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ABSTRACT

We study the stability of viscometric flow using the type of short memory

introduced by Akbay, Becker, Krozer and Sponagel [1-71. The instability found

by these researchers is recognized as a change of type leading to non-

evolutionary character of the governing equations.

We also address the question of justification for the short memory

assumption and find that it cannot be justified for some of the more popular

rheological models.
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SIGNIFICANCE AND EXPLANATION

In flows of viscoelastic liquids, instabilities frequently arise at high

shear rates. The explanation for these instabilities is still a largely

unsolved problem. This paper discusses some consequences of a recent theory

due to R. Decker and his coworkers at Darmstadt. This theory predicts

instabilities if the first normal stress differences is sufficiently high. We

show that this instability is associated with a change of type in the

governing equation.

The theory is based on a certain approximation. The justification for

this approximation is also discussed and is found to be problematic.

Oro:

The responsibility for the wording and views expressed in this descriptive

suimary lies with MW, and not with the authors of this report.
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REMARKS ON THE STABILITY OF VISCOMETRIC FLOW

M. Ahrens*, D. D. Joseph**, M. Renardy' and Y. Renardy
2

"Complex problems have simple, easy-to-understand wrong answers."(9].

1. INTRODUCTION

In viscometric flow of polymeric liquids, instabilities are

*frequently observed at high shear rates. In many cases these

instabilities occur even th ough the Reynolds number iS low

and have distinctly different characteristics from the instabilities

*- that arise from inertial effects. Although various mathematical

theories have been developed, the proper explanation of these

instabilities is still an open problem (for review, see Petrie

• .and Denn [18]). Among the mechanisms proposed are: Changes of

type in the governing equations which may lead to fracture or

phase changes in the material, development of shocks, free

surface instabilities, slip on the wall, or bifurcations of the

classical type. In general context, equations describing linear

perturbations of viscometric flow were derived by Pipkin and Owen

[19] and Dunwoody and Joseph (11]. These equations provide a

general framework; however, in order to arrive at definite

conclusions, more specific assumptions are necessary. Such
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assumptions can be of two kinds: First, a particular constitutive

model many be assumed, and second, one may seek approximate

equations valid in certain limiting situations. Either approach

seems to have its problems. In the former case, the analysis of

one constitutive model tells you nothing about others, and it

is not clear at this time, which models are adequate for which

materials--in particular at high shear rates. In addition,

the determination of the stability boundaries for simple shear

flow--either analytically or numerically--does not appear to be

easy even for the simplest constitutive models [13]. On the

other hand, "approximate" constitutive laws must be used with

great caution. There may be problems of consistency (e.g. does

• instability occur in a range of parameters consistent with the

assumptions needed to justify the approximation?) or stability.

That is, the stability properties of approximate equations need

not be the same as those of the "exact" equations, as is well

known for "fluids of grade n", if n > 1 [10], [14], [21].

*" An approximate theory of perturbed viscometric flow based on

a hypothesis of short memory (small relaxation time) has been

developed by U. Akbay, E. Becker, S. Krozer and S. Sponagel in

Darmstadt. In a series of papers, they study various flow situations

* such as plane Couette and Poiseuille flow, flow between eccentric

rotating cylinders and boundary layer flow [1-71, [20]. The

purpose of this paper is to work out some consequences of this

theory and to give a critical assessment of it.* The short

memory hypothesis can be formulated in terms of a perturbed

extra stress in the form

*The theory of Akbay et al. is explained in Chapters 2 and 3.

* . ., , °O o . . .-o ° . ". O. . o- .° -° ° .'. . *° *o S- . S . . .* . . . . S .-
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(1.1) ((t) = iK, S) D(t-s)ds

where K is assumed to decay rapidly to zero fast and to have
.4

appreciable values only for 8 << Ki. E.g. we could take

(1.2) K(K,s) = A(K)e - s / k

where KA << 1. We have denoted by 2 the symmetric part of the

perturbed velocity gradient, and K is a fourth order tensor

s 5o that (KD)ij - Ki Dtm, K is the shear rate of the basic flow.

