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ABSTRACT

Let L, R, Y be arbitrary real constants. A wing with fixed span which

produces lift L, roll moment R, yaw moment Y and which has minimal induced

drag D is wanted. This problem arises in airplane engineering. It is solved

by means of Prandtl's lifting line theory combined with computation. \
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SIGNIFICANCE AND EXPLANATION

"Adverse yaw" has been with us since the beginning of the er& of heavier-

than-air flight. The pioneers Lilienthal, the Wright brothers and others must

have encountered this phenomenon. It consists of the fact that an airplane

initiating a turn normally moves in the wrong (adverse) direction if only

stick movement and no rudder deflection is used.

It appears that this phenomenon has not been studied very much by

aerodynamicias or airplane engineers. There are several reasons behind this

fact: The first may be that adverse yaw is normally more of a nuisance than a

real problem. in most airplanes it can be controlled with the rudder. When

teaching people how to fly, it is standard to demonstrate the adverse yaw and

its manual correction.

Another reason may be that adverse yaw is most powerful for wings with

high aspect ratio, e.g. sailplanes and airliners. Sailplane manufacturers,

however, usually don't invest in scientific research. While the airline

industry could make such an investment, it has not done so because the auto-

pilot takes care of adverse yaw during flight.

Nevertheless, in both situations this correction for adverse yaw expends

unneccessary energy. It is the aim of this paper to show how to reduce the

energy required in the process of correcting for adverse yaw by minimizing the

resulting additional drag.

The interest of the author in this subject comes from his work with

tailless airplanes where adverse yaw is a serious problem. It is hoped that

other kinds of airplanes may also benefit from the results presented in this

report.

The responsibility for the wording and views expressed in this descriptive
sumary lies with MRC, and not with the author of this report.



MINIMAL DRAG FOR WINGS WITH PRESCRIBED LIFT, ROLL NONNT AND YAW MOMENT

Karl L.E. Nickel

1. Explanation of the physical problem

Every airplane pilot is familiar with the following phenomenon: Suppose

the pilot wants the airplane to roll. Then by using the ailerons as sketched

in Figure 1 a roll moment R is produced. However, more than the (desired)

roll around the longitudinal axis occurs. The airplane also turns its nose to

the side as if a rudder deflection had been made, see Figure 2. This is known

as "adverse yaw". In most cases it is not wanted and is regarded as a

nuisance.

Figure 1. Sketch of airplane with lift L end roll moment R produced by aileron

deflection.

Figure 2. Sketch of airplane with yaw moment Y around the vertical axis

produced either by the rudder deflection shown or by the

aileron deflection shown.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.



The physical reason for adverse yaw is that on the side with the aileron

bent downward not only the (local) lift is increased, but that there is also

an additional (local) drag. This drag is called (by Prandti) the "induced"

dreg. It pulls this part of the wing back and therefore produces the yaw

moment Yf.

From this discussion, the following property is plausible: The adverse

yaw is proportional to tha lift L produced by the wing. Hence, no adverse yaw

occurs if L is zero (vertical diva) and if the aileron configuration is

syimmetric. For negative lift L (upside-down flyingi strong downward gust)

but unchanged roll moment R, the sign of the yaw moment Y is obviously

reversed.

in most airplanes of today (or of the past) the adverse yaw is

annihilated by the (auto-) pilot just by steering against it with the rudder.

There exist, however, at least two kinds of airplanes at present for which

this is difficult to do or even impossible:

0i Tailless airplanes with no vertical tail fins and with no rudder.

Most of today's hanggliders belong to that category.

ii) High efficency sailplanes with their usually very large wing span

(24.5 m or So ft in 1983). In some of these airplanes, at maximum

lift full rudder deflection is not sufficient (1) to fight adverse

yaw. Hence, even though adverse yaw is a very old problem, it seems

to have some modern significance.

There are several constructive devices to diminish or to annihilate

Adivers- yaw. They will not be described here. Because of the properties
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mentioned above they are, however, normally effective only in a certain

limited range of the lift L.

Since adverse yaw is generated by an asymetric distribution of the local

induced drag one may suspect that it could. perhaps, be nullified by an

adequate modification of that distribution. This leads to the

First.Question : Are there special kinds of ailerons and/or wings for

which adverse yaw does not exist for any values of lift L and roll

moment R ?

