. The actual number of simulation samples in

our study varies from 386 to 484.) For sample size n, the Monte Carlo mean

* square error (HSE) of a sequential design is calculated as the average of

Zi (xn - Lp)2 over the simulation samples. In Table I, HfMSE are given for the

desings (i) - (iv) for estimating L ..  In Table 11, 4i"i are given for the

designs (i) -(iii) for estimating L0*75.

For the study of robustness to distributional assumption and to the

choice of starting value and other constants, we choose a variety of initial

designs and response curves to reflect the degrees of the experimenter's

knowledge of the response curve. (But note that for design (i) the MLE is

always computed on the assumption of the logit model no matter what the true

response curve is.) In Tables I(a)(c) and II(a)(c)(e), the standard logit

model is used for the true response curve. In other tables, the probit

models with different locations and scales are used for the true response

curve. In each table Lp denotes the design level that is the loop percentile

of the corresponding response curve. Therefore, for example, the two initial

designs in Tables I(a) and 1(b) are Identical, but correspond to different

percentiles under different response curves.
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Tablt 1. mote Carlo Q (Root Kean Square Error) of Sequential Designs for
Estimating the 50 Percentile of the True Quantal Response Curve

(a) Initstimulus level L8.1  L0.3 10.5  L6.7 L1.9. (a) Initial design:
no. of observations 1 2 4 2 1

True response curve: logit model (6) with a a 0, 1 * I

design 12 16 20 25 30 35 no. truncations

ILE-30 1.44 1.02 .72 .56 .43 .36 197
-LE-50 1.40 .76 .53 .47 .40 .36 102
IM.-101 1.40 .40 .49 .46 .40 .36 46
"LE-200 .3 .61 .54 .48 .41 .35 15
SIrE-duO 1.48 .78 .56 .45 .41 -36 0

. All-16 1.55 1.29 1.09 .92 .78 .67 321
" Al-30 1.52 1.16 .68 .69 .53 .45 97

All-50 1.54 1.16 .91 .69 .55 .46 32
NAlt-t0 1.59 1.24 .99 .80 .62 .51 12

l-600 1.63 2.02 1.66 1.67 1.36 1.12 4
I-32 1.84 1.41 1.21 .94 .81 .74
11-16 1.58 1.31 1.14 .97 .83 .73
I H41.59 1.46 1.37 1.29 1.23 1.19
UD-2 2.18 1.94 1.86 1.68 1.82 1.51
U-I 1.65 1.44 1.29 1.17 1.14 1.10
W1.25 1.58 1.40 1.26 1.15 1.5 94

Nz 114

-kre a lOOp percentile of the true response curve$

"IE-d a procedure (10) with truncation constant d
All-c a procudure (19) with truncation constant c
14-c a procedure (2) with constant c
L0- a procedure (4) with constant A
no. truncations a total nuber of truncations of the kind (10) or (19)
N a total nmber of simulation saples for which no tiLE exists

(b) Initial design (same as 1(a)): stimulus level ..3  i.46 LO. .6 h 0.

no. of observations 1 2 4 2 1

True response curve: probit model (7) with p - -0.5, u z 3.1915
J

3
design 12 16 20 25 3 35 no. truncations

MLE-30 1.87 1.34 1.07 .95 .82 .77 859
MLE-50 1.84 1.18 .88 .83 .77 .73 472
NI.E-I8 1.95 .93 .85 .74 .83 .62 214

- ILE-200 1.95 .0 .79 .71 .84 .63 62
MLIE-01 1.9 1.13 .87 .75 .76 .63 4
AI'16 2.01 1.70 1.54 1.36 1.21 1.08 1411
Ali-3N 2.10 1.58 1.42 1.23 1.08 .96 625