. The approximation applied to (1.1), assuming (1.2), is that only

terms linear in KA are kept, while higher powers are neglected.

The short memory hypothesis is applied only to the perturbation

equations, not to the "basic" flow that is being perturbed. The

viscometric functions, i.e. the viscosity n(K) and the normal

stress differences NI(K) and N2 (K) are assumed to be given

independently of any short memory hypothesis. As we shall

see later, this leads to serious consistency problems at least

for some of the constitutive laws presently used in rheology.

The theory of Akbay et al. would work best for a constitutive

law that has a different relaxation time for perturbations of

simple shear flow than it has for simple shear flow itself.

It is not clear to us, how such constitutive laws should be

constructed.

Akbay et al. make the additional approximation that the

Reynolds number is neglibible. With these assumptions they

find that the following condition is necessary for the instability

of plane Couette flow to two dimensional disturbances.
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(1.3) L 16n (K) T 1.

A similar criterion is obtained for plane Poiseuille flow. They

also give numerical evidence suggesting that (1.3)is sufficient

for instability to occur. More recently they have also considered

three dimensional disturbances [20].

In this paper, we reconsider the stability of plane Couette

flow and we show in Chapter 5 that, in the limit of zero Reynolds

number, (1.3) is indeed a necessary and sufficient condition for

instability. The instability is associated with a change of type,

a notion which we explain in detail in Chapter 4. The character

of this instability is quite different from those familiar from

Newtonian fluid mechanics. At the critical "Weissenberg number"

not only one mode becomes unstable, but a whole family of modes.

At any supercritical Weissenberg number, ther is an 0 number of

unstable modes. These unstable modes have arbitrarily short

wavelengths, and their growth rates actually tend to - as the

wavelength tends to zero. As a consequence, this kind of

instability must lead to a much more severe change in the flow field

than the development of secondary flows. "Fracture" may be one

possible consequence of such an instability.

For finite Reynolds numbers, the criterion (1.3) is still

valid for a change of type. We do not know whether particular

modes may become unstable at lower Weissenberg numbers, but

numerical results indicate that this is not so at low Reynolds

numbers. In fact, for disturbances of a fixed streamwise

wavelength the critical Weissenberg number seems to increase with

the Reynolds number.

. ° tV'Z tt.,....-.. .. "-.°". - -. .•
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In a final chapter, (Chapter 6), we attempt to give a

critical assessment of the theory of Akbay et al. First, we find

that there is a problem with the short memory assumption. It

turns out that if this assumption is applied to the basic flow,

then the normal stresses are small compared to the shear stress,

and (1.3) cannot be satisfied. We give a general argument for

this, and also illustrate it for a particular model. It thus

appears that (1.3) and the short memory hypothesis are inconsistent,

* unless the fluid somehow has a different memory for perturbations

of shear than it has for shear flow itself. We do not know if

and how this could be made precise. Another question that might

be asked is whether the result of Akbay et al. would hold without

the short memory hypothesis. The upper and lower converted

Maxwell model satisfy (1.3) at high enough shear rates, in fact the

quotient

[d N2 dTa- _ 2K/16n(IK)

V.

becomes arbitrarily large. However, it was recently shown [16], [221

that a change of type does not occur in those models. Thus any

existing instability would not be of the kind considered by Akbay

et al. Whether there are instabilities at all, is a difficult

problem. Numerical attempts to find them have so far led to

. negative results [13].

. -

.. > . .* - ** i . ~
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2. PERTURBATION OF THE STRESS IN NEARLY VISCOMETRIC FLOW

In this section we derive general equations for the perturbed

part of the extra stress, with no restriction on the memory of

the fluid. The essential features follow the method of Dunwoody

and Joseph [11]. We refer the reader to that paper for a detailed

- derivation.