It will be shown in this paper that there are infinitely many such

configurations. This is a very *clean" solution to the problem of fighting

adverse yaw since no additional devices are needed; The wing itself and its

ailerons will be shown to suffice for the elimination of adverse yaw.

obviously this solution will not be "for free". In order to

counterbalance the one-sided induced drag one has to add some additional drag

on the other side of the wing. Hence the total induced drag D of the airplane

is increased. This leads to the

Next Question t Is it possible to select one solution to the First

Question which produces minimal total drag 0

It will be shown that there is exactly one such solution.

In most cases an airplane rolls if it wants to take a turn. In this case

-3-



roll and positive yaw are vanted at the same time. Hence one may ask if one

can replace rudder deflection ( full or partial ) by a favorable distribution

of the induced drag on the wing. In extending and generalizing these

Questions one comes therefore to the

Final Question :Are there configurations of wing and ailerons with

minimal drag 0 for arbitrarily prescribed values of lift L , roll moment

R and yaw moment Y ?

It will be shown that this question has in general ( i.e. for R + 0 ) exactly

one solution. Examples will be presented. Moreover, explicit formulae will

be given which bound the minimal drag from both sides within an error of less

than 2.1%.

The approach used in this paper will be Prandtl's lifting line theory

(see (41). This theory is a first approximation to the lifting surface theory

and normally cannot be used for general wing shapes, e.g. swept wings. For

the problem considered here, however, it can be used without restriction due

to Hunks's shifting theorem 11]. This states that for the evaluation of the

total induced drag only the projection of the lift distribution over the wing

onto the Trefftz-plane is essential, regardless of sweep.

For the same reason, only the lift or circulation distribution over the

wing is considered in what follows. There is ( for R 0 0 ) exactly one such

optimal distribution. There are, however, infinitely many wing and aileron

combinations which produce this desired distribution. The connection between

wing and aileron shapes and circulation distribution is known and can be

handled by standard methods.

Also not treated here is the following question of optimality: Bly using

4-



the final results of this paper, one can design an airplane with a very small

rudder. This reduces drag in straight- ahead flight. During turns, however,

a larger drag is produced due to the generation of positive yaw. What is the

best combination of favorite yaw and small rudder ?

The results of the forthcoming theory have been field-tested. This was

done by constructing, building and flying a specially designed ultralight

,;irplane called "Palter 1" (Falter means 4butterfly" in German but is also

used for "foldable" - the pun was intended). The Falter I is a tailless

aircraft with swept wings which has no vertical fins. It uses only ailerons

for the steering around the three axes. It is quite obvious that both roll

moment and pitch moment can be generated by using ailerons ( the latter

because of the swept back wings ). But, on the other hand, it looks at first

as if the yaw moment (which is necessary for turns) cannot be produced in this

way. in the past, all known flying wings which were steered by aerodynamic

means (that is, not by shifting weight, as the hanggliders do it) used either

vertical fins or drag rudders for producing the yaw moment ( Lippisch, Horten,

Northrop et al.)i not so with the Falter 1. It is steered around the

vertical axis with only the ailerons which produce the desired yaw moment. By

using the theory derived below, care was also taken to make the (unavoidable)

additional induced drag as small as possible.

-5-



2. The Mathematical Problem

2.1 Definitions

The following notations and definitions are standard:

b - span of the wing,

S = surface of the wing,

: b 2 /S - aspect ratio,

v - velocity of the aircraft,

0 - air density,

q := - kinetic energy, sometimes called *dynamic pressure,

L - lift,

D = (induced) drag,

R - roll moment,

Y = (induced) yaw moment,

cL : L/qS,

cD :D/qS,

R -PqS2
b

C: Y/qS'

x,y - coordinates in wing direction. In what follows these coordinates

are (by an affine transformation) restricted to the interval

-1 < x,y < +1.
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2.2 Prandtl's Lifting Line Theory. Definitions And Properties

ZVy) - (local) circulation density

- (local) lift density at the wing,

a +1 lz(x) dx 1i(y) d.2--1-  y-

- (local) induced angle of attack.

With these two definitions one gets for the above defined coefficients the

relations

+1
cL - X f Z(y) dy

-1

+1
cR = X f Z(y) y dy 2

-1

+1
CD XfZ(y) a dy

-1

+1
cy - f Z(y) aiy) y dy . 2)

-1

2.3 Transformation To An Algebraic Problem

With the transformation

y = coss for 0 •

) s usual, the letter c inside an integral sign means the cauchy

principal value of that integral.