, All-SO 2.06 1.62 1.39 1.21 1.07 .92 251
Al-So 2.15 1.80 1.56 1.32 1.19 1.12 98
AllSO0 2.21 3.32 2.90 2.37 1.86 1.56 9
IN-32 2.16 1.77 1.51 1.35 1.17 1.85
i1-16 2.11 1.69 1.47 1.28 1.10 .93
M 1-4 2.07 1.92 1.81 1.71 1.63 1.56
U1-2 2.41 2.22 2.21 2.27 2.18 2.15
UDI 2.04 1.73 1.58 1.60 1.48 1.48
1 18.25 2.86 1.83 1.64 1.46 1.31 1.13

Nm56
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stimulus level L0 3  L 5  L.7 Li8  L,.
(c) Initial desip:

so. of lobservations 1 2 3 3 1

Tre response curve: logit model (6) with a Do I I

a
desigs 12 16 21 25 36 35 to. truncatious

MLE-30 2.00 1.26 .A .75 .57 .45 637
tLE-50 1.92 1.06 .71 .56 .47 .41 349
.ILE-100 1.89 .86 .61 .53 .46 .42 182
MLE-209 2.22 .1 .67 .56 .54 .46
MLE-68 2.68 1.47 .66 .58 .5 .63 Is

M11-16 2.11 1.72 1.44 1.18 .A .84 747
Al-30 2.09 1.40 1.21 .89 .70 .52 334
W51-8 2.19 1.54 1.04 .82 .66 .53 165

AIM3-100 2.06 1.58 1.13 .85 .71 .59 45
IN*-600 2.21 1.86 1.30 1.1b 1.1 .82 2
1-32 2.14 1.46 1.22 1.02 .94 .72
i1-16 2.06 1.56 1.30 1.11 .96 .05
H..4 2.16 1.97 1.83 1.71 1.61 1.54
0-2 2.36 1.92 1.8 1.61 1.79 1.55
U0-I 2.06 1.50 1.34 1.18 1.11 1.08
U14.25 2.14 1.85 1.62 1.40 1.21 1.37

(a stimls level L1. 2  .38 1.58 1.71 0.85*(d) Inlitial Design (sate as 1(c)):
so. .obsrvatices 1 2 3 3 1

Trie response curve: probit model (7) with p a 1.5, e 1.5957

a
design 12 16 20 25 30 35 no. truncations

MLE-30 1.16 .60 .52 .47 .42 .37 325
tILE-50 1.02 .57 .51 .45 .42 .34 152
MLE-IO 1.01 .58 .47 .43 .43 .34 76
ME-21 1.41 73 .49 .43 .43 .34 32
HLE-60 1.94 .92 .50 .43 .41 .34 4
Wi-16 1.26 .A .8 .67 .57 .50 371

A *3-30 1.26 .98 .8 .65 .56 .48 106
431-50 1.29 1.62 .86 .69 .58 .50 50

111-101 1.35 1.11 .92 .74 .62 .54 14
031-60 1.45 1.19 .97 .95 .73 .5? 1
1-32 1.57 1.16 1.02 .90 .81 .73
31-16 1.28 .9 .74 .66 .59 .52
3H-4 1.30 1.14 1.02 .91 .83 .76
UP-2 I.M5 1.6 1.90 1.59 1.83 1.45
UW-I 1.35 1.08 1.69 1.15 1.17 1.03
I14.25 1.29 1.05 .87 .7t .5 .51

Ie 76
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Table II. Monte Carlo 'q (Root l an Square Error) of Sequential Designs for

Estimating the 75 Percentile of the True Ouantal Response Curve

(a) Initial design and true response curve: same as in (a)

a
design 12 16 20 25 30 35 no. truncations

MLE-30 1.43 .87 .70 .61 .56 .48 561
KLE-50 1.34 .80 .64 .56 .53 .47 212
MLE-100 1.38 .77 .64 .58 .55 .50 50
HLE-200 1.43 .77 .65 .59 .56 .50 23
HLE-600 1.49 .76 .65 .59 .56 .51 3
AMI-16 1.54 1.19 1.02 .87 .78 .70 228
AIN-30 1.55 1.21 1.05 .89 .79 .72 86