Consider a viscoelastic fluid in which the extra stress is

given by a functional of the deformation gradients

(2.1) ST = T+ PI (s, , • _S= 0

Where T is the Cauchy stress, P is the pressure and G is the

Trelative Cauchy strain: G(s) = Vx (s)VX(s) - I, where X(s) =

x(x,t-s) is the position at time t-s of the particle presently

(i.e. at time t) at x. We represent the basic flow (as yet

unspecified) by a "o" subscript, and write the perturbation as

follows:

(2.2) (a) X(s) = X o(s) + _(s)

(b) U(s) = Uo(s) + u(s)

(c) P= P + p

(d) 3 S + S

Here the soleroidal velocity fields Uo and u satisfy

(2.3) (a) U(X,t-s) = X o (0) = x

-. 0-aas, -0

(b) u(X,,t-s) = - - (&.V)o,._3o) = 0

The linearized perturbation of the extra stress is given by

. .

* &. ' - .. . . . . 4 . . . 4 . . - .4 - . . . . . .
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(2.4) [, S)= VX7'VT~S= 0

(2.5) [!G (S) Ij G V7X X=, 1- 1s=O

where is the first functional derivative of T, evaluated on

the basic flow. That is, '1 is a linear operator actiong on SG.

* We assume an integral representation for 7i

(, 2.6) [oI 6= (s,G)6G(s)ds
'l 0 S= 0  J

The isotropy of )implies that

(2.8) T [[2s~ s= T= 1T 1

'S _G

.:s=O P 1Ea's=O

which holds for all orthogonal 2 and symmetric 6G.

For simple shear, with shear rate K - U, we have
h

(2.9) Xo = ( sN)x

(2.10) G = -s + NT + s 2NT

, (2.11) 6G = V_ + VIT s(VJT. + NTVj)

where

.5'(2.12) 0 1 0

The extra stress of the basic shear flow is given by the viscometric

* functions

.. So • .- . ., * .,. . . .....
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U,

F 2NI + N2 3 - 0

(2.13) S T= -( trT 3r -N 1 + N2  0

0 0 -N1  2N2

where T is the shear stress and N1 = T - T22 , N2 =T 2 2 -T 3 3

are the first and second normal stress differences.

Consistency relations between the kernel function K and t

viscometric functions can be obtained as follows. First, we

- consider families Q() of orthogonal matrices such that 2(0)

. and then differentiate (2.7) with respect to X, at X = 0. Sins_

" ~ 10) is an arbitrary skew-symmetric matrix, this will yield three

*matrix equations. A fourth matrix equation is obtained by

differentiating (2.7) with respect to K, i.e. by perturbing the

* :shear rate. Using the notation (K) ij~m = Em' we find the

* following four equations [11]

(2.14) 2NI ' + N2 '
3 03

00

-N1 +N' r 2,d
1 23 0 = -2sIK 12 - S ds

-N 1 ' - 2N

0 0 13 2
4' 1

- .. *~...-..<. *~ ~ .* -j 2~f. . .
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G(.15) - 2 T N1  0

Nlc K T 002 S 1 2 KS.L2] do 0 0

0I

(2.16) 0 0 N1 + N2

0 0 T = -2KsK ds
0

N1 + N2  T 0

(2.17) 0 0 T

o 2 = 2KS(KsK2 3 - Kl3)ds
N- 0

T N2  0
.' --4

Clearly, only (2.14) and (2.15) are relevant for two-dimensio.,al

flows.

Equation (2.8) for the isotropy of3' can be used to show

(11], by choosing special forms for Q, that

(2.18) Kijkm = 0

whenever there are an odd number of 3's in the set {i,j,Z,ml.