2) Depending upon the orientation of the axis system used sometimes in the

literature cR and cy are replaced by -cR and by -cy
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and by developing Z into a Fourier series

Z(cos a) - 2 av sin va
v-I

one gets

CL w A *

c R  = i'2

cID m WA VS II

Cl !. ( 2v+)aa,

In order to get rid of the constants wX and I it is useful to define new

dimensionless forces and moments by

L' t- L/wqS = CL/WA

I b

D' : D/WhqS = CD/Tx

Y' " Y/j)2q2- . 2c 1 /")X
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Then

R' a2'

2
D

o  
va

Y . (2v+l)aVaV+.
V,,

In what follows the abbreviation a - (aV } for the sequence {a } will

sometimes be usedi moreover, the reduced drag D' will be regarded as a

functional D'(a) acting on a. This leads to the definition of the set A of

admissible sequences by

A : {alD'(a) < }

The Cauchy-Schwarz inequality implies

I (2+)avaV+1 < - for any a C A
v-i

With these definitions, the problem posed in the Final Question of

Section I becomes
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Problem :Given are the real numbers L', R, V.

Wanted in an admissible sequence a C A which satisfies the

conditions

(1)a
1 I

(2) a2  R'

(3) 1 (2V+1)a Va V1  - Y.

such that

(4) 0I(a) V V 2  . iiu
V-1

The existence, and (for R' # 0) the uniqueness, of a solution a E A to this

problem will be proven in Section 5.
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3. Some Preliminary Results

The results presented in this section are all quite simple. Surprisingly

enough, the author did not find them in papers or books on aerodynamics or

airplane engineering (with the exception of Sections 3.1 and 3.2). It may,

therefore, be worthwile to print them here.

3.1 Only The Lift L Is Prescribed.

In this case the solution a to the above problem is obviously

a1 - L', a - 0 for V - 2, 3,.

This problem and its solution goes back to Prandtl [4] in 1918. In physical

terms it reads as

Theorem 1 (L.Prandtl): The optimal circulation distribution on a wing

with prescribed lift L is elliptic and is given by

2c L 2
(5) Z(y) :- T-- I - y

The coefficient of the induced drag for this case is

2cL
(6) c = -L

D nT)

3.2 Both Lift L And Roll Moment R Are Prescribed, But Nothing Else.

This is a special case of a more general problem, solved by the author in

1951, see [3). The solution a to this problem can also be found quite

- 11 -
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easily. It is

a 1 - L', a2 - R, a - 0 for v - 3, 4,...

Expressed in physical terms it is stated as

Theorem 2 (K.Nickel): The optimal circulation distribution on a wing with

both prescribed lift L and roll moment R is

2c y2 c / 2

() 2L -c, y Ii-
(7) z - l1- + y 1

It is a linear combination of a (half) ellipse and a (half) lemniscate.

The coefficient of the induced drag for this optimal distribution is

2 2

cL ScR
2

(8) cD" = + - ;

Obviously the problem solved in Section 3.1 is a special case of this result

if CR = 0. The adverse yaw which is produced by this distribution can be

found from equation (3). Its coefficient c y is

3
c C7 CL'Cy TA L CR•

It shows that - at least for this case - the adverse yaw is proportional to

both lift L and roll moment R, as remarked above.
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3.3 Non-Optimal Distributione Por Given Lift L And RI11 Moment R With

Vanishing Adverse Yaw (Y - 0).

There are, obviously, infinitely many sequences a E A for which Y - 0,

i.e. with

(9) (2v+l)aV a+ - 0
vI-1

Only two of then will be considered here.

3.3.1 av - 0 for v - 4, 5, ....

In this case the equation (9) becomes

3 &I a2 + 5 a2 3 - 0

Rence, by assuming a2 . 0, w.l.o.g. one gets

3
a3 :-

5  a,

This solves (9) for any value of a 2 , i.e. of the roll moment R. The

corresponding circulation distribution is

8cL 2 r R  .

10 21.2.3 -51) WX y

The induced drag coefficient is given by

2 2
cL cR

(11) cD - 2.08 ; +

For R - 0 it exceeds the smallest possible induced drag for a given lift

(see(6)) by the factor of 2.08 (M). This is the price paid for annihilating

- 13-
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the adverse yaw. It will, however, be shown later that there are Obettern

distributions for which there is no additional drag for R - 0 .A very simple

example of this is shown in the next Section

3.3.2 a= 0 and aV - 0 for v - 6,7,.