1-%50 1.60 1.26 1.09 .93 .83 .75 29
AN4-O0 1.69 1.37 1.19 1.01 .90 .81 7
*AI-600 1.71 1.41 1.73 1.39 1.16 .9 1
W-32 1.69 1.23 1.16 .93 .87 .78
W1-16 1.51 1.13 .3 .75 .68 .61
114-4 1.57 1.41 1.28 1.17 1.68 1.01

H a 114

_ For explanation of syubolsl see the bottom of Table 1(a)

(b) Initial design and true response curve: same as in 1(b)

design 12 16 20 25 30 35 no. truncations

1.E-30 1.97 1.47 1.21 1.16 1.04 .98 1817

HLE-50 1.95 1.51 1.18 1.12 1.08 1.01 796
MLE-1O0 2.09 1.38 1.22 1.15 1.11 1.03 205
MLE-200 2.33 1.43 1 .27 1 .14 1 .11 1.06 de

MLIE-d00 2.33 1.41 1.55 1.16 1.12 1.06 It
All-I6 2.02 1.80 1.56 1.40 1.26 1.12 1462
AM-30 1.90 1.74 1.54 1.32 1.20 1.16 580

WA-50 1.99 1.80 1.69 1.46 1.28 1.23 308
W -06 2.07 2.08 1.92 1.63 1.45 1.40 108
A04-600 2.08 3.85 3.39 2.98 2.41 2.19 12
I-32 2.0J J.52 1.45 1.29 1.19 1.07
wi-16 1.95 1.46 1.20 1.03 .91 .82
i1-4 2.08 1.86 1.71 1.56 1.45 1.36

H-56
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(mt d stimulus level' L 1 L L L0b1) Initial designt L0.3 L0.46 L0.5 L0." 08

n mo. of observations 1 3 6 3 1

Initial simple size: 14

True response curve: sane as in J1(b)

m

design 16 20 25 30 35 no. truncations

fLE-30 2.23 1.63 1.37 1.13 .99 2694
iLE-50 2.23 1.42 1.20 1.06 .97 1387
fiLE-10 2.27 1.31 1.16 1.07 1.61 483

, LE-200 2.76 1.40 1.18 1.11 1.03 160
fLE-600 2.91 1.48 3.17 1.25 1.07 32
AIM-16 2.26 1.97 1.67 1.48 1.31 2116
A43-30 2.24 1.91 1.60 1.44 1.31 855
A"M-50 2.26 1.97 1.71 1.52 1.38 388
A-FMNI-100 2.31 2.10 1.82 1.62 1.41 113

4.1-600 2.96 3.36 M2 2.72 2.3
1N-32 2.15 1.67 1.36 1.20 1.04
FiM-16 2.20 1.77 1.46 J.20 1.13
1-4 2.31 2.15 2.81 1.90 1.81

HN" 16

Sa same as in 11(b)

(c) Initial design and true response curves same as in 1(c)

3

design 12 16 20 25 30 35 no. truncations

LE-30 2.58 1.96 1.57 1.28 1.08 .93 60e
iLE-5 2.46 1.57 1.15 .83 .56 .44 496
iLE-1O1 2.22 1.62 .54 .54 .44 .43 186

.LE-260 1.89 .85 .61 .52 .45 .41 62
iLE-608 1.44 .5 .57 .54 .44 .47 19
AN1-30 2.65 2.12 1.75 1.47 1.26 1.11 330
Al-50 2.61 1.93 1.53 3.18 .94 .82 204
W1-IS61 2.62 1.74 1.36 1.69 .93 .87 82
451-200 2.72 1.81 1.54 1.23 1.63 .94 13

f-6M6 2.73 1.6 1.86 1.49 1.17 1.03 1
1132 2.77 2.13 1.79 1.42 1.24 1.67
11-16 2.71 2.32 2.08 1.64 1.66 1.53
31-4 2.78 2.65 2.56 2.47 2.40 2.35