Finally the symmetry of S implies that

(2.19) Kijim = Kjitm

and the incompressibility condition implies [19]
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3(2.20) Z Kit + 2KsKI2 + K 82K = 0

i +=1

From (2.6) and (2.11), we find the following expression for the

perturbed extra stress

f 3
(2.21) S = J , K 6G ds

0

= 2 2,1 + K( 1 2 + 2 + =131l,3 + 3,1)

"23( 23 + C3,2 - Ks 1 ,3 ) + (K33 -K22)t33

where

(2.22) K1 = -Ks K22 + K12

(2.23) K2 = KII - K22 - KsKI2

Note that K1, K2, K.3, and K23, are all related to viscometric

• ,functions by the consistency relations (2.14) - (2.17), but that

2 K -K does not occur in any of the consistency relations.

.4

* *,



* 3. SHORT MEMORY

We consider in this section the short memory assumption as

applied by Akbay, Becker, Krozer and Sponagel. In general,

smooth deformation histories may be approximated asymptotically

in terms of the Rivlin-Ericksen tensors.

N ____ n~
*(3.1) A~s (t))n + 0(sN )2n1 n1 =nL!()

where

&ntU~)]= 1 n G(s)
An[1 ()dsn L s

is the nth Rivlin-Ericksen tensor. For the perturbation term 6G,

we obtain

*(3.2) 6G= -s A1 [utJ + 0(82)

= -2s p4uRtM] + 0(8 2)

_ =1 T
*where D[u] = !(Vu + Vu ). Under the assumption that this leading

* term is sufficient for a short memory fluid, (2.21) may be written

as

(3.3) S -2 ~ s{E d

r ~ au 1

-2 )d2

1 3

-21 sK,3ds (-u + 3
f 13 ax 3 1
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O~aU 2 +U 3-2JSK-23ds ( -- + -21

-2 s(K33 - TX22 1 -

* The first four integrals are precisely those occurring in the

consistency relations, and if terms of order Cs can be neglected

-. compared to others, they are approximateiy equal to expressions

%'(2.14) - (2.17) involving viscometric functions. With this

:. approximation, we arrive at the following expression for the

- perturbed extra stress.

(3.4) 7-2'r 1

N 00 01

2N1 '+ N2'0

-N1' + N 2' u1  u

f (E3 1 2 1a2

+ T'30

-2N2' _ N1  ,

0 3

F0 0 T 0 0 NI +N 2
1o 0pa N2 to-, ohr--th +- 0 o

S N 2  0 N +N 0

2  1 1 2 1u2

To2  -N3  1 -K N 0D 1+u
3 ax 2 x

3 02 
20  3 3

Du 3 1 2
+ -. 0. N* * - + 0' 0.. . . . . . . -
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This is the form used by Akbay et al. [2]. We see that even in

this approximation there remains a term not related to viscometric

functions ( see (201). More such terms would occur, if higher

order terms were included.

In two-dimensional flows, (3.4) reduces to

(3.5) -2T N1s=-- I 11.51 1
2 N1  2T  au 1

2N ++

-N1' + N2'
L' 3

" The equation of motion, after linearizing at plane Couette flow and

eliminiatinq the pressure, becomes

*aa a 1  a 2  a22  a2  21 - S22)
(3.6) P (2- + KX2 _---- _u ;U2__ S ) l + $22

(36 ) ax -x2 a) -x, = 2 22 1)S2 + a ax
1 2 1 x2  ax1  1 2;2  1)x

We introduce a stream function T such that (u1,U2) =

a )(2T+ 2

(3.7) P(.L + Kx2  )l 7-2 +
1 ax2  ax1

N 2

(N 1  ax~~:2  ~ a 1  x2

a2  a2

where 2-- - ,.
ax 2 ax1.;)2 ;)1
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The boundary condition is

(3.8) ' - =0 at x2 =0 and x= hax 2 22

.4

J

"',

-, .. -

- . . . S.
.

SS4 S S.*S * * S * 5 S**,o,~* .-

. j



-
' 

-7-.. .- . - - , • - . - - ' . . .

-15-

4. WHAT IS A CHANGE OF TYPE AND WHY SHOULD WE CARE ABOUT IT?

We shall see below that equation (3.7) will have an instability

S if a certain "Weissenberg number" exceeds a critical value. THis

instability will be associated with what is called a change of

type. The reason why this is important is that change-of-type

• .instabilities have quite different mathematical properties and will

lead to quite different physical effects whan other instabilities.