From the equation (9) one gets the condition

Ia
a4 a - a, a 2 •

with some freedom in choosing a 4 or a5

By putting

a4 - -aa 5

and by determining a so that the induced drag becomes minimal one gets

aa
a /71 I12

4 + 4 3

a /71 Isl a2 '

5 + 3

and

(12) c0  2 " c + 8 c -2 + C c

Obviously this distribution is much "better" than that given in 3.3.1 • For

R = 0 ( no roll moment) its drag coefficient reduces to that value given in

(8). For R - 0 it exceeds the optimal value in (8) only by the term

8 r I cL cRI / 3 w X which is small for small cL and/or cR

The correspondinq circulation distribution is

- 14-



(13) Z4 . 5 (con t) : sin 4t - sin 5t

it is sketched in Figure 3. By using the distribution Z1. 2 from equation (7)

in section 3.2 together with Z4. 5 from (13) one gets the very intexasting

Result: Both circulation distributions

Z(y) :- Z1 .2 (y) + CL CR Z4 . 5 (y)

have the same lift L, roll moment R, vanishing yaw moment Y - 0 and

induced drag as given in (12).

See the Figures 3 and 4.

Z4 (y)

Figure 3. The circulation tistribution Z4. 5 *
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Z(y)

Z 1 (Y) + Z4,, (Y)

/ 1 (y) -z-sy

-21

\ "I a

-1 -0.5

I'- I.

-3 .I

I .i!

1 6

\ I:
-1 . I

-2 .

/
I
I.

, I

Figure . The three circulation distributions zI.2 and ZI 2 + Z . They have

all the game lift L and roll moment R. The latter tsi have both

vanishing yaw moment Y * 0 and attain the same induced drag 0.
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3.4 Representation of Some Solutions.

In Figures 5 to S some circulation distributions are presented which

solve the problem of this paper. In all cases Y - 0, i.e. null adverse yaw yas

chosen. Because the problem in then homogenuous, without lose of generality

L:- I was assumed. in these Figures four typical roll moments were

slcted. These results have been computed by Mrs. Norbert, and the Figures

yre drawn by Mrs. Sturm, both -'f Freiburg ± *Dr ./G31U4ANY The method used is

sketched in Section 5. Z(Y

2.

W-0.2

Figure S. Optimal circulation distributions for L'- 1, Y' =0 and

R' 0.05, 0.2, 0.8, 2.0
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In Figure 5 the four optimal circulation distributions are shown. In

order to see more clearly the details, these distributions are broken up into

the corresponding symmetric part Z. and the antisymmetric part Za  by the

equation

Z=Z* +Za•

These two parts are presented in Figures 6 and 7. As can bee seen from

Figure 6, the optimal antisymmtric circulation distribution for the largest

roll moment R' - 2 looks very similar to the leisniscate which in the

optimal distribution if the condition Y - 0 were removed C see Section 3.2).

It can be shown that this is typical, i.e. that

ZA(y) - const. y /Iy2 as R-.

The proof of this will be given elsewhere.

R'.2 0 Z'

2

s'. o a
A .00.2

Fe. o. 051O" Y
-1 -05

-1 

i

-2

Figure 6. The antisymietrtc part of the distributions of Figure 5.
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Z 0 (y)R' 0.05 -2c

Iti rne nFigure 7. Th ymori a te th thie distribution g naie (I.

adIina odt o lrlo at the wingtips.rclaio isriuto

inFig he zro-liymmt rtf h distribution e oft Fseigur 7.
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Similarly to the earlier result it can be shown that asymptotically

Z(y) - Z.2.3 (y) as R-

for all optimal circulation distributions, where Z1.2. 3 is defined in

equation (10)

3.5 Some Simple General Results.

Let again

Z(y) - Zs(y) + Za(y)

with Z and Za the symmetric and the antisymmetric parts of Z,

respectively. It is known since Prandtl [4] (see Section 3.1) that the

elliptical symmetrical distribution

2 cL  / I -
(5) z a(y) :-WxL/,

is optimal with respect to the drag, if no conditions on roll moment H and yaw

moment Y are required. Hence, one may ask if, given the symmetric distribution

in (5), an additional antisymmetric distribution Za can be found such that

Y - 0, i.e. such that no adverse yaw occurs. By looking at (9) and bearing in

mind that the Fourier coefficients a2v belong to the antisymmetric and the

a2v+1 to the symmetric distribution one sees immediately that no such

distribution Z. can be found, provided that L + 0 and R + 0. Hence, one has

the

Theorem 3: Assume L + 0, R + 0. There is no circulation distribution Z(y)

with the symmetrical part Z as in equation (5) for which no adverse

yaw ocCUrs.