1,,99
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(d) Initial design and true response curve: some as in 1(d)

a
design 12 16 20 25 30 35 no. truncations

LE-30 2.59 1.72 1.16 .81 .69 .60 782
KLE-50 2.46 1.19 .92 .60 .48 .41 420
.LE-300 2.16 .91 .57 .49 .44 .41 153
PLE-200 1.62 .64 .60 .49 .45 .42 56
HLE-600 1.26 .77 .60 .50 .46 .43 7
A31-30 2.66 1.93 1.42 1.08 .93 .81 233
At-50 2.60 1.76 1.29 .99 .2 .70 83
AJl-1O0 2.67 1.78 1.30 1.01 .88 .77 46
A A-200 2.83 2.03 1.49 1.19 1.00 .86 5
AFt-600 2.83 2.48 1.92 1.54 1.30 1.12 1
I -1-32 2.74 1.89 1.39 1.03 .94 .84
.1-16 2.72 2.23 1.87 1.55 1.31 1.11
..-4 2.82 2.65 2.53 2.42 2.33 2.26

Nf C 76

I d stimulus level L0.1 L0.2 L0.3  L0.5  L0.7(e) Initial design:

so. of observations 1 3 3 2 1

True response curve: logit model (6) with au o I - I

"- a
* design 12 1d 20 25 30 35 no. truncations

iLE-30 4.64 3.55 2.99 2.44 2.01 1.68 1940
, -LE-50 4.53 2.98 2.11 1.36 .94 .67 1178

PILE-10 4.34 1.71 .87 .71 .64 .57 417
MLE-200 4.14 1.86 .9 .73 .70 .63 143

-LE-o00 3.65 1.92 .92 .78 .90 40
AN-30 4.44 3.84 3.38 2.97 2.66 2.41 246
Al-50 4.65 3.85 3.36 2.95 2.63 2.38 125
Am-Joe 4.66 3.92 3.43 3.01 2.68 2.42 35
A01-200 4.61 4.08 3.56 3.12 2.78 2.50 5
AFM-680 4.81 4.31 3.69 3.18 2.79 2.51 1
132 4.51 3.55 2.97 2.38 1.97 1.64
"1-16 4." 4.01 3.65 3.33 3.08 2.89
R""4 4.83 4.62 4.47 4.33 4.23 4.14

N 96

I. dstimulus level L0.15  4 .29 L0.42 L0.62  40.80,,(4) Initial design (sune as 1l(e))a
no. S observations 1 3 3 2 1

True response curve: probit model (7) with p z -1.5, u 1.5957

design 12 16 20 25 30 35 no.'trncations

-LE-30 3.78 2.95 2.54 2.13 1.90 1.54 1334H' 1.-50 3."4 2.54 1.66 1.25 .83 .57 off

HLE-ISO 3.43 1.56 .74 .58 .54 .46 277
-LE-200 3.#6 1.02 .70 .62 .58 .51 69
,LE-6400 2.44 1.08 .77 .64 .59 .53 19
Al-30 3.82 3.18 2.81 2.48 2.22 2.01. 147
Al-50 3.82 3.19 2.80 2.46 2.21 2.00 40
A11-IS1 3.87 3.27 2.85 2.50 2.24 2.02 19

" All-200 3.99 3.51 3.00 2.60 2.32 2.09 6
.ll-600 3.9 4.67 3.35 2.80 2.42 2.15 2
..-32 3.78 3.04 2.61 2.14 1.79 1.52
W-1l 3.94 3.34 3.07 2.82 2.64 2.48
M-4 3.96 3.79 3.68 3.57 3.49 3.42

If 66
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,, The results in Tables I and 11 are summarized in the following.

- (A) General comparison of designs.