In order to explain what we mean by a change of type, we

must first explain what we mean by the symbol of a differential

operator. To obtain the symbol, one simply replaces the derivatives

- by numbers Di. Thus we can assign to any differential operator
a,. i i

a polynomial. For example, the differential operator on the right

of (3.7) would have the symbol

N1  2 2 2 22 4t 22
(4.1) (N - -DID 2 (D 2 2-D 1

2 ) + T'(D 2  - D21 2 + -D 1 D2

Two differential operators are said to be of the same type, if --

up to a transformation of the independent variables -- their symbols

have the same asymptotic behavior at -. If the asymptotic

behavior of the symbol changes, we say that a change of type
i 2 2

occurs. For example, the operator 1-2 + -2 changes type as y
ax D

2 2.
goes through zero: For y > 0 the symbol DI + yD2  is a positive

definite quadratic form (the operator is then called "elliptic"),

for y < 0 the symbol is an indefinite quadratic form (the operator

is then called "hyperbolic").

Mathematical problems such as existence, uniqueness and

regularity of solutions or continuous dependence on the data

- depend essentially on the type of the differential operator. For

- -. 5 . S - '.5 * . :i. - .. . ' .



-16-F second order operators it is well known that in the elliptic case
the "good" problem to look at is a boundary value problem, while

in the hyperbolic case it is an initial value problem.

Heuristically, the reason for this is that the type describes

* how the operator acts on rapidly varying functions. For such

cases, one expects that locally the variation of the coefficients

" can be neglected, and that, in the interior of the domain where the

problem is posed, the influence of boundary solutions can also

be neglected. For constant coefficient problems without boundaries,

the symbol is just the Fourier transform of differential operator.

How does the foregoing apply to equation (3.7)? If we formally

set -a D = ia, D =i8,at 1 ax2  2

then the left side of the equation becomes

C-: (4.2) p( + Kx2ia)(-82-a 2

and the right side becomes

N 1  2 2 2 2 2 + a 2 2: ~ (4.3) -(NI - -)(a 2 )a8 + T'(a 82) + 8

The expression (4.3) is a homogeneous fourth degree polymonial.

rJ It turns out that this polynomial is positive definite if and only if

2 d N 1 2 2(4.4) We2 = [a -- 1 K /(nlK) T'I)) < 16

If We2 > 16, the polynomial is indefinite- If we now formally put

(4.2) equal to (4.3), then we find that a is negative if a,8 are

large and We2 < 16. If We2 > 16, then there is a sector in the

a,8- plane for which a becomes positive for a,8 large, moreover

a becomes arbitrarily large in this case as a,O .
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This heuristic argument suggests the following: If We2 < 16,

then at least highly oscillatory modes will be stable. If

instabilities exist, then they will only affect a finite number of

modes. If, on the other hand, We2 > 16, then we expect to find

an infinite number of unstable modes. In addition, the growth

constants of these modes can be arbitrarily large. Thus the

change of type leads to an instability which is in a sense much

stronger than those studied in bifurcation theory. One

cannot expect a secondary flow whos- dynamics would be governed by
-0

*i the evolution of one or several modes. Rather, the initial value

problem becomes ill-posed, i.e. there are flow fields for We2 > 16,

" which would not occur even as transient states, since "random"

disturbances containing all modes would blow up instantly. In

situations where this "forbidden" unstable region lies between two

stable ones, a phase transition can occur. That is, there can be

discontinuous solutions whose values lie in both of the stable

regions. The two regions are then referred to as different

"phases". If the forbidden region stretches all the way to

infinity and a second phase does not exist, the result of a change

of type may be something like fracture.

4

%.4

4%,

i . 4 °4 .
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, 5. INSTABILITY OF PLANE COUETTE FLOW WITH SHORT MEMORY.

In this chapter, we give a more detailed analysis of equation

(3.7), and we provide a rigorous basis for some of the heuristic

conclusions obtained in the last chapter. The stream function T

is represented by normal modes

".(5.1) ' = eat eiQX1*1x 2 1

* We wish to find eigenvalues a and eigenfunctions 0(). For simplicity,

we set

(5.2) E 4 1 r K T 1 K)

R= aK ICi C.