- 20 -



Now a somehow "dual" question arises i It is known (see Section 3.2)

that the lemniscate shaped antisysetric distribution

8 c R(14) Z a(y) R- 7 " y -X

is optimal if there is no condition on the yaw moment. In analogy to the

above one may ask, therefore, if there are sysmetric distributions Za

corresponding to Z. from (14) such that Y - 0 . By looking at equation (9)

one sees easily - opposite to the above result in Theorem 3 - that there are

infinitely many such distributions. Oe can, therefore, try to solve the

basic problem of this paper under the side condition, that the antisyemtric

part of the solution equals Za  in equation (14). Surprisingly enough the

answer to this specialized problem is easy to get. By elementary operations

one finds immediately the following

Theorem 4 t Assume that the antisymnetrical part of the circulation

distribution has the shape of a lemniscate, i.e. that Za  is given by

equation (14). Then there is exactly one circulation distribution with

prescribed lift L and roll moment R for which the induced yaw moment

Y vanishes (no adverse yaw) and which has minimal induced drag D. It is

given by Z1.2.3 from the equation (10). The corresponding (minimal)

induced drag is given by equation (11)

- 21 -



4. Bounds For The Induced Drag.

In this Section lower and upper bounds for the optimum D of the induced

Drag D are given. To make these r, -ults as useful as possible to airplane

engineers the bounds are presented 
for the optimal drag coefficient cD as

inequalities of the form

' , D u for k - i, 2
.

There are 3 lower and 4 upper 
bounds 111 12, 13 and uIl,  21 u 3, u4 ' They are

defined as follows

2 2
1 c L  + 8C R

12 2 2 + 3cR
2  + I TACy 

3
C LC 

4CR2 4 24 3L )2

13 
= 4c + 1 R46

cL ~,~ +3 nC y 2 c

1 2 + Sc 2 + .12(fc for ca + 0,
3 L R cR 25L ' L

u c2R 1 :~ =  3 cL c R
2 2Y 2

u :=CL
2 + 8c2 + 2 ivACCy 3 CL CR I

C2 
0.2304 c R2

2 2 +10 + R

uR 1.08 0.168 2 
2

13 cL R(I + (0.3 - c 2 ) (0.3 cR)

for cy 
= 
0 and cR + 0.3 ,

2 2 / 16c
4  +(, c C R2

u4 CL + R  +LR

-22 -



The first bouMs 11, 121 u11 2 u3 are sketched in rqure 9 for Y - 0

together with the solution which is represented by a dashed line. For T - 0

the whole problem is homogenuous. Therefore cL s- I was chosen w.l.o.g..

W Induced drag 0

for different values /
of the rodl moment R

with lift L . const. Us

8,0

20

00 .2 0' 06 03 1o.

Figure 9. Upper and lower bounds u , U2 , u3 and 11, 12 to the coefficient

c0 of the optimal induced drag as functions of the coeffictent cR of the

roll moment. The case c L  , 1, C :- 0 is treated. The dashed line

represents c

- 23 -



The best bounds which were found in this paper are 13 and u4 . They have

both the same structure and differ only in one constant ( 24/25 in 13 and I in

u4 ) . The relative error between them is less than 2.1% (I). Hence, for

most purposes in aircraft engineering these easy-to-handle bounds are com-

pletely satisfactory. In most cases it will, therefore, not be necessary to

solve the problem analytically 3). The bounds 13 and u4 are not included in

Figure 9 since they are both too close to the solution and would, therefore,

interfere with the picture.

Proof Of The Bound Properties.

In this section the existence theory of Section 5 will not be used

directly. It is assumed, however, that a (not necessarily unique) solution

a to the problem of this paper exists. This existence is nearly trivial,

since D'(a) is a continuous functional of a, bounded by zero from below. For

simplicity the notation D :- D'(a) with the corresponding optimal drag

coefficient cD  is introduced

Lower Bounds

Ad 1 : This bound is trivial since

o : 2 ) 2 + 2 2 2
D - v a 1 2 1 /TV-1

Note that the first term in 11 is the well known Prandtl formula (6) for the

3) Ludwig Prandtl once said: "Es gibt nichts Praktischeres als eine gute
Theorie" I (Translated: "There is nothing more practical than a good theory")
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induced drag of an elliptical circulation distribution (see Theorm 1). It

has been used by airplane engineers for more than 65 years. The second term

in 11 shows that it requires at least an induced drag coefficient of

a CR
2  

to produce a roll moment coefficient with the value of c., regardless

of the value of cy. The bound 11 corresponds to the formula (8) from Theorm

2. The value of w X cD equals 11 in the special case where &1 -

a2 - R'. In this case Y' - 3 L'R'.

