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ABSTRACT

produces lift L, roll moment R, yaw moment Y and which has minimal induced
drag D is wanted. This problem arises in airplane engineering. It is solved

by means of Prandtl's lifting line theory combined with computation. N
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SIGNIFICANCE AND EXPLANATION

"Adverse yaw" has been with us since the beginning of the era of heavier-
than-air flight. The pioneers Lilienthal, the Wright brothers and others must
have encountered this phenomenon. It consists of the fact that an airplane
initiating a turn normally moves in the wrong (adverse) direction if only
stick movement and no rudder deflection is used.

It appears that this phenomenon has not been studied very much by
aerodynamicists or airplane engineers. There are several reasons behind this
fact: The first may be that adverse yaw is normally more of a nuisance than a
real problem. In most airplanes it can be controlled with the rudder. When
teaching people how to fly, it is standard to demonstrate the adverse yaw and
its manual correction.

Another reason may be that adverse yaw is most powerful for wings with
high aspect ratio, e.g. sailplanes and airliners. Sailplane manufacturers,
however, usually don't invest in scientific research. While the airline
industry could make such an investment, it has not done so because the auto-
pilot takes care of adverse yaw during flight.

Nevertheless, in both situations this correction for adverse yaw expends
unneccessary energy. It is the aim of this paper to show how to reduce the
energy required in the process of correcting for adverse yaw by minimizing the
resulting additional drag.

The interest of the author in this subject comes from his work with
tailless airplanes where adverse yaw is a serious problem. It is hoped that

other kinds of airplanes may also henefit from the results presented in this

report.

o -

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.




MINIMAL DRAG FOR WINGS WITH PRESCRIBED LIFT, ROLL MOMENT AND YAW MOMENT

Karl L.E. Nickel

1. Explanation of the physical problem

Bvery airplane pilot is familiar with the following phenomenon: Suppose
the pilot wants the airplane to roll. Then by using the ailerons as sketched
in Figure 1 a roll moment R is produced. However, more than the (desired)
roll around the longitudinal axis occurs. The airplane also turns its nose to
the side as if a rudder deflection had been made, see Pigure 2. This is known

as “"adverse vaw". In most cases it is not wanted and is regarded as a

ot Sedidiclid

nuisance.

Piqure 1. Sketch of airplane with lift L and roll moment R produced by aileron
deflection. l

X3

FPiqure 2. Sketch of airplane with yaw moment Y around the vertical axis
produced either by the rudder deflection shown or by the
aileron deflection shown.

Sponsored by the United States Army under Contract No. DAAG29-80-C-004%.




The physical reason for adverse yaw is that on the side with the ajileron
bent downward not only the (local) lift is increased, hut that there is also
an additional (local) drag. This drag is called (by Prandtl) the "induced"
drag. It pulls this part of the wing back and therefore produces the yaw

moment Y.

From this discussion, the following property is plausible: The adverse

yaw is proportional to the lift L produced by the wing. Hence, no adverse yaw
occurs if L is zero (vertical dive) and if the aileron configuration is
symmetric. FPFor negative lift L (upside-down flying; strong downward gust)
but unchanged roll moment R, the sign of the yaw moment Y is obviously

reversed.

In most airplanes of today (or of the past) the adverse yaw is
annihilated by the (auto-) pilot just by steering against it with the rudder.
There exist, however, at least two kinds of airplanes at present for which
this is difficult to do or even impossible:

i) Tailless airplanes with no vertical tail fins and with no rudder.

Most of today's hanggliders belong to that category.

ii) High efficency sailplanes with their usually very large wing span

(24.5 m or 8o ft in 1983). 1In some of these airplanes, at maximunm
1ift full rudder deflection is not sufficient (1) to fight adverse
yaw. Hence, even though adverse yaw is a very old problem, it seems

to have some modern significance.

There are geveral constructive devices to diminish or to annihilate

adverse yaw. They will not be described here. Because of the properties




mentioned above they are, however, normally effective only in a certain

limited range of the lift L.

Since adverse yaw is generated by an asymetric distribution of the local

induced drag one may suspect that it could, perhaps, be nullified by an

adequate modification of that distribution. This leads to the

Pirst Question : Are there special kinds of ailerons and/or wings for

which adverse yaw does not exist for any values of lift L and roll

moment R ?

It will be shown in this paper that there are infinitely many such
configurations. This is a very "clean" solution to the problem of fighting
adverse yaw since no additional devices are needed: The wing itself and its

ailerons will be shown to suffice for the elimination of adverse yaw.
Obviously this solution will not be "for free". In order to

counterbalance the one-sided induced drag one has to add some additional drag

on the other side of the wing. Hence the total induced drag D of the airplane

is increased. This leads to the

Next Question : Is it possible to select one solution to the First

Question which produces minimal total drag D ?