Moreover, we assume that the width h of the channel is 1.

Equations (3.7), (3.8) then become

(5.3) iaR(x2-c)(0 ''-a ) = i v + a 2(2-E)0'' + a 40 + iar(0''' + a 20)

(5.4) 0= 0' 0 at x= 0, x= 1

Let us assume that T' > 0 and hence R > 0. In this case we want

to show that when r 2 < 4E the imaginary part of c must be negative

provided that a is large enough. For this, we form an energy

integral
1

(5.5) J [ 0 iv + a2 (2-E) 0'' + a40 + iir(,''' + a2 j]dx2

=iaR J (x2 -c)(0'' - 2 )Odx
0

wLA
* . .* . .*

*., -
"" "- "'-' -" "-'," "- *--" % -- '- '' . '-,''''' - - - " ' i ii
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*" and integrate by parts, to find

-,i 11 1J If + OL01 dx 2+ Ea 2 f 1,2 dx2 -ici fr ' + a2 )W dx 2

(5.6) - -iaR J(x 2 -c)[10,12 + a2 I,12I dx2 - iciR J '-dx 2 .

1 1

There is a constant y 0 such that II*'.xI2 <_ Yo f 1,1 2dx2 for any

0 satisfying 0() = 0(l) = 0. Taking the real part of (5.6) and using

this inequality, we find

(5.7) -cR Imc J (10, 12 + 21012)dx2
01 01

+0 0  2 2YoI 02
0 ft.' + 1d + (E - OL J'1'ol d 2

1

+ r Im (0'' + 2 )T'dx 2

By applying Cauchy-Schwarz to the last term, we find that theRYo

right hand side of this is positive as long as r2 < 4(E - -). Thus,

if r2 < 4E and a is large enough, we must have Imc < 0. If aRx2

is put to zero in (5.3), the term proportional to R in (5.7)

disappears, and stability for any a is guaranteed if r2 < 4E.

In the following, we neglect the Rx2 term. Then with

A -ioRc, we have (5.3) in the form

(5.8) 2 = iv + (2_E) 2 ', + a + ii( w +'' a

We shall prove that there is an eigenvalue X = 0 at a

value of I'(a) which converges to /ME as a (This proof is

due to M. Ahrens). Since ( 5.8 ) is a linear fourth order ODE,

it can be solved exactly. We look for exponential solutions of

the form *(x 2 ) = eiax 2 and obtain the following algebraic equation for ri

p . * . . o *. . . • .
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4  - - r + + -(2(5.9) r+ r (2-E) r 0

We are interested in neutral stability, = 0, so that

(5.10) r 4 + rr 3 _ (2-E)r2 _ rr + 1 = 0

Equation (5.10) is a fourth degree polynomial in r and hence
., r2

solvable by standard methods. Letting y = - E, so that y < 0

corresponds to linear stabilityI We can write the discriminant

for (5.10) in the form

".2 2

(5.11) A = 16y -{16y + (E+4) 2

Thus A > 0 for y > 0, assuring us that (5.10) has distinct

roots in the case of interest. In addition, the four roots of

(5.10) are real. For completeness, we list the roots here.

Define Rk = rk + , k = 1, 2, 3, 4 where rk are the roots of

(5.10). Thus

(5.12) R 1 - 1  + +

1 2

R /-y 1 + /--Y /

3 1 2_3S = { -Y + -3 }

where yI' Y2 ' Y3 are real and negative and are solutions of the

cubic

3 2(5.13) Y + b Y +bY+ b- 0,where

-.. •where
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where

1 8

-- bI  1 2 +r 2 -4E)
332

"=12 2 2
b3= r-4I  ( -4E)

It is easy to check that bi, b2, b3 are all positive for the case

of interest, r 2 > 4E, if we assume E > -4. The rule of signs

applied to (5.13) thus shows yI, Y2 ' Y3 are negative, so that rk'

k = 1, 2, 3, 4 are all real, as asserted previously. In fact, the

y_' Y2' Y3 may be found from

Yi 1(5.15) y1 = 7 {-bl + 1" + II

Y2~ 37 1__

Sy3 = g{-b1 + (-7 + 2i)fl + (- - ri)fI}

*; where

.- 2 32_ v-

(5.16) I = YI = -(E + 4)(18y + (E + 41) + 2./7/- i.