Ad 12 B By rewriting D' one gets

4D' - 4 V 
2

2v+l) a2 + 7 (2v-1) a 2

V1v-1 v-1

a 1 2+ (2v+l)(aV
2  aV+l

2

By adding

± 2Y' - ± ( (2v+i) 2 av av + 1
v-1

one gets

4D' ± 2Y' - a1
2  

+ (2v+l)a v ± av+1 2

a 1
2 + 3 (al± a 2 )

2

A backtransformation then gives 12. Obviously, as can be seen from Figure 9,

- 25 -



the bound 12 is better than 1 for low values of cR . For large values of

CR the opposite is true.

Ad 13 If one applies the Cauchy-Schwarz inequality to the identity

Y' - 3 aI a2 - (2v+1) av+ I
v-2

and uses the inequality

25
v -+ (v + 1) for v > 2
V 6

one gets

(Y' - 3 al L5 7 v (v+l) av+

v=2 v-2
25 a2 2 22)
2 (D'(a) - ) (D'(a) - a - 2a

By solving this quadratic inequality for D'(a) - a72 and using the lower bound

1, and by transforming it to the coefficients one gets the bound 13.

t11pp.r Bounds

To get upper bounds for D is quite easy. Since the solution a is

defined by a minimum problem, any approximation a to a which satisfies the

side conditions (1), (2) and (3) gives an upper bound D'(a) > D . In what

follows for simplicity the sign a will be replaced by a.

Ad u Let a be defined by

a, L', a2 R', a4  a .. : 0.

- 26 -



The condition (3) then reads

Y' - 3 a1 2 + 5 a2 a3

Hence for R + 0 one gets

Y. 33 3 -R 3L

Inserting these coefficients in D'(s) then given u1 .

Ad u2 : Here the coefficients of a are defined by

a :- 0 for v + 1, 2, p, p
+4
1 with p > 3

The condition (3) reduces to

YV - 3 ale 2 + (2p+t) a a

hence one of the coefficients a or a +1  remains free. By choosing quite

arbitarily

+ P+a, , 0

one gets then

a : / 13a
s
a2 -

Y '
l

p 2p - 1

Inserting these coefficients into D'(a) then gives

D'(a) - a1  + 2 2 2 2 + 1 13Ia2

where, because of p ) 4 , the coefficient of the third term is bounded by

0.9938... - - 4 2 1 4p 1
9 2p+ 1
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Replacing it by the upper bound 1 and transforming back then yields u2 .

Ad u3 z In this case a - 0 for v ) 5 . The condition (3) then gives

Y' - 3 aa 2
a3  :" 5 a2 + 7 a4

for arbitary a4 (provided that the denominator does not vanish). The

following suggestion for a4  for the case Y = 0 has been given to me by

Mrs. Norbert in Freiburg i.Dr./ GERMANY:

0.24 cR
I X a4  := ( - 2 for cR + 0.3

4 (0.3 - c )

Inserting everything in D'(a) then gives u3.

Ad u4 : Vor finding the lower bound 13 the Cauchy-Schwarz inequality was

used. This inequality turns into an identity if the different coefficients

are proportional to each other. This leads to the following "Ansatz"

Define recursively

2v
:- c- a for v ; 2,

where the constant c is to be determined later. This gives

v- 2
& = 0 c a 2  for V > 2

with (2v-2)(2v-4) ... 8 6 4
V (2v-1)(2v-3) ... 9 7 5

2
Xt is easily proved that V y < 2. With the aid of Stirling's formula it
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can also be shown that there exists a positive constant 4 V 2 for

all v ) 2 oing the recursion formula once more given

(2V+) ea 1 a 2 c v a 2 for v ) 2

and therefore

Y' - 3 a e&2 - 12v+I1 a -+ 2 c Va 2

v-2 v-2

- 2 c DI(a) - 2 a 2 c 2v-4
v-2

For any real value of T' - 3a e 2  there is exactly one solution c to this

equation with c 2 < 1 . This comes from the fact that

c vy 2 c 2 v
-4

c Iv 'v
Vm2

is a aonotone function of c which goes to I w as c- 1 Thlis can be

seen from the inequalities

0 4 1 0 2 2V-
4  2

1- c v-2 1 c

By solving the quadratic inequality

2 c

TIV - 3 ala 2 1 4 4 a 2  2
1-c

one gets therefore a lower bound c* for Icl with

S 2 22 + / 4 2
4 + JYI - 3 aIa2

2

- ' " 3 ala2 I
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By inserting this in the above equation

¥- - 3 ala 2
D(a)

2 c

and transforming it back, one gets finally u4.