It will be shown that there is exactly one such solution.

In most cases an airplane rolls if it wants to take a turn. In this case

3
i
;
;
!
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roll and positive yaw are wanted at the same time. Hence one may ask if one
can replace rudder deflection ( full or partial ) by a favorable distribution
of the induced drag on the wing. In extending and generalizing these

Questions one comes therefore to the

Final Question : Are there configurations of wing and ailerons with

minimal drag D for arbitrarily prescribed values of lift L , roll moment

R and yaw moment Y ?

It will be shown that this question has in general ( i.e. for R # 0 ) exactly
one solution. Examples will be presented. Moreover, explicit formulae will
he given which bound the minimal drag from both sides within an error of less
than 2.1% .

The approach used in this paper will be Prandtl's lifting line theory
(see [4]). This theory is a first approximation to the lifting surface theory
and normally cannot be used for general wing shapes, e.g. swept wings. For
the prohlem considered here, however, it can be ugsed without restriction due
to Munks's shifting theorem [1]. This states that for the evaluation of the
total induced drag only the projection of the lift distribution over the wing
onto the Trefftz-plane is essential, regardless of sweep.

For the same reason, only the lift or circulation distribution over the
wing is considered in what follows. There is ( for R ¥ 0 ) exactly one such
optimal distribution. There are, however, infinitely many wing and aileron
combinations which produce this desired distribution. The connection between
wing and aileron shapes and circulation distribution is known and can be
handled by standard methods.

Also not treated here is the following question of optimality: By using

-4 -




the final results of this paper, one can design an airplane with a very ssall
rudder. This reduces drag in straight~ ahead flight. During turns, however,
a larger drag is produced due to the generation of positive yaw. What ig the

best combination of favorite yaw and small rudder ?

The results of the forthcoming theory have been field-tested. This was
done by constructing, building and flying a specially designed ultralight
Airplane called "Palter 1" (Palter means “butterfly” in German but is also
used for “foldable®" ~ the pun was intended). The Falter 1 is a tailless
aircraft with swept wings which has no vertical fins. It uses only ailerons
for the steering around the three axes. It is gquite obvious that both roll
moment and pitch moment can be generated by using ailerons ( the latter
because of the swept back wings ). But, on the other hand, it looks at first
as if the yaw aoment (which is necessary for turns) cannot be produced in this
way. In the past, all known flying wings which were steered by aerodynamic
means (that is, not by shifting weight, as the hanggliders do it) used either
vertical fins or drag rudders for producing the yaw moment ( Lippisch, Horten,
Northrop et al.); not so with the Falter 1. It is steered around the
vertical axis with only the ailerons which produce the desired yaw moment. By
using the theory derived below, care was also taken to make the (unavoidable)

additional induced drag as small as possible.




2. The Mathematical Problem

2.1 Definitions

The following notations and definitiona are standarad:

b = span of the wing,

S = gurface of the wing,

A = bz/s = agpect ratio,

v = velocity of the aircraft,

p = air deneity,

q = %vz = kinetic energy, sometimes called “"dynamic pressure®,

L = 1ift,

Q
[ ]

(induced) drag,

E -]
[

roll moment,

o
[ ]

(induced) yaw moment,

S, == L/aS,

cp *= D/qS,

c, = R/qsg '

c, = Y/qsl;’ .

x,y = coordinates in wing direction. In what follows these coordinates
are (by an affine transformation) restricted to the interval

-1 £ x,y_<_+1.

-6 ~




2.2 Prandtl's Lifting Line Theory. Definitions And Properties

Z{y) = (local) circulation density

= (local) lift density at the wing,

1dz(x) ax 1

dx y-x

2

+
a ly) := L f

= {local) induced angle of attack.

With these two definitions one gets for the above defined coefficients the

relations
+1
cp = M/ zty) &y
-1
+1
cg= M zw) yay, 2
-1
+1
cp = X { Z(y) a,ly) dy ,
+1 2
Cy = A { Z{y) ai(y) y dy . )
2.3 Transformation To An Algebraic Problem
With the transformation
y = cos 8 for 0 < s < *

1) As usual, the letter ¢ inside an 1nte§f3f sign meansa the cauchy
principal value of that integral.

2) Depending upon the orientation of the axis system used sometimes in the
literature Cr and cy are replaced by -Cp and by “Cy o

-7«




and by developing Z into a Pourier series
-
Z(cos 8) = 2 | a, sin vs

Ve 1

one gets

‘L

2

-
- xx{ va,© o,

v

°p

»
L.
Sy ?\21 (2vth)a a, , -

"
In order to get rid of the constants =) and ;X s it is useful to define new

dimensionless forces and moments by

L' := L/¥)qS = cL/’lX B

¢ e RAAGRR
R:R/ZXqS'Z‘

2(:R/"X .