In general, the performance of the designs is in the following

2 descending order,

MLE )ARM ) RI ) UD

Only in Table 11(b) does RM-16 (the Robbins-Monro method (2) with c = 16)

outperform the others. But when we increase the size of the initial design

from 10 to 14 as in Table I1(bl), MLE has again the best performance.

Within R1 we observe the descending order of performance

AM-32 and RI-16 ) 1I-4 ) RM-1 ) Rt-0.25.

*." For Tables 1(a)(b)(d) and 11(a)(b), RM-16 R 1-32; for other tables, RM-32 >

1M-16. Note that 1I-4 is asymptotically fully efficient if the response

- curve is the standard logit (as assumed in Tables I(a)(c), 11(a)(c)(e))

o* because F'(0) ,, ]  1I-4 certainly fails to deliver this asymptotic promise

-i of optimality for n as large as 35. Asymptotic results seem quite irrelevant

in this context. Within UD, we observe the descending order of performance

UD-0.25 ) UD-1 ) UD-2 ) UD-4,

where UD-A means the Up-and-Down method (4) with step size A. To save space,

" W4I-I, RI-0.25 and UD-4 are not included in the tables.

Since our interest is in finding superior designs, we will confine the

remaining discussion to MLE, ARl, I-32 and RW-16. A very complete

., comparison of the empirical performance of MI-c and UD-A for different c and

A was done in etherill (1963).

(B) Superiority th...e oit-ILE design.

The superiority of the logit-NLE design (10) with truncation constant d,

| -21-



hereafter denoted as MLE-d, is broad-based. In the eleven tables, MLE-50,

MLE-100, MLE-200 consistently outperform the best ARI. Except in Table

11(c), MLE-30 outperforms the best ARM. The efficiency gain of MLE over ARM

is more conspicuous for larger n.

What truncation constant d should be chosen? The MLE designs with 50

d 200 all perform well. Within this range thzir difference of performance

is probably negligible. MLE-30 does not perform as well, because a forceful

truncation like d = 30 limits the potential of the MLE design in making more

flexible and justifiably large moves when the design levels are not yet close

enough to the target value. On the other hand, the performance of MLE-600,

which involves very weak truncations, is more fluctuating. For n ) 20,

MLE-600 is comparable to the best MLE design. For small n, MLE-600 is

comparable to the best MLE design in Tables l(a)(b) and 11(a)(b), but worse

than MLE-50, MLE-10, and MLE-200 in Tables I(c)(d) and ll(bl). In Tables

1I(c)(d)(e)(f), MLE-600 is much better than the other MLE designs for n M 12

(an uninteresting case), and is comparable to MLE-200 for n 16. For n

20, the effect of truncation is negligible over 100 4 d 4 600.

Since a major purpose for finding better designs is to reduce the number

of runs required for satisfying an error bound, we shall measure the

efficiency gain of the MLE-design over the AR1 design by such numbers. In

each case, we find the smallest 9 achieved by the best ARM design at n =

35. We then find m to be the smallest sample size at which an MLE desion

achieves the same 1MSE. In Table III, the values of m are obtained by linear

" interpolation for the eleven tables in Tables I and I.

* Table 1I1. Values of m for Tables I(a)-(d), II(a)-(f)

Ia lMb Il(c) l(d) ll(a) 11(b) 1l10l) 11(c) 1l(d) 11(t) JIM4

26 16 26 20 to 25 20 17 18 15 14

The percentage of runs saved by using the best MLE design instead of the best

-22-



AR1 design ranges from 257 to 60.. This surprising difference of performance

can be explained by the different natures of the two approximation schemes.

The adaptive Rabbins-onro design is a stochastic Newton-Raphson method which

-" uses linear approximation to nonlinear equation for the iterative solution of

. nonlinear equation. It is known to be unstable unless the starting value is

close to the target value. Only under this premise does the large sample

*. results like asymptotic normality and efficiency make sense for small or

moderate samples. On the other hand our logit-MLE method seems to be free

-:I from this problem since a siamoid curve is used in the iterative solution of

nonlinear equation.