Comparison between u4  and 13

Using the abbreviations

r :- 16 CR
4 

, a c -3CLcR)
2

one finds for the relative error

U4  13 /r a + /r+24 s/25

12 2+3 cL + 4cR + / 24 ii

s 1 - 24/25

iT r + 24 s/25 C / r + V . r + 24 s/25

1/25

/ 24/25 ( 1 + V'/24/25

_ I - - 0.02062... < 0.021 - 2.1

2/6T (5 + 2/6

as predicted
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5. Existence, Uniqueness And Computation Of The Solution.

There are several approaches to a proof of the existence and uniqueness

of the solution to the problem given in this paper. If these proofs are

constructive, they also permit the computation of a solution. In the paper

[2], the author used the theory of singular integral equations to prove

existence and uniqueness of a solution. It was even possible to give an

explicit expression for the optimal circulation distribution by using

integrals. Some computation with these formulae has been performed in a

Mster's Thesis (Diplom-Arbeit*) at the University of Freiburg i.Br./Germany

by Mr. Ramdane Xedache (unpublished). Unfortunately however, the numerical

computation of these integrals (some of them singular; others elliptic

integrals of first, second and third kind) was very strenuous work, even with

today's fast computers.

Therefore, an algebraic approach is used in the present paper. The

simplest method is to replace the infinite series in the equations (3) and (4)

by finite sums. By using sufficiently many terms, any accuracy desired can be

achieved. The computations for the results presented in Section 3.4 have been

carried out by this method.

In what follows, however, the problem Is treated in a different way by

using the "Lagrange method" : It will be shown that the coefficients aV  in

a solution - satisfy a certain recurrence relation. With this result their

theoretical struc-ture is completely understood. What remains, is to determine

A certain free constant in that relation. This can be computed from a one-

'imenstonal transcendental equation.
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5.1 The Lagrange Method.

In the problem of this paper three conditions (I, (2) and (3) have to be

satisfied with arbitrary constants L, R, Y or L', R', Y' respectively. The

first two of them are linear and of very simple structure. To solve then gives

no difficulties at all. Hence, one has only to concentrate on the one

remaining quadratic condition (3) for Y'.

In the Lagrange method the following fact is used: Suppose a is a

solution to the problem (1) to (4) . Let B be an arbitrary real constant.

Then not only

D'(a) V aV - minimum for a - a,
V.

but also the same is true for the following quadratic expression, namely that

Q(a) V a 2 + B (2v+1)aveV+ 1 a minimum for a a
V-1 Vm.1

The constant B is called the Lrgrange parameter. (Normally, the letter X is

usedi but in the present paper the symbol A is already the aspect ratio.)

Now, by rearranging the terms in Q a necessary and sufficient condition for

a is reached which guarantees that a is a solution.

Let a C A be a solution and let a - a + b C A be an arbitrary

sequence which satisfies the conditions (1), (2), and (3). Hence, for the

first two coefficients of b one sees immediately that bI . b2 = 0. By

inserting a into Q and after some transformations one gets the following

identity
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Q(a) - Q(;) - T + T2 + T3

with the throe terms

T, - b (B(2v I) V 4 2v a + B (2v-1) aV1]
V,-3

4 : (2v + 1) (b~v + 2 B b V 1
)
2

v-2

4 T 3 :- (I - 4 B2) i (2v + I ) b
v-2 V+1

Now, a is a solution to the problem if and only if Q(a) - Q(a) 0 0

for any a C A satisfying the conditions (1), (2) and (3) and that means for

(almost) any b. The first term T1  is linear in b . It, therefore, has to

vanish for arbitrary b . This is true iff all the square brackets are zero.

The next term T2  is quadratic and obviously T2 2 0 for all values of b

The same is true for the third term T3  ff B2 
4 1/4. If one puts all these

facts together one gets finally the

Theorem 5 : Necessary and sufficient for a C A to be a solution of

the problem (1), (2), (3) and (4) are the following three conditions:

i) a satisfies (1), (2) and (3),

ii) there is a real constant B with 1 B I ( 1/2 such that

ii) a satisfies the recurrence relation

(IS) B (2v+1) av+ 1 + 2v a + B (2v-1) a v-1 0 for v - 3, 4,..
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5.2 Solving The Recurrence Relation

If B C t-1/2,1/2] and if a2 :- R' and a 3  is an arbitrary real

constant, then (15) can be solved uniquely by recursion. Hence, there is no

doubt about the existence of a solution of (15). The problem in question in

Theorem 5, however, is different: Is it true that for any vwlues of L', R'

and Y' there exists a constant 6 C 1-1/2,1/2] and a starting value a 3 such

that the sequence a generated by (15) satisfies the conditions (1), (2) and

(3) and that, moreover, a E A ? If yes, are the constants a and a 3 then

uniouely determined ? It will be shown that all this is true. But it is

useful first to treat

The Special Case B = 0:

In this case the recurrence relation (15) has for all starting values

2 the uniquely determined solution a - 0 for V > 3 . Therefore this case

is equivalent to the problem treated in Section 3.2 with the solution given by

Theorem 2. Hence, w.l.o.g. B + 0 can be assumed in what follows.