D' := D/WAgS = CD/ﬂx ’

o " b_
Y Y/;qu; 2cy/wl .

STR SECC SN




Then

R' = ay,

o= T val,

vetr Y
L

.

= f (2v+)aga . -
vm1

In what follows the abbreviation a = (av} for the sequence {av} will
sometimes be used; moreover, the reduced drag D' will be regarded as a
functional D'(a) acting on a. This leads to the definition of the set A of

admissible sequences by
A := {alD'(a) < =} ,
The Cauchy-Schwarz inequality implies
-«
17 (2v#t)a a | <o for any acen.

+
ym1 vV v+?

With these definitions, the problem posed in the Final Question of

Section 1 becomes

i
l
i




Problem : Given are the real numbers L', R', Y'.

Wanted ia an admissible sequence & € A which satisfies the i
i
conditions !
(1) a, =1,
(2) a, " R',
L)
3 I @vnaa - =y
v
such that
L]
2
(4) D'(a) := z va," = oinimum .
Ve

Iy

The existence, and {for R' ¥ 0) the uniqueness, of a solution a ¢ A to this

problem will be proven in Section 5.

- 10 -
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3. Some Preliminary Results

The results presented in this section are all quite simple. Surprisingly
enough, the author did not find them in papers or books on aerodynamics or
airplane engineering (with the exception of Sections 3.1 and 3.2). It may,

therefore, be worthwile to print them here.

3.1 Only The Lift L Is Prescribed.

-

In this case the solution a to the above problem is obviously
a, =L', a =0 for v =2, 3, ... »
This problem and its solution goes back to Prandtl [4] in 1918. 1In physical

terms it reads as

Theorem 1 (L.Prandtl): The optimal circulation distribution on a wing

with prescribed 1ift L is elliptic and is given by

2¢c
(5) Z(y) = —=/ 1 -¢% .

(6) S5 = T

3.2 Both Lift L And Roll Moment R Are Prescribed, But Nothing Else.

This is a special case of a more general problem, solved by the author in

1951, see [3]). The solution a to this problem can also be found quite

- 11 -




easily. It {s

a, =L', a_=R', a = 0 for v =23, 4, «.. «

Expressed in physical terms it is stated as

Theorem 2 (K.Nickel): The optimal circulation distribution on a wing with

both prescribed lift L and roll moment R is

It is a linear combination of a (half) ellipse and a (half) lemniscate.

The coefficient of the induced drag for this optimal distribution is

c 2 8¢ 2
(8) c = L. 4 R
D LEDY X

Obviously the problem solved in Section 3.1 is a speclal case of this result
if g = 0. The adverse yaw which is produced by this distribution can be

found from equation (3). Its coefficient ¢y is
3
C - C (o] .

Y A L R

It shows that - at least for this case - the adverse yaw is proportional to

both lift L and roll moment R, as remarked above.

- 12 -
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3.3 Non-Optimal Distributions Por Given Lift L And Roll Moment R With

Vanishing Adverss Yaw (Y = 0).

There are, obviously, infinitely many sequencea a ¢ A for which ¥ = 0,

{.8. with

(9) VZ,(Z‘M)“’“”‘ =0 .

Only two of them will be considered here.

3.3.1 ‘v =0 for v= 4, 5 ....

In this case the equation (9) becomes
3 ay a, +5 &, a, = 0.
Hence, by assuming a, $ 0, w.l.o.g. one gets

3:--331 .
This solves (9) for any value of a,, i.e. of the roll moment R. The
corresponding circulation distribution is

8¢ 8c
(10) (y) = —= (2-3y%) /192 + =B ¢ /12

z1.2.3 LLDY LI

The induced drag coefficient is given by

[+ 2 [+ 2
L R
(11) <p = 2.08' X +8"—i .

For R = 0 it exceeds the smallest possible induced drag for a given lift

(see(6)) by the factor of 2.08 (!). This is the price paid for annihilating




the adverse yaw. It will, however, be shown later that there are "better”

distributions for which there is no additional drag for R = 0 . A very simple

example of this is shown in the next Section

3.3.2 a, = 0 and a, = 0 for v = 6,7, .o

From the equation (9) one gets the condition
- -‘-
agag=-zga, a,,
with some freedom in choosing a, or ag .
By putting
ag = Toag
and by determining a 8o that the induced drag becomes minimal one gets

la, a |
a =/ /3 2

4 3
la, a,|
-/ /a 1 %2
8 ., /f; 3
and
1 2 2 8
012) Sl *8Rt 3 5 o, cg I -

Obviously this distribution is much "better®™ than that given in 3.3.1 . Por
R =0 ( no roll moment) its drag coefficient reduces to that value given in
(8). Por R =~ 0 {it exceeds the optimal value in (8) only by the term

8 /s | ¢, 1 /3% X which is small for small cp and/or CR *

The corresponding circulation distribution is

- 14 -




w

(13) 24.5(co- t) 1=/ = % sin 4t -

win

% sin St .