- C. lmprovement of ARM over RM.

There is a slight but definite improvement of ARM-c (procedure (19) with

truncation constant c) with c - 50, 100 over the best RM in Tables 1(a)(c)

.: 11(c)(d). The best RM design (R-16 or RM-32) is usually quite comparable to

• -the best ARW design. In Tables II(a)(b)(bl)(e)(f) it even beats the best

' ARM. (But RM-4 is definitely inferior to the best ARM>)

The best performance of ARM occurs with ARM-c with 16 4 c 4 100 with the

majority of them in the narrower range 30 4 c 4 50. The ARM-600 design,

which involves very weak truncation, is a real disappointment. Except for

. Table 11(c), it is worse than the best (nonadaptive) RM design. It is

consistently worse than the best ARM design, and for Tables l](b)(bl)(e)(f)

much worse. Asymptotic full efficiency is a quite irrevelant concept here.

"* Moreover the MSE of ARM-600 exhibits an erratic pattern, e.g, it sometimes

increases as n increases. Generally the ARM requires more severe truncation

than the MLE. This is because the ARM can make an unduly large move from xn

to x n+, as explained in Section 2.

D. In Tables I and II we have counted the total number of times the

-23-
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truncation (defined in (10) and (19)) is invoked. For the same truncation

constant, the MLE design always requires more trunctations than the ARM

Design. It suggests that the MLE design makes large moves more frequently

than the ARM design. Since MLE-100, HLE-200 and MLE-600 do very well in the

study, such large moves are probably justified.

We have also examined the empirical behavior of the same set of designs

for initial designs of size 25. The results are very similar. As the size

of the initial design increases, the number of simulation samples for which

no MLE exists quickly drops.

Since the MLE-d designs with 50 4 d 4 600 perform extremely well in a

variety of situations considered in this paper, we suggest that they may be

- considered seriously in practi-cal work.

ACKNOWLEDGEMENTS

Thanks, are due to G.E.P. Box and Tom Leonard for useful discussions, and to

Siu-Keung Tse for computational assistance.

-24-



References

Anbar, D. (1978)0 'A stochastic Newton-Raphson method,' Journal of

Statistical Planning And Inference, 2, 153-163.

2Berkson, J. (1955), 'Maximum likelihood and minimum x estimates of the
logistic function,' Journal of the American Statistical Association, 50,
130-162.

Cox, D. (1970), Analysis of Binary Data, London: Methuen.

* Chung, K.L. (1954), 'On a stochastic approximation method,' Annals of

Mathematical Statistics, 25, 463-483.

Dixon, W.J. and Mood, A.M. (1948), 'A method for obtaining and analyzing
sensitivity data,' Journal of the American Statistical Associates, 43,

109-126.

Finney, D.J. (1978), Statistical Method in Biological Assay, London:

Griffin.

*Freeman, P.R. (1970), 'Optimal Bayesian sequential estimation of the median
effective dose,' Biometrika, 57, 79-89.

* Hodges, J.L. and Lehmann, E.L. (1955), 'Two approximations to the

Robbins-Monro process,' Proceedings of the 3rd SerkeleZ Symposium, 1,

* 95-104.

Lai, T.L. and Robbins, H. (1981), 'Consistency and asymptotic efficiency of
slope estimates in stochastic approximation schemes,'" Z

* Wahrscheinlichkeitstheorie verw. Gebiete, 56, 329-360.

Leonard, T. (1982), 'An inferential approach to the bioassay design problem,'

Technical report, Univ. of Wisconsin, Madison.

Lord, F.M. (1971), 'Tailored testing, ar, application of stochastic

approximation,' journal of -the American Statistical Association, 66,

*707-7 
11 .

- 5



Miller, R.G. and Halpern, J.W. (1980), "Robust estimators for quantal

bioassay," Biometrika, 67, 103-110.