We are now able to write down a solution to the Orr-Sommerfeld

type problem, in the form

4 izr k x2(5.17) E.= a k ei r 2

k=l

where rk are determined by (5.12), (5.13) above, and the ak are

constants. The boundary conditions allow a non-trivial (x2) if and

only if

-*'. '--* . -* '. -'..'.'*.'? . ....- . . . . ..... . . . ... .- - ' . • "' . - ''S' " ..---.-.- -. ', .S .5 - .- "..-- . .2..
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*(5.18) 11 1 1

rl r2  r3  r

det =0

"ar1  iar2 iar3 iar4

iar I  ir 2  ir 3  iar 4
1rl r2e r3e r4e

This implicitly defines a relationship r(a) which must hold for

* neutral stability. Reduction to the Yk' k=l, 2, 3 given in (5.15)

gives (5.18) in the form

00

*: (5.19) f(a,r) = Y3- Y2)C°S( V€y 1 ) + (Yl - y3 )C°S( -€j2)

+ (Y2 - Yl)cos( 'y 3) = 0

Recall that yl, Y2 ' Y3 are independent of a, and are smooth
Y2' Y2

functions of r in our case of interest, r > 4E.

Equation (5.19) was numerically solved to display the

neutral stability curve r(a), for several choices of the parameter

pE. A typical case, E = 2, is given in Figure 1. Note the behavior

of r as a , indicating that r2  4E is a horizontal asymptote

We shall show that r = 4E is indeed a horizontal asymptote.

Thus, loss of linear stability occurs at this value of r2 for

disturbances with short wavelength (a large). The numerical

results of Akbay and Sponagel [4] indicate the same result.

'S

* " , o g , , .. . . . , , . " - . , . .' . ". . . . '. .. . . .. - - .".



-23-

Figure 1. Stability boundary for E = 2
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Asymptotic Behavior

-" 1.2
We will take the limit of (5.19) as r,2 4E, i.e. as y 4- 0.

- First, from the form of yI' Y2' Y3 given in (5.15) we find

(5.20) yl + -(E + 4)

as y 0.

Y2' Y3 ' 0

f
Then computing f, L from (5.18), and using this last result (5.20)

gives

( (5.21) f as y- 0.

We now consider -. From the definition of y, Y2, y3 ' we can

* compute

(5.22) Yl E + 852 - E + 4

- 2 E E as y +0.ar E +4

aY3 _ _

ar r

Hence, (5.19) implies

(5.23) +f -4 r{cos(t/E-- ---4) - 1 + E + 4 2 as y + 0.
ar E + 4

-.. Let

-. g( ) = {cos(lx E--.'- ) - 1 + 4 2
---2-- ? }.
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Then g(O) = 0 and g'(a) = /E- /{+ - -- a - sin(a/E-v--)}•

Clearlyg'(a) > 0 for a > 0. Thus, g(a) > 0 for a > 0.

Hence, for a > 0, 2- does not reduce to zero as y + 0.

The behavior of f near y = 0 is approximately described by

(5.24) f(ar) yl(cos(v'-y,)- cos(a/:j))
2y3

YSince -Yand - ave different limits as y + 0,

the term in brackets will have an increasing number of zeros for

small values of y as a grows large. It is clear that this property

persists for the exact f. Hence we find an infinite number of

2curves r = r(a), which must approach the line r = 4E as a m.

Since

dr _(3f -1 af
(5.25) - f-l ,Ta- r) 3a,

the slope of each of these curves must approach 0 as a + . Hence

r 4E is a horizontal asymptote for these curves.