&

It is sketched in Figure 3. By using the distribution 21.2 from equation (7)

in section 3.2 together with z‘.s from (13) one gets the very inte:asting

Result: Both circulation distributions

2(y) = Zy ,ly) * ¢ cp Z4 oly)

have the same lift L, roll moment R, vanishing yaw moment Y = 0 and

induced drag as given in (12).

See the Figures 3 and 4.

Zisly)
-1

-1 05 05 1y
-

Figure 3. The circulation distribution 24.5.

- 15 -




Zi2ly)
Zaly) + Zusly)

.
? Z.aly) - Zusly)

Figure 4. The three circulation distributions z, , and Z, , * Z; g « They have
all the same lift L and roll moment R. The latter two have both

vanishing yaw moment Y = 0 and attain the sanme induced drag D.

- 16 ~




3.4 Representation of Some Solutions.

In Figures 5 to 8 some circulation distributions are presented which
solve the problem of this paper. In all cases Y = 0, i.e. null adverse yaw vas
chosen. Because the problem is then homogenuous, without loss of generality
L' := 1 was assumed. In these Figures four typical roll moments were
selected. These results have been computed by Mrs. Norbert, and the Pigures
were drawn by Mrs. Sturm, both ~f Freiburg i.Br./GERMANY. The method used is
sketched in Section 5. 2l

3

-1

-2

Figure 5. Optimal circulation distributions for L' = 1, Y' = 0 and

R' = 0.05, 0.2, 0.8, 2.0 .

- 17 -




In Figure 5 the four optimal circulation distributions are shown. In
order to see more clearly the details, these distributions are broken up into
the corresponding symmetric part 2 and the antisymmetric part z‘ by the
equation

zZ=2,+72,

These two parts are presented in Figures 6 and 7. As can bee seen from
Figure 6, the optimal antisymmetric circulation distribution for the largest
roll moment R' = 2 1looks very similar to the lemniscate which is the
optimal distribution if the condition Y = 0 were removed ( see Section 3.2).

It can be shown that this is typical, i.e. that
za(y) —+ const. y 1~y ag R = o

The proof of this will be given elsewhere.

4
Re20 °
2
R=08
1
Rla0.2
R0 0s 1 y
-1 -0%

3

Figure 6. The antisymnetric part of the distributions of Figure S.

- 18 -




Figqure 7. The symmetric part of the distributions of Figure 5.

In order to get a closer look at the symmetric circulation distribution

in Figure 7 a new symmetric distribution with zero lift is defined by

s0

It is presented in Figure 8. Note that this distribution gives negative (1)

additional load at the wingtips.
Zgo

14

R'=2.0
R=0.8

! R’l 0.2

R's0.05

Pigure 8. The zero-lift part of the distributions of Figure 7.

- 19 -




Similarly to the earlier result it can be shown that asymptotically

Z(y) — Zy.2.3y) as R~ =

for all optimal circulation distributions, where z1.2.3 is defined in

equation (10) .

3.5 Some Simple General Results.

Let again

Z(y) = Z’(y) + 2,(y)
with Zg and za the gymmetric and the antisymmetric parts of 2,
respectively. It is known since Prandtl [4] (see Section 3.1) that the

elliptical symmetrical distribution

A

2 ¢
(5) z (y) = 7 L/ 2

is optimal with respect to the drag, if no conditions on roll moment R and yaw
moment Y are required. Hence, one may ask if, given the symmetric distribution
in (5), an additional antisymmetric distribution 2z, can be found such that

Y = 0, i.e. such that no adverse yaw occurs. By looking at (9) and bearing in
mind that the Fourier coefficients a,, belong to the antisymmetric and the
a1 to the symmetric distribution one sees immediately that no such
distribution Z, can be found, provided that L $ 0 and R #+ 0. Hence, one has
the

Theorem 3: Assume L $ 0, R% 0. There ia no circulation distribution 2(y)

with the symmetrical part Zs as in equation (5) for which no adverse

yaw nccursg.