Obviously, the recurrence relation (15) is asymptotically equal to the

similar relation

(16) $ (2v+2) a+ I + 2v av + 8 (2v-2) a _1 . 0 for V - 3, 4,.

As for any nondeqenerate second order linear recursion relation both (15) and

(16) $,av- Iwo 1 i arily independent solutions. The two solutions of (16) for

0 < 2 < 1/4 are obviously
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V
a :- a /v for v - 2, 3,.v

where a is one of the two solutions of the characteristic equation

2(17+ + 0 - 0

These solutions are

a (-I + 1-42)/20

and

a 2  1- 42)/2.

From these expressions one sees easily that II < 1, o 1 > I for 52 < 1/4

Therefore only the solution with a is a convergent sequence, moreover, only

this one solution belongs ( obviously) to the class of admissible sequences A.

Because of the homogeneity of (16) the solution wanted is then

V-1

(18) a :- 2 a2 v for V - 2, 3,.

Inserting this into the condition (3) together with a, . L' and a2

gives the equation

Y' - 3 L'R' + 4 R
' 2 2v+1 2v-2

"("+l) 1I

It can be shown rather easily that there is a unique solution o to this

equation for any real values of L', R' + 0 and Y. Reinserting this solution

01 into the characteristic equation (17) then gives the desired value

- 35 -



:s A 2

If R' " 0 and Y' 0, then obviously the Prandtl solution (5) solves

the problem of this paper. Hence, only the case R' - 0 and Y' + 0 remains

to be treated. This will not be done here.

Up to this point only the asymptotic recurrence relation (16) has been

treated. It can be solved explicitly by (18). It can be shown that (18) is

also an asymptotic solution to the original equation (15). This will be done

elsewhere. Hence one gets as a result the

Theorem 6: For any combination of real numbers L', R' + 0 and Y' there is

exactly one solution a C A, 8 to the recurrence equation (15) such

that the conditions i) and ii) of Theorem 5 are satisfied.

5.3 Uniqueness

It can be shown that there is a solution to the problem of this paper

also in the case R - 0, Y * 0, which was not treated above. But in this case

the solution is not unique; in opposition to the above result. This can bee

seen very simply an follows:

a { a1 , 0, a3, a4  ... be a solution to the problem (1),

(2), (3) and (4) with R' = 0, i.e. 2 ' 0 . Define

a* : a, 0, -a 3 ,-a 4, ...

Then a obviously also satisfies the conditions (1), (2) and (3) . Moreover

D'(a) = D'(a*) which shows that a* is a at': n of the problem, too. It can

be shown, moreover, that these are the only -wc solutions, i.e. that no other

solutions exist. The proof of this will not t- qi'en here.
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5.4 Generating Function

(This part has been proposed to me by Professor Ben Noble, former

director of the Mathematics Research Center.)

Let z be a complex variable and define the complex function f by the

power series

f(z) 
v

v-2

Such an fuction f is usually called a "generating function" of the

sequence a . Then inside the disc of convergence one gets

v-2v(f(z/z)' = 12v+11 a +1 z

z fl(z) - 2 v &z ,
v-2

2 z (2v-2) a _I  v
z (2 f~z))P (2-1 a3-

V.3

&sswue that the coefficients aV  satisfy the recurrence relation (15). Then

by the above three equations it follows immediately that the function f

satisfies the following linear differential equation

2 4 4_ 2 2 4
z(B + z + Bz )f*(z) + B(z -1)f(z) - (a 2(38 + 4z ) + 5Ba3 z )z

with the initial condition f(O) - 0 it has the unique solution

z

F(z) - z eH(z) I e-R(t) k(t) dt
0
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with

1 + 26 z
2

h(z) - 2=

P+z2 + z
4

z

H(z) h(t) dt

0

2 2 4

a 2 z ( 3  +4z ) a3z
k(z) :

From this generating function the results of Theorem 6 can also be derived.

This will not be shown here.
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