We turn next to a description of results obtained by numerical

calculation at finite Reynolds numbers. Figure 2 shows the

neutral stability curve for the case R = 1, E = 4, showing an

asymptotic behavior r 4 as a m. The method of calculation

follows that of Orszag [17]. Equation (5.3) is discretised by

representing 4 as a sum of Chebyscher polynomials. The resulting

matrix equation is solved for c, given a and r . The computations

were checked against Gallagher and Mercer's [12] results for the

case r = 0, R = 1, 10, 20, 30 using 20 Chebyshev polynomials.

The number of Chebyshev polynomials used for Figure 2 varies from 40

at a = 20 up to 100 at a = 50. For negative r, the neutral stability

curve is a reflection across the a-axis. When R is increased

* * * . -
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this symmetry is lost and the neutral stability curve for r positive

is raised. These trends are shown for a = 4 in Figure 3

for which 40 Chebyshev polynomials are sufficient for 4-digit

accuracy in c. A similar calculation at a = 50 requires over

80 Chebyshev polynomials for the same accuracy. At R = 1

the neutral stability curve lies near r = 4.00 while at

R = 25, it lies near r = 4.04. Hence it appears that the curve

asymptotes to r = 4 as a but more slowly as R increases.

Curiously, the influence of finite R seems to be stabilizing

rather than destabilizing, at least for low values of R.

,<

!0- ( *,-
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FIGURE 3

TABLE OF THE WEISSENBERG NUMBERS FOR WHICH Re a 0,

ax = 4 FOR VARIOUS REYNOLDS NUMBERS

K Ni K (N
R Positive Negative Kin

1 4.4 -4.4

5 4.5 -4.4

15 4.7 -4.4

25 5.0 -4.5

. . . . . *. . . *. . . . . .* *



-29-

6. A CRITICAL ASSESSMENT OF THE SHORT MEMORY THEORY

A difficulty in the theory of Akbay et al. is that, if the

short memory approximation is applied to the basic flow one finds

that the first normal stress is negligible and hence r v 0. That

is, if short memory-is assumed, then all terms in (3.1) except

the first can be neglected, and we get the Reiner-Rivlin fluid,

* which has N1 = 0. The instability criterion will not be

achieved. We illustrate this for the following model constitutive

• .law of Oldroyd type

P (.1) + A [ + (v.V)l + (r.- 1.1) + a(-S + S-D)] =2

where . is the stress and D and w are the symmetric and antisyimetric

parts of the velocity gradients. v and X are arbitrary positive

constant, and a is supposeto be between +1 and -1.

In simple shear flow, we get

PK
S+ K 2A2 (1-a )

N = 2 AK
2

1 + K 2A 2(1-a 2)

If lal < 1, T' becomes negative for large K. This will lead to an

instability, but not of the kind considered by Akbay et al.

With n = (1 - a2 )A 2 , it can be shown that

K3 N ' 1 2 K2 (I K2 n) A2 2

(1 - K n) 4

.4 (.1 + n)

Hence the instability criterion does not apply if AK is small.

The maximum value of the left hand side is

., .... ..

. .. ? ". " ..- ". .. , .... _ . .' .' . .... " .. , . . . .4. 4 .4 . 4 .
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1 2p ,',.1 1(/[ - 1)12

"'> 4 (1 - a 1

22

which never reaches 1 unless a
2 is sufficiently close to 1.

The problem of consistency in the theory of Akbay et al. raises

the question whether changes of type (or their absence) can be

discussed without resorting to a short memory hypothesis.

For a K-B K Z fluid [15], [8], this has in fact been done [22].

The K-B K Z model includes the special cases a = + 1 of (6.1).

In these cases, the condition (1.3) is satisfied for large enough

K, however, it was shown in [22] that a change of type does not

occurl Thus the criterion (1.3) is invalid without the short

memory hypothesis. Thus the question whether large values of N1

would produce instabilities in shear flow remains open.

.......................................
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