- 20 -




Now a somehow "dual” question arises : It is known (see Section 3.2)

that the lemniscate shaped antisymmetric distribution

8 ¢
(14) z_(y) 1= R y "/ 1-92

LAY

is optimal if there is no condition on the yaw moment. In analogy to the
above one may ask, therefore, if there are symmetric distributions z.
corresponding to 2, from (14) such that Y = 0 . By looking at equation (9)
one sees easily - opposite to the above result in Theorem 3 - that there are
infinitely many such distributions. One can, therefore, try to solve the
basic problem of this paper under the side condition, that the antisymmetric
part of the solution equals z. in equation (14). Surprisingly enough the

answer to this specialized problem is easy to get. By elementary operations

one finds immediately the following

Theorem 4 : Assume that the antisymmetrical part of the circulation
distribution has the shape of a lemniscate, i.e. that 2z is given by
equation (14). Then there is exactly one circulation distribution with
prescribed 1lift L and roll moment R for which the induced yaw moment
Y vanishes (no adverse yaw) and which has minimal induced drag D. It is
given by 2, , ; from the equation (10). The corresponding (minimal)

induced drag is given by equation (11) .,

- 21 -




4. Bounds For The Induced Drag.

In this Section lower and upper bounds for the optimum D of the induced

Drag D are given. To make these r.«ults as useful as possible to airplane

engineers the bounds are presented for the optimal drag coefficient CD as

inequalities of the form

lk < T CD < uk for k = 1, 2, eceo

There are 3 lower and 4 upper bounds 14, 12, 13 and uy, Up. Uge Ugc They are

defined as follows

2 2
= +
11 cL 8cR ’
2 2
= + A -
12 < + 3¢ | = ¢y JCLQR (-
2 2 / 4, 24 T2,
. + + = -
l3 : <, + 4cR 16 r 25 (any 3chR)
‘IlXc
2
u = ¢ 24 8ec 2, o1 - 3c¢.) for cg ¥ 0,
1 L L R
R
2 g 22 | m 3 |
uy TGy “r "y L%
c 2 0.2304 ¢ 2
2 ,8c? 4108 L . — R
u R .
3 L R 0.168 2 2
+ 0.3 -
1 0.3 - CR)Z ) (0.3 CR)

- 22 -




The first bounds 1,, 1,, u,, Uy, Uy are sketched in Figurs 9 for Y = 0
together with the solution which is represented by a dashed line. PFor ¥ « 0

the whole problem is homogenuous. Therefore cp, ® 1 was chosen w.l.o.g..

T g Induced dreg D /
for different values u,/
100 of the roll moment R !

with lift L = const.

o] 0.2 04 0s o8 10 S

Figure 9. Upper and lower bounds wu,, u,. u; and 1, 1, to the coefficient
p of the optimal induced drag as functions of the coefficlent cg of the
roll moment. The case ey, ™ 1, Cy = 0 is treated. The dashed line

represents cD .

- 23 -




The best bounds which were found in this paper are 1, and u,. They have
both the same structure ané differ only in one constant ( 24/25 in 13 and 1 in
uy ) . The relative error between them is less than 2.1% (!). Hence, for

most purposes in aircraft engineering these easy-to-handle bounds are com-

pletely satisfactory. In most cases it will, therefore, not be necessary to

3,

solve the problem analytically The bounds 13 and u, are not included in
Figure 9 since they are both too close to the solution and would, therefore,

interfere with the picture.

Proof Of The Bound Properties.

In this section the existence theory of Section 5 will not be used

directly. It is assumed, however, that a (not necessarily unique) solution

a to the problem of this paper exists. This existence is nearly trivial,

since D'(a) is a continuous functional of a, bounded by zerc from below. For
simplicity the notation D := D’(a) with the corresponding optimal drag

coefficient CD is introduced .

Lower Bounds

Ad 11 : This bound is trivial since
- St 2 ~2 “2 2,2
D := vz1v v > ay ¢+ 2 a, = 1,/ AT,

Note that the first term in 1, is the well known Prandtl formula (6) for the

3) Ludwig Prandtl once said: “Es gibt nichts Praktischerééléls eine gute
Theorie® | (Translated: "There is nothing more practical than a good theory")




induced drag of an elliptical circulation distribution (see Theorea 1). It

has been used by airplane engineers for more than 65 years. The second term
in 1, shows that it requires at least an induced drag coefficient of

8 °R2 to produce a roll moment coefficient with the value of Cps regardless
of the value of cy. The bound 1, corresponds to the formula (8) from Theorem
2. The value of n ) c, equals 1, in the special case where a, = L',

= R'. In this case Y' = 3 L'R‘'.