Owen, R.J. (1975), 8A Bayesian sequential procedure for quantal response in

the context of adaptive mental testing,' Journal of the American Statistical

Association, 70, 351-356.

Robbins, H. and Monro, S. (1951), 'A stochastic approximation method,' Annals

-. of Mathematical Statistics, 29, 400-407.

Rose, R.M., Teller, D.Y. and Rendleman, P. (1970), 'Statistical properties of

staircase estimates,' Perception and Psychophysics, 8, 199-204.

Sacks, J. (J958), 'Asymptotic distribution of stochastic approximation

procedures," Annals of Mathematical Statistics, 29, 373-405.

Silvapulle, M.J. (1981), *On the existence of maximum likelihood estimators

for the binomial response model,' Journal of the Royal Statistical Society B,

43, 310-313.

Tsutakawa, R.K. (1972), 'Design of experiment for bioassay," Journel of the

American Statistical Association, 67, 584-590.

Wetherill, 6.B. (1963), 'Sequential estimation of quantal response curves,'

(with Discussions) Journal of the Royal Statistical Society 8, 25, 1-48.

(1966), Sequential Methods in Statistics, London: Methuen.

-26-

... . .. " . ... . . . . . - . " - , " . . * . . a.° -. .. '



SECURITY CLASSIFICATION OF THIS PAGE (Uhe. Date Xftere

REPORT DOCUMENTATION PAGE BRE COSTRUCTINSBEFORE C OMPLETING FORM
I. REPORT NUMBER 2. GOVT ACCESSION NO, S. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitl) S. TYPE OF REPORT & PERIOD COVERED

Efficient Model-Based Sequential Designs for Summary Report - no specific
Sensitivity Experiments reporting period

S. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(&) S. CONTRACT OR GRANT NUMBER(*)

C. F. Jeff Wu DAAG29-80-C-0041 &
ARO DAAG29-82-K0154

0. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK

Mathematics Research Center, University of AREA 6 WORK UNIT NUMBERS
" Work Unit Number 4 -

610 Walnut Street Wisconsin Statistics & Probability
Madison, Wisconsin 53706

II. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

U. S. Army Research Office September 1983
P.O. Box 12211 iS. NUMBER OF PAGES

Research Triangle Park, North Carolina 27709 26
14. MONITORING AGENCY NAME & AODRESS(Il dlloent boam CnreolllM Office) IS. SECURITY CLASS. (of thle report)

UNCLASSIFIED
ISa. DECL ASSI FICATION/ DOWNGRADING

SCHEDULE

14. DISTRIBUTION STATEMENT (of Mlis Report)

. Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the ebstrect entered In Block 20, if different korn Report)

.* IS. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reveree side if neceeear aid identify by block number)

- Logit, Optimal design, Quantal response curve, Robbins-Monro stochastic
approximation, Sensitivity experiments, Spearman-Karber estimator,

"- Up-and-Down method

20. ABSTRACT (Continue on revere. aide It neceeary and identify by block nmber)

A sequential design for estimating the percentiles of a quantal response
curve is proposed. Its updating rule is based on an efficient summary of all
the data available via a parametric model. Its efficiency in terms of saving
the number of runs and its robustness against the distributional assumption
are demonstrated heuristically and in a simulation study. A linear
approximation to the "logit-MLE" version of the proposed sequential design is
shown to be equivalent to an asymptotically optimal stochastic approximation
method, thereby providing a large sample justification. For sample size
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ABSTRACT (Continued)

between 12 and 35, the simulation study shows that the "logit-MLE" version of
the general sequential procedure substantially outperforms an adaptive (and
asymptotically optimal) version of the Robbins-Monro method, which in turn
outperforms the nonadaptive Robbins-Monro and Up-and-Down methods. A
nonparametric sequential design, via the Spearman-K.rber estimator, for
estimating the median is also proposed.
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