%2

Ad 1, : By rewriting D' one gets

2
T 2
40" = 4] va,
v=1
= T (2vem a4+ ] (2v-1) a
v v
ve1 vei
2 S 2 2
- a4 T (2v+1)(a ) + a5 .

vs

By adding

-
t2r = ¢ ] (2v41) 2 a
Ve |

%41

one gets
2 b4 2
L1
ap' t 2Y a,” + ) (2vet)(a +a )
Ve q
2 2
+ .
> a1 3 (a1t 52)

A backtransformation then gives 1,. Obviously, as can be seen from Figure 9,

- 25 -




the bound 12 is better than 1, for low values of Cre For large values of

L cp the opposite {s true.

A 13 : If one applies the Cauchy-Schwarz inequality to the identity

-
Y -3a,a, = [ (2ve1) aa

Va2 +1

and uses the inequality

2
(2v + 1) 25
> < 6 (v + 1) for v » 2
one gets
2 25 ¢ 2 ¢ 2
[ 2 v
(Y 3 a1a2) < e L vVa, Z (v+1) LN
v=2 vm2
.2_5 ) 2 1 2 2
e (D' (a) a, )} (D'(a) a, 2:2 ) .

By solving this guadratic inequality for D'(a) - a,z and using the lower bound

1y and by transforming it to the coefficients one gets the bound 13.

fipper Bounds

To get upper bounds for D is quite easy. Since the solution a |is

defined by a minimum problem, any approximation a to a which satisfies the

side conditions (1), (2) and {3) gives an upper bound D'(a) > D . In what

follows for simplicity the sign a will be replaced by a.

Ad u, : let a be defined by

a, := L', a, := R', a, = g :* ... = 0,




The condition (3) then reads
Y' =3 a, s, + 5 a, a, o

Hence for R 4 0 one gets

Inserting these coefficients in D'(a) then gives uge

A uy Here the coefficients of a are defined by

a, := 0 for v ¢ 1, 2, u, u+! with u >3 .

The condition (3) reduces to

Y' =3 a8, + (2u+1) auau’1

’

hence one of the coefficients .u or .u*1 remains free. By choosing quite

arbitarily

+ +
fu'au e, =0

one gets then

|3a.a, - Y'|
. - //y;_r._'_z___

2y =1
Inserting these coefficients into D'(a) then gives

'Y'I .

pD'(a) = a 2 +2a 2, 27 u(uet) {3 a,a

1 2 2y +1 2

where, because of u > 4 , the coefficient of the third term is bounded by

a5 2 Yu(u+t
0.9938... = = ¢ S <o
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Replacing it by the upper bound 1 and transforming back then yields uy-

A u, In this case a, = 0 for v > 5 . The condition (3) then gives
Voo
. Y 3 a‘az
4 % a,+7a, '

for arbitary a, {provided that the denominator does not vanish). The
following suggestion for a, for the case Y = 0 has been given to me by

Mrs. Norbert in Freiburg i.Br./ GERMANY:

0.24 cR
*)a = - TET;—:—;;)Z for cp $ 0.3 .

Ingserting everything in D'(a) then gives uy.

Ad u‘ : Por finding the lower bound 13 the Cauchy-Schwarz inequality was
used. This inequality turns into an identity if the different coefficients
are proportional to each other. This leads to the following "Ansatz" :

Define recursively

2v
2va1 By for v > 2,

v+

where the constant ¢ is to be determined later. This gives

with (2v-2) (2v-4) ...

8
v % (2ve1)(2v-3) ... 9

It is easily proved that Vv B~ < 2. With the aid of Stirling's formula it




can also be shown that there exists a positive constant f§ ¢ v Ivz for

all Vv > 2 ., Using the recursion formula once more gives

2
(2v+1) 481 = 2cvuv for v > 2
and therefore
- - 2
Y'-3aa, = 2(2\»').. -Zchn
12 ve2 A\ g | va2 v

-
= 2cD'(a) = Zazc XUBVZCZ\»-‘

2 v=2

For any real value of Y' - 3a,a, there is exactly one solution ¢ to this

equation with ¢ < 1 . This comes from the fact that

v 2 4
c ): v g c2\)
v
v=2

is a monotone function of c which goes to £ ® as ¢ -+ t 1 . This can be
seen from the inequalities
2 2v-4 2

c

B -
< szv < 7 -
1 =-c v=2 1 =¢

By solving the quadratic inequality

2 c
2 ,_cz

Y' ~ 3 a < 4 a

122

one gets therefore a lower bound c* for |c| with

2 1 : 2
2;2+/412+|Y Ja1a2|

4 <« 2.
lel c

! -
| v 3n1u2|




By inserting this in the above equation

Y' - 3 a,a
1
S

2 c

and transforming it back, one gets finally uge

Comparison between uy and 13

Using the abbreviations

) 2
r := 16 Sp ¢ 8 = (n A cY -3 chR) %
one finds for the relative error
ug " 15 . fr+s - Y r + 24 8/25
13 CL2 + 4cR2 + /1 ¥ 248/25
< s (1 - 24725 )
/r+288/25(/ r+s + /r+ 248/25)
< 1/25

v 24725 (1 + Y 24725 )

! = 0.02062,.. < 0.021 = 2,1 %

206 (5 + 206 )

as predicted .




5. Existence, Uniqueness And Computation Of The Solution.

There are several approaches to a proof of the existence and uniqueness
of the solution to the problem given in this paper. 1If these proofs are
constructive, they also permit the computation of a solution. In the paper
{2], the author used the theory of singular integral equations to prove
existence and unigueness of a solution. 1t was even posaible to give an
explicit expression for the optimal circulation distribution by using
integrals. Some computation with these formulae has baen pertormed in a
Master's Thesis ("DiplomArbeit") at the University of Freiburg {.Br./Germany
by Mr. Ramdane Xedache (unpublished). Unfortunately howaver, the numerical
computation of these integrals {some of them singular; others elliptic
inteqgrals of first, second and third kind) was very strenuous work, even with
today's fast computers.

Therefore, an algebraic approach is used in the pressnt paper. The
simplest method is to replace the infinite series in the equations (3) and (4)
by finite sums. By using sufficiently many terms, any accuracy desired can be
achieved. The computations for the results presented in Section 3.4 have been
carried out by this method.

In what follows, however, the problem is treated in a different way by

-

uaing the “"Lagrange method™ : It will be shown that the coefficients a, in

-

a solution - satisfy a certain recurrence relation. With this result their
theoretical astructure is completely understood. What remains, is to deternine
a certain free constant in that relation. This can be computed from a one~

'tmenslonal tranacendental eguation.
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5.1 The Lagrange Method.

In the problem of this paper three conditions (V), (2} and (3) have to be
satisfied with arbitrary constants L, R, Yor L', R’, Y' respectively. The
first two of them are linear and of very simple structure. To solve thea gives
no difficulties at all. Hence, one has only to concentrate on the one
remaining quadratic condition (3) for Y'.

In the Lagrange method the following fact is used: Suppose ; is a
solution to the problem (1) to (4) . Let £ Dbe an arbitrary real constant.
Then not only

ad
D'(a) := I v avz = minimum for a = a,
v=1

but also the same is true for the following quadratic expression, namely that

o 0
o(a) := Y va 2, g7 (2v41) a a = minimum for a = a .
ve1 v ve1 vovt

The constant B 1is called the Lagrange parameter. (Normally, the letter 1 is
used; but in the present paper the symbol ) is already the aspect ratio.)
Now, by rearranging the terms in Q a necessary and sufficient condition for
; is reached which guarantees that ; is a solution.

Let ; € A be a solution and let a = ; +b €A be an arbitrary
sequence which satisfies the conditions (1), (2), and (3). Hence, for the
first two coefficients of b one sees immediately that b1 - b2 = 0. By

inserting a into Q and after some transformations one gets the following

identity
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Q(a) - Q(a) = T‘ + 12 + 13

with the three terms

t2va ¢ 8 (2v-1) ; 1 .

1

-
T, 1= Db [ B(2v+1) a
Va3 v v+ v=1

T 2
47, = Jven > +28b,0°,
ve2
2, ¢ 2
4T (1-48) Jverdp, .

V=2

Now, a is a solution to the problem if and only if Q(a) - Q(;) >0
for any a € A satisfying the conditions (1), (2) and (3) and that means for
(almost) any b. The first term T1 is linear in b . 1It, therefore, has to
vanish for arbitrary b . This is true iff all the square brackets are gero.
The next term T, is quadratic and obviously Tz 2 0 for all values of b .
The same is true for the third term T, iff 82 < 1/4. If one puts all these
facts together one gets finally the
Theorem 5 : Necessary and sufficient for ; € A to be a solution of

the problem (1), (2), (3) and (4) are the following three conditions:

1) ; satisfies (1), (2) and (3),

11) there is a real constant B8 with | B | < 1/2 such that

-

1i1) a satisfies the recurrence relation

(1S) B8 (2ve+1) At 2v a, ¢+ B (2v-1) a =0 for v=23,4, ... .

1 v-1
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5.2 Solving The Recurrence Relation

1f B € (-1/2,1/2] and if a, := R' and a; is an arbitrary real
constant, then (15) can be solved uniquely by recursion. Hence, there is no
doubt about the existence of a solution of (15). The problem in question in
Theorem 5, however, is different: Is it true that for any values of L', R'
and Y' there exists a constant é € [-1/2,1/2) and a starting value ;3 such
that the sequence ; generated by (15) satisfies the conditions (1), (2) and
(3) and that, moreover, ; € A? If yes, are the constants é and ;3 then

uniquely determined ? 1t will be shown that all this is true. But it is

useful first to treat

The Special Case B = 0:

In this case the recurrence relation (15) has for all atarting values
a2 the uniquely determined solution a = 0 for v > 3 . Therefore this case
is equivalent to the problem treated in Section 3.2 with the solution given by

Theorem 2. Hence, w.l.o.g. B ¢ 0 can be assumed in what follows.

Obviously, the recurrence relation (15) is asymptotically equal to the

similar relation

(16) 8 (2v42) a .

+2v.a + 8 (2v=-2) a =0 for Vv =3, 4, ... .
+1 v \YJ

as for any nondegenerate second order linear recursion relation both (15) and
{16) have *wo linearily independent solutions. The two solutions of (16) for

0 <3 < 1/4 are obviously
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a, = av/v for v = 2,3, ...,

where a {8 one of the two solutions of the characteristic equation
(17 8 a2 +a+8 =0,

These solutions are

a, 1= (=1 + 7/ 1-a8%1/28 ,

1

and

a, = (=1 =V 1-482)/26 .

2

From these expressions one sees easily that la‘l <1, qul > 1 for 82 < 1/4 .

Therefore only the solution with a, is a convergent seguence, moreover, only

1
this one solution belongs ( obviously) to the class of admigsible sequences A.

Because of the homogeneity of (16) the solution wanted is then

V-1
a

(18) a, := 2 a for v =2, 3, ... .

2

Inserting this into the condition (3) together with a, = L' and a, = R'

gives the equation

Y= 3LR +4RZ T

v=2

2V+1 a 2v=2
vivel) 1

It can be shown rather easily that there is a unigue solution a, to this

equation for any real values of L', R* $ 0 and Y'. Reinserting this solution

a, into the characteristic equation {17) then gives the desired value
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: 1
8 := =3 -
1 +a

IJf R'' =0 and Y' = 0, then obviously the Prandtl solution (5) solves
the problem of this paper. Hence, only the case R' = 0 and Y' ¢ 0 remains
to be treated. This will not be done here.

Up to this point only the asymptotic recurrence relation (16) has been
treated. It can be solved explicitly by (18). It can be shown that (18) is
also an asymptotic solution to the original equation (15). This will be done

elsevhere. Hence one gets as a result the

Theorem 6: FPor any combination of real numbers L', R' # 0 and Y' there is
exactly one solution a € A, B8 to the recurrence equation (15) such

that the conditions i) and ii) of Theorem 5 are satisfied.

5.3 Uniqueness

It can be shown that there is a solution to the problem of this paper
also in the case R = 0, Y $ 0, which was not treated above. But in this case
the solution is not unique; in opposition to the above result. This can bee
seen very simply as follows:

- a = | L 0, aj, a

(2), (3) and (4) with R' = 0, l.e. a, =0 . Define

FREIRER } be a solution to the problem (1),

a ~ N

a* := { a., 0, Ay A, e }o.

Then a* obviously also satisfies the conditions (1), (2) and (3) . Moreover
D'(a) = D*'(a®*) which shows that a* is a sc '»t:~n of the problem, too. It can

be shown, moreover, that these are the only -we¢ solutions, i.e. that no other

solutions exist. The proof of this will not be gi’en here.
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5.4 Generating Function

(This part has been proposed to me by Professor Ben Noble, former
director of the Mathematics Research Center.)
let z be a complex variable and define the complex function £ by the

power series
f(z) := 2 az .

Such an fuction f is usually called a "generating function" of the

sequence a . Then inside the dilsc of convergence one gets :

L]
' 2v
(£(z)/2)' = | (2v+1) 8,y 2
V=i
o 2
z £'(z) = 2 2 v a,z v P
2
2 IS 2
28z £z = § (2v-1) a2V .

vl v=-1

Assume that the coefficients a, satisfy the recurrence relation {15). Then
by the above three equations it follows immediately that the function f
satisfies the following linear differential equation

28 + 22 + B2 ez + B2d1rE(2) - (a,(38 + az?) + sea3z2)z‘ .

with the initial condition f£(0) = 0 it has the unique solution

z
z eH(z) f e-ﬂ(t)
0

f(z) = k(t) 4t




with

h(z) := - ———% -

H{z) := [ n(t) dat ,

4
a 22(3 £+ 4 22) + 53 a.z
W(z) = 2 3
: 2 .
B+22+82

From this generating function the results of Theorem 6 can also be derived.

This will not be shown here.
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